.. Construction-automatique-de-hiérarchies and C. .. La, 36 3.2.1 Méthodes de sélection de modèles

.. Extraction-de-sémantique-dans-les-images, 44 3.3.1 Annotation sémantique vue comme un processus de classification 45 Problématique d'annotation d'une image, p.46

.. Application-de-techniques-textuellesàtextuellesà-l-'image, 47 Modèles par variables latentes, p.54

.. Analyse-syntaxique-de-l-'image, 55 Grammaires stochastiques sans contexte, p.57

.. Stratégie-de-franchissement-du-fossé-sémantique-adoptée, 62 4.1.1 Précisions sur le vocabulaire employé, p.62

H. Akaike, Information theory and an extension of the maximum likelihood principle, Proc. of the Second International Symposium on Information Theory, pp.267-281, 1973.

S. Aksoy, K. Koperski, C. Tusk, G. Marchisio, and J. Tilton, Learning bayesian classifiers for scene classification with a visual grammar. Geoscience and remote sensing, pp.993-1022, 2005.

D. Aldous, Exchangeability and related topics In Ecole d'Ete de Probabilités de Saint-Flour XIII 1983, pp.1-198, 1985.

P. Auer, On learning from multi-instance examples : Empirical evaluation of a theoretical approach, Proc. of international Conf. Computer Vision, 1997.

R. Balian, Cours de physique satistique de l'´ ecole polytechnique, Ellipse, vol.1, 1982.

K. Barnard, P. Duygulu, N. De-freitas, D. A. Forsyth, D. Blei et al., Matching words and pictures, Journal of Machine Learning Research, vol.3, pp.1107-1135, 2003.

J. Bellegarda, Latent semantic mapping [information retrieval, IEEE Signal Processing Magazine, vol.22, issue.5, pp.70-80, 2005.
DOI : 10.1109/MSP.2005.1511825

T. Berners-lee, J. Hendler, and O. Lassila, The Semantic Web, Scientific American, vol.284, issue.5, 2001.
DOI : 10.1038/scientificamerican0501-34

M. Berry, Using Linear Algebra for Intelligent Information Retrieval, SIAM Review, vol.37, issue.4, pp.573-595, 1995.
DOI : 10.1137/1037127

D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum, Hierarchical topic models and the nested chinese restaurant process, Advances in Neural Information Processing Systems, p.2003, 2004.

D. Blei and M. Jordan, Modeling annotated data, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , SIGIR '03, pp.127-134, 2003.
DOI : 10.1145/860435.860460

D. Blei, A. Ng, and M. Jordan, Latent dirichlet allocation, Journal of Machine Learning Research, vol.3, pp.993-1022, 2003.

A. Boucher and T. Lee, Comment extraire la sémantique d'une image ?, Proc. of the 3rd International Conference : Sciences of Electronic. Technologies of Information and Telecommunication, 2005.

J. Bower, Human Associative memory, 1973.

M. Breal, Essai de sémantique (science des significations) Hachette, p.1897

J. Bresnan and R. Kaplan, a formal system for grammatical representation, 1981.

J. Buckner, M. Pahl, and O. Stahlhut, Geoaida-a knowledge based automatic image data analyser for remote sensing data, Second International ICSC Symposium AIDA

R. Burton, Semantic grammar. an engineering technique for constructing natural language understanding systems, 1976.
DOI : 10.1145/1045283.1045290

M. Campedel, B. Luo, H. Ma??trema??tre, E. Moulines, M. Roux et al., Indexation des images satellitaires, 2004.

S. Chabrier, B. Emile, C. Rosenberger, and H. Laurent, Unsupervised Performance Evaluation of Image Segmentation, EURASIP Journal on Advances in Signal Processing, vol.1, issue.2, pp.217-217, 2006.
DOI : 10.1155/ASP/2006/96306

H. Chen, Z. Xu, Z. Liu, and S. Zhu, Composite templates for cloth modeling and sketching, Proc of the IEEE Conference of Pattern Recognition on Computer Vision, 2006.

H. Chen, Z. Xu, Z. Q. Liu, and S. Zhu, A high resolution grammatical model for face representation and sketching, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2005.

