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Abstract

Nowadays, inverse scattering problems in solid mechanics bear relevance to a wide range of applica-
tions such as seismic tomography and imaging, non-destructive material testing, and medical diagnosis.
To help advance the state of the art on the subject, this research deals with detecting and identifying
unknown scatterers i.e. obstacles (e.g. material defects, cracks, or lesions in soft tissues) in an elastic
background solid through the use of acoustic or elastic illuminating waves. To circumvent the limita-
tions underpinning the conventional imaging algorithms based on e.g. weak scatterer approximations
or non-linear optimization techniques, a variety of the so-called sampling methods have been proposed
over the past decade or so. Jointly, these methods constitute a paradigm shift in the approach of inverse
scattering in that they seek only a qualitative information on the scatterer geometry and material char-
acteristics within a computationally ef cient and robust framework based on full-waveform (or partial)
measurements of the scattered eld.

The recent emergence of these non-iterative probing methods allows to consider the study of two or
three-dimensional elastic waves propagation inverse problems in a new light. Earlier works have shown
in particular, within the framework of the hypothesis adopted in this subject, the interest of methods
such as i) the Topological Sensitivity Method that relies on a heuristic interpretation of the asymptotic
perturbation of a featured cost functional generated by introducing an in nitesimal aw at a prescribed
location (the so-called sampling point), and ii) the Linear Sampling Method based on the resolution of a
linear integral equation of the rst kind featuring a fundamental singular solution to the wave equation.

The present study comes within the scope of the development of the two methods mentioned with
application within the framework of the mechanics of deformable solids, i.e. inverse scattering problems
in acoustic and elastic media. The proposed developments aim to i) provide key results underpinning
the validity of these two techniques, ii) demonstrate their usefulness as implemented in conventional
computational platforms for approximate but fast defect/lesion detection, and iii) extend their range of
application in terms of the geometry and nature of hidden scatterers.

This research described in this dissertation has been performed within the framework of a joint Ph.D.

program between the Laboratoire de Mécanique des Solides at the Ecole Polytechnique (France) and the
Department of Civil Engineering at the University of Minnesota (USA).
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Contents
CONtEXE . . . e e e e e e e e e e e XV
Overview ofthethesis. . . . . . . . . . e e XVii
Context

The investigation of inverse problems that arise in the context of the mechanics of deformable solids
(Bonnet and Constantines@005, as well as in other areas of physics involving continuous media such

as acoustics, electrostatics and electromagnetism, are motivated by the necessity to overcome a lack of
information concerning the properties of the system (in this study a deformable solid body or structure).
Inverse scattering problemBike and Sabatie200Z Ramm 20059, that focus on the reconstruction of
objects or inhomogeneities hidden in a solid using illuminating waves, have been the subject of numerous
investigations and have lead to the development of a variety of mathematical and numeric&lagols (

and Kress1992 Kress 1999 Aki and Richards198Q Bonnet 1995 Dorn and Lesselie200§ Ramm)

1992 with a broad spectrum of applications such as nondestructive material testing, underground object
detection, seismology and medical imaging. Such inverse problems generally require the knowledge
of boundary data (provided by the measurements) that are “overdetermined” relative to what is nor-
mally necessary for solving a well-posed forward (i.e. direct) problem. Notwithstanding the signi cant
progress made on the subject over the last decades, however, the development of practical and robust
algorithms that are also computationally effective remains a challenge in the context of inverse scattering
problems in solids owing in part to the fact that the latter are mathematically ill-posed, i.e. that they
entail non-uniqueness, ill-conditioning or lack of stability towards the input dataHsdemargd1923

Kirsch, 1996. In such situations, linearization techniqu@se{stein 1984 are often too restrictive, ei-

ther in the context of physical con gurations they can accommodate or the information they can provide.
Moreover, the minimization-based approaches that exploit the data through a mis t cost function and
have a potential of overcoming the latter restrictions unfortunately bear considerable computational cost
associated with repeated solutions to the forward problelmséix et al.1999 Rekanos et al.1999
Nintcheu Fata et gl2003 Guzina et al.2003 Bonnet and Guzina2009. Such high computational

cost associated with the solution of an inverse problem is even more prominent in the context of global
optimization methods, which are, at present, impractical in the context of realistic three-dimensional
con gurations. More traditional gradient-based optimization is a computationally reasonable alternative
for solving the featured class of inverse problems, especially when enhanced by adjoint-based shape
sensitivity estimatesfonnef 1995 Bonnet and Guzin2009. However, their performance depends on
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choosing adequately the initial guess (location, topology and geometry) of a hidden object or scatterer.

