Étude et réalisation d’un dispositif de séparation acoustique et de son application à des objets biologiques
Claire Ratier

To cite this version:

HAL Id: pastel-00557238
https://pastel.archives-ouvertes.fr/pastel-00557238
Submitted on 18 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse de doctorat de l’université Paris VII – Denis Diderot

Spécialité : Mécanique des fluides
École doctorale de physique macroscopique

présentée par
Claire Ratier
pour obtenir le grade de

Docteur de l’université Paris VII – Denis Diderot

Étude et réalisation d’un dispositif de séparation acoustique et de son application à des objets biologiques

dirigée par Mauricio Hoyos

soutenue le 07/12/09
devant le jury composé de :

M Marc Benedetti
M Francesco Dondi Rapporteur
M Franck Dubois
M Philippe Gondret
M Ricard González Rapporteur
M Mauricio Hoyos Directeur de thèse
Table des matières

Introduction

1. Force associée à un champ ultrasonore stationnaire 13
 1.1 Expression de la force acoustique 14
 1.1.1 Force acoustique primaire 14
 1.1.2 Effet sur une particule dans un résonateur plan 19
 1.1.3 Forces acoustiques secondaires 21
 1.2 Résonateur réel 23
 1.3 Écoulement laminaire dans une cellule de Hele–Shaw 24
 1.4 Trajectoires de particules 25
 1.4.1 Forces en présence dans le canal 26
 1.4.2 Positions d’équilibre en présence de la force de flottabilité 27
 1.4.3 Temps de relaxation 28
 1.5 Conclusion 31

2. Expériences de focalisation acoustique 33
 2.1 Les outils utilisés 34
 2.1.1 Cellule de Hele–Shaw 34
 2.1.2 Transducteurs 36
 2.1.3 Microscope holographique digital 37
 2.2 Mesure d’une vitesse de sédimentation 37
 2.2.1 Dispositif expérimental 38
 2.2.2 Résultats 39
 2.2.3 Conclusion 42
 2.3 Focalisation acoustique à un noeud 42
 2.3.1 Dispositif expérimental 43
 2.3.2 Recherche de la fréquence de résonance 45
 2.3.3 Influence du débit et de la tension 51
 2.3.4 Conclusion 53
 2.4 Focalisation acoustique à deux noeuds 53
 2.5 Détermination de l’énergie acoustique 55

3. Conclusion
Table des matières

2.5.1 Principe d’un vol parabolique 56
2.5.2 Dispositif expérimental .. 56
2.5.3 Résultats ... 58
2.5.4 Conclusion ... 62
2.6 Amélioration des mesures de vitesse par micro-PIV 62
2.7 Conclusion .. 64

3 Séparation acoustique ... 65
 3.1 Modèle théorique du SPLITT .. 66
 3.1.1 ISP, OSP, zone de transport 67
 3.1.2 Critère de séparation et résolution 70
 3.1.3 Limites du SPLITT .. 71
 3.1.4 Le canal de Step-SPLITT .. 73
 3.2 Principe de la séparation acoustique 73
 3.2.1 Principe : mise en série des transducteurs 74
 3.2.2 Modélisation numérique .. 75
 3.2.3 Résultats ... 77
 3.3 La programmation spatiale : un principe général 83
 3.4 Conclusion .. 85

4 Séparation de particules de latex 87
 4.1 Dispositif expérimental .. 88
 4.1.1 Le canal ... 88
 4.1.2 Le circuit hydraulique ... 89
 4.1.3 Les transducteurs .. 89
 4.1.4 La visualisation .. 90
 4.2 Séparation de particules de 5 et 10 microns 90
 4.2.1 L’échantillon initial .. 90
 4.2.2 Visualisation in situ ... 91
 4.2.3 Collectes des échantillons aux sorties 99
 4.3 Séparation de particules de 7 et 15 microns 104
 4.3.1 L’échantillon initial .. 104
 4.3.2 Fréquences de résonances 105
 4.3.3 Conditions expérimentales 106
 4.3.4 Résultats ... 106
 4.3.5 Conclusion .. 110
 4.4 Conclusion .. 111

5 Applications biologiques ... 113
 5.1 Les vésicules... 114
 5.1.1 Qu’est-ce que c’est ? ... 114
Introduction

La séparation d’un mélange en ses composants élémentaires, bien qu’étant très simple à concevoir intellectuellement, constitue bien souvent un défi expérimental suscitant l’invention de nouvelles techniques et technologies. Parmi les premiers procédés de séparation développés, on peut citer les procédés métallurgiques, l’extraction de colorants, ou de substances médicales ; toutes ces techniques relèvent de la préparation de matière première dans le but de leur utilisation ultérieure à des fins industrielles ou médicales. Elles font partie de ce qu’il est commun d’appeler les séparations préparatives.

Avec les progrès de la science et plus particulièrement de la chimie, il est devenu de plus en plus intéressant de pouvoir effectuer des séparations dans le but d’obtenir des informations analytiques sur des matériaux complexes plutôt que des produits utilisables. On peut citer la chromatographie, inventée à la fin du XIXe siècle, comme paradigme d’une méthode de séparation analytique. Ce type de séparation a permis de mettre au jour plus clairement la structure complexe des phénomènes biologiques, environnementaux, ou utilisés empiriquement jusqu’alors dans les procédés industriels.

La séparation peut ainsi être divisée en deux larges catégories en fonction du but poursuivi [1]. L’objectif d’une séparation analytique est, comme nous l’avons dit, de récupérer des informations sur un composé au cours du processus de séparation, ou par des mesures consécutives à ce processus. La qualité des séparations obtenues déterminera la quantité et la précision des informations qu’il sera possible d’extraire. En revanche, la quantité de matière des diverses fractions récupérées est sans importance à partir du moment où elle est suffisante pour réaliser ces mesures.

Au contraire, le but principal d’une séparation préparative est d’obtenir en quantité la plus importante possible un ou plusieurs des composants d’une matière première. L’objectif étant bien souvent l’utilisation à des fins industrielles des matériaux ainsi produits, la valeur de ce type de séparation peut être directement estimée par la quantité de produits utilisables obtenus. Il est donc intéressant de disposer de techniques pouvant fonctionner en continu et à grande échelle. Les procédés de distillation, d’extraction ou de fonderie,
produisant de nombreuses tonnes de matières séparées par jour, sont de bons exemples de ce type de techniques.

Toutefois, certains matériaux, à la fois rares et très utiles, sont difficiles à isoler, et ne peuvent être préparés que par des procédés de séparation à petite échelle. On peut citer par exemple certaines protéines, comme l’insuline ou l’hormone de croissance humaine, qui sont généralement récupérées à l’échelle du milligramme, même si l’objectif reste purement préparatif.

Le travail présenté dans ce mémoire de thèse s’inscrit dans la problématique de la séparation préparative d’espèces chimiques de tailles importantes (de l’ordre de plusieurs micromètres). Un certain nombre de techniques ont déjà été développées dans ce contexte, dont un nombre important utilise des filtres ou des membranes. Malheureusement, ces techniques sont mal adaptées à la séparation d’espèces fragiles en raison des contraintes importantes subies par les espèces au cours du processus de séparation. Une méthode de séparation très efficace sans filtre ni membrane, a donc vu le jour au milieu des années 80 [2], appelée fractionnement par séparation de flux dans une cellule mince (Split-flow thin-cell fractionation, ou SPLITT).

Cette technique utilise le couplage entre un transport différentiel dans l’épaisseur d’un canal fin, obtenu par l’application d’un champ de force, et le transport indifférencié des espèces dans la longueur du canal obtenu par un écoulement de fluide. Les diverses fractions ainsi constituées sont récupérées en continu après séparation du flux principal vers plusieurs sorties. Le champ de force utilisé peut être tout à fait quelconque, et est choisi d’après les caractéristiques des espèces à séparer. Par exemple, pour séparer des particules de tailles voisines mais de densité différentes, le champ de gravitation peut être utilisé : la sédimentation des divers composants du mélange s’effectue en effet à des vitesses différentes, ce qui permet de générer un transport différentiel selon la direction verticale. En couplant ce transport à un écoulement horizontal, on peut collecter des échantillons purifiés en séparant le flux en deux (ou plus) selon son épaisseur.

Mon travail de thèse a consisté à développer un séparateur dont le principe général est basé sur celui du SPLITT, c’est-à-dire par couplage d’un transport différentiel transverse avec un écoulement longitudinal dans une cellule fine, mais utilisant un champ de force complexe programmé spatialement, généré au moyen d’ondes ultrasonores. Il est bien connu que les objets de taille micrométrique, tels que de petites particules solides, des cellules biologiques, ou des bulles, subissent une force lorsqu’elles sont suspendues dans un fluide dans lequel est établi une onde ultrasonore [3, 4]. De telles ondes peuvent être aisément générées par un transducteur acoustique, et leurs caractéristiques spatiales sont facilement contrôlables par l’agencement des transducteurs, la fréquence des tensions excitatrices et la géométrie du
canal.

Un nombre important de dispositifs microfluidiques, destinés à la manipulation d’espèces microscopiques, a donc vu le jour, en particulier dans le domaine des biotechnologies [5] en raison d’études démontrant que les cellules biologiques soumises à un champ ultrasonore restent viables [6, 7, 8, 9]. Certains d’entre eux permettent d’effectuer des séparations. On peut mentionner un dispositif conçu pour filtrer les lipides du sang total, fonctionnant grâce au fait que les lipides et les globules rouges subissent des forces opposées lorsqu’ils sont soumis à un champ ultrasonore [10, 11]. Toutefois, la majorité des dispositifs microfluidiques utilisant la force acoustique s’en servent pour piéger les objets qu’ils manipulent, afin par exemple d’augmenter les interactions entre des cellules pour mieux les étudier [12, 13], ou pour concentrer un échantillon pour améliorer un processus de détection [14, 15]. Un autre domaine important d’application de la manipulation de particules au moyen d’ondes ultrasonores est celui de la filtration et de la concentration. En particulier, un système de purification d’eau par élimination de polluants présents sous forme de particules a été développé [16, 17, 18, 19].

A notre connaissance, une seule étude a exploré la possibilité de réaliser des séparations en continu dans un dispositif de SPLITT en utilisant un champ acoustique pour générer le transport latéral [20]. Un mélange de particules de tailles différentes est introduit dans le canal, et confiné au voisinage d’une des parois par l’utilisation d’un flux secondaire. Un champ acoustique unique est alors utilisé pour faire migrer les particules vers le centre du canal. En raison de la dépendance de la force acoustique vis-à-vis du rayon, les particules migrent d’autant plus vite qu’elles sont grosses. En séparant le flux en sortie en deux fractions bien choisies, on peut ainsi enrichir le mélange en grosses (ou en petites) particules.

Le travail de thèse exposé dans ce mémoire présente des similarités avec ce dispositif de SPLITT acoustique : nous montrons comment séparer un mélange en fonction de la taille des objets dans une cellule de type SPLITT par l’utilisation de champs ultrasonores. Toutefois, la configuration de champs utilisée est plus complexe pour permettre une bien meilleure efficacité et une bien plus grande adaptabilité du dispositif ; cette configuration complexe est obtenue par la mise en série de deux transducteurs émettant des ondes de fréquences différentes dans la longueur du canal.

Ce mémoire s’articule autour de cinq chapitres. Dans le premier, nous nous attachons à rappeler la description théorique de la force acoustique générée sur des objets micrométriques par une onde ultrasonore stationnaire plane, qui correspond à la situation la plus favorable pour la manipulation de ces objets et que nous avons donc utilisé en pratique. Nous exposons les limites d’applicabilité des expressions proposées et montrons que les expé-
Introduction

...
champ de force dans la longueur du canal peut être étendue pour améliorer la résolution du dispositif et empêcher la dilution de l’échantillon inhérente aux séparations de type SPLITT, par l’utilisation d’un troisième champ acoustique de pré-focalisation. D’autres adaptations du dispositif sont proposées permettant la séparation de plus de deux fractions et l’utilisation de paramètres de sélectivité différents tout en gardant les excellentes caractéristiques du séparateur acoustique fluidique.

Le chapitre 4 est consacré à la description de la première mise en œuvre expérimentale de ce nouveau principe de séparation préparative. Nous y décrivons en détail le canal ainsi que la procédure utilisée. Nous utilisons le microscope holographique digital pour avoir un diagnostique in situ de l’efficacité des séparations, ce qui s’avère être un outil très utile pour la caractérisation de ce type de dispositif. En effet, leur étude est traditionnellement effectuée uniquement au moyen de collectes aux sorties du canal ; les informations obtenues ainsi sont insuffisantes dans notre cas, en raison de la complexité du champ de force utilisé. L’étude des distributions in situ montre la capacité du dispositif à effectuer des séparations binaires rapides et d’excellentes qualité de mélanges de particules de latex de deux tailles différentes. Nous démontrons que la gravité seule ne permet pas des séparations aussi efficaces. L’analyse des collectes aux sorties du canal confirme ces résultats, même si l’efficacité du séparateur déduite de ces collectes est amoindrie par rapport à la situation in situ. Toutefois, cet amoindrissement est dû, au moins en partie, à l’observation holographique elle-même, qui nécessite l’utilisation de canaux plus longs que nécessaire.

Enfin, le chapitre 5 regroupe des expériences préliminaires effectuées avec des objets biologiques ou biomimétiques. Nous y montrons qu’il est possible de manipuler des vésicules phospholipidiques, avec des ondes ultrasonores, par observation directe de leur focalisation dans un canal de Hele-Shaw, ce qui constitue une première à notre connaissance. Ceci nous a permis de mener une première expérience de séparation d’échantillons de vésicules en fonction de leur taille, qui a été couronnée de succès, en permettant un enrichissement substantiel en petites vésicules d’une des fractions recollées. Un tel enrichissement intéresse énormément les équipes de recherche étudiant la rhéologie de suspensions de vésicules comme modèle du comportement du sang, car les méthodes de production actuellement utilisées génèrent des échantillons très polydisperses de vésicules. Enfin, nous montrons une expérience de focalisation réalisée directement avec du sang, montrant la potentialité de notre dispositif à effectuer des séparations préparatives d’échantillons sanguins à

1. Ce sont des cellules artificielles constituant de bons modèles du comportement mécanique des cellules biologiques, et en particulier les globules rouges.
une échelle mésofluidique.
Chapitre 1

Force associée à un champ ultrasonore stationnaire

Introduction

On sait depuis le XIXᵉ siècle que des objets placés dans un champ acoustique subissent une force statique mais non uniforme due à la présence de l’onde. Une des premières expériences connues à ce sujet a été réalisée par Kundt et Lehman et consistait à piéger des poussières dans un tube où était établie une onde stationnaire [21]. Ces chercheurs observaient que les particules étaient piégées au voisinage de plusieurs plans transverses le long du tube, séparés les uns des autres par une distance correspondant à une demi-longueur d’onde. Cette force acoustique est maintenant bien connue sur le plan théorique, et a trouvé de nombreuses applications pratiques, en particulier concernant la manipulation d’objets microscopiques [22, 3].

Cette force acoustique statique résulte de la non-linéarité des équations de Navier-Stokes décrivant le mouvement des fluides. Ainsi, le champ de pression associé à une onde dans un fluide n’est pas parfaitement spatialement sinusoidal, et les gradients de pression en résultant sont responsables de l’apparition d’une force agissant sur les objets suspendus dans le fluide. Cette force est appelée force acoustique primaire. Si la particule est entourée d’autres objets, les phénomènes de diffraction de l’onde acoustique sur les divers obstacles sont à l’origine de l’apparition de forces d’interaction entre les objets appelées forces acoustiques secondaires. Enfin, la présence de l’onde au sein du fluide peut être responsable de l’apparition de courants induits (acoustic streaming) qui vont à leur tour entraîner les particules, ce que l’on peut considérer comme l’action d’un troisième type de force.

Il se trouve que la force résultant d’une onde acoustique progressive est
généralement extrêmement faible, et ne peut pas être utilisée en pratique pour la manipulation de particules micrométriques : son amplitude est proportionnelle à la sixième puissance du rapport de la taille des particules à la longueur d’onde [23], qui est petit devant 1. En revanche, la force résultant de la présence d’une onde stationnaire est bien plus importante, puisque son amplitude est proportionnelle à la troisième puissance de ce rapport [23]. C’est pour cette raison que la plupart des applications pratiques utilisent des ondes stationnaires, et que nous avons nous-mêmes utilisé des ondes stationnaires au cours de nos expériences de manipulations de particules micrométriques.

Dans ce chapitre, nous commencerons par rappeler l’expression de la force acoustique dans un contexte général, puis nous donnerons son expression pour une onde stationnaire plane. Nous donnerons les limites d’applications de ce résultat, et introduirons l’effet de focalisation acoustique. Nous décrirons ensuite le type d’écoulement que nous avons utilisé en conjonction avec la force acoustique, et montrerons que la trajectoire de particules soumises à ce type d’écoulement et à la force acoustique peut être déterminée par la connaissance de deux temps caractéristique, le temps de relaxation et le temps de résidence des particules dans l’onde acoustique.

1.1 Forces subies par une particule plongée dans une onde acoustique stationnaire

Nous allons dans cette section donner l’expression de la force acoustique primaire pour une géométrie de champ acoustique quelconque, et appliquer le résultat au cas d’une onde stationnaire. Nous donnerons ensuite l’expression de la force acoustique secondaire, et discuterons de son importance. Le phénomène d’entraînement dû aux courants acoustiques est quant à lui négligeable dans le cas d’une onde stationnaire plane [24].

1.1.1 Force acoustique primaire

Force agissant sur une sphère dans une onde acoustique. La première investigation théorique concernant la force acoustique a été effectuée par Rayleigh, et concernait la pression acoustique moyennée sur une période d’oscillation sur un objet absorbant enfermé dans un tube, connue sous le nom de pression de radiation de Rayleigh [25]. Peu après, Bjerknes a publié une étude concernant la force de radiation acoustique sur des objets sphériques, et plus précisément la force exercée sur une bulle d’air dans un fluide en oscillation [26] La première description théorique réellement complète et
rigoureuse de la force acoustique exercée sur une sphère incompressible plongée dans un fluide non-visqueux a été donnée par King [23]. Dans son modèle, la force est calculée en déterminant le champ de pression résultant à la fois de l’onde incidente et de l’onde diffractée sur un objet sphérique, dans les cas particuliers d’une onde plane progressive ou stationnaire. Ensuite, sa théorie a été étendue pour prendre en compte le cas de sphères compressibles [27], puis le cas d’objets de forme quelconque [28] et de champs acoustiques plus élaborés, mais toujours axisymétriques [29, 30, 24].

Une expression très simple et très utile de la force acoustique a été établie par Gor’kov, sous la forme d’un potentiel acoustique $U(\vec{r})$ dont dérive la force selon l’expression $\vec{F}_{ac} = -\vec{\nabla}U$, pour un champ acoustique quasi-arbitraire 1 [31]. Nous allons ici donner cette expression, que nous appliquerons immédiatement au cas d’une onde stationnaire plane, qui est le cas qui nous intéresse le plus.

Le potentiel acoustique $U(\vec{r})$ dont dérive la force acoustique exercée sur une sphère de rayon r a pour expression :

$$U(\vec{r}) = V f_1 \langle E_{pot}(\vec{r}) \rangle - \frac{3}{2} f_2 \langle E_{cin}(\vec{r}) \rangle,$$

où $V = \frac{4\pi r^3}{3}$ est le volume de la sphère, et où $\langle E_{pot}(\vec{r}) \rangle$ et $\langle E_{cin}(\vec{r}) \rangle$ sont respectivement l’énergie potentielle et l’énergie cinétique moyennées sur une période de l’onde acoustique, dont les expressions sont données par :

$$\langle E_{pot}(\vec{r}) \rangle = \frac{\chi_f \langle p(\vec{r}, t)^2 \rangle}{2},$$
$$\langle E_{cin}(\vec{r}) \rangle = \frac{\rho_f \langle \vec{u}(\vec{r}, t)^2 \rangle}{2},$$

avec χ_f la compressibilité du fluide et ρ_f sa masse volumique. $p(\vec{r}, t)$ et $\vec{u}(\vec{r}, t)$ sont respectivement le champ de pression et le champ de vitesse associés à l’onde acoustique, reliés par l’équation d’Euler linéarisée décrivant le mouvement d’un fluide non-visqueux à faible nombre de Mach ($Ma = \frac{u_0}{c_f} \ll 1$, où u_0 est l’amplitude du champ de vitesse et $c_f = \sqrt{1/(\rho_f \chi_f)}$ est la vitesse du son dans le fluide) selon l’expression :

$$-\vec{\nabla}p = \rho_f \frac{\partial \vec{u}}{\partial t}.$$

La notation $\langle \cdot \rangle$ est utilisée pour signifier la moyenne temporelle sur une période d’oscillation, définie par :

$$\langle G(t) \rangle = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} G(t) dt,$$

1 En particulier, cette formulation est valable pour un champ acoustique stationnaire plan, mais pas pour une onde plane progressive.
où $\omega = 2\pi f = 2\pi / T$ est la pulsation de l’onde, f sa fréquence et T sa période.

Les facteurs f_1 et f_2 caractérisent le couplage de l’onde avec la particule, et dépendent des rapports des masses volumiques et des compressibilités de la particule et du fluide selon :

\begin{align*}
f_1 &= 1 - \sigma \\
f_2 &= \frac{2(s - 1)}{2s + 1},
\end{align*}

où $\sigma = \chi_p / \chi_f$ avec χ_p la compressibilité de la particule, et $s = \rho_p / \rho_f$ avec ρ_p la masse volumique de la particule. Si la sphère a la même densité et la même compressibilité avec le fluide, le potentiel acoustique est identiquement nul, et la particule ne subit aucune force acoustique. C’est bien le résultat attendu, puisqu’alors la particule est « transparente » aux ondes acoustiques présentes dans le fluide : le contraste d’impédance acoustique vaut $Z_p - Z_f = 0$, où l’impédance est définie par $Z = \sqrt{\rho / \chi}$.

Les conditions de validité de l’équation (1.1) portent sur la taille de la particule ; celle-ci doit vérifier deux conditions :

\begin{equation}
\frac{u_0}{\omega} \ll r \ll \lambda,
\end{equation}

où $\lambda = c_f / f$ est la longueur d’onde dans le fluide. En d’autre termes, la taille de la particule doit être beaucoup plus grande que l’amplitude des oscillations du fluide au passage de l’onde, et beaucoup plus petite que la longueur d’onde. Ce mémoire de thèse traite de la manipulation d’objets de taille micrométrique au moyen d’ondes acoustiques dont les longueurs d’ondes sont d’au moins 400 μm ; la seconde condition est donc toujours vérifiée. La première condition impose une limite sur l’amplitude de l’onde de vitesse ; toutefois, cette limite est totalement inatteignable en pratique (pour une onde stationnaire plane, cf paragraphe suivant, une amplitude de déplacement de 1μm correspond à une énergie acoustique moyenne de l’ordre de 10^{17} J/m3, alors que nous estimons pouvoir atteindre seulement quelques J/m3 expérimentalement, cf § 2.5).

Application au résonateur plan : onde acoustique plane et stationnaire. Nous allons maintenant terminer les calculs dans le cas d’une onde plane stationnaire, telle qu’on peut l’établir dans un résonateur plan constitué de deux interfaces (cf figure 1.1). Les plans sont supposés fixes, ils constituent donc des noyaux de l’onde de vitesse ; celle-ci a donc nécessairement pour expression au sein du résonateur :

\begin{equation}
\vec{u}(\vec{r}, t) = u_0 \sin(kz) \sin(\omega t),
\end{equation}
Expression de la force acoustique – 1.1

Figure 1.1 – Schéma d’un résonateur plan parfait. La présence des parois impose l’annulation du champ de vitesse en \(z = 0 \) et \(z = h \).

où \(u_0 \) est l’amplitude de l’onde, et où \(k = \omega/c = n\pi/h \) avec \(n \in \mathbb{N}^* \) est le nombre d’onde, imposé par les conditions aux limites aux parois. On peut ré-exprimer cette condition par :

\[
h = n\frac{\lambda}{2}, \tag{1.9}
\]

c’est-à-dire que l’épaisseur du résonateur doit être un multiple de la demi-longueur d’onde.

L’amplitude de l’onde \(u_0 \) dépend \textit{a priori} des coordonnées transverses \(x \) et \(y \); dans le cas où l’onde est générée par un transducteur piezo-électrique, son profil sera approximativement donné par la forme de ce transducteur (aux effets de diffraction près). Toutefois, loin des bords du transducteur, l’amplitude de l’onde peut être considérée comme uniforme et on négligera donc dans la suite la dépendance spatiale de \(u_0 \).

D’après l’équation (1.3), le champ de pression s’exprime donc sous la forme :

\[
p(\vec{r},t) = \rho_f c_f u_0 \cos(kz) \cos(\omega t). \tag{1.10}
\]

Sachant que \(\langle \cos^2(\omega t) \rangle = \langle \sin^2(\omega t) \rangle = 1/2 \), on en déduit que le potentiel acoustique, dans le cas particulier d’une onde stationnaire plane, a pour expression, d’après les équations (1.1), (1.2), (1.10) et (1.8) :

\[
U(\vec{r}) = V \frac{\langle \epsilon \rangle}{2} \left(f_1 \cos^2(kz) - \frac{3}{2} f_2 \sin^2(kz) \right), \tag{1.11}
\]

où on a introduit l’énergie acoustique moyenne \(\langle \epsilon \rangle \) par unité de volume définie par :

\[
\langle \epsilon \rangle = \langle E_{pot} \rangle + \langle E_{cin} \rangle = \frac{\rho_f u_0^2}{2} = \frac{\chi_f p_0^2}{2}. \tag{1.12}
\]
Un calcul trigonométrique simple donne alors :

\[U(\vec{r}) = U_0 + V\frac{\langle\epsilon\rangle}{4}\left(f_1 + \frac{3}{2}f_2\right)\cos(2kz), \quad (1.13) \]

où \(U_0 \) est une constante physiquement sans signification, puisque la force (seule quantité physique mesurable) dérive du potentiel et est donc indépendante de \(U_0 \). L’expression de la force acoustique, dans le cas d’une onde stationnaire plane, est donc :

\[\vec{F}_{ac}(\vec{r}) = V\frac{3}{2}\tilde{A}\langle\epsilon\rangle k\sin(2kz)\vec{e}_z, \quad (1.14) \]

où le facteur de contraste acoustique \(\tilde{A} \) est défini par :

\[\tilde{A} = \frac{1}{3}\left(f_1 + \frac{3}{2}f_2\right) = \frac{s + \frac{2}{3}(s - 1)}{2s + 1} - \frac{\sigma}{3}. \quad (1.15) \]

On retrouve bien le fait que pour \(s = \sigma = 1 \), la force est nulle puisque \(\tilde{A} = 0 \).

Pour une particule de latex, dont la densité vaut 1,05 g/cm\(^3\), plongée dans de l’eau, de densité 1,00 g/cm\(^3\), ce facteur de contraste acoustique vaut \(^20,23\).

Particule rigide : retour sur l’expression de King. En supposant que la particule est rigide, c’est-à-dire que sa compressibilité est négligeable devant celle du fluide, soit \(\sigma \ll 1 \), on retrouve l’expression obtenue par King pour la force acoustique sur une sphère dure dans une onde stationnaire plane :

\[\vec{F}_{ac}^{K}(\vec{r}) = V\frac{3}{2}\tilde{C}\langle\epsilon\rangle k\sin(2kz), \quad (1.16) \]

où \(\tilde{C} \) est le facteur de contraste de densité donné par :

\[\tilde{C} = \frac{s + \frac{2}{3}(s - 1)}{1 + 2s}. \quad (1.17) \]

Il est intéressant de noter que ce facteur ne s’annule pas lorsque le contraste de densité \(\Delta\varphi = \rho_p - \rho_f \) est nul (on a alors \(\tilde{C} = 1/3 \)); ceci est dû à la diffraction de l’onde par la particule, qui, si elle est iso-densité, n’a pas la même impédance acoustique que le fluide qui l’entoure puisqu’elle est supposée rigide.