Z. Chi and S. Geman, Estimation of probabilistic context free grammar, Computational linguistics, vol.24, issue.2, pp.299-305, 1998.

J. Courtès, La sémiotique du langage, 2007.

D. Cruse, Meaning in languages : an introduction to Semantics and Pragmatics, 2000.

F. Cutzu, R. Hammoud, and A. Leykin, Distinguishing paintings from photographs, Computer Vision and Image Understanding, vol.100, issue.3, pp.249-273, 2005.
DOI : 10.1016/j.cviu.2004.12.002

B. De-finetti, Theory of probability, 1975.
DOI : 10.1002/9781119286387

S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman, Indexing by latent semantic indexing, 33] A. Dempster. Maximum likelihood from incomplete data via the em algorithm, pp.391-407, 1977.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy, Learning to map between ontologies on the semantic web, Proceedings of the eleventh international conference on World Wide Web , WWW '02, pp.662-673, 2002.
DOI : 10.1145/511446.511532

P. Domingos and M. Pazzani, On the optimality of the simple bayesian classifier under zero-one loss, Machine Learning, vol.29, issue.2/3, pp.103-137, 1997.
DOI : 10.1023/A:1007413511361

D. Donoho, M. Vetterli, and R. Devore, From volumes to view, an approach to 3d objects recognition, IEEE Transactions Information Theory, vol.6, pp.2435-2476, 1998.

P. Dyugulu, K. Barnard, and D. F. Freitas, Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary, Proc. of the IEEE European Conference on Computer Vision, 2002.
DOI : 10.1007/3-540-47979-1_7

M. Eisen, Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences, vol.95, issue.25, pp.14863-14868, 1998.
DOI : 10.1073/pnas.95.25.14863

S. Feng, R. Manmatha, and V. Lavrenko, Mutliple bernouilli relevance models for image and video annotation, Proc. of the Conference on Computer Vision and Pattern Recognition, 2004.
DOI : 10.1109/cvpr.2004.1315274

URL : http://ciir.cs.umass.edu/pubfiles/mm-333.pdf

C. Fillmore, The case for case, Universals in Linguistic Theory, 1968.

D. Forsyth and M. Fleck, Body plans, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.678, 1997.
DOI : 10.1109/CVPR.1997.609399

C. Fraley and A. Raftery, How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis, The Computer Journal, vol.41, issue.8, pp.578-588, 1998.
DOI : 10.1093/comjnl/41.8.578

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Friedman, machine., The Annals of Statistics, vol.29, issue.5, pp.1189-1232, 2001.
DOI : 10.1214/aos/1013203451

J. Friedman and T. Hastie, Additive logistic regression : a statistical view of boosting, Annal of statistics, pp.337-374, 2002.

N. Friedman, The bayesian structural em algorithm, Proc. of the 14th Conference on Uncertainty in AI, 1998.

K. Fu, Syntactic Pattern recognition and applications, 1982.
DOI : 10.1007/978-3-642-66438-0

G. Furnas, T. Landauer, L. Gomez, and S. T. Dumais, The vocabulary problem in human-system communication, Communications of the ACM, vol.30, issue.11, pp.964-971, 1987.
DOI : 10.1145/32206.32212

S. Galliano, Corpus description of the ester evaluation campaign for the rich transcription of french broadcast news, Proc. Language Evaluation and Resources Conference, 2006.

A. Gelfand and A. Smith, Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, vol.4, issue.410, pp.398-409, 1990.
DOI : 10.1080/01621459.1986.10478240

S. Geman and D. Potter, Composition systems, Quarterly of Applied Mathematics, vol.60, issue.4, pp.707-736, 2002.
DOI : 10.1090/qam/1939008

J. Gennari, The evolution of Prot??g??: an environment for knowledge-based systems development, International Journal of Human-Computer Studies, vol.58, issue.1, pp.89-123, 2003.
DOI : 10.1016/S1071-5819(02)00127-1

S. Golder and B. A. Huberman, The structure of collaborative tagging systems, 2005.

U. Grenander, General Pattern theory, 1993.

T. Griffiths and M. Steyvers, A probabilistic approach to semantic representation, Proc. of the 24th Annual Conference of the Cognitive Science Society, 2002.