Over the past two decades, the above considerations led to the paradigm shift in mathematical the-
ories of inverse scattering that have, to a large degree, focused on the development of the so-called
gualitative methods Cakoni and Colton2006 for non-iterative obstacle reconstruction from remote
measurements of the scattered eld. These techniques, which provide a powerful alternative to the cus-
tomary minimization approaches and weak-scatterer approximations, are commonly centered around
the development of an indicator function, that varies with coordinates of the interior sampling point,
and projects remote observations of the scattered eld onto a suitable functional space synthesizing the
“baseline” wave motion inside the background (i.e. obstacle-free) domain. Such indicator function is
normally designed to reach extreme values when the sampling point belongs to the support of the hidden
scatterer, thereby providing a computationally-effective platform for geometric obstacle reconstruction.
Among the diverse eld of methods using approaches that can be classi ptbhsor samplingtech-
niques Colton and Kress2006 Potthast2006, one may mention the so-calléactorization method
(Kirsch, 1998 2002 Kirsch and Grinberg2008 Charalambopoulos et ak007), theprobe methodEr-
hard and Potthas200§ |kehatg 1998ab) and the point source methoBdtthast1996 2001) among
the most prominent examples, as well asThpological Sensitivity Methodand theLinear Sampling
Method which are the focus of this dissertation.

The concept ofopological SensitivityTS) — in the literature also referred to as the Topological Gra-
dient, revolves around the quanti cation of the perturbation of a given cost function due to the creation
of an object (e.g. a cavity) of vanishingly small characteristic size at a prescribed lozdtisite the
reference (i.e. defect-free) solid. This concept rst appearétsithenauer et 21994 andSchumacher
(1995 in the context of topological optimization of mechanical structures, and has since been investi-
gated in various contexts as a method for de ning a defect indicator function, se8a&lggo and Rus
(2009); Jackowska-Strumillo et a(2002 for 2D elastostaticsi-eijoo (2004 for 2D linear acoustics,
Guzina and BonngR00§ for frequency-domain 3D acoustiddpnnet and Guzing2004); Guzina and
Bonnet(2009) for frequency-domain 3D elastodynamics didsmoudi et al(2009 for 3D Maxwell
equations. The particular appeal of this approach to solving inverse scattering problems resides in the
fact that the computational cost required to evaluate a TS eld is, in gerndithle order of one forward
solution and therefore minimal compared to that of standard minimization-based iterative techniques.
Here it is also noted that the concept of topological sensitivity is closely related to the broader class of
asymptotic methods, where unknown defects, whose geometry involves a small parameter, are sought
by means of an expansion of the forward solution (rather than the mis t function) with respect to that
parameter, seémmari and Kang2004 2009.

The Linear Sampling MethodLSM) likewise represents a minimization-free, grid-based approach
to the reconstruction of internal scatterers (e.g. material defects). This technique makes use of a linear
integral equation of the rst kind, written with reference to the defect-free solid and features a kernel
constructed form the measurements of the scattered eld. A particular property of the latter equation,
that makes it suitable for solving scattering problems, resides in the fact that the norm of its solution, used
as an obstacle indicator, remains bounded for sampling points lying inside the support of the scatterers
and “blows up” otherwise. This method, that does not require any prior information on the geometries or
physical properties of a hidden obstacles (or a set thereof), was initially introduced in far- eld acoustic
inverse scatteringdolton and Kirsch1996 Kirsch, 1998 Colton et al, 2000 involving impenetrable
or penetrable obstacles, and then extended to electromagf@eticr{ and Monk 1998 Colton et al,

2003 Haddar and Monk2002, Cakoni and Colton2004) and elastodynamic problemérens 2007;
Charalambopoulos et 22002 Nintcheu Fata and Guzin2004 Guzina and Madyarg2007) in various
con gurations.
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Overview of the thesis

The present study focuses on the advancement of the TS and LSM approaches to inverse scattering
within the framework of the mechanics of deformable solids, i.e. inverse scattering problems in elastic
(and acoustic) media. The main lines for this research work are:

Examination of the methods' capabilities and performance especially when deployed in the context
of classical forward solvers such as nite element models.