Pour une particule de latex, ce facteur de contraste de densité vaut 0,35 : la compressibilité d’une telle particule ne peut pas être négligée, puisqu’elle réduit la force de plus de 30 %!

1. Force associée à un champ ultrasonore stationnaire
2. Le facteur de contraste acoustique dépend en fait de la température ; on a donné ici le résultat à température ambiante.
Influence de la viscosité du fluide. L’impact de la viscosité du fluide sur la force acoustique a été calculé par Doinikov[32]; il a montré que l’expression (1.14) de la force acoustique s’exerçant sur une sphère dans une onde plane stationnaire reste valide, à condition de remplacer le facteur de contraste acoustique \(\tilde{A} \) par :

\[
\tilde{B} = \tilde{A} + 3 \left(\frac{s - 1}{2s + 1} \right)^2 \frac{\delta_f}{r},
\]

où \(\delta_f \) est la longueur de pénétration de l’onde visqueuse dans le fluide donnée par :

\[
\delta_f = \sqrt{\frac{2\eta}{\rho_f \omega}},
\]

où \(\eta \) est la viscosité dynamique du fluide. L’expression (1.18) montre que l’effet de la viscosité sur le facteur de contraste acoustique peut être négligé dans deux cas : (i) si les particules en suspension sont quasi-isodensité, soit pour \(s - 1 \ll 1 \); (ii) si le rayon des particules est grand devant la longueur de pénétration visqueuse, soit \(\delta_f \ll r \). Pour une onde de fréquence \(f = 2 \text{ MHz} \) se propageant dans l’eau, dont la viscosité vaut \(\eta = 1,00 \times 10^{-3} \text{ Pa s à 20°C} \), la longueur de pénétration visqueuse vaut \(\delta_f = 0,40 \mu\text{m} \).

Au cours de mon travail de thèse, je me suis intéressée à la manipulation de particules de latex d’au moins 5 \(\mu\text{m} \) de diamètre, ainsi qu’à des particules biomimétiques, appelées vésicules, de taille et de densité voisines de celles des particules de latex. Le terme prenant en compte la viscosité du fluide dans l’expression du facteur de contraste acoustique est donc doublement négligeable. Nous récapitulons dans le tableau 1.1 les définitions des divers facteurs de contraste introduits, et donnons leur valeur dans le cas de particules de latex de 5 \(\mu\text{m} \) de rayon. L’effet de la viscosité sur le facteur de contraste acoustique pour une telle particule dans de l’eau, pour une onde de fréquence 2 MHz, est donc de l’ordre de \(10^{-4} \), totalement négligeable devant les autres sources d’erreurs (notamment sur la température, et donc la densité des matériaux).

1.1.2 Effet sur une particule dans un résonateur plan

Nous allons maintenant examiner l’effet de la force acoustique primaire sur une particule en suspension dans un fluide sans écoulement dans un résonateur plan. Nous n’allons considérer à partir de maintenant que des particules dont le facteur de contraste acoustique est positif, car c’est le cas de toutes les particules que nous avons manipulées en pratique [11].

Le potentiel acoustique est représenté sur la figure 1.2, dans le cas particulier d’une onde stationnaire à un et deux nœuds de pression : on constate la...
1 – Force associée à un champ ultrasonore stationnaire

\[\tilde{C} \quad \tilde{A} \quad \tilde{B} \]

<table>
<thead>
<tr>
<th>Expression</th>
<th>[\frac{s+\frac{4}{3}(s-1)}{1+2s}]</th>
<th>[\tilde{C} - \frac{\sigma}{3}]</th>
<th>[\tilde{A} + 6 \left(\frac{s-1}{2s+1} \right)^2 \delta_f]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur numérique</td>
<td>0,35</td>
<td>0,23034</td>
<td>0,23047</td>
</tr>
</tbody>
</table>

Table 1.1 – Facteurs de contraste et leur valeur pour une particule de latex de 5 µm de diamètre, par ordre de complexité croissante : \(\tilde{C} \) est le facteur de contraste lorsqu’on ne tient pas compte de la compressibilité de la sphère ni de la viscosité du fluide, \(\tilde{A} \) tient compte de la compressibilité et \(\tilde{B} \) tient compte de la compressibilité et de la viscosité.

Figure 1.2 – À gauche : graphe de la force acoustique (trait continu) et du champ de pression correspondant (pointillés) pour une onde à un (\(n = 1 \)) et deux (\(n = 2 \)) nœuds de pression. À droite : potentiel acoustique dont dérive la force pour les mêmes valeurs de \(n \). Les minima de potentiels, qui sont des positions d’équilibre stable, correspondent aux nœuds de pression : les particules sont attirées vers ces nœuds.
présence d’un (respectivement deux) minimum de potentiel, situé au milieu du canal (respectivement à $\frac{1}{4}$ et $\frac{3}{4}$ de l’épaisseur du canal). De tels minima constituent des positions d’équilibre stable, et les particules vont donc s’accumuler sur les plans correspondant à ces positions dans l’épaisseur dans le canal3. Dans le cas général, la position des nœuds est donnée par :

\[z_p = \left(p + \frac{1}{2} \right) \frac{h}{n}, \quad (1.20) \]

où p est un entier compris entre 0 et $n-1$. Il y a donc n positions d’équilibres, situées sur les n nœuds de pression.

La force maximale obtenue pour une onde à un nœud de pression sur une particule de latex de 5 µm de diamètre, pour une énergie acoustique de 2,5 J/m3 (qui constitue une valeur typique dans nos expériences – cf § 2.5), vaut 0,48 pN. Cette force, appliquée à un objet microscopique, est conséquente : la masse d’une particule de 5 µm de diamètre vaut 69×10^{-15} kg, l’accélération correspondant à la force acoustique vaut donc 7 m/s2, ce qui est proche de l’accélération due à la gravité seule. Rappelons que comme la particule est quasi-isodensité, la poussée d’Archimède vient quasiment compenser le poids de la particule, et la force acoustique est donc bien plus grande que la résultante des forces de pesanteur, dont le module vaut 32 fN!

En plus d’être non-uniforme, la force acoustique est proportionnelle au rayon au cube des particules, par l’intermédiaire de leur volume V : son intensité varie donc très rapidement avec le rayon. Elle est également proportionnelle au facteur de contraste acoustique. Ces paramètres vont donc constituer des facteurs de sélectivité lors de la conception d’un séparateur acoustique fluidique (cf chapitre 3).

1.1.3 Forces acoustiques secondaires

Lorsque deux particules sont présentes simultanément dans le champ acoustique d’une onde, la diffraction de celle-ci sur chaque particule modifie la force ressentie par l’autre. On peut modéliser l’influence mutuelle de ces deux objets plongés dans un champ acoustique par une force d’interaction, appelée force acoustique secondaire ou force de Bjerknes, du nom du premier auteur à avoir calculé théoriquement cette contribution à la force acoustique totale [33].

Dans le cas où la longueur d’onde acoustique est très grande à la fois devant la distance entre les particules et devant le rayon des particules, soit

3. À condition qu’un mécanisme dissipatif soit à l’œuvre – celui-ci est fourni par la force de traînée, cf § 1.4.1.
Lorsque deux particules sont présentes dans l’onde acoustique, la force totale s’exerçant sur chacune est modifiée par la présence de l’autre. Cet effet peut être modélisé par une force acoustique secondaire d’interaction entre les particules, dont le module dépend de l’angle entre l’axe joignant les particules et la direction de l’onde, et de la distance entre particules.

\[kR \ll 1 \quad \text{et} \quad kr_i \ll 1, \]

où \(R \) est la distance entre les particules et où \(r_i, i = 1, 2 \) est le rayon de la particule \(i \), il est possible de montrer \([34, 31]\) que cette force d’interaction a pour expression :

\[
\vec{F}_{2 \rightarrow 1}(\vec{r}) = -4\pi r_1^3 r_2^3 \left[\frac{\Delta\rho^2 (3 \cos^2 \theta - 1)}{6\rho_f R^4} \langle \vec{u}(\vec{r}, t)^2 \rangle \right. \\
\left. - \frac{\omega^2 \rho_f \Delta\chi^2}{9R^2} \langle p(\vec{r}, t)^2 \rangle \right] \hat{e}_{1 \rightarrow 2} , \tag{1.21}
\]

où \(\hat{e}_{1 \rightarrow 2} \) est le vecteur unitaire dirigé de la particule 1 vers la particule 2, et où \(\theta \) est l’angle entre le vecteur d’onde et \(\vec{u}_{1 \rightarrow 2} \) (cf figure 1.3), et \(\Delta\chi = \chi_p - \chi_f \). En raison de l’hypothèse \(kR \ll 1 \), la variation de l’amplitude des champs de pression et de vitesse sur la distance entre les deux particules est négligeable, ce qui justifie l’expression précédente où il faut prendre pour \(r \) le barycentre des deux particules (ou leur centre géométrique).

Dans le cas d’une onde stationnaire plane, pour laquelle les champs de vitesse et de pression sont donnés par les équations (1.8) et (1.10), on peut reformuler la force de Bjerknes en :

\[
\vec{F}_{2 \rightarrow 1}(\vec{r}) = -V(\epsilon)k \left(\frac{r}{R} \right)^3 \left[(s^2 - 1) \frac{3 \cos^2 \theta - 1}{kR} \sin^2(kz) \right. \\
\left. - \frac{2}{3} kR \left(\sigma^2 - 1 \right) \cos^2(kz) \right] \vec{u}_{1 \rightarrow 2} , \tag{1.22}
\]
où on a défini le rayon moyen des deux particules $r = \sqrt{r_1 r_2}$. Cette force est importante à courte distance ; elle est alors responsable de la formation d’agrégats sur les plans où sont focalisées les particules du fait de la force acoustique primaire, qui agit seule tant que les particules sont éloignées les unes des autres. Notons que la dynamique associée à cette force secondaire est complexe, du fait de sa dépendance angulaire.

Dans le cadre des expériences décrites dans ce mémoire, nous avons utilisé des solutions très diluées, telles que $r/\bar{R} \ll 1$, où \bar{R} est la distance moyenne entre particules. De plus, nous avons toujours étudié le comportement des particules en écoulement. L’influence des forces de Bjerknes est donc négligeable dans ce contexte, puisqu’elles sont faibles devant la force acoustique primaire et que le temps d’interaction des particules est très limité.

1.2 Résonateur réel

Au cours des expériences menées, nous avons utilisé un résonateur constitué d’un empilement de plusieurs couches de matériaux différents, dont les caractéristiques acoustiques peuvent être différentes de celles d’un résonateur plan comme celui considéré au paragraphe précédent. Toutefois, l’étude acoustique d’un tel résonateur montre que celui-ci présente des résonances pour lesquelles les champs de pression et de vitesse au sein du canal sont très proches des champs associés à une onde stationnaire plane. Au voisinage de ces résonances (caractérisées par des fréquences spécifiques de l’onde acoustique), la force acoustique exercée sur une particule aura donc une expression proche de celle donnée par l’équation (1.14) [35].

La complexité introduite par les nombreuses interfaces, auxquelles sont associées des coefficients de réflexion et de transmission complexes, rend la prédiction de la valeur de l’énergie acoustique au sein du canal très difficile. De plus, les fréquences pour lesquelles auront lieu les résonances ne sont plus données par l’équation (1.9), mais doivent être déterminées expérimentalement. En revanche, dans le cas d’une onde à plusieurs nœuds, la distance entre ceux-ci reste bien sûr fixée par la longueur d’onde (ce qui se comprend très bien physiquement, puisque c’est l’échelle de variation des champs).

La position des nœuds est également changée par la présence de multiples interfaces. Toutefois, les résonances associées au canal devraient toujours être caractérisées par la présence de nœuds dont les positions sont voisines de celles données par l’équation (1.20).

Pour avoir une résonance du canal prononcée, il faut utiliser des matériaux tels que le coefficient de réflexion eau-matiériaux soit le plus grand possible. Le coefficient de réflexion en intensité R_{12} d’une onde acoustique à l’interface
entre deux milieux semi-infinis d’impédances acoustiques Z_1 et Z_2 est donné par :

$$R_{12} = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2} \right)^2,$$ \hspace{1cm} (1.23)

pour une onde se propageant dans le milieu 1 et partiellement réfléchie par l’interface avec le milieu 2. L’impédance acoustique de l’eau vaut $1,5 \times 10^6 \text{kg s}^{-1}\text{m}^{-2}$, celle du verre vaut $13 \times 10^6 \text{kg s}^{-1}\text{m}^{-2}$, et celle du plexiglass vaut $3,3 \times 10^6 \text{kg s}^{-1}\text{m}^{-2}$. Il vaut donc mieux utiliser du verre, pour lequel on obtient $^4 R_{\text{eau/verre}} = 63\%$, que du plexiglas, pour lequel on obtient $^5 R_{\text{eau/plexi}} = 14\%$, pour constituer les parois du canal. Pour des raisons techniques, nous avons utilisé un canal constitué d’une paroi en verre et l’autre en plexiglas (cf § 2.1.1).

1.3 Écoulement laminaire dans une cellule de Hele–Shaw

Pour toutes les expériences décrites dans ce mémoire, nous avons utilisé comme dispositif fluidique des cellules de type Hele–Shaw, c’est-à-dire dont l’épaisseur est faible devant les autres dimensions (cf figure 1.4). En pratique, nous avons utilisé des canaux dont l’épaisseur h vaut $400 \mu\text{m}$, la largeur l 7mm ou 1cm selon les cas et dont la longueur L plusieurs cm. Dans tous les cas, le rapport d’aspect $l/h > 20$: il est donc possible de négliger les effets de bord aux parois latérales du canal. En effet, les régions de l’écoulement perturbées par la force de trainée exercée par ces parois latérales constituent une faible fraction de la section totale du canal. On peut donc considérer qu’il y a invariance par translation selon la largeur du canal (à condition bien sûr que les deux parois principales soient parallèles). Dans la suite, nous décrirons donc les phénomènes prenant place dans le canal de manière bidimensionnelle, dans le plan (x, z), étant entendu que la configuration tridimensionnelle réelle s’en déduit par translation selon l’axe y.

Lorsqu’un gradient de pression stationnaire est établi entre l’entrée et la sortie du canal (au moyen de pompes pousse-seringues par exemple, comme nous l’avons fait au cours de nos expériences), un écoulement s’établit au sein du canal, dont le champ de vitesse s’exprime sous la forme :

$$\vec{U}(z) = 6\bar{v}\frac{z}{h} \left(1 - \frac{z}{h} \right) \hat{e}_x,$$ \hspace{1cm} (1.24)

4. La vitesse du son dans le verre vaut $5,9 \times 10^3 \text{m/s}$ et sa masse volumique vaut $2,2 \times 10^3 \text{kg/m}^3$.
5. La vitesse du son dans le plexiglas (acrylique) vaut $2,75 \times 10^3 \text{m/s}$ et sa masse volumique vaut $1,2 \times 10^3 \text{kg/m}^3$.

Figure 1.4 – Schéma d’une cellule de Hele–Shaw, dont l’épaisseur h est très petite devant la largeur l et la longueur L.

où \bar{v} est la vitesse moyenne de l’écoulement, reliée au débit total Q_t par l’équation :

$$Q_t = \bar{v}lh.$$ \hfill (1.25)

L’établissement de l’équation (1.24) ne pose pas de difficulté, et découle directement des équations de Stokes en régime stationnaire pour un fluide homogène incompressible, en négligeant l’influence de la gravité (ce qui est justifié compte-tenu de la faible épaisseur de la cellule).

Le champ de vitesse (1.24) constitue la solution laminaire des équations de Stokes, et est appelé écoulement de Poiseuille plan. Il convient de s’assurer que les écoulements que nous considérons sont donc bien dans le régime laminaire. Pour cela, il faut comparer la valeur du nombre de Reynolds de l’écoulement, défini par :

$$Re = \frac{\rho f \bar{v} h}{\eta},$$ \hfill (1.26)

à la valeur du Reynolds critique pour ce type d’écoulement, qui a été déterminée égale à $Re_c \sim 5772$ [36]. Les débits que nous avons utilisés n’ont pas dépassé 60 mL/h, dans le canal le plus étroit, cela correspond à une vitesse moyenne de l’écoulement valant ~ 6 mm/s, soit un Reynolds $Re \sim 2.4 \ll Re_c$: nous sommes donc toujours largement dans le régime laminaire de l’écoulement.

1.4 Trajectoires de particules soumises à la force acoustique dans un écoulement de Poiseuille plan

Pour terminer ce chapitre, nous allons calculer la trajectoire de particules en suspension dans un fluide en écoulement dans une cellule de Hele–Shaw lorsqu’elles traversent le champ acoustique stationnaire généré par un transducteur. Cela nous permettra d’introduire la notion de temps de relaxation, qui s’avérera très importante dans la suite de ce mémoire, et en particulier lors de la description du séparateur acoustique fluidique au chapitre 3.
Nous allons commencer par faire l’inventaire des forces s’appliquant sur les particules dans le canal, dont nous rappellerons les expressions, avant de résoudre les équations du mouvement.

1.4.1 Forces en présence dans le canal

Les particules vont être influencées par plusieurs forces : la force acoustique, la force de flottabilité, la force de traînée, les interactions hydrodynamiques et les forces interparticulaires (comme les forces acoustiques secondaires – cf § 1.1.3). Cependant, les suspensions de particules que nous allons manipuler expérimentalement sont très diluées, avec une concentration maximum de l’ordre de \(c \sim 10^6 \) part/mL (cf chapitres 4) : la distance moyenne entre particule vaut donc \(\bar{R} = n^{-1/3} \sim 100 \mu m \gg r \sim 5 \mu m \). Nous allons donc négliger ici les interactions hydrodynamiques et les forces interparticulaires.

Mentionnons pour terminer que les parois perturbent également le mouvement des particules par l’intermédiaire des forces de portance hydrodynamique [37] ; toutefois, les situations étudiées sont telles que les particules ne sont jamais très proches des parois (en raison de la focalisation acoustique – cf § 1.1.2 et chapitre 2), nous pouvons donc négliger ces forces.

Nous allons donc considérer dans la suite de cette section une particule unique de rayon \(r \) dans un écoulement de Poiseuille, en présence d’une onde acoustique stationnaire.

La traînée.

La force de traînée s’exerçant sur la particule a pour expression :

\[
\vec{F}_d = 6\pi \eta r (\vec{U}(z) - \vec{v}(x,z)),
\]

 où \(\vec{v}(x,z) \) est la vitesse de la particule. La composante selon \(x \) de cette force va imposer la vitesse horizontale des particules car c’est la seule force agissant selon cet axe. Sa composante selon \(z \) constitue une force de friction de la forme \(-\gamma v_z \), avec \(\gamma = 6\pi \eta r \).

La flottabilité.

La force de flottabilité (ou buoyancy en anglais) est la résultante du poids des particules et de la poussée d’Archimède. Elle a pour expression :

\[
\vec{F}_b = Vg\Delta \rho \ e_z,
\]

 où \(g \) est l’accélération de pesanteur.
Une particule soumise à la force de flottabilité et à la force de traînée va sédimerter dans le canal. Après une phase transitoire, la particule tombe à vitesse constante v_s, appelée *vitesse de sédimentation*. En exprimant la condition d'équilibre $\vec{F}_d + \vec{F}_b = \vec{0}$, on trouve l'expression suivante pour v_s :

$$v_s = \frac{2}{9\eta} r^2 g \Delta \rho$$

(1.29)

La vitesse de sédimentation est donc d'autant plus grande que le rayon des particules est grand, et que le contraste de densité $\Delta \rho$ est important.

En raison de la valeur très importante du coefficient de friction, la phase transitoire est extrêmement brève. En effet, si l'on résout complètement l'équation régissant le mouvement de sédimentation, on constate que la vitesse de sédimentation est atteinte en quelques dizaines de µs!

La force acoustique. Son expression est donnée par l'équation (1.14), mais nous allons la rappeler ici par souci de clarté :

$$\vec{F}_{ac}(z) = V \left(\frac{3}{2} \hat{A} \right) \langle \epsilon \rangle k \sin(2kz) \vec{e}_z ,$$

(1.30)

où $k = n\pi/h$, avec n le nombre de nœuds de l’onde de pression. Comme nous l’avons mentionné au paragraphe 1.1.2, l’effet de la force acoustique seule sur les particules est de les attirer vers des positions d’équilibres stabiles situées à différentes hauteurs dans le canal, données par :

$$z_p = \left(p + \frac{1}{2} \right) \frac{h}{n} ,$$

(1.31)

où p est un entier compris entre 0 et $n - 1$. Il y a donc n positions d’équilibres. Il convient de faire deux remarques à ce stade :

1. pour que les particules convergent vers ces noeuds, il est nécessaire d’avoir une force de friction, sinon les particules oscillent indéfiniment autour de la position d’équilibre. C’est la force de traînée qui joue ce rôle, comme nous l’avons dit plus haut ;

2. la force de flottabilité décale ces positions d’équilibre, comme nous allons le montrer dans le paragraphe suivant.

1.4.2 Positions d’équilibre en présence de la force de flottabilité

Nous allons maintenant calculer les positions d’équilibres verticales de particules soumises à la fois à la force acoustique et à la force de flottabilité.
Ces forces, projetées sur l’axe e_z, sont de la forme :

$$
\vec{F}_{ac} \cdot e_z = F_{ac}^{max} \sin(2kz)
$$

$$
\vec{F}_{b} \cdot e_z = -F_b ,
$$

(1.32)

où F_{ac}^{max} et F_b sont des constantes dont les valeurs dépendent de nos paramètres expérimentaux. Leurs expressions sont données dans les équations (1.14) et (1.28) respectivement. À l’équilibre selon la direction verticale, on a :

$$
(F_{ac} + F_b) \cdot e_z = 0 ,
$$

(1.33)

ce qui s’écrit :

$$
\sin (2kz_{eq}) = \frac{F_b}{F_{ac}^{max}} .
$$

(1.34)

Pour avoir un équilibre, il faut donc que $|F_b/F_{ac}^{max}| < 1$. Ce rapport ne dépend pas du rayon des particules car F_{ac}^{max} et F_b sont toutes deux proportionnelles à r^3; en revanche, il est inversement proportionnel à l’énergie acoustique moyenne. Pour un type de particules donné, et un fluide vecteur donné, on trouve donc une valeur de l’énergie acoustique critique $\langle \epsilon \rangle_{crit}$ pour que la force acoustique puisse soutenir les particules contre les forces de pesanteurs, donnée par :

$$
\langle \epsilon \rangle_{crit} = \frac{2}{3} g \Delta \rho \frac{A_k}{\lambda} = 0.17 \text{ J/m}^3 ,
$$

(1.35)

la valeur numérique correspondant aux particules de latex dans de l’eau, pour une onde à un nœud et un canal de 400 µm d’épaisseur. À condition que l’énergie acoustique moyenne soit supérieure à l’énergie critique, ce qui sera toujours le cas dans nos expériences, l’équation (1.34) nous donne autant de positions d’équilibre qu’en présence de la force acoustique seule, mais ces positions sont toutes décalées d’une quantité fixe δz donnée par :

$$
\delta z = -\frac{1}{2k} \arcsin (\kappa) = -\frac{\lambda}{4\pi} \arcsin (\kappa) \simeq -\frac{\lambda}{4\pi} \kappa ,
$$

(1.36)

où $\kappa = F_b/F_{ac}^{max}$, et où la dernière égalité est valable pour $\kappa \ll 1$, soit pour $\langle \epsilon \rangle \gg \langle \epsilon \rangle_{crit}$. La figure 1.5 représente la somme de la force acoustique et de la force de flottabilité dans le cas particulier d’une onde à un nœud, et le décalage δz de la position d’équilibre qui en résulte ; on y a également tracé la valeur de δz en fonction de $\langle \epsilon \rangle$ pour nos paramètres expérimentaux.

1.4.3 Temps de relaxation

Nous allons maintenant étudier l’évolution de la position d’une particule sous l’effet des trois forces introduites précédemment, pour déterminer
le temps caractéristique de convergence de cette particule vers sa position d'équilibre, et sa dépendance vis-à-vis des paramètres pertinents du problème. Ce temps caractéristique de convergence sera appelé temps de relaxation, noté t_r, et constituera un paramètre très important pour la conception du séparateur acoustique fluidique (cf chapitre 3).

Par ailleurs, si nous pouvons relier le temps de relaxation à l'énergie acoustique moyenne, la mesure expérimentale de ce temps nous permettrait de déterminer en retour cette énergie, qui constitue a priori une inconnue difficile à estimer théoriquement. Nous verrons au chapitre 2 de telles mesures, mais également une manière bien plus précise de mesurer l'énergie acoustique moyenne.

Temps de relaxation. Le mouvement d'une particule soumise à ces trois forces est régi par le principe fondamental de la dynamique (ou équation de Newton). Celui-ci s'écrit, dans le référentiel lié au canal, sous la forme :

$$m \ddot{\vec{v}} = \vec{F}_{ac} + \vec{F}_d + \vec{F}_b .$$

(1.37)

On obtient un couplage du mouvement horizontal imposé par le profil de Poiseuille et du mouvement vertical imposé par la force acoustique et la force de flottabilité. Ces équations n'admettent pas de solution analytique ; toutefois, il est possible de simplifier le problème en tenant compte de la friction très importante donnée par la force de trainée. La particule atteint donc très rapidement la vitesse limite imposée par cette friction (comme lors de la sédimentation libre – cf § 1.4.1).

On peut donc négliger le terme contenant l'accélération devant les autres termes dans l'équation (1.37) ; nous en déduisons donc les composantes trans-
1 – Force associée à un champ ultrasonore stationnaire

verse et longitudinale de la vitesse des particules :

\[v_x = u_x(z) \quad (1.38) \]

\[\frac{dz}{dt} = \frac{F_{\text{max}}^{\text{ac}}}{\gamma} \sin(2kz) + \frac{F_b}{\gamma}. \quad (1.39) \]

Le temps de relaxation peut être très simplement estimé en considérant que la vitesse transverse de la particule est constante au cours de sa migration vers le nœud, égale à la valeur moyenne spatiale de la vitesse imposée par la force acoustique pendant son trajet. On obtient alors :

\[t_r \sim \frac{\gamma |\Delta z|}{F_{\text{max}}^{\text{ac}}}, \quad (1.40) \]

où \(\Delta z \) est l’écart entre la position initiale de la particule et le nœud\(^6\). Il est intéressant de mettre en valeur les divers paramètres dont dépend ce temps de relaxation :

\[t_r \propto |\Delta z| r^{-2} A^{-1} \langle \epsilon \rangle^{-1} f^{-1}. \quad (1.41) \]

Ainsi, le temps de relaxation est lié aux caractéristiques de la particule par l’intermédiaire de son rayon et du facteur de contraste acoustique, et aux caractéristique de l’onde par l’intermédiaire de l’énergie acoustique moyenne et de la fréquence.