F. Han and S. C. Zhu, Primal sketch : integrating texture and structure, Proc. of the IEEE International Conference on Computer Vision, 2005.

R. Haralick, Statistical and structural approaches to texture, Proceedings of the IEEE, vol.67, issue.5, pp.786-804, 1979.
DOI : 10.1109/PROC.1979.11328

J. Hare, P. Lewis, P. G. Enser, and C. Sandom, Mind the gap: another look at the problem of the semantic gap in image retrieval, Multimedia Content Analysis, Management, and Retrieval 2006, 2006.
DOI : 10.1117/12.647755

T. Hofmann, The cluster-abstraction model : Unsupervised learning of topic hierarchies from text data, IJCAI, pp.682-687, 1999.

T. Hofmann, Probabilistic latent semantic indexing, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '99, pp.25-44, 1999.
DOI : 10.1145/312624.312649

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis, Machine Learning, vol.42, issue.1/2, pp.177-196, 2001.
DOI : 10.1023/A:1007617005950

H. Maitre, I. Kyrgyzov, and M. Campedel, Kernel mdl to determine the number of clusters, 2007.

J. Jeon, V. Lavrenko, and R. Manmatha, Automatic image annotation and retrieval using cross-media relevance models, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , SIGIR '03, pp.119-126, 2003.
DOI : 10.1145/860435.860459

Y. Jin and S. Geman, Context and hierarchy in a probabilistic image model, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2006.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, An Introduction to Variational Methods for Graphical Models, Machine learning, vol.37, pp.183-233, 1999.
DOI : 10.1007/978-94-011-5014-9_5

A. Joshi and L. Levy, Tree adjunct grammars, the elements of texture perception, and their interactions, Journal of Computer and System Sciences Nature, vol.290, pp.91-97, 1975.

A. Lee, K. Pedersen, and D. Mumford, The non-linear stastics of high-contrast patchesin natural images, International Journal of Computer Vision, vol.54, issue.1/2, pp.83-103, 2003.
DOI : 10.1023/A:1023705401078

G. Kanisza, Organization in vision, 1974.

S. Katz, Estimation of probabilities from sparse data for the language model component of a speech recognizer, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.35, issue.3, 1987.
DOI : 10.1109/TASSP.1987.1165125

A. Kiryakov, Semantic annotation, indexing, and retrieval, Web Semantics: Science, Services and Agents on the World Wide Web, vol.2, issue.1, pp.49-79, 2004.
DOI : 10.1016/j.websem.2004.07.005

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Kucera and N. Francis, Computational Analysis of Present-Day American English, 1962.

H. Kuck, P. Carbonetto, and O. Freitas, A Constrained Semi-supervised Learning Approach to Data Association, Proc. of the European Conference for Computer Vision, pp.1-12, 2004.
DOI : 10.1007/978-3-540-24672-5_1

S. Kullback and R. Leibler, On Information and Sufficiency, The Annals of Mathematical Statistics, vol.22, issue.1, pp.79-86, 1951.
DOI : 10.1214/aoms/1177729694

D. Kunz, K. Schilling, and T. Ogtle, A new approach for satellite image analysis by means of a semantic network, 1997.

G. Lakoff, Women, Fire and Dangerous things. What Categories Reveal about the Mind, 1987.
DOI : 10.7208/chicago/9780226471013.001.0001

V. Lavrenko, R. Manmatha, and J. Jeon, A model for learning the semantic of pictures, Proc. of the Conference on Advances in Neural Information Processing Systems, 2003.

E. Lebarbier and T. Mary-huard, Le critère bic : fondements théoriques et interprétation, 2004.

J. Li and J. Wang, Automatic linguistic indexing of pictures by a statistical modeling approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, pp.1075-1088, 2003.

W. Li, Random texts exhibit Zipf's-law-like word frequency distribution, IEEE Transactions on Information Theory, vol.38, issue.6, 1992.
DOI : 10.1109/18.165464

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Lyons, Eléments de sémantique, 1978.

B. Mandelbrot, Information Theory and Psycholinguistic. Basic Books, 1968.

A. Meillet, Comment les mots changent de sens. L'Année sociologique, 1905.

K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, CVPR, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00548227

C. Millet, Annotation automatique d'images : annotation cohérente et création automatique d'une base d'apprentissage, 2008.