Application of the TS and LSM techniques towaraimbinedgeometric and material) qualitative
characterization of a variety of material defects (e.g. cracks, inclusions, cavities) “hidden” in a
given reference solid.

Extension of these methods toward time-domain or multi-frequency treatment of inverse scattering
problems.

Investigation of the fundamental theoretical questions (e.g. those of uniqueness and existence)
raised by the development of the Linear Sampling Method.

Investigation of the theoretical link between the Topological Sensitivity and Linear Sampling
Methods.

In light of the above topics and issues, the present work resides at the interface of theoretical solid me-
chanics and applied mathematics, while including a number of relevant numerical applications.

The research described in this dissertation has been performed within the framework of a joint Ph.D.
program between th8olid Mechanics Laboratorgt Ecole Polytechnique (Francend theDepartment
of Civil Engineeringof the University of Minnesota (USA)'he work has roughly been distributed as
follows: the study of th&opological Sensitivity Methoat Ecole Polytechniquander the supervision of
Marc Bonnet, and that of tHanear Sampling Methodith Bojan Guzina at th&niversity of Minnesota
Both studies have progressed, to a large extent, independently of one another. They, however, constitute
two approaches towards a common goal, namely that of advancing non-iterative, qualitative methods for
inverse scattering. Moreover, a preliminary comparative study is conducted in the last chapter.

This dissertation is divided into three parts. Padsd|l address the two featured qualitative meth-
ods (TS and LSM), while Paitl discusses and compares some of their common features via selected
analytical solutions. Each part includes chapters thaselfecontainedn the sense that each chapter is
either a published article or a journal paper in preparation. Where applicable, appendices appearing in
the referenced (“mother”) papers are also included in this thesis for clarity and ease of reading.

Partl. The rst part of this dissertation is dedicated to the Topological Sensitivity Method for solv-
ing inverse scattering problems in solid bodies formulated in the time-domain. Chaptkich essen-
tially reproduces articled], presents a comprehensive numerical investigation of the method designed
to evaluate its performance within the framework of a conventional nite-element (FEM) computational
platform, and employed to deal with three-dimensional identi cation and reconstruction of internal cavi-
ties. ChapteP presents a novel topological sensitivity analysis for the identi cation of three-dimensional
cracks in homogeneous or bimaterial elastic bodies. The theoretical developments presented are an ex-
tension of the method to this problem and the study includes a set of numerical results. An early version
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of the work presented in this chapter appeared in the short arficke full-length journal paperd] being
in the nal stages of preparation.

Partll. The second part deals with the Linear Sampling Method. Ch&ptrresponding to the
article [1], investigates a multi-frequency formulation of the method for the reconstruction of obstacles
illuminated by acoustic waves and conveniently provides a comprehensive presentation of how inverse
scattering problems can be addressed by the linear sampling method. In the context of penetrable scat-
terers, this method (as well as tfactorization methophas exposed the need to study and understand
a non-traditional boundary value problem, termed ititerior transmission problem Chapter4, that
corresponds to article?], is dedicated to the study of existence and uniqueness of a solution to this
problem in elasticity, and highlights some of its particular features when dealing with viscoelastic and
piecewise-homogeneous materials. Chaptending Partl, represents a generalization of the study of
this problem — interpreted as an eigenvalue problem, and is currently in its nal stages of preparation as
a journal article ).

Partlll. The third part of this dissertation is composed of a single chapter, Chapidrich rep-
resents an attempt to deepen the understanding of the TS and LSM techniques, and to establish a funda-
mental link between the two. This last investigation is based on an analytical example of scattering by
a spherical obstacle which permits both (TS and LSM) indicator functions to be derived in an explicit
form.