Temps de résidence. La longueur \(L_c \) du transducteur fixe une autre échelle de temps, qui est le temps de résidence de la particule dans l’onde acoustique, et donc la durée de l’interaction de la particule avec l’onde. On peut l’estimer simplement par :

\[t_s = \frac{L_c}{\langle v \rangle}. \quad (1.42) \]

La comparaison du temps de relaxation avec le temps de résidence permet de déterminer si la particule a eu le temps de converger vers le nœud. La condition \(t_r/t_s \sim 1 \) permet ainsi par exemple de prédire le diamètre des particules nécessaire pour qu’elles aient convergé vers le nœud, toutes choses égales par ailleurs : pour nos particules de latex, injectée 150 µm au dessus d’un nœud d’une onde de fréquence 2 MHz, émise par un transducteur de longueur 1 cm, et un écoulement de vitesse moyenne 2 mm/s, on obtient une valeur d’environ 4,3 µm pour ce rayon critique, en bon accord avec les expériences menées au chapitre 2 et en excellent accord avec les résultats des simulations du chapitre 3.

\(^6\) Il est à noter que ce raisonnement simple donne une très bonne approximation du temps de convergence, comme on le verra au chapitre (3) à l’aide de simulations numériques.
Conclusion. Nous avons montré dans ce paragraphe que le comportement des particules dans une onde stationnaire plane en présence d’un écoulement est régi par deux temps caractéristique, le temps de relaxation t_r et le temps de résidence t_s. La comparaison de ces deux temps permet de prédire la position de la particule relativement au nœud ; la différence de temps de relaxation pour des particules de caractéristiques différentes est la base du principe de séparation acoustique présenté au chapitre 3.

1.5 Conclusion

Dans ce chapitre, nous avons rappelé l’expression de la force acoustique exercée sur une particule en suspension dans un fluide dans lequel est établie une onde stationnaire plane. Nous avons donné les conditions de validité de cette expression, et montré que nos expériences s’inscrivent toutes dans ce cadre.

Enfin, nous avons montré que l’évolution de particules dans un canal de type Hele–Shaw sous l’effet d’un écoulement et de la force acoustique est caractérisé par deux échelles de temps, le temps de relaxation t_r et le temps de résidence t_s, et que la comparaison de ces deux temps permet de prédire la position finale des particules.

Ces résultats nous seront utiles à la fois pour interpréter nos expériences de focalisations acoustique, présentées au chapitre 2, et pour exposer le principe du séparateur acoustique fluidique que nous avons conçu et réalisé, au chapitre 3.
Nous avons vu au chapitre précédent que la force acoustique générée par une onde ultrasonore stationnaire dans une cavité résonante avait comme caractéristique de focaliser\(^1\) les espèces en écoulement dans la cavité vers les noeuds de pression de l’onde (\textit{cf} § 1.4).

Ce chapitre a pour objectif de caractériser expérimentalement les effets de ces ultrasons sur des particules de tailles micrométriques en écoulement dans des canaux de type Hele–Shaw. Il s’agit d’observer la distribution spatiale des particules dans l’épaisseur du canal lorsqu’on fait varier les trois paramètres régissant le phénomène : l’intensité de la force acoustique, la fréquence imposée aux transducteurs et le débit de l’écoulement. Cette étape de caractérisation est cruciale avant la mise en œuvre d’expériences plus sophistiquées. En effet, elle va nous permettre de déterminer les fréquences de résonance du canal, l’ordre de grandeur des temps de relaxation et l’amplitude de la force acoustique que nous sommes capables de générer et ainsi ouvrir la voie à la conception d’une expérience de séparation acoustique.

Il est important de garder à l’esprit que nos micro-canaux ne permettent pas l’observation des particules par la tranche : nous ne pouvons donc pas avoir accès à la distribution de celles-ci dans l’épaisseur du canal par une technique de microscopie classique. En revanche, nous pouvons observer les particules par le dessus. L’utilisation d’un microscope holographique digital (et elle seule) peut nous permettre de déterminer cette distribution.

Dans ce chapitre, après avoir présenté le dispositif expérimental, nous allons montrer comment le microscope holographique nous permet d’extraire

\(^1\) En effet, toutes les particules que nous allons manipuler ont un contraste acoustique positif.
la position en trois dimensions des particules dans le canal. Nous présenterons ensuite les résultats de focalisation acoustique de particules de latex par une onde à un ou deux noeuds de pression et caractériserons l’influence de l’énergie acoustique et du débit sur ces focalisations. Nous montrerons ensuite comment il est possible de mesurer l’énergie acoustique par une expérience en micropesanteur. Enfin, nous montrerons que la focalisation peut être utilisée pour améliorer des mesures par micro-PIV (Particule Image Velocimetry).

2.1 Les outils utilisés

2.1.1 Cellule de Hele–Shaw

Le canal que nous utilisons est une cellule de type Hele–Shaw disposant d’une entrée (e) et d’une sortie (s). Son épaisseur est d’environ 400 µm et sa surface de 12 mm × 50 mm. Il est représenté en vue de dessus sur la figure 2.1. Il a été fabriqué par nos soins au laboratoire et est constitué de la superposition de plusieurs éléments (cf figure 2.2) :

- la paroi du haut est une lame de plexiglas dont la surface mesure environ 60 mm × 30 mm pour 1 mm d’épaisseur. Ce matériau, facilement usinable, s’est avéré pratique pour percer les trous correspondant à l’entrée (e) et la sortie (s) du canal ;
- la paroi du bas est une lame de verre. Nous avons préféré ce matériau au plexiglas car il a une impédance acoustique plus proche de celle du transducteur, ce qui assure une meilleure transmission de l’onde du transducteur dans le verre. De plus, l’utilisation d’une lame de verre fait du canal un meilleur résonateur acoustique car le coefficient de réflexion à l’interface eau/verre est plus grand que le coefficient de réflexion eau/plexiglas (63 % contre 14 %, cf § 1.2) ;
- entre les deux parois se trouve le canal proprement dit, délimité par
trois feuilles de mylar superposées, de 100 µm d’épaisseur chacune. Le mylar est un matériau indéformable, et nos feuilles ont une épaisseur constante, à mieux qu’un µm sur toute leur longueur : elles conviennent donc parfaitement à nos desseins.

Nous déposons entre chaque élément une couche fine de colle en spray, dont l’épaisseur, qui a été mesurée à l’aide d’un micromètre de précision, est comprise entre 17 µm et 20 µm suivant la couche. L’épaisseur du canal sec est donc connue à 12 µm près. Ces couches ont été déposées dans le but de faciliter la procédure de fabrication (en évitant les décalages involontaires des feuilles de mylar), mais ne permettent malheureusement pas d’éviter les fuites ! Pour cela, un dépôt de colle de type araldyte tout autour de la cellule est nécessaire.

Au final, nous mesurons au microscope une distance entre la paroi du haut et celle du bas d’environ 400 µm lorsque le canal est empli d’eau. Ces 20 µm supplémentaires par rapport à ce que l’on attendait (entre 368 µm et 380 µm) signifient qu’une fine pellicule d’eau s’est infiltrée malgré la colle entre les différentes couches constituant le canal, ce qui n’est pas gênant pour nos expériences, car cette épaisseur mesurée est restée constante tout au long de nos expériences.

2. Nous avons mesuré à plusieurs reprises l’épaisseur de deux feuilles de mylar mesurant chacune 100 µm d’épaisseur, collées entre elles à l’aide d’une couche de colle en spray. On trouve des valeurs comprises entre 217 µm et 220 µm suivant l’expérience.
2.1.2 Transducteurs

Pour cette expérience nous utilisons deux transducteurs acoustiques, l’un servant d’émetteur, et responsable d’établir l’onde acoustique dans le canal, l’autre servant de récepteur, et nous permettant de mesurer la transmission de l’onde par le canal, et de déterminer ainsi la fréquence de résonance de celui-ci (cf § 2.3.2). On peut voir le transducteur récepteur, situé sur la paroi du haut du canal, représenté en gris sur la figure 2.1.

Ce sont des transducteurs piézoélectriques constitués de deux électrodes entourant une couche de matériau PCM 41. Pour assurer un bon contact entre le transducteur et le canal, une des électrodes est rapportée sur la face arrière pour permettre la soudure du fil (voir figure 2.3). Nous utilisons du gel à ultrasons entre le transducteur et la paroi du canal pour réaliser une adaptation d’impédance entre le transducteur et le verre, ou le transducteur et le plexiglas. La méthode de fixation se fait par serrage au moyen d’un serre-joint sur mesure, réalisé dans l’atelier du laboratoire, et recouvert d’une mousse rigide permettant d’empêcher tout transfert acoustique du transducteur vers le serre-joint.

Leur surface est de $5\text{ mm} \times 10\text{ mm}$ et leur épaisseur détermine leur fréquence propre : les transducteurs de fréquence propre 4 MHz ont une épaisseur de $0,5\text{ mm}$ et ceux de fréquence propre 2 MHz ont une épaisseur de 1 mm. La fréquence propre d’un transducteur est la fréquence pour laquelle celui-ci fonctionne de manière optimale, c’est-à-dire pour laquelle le couplage électrique et acoustique est le meilleur. Ainsi, nous utiliserons les transducteurs
de fréquence propre 2 MHz pour établir une onde à un nœud de pression, puisque c’est la fréquence qui s’approche le plus de la fréquence de résonance théorique du canal qui est de 1.85 MHz (cf. équation 1.9). De la même manière, nous utiliserons les transducteurs de fréquence propre 4 MHz lorsque nous souhaiterons avoir une onde avec deux nœuds de pression.

2.1.3 Microscope holographique digital

Pour observer les particules dans le canal, nous utilisons un microscope holographique digital (MHD), dont le schéma optique est présenté sur la figure 2.4. Son originalité par rapport à un microscope classique réside dans l’enregistrement d’holограмmes par la caméra CCD, et non de simples images d’intensité. Notre MHD est en fait un interferomètre de Mach-Zender : le faisceau laser servant à faire l’image des particules est séparé en deux bras, l’un servant de référence, l’autre traversant l’échantillon. Ces deux bras sont ensuite recombinés et le motif d’interférence produit est enregistré par la caméra. Nous avons ainsi accès à la fois à l’amplitude et à la phase de l’onde électromagnétique ayant traversé notre échantillon, ce qui nous permet de reconstruire le front d’onde le long de l’axe du faisceau autour du plan focal par propagation numérique et donc d’avoir accès à une visualisation tridimensionnelle des objets présents dans le canal. On se reportera à la référence [38] pour plus de détails. Ce processus de propagation numérique du front d’onde enregistré est appelé reconstruction holographique et nous permet d’obtenir des images de la distribution d’intensité lumineuse à une altitude arbitraire dans le canal, comme si nous avions placé le plan focal d’un microscope classique à cette position. Bien sûr, nous ne pouvons pas propager le front d’onde trop loin de la position de focalisation initiale en raison de l’accumulation d’erreurs, provoquant une dégradation des images reconstruites. En pratique, nous avons accès à une épaisseur d’environ 500 µm, ce qui est suffisant pour nos observations compte-tenu de l’épaisseur de notre canal.

2.2 Préliminaire: Mesure expérimentale d’une vitesse de sédimentation

Avant de s’intéresser aux effets de la force acoustique sur des particules, nous avons réalisé une expérience préliminaire utilisant la cellule de Hele–Shaw et le microscope holographique, dont l’objectif était de mesurer la vitesse de sédimentation d’une particule de latex de 10 µm de diamètre. Cette expérience a servi d’une part, à tester et valider le matériel à notre disposition, en vérifiant que les valeurs théoriques et expérimentales de la vitesse de
2 – EXPÉRIENCES DE FOCALISATION ACOUSTIQUE

Figure 2.4 – Schéma optique du microscope holographique. Le trajet du faisceau laser est représenté en rouge.

sédimentation étaient similaires, et d’autre part, à nous familiariser avec les divers éléments constituant le dispositif expérimental de focalisation acoustique, puisque celui-ci, transducteurs exceptés, était en tout point identique.

2.2.1 Dispositif expérimental

Un schéma synoptique du dispositif expérimental est présenté sur la figure 2.5. Les échelles de tailles ne sont pas conservées. La cellule de Hele–Shaw est représentée en rouge en vue de profil, et le microscope holographique en orange (la croix centrale en pointillés indique que nous plaçons le plan de focalisation du microscope au centre du canal). Une pompe pousse-seringue est disposée à l’entrée du canal et contient l’échantillon de particules de latex. Un bécher placé en sortie permettra de récupérer les eaux de rinçage et fera donc office de poubelle. Deux vannes, non représentées sur le schéma, sont situées à l’entrée (e) et la sortie (s). Elles permettent d’arrêter l’écoulement de particules à l’intérieur du canal à tout moment.

La visualisation.

La fenêtre d’observation mesure 300 µm × 300 µm. Elle peut être déplacée selon les trois directions de l’espace. On choisit le plan initial de focalisation au centre du canal (selon z), de manière à rendre optimale la qualité des

3. Il est en effet indispensable de fermer la sortie du canal aussi pour immobiliser totalement le fluide à l’intérieur
Figure 2.5 – Dispositif expérimental utilisé pour mesurer la vitesse de sédimentation d’une particule de latex de 10 µm de diamètre. Ce dispositif, transducteurs exceptés, est en tout point identique à celui de focalisation acoustique.

reconstructions holographiques sur les bords du canal (cf § 2.1.3). Nous choisissons de fixer la fenêtre d’observation au centre du canal dans les directions \((x,y)\) de manière arbitraire.

La caméra CCD nous permet de réaliser des enregistrements d’une durée totale de 25 s à raison de 24 images/s. Chaque film est donc constitué de 600 hologrammes.

Protocole expérimental.

Nous injectons un échantillon monodisperse (dont la distribution des tailles est présentée sur la figure 2.11) extrêmement dilué (de concentration environ égale à \(10^5\) particules/mL), d’une suspension de particules de latex de 10 µm de diamètre dans le canal de focalisation. Nous arrêtons l’écoulement dès que nous avons des particules dans la fenêtre d’observation, nous lançons alors l’acquisition et les observons sédimerter.

2.2.2 Résultats

La figure 2.6 représente trois hologrammes d’une particule de latex de 10 µm de diamètre (mesuré au microscope) en suspension dans l’eau pris à trois instants différents : \(t = 0\), \(t = 12.5\) s et \(t = 25\) s. Ces trois hologrammes ont été choisis parmi les 600 obtenus au cours d’une acquisition unique. Nous remarquons un réseau de franges verticales alternativement claires et obscures qui est la trace de l’interférence entre le faisceau ayant traversé le canal et le faisceau référence. Les anneaux de diffraction autour de la particule, qui sont
de plus en plus larges à chaque instant, montrent que la particule s’éloigne du plan focal au fur et à mesure qu’elle sédimente.

Afin de déterminer la position de la particule dans l’épaisseur du canal à chacun de ces instants, nous procédons à la reconstruction holographique de ces trois images. Pour cette expérience, la reconstruction a été réalisée avec un pas de 1 µm sur toute la hauteur du canal. Nous obtenons ainsi 400 reconstructions par hologramme (puisque le canal fait 400 µm d’épaisseur). Il s’agit maintenant de déterminer lequel contient la particule. Pour cela, nous examinons la netteté de la particule dans chacun des plans : elle est contenue dans le plan où elle est la plus nette. En fait, on « met au point » le microscope sur la particule pour déterminer sa position, comme avec un microscope classique, mais au lieu de le faire physiquement au moment de l’observation, on le fait numériquement après acquisition de l’hologramme.

La figure 2.7 représente les reconstructions holographiques du plan initial de focalisation. En dehors de la disparition des franges d’interférences, les images sont identiques à celles de la figure 2.6. La figure 2.8 représente les reconstructions correspondant aux plans où la particule est la plus nette. On voit qu’elle se trouve à 19 µm en dessous du plan initial à l’instant \(t = 0 \), puis à 53 µm au bout de 12,5 s pour finir à 86 µm à 25 s.

Après avoir analysé les 600 hologrammes que contenait le film, nous disposons d’une mesure au µm près de l’altitude de la particule en fonction du temps. Nous pouvons alors en extraire la vitesse de sédimentation moyenne de la particule, qui vaut 3 µm/s (cf figure 2.9), ce qui est en bon accord avec la vitesse théorique qui est de 2,7 µm/s (cf § 1.29) pour des particules de latex de 10 µm de diamètre, ayant une densité de 1,05 g/cm³. Le léger désaccord provient de l’incertitude sur le diamètre de la particule, qui est connu à quelques pourcents près.
Figure 2.7 – Reconstructions holographiques du plan initial de focalisation \((z = 0)\) d’une particule de latex de 10 µm de diamètre pris à trois instants différents.

Figure 2.8 – Reconstructions holographiques des plans contenant la particule.
2.2.3 Conclusion

Nous avons vu sur cet exemple comment nous pouvons extraire des informations tridimensionnelles sur la position des particules au sein du canal grâce au microscope holographique. Dans cette expérience nous n’avons observé qu’une seule particule, mais nous pouvons appliquer la même procédure à un grand nombre de particules visibles sur un même hologramme et ainsi extraire la distribution tridimensionnelle de particules en suspension au sein du canal.

2.3 Focalisation acoustique à un noeud

Nous allons maintenant exploiter le microscope holographique pour caractériser le phénomène de focalisation acoustique que nous attendons au sein du canal, lorsqu’un écoulement de particules en suspensions est soumis à l’action d’une onde acoustique stationnaire à un noeud.
Focalisation acoustique à un noeud – 2.3

Figure 2.10 – Schéma synoptique du dispositif expérimental. Les transducteurs, représentés en vert, permettent d’établir une onde stationnaire dans le canal, dont nous représentons le champ de pression avec un noeud et deux ventres.

2.3.1 Dispositif expérimental

Un schéma synoptique du dispositif expérimental est présenté sur la figure 2.10. Excepté les éléments constituant le système de focalisation acoustique, le dispositif est en tout point similaire au précédent.

Les transducteurs. Nous les disposons à mi-distance des extrémités du canal, où nous souhaitons établir l’onde stationnaire, et de part et d’autre de la cellule. Le signal électrique appliqué aux bornes du transducteur émetteur, placé sur la paroi en verre, est une onde sinusoïdale radio-fréquence, délivrée par un générateur de fonction, puis amplifiée 20 fois. Ainsi, le transducteur va émettre une onde ultrasonore d’amplitude et de fréquence contrôlée. Le transducteur situé contre la paroi du haut, en face du transducteur émetteur, est utilisé comme récepteur. On mesure l’amplitude des tensions aux bornes des transducteurs pour déterminer les fréquences de résonances du canal (cf § 2.3.2).

Notons que le choix de placer le transducteur émetteur sur la paroi en verre n’est pas anodin. En effet, nous avons pu observer expérimentalement que les focalisations obtenues sont meilleures lorsque le transducteur émetteur est sur la paroi en verre, ce qui n’est pas étonnant vu que l’impédance acoustique du verre est beaucoup mieux adaptée à celle du transducteur que celle du plexiglas (cf § 2.1.1).

La visualisation. La fenêtre d’observation est la même que pour l’expérience de sédimentation, et mesure donc 300 µm × 300 µm. Nous la plaçons...
le plus près possible du transducteur tout en prenant soin d’avoir une bonne qualité optique (les traces de gel à ultrasons pouvant diminuer celle-ci). Dans notre cas, elle se trouve à environ 5 mm des transducteurs. On choisit le plan initial de focalisation au centre du canal.

La caméra CCD nous permet de réaliser des enregistrements d’une durée totale de 25 s à raison de 24 images/s, avec un temps d’exposition de 100 µs, temps suffisamment faible pour que les particules puissent être considérées comme immobiles pendant cette durée. En effet, compte-tenu des débits utilisés au cours de nos expériences, la vitesse maximale des particules est inférieure à 10 mm/s, soit un déplacement inférieur à 1 µm au cours des 100 µs que durent l’exposition, donc inférieur à la taille des particules.

L’échantillon. On utilise un échantillon constitué de particules de latex dont la distribution en taille a été mesurée à l’aide d’un compteur Coulter et est représentée sur la figure 2.11. Nous avons choisi une concentration d’environ 200 000 particules/mL de manière à avoir un milieu extrêmement dilué, et ainsi limiter au maximum les interactions entre particules, susceptibles de modifier leur comportement dans l’onde. La faible densité des particules de latex, soit 1,05 g/cm³, voisine de celle de l’eau, fait d’elles des bons candidats pour nos expériences car elles sédimentent plutôt lentement (2,7 µm/s, cf § 2.2), ce qui nous autorise à utiliser de faibles débits pour mieux visualiser les effets de la force acoustique.

Protocole. Dans toutes les expériences menées, nous injectons l’échantillon en continu par l’entrée du canal grâce à une pompe pousse-seringue. Avant chaque acquisition, nous prenons soin d’attendre que le régime stationnaire soit établi. Nous avons procédé à deux séries d’expériences :

- la première consiste à déterminer la fréquence de résonance du canal.
 Nous avons tout d’abord mesuré la transmission acoustique du canal en étudiant les variations d’amplitudes des tensions aux bornes des transducteurs en fonction de la fréquence imposée aux bornes du transducteur émetteur. Nous avons ensuite mesuré directement les effets de la force acoustique sur les particules en écoulement, en étudiant, à débit fixé, leur répartition dans l’épaisseur du canal juste après leur passage sous les transducteurs, pour toute une gamme de fréquences. Ceci nous a permis d’observer que les espèces sont focalisées sur certains plans dans l’épaisseur du canal, pour des valeurs de fréquences bien particulières, dont l’une correspond à la focalisation des particules au centre du canal. Nous en avons donc déduit, d’une part que nous avions trouvé la fréquence de résonance du canal, et d’autre part, qu’il existe d’autres
fréquences de résonances non directement liées au canal proprement dit mais à la présence des multiples interfaces le constituant, et pouvant également délimiter une cavité résonante. Enfin, nous avons mis en regard les résultats, ce qui nous a permis d’établir un lien entre l’allure des graphes de transmission et les diverses résonances ;

- la seconde série d’expériences a pour but d’étudier l’influence du débit de l’écoulement et de la tension aux bornes du transducteur émetteur sur les focalisations acoustiques de particules. Ainsi, nous avons observé leur répartition dans l’épaisseur du canal en aval des transducteurs à divers débits et tensions, à la fréquence de résonance du canal. Ceci nous a permis de mesurer le temps de relaxation des particules vers le noyau de pression.

Entre chaque expérience, nous prenons grand soin de rincer le canal afin d’éviter au maximum la présence de particules collées aux parois, qui diminue la qualité optique du canal, et rend l’analyse des images malaisée.

2.3.2 Recherche de la fréquence de résonance

Transmission acoustique du canal.

Nous traçons sur le graphe de la figure 2.12 le rapport des amplitudes de la tension aux bornes du transducteur récepteur et de la tension aux
bornes du transducteur émetteur en fonction de la fréquence imposée par le générateur. Nous observons la présence de deux pics, l’un étroit (de largeur totale à mi-hauteur égale à $30\,\text{kHz}$), l’autre large ($300\,\text{kHz}$). Ce second pic a une structure plus fine, puisqu’on y observe un creux pour une fréquence de $2.26\,\text{MHz}$. Nous allons maintenant mesurer la distribution des particules au sein du canal en fonction de la fréquence pour déterminer la signification de ces pics.

Focalisation en fonction de la fréquence.

Ce paragraphe a un objectif double :
- trouver la fréquence de résonance du canal ;
- établir un lien entre la fréquence de résonance et l’allure de la courbe de la figure 2.12.

Protocole. Les particules sont injectées en continu dans le canal à un débit de $20\,\text{mL/h}$. La tension aux bornes du transducteur émetteur est choisie égale à $20\,\text{V crête à crête}$. Nous observons la distribution des particules dans l’épaisseur du canal $5\,\text{mm}$ en aval du transducteur pour une gamme de fréquences allant de $1.4\,\text{MHz}$ à $2.5\,\text{MHz}$, que nous avons fait varier par pas de $30\,\text{kHz}$. Une fois le régime stationnaire établi, nous lançons une acquisition pour chaque fréquence. Nous procédons ensuite aux reconstructions hologra-
Focalisation acoustique à un noeud – 2.3

Figure 2.13 – Hologramme des particules en écoulement en l’absence d’onde acoustique. Les différences de tailles des anneaux de diffractions autour des particules nous indiquent qu’elles occupent chacune des plans différents suivant z.

...phiques d’une vingtaine d’hologrammes par expérience, pris à des instants équirépartis, l’analyse des 600 hologrammes étant trop gourmande en espace disque (il faut compter 4 Go par hologramme après qu’une centaine de plans ont été reconstruits) et en temps de calcul. Nous avons choisi de reconstruire 80 plans par hologramme espacés de 5 μm chacun et se répartissant sur toute l’épaisseur du canal.

Résultats. Les figures 2.13 et 2.14 sont des hologrammes représentant les distributions des particules dans le canal, sans onde acoustique (figure 2.13), puis en présence d’une onde acoustique de fréquence $^4 f = 1,52$ MHz (figure 2.14). Nous observons d’ores et déjà, d’un point de vue qualitatif, une différence importante dans la distribution des particules au sein du canal : elles sont très dispersées en altitude dans le premier cas (nous le voyons aux différentes tailles des anneaux de diffraction qui entourent les particules), alors qu’elles sont toutes focalisées sur le même plan dans le second (en l’occurrence, il semblerait qu’il s’agisse du plan initial de focalisation situé au centre du canal).

Nous avons effectué une analyse plus quantitative en traçant la répartition des particules dans l’épaisseur du canal (déterminée par reconstruction holographique) en fonction de la fréquence. Nous présentons quatre exemples de ces graphes sur la figure 2.15. Comme le nombre total de particules comptabilisées pouvait sensiblement changer d’une expérience à l’autre, en raison du faible nombre de particules par fenêtre d’observation, soit environ 50, nous avons choisi de normaliser les distributions par le nombre total de particules

4. Cette fréquence correspond au premier pic observé sur le graphe 2.12.
2 – Expériences de focalisation acoustique

Figure 2.14 – Hologramme des particules en écoulement dans le canal en présence d’onde acoustique pour une fréquence \(f = 1,52 \text{MHz} \). Les particules semblent toutes occuper le même plan \(z \).

observées sur les \(80 \times 20 \) reconstructions effectuées par expérience. Ceci nous permet de mieux mettre en évidence les différences de comportement entre chaque expérience.

Le graphe (a) représente la répartition des particules dans le canal lorsqu’il n’y a pas d’onde acoustique. Comme le suggérait la figure 2.13, nous observons que les particules se répartissent naturellement sur une large épaisseur d’environ 200 \(\mu \text{m} \), autour du centre du canal.

Le graphe (b) représente la répartition des particules en aval des transducteurs lorsque \(f = 1,52 \text{MHz} \). Nous observons un pic très fin et très prononcé au centre du canal. Les particules ont toutes convergé au centre lors de leur passage sous les transducteurs : nous l’interprétons comme l’effet d’une onde acoustique ayant un seul nœud de pression au centre du canal, et en déduisons que la fréquence de résonance de celui-ci vaut 1,52 MHz.

Le graphe (c) représente la répartition des particules dans l’épaisseur du canal à la sortie des transducteurs lorsque \(f = 1,8 \text{MHz} \) (fréquence correspondant à un creux dans la courbe de la figure 2.12). A cette fréquence, nous voyons que les ultrasons n’ont pas d’effet sur la répartition des particules dans l’épaisseur du canal puisque elles se distribuent de la même manière que lorsqu’il n’y a pas d’onde acoustique.

Enfin, le graphe (d) représente la distribution des particules dans le canal à la sortie des transducteurs lorsque \(f = 2,2 \text{MHz} \) (ce qui correspond au deuxième pic prononcé du graphe de la figure 2.12). Nous observons nettement, bien qu’il soit un peu moins fin, un pic de particules qui se focalisent sur un plan légèrement décalé par rapport au centre. Ceci est la signature d’une résonance, qui, si elle ne correspond pas à celle du canal, est probablement celle d’un autre composant de la cellule, voire la combinaison de
plusieurs composants (canal/plexiglass, canal/verre...), qui joue(nt) le rôle de cavité résonante.