F. Min, J. Suo, S. Zhu, and N. Sang, An Automatic Portrait System Based on And-Or Graph Representation, Energy Maximization Methods in Computer Vision and Pattern Recognition, pp.184-197
DOI : 10.1007/978-3-540-74198-5_15

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Monay and D. Gatica-perez, On image auto-annotation with latent space models, Proceedings of the eleventh ACM international conference on Multimedia , MULTIMEDIA '03, pp.271-274, 2003.
DOI : 10.1145/957013.957070

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Mori, H. Takahashi, and R. Oka, Image-to-word transformation based on dividing and vector quantizing images with words, Proc. of the First International Workshop on Multimedia Intelligent Storage and Retrieval Management, 1999.

H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, International Journal of Computer Vision, vol.37, issue.10, pp.5-24, 1995.
DOI : 10.1007/BF01421486

S. Newsam, L. Wang, S. Bhagavathy, and B. S. Manjunath, Using texture to analyze and manage large collections of remote sensed image and video data, Applied Optics, vol.43, issue.2, pp.210-217, 2004.
DOI : 10.1364/AO.43.000210

K. Nigam, J. Lafferty, and A. Mccallum, Using maximum entropy for text classification, 1999.

M. Nilsson, The semantic web : How rdf will change learning technology standards Center for User-Oriented IT-design, Royal Institute of Technology, 2001.

M. Oder, H. Rehrauer, K. Seidel, and M. Datcu, Interactive learning and probabilistic retrieval in remote sensing image archives. Geoscience and Remote Sensing, pp.2288-2298, 2000.

Y. Ohta, T. Kanade, and T. Sakai, An analysis for scenes containing objects with substructures, Proc. of the 4th International Joint Conference on Pattern Recognition, pp.752-754, 1978.

Z. Pecenovic, image retrieval using latent semantic indexing, 1997.

J. Philbin, J. Sivic, and A. Zisserman, Geometric LDA: A Generative Model for Particular Object Discovery, Procedings of the British Machine Vision Conference 2008, 2008.
DOI : 10.5244/C.22.39

V. Prince and Y. Kodratoff, Revue des nouvelles technologies de l'information, Journal of Information Science, vol.32, issue.10, pp.1-14, 2007.

R. M. Quillian and U. Carnegie-mellon, Semantic memory [104] F. Rastier. Sémantique et recherches cognitives, pp.1890-1990, 1966.

F. Rastier, Ontologie(s) Revue des sciences et technologies de l'information, pp.15-40, 2004.

J. Rekers and A. Schurr, A parsing algorithm for context sensitive graph grammars, 1995.

I. Rish, An empirical study of the naive bayes classifier

J. Rissanen, Modeling by shortest data description, Automatica, vol.14, issue.5, pp.465-471, 1978.
DOI : 10.1016/0005-1098(78)90005-5

J. Rissanen, Stochastic complexity in statistical inquiry, World Scientific, 1989.
DOI : 10.1142/0822

E. Rosch, Cognitive representations of semantic categories., Journal of Experimental Psychology: General, vol.104, issue.3, pp.192-233, 1975.
DOI : 10.1037/0096-3445.104.3.192

B. Russell, Using Multiple Segmentations to Discover Objects and their Extent in Image Collections, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.326

R. Schapire, The boosting approach to machine learning : an overview. MSRI Workshop on nonlinear Estimation and Classification, 2002.

R. Schwartz, Language understanding using hidden understanding models, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96, pp.997-1000, 1996.
DOI : 10.1109/ICSLP.1996.607771

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

E. Segal, D. Koller, and D. Ormoneit, Probabilistic abstraction hierarchies, Advances in Neuronal Information Processing Systems, 2001.

C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

K. Sheldonand and R. Simmons, Syntactic dependence and the computer generation of coherent discourse. Mechanical Translation, 1963.