Summary of contributions. The main contributions of this work are:

A comprehensive simulation campaign that aims at validating and highlighting the effectiveness
of the use of the Topological Sensitivity Method toward the elastodynamic reconstruction of ma-
terial defects (cavities) from transient scattered waveforms within the framework of nite element

methods. To our best knowledge, it constitutes the rst comprehensive numerical study of TS-
based defect identi cation methodology in time-dependent 3D settings and implemented within
general-purpose computational environments.

Extension of the Topological Sensitivity Method to deal with 3D inverse scattering by cracks, in-
cluding the formulation of the required previously unavailapldarization tensoland the propo-
sition of an original methodology for a qualitative reconstruction of cracks.

Study of theinterior transmission problerra non-conventional boundary value problem underpin-
ning the Linear Sampling Method. The existence and uniqueness results, which are fundamental
for establishing the validity of the LSM, have been established and certain particular features of
this problem in viscoelastic bodies have been emphasized. This study also provides a theoretical
framework that enables, for the rst time, a qualitative identi cation of the material properties of
the elastic scatterers via the LSM.

Formulation of a multi-frequency approach of the Linear Sampling Method. The personal con-
tribution is concerned with validation, via analytical and numerical examples, of the proposed
methodology.

Development of a platform that aims at exposing possible theoretical links between the TS and
LSM approaches to inverse scattering. The proposed study relies on a canonic example allowing
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i) the analytical implementation of both indicator functions, and ii) the generation of quantita-
tive reconstruction results which, in of themselves, permit one-to-one comparison between the
two methods. The issue of comprehensive (geometric and material) characterization of internal
scatterers, i.e. defects, is also addressed there. This attempt to provide better understanding of the
methods led to interesting preliminary results, but an in-depth analysis is still needed for signi cant
advances on the subject.
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Introduction and Overview

Identi cation of aws embedded in three-dimensional elastic solids, in situations where overdetermined
boundary data are available, is a challenging problem arising in a number of applications. Qualitative and
non-iterative methods centered around the development of indicator functions of hidden defects are of
particular relevance in 3D con gurations with dynamical measurements since conventional identi cation
methodologies, based on the minimization of a cost functid(ial which quanti es the mis t between
a measured quantity and its counterpart for a trial defect con gura&tipentail high computational costs
due to the need for repeated elastodynamic forward solutions.

In this part, defect indicator functions are de ned on the basis ofdpelogical sensitivitfTS) of
the featured mis t function. Initially introduced for topology optimizaticinCkowska-Strumillo et gl.
2002, the TS concept stems from the quanti cation of the perturbation induced to the mis t functional
by the creation of a awD-., of in nitesimal linear size" at a prescribed sampling locatianinside
the reference solid. The TS concept then naturally arises from the asymptotic analysis (in terms of the
vanishingly small size of the trial defect) of the mis t functional, which takes the general form

I(D2) = 3G+ (T(2)+ of ()

where (") quanti es the asymptotic behavior df{D-.;) as" ! 0 and is such thaim-, ¢ (") =0,

and the functionT (z) is the TS (or topological gradient) g The asymptotic behavior(") and the
precise form of the TS functiofi(z) depend on the assumed nature and shape of the vanishing trial
defect, with (") = "3 for traction-free cavities or cracks and for perfectly-bonded penetrable inclusions.
The most pronounced negative valuesTét) correspond to locations where the nucleation of a small
aw would induce the most pronounced decreasd,afe. improve the t with the measurements. For
this reason, the TS functiof(z) is used as a defect indicator function. Over the last few years the
topological sensitivity method has been investigated in elasticity in problems involving different types
of defects Garreau et al.2001% Bonnet and Guzina2004 Guzina and Bonne2004 Chikichev and
Guzing 2008.

In Chapterl, a time-domain topological sensitivity (TS) approach is developed for elastic-wave
imaging of media of arbitrary geometry. The TS, which quanti es the sensitivity of the mist cost
functional to the creation at a speci ed location of an in nitesimal hole, is expressed in terms of the
time convolution of the free eld and a supplementary adjoint eld as a function of that speci ed loca-
tion. Following previous studies performed under (mostly) static or time-harmonic conditions, the TS
eld is here considered as a natural and computationally ef cient approach for de ning a defect indi-
cator function. This study emphasizes the implementation and exploitation of TS elds using standard
displacement-based FEM approaches, a straightforward task once the correct sensitivity formulation is
available. A comprehensive set of numerical experiments on 3D and 2D elastodynamic and acoustic
con gurations is reported, allowing to assess and highlight many features of the proposed TS-based fast
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qualitative identi cation such as its ability to identify multiple defects and its robustness against data
noise.