Nous avons réalisé ce type de graphes pour toutes les fréquences que nous avons étudiées. Dans un souci de clarté, on réunit l’ensemble de ces résultats sur un unique graphe où, plutôt que de représenter les distributions de particules dans l’épaisseur du canal pour chaque fréquence, nous nous intéressons à la finesse des pics de focalisation en fonction de la fréquence. Comme nous avons normalisé chacun de nos graphes de distribution, cette finesse est directement reliée à la hauteur du pic. En effet, l’aire sous le pic est maintenue constante, et celle-ci est proportionnelle au produit de la hauteur du pic par sa largeur. Nous définissons la finesse du pic comme étant le rapport de sa hauteur par sa largeur : elle est donc proportionnelle à la hauteur au carré.

Après avoir réalisé un ajustement des courbes par une gaussienne, nous avons extrait les hauteurs de chaque pic, ce qui nous a permis de tracer le graphe de la figure 2.16, qui représente, en trait plein, la hauteur des pics de focalisation en fonction de la fréquence imposée aux bornes du transducteur.
2 – Expériences de focalisation acoustique

Figure 2.16 – Hauteur du pic dans la distribution de particules au sein du canal en fonction de la fréquence. En raison de la normalisation, ceci correspond aussi à l’inverse de la largeur du pic. Les lettres (a), (b), (c) et (d) correspondent aux distributions présentées sur la figure 2.15. La focalisation est la meilleure pour $f = 1,52$ MHz (b), qui correspond au premier pic de transmission du canal sur la figure 2.12.

Les expériences ont montré que les particules sont focalisées sur des plans privilégiés du canal aux fréquences correspondant aux pics de transmission. Nous en avons donc déduit qu’il s’agit de fréquences de résonances, soit du canal, lorsque la focalisation a lieu au centre (ce qui implique la présence d’un émetteur, et en pointillés, la hauteur du « pic » de particules, quasi nulle, lorsqu’il n’y a pas d’onde acoustique.

Les lettres (a), (b), (c) et (d) correspondent aux distributions présentées sur la figure 2.15. On observe un premier pic à la fréquence $f = 1,52$ MHz, qui correspond à la fréquence de résonance du canal, à la fois très prononcé et très fin : on retrouve la largeur de 30 kHz du premier pic de la figure 2.12. On observe également un second pic, situé autour de $f = 2,2$ MHz, de largeur environ égale à 300 kHz, et qui semble être la juxtaposition de deux pics. On constate en effet la présence d’un creux pour une fréquence de 2,26 MHz comme sur le graphe de transmission.

Conclusion.

Les expériences ont montré que les particules sont focalisées sur des plans privilégiés du canal aux fréquences correspondant aux pics de transmission. Nous en avons donc déduit qu’il s’agit de fréquences de résonances, soit du canal, lorsque la focalisation a lieu au centre (ce qui implique la présence d’un
Focalisation acoustique à un noeur – 2.3

noeur de pression au centre), soit d’autres matériaux constituant le canal (la lame de verre, la lame de plexiglas...) qui font office de cavité résonante.

Pour déterminer la fréquence pour laquelle une onde stationnaire à un noeur est établie dans le canal, il nous suffit donc de mesurer la transmission acoustique de celui-ci, et de déterminer pour quel pic les particules en suspension sont focalisées au centre, par une simple observation au microscope.

2.3.3 Influence du débit et de la tension

Dans ce paragraphe, nous étudions les influences du débit de l’écoulement et de la tension aux bornes du transducteur émetteur sur les focalisations de particules, à la fréquence de résonance du canal \(f = 1,52 \text{ MHz} \), pour des gammes de tensions allant de 0 à 20 V, et trois valeurs de débits différentes, 10, 15 et 20 mL/h. L’objectif est de déterminer le temps de relaxation caractérisant la convergence des particules vers leur position d’équilibre, située légèrement sous le noeur de pression.

Protocole. Pour chaque expérience, une fois le débit et la tension fixés, nous attendons que le régime stationnaire soit établi avant de lancer l’acquisition. Le plan initial de focalisation est toujours au centre du canal, 5 mm en aval des transducteurs. Nous reconstruisons ensuite une vingtaine d’images équiréparties dans le temps, à partir de l’instant initial jusqu’à la fin de l’acquisition. La reconstruction se fait sur toute l’épaisseur du canal avec un pas de 10 \(\mu \text{m} \). Pour chacun des 20 hologrammes, nous obtenons donc 40 plans.

Résultats. Après analyse des données, nous obtenons, comme pour l’expérience précédente (cf § 2.3.2), des graphes de distributions des particules dans l’épaisseur du canal en fonction, cette fois-ci, de la tension aux bornes du transducteur émetteur et du débit. Comme précédemment, nous avons normalisé chaque courbe par le nombre total de particules comptabilisées sur les 20 \(\times \) 40 images analysées afin de mieux pouvoir les comparer. Enfin, nous avons réalisé un ajustement de chaque pic de focalisation par une gaussienne, ce qui nous a permis d’extraire leur hauteur (directement liée à leur finesse, cf § 2.3.2).

La figure 2.17 représente la hauteur des pics de focalisation en fonction de la tension aux bornes du transducteur émetteur, pour trois valeurs de débits différentes : 10 mL/h (ronds), 15 mL/h (triangles), et 20 mL/h (carrés).

Nous remarquons qu’à tension donnée, la focalisation est d’autant meilleure que le débit est faible. D’autre part, l’augmentation de la tension permet
d’améliorer la focalisation, quel que soit le débit. Ces résultats sont cohérents avec l’expression 1.40 du temps de relaxation établie au chapitre 1.

Enfin, on observe que la focalisation est optimale dès 10 V pour des débits de 10 et 15 mL/h, alors qu’une tension d’au moins 15 V est nécessaire pour focaliser la totalité des particules à un débit de 20 mL/h. Nous pouvons extraire de ces données un ordre de grandeur du temps de relaxation des particules en fonction de la tension. En effet, nous connaissons leur temps de passage sous les transducteurs, qui est d’environ 8,6 s pour un débit de 10 mL/h, 5,7 s pour un débit de 15 mL/h, et 4,3 s pour un débit de 20 mL/h (nous déduisons ce temps de la vitesse moyenne de l’écoulement). Ainsi, le temps de relaxation des particules est d’environ 5,7 s pour des tensions comprises entre 5 et 10 V, et d’environ 4,3 s pour des tensions comprises entre 10 et 15 V. En principe, en multipliant les mesures, nous pourrions extraire très précisément la valeur du temps de relaxation pour chaque tension. Toutefois, cela s’est avéré impraticable en raison du temps incompressible d’analyse des données, malgré l’utilisation du cluster de l’école.
2.3.4 Conclusion

Cette expérience a confirmé la dépendance du temps de relaxation vis-à-vis de la tension appliquée aux bornes du transducteur émetteur. Nous avons vu que pour un débit de l’écoulement compris entre 10 mL/h et 15 mL/h (et donc une vitesse moyenne de l’écoulement comprise entre 0,58 mm/s et 0,87 mm/s), une tension de 10 V était suffisante pour que les particules soient focalisées à 100 %. En revanche, lorsqu’on augmente le débit de l’écoulement à 20 mL/h (soit une vitesse moyenne de 1,16 mm/s), une tension de 15 V est nécessaire pour focaliser la totalité des particules.

Nous sommes donc capables de réaliser de manière contrôlée des focalisations partielles ou totales des particules de latex au centre du canal, selon que le temps de résidence choisi, par l’intermédiaire du débit, est supérieur ou inférieur au temps de relaxation, fixé par la tension appliquée aux bornes du transducteur émetteur.

2.4 Focalisation acoustique à deux noeuds

Nous avons également étudié la focalisation de particules lorsqu’une onde stationnaire à deux noeuds est établie dans le canal. Comme pour la focalisation à un noeud, nous avons mesuré la transmission acoustique du canal (cf figure 2.18). Le protocole est identique à celui présenté au paragraphe précédent. Nous utilisons un nouveau canal de focalisation conçu et fabriqué de la même manière que précédemment. Les transducteurs ont une fréquence propre de 4 MHz.

Afin de déterminer quel est le pic qui correspond à la résonance du canal, nous étudions la distribution des particules dans son épaisseur en fonction de la fréquence imposée au générateur. La figure 2.19 représente cette répartition sans onde acoustique (a), et avec une onde de fréquence 3,9 MHz (b) (fréquence pour laquelle on observe un pic sur le graphe de transmission). En présence de l’onde, les particules se répartissent sur deux plans bien localisés : nous avons une onde stationnaire à deux noeuds de pression dans le canal pour la fréquence 5 3,9 MHz.

Nous sommes donc capables de réaliser des focalisations à deux noeuds, ce qui sera très intéressant dans le contexte de la collecte des échantillons séparés dans un canal à deux sorties (cf chapitre 3).

5. Cette valeur n’est pas le double de celle trouvée pour les focalisations à un nœud, car le canal utilisé est différent.
Figure 2.18 – Transmission de l’onde dans le canal.

Figure 2.19 – Répartition des particules à l’intérieur du canal en fonction de la fréquence : (a) sans acoustique, (b) $f = 3.9 \text{ MHz}$.
2.5 Détermination de l’énergie acoustique

Nous présentons dans ce paragraphe une méthode originale permettant de mesurer l’énergie acoustique moyenne au sein du canal.

Pour effectuer une telle mesure, plusieurs stratégies sont envisageables. La plus directe consiste à insérer des capteurs de pression dans le canal comme c’est souvent le cas dans les montages utilisant des champs acoustiques macroscopiques. Cette méthode est intéressante puisque c’est la seule permettant d’accéder directement à l’énergie. Malheureusement, elle s’avère irréalisable pour des champs acoustiques microscopiques, car trop intrusive.

Il faut donc se résoudre à une mesure indirecte de l’énergie en observant ses effets sur des objets au cours de leur passage dans le champ acoustique. Une possibilité est de mesurer l’évolution de la position des particules sous le transducteur en fonction du temps, par une technique de micro-PIV par exemple. On aurait alors accès à l’accélération instantanée de la particule et donc à la somme des forces appliquées, ce qui permet d’en déduire l’intensité locale de la force acoustique. Toutefois, dans nos types de micro-canaux, il est impossible d’effectuer des observations directes dans l’épaisseur et nous ne pouvons donc pas appliquer cette méthode.

Une autre possibilité est de mesurer les positions d’équilibres des particules, situées sous le noyau de pression. La condition d’équilibre de la force de flottabilité et de la force acoustique nous permet alors de déterminer l’énergie acoustique dans le canal. Toutefois, pour pouvoir le faire, il faut connaître la position exacte du noyau de pression, qui est à priori décalée par rapport au centre du canal par les déphasages introduits par les diverses interfaces et que l’on doit donc mesurer expérimentalement. Pour cela nous avons deux solutions :

- soit appliquer un champ acoustique très intense, afin que le poids soit négligeable devant la force acoustique, et ainsi avoir une position d’équilibre des particules sur le noyau de pression. Malheureusement, de telles intensités acoustiques sont difficiles à réaliser, en raison de l’échauffement des transducteurs et du risque de déformation ou de destruction du canal ;
- soit éliminer la gravité. Pour cela, nous pouvons mettre l’ensemble de notre dispositif verticalement. Cela s’est avéré impraticable ; en effet, au cours de l’opération, il est impossible d’empêcher les déplacements de l’ordre de quelques dizaines de µm de la cellule relativement au plan focal du microscope. Or, la distance que nous cherchons à mesurer est de cet ordre !

La solution retenue a été d’embarquer le dispositif dans l’airbus A300-0g de la société Novespace, pour réaliser cette expérience en micropesanteur.
2 – Expériences de focalisation acoustique

2.5.1 Principe d’un vol parabolique

Pour se placer en état de micropesanteur, il faut se placer dans les conditions d’une chute libre. En effet, dans le référentiel lié à l’objet en chute libre, les forces d’inertie compensent exactement la force de pesanteur : tout se passe comme si la gravité avait été annulée. Par exemple, une personne dans un ascenseur dont on coupe les câbles pourrait «voler» librement dans celui-ci. Le principe d’un vol parabolique est de simuler la chute libre d’un avion en s’aidant des réacteurs. En effet, les conditions de la chute libre ne sont réunies que dans le vide : un avion se déplaçant dans l’air est soumis à deux forces supplémentaires : la portance et la traînée. L’équipage doit donc manœuvrer pour maintenir l’avion sur la trajectoire qu’il suivrait en l’absence d’air s’il n’était soumis qu’à la gravité. Un schéma représentant la manœuvre parabolique est présenté sur la figure 2.20.

2.5.2 Dispositif expérimental

Le dispositif expérimental est le même que celui de la figure 2.10, la poubelle étant remplacée par une poche complètement hermétique conçue à la base pour contenir le sang de transfusion, et rendue indispensable pour assurer le confinement des liquides par mesure de sécurité.
Figure 2.21 – A300-0g en phase d’hyperpesanteur, juste avant la période de micropesanteur.

Le bâti.

Sa mise en place a été un défi de conception et de réalisation. En effet, nous avons dû assembler le dispositif le plus petit possible permettant de manipuler le matériel de manière aisée, tout en répondant à des normes de sécurité très exigeantes pour permettre l’embarquement dans l’avion. Chaque élément du dispositif est solidement fixé, le circuit hydraulique est en double confinement pour éviter tout risque de fuites, et le microscope holographique, dont le laser est de classe 3b, est enfermé dans une boîte étanche à la lumière. L’intégralité du bâti est recouverte de mousse afin d’éviter les risques de blessures à la fin des phases de micropesanteur, en raison du retour brutal à une gravité importante.

Protocole expérimental.

Avant la première parabole, nous synchronisons l’horloge de l’ordinateur avec celle de l’avion, de manière à pouvoir exploiter les données accélérométriques enregistrées tout au long du vol, et qui sont ensuite mises à notre disposition.

L’échantillon est le même que celui utilisé pour les expériences de focalisation. Nous injectons les particules de latex en continu par l’entrée du canal à un débit de 12 mL/h. La tension appliquée aux bornes du transducteur est de 15 V ou 20 V crête à crête suivant l’expérience. En principe, à de telles valeurs, d’après l’expérience décrite au paragraphe 2.3.3, l’intégralité des particules devraient atteindre leur position d’équilibre. Nous réalisons également
des expériences sans onde acoustique qui nous serviront de témoins.

Une acquisition est lancée à $0 g$, $1 g$ ou $1,8 g$ suivant la parabole, le but étant d’avoir un maximum de films dans chaque catégorie pour diminuer les risques de n’avoir aucune mesure correcte pour un jeu de paramètres donnés. En effet, nous ne pouvons pas analyser les résultats en temps réel, et devons donc réaliser chaque expérience plusieurs fois pour maximiser ses chances de réussite.

2.5.3 Résultats

Tout d’abord, nous observons bien une focalisation des particules au centre du canal en présence de l’onde. L’observation qualitative du comportement des particules montre une réduction importante de l’épaisseur de la nappe qu’elles occupent dans les quelques secondes suivant la mise en marche du transducteur. Nous en déduisons que les conditions expérimentales s’approchent de celles du paragraphe 2.3 et que l’énergie acoustique moyenne doit être de l’ordre de quelques J/m^3.

En revanche, l’analyse quantitative des images nous montre que les épaisseurs des nappes obtenues en présence de l’onde acoustique sont environ 5 fois plus larges qu’au sol (cf § 2.15). Nous interprétons cela comme étant la conséquence des vibrations de l’avion au cours du vol. Nous pouvons ainsi rendre compte de leur importance en regardant la figure 2.22, qui est un exemple de données accélérométriques enregistrées à $0 g$, $1 g$ et $1,8 g$. Même si les données de l’accélération de la pesanteur sont faibles, cela varie malgré tout entre -10^{-2} et $10^{-2} g$, il est donc nécessaire de les prendre en compte lors de l’analyse des données. Notamment, lors des phases de micropesanteur, nous lancions l’acquisition dès la phase d’injection, où la gravité passe de $1,8 g$ à $0 g$. Le comportement des particules à ce moment là est instable et ne correspond pas à ce que l’on veut étudier. Nous tronquons donc cette partie du film lors de l’analyse. Nous avons procédé de la même manière pour toutes les phases instables.

L’analyse des données nous a permis de tracer le profil de distribution des particules dans l’épaisseur du canal à $0 g$, $1 g$ et $1,8 g$. Un exemple pour chacune de ces mesures est présenté sur la figure 2.23. Nous observons bien que la position moyenne de la nappe de particules est de plus en plus proche de la paroi du bas au fur et à mesure que g augmente.

Nous avons ajusté ces distributions par une gaussienne afin d’extraire la position d’équilibre moyenne des particules. Nous corrigeons ensuite ces valeurs par la prise en compte de leur sédimentation ayant lieu entre le transducteur et la fenêtre d’observation, séparés d’une distance de 2 cm. Nous en déduisons la valeur de la force acoustique à cette position du canal, d’après le
Figure 2.22 – Données accéléro-métriques représentant la composante g_z selon l’axe normal à la surface terrestre de l’accélération de la pesanteur en fonction du temps. On a décalé l’origine des temps pour chaque graphe, de façon à pouvoir les superposer.

Figure 2.23 – Distribution des particules dans l’épaisseur du canal à 0 g, 1 g et 1,8 g.
principe fondamental de la dynamique appliqué à une particule en équilibre sous l’action de la force acoustique et de flottabilité dans le référentiel du canal et projeté sur l’axe z :

\[
\left(\vec{F}_b + \vec{F}_{ac} \right) \cdot \vec{e}_z = 0.
\] (2.1)

En norme, la force acoustique est donc égale au poids des particules, soit $\Delta \rho V \beta g$, avec $\beta = 0$, 1 ou 1,8 en fonction de l’expérience, au niveau de la position d’équilibre mesurée. Nous avons tracé les trois valeurs obtenues en fonction de la position d’équilibre correspondante au cours des expériences à 0 g, 1 g et 1,8 g, pour une tension de 20 V sur la figure 2.24 et pour une tension de 15 V sur la figure 2.25.

Nous avons ensuite ajusté ces points par un sinus de période fixée, qui correspond au profil de l’onde acoustique dans le canal. En effet, la période spatiale de l’onde est imposée par sa fréquence (que nous mesurons indépendamment) et par la vitesse du son dans le milieu (soit 1480 m/s dans l’eau). Il n’y a donc que deux paramètre ajustables : la phase et l’amplitude du sinus. Nos mesures à 0 g nous permettent de déterminer précisément la phase, les autres mesures nous donnent accès à l’amplitude.

On en déduit alors la valeur de l’énergie acoustique du canal qui est de $0,91 \text{ J/m}^3$ pour une tension de 20 V et $0,75 \text{ J/m}^3$ pour une tension de 15 V d’après l’équation 1.14. De telles valeurs sont bien compatibles avec l’observation de focalisations dans le canal car elles correspondent à un temps de relaxation d’environ 8 s alors que le temps de résidence est d’environ 10 s. En revanche, elles sont plus faibles que celles mesurées au sol, probablement à cause d’un moins bon contact canal/transducteur que précédemment (les conditions expérimentales des vols sont plus difficiles qu’au sol : le canal, confiné dans la boîte contenant le microscope, est assez difficile d’accès, ce qui rend difficile le placement des transducteurs). Nous remarquons également que les énergies acoustiques déterminées pour des valeurs de la tension égales à 15 et 20 V ne sont pas proportionnelles à la tension au carré, contrairement à ce qui était attendu. Comme les transducteurs ne sont pas collés, il est possible que ce soit dû à une variation du couplage transducteur-canal, mais ceci est peu plausible puisque les expériences ont été faites au cours du même vol et que nous n’avons jamais observé par ailleurs de telles variations à cette échelle de temps. Il sera donc nécessaire de mener une étude plus approfondie de la dépendance de l’énergie acoustique en fonction de la tension appliquée aux bornes du transducteur émetteur pour confirmer ou infirmer ces résultats préliminaires. Ceci fera l’objet d’un prochain travail de thèse dans notre équipe.
Figure 2.24 – Allure de l’onde acoustique dans le canal à 20 V.

Figure 2.25 – Allure de l’onde acoustique dans le canal à 15 V. À 1,8 g, la force acoustique ne soutient plus la force de flottabilité, c’est pourquoi les points expérimentaux n’ont pas été reportés sur le graphe.
2.5.4 Conclusion

Le protocole proposé a permis la mesure de l’énergie acoustique au sein du canal par l’observation de ses effets sur des particules en suspension. La valeur obtenue de $0,91 \text{J/m}^3$ pour une tension de 20V appliquée aux bornes du transducteur émetteur est en accord raisonnable avec les valeurs estimées par l’observation des temps de relaxation. Disposer d’un tel protocole est intéressant dans le contexte de la caractérisation de nos séparateurs acoustiques.

2.6 Amélioration des mesures de vitesse par micro-PIV

Des études de focalisation acoustique ont été effectuées à l’aide d’un dispositif de micro-PIV (Particule Image Velocimetry)6[39]. L’objectif était de voir s’il est possible d’améliorer les mesures de vitesse par micro-PIV dans un micro canal en utilisant la focalisation acoustique. En effet, un problème récurrent des mesures par micro-PIV est la présence de particules artefacts qui ne sont pas contenues dans le plan de la nappe laser : celles-ci constituent une source d’erreur pour la mesure de la vitesse des particules contenues dans le plan. La focalisation acoustique permettrait d’éliminer ces particules artefacts et donc d’améliorer les mesures.

Dispositif expérimental. Il est le même que celui présenté sur la figure 2.10 sauf en deux points :
- le microscope holographique digital est remplacé par un dispositif de micro-PIV, dont la nappe laser éclaire le centre du canal ;
- le transducteur émetteur utilisé est de forme cylindrique, de 5mm de diamètre, et il n’y a pas de transducteur récepteur. La résonance du canal est déterminée par l’observation de la qualité de la focalisation des particules au centre du canal.

Le canal de focalisation a été fabriqué par mes soins et est le même que celui utilisé pour toutes les expériences de ce chapitre. L’échantillon utilisé est constitué de particules de latex fluorescentes en suspension dans de l’eau de $2 \mu \text{m}$, $3 \mu \text{m}$ et $7 \mu \text{m}$ de diamètres suivant l’expérience, de concentration $5 \times 10^6 \text{particules/mL}$. La tension délivrée aux bornes du transducteur émetteur est de 20V crête à crête.

6 Il s’agit d’une collaboration avec Olivier Dron, doctorant sous la direction de Jean-Luc Aider de l’équipe Instabilités du laboratoire.
Figure 2.26 — Mesure du champ de vitesse de particules en écoulement par micro-PIV, sans onde acoustique à gauche, et avec onde acoustique à droite. Le nombre de vecteurs faux ou ayant une mauvaise direction est diminué de manière significative en présence de l’onde acoustique.

Résultats et discussion. Le dispositif de micro-PIV ne permet pas la mesure directe de focalisation acoustique puisque l’observation de ce qui se passe dans l’épaisseur du canal est impossible. Les particules ont donc été observées par un moyen détourné. L’expérience a consisté à re-suspendre des particules ayant sédimentées au fond du canal en les soumettant à une onde acoustique. En mesurant la concentration des particules présentes dans le plan focal du microscope, situé au centre du canal au cours du temps, on peut en déduire le temps de relaxation. Celui-ci a été trouvé égal à une centaine de secondes pour les particules de 7 μm, et encore plus grand pour les particules plus petites. L’énergie acoustique moyenne au sein du canal est donc bien plus faible dans ces expériences que pour celles menées précédemment. Nous pensons que ceci est dû aux transducteurs utilisés.

Olivier a effectivement constaté une amélioration des mesures du champ de vitesse par micro-PIV en présence d’une onde acoustique comme le montre la figure 2.26. Le nombre de vecteurs faux ou ayant une mauvaise direction est diminué de manière significative en présence de l’onde acoustique. De plus, les vitesses calculées en présence de l’onde acoustique sont plus grandes, ce qui est cohérent au vu du profil de vitesse de type Poiseuille. En effet, les particules migrent au centre du canal en présence de l’onde, où la vitesse de l’écoulement est maximale. Il apparaît donc que la technique de focalisation acoustique permet de rendre les mesures par micro-PIV plus précises.
2.7 Conclusion

Dans ce chapitre, nous avons introduit les différents éléments constitutifs de notre dispositif expérimental :

- nous avons montré l’utilité du microscope holographique et son fonctionnement par l'exemple de la mesure de la vitesse de sédimentation d'une particule de latex. Nous avons ainsi accès à la position selon les trois dimensions de l'espace des particules observées, ce qui nous a permis de mesurer une vitesse de sédimentation de $3 \mu m/s$ pour une particule de latex de $10 \mu m$ de diamètre, ce qui est en bon accord avec la vitesse de sédimentation théorique qui est de $2,7 \mu m/s$;
- nous avons caractérisé la transmission acoustique de notre canal de focalisation. La courbe représentant le rapport des amplitudes de la tension reçue aux bornes du transducteur récepteur et de la tension émise aux bornes du transducteur émetteur en fonction de la fréquence nous a permis de mettre en évidence les résonances du dispositif qui se signalent par des pics d’amplitudes ;
- nous avons relié la transmission acoustique à la focalisation des particules par observation de leur distribution dans l'épaisseur du canal en fonction de la fréquence imposée par le générateur. Ceci nous a permis de confirmer le sens des graphes de transmission, puisque les focalisations ont effectivement lieu aux fréquences correspondant aux pics de transmission. En outre, nous avons observé que d'autres éléments que le canal pouvaient entrer en résonance (par exemple le plexiglas, le verre, ou la combinaison de plusieurs éléments), puisque nous avons observé des focalisations à un noyau à différentes fréquences.

Afin d'obtenir des données plus quantitatives, nous avons étudié les distributions des particules dans l’épaisseur du canal en fonction du débit de l’écoulement et de la tension aux bornes du transducteur émetteur. Nous avons pu extraire de ces données un idée du temps de relaxation des particules qui est inférieure à $4 s$ pour une tension de $20 V$, ce qui est compatible avec une énergie acoustique de l’ordre de quelques J/m^3.

La mesure de l’énergie acoustique présente dans notre canal par le biais d’expériences réalisées en micropesanteur nous a permis de terminer la caractérisation de notre canal : nous obtenons une valeur de $0,91 J/m^3$ pour une tension de $20 V$. Il semblerait par ailleurs que l’énergie acoustique n’est pas proportionnelle à la tension au carré, ce qui doit être confirmé ou infirmé par de nouvelles expériences.

Enfin, nous avons vu une première application intéressante de notre dispositif à ultrasons puisqu’il permet d’améliorer les mesures de champs de vitesses de particules par micro-PIV.
Chapitre 3

Séparation acoustique

Nous avons vu au chapitre précédent que nous sommes capables de manipuler des particules de taille micrométrique au moyen d’ondes acoustiques stationnaires. En particulier, nous pouvons focaliser ces particules sur des plans dans le canal. En utilisant une onde stationnaire à un nœud, les particules sont focalisées au centre du canal; en utilisant une onde à deux nœuds, elles sont focalisées sur deux plans situés à $1/4$ et $3/4$ de l’épaisseur du canal. Nous allons tirer parti de ces résultats pour concevoir un dispositif de séparation utilisant la force acoustique.

Le principe de base de notre séparateur acoustique s’appuie sur la technique de fractionnement par séparation de flux fins (split-flow thin, communément appelé SPLITT). Cette technique existe depuis les années 1980 [2], et permet la séparation en deux fractions (en général) d’un mélange grâce à l’influence combinée de deux mécanismes de transport : un transport axial non sélectif imposé par un écoulement, et un transport transverse sélectif généré par un champ de force contrôlé (gravitationnel [40], centrifuge [41], électrique [42], magnétique [43], acoustique [44], ...). Cette technique a été appliquée avec succès à la séparation d’espèces biologiques, comme les cellules souches du sang [45], ou à celle de polluants dans l’eau [46, 47].