B. Sigurbjörnsson and R. Van-zwol, Flickr tag recommendation based on collective knowledge, Proceeding of the 17th international conference on World Wide Web , WWW '08, 2008.
DOI : 10.1145/1367497.1367542

E. Simoncelli and W. T. Freeman, Shiftable multiscale transforms, IEEE Transactions on Information Theory, vol.38, issue.2, pp.587-607, 1992.
DOI : 10.1109/18.119725

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman, Discovering object categories in image collections, Proc. of the International Conference on Computer Vision, 2005.

J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and A. A. Efros, Unsupervised discovery of visual object class hierarchies, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587622

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, p.1470, 2003.
DOI : 10.1109/ICCV.2003.1238663

A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-based image retrieval at the end of the early years, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.12, pp.1349-1380, 2000.
DOI : 10.1109/34.895972

M. Smith, D. Welty, and . Mcguiness, Owl web ontology language guide. w3c recommandations 10 february, 2004.

J. Sowa, Semantic networks. revised and extended version of an article originally written for the encyclopedia of artificial intelligence, 1987.

S. Staab, An annotation framework for the semantic web, Proc. of the First Workshop on Multimedia Annotation, pp.30-31, 2001.

N. Sugiura, Further analysts of the data by akaike' s information criterion and the finite corrections ? further analysts of the data by akaike' s. Communications in Statistics -Theory and Methods, pp.13-26, 1978.

M. Szummer and R. Picard, Indoor-outdoor image classification, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database, p.42, 1998.
DOI : 10.1109/CAIVD.1998.646032

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Tamba, La sémantique. Puf, 2005.

S. Todorovic and N. Ahuja, Extracting Subimages of an Unknown Category from a Set of Images, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.116

Z. Tu, X. Xhen, A. Yuille, and S. Zhu, Image Parsing: Unifying Segmentation, Detection, and Recognition, International Journal of Computer Vision, vol.13, issue.1, pp.113-140, 2005.
DOI : 10.1007/s11263-005-6642-x

A. Vailaya, A. Jain, and H. J. Zhang, On image classification: city vs. landscape, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173), p.3, 1998.
DOI : 10.1109/IVL.1998.694464

M. Vargas-vera and . Mnm, Ontology driven tool for semantic markup, Proc. of the Workshop Semantic Authoring, Annotation and Knowledge Markup. ECAI, 2002.

N. Vasconcelos and G. Carneiro, Formulating semantic image annotation as a supervised learning problem, CVPR, vol.5, pp.163-168, 2005.

N. Vasconcelos, G. Carneiro, P. Moreno, and K. Vezina, Supervised learning of semantic classes for image annotation and retrieval Survol du monde de l'indexation d'images, IEEE Transactions Pattern Intelligence and Machine Analysis, vol.29, issue.3, pp.394-410, 1997.

P. Vossen, Eurowordnet : a multilingual database for information retrieval, Proc. of the DELOS workshop on Cross-language Information Retrieval, 1997.

W. Wang and I. Pollak, Hierarchical Stochastic Image Grammars for Classification and Segmentation, IEEE Transactions on Image Processing, vol.15, issue.10, pp.3033-3052, 2006.
DOI : 10.1109/TIP.2006.877496

X. Wang and E. Grimson, Spatial latent dirichlet allocation, Advances in Neural Information Processing Systems, 2007.

C. Weber and A. Puissant, Une démarche orientée-objets pour extraire des objets urbains sur des images thr, 2004.

B. Yao, X. Yang, and S. Zhu, Introduction to a Large-Scale General Purpose Ground Truth Database: Methodology, Annotation Tool and Benchmarks, Energy Maximization Methods in Computer Vision and Pattern Recognition, pp.169-183, 2007.
DOI : 10.1007/978-3-540-74198-5_14

D. Yihong, Web semantic annotation using data-extraction ontologies, 2004.

L. Younes, Estimation and annealing for Gibbsian Fields Annales de l'institut Poincaré, 1988.
DOI : 10.1214/lnms/1215460515

L. Younes, Parametric Inference for Imperfectly Observed Gibbsian Fields, Springer-Verlag Probability Theory and Related Fields, 1989.

S. C. Zhu, Embedding gestalt laws in markov random fields, IEEE Trans on Pattern Analysis and Machine Intelligence, vol.21, 1999.

G. Zipf, Selective Studies and the Principle of Relative Frequency in Language, 1932.