Dans le cadre du SPLITT acoustique, l’utilisation d’une onde à un nœud permet de faire migrer sélectivement les espèces à séparer depuis une paroi du canal contre laquelle elles sont injectées, vers le centre de celui-ci. La mise en œuvre expérimentale de cette technique a permis de légers enrichissements de suspensions de E Coli et de cellules de levures, et une séparation partielle de mélanges de ces deux types d’objets biologiques [44]. Cette technique ne présente pas d’avantages significatifs comparée aux autres types de SPLITT, et en particulier comparée au SPLITT gravitationnel, et n’a donc pas été développée plus avant. La technique de SPLITT acoustique décrite dans la référence [44] utilise une seule onde pour éloigner sélectivement les particules
3 – Séparation acoustique

du voisinage d’une paroi où elles sont injectées.

La spécificité de notre séparateur acoustique réside dans la *programmation spatiale* du profil de la force subie par les espèces au sein du canal, réalisée par la mise en série de transducteurs, et permettant de créer des motifs de séparation complexes ; en cela, elle s’éloigne considérablement de la technique de SPLITT acoustique décrite dans la référence [44]. Nous gagnons ainsi un très grand contrôle sur la trajectoire des diverses espèces injectées dans le canal de séparation. Nous obtenons un dispositif pouvant être adapté à de très nombreuses situations pratiques de séparation, présentant une efficacité et une sélectivité pouvant être intrinsèquement bien plus grande que celle du SPLITT gravitationnel, comme on le verra au § 3.2.3.

Dans ce chapitre, nous allons tout d’abord rappeler le principe de fonctionnement du fractionnement par SPLITT, puis nous présenterons la technique de séparation par champ acoustique programmé que nous avons mise au point ainsi que des simulations numériques montrant sa grande efficacité, avant de terminer par les nombreuses perspectives ouvertes par le concept de programmation du champ.

3.1 Modèle théorique du SPLITT

Une cellule de SPLITT est un canal rectangulaire d’épaisseur faible (en général inférieure au mm) dans laquelle diverses forces sont utilisées pour faire migrer différentiellement les composants selon l’épaisseur du canal, en général, depuis l’une des parois principales vers l’autre paroi (*cf* figure 3.1). En même temps, un écoulement de fluide entraîne les espèces sur toute la longueur du canal. L’utilisation d’un séparateur de flux à l’extrémité aval de la cellule permet de séparer les matériaux en suspension en deux flux secondaires (ou fractions) dont la composition dépend du réglage fin des débits des deux flux secondaires et des forces de migration.

Ce type de dispositif de séparation est caractérisé par un pouvoir de résolution important, une vitesse importante de séparation (en raison de la faible distance de transport nécessaire pour séparer) et par une grande adaptabilité en raison du large choix de forces de migration et de configurations de flux pouvant être utilisées. De plus, une cellule de SPLITT peut être utilisée pour effectuer des fractionnements en continu, ce qui distingue cette méthode de la technique de fractionnement par FFF (*Field Flow Fractionation* [48]) qui est limitée à des opérations discrètes dans le temps. Les techniques de SPLITT continu et de FFF ont été comparées dans les publications [49, 50].

De nombreux champs de forces différents ont été utilisés pour réaliser des fractionnements continus par SPLITT. La première démonstration expéri-
Les espèces sont entraînées par un écoulement de type Poiseuille plan le long de la cellule et sont séparées par un transport différentiel dans l'épaisseur de la cellule, généré par un champ de force pouvant être externe (gravitationnel, électrique, magnétique ou acoustique...) ou interne (résultant des interactions hydrodynamiques avec l'écoulement ou les parois, ou de la diffusion moléculaire...). L'épaisseur de la nappe injectée est contrôlée par le rapport des débits d'entrées ; le rapport des débits de sorties définit les paramètres de la séparation (comme le diamètre de coupe dans le cadre du SPLITT gravitationnel).

mentale utilisait la force gravitationnelle [40], responsable de la sédimentation plus ou moins rapide des espèces en fonction de leurs caractéristiques. D’autres études ont montré qu’il était possible de séparer diverses espèces par application d’un champ électrique [42], centrifuge [41], magnétique [43] ou acoustique [44]. L’action d’un champ de force est souvent couplée à un transport diffusif [51, 52] (quand les particules ont un diamètre inférieur au micron), ou une diffusion induite par cisaillement, ou encore avec des forces hydrodynamiques comme les forces de portance [53] qui tendent à éloigner les particules des parois. Les techniques les plus largement utilisées sont actuellement le SPLITT gravitationnel et le SPLITT magnétique.

Nous allons nous attacher ici à décrire le principe de fonctionnement de ce type de fractionnement, commun à tous les dispositifs développés et indépendant de la force utilisée. Celle-ci va en revanche déterminer quelles espèces peuvent être séparées par le dispositif et fixer les détails du mécanisme de séparation.

3.1.1 ISP, OSP, zone de transport

Les cellules de SPLITT ont un rapport d’aspect \(l/h \gg 1 \) (cf § 1.3), et sont utilisées dans le régime laminaire : on peut donc effectuer les mêmes simplifications qu’au paragraphe 1.3, et le champ de vitesse du fluide en
écoulement laminaire dans la cellule s’exprime sous la forme (1.24), que nous allons rappeler ici par souci de clarté:

\[v(z) = \bar{v} \frac{z}{h} \left(1 - \frac{z}{h} \right) , \tag{3.1} \]

où \(\bar{v} \) est la vitesse moyenne de l’écoulement, reliée au débit total \(Q_t \) par l’équation:

\[Q_t = \bar{v} h . \tag{3.2} \]

Comme nous l’avons mentionné précédemment, le SPLITT permet de séparer un mélange en deux fractions dont la composition est déterminée d’une part par la force appliquée pour générer le transport différentiel dans l’épaisseur du canal, et d’autre part par les débits imposés aux deux flux secondaires s’écoulant par les sorties \((s_1) \) et \((s_2) \) (cf figure 3.1). Compte-tenu du faible nombre de Reynolds de l’écoulement, les deux flux entrants et sortants sont combinés et séparés sans mélanger les couches fluides. Il est donc possible de comprimer la nappe de fluide injectée par l’entrée \((e_1) \) à un débit \(Q_{e1} \) dans une faible épaisseur accolée à la paroi du haut, en utilisant un débit à l’entrée \((e_2) \), noté \(Q_{e2} \), supérieur à \(Q_{e1} \). De la même manière, on peut récupérer une fraction choisie du fluide à la sortie \((s_2) \) en jouant sur les débits \(Q_{s1} \) et \(Q_{s2} \) aux sorties \((s_1) \) et \((s_2) \).

Pour décrire quantitativement cette séparation du flux, on introduit deux quantités très importantes pour la modélisation des expériences de SPLITT (cf figure 3.2):

- l’épaisseur \(h_e \) de la nappe injectée à l’entrée \((e_1) \), définie comme étant la distance du plan de séparation des flux entrants \((Inlet Splitting Plane, \text{ ou ISP}) \) à la paroi du haut ;
- l’épaisseur \(h_s \) de la nappe extraite à la sortie \((s_1) \) définie comme étant la distance du plan de séparation des flux sortants \((Outlet Splitting Plane, \text{ ou OSP}) \) à la paroi du haut.

Nous allons maintenant relier \(h_e \) et \(h_s \) aux débits \(Q_{e1}, Q_{e2}, Q_{s1} \) et \(Q_{s2} \). Remarquons au préalable que la conservation de la masse impose une relation entre ces débits, donnée par:

\[Q_t = Q_{e1} + Q_{e2} = Q_{s1} + Q_{s2} , \tag{3.3} \]

où \(Q_t \) est le débit total.

Exprimons maintenant le débit \(Q_{e1} \) à l’aide du flux volumique de fluide donnée par la vitesse \(v(z) \):

\[\frac{Q_{e1}}{Q_t} = \frac{l}{Q_t} \int_{h-h_1}^{h} v(z) dz = 3\frac{h_e^2}{h^2} - 2\frac{h_e^3}{h^3} . \tag{3.4} \]

1. Rappelons également que l’origine de l’axe \(z \) est prise sur la paroi du bas.
Pour résoudre cette équation, introduisons les paramètres adimensionnés
\[\tilde{h} = \frac{h_e}{h} - \frac{1}{2}, \quad \tilde{q} = \frac{Q_{e_1}}{Q_t} - \frac{1}{2}. \]
On obtient alors :
\[2\tilde{q} = -4\tilde{h}^3 + 3\tilde{h}. \] (3.5)
On va alors utiliser le développement trigonométrique suivant :
\[\sin 3x = -4 \sin^3 x + 3 \sin x, \] (3.6)
pour obtenir :
\[\frac{h_e}{h} = \sin \frac{\theta_e}{3} + \frac{1}{2} \quad \text{avec} \quad \sin \theta_e = 2 \frac{Q_{e_1}}{Q_t} - 1. \] (3.7)
Nous avons représenté sur la figure 3.3 l’épaisseur de la nappe injectée en \(e_1 \) en fonction du rapport des débits \(Q_{e_1}/Q_t \). On remarque que pour \(Q_{e_1}/Q_t \to 0 \), la tangente à la courbe est verticale. On peut le comprendre d’après l’expression (3.4) : en effet, dans cette limite \(h_e/h \to 0 \) et donc \(h_e^2/h^3 \ll h_e^2/h^2 \), et on obtient \(h_e/h \simeq \sqrt{Q_{e_1}/(3Q_t)} \). Il est donc difficile de réaliser des nappes d’épaisseur inférieure à environ un dixième de l’épaisseur totale du canal (pour obtenir une telle épaisseur, le rapport des débits doit être de seulement 3 \%) ! Ce comportement est dû au profil de Poiseuille : la vitesse du fluide au voisinage des parois tend vers zéro, et le flux correspondant à une nappe mince au voisinage de la paroi est donc très faible.
On obtient une expression analogue pour l’épaisseur de la nappe extraite en \(s_1 \) :
\[\frac{h_s}{h} = \sin \frac{\theta_s}{3} + \frac{1}{2} \quad \text{avec} \quad \sin \theta_s = 2 \frac{Q_{s_1}}{Q_t} - 1. \] (3.8)
L’espace s’étendant entre l’ISP et l’OSP est appelé zone de transport, et a pour épaisseur \(h_z = h_s - h_e \). Pour qu’un constituant du mélange soit élué...
Figure 3.3 – Épaisseur de la nappe injectée à l’entrée e_1 en fonction du rapport des débits Q_{e_1}/Q_t. Le trait en pointillés correspond à un développement linéaire de l’expression (3.7) au voisinage de $Q_{e_1}/Q_t = 1/2$.

à la sortie s_2, il faut donc que sa migration transverse soit suffisante pour lui faire franchir cette zone de transport au cours de sa traversée de la cellule. Ceci défini un critère de séparation, que nous allons expliciter au paragraphe suivant.

3.1.2 Critère de séparation et résolution

Nous voulons maintenant déterminer la condition permettant de prédire quels constituants d’un mélange injecté à l’entrée (e_1) seront élués à la sortie (s_1), et quels sont ceux qui seront élués à la sortie (s_2). Pour cela, on introduit la fraction $F_2(i)$ du constituant i récupéré à la sortie (s_2). La condition :

$$F_2(i_c) = \frac{1}{2}$$

partage les constituants en deux sous-ensembles ; ceux tels que $F_2(i) > 1/2$ sont récupérés majoritairement à la sortie (s_2), alors que ceux tels que $F_2(i) < 1/2$ le sont majoritairement à la sortie (s_1). Le constituant i_c défini le critère de séparation.

Prenons par exemple le cas du SPLITT gravitationnel. On peut séparer par cette méthode des espèces de même densité, mais de tailles différentes ;
en effet, la vitesse de sédimentation est alors proportionnelle au diamètre au carré des particules (cf § 1.29) :

\[v_s \propto d^2. \quad (3.10) \]

Il existe donc un diamètre de coupure \(d_c \) tel que \(F_2(d_c) = 1/2 \). Les particules de diamètre inférieur à \(d_c \) seront éluées majoritairement à la sortie \((s_1) \), alors que celles de diamètre supérieur à \(d_c \) le seront à la sortie \((s_2) \).

Il est également intéressant de définir la qualité des séparations binaires obtenues. Pour cela, nous allons introduire les diamètres \(d_1 \) et \(d_2 \) tels que :

\[
\begin{align*}
\text{si } d &< d_1, \quad F_2(d) = 0 \\
\text{si } d &> d_2, \quad F_2(d) = 1 .
\end{align*} \quad (3.11)
\]

On définit alors la résolution \(R \) par :

\[R = d_2 - d_1 . \quad (3.12) \]

La résolution caractérise la précision des séparations réalisables avec le dispositif ; elle est d’autant plus petite qu’il est possible de séparer des espèces de diamètres proches. On peut montrer que cette coupure dépend principalement de l’épaisseur de la nappe de particules injectée : plus celle-ci est fine, et plus la résolution est petite [54]. On peut également définir la résolution adimensionnée par le diamètre de coupure :

\[r = \frac{R}{d_c} . \quad (3.13) \]

Bien sûr, ces concepts de diamètre de coupure et de résolution peuvent être étendus à la plupart des expériences de SPLITT, gravitationnelles ou autres. La grandeur physique d’importance peut être différente du diamètre ; par exemple, pour le SPLITT électrique, ce sera la charge électrique, et on définira une charge de coupure et la résolution en accord.

3.1.3 Limites du SPLITT

Flux de production. Le SPLITT permet de réaliser des séparations préparatives avec un flux de production (throughput) \(J_P \) relativement important. Ce flux est proportionnel à la quantité de matière des espèces injectées par unité de temps dans le dispositif :

\[J_P \propto Q_{\text{e}1} c , \quad (3.14) \]
où \(c \) est la concentration de l’échantillon. Le débit \(Q_e \) est imposé par le diamètre de coupure et la résolution du dispositif que l’on choisit. De manière très générale, pour \(d_c \) et \(R \) fixé, le flux de production croît avec l’intensité de la force appliquée, puisqu’alors les séparations peuvent être effectuées plus rapidement. D’autre part, toutes choses étant égales par ailleurs, le flux de production décroît nécessairement avec la résolution \(R \), puisque les espèces sont d’autant mieux séparées dans l’épaisseur du canal que l’on a donné du temps à la force générant la séparation pour agir sur les particules.

Il n’est pas possible d’accroître indéfiniment la concentration du mélange injecté pour améliorer le flux de production : en effet, quand la concentration est importante, la densité de la couche supérieure du fluide vecteur, contenant les particules, sera sensiblement plus grande que celle de la couche inférieure, ce qui conduit à une instabilité de l’écoulement dans le canal [55]. Par ailleurs, l’augmentation de la concentration conduit également à une augmentation des interactions inter-particules, qui conduisent à une diminution du pouvoir de séparation [56].

Le meilleur moyen d’augmenter le flux de production est donc d’augmenter la largeur de la cellule. En effet, d’après l’hypothèse d’invariance par translation selon cette dimension, on peut augmenter indéfiniment cette largeur sans changer les conditions de la séparation, à condition de garder la vitesse moyenne de l’écoulement \(\langle v \rangle \) constante ; ceci conduit à une augmentation du débit, et donc du flux de production, proportionnelle à la largeur \(l \).

Notons que cette augmentation du débit ne change pas la valeur du nombre de Reynolds de l’écoulement, puisque celui-ci ne dépend que de \(\langle v \rangle \) et de \(h \), qui sont gardés constants. Le problème provient alors de la plasticité des séparateurs de flux ; en effet, une cellule large implique de longs séparateurs de flux qui seront alors beaucoup plus susceptibles de se déformer. Ce problème peut être contourné par l’utilisation d’une cellule de Step-SPLITT (cf § 3.1.4).

Tailles des particules séparables. La taille minimale des particules séparables est dictée par l’importance croissante de la diffusion moléculaire sur des objets de petites dimensions. La séparation différentielle causée par le champ de force peut en effet être contrecarrée par des processus de diffusion, ce qui a pour effet de diminuer le pouvoir de résolution du dispositif. Pour un champ de force donné, il existe donc une taille minimale des espèces pouvant être résolue par le dispositif. Par exemple, pour le SPLITT gravitationnel d’espèces dont le contraste de densité vaut \(\Delta \rho = 2 \text{ kg/L} \), la limite inférieure en diamètre des particules séparables vaut 0,6 \(\mu \text{m} \) [57]. Cette limite est d’autant plus grande que \(\Delta \rho \) est petit.
Il existe également une taille supérieure limite, résultant principalement de l’épaisseur de la cellule : les espèces à séparer doivent être petites devant cette épaisseur.

3.1.4 Le canal de Step-SPLITT

Au cours de son travail de thèse au sein de notre équipe, Natacha Callens a montré qu’il est possible de remplacer les séparateurs de flux (cf figure 3.1) de la cellule de SPLITT par des marches [38], tout en gardant les mêmes propriétés de l’écoulement (en particulier, l’écoulement est toujours laminaire et les flux d’entrées et de sorties se combinent sans mélange au niveau de l’ISP et de l’OSP). L’avantage de l’utilisation de marches réside dans la bien meilleure rigidité mécanique du dispositif : en effet, les séparateurs de flux, qui sont des lames minces, peuvent être déformées par l’écoulement, tout particulièrement si une grande différence de flux est imposée aux deux entrées (ou aux deux sorties), ce qui est généralement le cas pour le SPLITT. Une telle déformation est préjudiciable au bon fonctionnement du dispositif car elle perturbe l’établissement de l’ISP ou de l’OSP.

De plus, la fabrication d’une cellule de Step-SPLITT est plus aisée que celle d’une cellule de SPLITT, et nous pouvons la réaliser au laboratoire. Mentionnons que cette cellule a fait l’objet du dépôt d’un brevet par notre équipe [38].

3.2 Principe de la séparation acoustique

Nous allons dans cette section présenter un nouveau principe de séparation dans une cellule de type SPLITT, s’appuyant sur la programmation spatiale d’un champ acoustique pour guider sélectivement les espèces à séparer vers les différentes sorties du dispositif. Les prémisses de la méthode sont très similaires avec la technique de SPLITT présentée précédemment : nous allons injector les espèces à séparer par l’entrée du haut d’une cellule de SPLITT, et récupérer les espèces triées aux sorties de celle-ci. Toutefois, le mécanisme à l’œuvre permettant la séparation dans l’épaisseur du canal est plus élaboré, et permet des séparations à la fois plus efficaces et plus rapides que les séparations par SPLITT gravitationnel. Par ailleurs, ce mécanisme de programmation du champ acoustique constitue la base d’un principe très général permettant d’adapter le dispositif à une très vaste gamme de problèmes de séparation, comme on le verra à la section 3.3.
3.2.1 Principe : mise en série des transducteurs

Le principe général de la méthode de séparation que nous voulons mettre en oeuvre est donné sur la figure 3.4. Nous utilisons une cellule de type Step-SPLITT disposant de deux entrées et deux sorties. Nous injectons les espèces à séparer par l’entrée du haut (e_1) et le liquide vecteur, qui est le même solvant que celui utilisé pour suspendre les espèces à séparer, par l’entrée du bas (e_2). Les particules en suspension vont alors être soumises à une première onde acoustique présentant un noeud de pression au centre du canal. Les paramètres de l’onde (longueur des transducteurs, énergie acoustique) et la vitesse de l’écoulement sont ajustées de telle sorte que seule une partie des espèces en suspension atteignent leur position d’équilibre (ie celles ayant un temps de relaxation suffisamment court, cf § 1.4.3).

Une première étape de la séparation est ainsi effectuée : une partie choisie des particules se retrouvent dans la partie inférieure du canal, alors que les autres sont encore dans la partie supérieure. On utilise alors une deuxième onde présentant cette fois-ci deux noeuds de pression, situés à $1/4$ et $3/4$ de l’épaisseur du canal, pour finaliser la séparation : les particules situées dans la moitié inférieure du canal sont focalisées sur le noeud du bas et guidées vers la sortie (s_2), alors que celles situées dans la moitié supérieure sont focalisées sur le noeud du haut et guidées vers la sortie (s_1). Une fois leur position d’équilibre atteinte, les particules sont alors séparées de manière définitive d’une distance égale à la moitié de l’épaisseur du canal. Un autre avantage de cette deuxième onde est que les particules trouvent une position d’équilibre relativement loin des bords du canal, ce qui facilite leur collecte.

Nous allons dans les paragraphes suivants nous restreindre à la séparation d’espèces en fonction de leur diamètre toutes choses égales par ailleurs. Cette séparation est possible grâce à la dépendance en d^3 de la force acoustique (cf § 1.1). Nous allons ainsi pouvoir introduire un diamètre de coupure d_c et une résolution R, comme au paragraphe 3.1.2, et comparer les performances du dispositif avec le SPLITT gravitationnel. Toutefois, le diamètre n’est pas le seul paramètre de sélectivité du séparateur acoustique programmé ; en effet, la force acoustique dépend aussi de la densité des particules et de leur compressibilité par l’intermédiaire du facteur de contraste acoustique \tilde{A}.

Dans le paragraphe suivant, nous présentons un programme de simulation nous permettant de déterminer la trajectoire de particules dans un tel dispositif de séparation acoustique.
3.2.2 Modélisation numérique

Hypothèses. La modélisation numérique du séparateur s’appuie sur les approximations suivantes :

- le comportement des particules est supposé être parfaitement bidimensionnel et l’écoulement a un profil de Poiseuille pleinement développé tout au long de la portion du canal considérée. Cette hypothèse est justifiée par le grand rapport d’aspect des canaux de Step-SPLITT et par le faible nombre de Reynolds des écoulements utilisés en pratique (cf § 1.3) ;

- il n’y a pas d’interaction hydrodynamique entre les particules. Ceci est réaliste dans la mesure où nous travaillons avec des milieux extrêmement dilués. Nous allons également négliger les interactions hydrodynamiques entre les particules et les parois, appelées forces de portance hydrodynamique, devant la force acoustique, ce qui est justifié pour nos paramètres expérimentaux [38] ;

- les ondes acoustiques agissant sur les objets en suspension dans le canal sont parfaitement stationnaires, de telle sorte que l’expression 1.10 du champ de pression est exacte. De plus, leur champ d’action s’applique uniquement sur la longueur du transducteur, ce qui revient à négliger la diffraction et donc la divergence des faisceaux émis par les transducteurs. Le canal est donc divisé en plusieurs zones discrètes correspondant à la présence ou à l’absence de transducteurs. Cette hypothèse est raisonnable compte-tenu de la longueur des transducteurs (de l’ordre du cm) et de la faible épaisseur du canal (moins d’un demi mm);

- les particules sont parfaitement sphériques, on utilisera donc l’expression 1.14 de la force acoustique. Cette hypothèse est parfaitement justifiée pour les particules de latex. En revanche, les vésicules peuvent...
être plus ou moins « dégonflées » en fonction des solutions internes et externes (cf chapitre 5); quant aux cellules du sang, et en particulier aux globules rouges, ils ne sont pas du tout sphériques. Toutefois, on peut toujours utiliser l’expression 1.14 à condition de remplacer le diamètre par un diamètre équivalent rendant compte de l’asphéricité de ces objets;

Géométrie du canal. La géométrie du canal modélisé est identique à celle utilisée au cours de nos expériences de séparations (cf chapitre 4 et 5). Il s’agit donc d’un canal de $400 \mu m$ d’épaisseur. Nous avons simulé la trajectoire de particules sur $3 cm$ de la longueur du canal. Une onde à un nœud prend place sur le premier cm simulé, et une onde à deux nœuds prend place sur le dernier cm.

La méthode de Runge-Kutta. Nous avons utilisé la méthode de Runge-Kuta d’ordre 4 [58] pour intégrer les équations du mouvement (1.37) car cette méthode est bien adaptée pour ce type d’équations différentielles. C’est une méthode itérative permettant de résoudre une équation du type :

$$\frac{dy}{dx} = f(x, y) . \tag{3.15}$$

Il s’agit de calculer $y(x + h)$ à partir de $y(x)$ connu, où h est le pas d’intégration. Le principe de l’algorithme est de calculer les quatre quantités suivantes :

$$\begin{cases} k_1 = hf(x_n, y_n) \\ k_2 = hf(x_n + \frac{h}{2}, y_n + k_1) \\ k_3 = hf(x_n + \frac{h}{2}, y_n + k_2) \\ k_4 = hf(x_n + h, y_n + k_3) \end{cases} . \tag{3.16}$$

On a alors :

$$y_{n+1} = y_n + \frac{1}{6}[k_1 + 2k_2 + 2k_3 + k_4] + O(h^5) . \tag{3.17}$$

Dans notre cas,

$$y = \begin{pmatrix} \vec{r} \\ \vec{v} \end{pmatrix} , f = \begin{pmatrix} \vec{v} \\ \vec{F}/m \end{pmatrix} , \tag{3.18}$$

où \vec{r} est la position instantanée de la particule, \vec{v} sa vitesse et \vec{F} la résultante des forces qu’elle subie.
Estimation du pas de temps. Nous avons constaté, en simulant la trajectoire de particules dans un champ acoustique à un noeud, qu’il est indispensable d’utiliser un pas de temps $\epsilon = 1 \mu s$ pour que l’algorithme converge. Il faut donc $\sim 10^7$ itérations pour calculer l’évolution des particules pour une vitesse moyenne de l’écoulement de 1,25 mm/s et une longueur de la cellule de 30 mm. En effet, l’ordre de grandeur de \vec{F}/m est de 10^5 m/s2, ce qui explique la nécessité d’un petit pas de temps. Cependant, une fois que les particules ont convergé vers les noeuds, l’accélération qu’elles subissent est beaucoup plus faible, il n’est plus nécessaire d’utiliser un pas de temps aussi petit. Pour diminuer les temps de calcul, j’ai donc décidé d’utiliser une méthode avec un pas de temps adaptatif.

La méthode d’adaptation du pas de temps. C’est une méthode très utilisée qui propose une adaptation du pas de temps dynamique. Le principe de cette méthode est d’estimer à chaque pas de temps l’erreur commise sur la trajectoire des particules que l’on compare avec une tolérance choisie. Si l’erreur est trop importante, on diminue le pas de temps et on recommence l’étape jusqu’à ce que l’erreur calculée soit acceptable. Dans le cas contraire, on augmente le pas de temps pour l’étape suivante. Ceci permet d’adapter au cours de la simulation le pas de temps de manière automatique, de manière à conserver la précision choisie tout en diminuant le temps de calcul. Les détails de l’implémentation de ce procédé sont donnés dans la référence [58]. Les équations différentielles déterminant la trajectoire des particules au sein du canal étant résolues avec un temps de calcul acceptable, nous pouvons simuler les trajectoires correspondant à différents cas de figures et analyser les résultats obtenus.

3.2.3 Résultats

Séparation de particules de latex de 5 et 10 µm de diamètre.

Dans la perspective des séparations que nous voulons effectuer expérimentalement, qui concernent des objets de taille micrométrique et quasi-isodensités, nous avons modélisé la séparation de particules de latex de 5 et 10 µm de diamètres, de densité $\rho = 1,05$ g/cm3. La figure 3.5 représente la trajectoire simulée suivie par de telles particules dans le canal lorsqu’elles sont injectées à une hauteur de 300 µm et 400 µm, avec une vitesse moyenne de l’écoulement $^2 \bar{v} = 1,98$ mm/s et une énergie acoustique de 2,5 J/m3. L’effet de la première onde sur les particules est de les faire converger vers le noeud

2. Cette vitesse moyenne correspond à un débit de 20 mL/h pour le canal expérimental de 0,7 mm de large.
Figure 3.5 – Séparation de particules de latex de 5 et 10 µm de diamètres à l’aide du dispositif d’ultrasons.

plus ou moins vite en fonction de leur taille : les grosses particules (de 10 µm de diamètre, en trait pointillé bleu), atteignent leur position d’équilibre située légèrement sous le noyau de pression, alors que les petites (de 5 µm de diamètre, en trait plein rouge), n’en ont pas le temps. Sur les 10 mm suivant, les particules sont soumises à la gravité seulement, elles sédimentent donc librement. Sur les 10 derniers mm de la longueur du canal, les petites particules, situées dans la partie supérieure du canal, convergent vers le noyau du haut de la deuxième onde (situé à une hauteur de 300 µm), alors que les grosses, situées dans la partie inférieure, convergent vers le noyau du bas (situé à une hauteur de 100 µm). Ce graphe montre donc que nous sommes capables de séparer à 100 % des particules de 5 et 10 µm de diamètres lorsqu’elles sont injectées à une hauteur comprise entre 300 et 400 µm, soit $h_{1}/h = 1/4$, ce qui correspond à $Q_{01}/Q_{e} \simeq 0,16$.

Le graphe de la figure 3.6 représente la trajectoire de ces mêmes particules lorsqu’elles sont soumises uniquement à la gravité, et que la vitesse moyenne de l’écoulement vaut 3 0,25 mm/s. Nous voyons que pour ces valeurs de paramètres, la séparation est quasiment aussi satisfaisante qu’avec les ultrasons, puisque les espèces sont séparées de 150 µm (contre 200 µm avec les ultrasons) ; l’inconvénient étant qu’elle nécessite d’utiliser un débit, et donc

3. Ce qui correspond à un débit total de 2,5 mL/h pour notre canal.
un flux de production, huit fois plus faible4 ! Par ailleurs, au lieu d’être guidées vers les sorties, les particules continuent de sédimerter et risquent de s’échouer sur la paroi du bas, ce qui gênerait leur collecte.

La vitesse moyenne de l’écoulement maximale permettant la séparation totale de l’échantillon par la technique du SPLITT gravitationnel avec ce canal de 3 cm de longueur vaut 1 mm/s, soit déjà deux fois moins que dans l’exemple de séparation acoustique ; de plus, la résolution est alors mauvaise (de seulement 5 µm par définition), alors que la séparation acoustique peut être accomplie plus rapidement, et a une résolution bien meilleure, comme on le verra aux paragraphes suivants.

\textbf{Séparation de particules de latex de 7 et 15 µm de diamètres.}

Comme deuxième exemple, nous considérons des particules de latex de 7 et 15 µm de diamètres. Le graphe de la figure 3.7 représente la trajectoire qu’adopteraient de telles particules dans les mêmes conditions expérimentales, mais pour une vitesse moyenne de l’écoulement plus grande, et valant5 \(\bar{v} = 5,95 \, \text{mm/s} \). Pour ces valeurs de paramètres, la séparation de l’échantillon est à nouveau complète.

4 2.5 mL/h au lieu de 20 mL/h dans l’expérience précédente.
5 Soit \(Q_t = 60 \, \text{mL/h} \) pour notre canal expérimental.
Figure 3.7 – Séparation de particules de latex de 7 et 15 µm de diamètres.

Sur cet exemple, nous voyons que le diamètre de coupure est augmenté par l’augmentation du débit, l’énergie acoustique étant fixée. Ce résultat était attendu, puisqu’alors le temps de résidence des particules dans la première onde est diminué : pour être entraînées dans la moitié inférieure du canal, les particules doivent avoir un temps de relaxation plus court que dans l’exemple précédent, c’est-à-dire un plus gros diamètre. Dans le paragraphe suivant, nous allons étudier quantitativement la dépendance du diamètre de coupure avec la vitesse moyenne de l’écoulement et l’énergie acoustique de la première onde.

Diamètre de coupure en fonction de la vitesse moyenne de l’écoulement et de l’énergie acoustique.

Afin d’obtenir un point de vue plus quantitatif, et pouvoir prédire rapidement quelle gamme de paramètres serait optimale pour séparer des particules de tailles choisies, nous avons tracé la valeur du diamètre de coupure en fonction de la vitesse moyenne de l’écoulement et de l’énergie acoustique de la première onde présente dans le canal. Ce sont les deux paramètres fixant les caractéristiques de la séparation, lorsque la géométrie du canal est fixée (longueur, épaisseur, taille et position des transducteurs). L’épaisseur de la nappe a également un impact sur le diamètre de coupure, mais son effet prin-
Le principe de la séparation acoustique – 3.2

Nous avons choisi d’injecter les particules à une hauteur de \(350 \mu m\), ce qui correspond à la hauteur moyenne pour une ISP fixée à \(h_c/h = 1/4\). Les diamètres de coupures correspondent donc à cette situation. La figure 3.8 présente les résultats obtenus. On constate bien le comportement attendu : le diamètre de coupure est d’autant plus grand que la vitesse moyenne est grande, et d’autant plus petit que l’énergie acoustique est grande. Nous avons donc deux paramètres sur lesquels agir pour fixer le diamètre de coupure ; en particulier, il est possible d’augmenter le débit total, et donc le flux de production, à \(d_c\) fixé, à condition d’augmenter de manière concomitante l’énergie acoustique. Ceci est à mettre en parallèle avec le SPLITT gravitationnel pour lequel il n’est pas possible d’augmenter la gravité !

Un tel graphe constitue un outil pratique pour la détermination des paramètres à imposer pour obtenir le diamètre de coupure souhaité. Par exemple, pour revenir aux séparations que nous souhaitons réaliser expérimentalement, nous voyons que pour séparer des particules de 7 et 15 \(\mu m\) de diamètre, avec une énergie acoustique comprise entre 2 et \(3 \text{ J/m}^3\), une large gamme de vitesses possible s’offre à nous, allant d’environ 1,5 mm/s à 6 mm/s (ce qui correspond à des débits totaux allant de 15 mL/h à 60 mL/h pour notre cellule). De la même manière, pour séparer des particules de 5 \(\mu m\) et 10 \(\mu m\) de diamètre, en utilisant une énergie comprise entre 2 J/m\(^3\) et 3 J/m\(^3\), il faut choisir une vitesse comprise entre environ 1 mm/s et 2,5 mm/s (soit des débits totaux compris entre 10 mL/h et 25 mL/h).

Résolution de la séparation en fonction de l’épaisseur de la nappe de particules injectée.

Un autre paramètre facilement ajustable de notre dispositif est l’épaisseur de la nappe injectée en entrée de la cellule, puisqu’il suffit de jouer sur la position de l’ISP. Le graphe de la figure 3.9 représente la proportion \(F_1(d) = 1 - F_2(d)\) des particules situées sur le noeud du haut après leur passage dans le canal en fonction de leur rayon lorsqu’elles ont été injectées entre 360 \(\mu m\) et 400 \(\mu m\), en trait plein rouge, et 300 \(\mu m\) et 400 \(\mu m\), en trait pointillés bleus.

Tout d’abord, on voit que l’épaisseur de la nappe injectée a une influence sur la valeur du diamètre de coupure. En effet, pour la nappe fine, les particules sont injectées en moyenne à une hauteur de 380 \(\mu m\), alors que pour la nappe épaisse, elles sont injectées à une hauteur moyenne de 350 \(\mu m\). Le diamètre de coupure dans le cas de la nappe épaisse est donc plus petit que pour la nappe fine, puisqu’il est d’autant plus petit que les particules sont injectées bas dans le canal (car cela diminue le temps de relaxation, cf § 1.4.3).
C’est ce que nous voyons sur le graphe : le diamètre de coupure pour la nappe épaisse est de $8,35 \mu m$ contre $8,5 \mu m$ pour la nappe fine.

D’autre part, ce graphe montre que la résolution de la séparation est effectivement directement liée à l’épaisseur de la nappe : la résolution est d’autant meilleure que l’épaisseur de la nappe injectée est faible. En effet, dans le cas de la nappe de $100 \mu m$ d’épaisseur, on trouve $d_1 = 7,5 \mu m$ et $d_2 = 8,6 \mu m$, soit une résolution de $R = 1,1 \mu m$ (ou $r = 14 \%$), alors que pour la nappe de $40 \mu m$ d’épaisseur, on trouve $d_1 = 8,19 \mu m$ et $d_2 = 8,52 \mu m$, soit $R = 0,33 \mu m$ ($r = 4 \%$).

Ce graphe montre donc qu’il est intéressant d’utiliser l’ISP la plus fine possible afin d’obtenir une résolution maximale. Toutefois, plus l’ISP est fine, plus l’échantillon est dilué, puisque plus le débit de liquide vecteur à l’entrée (e_2) doit être important, tout comme pour le SPLITT. Nous verrons au paragraphe suivant comment nous pouvons contourner ce problème en utilisant un transducteur directement à l’entrée du canal pour focaliser les espèces en une nappe très fine, sans avoir à utiliser une deuxième entrée ni diluer l’échantillon.
3.3 La programmation spatiale : un principe général

Le principe de séparation acoustique présenté dans les paragraphes précédents peut être développé de nombreuses manières. Nous allons dans la suite donner quelques exemples de tels développements, montrant l’excellent potentiel de la programmation acoustique.

Focalisation préalable pour augmenter la résolution de la séparation.

Afin d’éviter la dilution de l’échantillon contenant les espèces à séparer, conséquence de la pré-focalisation hydrodynamique lorsqu’on choisit la position de l’ISP, il est possible d’utiliser un canal à une seule entrée \(e_1 \), située sur le dessus, et un transducteur émettant une onde à deux nœuds de pression sur les premiers mm du canal (cf figure 3.10). Ainsi, les particules entrent directement dans le champ de l’onde acoustique et se focalisent toutes sur le nœud du haut. La nappe de particules injectée est alors extrêmement fine (moins de 40 µm, cf chapitre 2), ce qui permet d’augmenter la résolution de la séparation (qui vaut alors moins de 4% d’après le paragraphe 3.2.3) sans
diluer l’échantillon initial (la séparation proprement dite s’effectuant selon le principe expliqué au paragraphe 3.2.1). On obtiendrait alors des séparations aussi fines qu’en utilisant \(\frac{n_t}{n} = \frac{1}{10} \), soit \(Q_{e1}/Q_t = 3\% \), mais avec \(Q_{e1} = Q_t \), et donc une augmentation du flux de production \(J_P \) d’un facteur supérieur à 30 !

Tri-séparation.

En utilisant une onde à trois noeuds pour effectuer la deuxième étape de la séparation, et en utilisant une cellule à trois sorties, il est possible de séparer puis collecter trois types d’espèces différentes. Les conditions expérimentales sont les mêmes que pour la bi-séparation, à ceci près que le deuxième transducteur génère une onde stationnaire à trois noeuds de pression. Le cas particulier de la figure 3.11 montre la séparation totale de particules de 2, 4 et 6 \(\mu m \) de silice poreuse (\(\rho = 2,5 \text{ g/cm}^3 \)) lorsque \(\langle c \rangle = 2,5 \text{ J/cm}^3 \) et \(\bar{v} = 6 \text{ mm/s} \).

Nous pouvons étendre cette idée de multi-séparation à la séparation de 4, 5 ou plus d’espèces, en ajustant le nombre de sorties du canal et le nombre de noeuds de la deuxième onde.

Séparation en fonction du paramètre \(\tilde{A} \).

Les modèles de séparation acoustique que nous avons implémentés jusqu’à présent séparent les espèces en fonction de leur taille. Si la force acoustique est proportionnelle au volume des particules (cf équation 1.14), elle dépend aussi de leur densité et de leur compressibilité par l’intermédiaire du facteur de contraste acoustique \(\tilde{A} \). Ceci implique qu’il est possible de séparer des espèces de tailles identique ayant une densité ou même seulement une compressibilité
différente, ce qui fait de cette dernière un nouveau paramètre de sélectivité.

Utilisation d’une autre force pour la pré-séparation.

Dans notre présentation du principe de séparation (*cf* § 3.2.1), nous avons utilisé la force acoustique comme générateur de la sélectivité en utilisant la différence de temps de relaxation des particules lorsqu’elles sont soumises à une onde à un nœud. La deuxième onde permet une collecte plus aisée en guidant les particules aux sorties. Rien n’empêche de remplacer la première onde par d’autres forces, par exemple électrique ou magnétique, pour effectuer la pré-séparation (*cf* figure 3.12) : on peut alors obtenir tous les avantages de la séparation acoustique (fort flux de production, excellente sélectivité) pour la séparation de particules chargées ou aimantées.

3.4 Conclusion

Dans ce chapitre, nous avons présenté un nouveau dispositif de séparation s’appuyant sur la programmation spatiale d’un champ acoustique. Nous avons montré, à l’aide d’une modélisation numérique du dispositif, que nous pouvons réaliser des séparations contrôlées d’espèces micrométriques avec une excellente résolution et un flux de production plus grand que dans le cas...
du SPLITT gravitationnel. Ce flux de production peut être d’autant plus grand qu’il est possible d’augmenter l’énergie acoustique.

Nous envisageons d’améliorer le programme de simulation pour prendre en compte les interactions entre particules afin de déterminer leur influence sur les séparations, et en particulier la concentration maximale qu’il est possible d’utiliser sans dégradation notable des performances du séparateur.

Nous avons par ailleurs montré que le principe de programmation spatiale est très général et avons exposé quelques nouvelles configurations prometteuses pour l’amélioration des dispositifs de séparation préparatives d’espèces micrométriques.

Dans les chapitres suivants, nous allons présenter les premières réalisations expérimentales du séparateur acoustique, tout d’abord sur des particules de latex, puis sur des objets bio-mimétiques comme des vésicules.
Chapitre 4

Séparation de particules de latex

Nous avons présenté au chapitre 3 une nouvelle méthode permettant la séparation de particules de taille micrométrique en utilisant la combinaison de deux ondes ultrasonores émises par deux transducteurs placés en série le long d’un canal de Hele–Shaw. Le premier transducteur, qui émettait une onde à un noeud de pression, permettait de séparer les particules dans l’épaisseur du canal en jouant sur les différences de temps de relaxation. Le deuxième transducteur avait pour rôle de geler leur répartition dans cette épaisseur en les focalisant sur deux noeuds de pression qui étaient à la fois bien séparés et éloignés des parois. Ceci permettait de guider les particules vers les sorties tout en facilitant leur collecte.

Nous avons vu au chapitre 2 que nous étions capables de générer des ondes stationnaires à un et deux noeuds dans un canal de Hele–Shaw fabriqué par nos soins, avec des valeurs d’énergies acoustique moyenne du même ordre de grandeur que celles des simulations.

Les excellents résultats obtenus tant sur le plan des simulations que sur les expériences de focalisations nous ont finalement conduit à mettre en place le séparateur acoustique fluidique, en combinant une cellule de type Step-SPLITT à deux entrées et deux sorties avec des transducteurs de fréquences propres 2 et 4 MHz.

Dans ce chapitre, nous testons ce nouveau dispositif de séparation sur des particules de latex. Celles-ci présentent l’intérêt d’être quasi isodensité avec l’eau \((\rho = 1,05 \text{ g/cm}^3)\), ce qui permet de minimiser les problèmes de sédimentation des particules qui s’échouent au fond du canal à faible débit ; typiquement, des particules de 10 µm de diamètre ont une vitesse de sédimentation de 2,7 µm/s \((\text{cf section 2.2})\). Elles sont donc de bons candidats pour nos types d’expériences.
4.1 Dispositif expérimental

Un schéma synoptique du dispositif expérimental est présenté sur la figure 4.1 (les échelles de tailles ne sont pas respectées).

4.1.1 Le canal

Le canal que nous utilisons est une cellule de type Step-SPLITT. Il est schématisé en vue de face sur la figure 4.1 et la figure 4.2 en est une vue de dessus.

La paroi du haut est constituée de deux matériaux différents :
- de lames de plexiglas de surfaces 3×3 cm et d’épaisseur d’environ 1 mm placées à chaque extrémité. Ces parties correspondent aux entrées et sorties du canal. Ce matériau présente l’avantage d’être simple à découper et à percer ;
- d’une lame de verre de surface 3×5 cm et d’épaisseur d’environ 1 mm dans la partie centrale, où s’effectue la séparation. Nous avons préféré ce matériau au plexiglas pour les mêmes raisons que celles évoquées dans la section 2.1.1.

La paroi du bas, non représentée sur le schéma, est constituée d’une seule plaque de plexiglas de surface 3×11 cm et d’épaisseur environ égale à 1 mm. Les dimensions du canal proprement dit sont de $1,2 \times 5$ cm en
surface et environ 400 μm en épaisseur.

4.1.2 Le circuit hydraulique

Nous injectons le mélange de particules à séparer par l’entrée du haut du canal (e_1) et le liquide vecteur (de l’eau) par l’entrée du bas (e_2), grâce à deux pompes pousse-seringue. Ainsi, nous pouvons contrôler l’épaisseur de la nappe de particules injectée en choisissant la position de l’ISP. Nous plaçons une pompe à une des sorties dont le débit d’aspiration est égal à la moitié du débit total. Par conservation du débit, les particules présentes dans la moitié supérieure du canal sortiront par la sortie du haut (s_1), alors que les autres sortiront par la sortie du bas (s_2). Les échantillons collectés en haut et en bas sont ensuite analysés grâce au compteur Coulter.

4.1.3 Les transducteurs

Deux transducteurs en mode émetteurs de fréquences propres 2 et 4 MHz, représentés respectivement en vert et en bleu sur la figure 4.1, sont soit collés1, soit déposés avec du gel à ultrasons (en fonction de l’expérience), sur la paroi en verre, c’est à dire la paroi du haut du canal. Leur surface est de 5 mm x 10 mm et ils sont séparés d’une distance de 1 cm. Un signal sinusoïdal délivré par un générateur, est amplifié 20 fois grâce à un amplificateur dont la sortie est connectée au transducteur. Ainsi, chaque transducteur va émettre une onde ultrasonore d’amplitude et de fréquence contrôlée. Deux transducteurs en mode récepteurs sont placés sur la paroi du bas, en face des transducteurs émetteurs. Ils ont la même fréquence propre que ceux qui leur

1 Colle Epotek 301, Epoxy Technologie.
4 – Séparation de particules de latex

font face (2 MHz pour le vert et 4 MHz pour le bleu). On mesure l’amplitude des tensions aux bornes des transducteurs pour déterminer les fréquences de résonances du canal, comme expliqué au § 2.3.2.

4.1.4 La visualisation

La visualisation se fait à l’aide du microscope holographique digital (MHD), en orange sur le schéma. La fenêtre d’observation est de 300 µm × 300 µm et se situe à environ 5 mm des transducteurs de fréquences propres 4 MHz (on place le faisceau laser le plus près possible des transducteurs sans diminuer la qualité optique, les traces de gel à ultrasons près des transducteurs pouvant gêner celle-ci). On choisit le plan initial de focalisation au centre du canal. Une caméra CCD, non représentée sur le schéma, sert à l’acquisition des données. Les films ont une durée de 25 s avec 24 images/s.

Avant chaque acquisition, nous prenons soin d’attendre que l’écoulement soit en régime stationnaire. Pour cela, nous devons tenir compte :

- du volume mort V_m qu’il y a entre la sortie de la seringue et l’entrée du canal, dans notre cas $V_m = 12 \text{ mm}^3$. Le temps que mettent les particules à arriver dans le canal est V_m/Q_p où Q_p est le débit imposé par le pousse-seringue au mélange. Les premières particules arrivent donc environ 9 s après le début de l’expérience dans le canal, pour un débit typique $Q_p = 5 \text{ mL/h}$;

- de la distance qui sépare l’entrée du canal et la fenêtre d’observation, environ égale à 45 mm dans notre cas. Les particules proches du centre arrivent plus rapidement que celles proches des parois à cause du profil de l’écoulement de type Poiseuille (cf § 3.1.1). Pour un débit typique total $Q_t = 10 \text{ mL/h}$, la vitesse moyenne de l’écoulement (ou la vitesse moyenne des particules) est de 0,6 mm/s. Il faut donc compter entre 8 et 9 s pour que toutes les particules arrivent dans la fenêtre d’observation. Dans ces conditions, il faut donc attendre 9 s avant de lancer une acquisition. Par mesure de précaution nous attendons 10 s de plus.

4.2 Séparation de particules de 5 et 10 µm de diamètre

4.2.1 L’échantillon initial

Dans la première expérience que nous avons menée, nous avons utilisé un échantillon initial constitué d’un mélange de particules de deux tailles différentes, 5 et 10 µm. Sa concentration était de l’ordre de $9,3\times10^4$ particules/mL.
Séparation de particules de 5 et 10 microns – 4.2

Figure 4.3 – Distribution des tailles de l’échantillon initial correspondant au mélange de particules 5 et 10 µm.

dont 80 % de petites particules. La distribution en taille, mesurée à l’aide du compteur Coulter, est représentée sur la figure 4.3. Nous avons pris soin d’utiliser des échantillons extrêmement dilués afin d’éviter au maximum les interactions entre particules, et se rapprocher ainsi des conditions des simulations. Nous avons choisi d’utiliser un échantillon comportant quatre fois plus de petites particules que de grosses pour faciliter l’analyse des reconstructions holographiques. Utiliser un nombre trop élevé de particules par rapport aux petites risquerait de masquer celles-ci. De plus, les interactions hydrodynamiques sont plus importantes entre grosses particules, il est donc avantageux de diminuer leur concentration par rapport a celles des petites.

4.2.2 Visualisation in situ

Dans cette étude, les transducteurs, émetteurs et récepteurs, adhèrent au canal par l’intermédiaire de gel à ultrason qui permet l’adaptation des impédances entre les transducteurs et le verre ou les transducteurs et le plexiglas, selon qu’ils sont sur la paroi du haut ou du bas. Cette méthode présente l’avantage de permettre la réutilisation des transducteurs pour différents canaux, et de tester différents positionnements avec beaucoup plus de souplesse que s’ils étaient collés de manière définitive. L’inconvénient de la méthode est la question de la reproductibilité des expériences. Avec les moyens matériels
dont nous disposons, il n’est pas facile de placer les quatre transducteurs exactement de la même manière d’un jour à l’autre.

Dans le contexte de la séparation des cellules sanguines, où il est indispensable de changer de canal entre chaque séparation, pour des raisons de sécurité médicale, le problème de la récupération des transducteurs se poserait de manière critique (en raison de leur coût important) et il serait indispensable de développer un système permettant de les déposer de manière identique d’une expérience à l’autre.

Pour des études plus quantitatives, nous avons préféré coller de manière définitive les transducteurs émetteurs afin de diminuer ces problèmes de reproductibilité. En effet, il s’est avéré bien plus simple de re-positionner de manière identique deux transducteurs plutôt que quatre.

Fréquences de résonances. La méthode de détermination de la fréquence de résonance dans le canal a été décrite au § 2.3.2. La figure 4.4a est un graphe qui montre la variation du rapport A_r/A_e en fonction de la fréquence, où A_r est l’amplitude du signal reçu et A_e celle du signal émis, pour les transducteurs de fréquences propres 2 MHz. De la même manière, le graphe de la figure 4.4b représente la variation de A_r/A_e en fonction de la fréquence pour le transducteur de fréquence propre 4 MHz.

Après avoir testé l’effet de la force acoustique aux différents pics, on retient la fréquence 1,68 MHz pour le transducteur de fréquence propre 2 MHz, car c’est à cette fréquence que nous avons observé une focalisation des particules au centre du canal. Nous avons donc un noeud de pression au centre du canal. Nous avons eu la même démarche pour les transducteurs de fréquence propre 4 MHz et avons trouvé que le pic permettant d’obtenir deux plans de focalisation dans le canal, soit deux noeuds de pression, était à la fréquence 3,3 MHz. La distance théorique entre les deux plans de séparation (situés sur les deux noeuds de pression) est donc de 220 µm environ, soit $\lambda/2$, avec $\lambda = c/f$, λ étant la longueur d’onde, c la vitesse du son dans l’eau et f la fréquence.

Conditions expérimentales.
- Le débit total Q_t est de 18 mL/h (la vitesse moyenne des particules est donc de 1 mm/s) ;
- on choisit un rapport $Q_p/Q_t = 0,33$, ce qui correspond à une ISP située à 160 µm de la paroi du haut (cf § 3.1.1) ;
- l’amplitude des signaux délivrés est prise la plus grande possible, égale à 20 V crête à crête, de façon à avoir la force acoustique la plus grande possible (cf chapitre 2).
Figure 4.4 – Transmission du canal, (a) pour le transducteur de fréquence propre 2 MHz et (b) pour le transducteur de fréquence propre 4 MHz. Nous traçons le rapport A_r/A_e en fonction de la fréquence, avec A_r l’amplitude du signal reçu et A_e celle du signal émis. Le pic correspondant à la résonance du canal avec (a) un noeud de pression au centre est à la fréquence $f = 1,68$ MHz et (b) deux noeuds de pression est à la fréquence $f = 3,3$ MHz.
Résultats. Pour chaque acquisition, nous avons analysé une image sur 60, soit 10 images par expérience.

Comme l’échantillon est très dilué, le nombre total de particules détectées est assez faible. Pour que les résultats soient plus lisibles, et donc mieux nous rendre compte des effets des ondes sur les particules, nous les avons présentés sous forme de graphes du nombre cumulé $n(z)$ de particules pour chaque position z :

$$n(z) = \sum_{z_i < z} N_i,$$

où N_i est le nombre de particules contenues dans le plan z_i. Enfin, comme la concentration en grosses particules est plus faible que celle des petites, de manière à avoir des concentrations volumiques voisines (cf § 4.2.1), nous avons normalisé chaque courbe par le nombre de particules total.

Nous avons réalisé trois types d’expériences :

1. en l’absence de toute onde acoustique dans le canal (figure 4.5), on voit que l’ensemble du mélange est réparti dans la moitié supérieure du canal. Les grosses particules (c’est à dire de 10 μm de diamètre) sont partiellement séparées des petites (5μm) par gravité, leur vitesse de sédimentation étant plus importante que celle des petites. En effet, d’après l’équation (1.29), la vitesse de sédimentation est de $2,7 \mu$m/s pour les grosses particules et de $0,7 \mu$m/s pour les petites ;

2. en présence uniquement de l’onde générée par le transducteur de fréquence propre 4 MHz, à deux noeuds (figure 4.6), l’ensemble du mélange a convergé vers le noeud du haut. Ce résultat montre que l’ensemble des particules (qui se situait avant le passage de l’onde dans la moitié supérieure du canal) a été suffisamment sensible à la deuxième onde pour que toutes les particules atteignent leur position d’équilibre, située légèrement sous le noeud du haut. On note que les grosses particules se trouvent au dessous des petites, en raison de la sédimentation les ayant affectées entre le deuxième transducteur et la fenêtre d’observation ;

3. en présence des deux ondes à un et deux noeuds (figure 4.7), on voit que les grosses particules ont convergé vers le noeud du bas alors que la majorité des petites a convergé vers le noeud du haut. Quelques petites ont été entraînées par les grosses particules et se trouvent dans la moitié inférieure du canal. Cependant, les particules se répartissent sur deux plans bien séparés en fonction de leur taille, comme l’avait prédit les simulations. En outre, la distance entre ces deux plans est d’environ 200 μm, ce qui est en bon accord avec les 220 μm attendus.

Pour visualiser plus directement la séparation obtenue lorsque les deux ondes sont présentes, nous avons représenté sur la figure 4.8 des images re-
Figure 4.5 – Distribution des particules dans l’épaisseur du canal en l’absence d’onde acoustique. Nous traçons le nombre de particules de chaque taille cumulé et normalisé en fonction de leur position z dans le canal. On voit qu’il existe une séparation due à la sédimentation des particules. L’ensemble des particules se trouvent dans la moitié supérieure du canal.
Figure 4.6 – Distribution des particules dans l’épaisseur du canal lorsque seule l’onde générée par le transducteur de fréquence propre 4 MHz est présente dans le canal. Nous traçons le nombre de particules de chaque taille cumulé et normalisé en fonction de leur position z. On voit que l’intégralité des particules ont convergé vers le noeud du haut. Les grosses particules se situent légèrement au dessous des petites à cause de leur vitesse de sédimentation plus importante.
Figure 4.7 – Distribution des particules dans l’épaisseur du canal lorsque les deux ondes, à un et deux noeuds, sont présentes dans le canal. Nous traçons le nombre de particules de chaque taille cumulé et normalisé en fonction de leur position z. On voit que l’intégralité des grosses particules ont convergé vers le noeud du bas et la plupart des petites vers le noeud du haut.
Figure 4.8 — Deux plans de reconstruction situés à 1/4 (à gauche) et 3/4 (à droite) de l’épaisseur du canal lorsque les deux ondes acoustiques sont présentes. Pour avoir plus de particules, nous avons superposé dix images correspondant à dix instants différents. Sont entourées en vert les particules nettes (qui sont toutes grosses) dans le plan du bas et en rouge les particules nettes (qui sont toutes petites) dans le plan du haut.

construites des deux plans situés à 1/4 et 3/4 de l’épaisseur du canal (sur les deux noeuds de pression). Pour avoir suffisamment de particules dans chaque plan, et donc mieux visualiser l’effet de la force acoustique, nous avons superposé dix images prises à dix instants différents. On a entouré en vert les particules contenues dans le plan du bas, qui sont toutes grosses, et en rouge celles contenues dans le plan du haut, toutes petites. Il y a aussi quelques petites qui se trouvent entre les deux plans, c’est la raison pour laquelle le profil intégré de la figure 4.7 commence en pente douce.

Conclusion. Cette étude préliminaire est une preuve expérimentale de la faisabilité du HACS. L’analyse des résultats pour cette expérience nous montre que le rayon de coupure r_c est tel que $5 \mu m < r_c < 10 \mu m$, puisque nous obtenons une séparation quasi totale de nos espèces. Il s’agit maintenant de regarder si ces séparations in situ se traduisent par des séparations aux sorties du canal. Notamment, la distance relativement importante (d’environ 15 mm) entre le dernier transducteur et les deux sorties peut diminuer l’efficacité de la séparation à cause de la sédimentation des espèces.

Les expériences décrites au prochain paragraphe ont un objectif double :
• évaluer l’efficacité de notre canal de séparation, grâce à l’analyse au compteur Coulter des collectes aux sorties ;
• mesurer l’influence du débit total de l’écoulement sur la valeur du rayon de coupure, et donc sur l’efficacité de la séparation.

Nous avons pour cela réalisé trois types d’expériences utilisant trois débits
différents, en gardant les autres paramètres fixes. Il a suffit ensuite de comparer les résultats obtenus.

4.2.3 Collectes des échantillons aux sorties

Dans cette étude et les suivantes, les transducteurs émetteurs sont collés de manière irréversible sur la paroi en verre. Nous espérons ainsi obtenir une meilleure reproductibilité des résultats, bien que les transducteurs récepteurs ne sont pas fixes (cf § 4.2.2).

Conditions expérimentales.
• Les fréquences de résonances correspondant aux focalisations sur un et deux noeuds pour nos deux transducteurs ont été trouvées égales à 2,11 MHz pour le transducteur de fréquence propre 2 MHz (figure 4.9) et 4,16 MHz pour le transducteur de fréquence propre 4 MHz (figure 4.10). Ces différences de valeurs par rapport à l’expérience précédente sont dues au collage des transducteurs émetteurs qui modifie les transmissions des ondes aux interfaces transducteur/verre.
• On choisit un rapport $Q_p/Q_t = 0,2$, ce qui correspond à une ISP située à 116 µm de la paroi du haut. En diminuant cette valeur par rapport à l’expérience précédente, nous augmentons la sélectivité de notre dispositif, ce qui devrait permettre d’aboutir à de meilleurs résultats.
• Comme pour l’expérience précédente, l’amplitude des signaux délivrés est prise la plus grande possible égale à 20 V crête à crête.
• On réalise l’expérience pour trois Q_t différents : 10, 20 et 30 mL/h.
• La durée des collectes est telle que nous récupérons 1 mL d’échantillon à chaque sortie. Les échantillons aux sorties étant très dilués, le compteur Coulter a besoin d’un gros volume d’échantillon afin d’augmenter le nombre de particules comptées et ainsi diminuer l’influence du bruit sur les résultats. Récupérer un volume d’1 mL à chaque sortie a permis d’obtenir des résultats satisfaisants, puisque nous avons toujours détecté plus de 5000 particules pour un bruit atteignant rarement les 50 particules.

Résultats. La figure 4.11 représente la distribution des tailles de particules contenues dans les échantillons collectés à la sortie du haut (en rouge) et à la sortie du bas (en bleu), en l’absence d’onde acoustique, pour un débit $Q_t = 20$ mL/h. Ce graphe nous montre qu’une majorité de petites particules sont restées dans la partie supérieure du canal tout au long de l’expérience puisque que plus de deux fois plus d’entre elles sont récupérées à la sortie du
Figure 4.9 – Pics de résonances pour le transducteur de fréquence propre 2 MHz. La fréquence menant à une focalisation au centre du canal est $f = 2,11$ MHz.

Figure 4.10 – Pics de résonances pour le transducteur de fréquence propre 4 MHz. La fréquence menant à deux plans de focalisation est $f = 4,16$ MHz.
Séparation de particules de 5 et 10 microns – 4.2

Figure 4.11 – Distribution des tailles des échantillons collectés aux sorties du canal pour \(Q_t = 20 \text{mL/h} \) sans onde acoustique.

Les grosses particules, quant à elles, se distribuent de manière équitable entre le haut et le bas du canal. En revanche, lorsque les deux ondes sont présentes (figure 4.12), on observe une nette augmentation de la proportion de petites particules à la sortie du haut (plus de 5 fois plus) en parallèle d’une augmentation de la proportion de grosses en bas (environ 2 fois plus). La migration transverse des grosses particules est donc bien accélérée par la présence de la première onde. En revanche, la migration des petites n’est pas suffisamment accélérée pour qu’elles se trouvent dans la moitié inférieure du canal au moment d’entrer dans le champ acoustique généré par le second transducteur. Elles sont donc re-suspendues par la deuxième onde.

Il apparaît donc que la deuxième onde génère une force plus grande sur les particules que la première. Ceci n’est pas étonnant, puisque comme nous l’avons mentionné au § 1.1.1, à énergie acoustique donnée, la force acoustique est proportionnelle à \(k \), et donc au nombre de noeuds de l’onde. Notons tout de même que compte-tenu de l’incertitude expérimentale pesant sur l’énergie acoustique effectivement couplée dans le canal, il n’était pas assuré d’obtenir ces résultats.

Pour pouvoir caractériser l’efficacité du séparateur, il est intéressant d’introduire deux nombres caractéristiques de la séparation, la fraction des petites particules collectées à la sortie du bas \(f_p^{(2)} \), et la fraction des grosses particules collectée à cette même sortie \(f_g^{(2)} \). Si les interactions entre par-
ticules sont bien négligeables, ces deux nombres sont suffisants pour déterminer la composition des échantillons de sortie connaissant la proportion p_0 de grosses particules dans l’échantillon injecté. Par exemple, la proportion de grosses particules dans l’échantillon collecté à la sortie du bas est donnée par :

$$p^{(2)} = \frac{f_g^{(2)} p_0}{f_g^{(2)} p_0 + f_p^{(2)} (1 - p_0)} = \frac{\alpha^{(2)} p_0}{\alpha^{(2)} p_0 + (1 - p_0)},$$

où l’on a introduit le facteur de séparation $\alpha^{(2)} = f_g^{(2)}/f_p^{(2)} [59]^2$. On voit sur l’expression (4.2) que si $\alpha^{(2)} = 1$, le mélange n’a pas été enrichi ; si $\alpha^{(2)} \ll 1$, l’échantillon collecté en haut a été enrichi en petites particules ; et si $\alpha^{(2)} \gg 1$, il a été enrichi en grosses particules. Ce facteur de séparation caractérise donc totalement le dispositif pour la séparation des deux espèces considérées. α représente combien de fois plus de grosses particules que de petites particules sont collectées à la sortie du bas (en proportions).

Nous pouvons aisément extraire $f_p^{(2)}$ et $f_g^{(2)}$ des données obtenues par comptage Coulter des échantillons collectés. Nous en déduisons qu’en l’absence d’onde, le facteur de séparation du canal vaut 2,0, alors qu’en présence des ondes, il vaut 4,5, soit plus de deux fois plus ! Pour donner une idée de

2. Dans cette référence, le separation factor est défini comme étant $\alpha^{(1)}/\alpha^{(2)}$. La définition choisie ici a le mérite d’être plus simple et plus facile à interpréter.
la signification de ces chiffres, considérons un mélange en proportions égales de petites et de grosses particules. En l’absence d’onde, on obtiendrait un échantillon légèrement enrichi, comportant 67% de petites particules, à la sortie du haut. En présence des ondes, l’enrichissement serait bien meilleur, avec près de 82% de petites particules!

Il est important de garder à l’esprit que la purification obtenue peut être multipliée par l’enchaînement de plusieurs séparations élémentaires comme celle présentée ici. Avoir $\alpha^{(2)}$ le plus grand possible3 permet alors de minimiser le nombre d’étapes nécessaires pour obtenir une pureté donnée. Dans l’exemple précédent, pour obtenir une pureté supérieure à 95% des petites particules, il faudrait 5 étapes sans acoustiques, alors que 2 étapes suffisent en présence des ondes.

Influence du débit sur la purification du mélange. Nous récapitulons les résultats obtenus pour chaque débit sur la figure 4.13. Nous faisons plusieurs observations :

- quelle que soit la valeur du débit, l’utilisation de la force acoustique aide à purifier le mélange ;
- le facteur de séparation en l’absence d’onde acoustique décroit avec le débit. En effet, plus le débit est grand et moins la sédimentation a le temps d’agir pour séparer les particules. Notons également que l’on collecte globalement moins de particules à la sortie du bas ;
- le facteur de séparation en présence d’onde acoustique est maximal pour $Q_t = 20 \text{mL/h}$, et est sensiblement le même à $Q_t = 10 \text{mL/h}$. On en déduit que pour ces deux débits, le diamètre de coupure est compris entre 5 et 10 µm, ce qui est cohérent avec les résultats des mesures in situ. Pour $Q_t = 30 \text{mL/h}$ la purification est beaucoup moins importante et le diamètre de coupure doit être proche de 10 µm ;
- la facteur de séparation maximal vaut 4.5, ce qui veut dire que l’on récupère près de 5 fois plus de grosses particules que de petites. D’après les observations in situ, on aurait pu s’attendre à obtenir un facteur beaucoup plus grand. Cette baisse d’efficacité est dûe à la sédimentation des petites particules entre le deuxième transducteur et les sorties du canal (cf § 4.2.2), phénomène que l’on pourra corriger en utilisant un canal plus court (sans espace prévu pour la visualisation).

3. ou le plus petit possible, selon l’espèce que l’on veut préparer – notons que dans le cas de ces séparations binaires, avoir $\alpha^{(1)}$ grand signifie que $\alpha^{(2)}$ est faible, où $\alpha^{(2)}$ caractérise le séparateur du point de vue de la fraction collectée en bas
Conclusion. Les résultats de nos collectes sont très satisfaisants puisque nous arrivons, grâce à l’utilisation de la force acoustique, à purifier notre mélange à près de 80 %. Une modification mineure de notre dispositif devrait mener à l’amélioration de ce résultat, ce qui le rend d’autant plus prometteur.

Enfin, ce graphe montre la grande adaptabilité de notre dispositif expérimental aux besoins de séparation que l’on peut avoir, puisque pour séparer un mélange d’espèces donné, il suffit d’ajuster le débit de l’écoulement pour modifier la valeur du rayon de coupure. En d’autres termes, changer les critères de séparation revient à appuyer sur un simple bouton!

4.3 Séparation de particules de 7 et 15 µm diamètre

4.3.1 L’échantillon initial

Ces particules devraient particulièrement convenir car leurs grandes tailles les rendent encore plus sensibles à l’acoustique que le mélange précédent. La concentration initiale est d’environ 2×10^6 particules/mL dont 80 % sont de
Séparation de particules de 7 et 15 microns – 4.3

petites particules. Cette nette augmentation de la concentration par rapport à l’expérience précédente a été choisie de manière à augmenter le nombre de particules dans la fenêtre d’observation, afin de faciliter l’analyse des données (par exemple, cela a permis d’éviter de reconstruire des hologrammes ne contenant aucune particule). Notons que l’échantillon reste malgré tout extrêmement dilué. La distribution des tailles est mesurée à l’aide du compteur Coulter et est représentée sur la figure 4.14. Remarquons que les particules utilisées pour préparer cet échantillon présentaient une distribution en taille beaucoup plus large que celles utilisées pour l’expérience précédente (cf § 4.2.1)

4.3.2 Fréquences de résonances

Elles ont été trouvées égales à 2,05 MHz pour les transducteurs de fréquence propre 2 MHz et 4,1 MHz pour ceux de fréquence propres 4 MHz. La méthode de détection est la même que précédemment. La légère différence entre ces fréquences et celles trouvées au § 4.2.3 s’explique par le fait que les transducteurs récepteurs ne sont pas collés, mais toujours posés à l’aide de gel à ultrasons sur le canal. Les propriétés de transmission des ondes dans ces transducteurs sont donc légèrement différentes après chaque montage du dispositif.
4.3.3 Conditions expérimentales

Nous avons utilisé trois débits totaux \(Q_t \) différents : 18, 40 et 60 mL/h (soit une vitesse moyenne de particules égale à 1 mm/s, 2 mm/s et 3 mm/s respectivement) avec un rapport \(Q_p/Q_t = 0.2 \). Nous avons utilisé des débits deux fois plus importants en raison de la plus grande taille des particules, et donc de leur plus grande sensibilité à l’onde acoustique, ainsi que de leur sédimentation plus rapide. Nous utilisons toujours une amplitude de 20 V de la tension aux bornes des deux transducteurs émetteurs. L’observation a lieu juste après le deuxième transducteur grâce au microscope holographique, de la même manière que pour la visualisation \textit{in situ} des particules de 5 µm et 10 µm.

4.3.4 Résultats

Comme nous l’avons fait pour la visualisation \textit{in situ} des particules de 5 et 10 µm, nous présentons les résultats sous forme de graphes du nombre cumulé \(n(z) \) de particules pour chaque position \(z \) et normalisons chaque courbe par le nombre de particules total du rayon correspondant. Pour chaque débit, nous mettons en regard deux graphes, l’un représentant la distribution des particules dans l’épaisseur du canal en l’absence d’onde acoustique, et l’autre lorsque les deux ondes sont présentes.

Pour \(Q_t = 18 \) mL/h (figure 4.15), on constate que la sédimentation seule suffit à séparer les petites particules des grosses (4.15a). En effet, ces dernières, qui sédimentent près de 10 fois plus vite que les petites (leur vitesse de sédimentation est de 9,1 µm/s contre 0,9 µm/s pour les petites), atteignent rapidement la paroi du bas alors que la majorité des petites restent encore dans la moitié supérieure du canal. Notons qu’une très faible partie d’entre elles (3 %) ont été entraînées par les grosses particules et se retrouvent sur la paroi du bas. Cependant, si la séparation est (quasi) totale, le problème de la récupération aux sorties va se poser car les grosses particules, contre la paroi du bas, ont une vitesse extrêmement faible et ont tendance à rester collées. Au contraire, on constate sur la figure 4.15b, qui représente la distribution des particules dans l’épaisseur du canal lorsque les deux ondes sont présentes, que l’on obtient deux fins faisceaux de particules séparés d’environ 150 µm (distance fixée par la longueur d’onde du deuxième transducteur), de 30 à 40 µm d’épaisseurs, ce qui permettra une collecte aisée aux sorties du canal.

Pour \(Q_t = 40 \) mL/h (figure 4.16), on constate que si les particules sont séparées lorsqu’il n’y a pas d’acoustique (4.16a), environ 70 % des grosses particules se retrouvent avec les petites, sur le noeud du haut, en présence des deux ondes (4.16b). Dans le premier cas, nous observons deux nappes de particules
Séparation de particules de 7 et 15 microns – 4.3

Figure 4.15 – Distribution des particules dans l’épaisseur du canal (a) en l’absence d’onde acoustique et (b) en présence des deux ondes, lorsque $Q_t = 18 \text{ mL/h}$. On constate que la sédimentation seule suffit à séparer les petites particules des grosses, qui se retrouvent toutes contre la paroi du bas du canal. Lorsque les deux ondes sont présentes, deux fins faisceaux de particules situés sur les noëuds de pression mettent en évidence une séparation totale qui permettra une récupération facile des espèces.
distinctes proches l’une de l’autre. L’épaisseur de la nappe de petites particules, environ égale à 100 µm, est plus fine que pour $Q_t = 18 \text{ mL/h}$. Ce résultat n’est pas étonnant puisque les particules séjournent moins longtemps dans le canal, l’étallement de la nappe dû à la diffusion est donc moindre. D’autre part, la position moyenne de la nappe reste la même que pour $Q_t = 18 \text{ mL/h}$. Ceci montre que, peu sensibles à la gravité, les petites particules ne sont que peu affectées par la variation du débit. Les grosses particules, au contraire, ne sont plus sur la paroi du fond mais occupent une large épaisseur (environ 100 µm) de la moitié inférieure du canal.

En présence des deux ondes (figure 4.16b), on obtient de nouveau deux faisceaux fins espacés d’environ 150 µm. Ceci montre qu’à un tel débit, les particules sont encore très sensibles à la deuxième onde. Cependant, le temps de passage des grosses particules sous la première onde, à un noyau de pression, n’est pas suffisant pour que celles-ci atteignent toutes leur position d’équilibre puisqu’elles se retrouvent ensuite sur le noyau du haut. Comme attendu, l’augmentation du débit a donc provoqué une augmentation du rayon de coupure, à peu près égal à 15 µm dans ce cas.

À $Q_t = 60 \text{ mL/h}$ (figure 4.17), les nappes de particules en l’absence d’onde acoustique (4.17a) sont de plus en plus fines, puisqu’elles s’étalent sur environ 80 µm, contre 100 et 120 µm pour les débits précédents. Par ailleurs, la position moyenne des petites particules n’a toujours pas évolué, et reste localisée autour du centre du canal. On observe également l’apparition d’une petite zone de mélange des petites et grosses particules située au centre, qui montre que la sédimentation ne suffit plus à les séparer complètement.

Lorsque les deux ondes 4.17b sont présentes, on devine toujours deux emplacements privilégiés correspondant aux positions des noyaux de pression, mais les faisceaux sont désormais très étalés. Beaucoup de grosses particules, qui auraient vraisemblablement dû converger vers le noyau du haut puis-qu’elles se situaient dans la moitié supérieure du canal, se retrouvent au centre de celui-ci. Ce graphe met donc en évidence les limites de la force acoustique, dont les effets sur les particules s’amenuisent avec l’augmentation du débit, puisque celles-ci la subissent sur un temps moindre.

Un dernier point reste à souligner : 60 % des grosses particules se situent sur le noyau du haut, contre 70 % pour un débit total Q_t de 40 mL/h. On aurait donc diminué le rayon de coupure en augmentant le débit ! En fait, on met en évidence ici un problème expérimental : comme il est très difficile de supprimer absolument toutes les particules collées aux parois du bas entre chaque expérience, malgré un rinçage minutieux du canal, les particules, et en particulier les grosses, finissent par s’accumuler par endroits et ont tendance à se décoller par paquets à de forts débits, du fait de forces
Figure 4.16 – Distribution des particules dans l’épaisseur du canal lorsque $Q_t = 40 \text{mL/h}$. En l’absence d’onde acoustique (a), les particules sont séparées en deux nappes très proches l’une de l’autre situées dans la partie centrale du canal. En présence des deux ondes (b), les grosses particules se répartissent sur les deux noeuds de pression. L’augmentation du débit a provoqué une augmentation du rayon de coupure, qui vaut environ 15 µm.
de portance plus importantes (cf § 3.1.3). Ces particules artefacts s’additionnent à celles devant aller naturellement sur le noyau du bas et faussent ainsi les proportions.

4.3.5 Conclusion

Nous avons sur ce deuxième exemple montré que nous sommes capable avec le même dispositif d’ajuster le rayon de coupure pour obtenir une séparation d’un mélange différent. Nous avons vu que pour séparer des espèces de 7 et 15 µm de diamètre, il faut, pour les valeurs de paramètres citées au § 4.3.3, choisir un débit compris entre 18 et 40 mL/h, puisque le rayon de coupure à 40 mL/h est déjà de 15 µm. Il sera intéressant dans l’avenir de réaliser un nouveau jeu de données utilisant des débits intermédiaires.
4.4 Conclusion

Dans ce chapitre, nous avons présenté les résultats d’expériences de séparation de deux mélanges différents de particules de latex, utilisant le dispositif de séparation acoustique présenté au chapitre 3. Ces expériences ont permis de montrer d’une part l’efficacité du HACS par rapport à des séparations utilisant seulement la sédimentation, et d’autre part sa polyvalence puisqu’un même dispositif peut être utilisé pour séparer des mélanges de caractéristiques différentes, simplement en ajustant le débit total de l’écoulement. Par ailleurs, nous avons eu un bon accord entre les visualisations in situ et les collectes, ce qui signifie que notre canal de séparation fonctionne comme on l’espérait.

Le meilleur facteur de séparation que nous avons obtenu, soit 4.5 pour les particules de 5 et 10 µm de diamètre, est un résultat très encourageant ; il signifie qu’en un passage dans le dispositif, un mélange de particules de 5 µm et 10 µm est purifié d’un facteur 5 ; en seulement 2 passages, un mélange en proportions égales de telles particules serait purifié à 95 % en petites particules. Nous prévoyons d’améliorer encore le dispositif en utilisant uniquement des lames de verre pour constituer les parois du canal et ainsi avoir un meilleur couplage de l’onde dans celui-ci. De plus, la géométrie du canal peut être améliorée en levant la contrainte de la visualisation holographique. Nous espérons ainsi obtenir des purifications supérieures à 90 % en un seul passage dans un avenir proche.

111
Chapitre 5

Applications biologiques

Dans la perspective de son utilisation future dans le cadre de la séparation d'objets biologiques, nous avons mené des expériences préliminaires démontrant que le séparateur acoustique fluidique présenté au chapitre 3 est bien adapté à la manipulation de vésicules.

Les vésicules sont des membranes composées d’une bicouche lipidique isolant un milieu interne d’un milieu externe dans lequel elles sont suspendues. Depuis qu’elles ont été découvertes, il y a une quarantaine d’années, par Alec Bangham, elles n’ont cessé de susciter l’intérêt des chercheurs pour leurs propriétés d’encapsulation dans les domaines de la pharmacologie [60] et des cosmétiques, et leurs propriétés mécaniques dans les domaines de la biologie et de la physique. En effet, elles sont intéressantes d’un point de vue mécanique car elles reproduisent un bon nombre de comportements observés pour les cellules biologiques, en particulier les globules rouges.

Ainsi, l’équipe de Chaouqi Misbah et Thomas Podgorski du laboratoire de Spectrométrie Physique, de l’université Joseph Fourier à Grenoble, avec laquelle nous collaborons, s’intéresse à la dynamique de vésicules en écoulement et micro-écoulement. Un des objectifs est de constituer un modèle de membrane cytoplasmique simplifié pour l’étude du comportement de cellules réelles. Le but de notre collaboration est de trier leurs échantillons afin de les rendre le plus monodisperse possible et ainsi augmenter le degré de contrôle de leurs expériences.

Dans ce chapitre, nous présentons les résultats préliminaires de notre collaboration. Après avoir rappelé la procédure de fabrication des vésicules, nous exposons les résultats d’expériences de focalisations, démontrant notre capacité à manipuler des vésicules au moyen de la force acoustique. Enfin, nous montrons nos premiers résultats de fractionnement d’échantillons de vésicules en fonction de leur diamètre grâce au séparateur acoustique décrit au chapitre 3.
Figure 5.1 – Schéma d’une coupe de vésicule. La bicouche de lipides isole le milieu interne, représenté en noir, du milieu extérieur dans lequel elle est suspendue. Il est à noter que le schéma n’est pas à l’échelle : l’épaisseur de la membrane est en réalité au moins 10^3 fois plus petite que le diamètre de la vésicule (et jusqu’à 10^5 fois plus petite).

La réalisation de ces expériences constitue une preuve de principe démontrant que notre système est adapté à la séparation de cellules sanguines, autre application qui intéresse notamment l’entreprise bio-pharmaceutique Macopharma, avec laquelle nous collaborons également. Nous présentons en fin de chapitre des données expérimentales confirmant la sensibilité des cellules sanguines (et en particulier des globules rouges) aux ondes acoustiques.

5.1 Les vésicules...

5.1.1 Qu’est-ce que c’est ?

En milieu aqueux, de par leur nature, les phospholipides, qui sont des molécules amphiphiles, c’est-à-dire constituées d’une tête hydrophile et d’une queue hydrophobe, s’assemblent en bicouches de manière à isoler leur queue en orientant leur tête vers l’extérieur (cf fig 5.1). Sous certaines conditions, ces bicouches peuvent constituer une surface fermée qui va alors isoler un milieu intérieur d’un milieu extérieur. Un tel objet est appelé vésicule lipidique ; il peut avoir des tailles très variables allant de quelques micromètres à plusieurs centaines de micromètres (et est alors appelé vésicule géante).

Les vésicules que nous avons utilisées sont constituées d’une membrane de quelques nanomètres d’épaisseur en DOPC (un phospholipide de synthèse) et de fluides internes et externes composés d’eau sucrée (glucose et sucrose). Il se trouve que les vésicules les plus simples (comme celles que nous avons utilisées), sont de bons modèles mécaniques pour l’étude du comportement
Les vésicules... – 5.1

Figure 5.2 – Photo du dispositif expérimental permettant la fabrication de vésicules par électroformation.

des globules rouges : ce sont des objets bio-mimétiques. En outre, utiliser les vésicules comme modèle du comportement mécanique des globules rouges présente l’avantage de découpler celui-ci des effets biologiques, ce qui aide considérablement à la compréhension de la rhéologie des solutions sanguines.

5.1.2 Comment les fabriquer ?

Bien qu’existant à l’état naturel à l’intérieur des cellules de certains organismes vivants (vésicules nanométriques)\(^1\), les vésicules géantes manipulées en laboratoire sont principalement artificielles. Plusieurs techniques de fabrication de vésicules existent. On peut citer notamment la méthode de l’émulsion [61] et la méthode de l’électroformation [62, 63, 64].

Dans le cadre de notre collaboration avec le groupe expérimental DYF-COM du laboratoire de Spectrométrie Physique de l’université Joseph Fourier à Grenoble, nous avons fabriqué des vésicules avec cette dernière méthode. Celle-ci consiste à hydrater un film de lipides déposé sur un substrat conducteur sous champ électrique alternatif. Une photo du dispositif expérimental est présenté sur la figure 5.2. Il comprend un générateur de courant alternatif, un multimètre et une chambre d’électroformation. Celle-ci a été fabriquée par nos collègues grenoblois.

Après une demi-heure d’excitation électrique d’une chambre, on obtient typiquement 2 mL d’échantillon, avec une fraction volumique de vésicule de l’ordre du pourcent. Leur répartition en taille est très polydisperse : les diamètres se répartissent de quelques μm à plusieurs centaines de μm, le diamètre moyen valant approximativement 10 μm. C’est la raison pour laquelle il serait très intéressant de pouvoir les trier en fonction de leur taille. En effet,

\(^1\) Par exemple, elles servent à véhiculer les neurotransmetteurs.
la plupart des études physiques du comportement mécanique des vésicules s’intéresse uniquement à celles dont la taille est voisine de celles des globules rouges, soit quelques μm. Un autre intérêt de trier les échantillons est que pour étudier certains phénomènes collectifs (interactions hydrodynamiques par exemple), il est nécessaire de disposer d’échantillons monodisperses dans un premier temps, pour étudier l’effet de la taille dans les interactions de paire.

5.1.3 Comment les observer ?

Les vésicules, comme la plupart des objets biologiques, sont transparentes. Il n’est donc pas possible de les observer avec un microscope « classique », c’est-à-dire permettant l’observation d’objets par l’intermédiaire de leur absorption lumineuse. Toutefois, d’autres techniques de microscopie ont été développées pour permettre l’observation de tels objets. Nous avons, en particulier, utilisé la technique dite de contraste de phase, ainsi que la technique de microscopie holographique digitale présentée au chapitre 2.

Le microscope à contraste de phase. C’est cet outil que nous avons utilisé pour les expériences de focalisation acoustique. Elles ont été réalisées à Grenoble avec l’aide de Thomas Podgorski et Maud-Alix Mader, qui était alors doctorante au laboratoire.

Le principe du microscope à contraste de phase a été décrit pour la première fois en 1934 par le physicien hollandais Fritz Zernike [65, 66], qui obtint le prix nobel en 1953 pour son invention. C’est une technique de microscopie très utilisée qui permet d’observer des objets transparents, mais présentant une différence d’indice de réfraction avec le milieu dans lequel ils sont suspendus, en augmentant le contraste des interférences entre la partie transmise et la partie diffractée de la lumière grâce à une configuration optique particulière [65, 66].

La figure 5.3 est une photo de vésicules observées par microscopie à contraste de phase. Le halo lumineux qui entoure chaque vésicule est un artefact de l’observation à contraste de phase et peut rendre imprécise la mesure de leur taille (jusqu’à quelques pourcents d’incertitude pour les petites vésicules). Ce défaut n’est pas gênant pour les expériences de focalisation, dans lesquelles la position spatiale plutôt que la taille des vésicules est importante.

Le microscope holographique. C’est cet outil que nous avons utilisé pour les expériences de séparation, qui ont été effectuées dans notre labora-
Figure 5.3 – *Image d’un échantillon de vésicules obtenue par microscopie à contraste de phase, avec un grossissement ×10.*

Figure 5.4 – *Reconstructions holographiques de vésicules, à trois hauteurs différentes dans le canal. Les vésicules sont caractérisées par la présence d’anneaux de diffraction lorsqu’elles ne sont pas contenues dans le plan focal ; elles sont invisibles dans le cas contraire.*

toire, avec l’aide de Thomas Podgorski.

En raison de leur transparence, il n’est possible de voir les vésicules que par l’intermédiaire des anneaux de diffraction qu’elles génèrent lorsqu’elles sont hors du plan focal du microscope. Le plan contenant la vésicule se repère donc très simplement puisque c’est le seul pour lequel elle est invisible. La figure 5.4 représente une succession de reconstructions holographiques de vésicules à plusieurs endroits dans l’épaisseur du canal. La vésicule centrale disparait presque entièrement au plan $z = 14 \mu m$.\(^2\)

L’analyse des données, contrairement aux expériences impliquant les particules de latex, a été faite de manière automatisée par notre collègue Chris-

\(^2\) Pour cet exemple, nous n’avons pas reconstruit tous les microns, mais tous les 4 μm : c’est pour cela que la détermination du plan dans lequel est contenue la vésicule est un peu imprécise.
tophe Minetti, qui travaille au laboratoire Microgravity Research Center à l’université libre de Bruxelles dans l’équipe de Frank Dubois, qui a développé et nous a fourni le microscope holographique. Christophe a conçu et développé un programme d’autodétection de vésicules qui donne des résultats très satisfaisants, à condition que la qualité optique des images soit bonne.

5.2 Focalisation de vésicules

Plutôt que de réaliser directement des séparations de vésicules, nous avons préféré commencer par vérifier leur sensibilité aux ultrasons dans des canaux de type Hele–Shaw. En effet, la solution externe servant de fluide vecteur étant constituée d’eau sucrée, sa densité et sa viscosité, ainsi que sa compressibilité, sont sensiblement différentes de celles de l’eau, ce qui va modifier les propriétés de résonance du canal. En outre, les vésicules elles-mêmes ne sont pas nécessairement parfaitement sphériques et ont un facteur de contraste acoustique différent de celui des billes de latex et mal connu (à notre connaissance, nous sommes les premiers à manipuler des vésicules à l’aide d’ondes acoustiques).

5.2.1 Dispositif expérimental

Un schéma synoptique du dispositif expérimental est présenté sur la figure 5.5.

Le canal de focalisation est le même que celui utilisé pour les expériences de focalisation de particules de latex (cf § 2.1.1). On injecte l’échantillon de vésicules par l’entrée (e) du canal en continu à un débit de 10 mL/h.
Focalisation de vésicules – 5.2

grâce à une pompe pousse-seringue. Les transducteurs, de fréquences propres 2 MHz, sont placés au centre du canal l’un en face de l’autre, l’un utilisé comme émetteur (sur la paroi du bas, qui est en verre), l’autre utilisé comme récepteur (en haut, sur la paroi en plexiglas). La fréquence de résonance a été déterminée par la méthode décrite au paragraphe 2.3.2, et vaut 2,08 MHz.

Nous observons le comportement des vésicules juste après leur passage sous les transducteurs grâce au microscope à contraste de phase dont le plan focal a été placé au centre du canal (donc au niveau du noyau de pression). Une caméra CCD COHU 4910 nous permet d’enregistrer des films d’une durée de 25 s à raison de 12 images/s. Nous utilisons un objectif ×10 et un temps d’exposition de $1/5000$ s.

L’échantillon utilisé est constitué d’une suspension de vésicules dont le liquide interne est une solution de sucre de concentration 300 mmol/L, dont le solvant est constitué d’un mélange de glycérol et d’eau en proportions massiques 2 : 8, et le liquide vecteur est une solution de glucose de concentration 316 mmol/L dans le même solvant. Cette solution iso-osmolaire permet de ne pas dégonfler les vésicules qui restent alors quasi-sphériques. Pour ces vésicules, le contraste de densité vaut $\Delta \rho = 18$ g/L. Le facteur de contraste de densité (\tilde{C}) pour ces vésicules vaut donc $\tilde{C} = 0,34$; en revanche, nous ne connaissons pas leur compressibilité, et ne pouvons donc pas calculer le facteur de contraste acoustique \tilde{A}, qui peut être plus faible.

5.2.2 Résultats

Nous montrons sur la figure 5.6 deux images extraites de films représentant ce qui se passe au centre du canal sans onde acoustique, à gauche, et en présence de l’onde, à droite. Nous voyons clairement une nette augmentation de la concentration en vésicules en présence de l’onde. La figure 5.7 confirme cette observation : nous y traçons le nombre de vésicules présentes au centre du canal en fonction du temps, sans onde acoustique, en pointillés, et en présence de l’onde, en trait continu : celui-ci vaut en moyenne 40 à comparer à moins de 1 lorsque l’onde est absente.

Nous en déduisons également que le temps de relaxation pour les paramètres utilisés est de l’ordre de quelques secondes, comme pour les particules de latex (cf chapitre 2). En admettant que le facteur de contraste acoustique est voisin de 0,3, cela correspond à une énergie acoustique moyenne de l’ordre de quelques J/m³. Remarquons que si la compressibilité des vésicules était voisine de celle de leur liquide interne, elle serait alors également voisine de

3. Elles ne sont pas nécessairement parfaitement sphériques, car à la formation, elles ont toujours un petit peu d’excès de surface, mais au moins on ne les dégonfle pas d’avantage.
5 – Applications biologiques

Figure 5.6 – Images du centre du canal obtenues par microscopie à contraste de phase, (a) lorsque l’onde acoustique est absente et (b) lorsqu’elle est présente. On constate une forte augmentation du nombre de vésicules situées dans le plan focal du microscope (soit au niveau du nœud de l’onde).

celle du liquide externe : on aurait donc $\sigma \simeq 1$, et donc $\tilde{A} \simeq 0,01$, ce qui impliquerait des énergies acoustiques de l’ordre de plusieurs dizaines de J/m3. Même si ce n’est pas impossible, cela semble peu probable au vu des expériences menées aux chapitres 2 et 4, qui montrent toutes que l’énergie est plutôt voisine de 3 J/m3. Il semble donc que la compressibilité des vésicules est sensiblement plus faible que celle de leur liquide interne.

Ces résultats prouvent que les vésicules sont sensibles au champ acoustique et démontrent donc qu’il est possible de les manipuler au moyen d’ondes acoustiques stationnaires. Ils nous confirment également qu’il est possible de séparer des vésicules grâce aux ultrasons, en utilisant le séparateur acoustique fluidique décrit au chapitre 3 et mis en œuvre au chapitre 4.

5.3 Preuve de principe : séparation de vésicules

Au vu de la bonne sensibilité des vésicules aux champs acoustiques, nous avons mené une expérience préliminaire de séparation au moyen du dispositif présenté aux chapitres 3 et 4.

5.3.1 Dispositif expérimental

La figure 5.8 est un schéma synoptique du dispositif expérimental, en tout point similaire à celui utilisé pour la séparation de particules de latex (cf chapitre 4). Nous injectons les vésicules par l’entrée du haut (e_1), et le solvant (de l’eau sucrée) est injecté par l’entrée du bas (e_2), à l’aide de pompes.
pousse-seringue. Les vésicules circulent le long du canal et sont observées juste après leur passage sous les transducteurs avec le microscope holographique.

Pour cette expérience préliminaire, nous avons utilisé un débit total de 18 mL/h, le rapport Q_{c1}/Q_t étant fixé égal à 0,2 (ce qui correspond à une nappe d’épaisseur 116 µm), et une tension de 20 V crête-à-crête pour les deux transducteurs. Les fréquences de résonance déterminées par la méthode décrite au § 2.3.2 valent 2,14 MHz et 4,17 MHz. La concentration de l’échantillon de vésicules est voisine de celles utilisées lors de la séparation de particules de latex, soit quelques 10^5 vésicules/mL. Le liquide interne et le liquide vecteur sont les mêmes que ceux utilisés lors des expériences de focalisation.

5.3.2 Observations in situ

En revanche, en présence des ondes acoustiques, on observe clairement une distribution bimodale des vésicules autour des plans d’altitude −115 µm et 75 µm. La distance entre les plans, soit 190 µm, est en bon accord avec la distance attendue en raison de la fréquence utilisée, en supposant que le liquide vecteur a les mêmes propriétés acoustiques que l’eau, de λ/2 = c/(2f) ≃ 180 µm.

Nous avons ensuite déterminé la distribution en taille des vésicules, selon qu’elles sont situées dans la partie supérieure ou inférieure du canal. En d’autres termes, nous avons séparé les données extraites des reconstructions holographiques en deux groupes, correspondant aux moitiés supérieure et inférieure du canal. La figure 5.10 présente les résultats obtenus. En l’absence d’acoustique, on observe que la plupart des vésicules sont collectées sur le noeud du haut, mis à part celles dont le diamètre est supérieur à 24 µm. Il y a donc une légère réduction de la polydispersité de l’échantillon récolté à la sortie du haut. Cet effet reste cependant très faible, vu le très faible nombre de vésicules dont le diamètre est supérieur à 24 µm dans l’échantillon initial.

En présence d’acoustique, il y a une nette ségrégation des vésicules en fonction de leur taille : les vésicules dont le diamètre $d \leq 12$ µm sont majoritairement situées dans la partie supérieure du canal, alors que celles dont le diamètre $d \geq 12$ µm sont majoritairement situées dans la partie inférieure du canal : pour cette expérience, le diamètre de coupure d_c vaut donc $d_c = 12$ µm.

Le facteur de séparation, défini au paragraphe § 4.2.3, vaut 2. On en déduit que pour purifier l’échantillon initial, contenant 24 % de vésicules de diamètre inférieur à d_c, à 90 % (c’est-à-dire pour que l’échantillon final contienne en proportion 90 % de vésicules de diamètre inférieur à d_c), il faut effectuer 6 passages successifs dans le séparateur. Après chaque passage, on récupère 60 % du total des petites vésicules ; après 6 passages, il en reste donc près
Preuve de principe : séparation de vésicules – 5.3

Figure 5.9 – Répartition des vésicules dans l’épaisseur du canal en l’absence d’onde acoustique (a), et en présence des deux ondes (b), lorsque le débit total est de 18 mL/h, le rapport Q_{e1}/Q_t étant fixé égal à 0,2. En présence des ondes acoustiques, on observe clairement une distribution bimodale des vésicules.

de 5 %. Le débit utilisé à la première étape est le facteur le plus limitant; on peut donc espérer obtenir quelques 10^4 vésicules/h, dont le diamètre est inférieur à 12 µm, ce qui est déjà très intéressant dans la perspective de leur utilisation ultérieure dans le contexte de l’étude de leur rhéologie, et est bien plus satisfaisant que ce qu’il est possible d’obtenir par SPLITT gravitationnel [68].

5.3.3 Conclusion

Cette expérience préliminaire démontre notre capacité à réaliser des séparations binaires d’échantillons de vésicules en fonction de leur taille au moyen du séparateur acoustique fluidique. Il reste toutefois du chemin à parcourir avant de pouvoir passer à l’utilisation pratique du dispositif pour la séparation en grande quantité de vésicules. Un prochain travail de thèse dans notre équipe sera consacré à la caractérisation du dispositif lors de son application aux vésicules : en particulier, il faut déterminer l’énergie acoustique moyenne dans le canal, et l’influence de celle-ci et du débit sur le diamètre de coupure. Nous espérons également trouver une gamme de paramètres permettant une meilleure séparation en un passage, ce qui passe sans doute par la diminution de la concentration de l’échantillon pour minimiser les interactions inter-vésicules.

En tout état de cause, ce résultat est d’ores et déjà meilleur que ce qu’il est possible d’accomplir au moyen du SPLITT gravitationnel [68], et nous espérons pouvoir rapidement mettre au point un dispositif utilisable par nos collègues de Grenoble.
Figure 5.10 – Distribution des tailles de vésicules dans la moitié supérieure du canal, en trait pointillé vert, et dans la moitié inférieure, en trait plein rouge, en l’absence d’onde acoustique (a), et en présence des deux ondes (b), pour un débit total de 18 mL/h et un rapport Q_{c1}/Q_t fixé égal à 0,2.

5.4 Application aux globules rouges

L’amélioration des soins et des techniques médicales s’accompagne d’une demande de plus en plus importante en échantillons de plasma, de plaquettes ou de globules rouges. Ces échantillons proviennent nécessairement de prélevements de sang total au cours de séances de dons du sang. Il est donc indispensable de disposer de techniques efficaces et sûres du point de vue sanitaire pour trier les différents composants du sang total et ainsi obtenir des échantillons utilisables. Il est donc très intéressant de mettre au point de nouvelles techniques de séparation pour diminuer les coûts de production et faciliter l’obtention en grande quantité de ces échantillons. C’est dans cette optique qu’est née la collaboration de notre équipe avec la société Macopharma, spécialisée dans le traitement du sang (transfusion, perfusion), pour étudier la possibilité d’utiliser la technique de séparation acoustique présentée dans ce mémoire à la séparation d’échantillons sanguins.

Les mesures de sécurité liées à la manipulation du sang sont très strictes. En effet, nous ne pouvons le manipuler que dans des lieux habilités à le faire (donc pas au laboratoire), avec des mesures d’hygiène très réglementées : port de blouse et gants obligatoires, tous les objets ayant eu un contact direct avec le sang doivent être jetés à l’issue de l’expérience pour éviter tout risque de contamination. En particulier, nous devons jeter notre dispositif de séparation (tubes, connexions, vannes, canal). C’est pourquoi il est indispensable d’optimiser notre séparateur pour la séparation de particules de latex ou de vésicules avant d’entamer une étude avec le sang. Nous avons tout de même réalisé une preuve de principe montrant qu’il est possible de
manipuler les cellules sanguines avec les ultrasons dans nos types de canaux, en effectuant une expérience de focalisation acoustique dans une cellule de Hele Shaw. Nous nous sommes donc rendu à Tourcoing, où siège l’entreprise, munis de tout notre matériel, excepté le microscope qui nous a été fourni sur place.

Dispositif expérimental. Le dispositif expérimental est présenté sur la figure 5.11. L’échantillon de sang fourni par la société est contenu dans une poche spéciale hermétique de 10 mL. Il est dilué à 3,5 % dans une solution de chlorure de sodium, pour faciliter l’observation et limiter les interactions. Afin de minimiser les risques d’épanchement du sang, la procédure imposée par l’entreprise pour la mise en circulation de l’échantillon dans la cellule consistait à aspirer l’échantillon à la sortie du canal en continu, à l’aide d’une pompe pousse-seringue, plutôt que de l’y injecter comme nous avions coutume de le faire.

Le transducteur est placé au centre, sur la paroi en verre du canal. La fenêtre d’observation du microscope, qui est un microscope classique, mesure environ 1 mm × 1 mm, et est placée à la sortie de l’onde. Le débit utilisé est de 10 mL/h, l’amplitude de la tension est de 20 V crête à crête et la fréquence de résonance a été trouvée égale à 2,1 MHz, par observation directe des effets des ultrasons sur les cellules sanguines (effet spectaculaire comme on le verra au paragraphe suivant).

Résultats. En déplaçant le plan focal dans l’épaisseur du canal, on constate qu’il n’y a pas de globules rouges au voisinage des parois lorsque l’onde acoustique est présente, contrairement à la situation où elle est absente : les
Figure 5.12 – Deux photos représentant les globules rouges en écoulement au centre du canal (a) en l’absence d’onde et (b) en présence d’une onde à un nœud. Les globules rouges, répartis de manière homogène en l’absence d’onde, se focalisent sur des plans privilégiés dans la largeur du canal. Ce phénomène est dû au fait que l’onde de pression a une structure latérale imposée par les parois du canal.

particules sont bien focalisées au centre du canal, même si nous n’avons pas pu quantifier l’épaisseur de la nappe avec l’outil dont nous disposions.

Un effet bien plus spectaculaire s’est manifesté au cours de ces observations. En effet, comme le montre la figure 5.12, on observe la présence de bandes très bien définies de globules rouges équidistantes dans la largeur du canal, en présence des ultrasons. Ceci est dû à la modulation spatiale latérale de l’amplitude du champ de pression causée par les parois latérales du canal. En effet, ces parois, tout comme les parois supérieures et inférieures, imposent des conditions aux limites aux champs de pression et de vitesse, faisant de la cavité un filtre dans lequel seuls certains modes bien définis du champ acoustique peuvent exister. Notre observation de bandes indique donc que le mode transverse de l’onde a les caractéristiques d’une onde stationnaire présentant autant de nœuds sur la largeur du canal. Ce type de phénomènes a déjà été observé par ailleurs, et confirme la bonne sensibilité des globules rouges aux ultrasons.

5.5 Conclusion

Nous avons dans ce chapitre démontré qu’il est possible d’utiliser le séparateur acoustique fluidique présenté dans ce mémoire de thèse au fractionnement d’échantillons de vésicules très polydisperses. Des expériences de focalisation ont montré que le facteur de contraste acoustique des vésicules est non-négligeable, et qu’on peut donc les manipuler au moyen d’ondes acoustiques stationnaires. Une expérience de séparation préliminaire nous a
permis de déterminer qu’il est en principe possible d’effectuer un tri des vésicules en fonction de leur taille pour obtenir des échantillons purifiés, contenant plus de 90% de petites vésicules (et donc celles qui sont intéressantes dans la perspective de leur utilisation comme modèle du comportement mécanique des globules rouges), avec un flux de production important, de quelques 10^4 vésicules/h.

Nous avons également montré une expérience de focalisation de globules rouges, obtenue en travaillant avec des échantillons de sang dilués en écoulement dans un canal de Hele–Shaw tel que ceux que nous utilisons pour la séparation de particules de latex et de vésicules. La structure striée de la solution en présence de l’onde observée par microscopie classique est la signature de cette focalisation. Le principe de séparation acoustique peut donc a priori être appliqué au fractionnement des globules rouges et du plasma, ce qui serait très intéressant d’un point de vue industriel et pharmaceutique. Il reste bien sûr un long chemin à parcourir avant de pouvoir utiliser un tel dispositif dans ce contexte.
Conclusion

Nous avons démontré dans ce mémoire une nouvelle méthode de séparation d’espèces microscopiques quasi-isodensité, applicable à la séparation d’espèces biologiques ou bio-mimétiques, comme les vésicules lipidiques ou les globules rouges. Cette méthode s’appuie sur l’utilisation d’un champ de force acoustique programmé dans une cellule de SPLITT.

Nous avons commencé par rappeler l’expression de la force acoustique subie par des micro-particules en suspensions dans un fluide résultant de la présence d’une onde ultrasonore, et montré que les conditions expérimentales de notre séparateur correspondent au domaine sur lequel cette expression est valide. L’effet principal de cette force acoustique est d’attirer les particules vers les noeuds de pression de l’onde stationnaire, dont le nombre et la position sont contrôlés par la fréquence de l’onde. Nous avons alors montré que la trajectoire de particules dans un canal mince sous l’effet d’un écoulement de fluide et d’une onde ultrasonore stationnaire peut être prédite en comparant deux temps, le temps de relaxation dans l’onde, pris par les particules pour converger vers les noeuds de pression, et le temps de résidence dans l’onde. Si le temps de résidence est plus grand que le temps de relaxation, les particules atteignent leur position d’équilibre ; dans le cas contraire, leur migration transverse est faible.

Nous avons ensuite présenté l’outil principal dont nous nous sommes servis pour étudier le séparateur acoustique fluidique : le microscope holographique. Celui-ci permet d’extraire les positions tridimensionnelles d’objets en suspension dans un liquide en écoulement dans le canal. Ceci nous permet en particulier de suivre la migration des particules dans l’épaisseur du canal, ce qui est impraticable par une technique de microscopie classique. Nous avons ainsi mesuré la vitesse de sédimentation de particules de latex de 10 µm de diamètre, et obtenue une valeur de 3 µm/s est bon accord avec la valeur théorique valant 2,7 µm/s.

Nous avons ensuite tiré parti de notre capacité à mesurer les distributions de particules dans l’épaisseur du canal pour démontrer l’effet de focalisation acoustique à un et deux noeuds. Nous avons montré comment déterminer les
fréquences de résonances du canal correspondant à la présence d’une onde stationnaire dans celui-ci par l’observation conjointe de la transmission acoustique du canal et de la distribution in situ. Aux pics de transmission sont associés des focalisations prononcées des particules à des hauteurs précises du canal, correspondant aux noeuds d’une onde de pression stationnaire. En variant le débit et ainsi le temps de résidence des particules dans l’onde, nous avons pu en déduire les temps de relaxations des particules et ainsi un ordre de grandeur de l’énergie acoustique moyenne présente dans le canal, de l’ordre de quelques J/m³.

Nous avons alors proposé une méthode originale pour mesurer plus précisément la valeur de l’énergie acoustique, par l’observation de la position d’équilibre des particules pour diverses intensités du champ de pesanteur. Cette expérience est rendue possible par l’embarquement du dispositif dans un avion effectuant des vols paraboliques, au cours duquel s’enchaînent des phases pour lesquelles l’intensité du champ de pesanteur vaut 0 g, 1 g ou 1,8 g. La valeur obtenue, de près d’un J/m³, est compatible avec les mesures aux sols. Pour ces expériences, le contact canal/transducteur était assuré par du gel à ultrasons ; nous espérons que le collage des transducteurs au moyen d’une colle epoxy permettra d’améliorer le couplage. Une nouvelle expérience de mesure de l’énergie acoustique par ce procédé à été menée avec des transducteurs collés, et son analyse est en cours.

Nous avons alors introduit le principe du séparateur acoustique fluidique, reposant sur la juxtaposition en série selon la longueur du canal de deux transducteurs générant une onde à un et deux noeuds. Une modélisation numérique de celui-ci montre qu’il est possible d’effectuer des séparations de particules micrométrique quasi-isodensité avec une excellente résolution et un flux de production plus grand que celui obtenu par SPLITT gravitationnel. Le flux de production peut être d’autant plus grand que l’énergie acoustique est grande, ce qui est encourageant dans la perspective de l’utilisation industrielle ou pharmaceutique de ce séparateur. Nous avons également montré comment cette méthode de programmation spatiale d’un champ de force acoustique peut être étendue pour améliorer encore le flux de production et la sélectivité de séparateur de type SPLITT, en permettant la préfocalisation d’espèces dans le canal sans utiliser deux entrées ; on obtient ainsi une nappe initiale très fine sans diluer l’échantillon.

Nous nous sommes alors consacrés à la présentation de la réalisation expérimentale de ce séparateur acoustique fluidique, au moyen de cellules de step-SPLITT. Nous avons étudié son efficacité pour la séparation de mélanges de particules de latex de deux diamètres différents, et mesuré un facteur de séparation de 4,5 pour des particules de 5 µm et 10 µm, ce qui veut dire que l’on récupère en proportions cinq fois plus de petites que de grosses parti-
icles à l’une des sortie, soit une purification d’un facteur 5. Nous espérons que l’amélioration du résonateur, par l’utilisation de parois en verre, nous permettra d’augmenter encore l’efficacité du dispositif.

Nous avons ensuite montré que les vésicules lipidiques peuvent être manipulées efficacement au moyen de la force acoustique. Il est donc possible de les trier au moyen de notre dispositif. Nous avons mené des expériences préliminaires de séparations d’échantillons de vésicules très polydisperse, qui ont montré que nous pouvions enrichir le mélange en vésicules de faible diamètre, obtenant ainsi après un passage dans le dispositif près de 90% de vésicule de diamètre inférieur à 12 µm, avec un flux de production de quelques 10^4 vésicules/h. De tel échantillons peuvent être utiles dans la perspective de l’étude des vésicules en tant que modèle du comportement mécanique de cellules biologique, dont les diamètres sont de l’ordre de quelques microns.

Pour terminer, nous avons présenté une expérience préliminaire montrant la grande sensibilité des globules rouges à la force acoustique, par l’observation d’une striation d’un échantillon de sang total dilué en écoulement dans une de nos cellules sous l’effet d’une onde ultrasonore. Ce résultat laisse entrevoir l’utilisation potentielle de notre séparateur pour la séparation des globules rouges du plasma, ce qui présente un grand intérêt pharmaceutique.
Bibliographie

[38] N. Callens. Développement, étude expérimentale et visualisation par holographie digitale de mini-séparateurs fluidiques (STEP-SPLITT) en
Bibliographie

vue de la séparation d’objets de taille micrométrique. Thèse de docto-

[41] C. Fuh, M. Myers and J. Giddings. Centrifugal SPLITT fractio-

[44] T. Niem. Separation of particles using acoustic forces in thin chan-
nels. (2001@articledondi1998splitt, title=SPLITT cell separation of poly-

[45] M. Hoyos, K. McCloskey, L. Moore, M. Nakamura, B. Bol-