In Chapter2, the topological sensitivity is derived for three-dimensional crack identi cation exploit-
ing over-determined transient elastodynamic boundary data. Simple and ef cient adjoint-state based for-
mulations are proposed in elasticity and acoustics, enhanced by the recourse to closed-form expressions
of a polarization tensor arising in the featured asymptotic analysis when the trial small crack is circular or
elliptic. This approach, which allows a qualitative reconstruction of cracks in terms of their location and
orientation, is implemented within a conventional FEM platform. Extensive 3D time-domain numerical
experiments highlight its usefulness and performance.
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6 CHAPTER 1. FEM-BASED APPROACH FOR CAVITY IDENTIFICATION

1.1 Introduction

Defect identi cation using TS under transient dynamical conditions have so far been the subject of only
a few investigations, notablpominguez et al(2005 where the connection with time-reversal is ex-
plored,Bonnet(2006 in which an adjoint-based form of the TS is derived for 3D elastodynamics and
acousticsMalcolm and Guzing2008 and Chikichev and Guzin§2008 where the case of penetrable
inclusions in acoustic and elastic media (respectively) is considere@aisland Bonne(2009 which

is devoted to a specialized formulation for crack identi cation problems. This chapter addresses defect
identi cation in elastic solids by means of the TS function de ned for small-cavity nucleation in the con-
text of 3D time-domain elastodynamics. In a previous publicatibim(et 2006, the TS function was
obtained as a bilinear expression featuring the (time-forward) free eld and the (time-backward) adjoint
solution by considering the asymptotic behavior of a system of governing integral equations based on
the transient full-space elastodynamic Green's tensor, the corresponding (analogous and simpler) formu-
lation for scalar waves was derived as a by-product, and a semi-analytical example based on transient
3D acoustic data was presented. As in many other derivations of TS formulations published thus far, the
integral-equation setting is convenient for performing the mathematical asymptotic analysis but is then
just one of several possible approaches for doing numerical computations once the necessary formulae
are established.

The intended contributions of this chapter are twofold. Firstly, on the theoretical side, the derivation
of the TS eld proposed irBonnet(2009 is clari ed and extended as follows: (a) the validity of the
previously-established asymptotic behavior of the time-domain governing integral equation (and hence
of the resulting TS formulation) is shown to depend on smoothness assumptions on the free eld, an
issue not touched upon Bonnet(2000; (b) a simpler and more compact version of the derivation,
using Green's tensors rather than full-space fundamental solutions, is presented; (c) proofs are also given
for two-dimensional problems. Secondly, a comprehensive set of numerical experiments, including 3D
elastodynamic examples, is reported and discussed. Unlike previous publications where the time-domain
TS is computed by means of specialized techniques based on Green's tensors, this study emphasizes the
implementation and exploitation of TS elds using the standard displacement-based FEM, and indeed the
ease of doing so once the correct sensitivity formulation is available. To the authors' best knowledge, this
chapter presents the rst comprehensive numerical study of TS-based defect identi cation methodology
in time-dependent 3D settings and implemented within general-purpose computational environments.

This chapter is organized as follows. The forward and inverse problems of interest are reviewed in
Sectionl.2. Topological sensitivity is de ned and established, in both direct and adjoint-based forms, in
Sectionl.3, the more technical parts of the derivations being deferredAdor ease of reading. Sec-
tion 1.4 then discusses some important features of the methodology and introduces additional concepts
and notations pertaining to the FEM-based implementation and its exploitation in subsequently presented
numerical results. Then, the results of FEM-based numerical experiments are presented and discussed in
Sectionsl.5 (2D scalar wave equation) aids (3D and 2D elastodynamics).

1.2 Cavity identi cation model problem
Let denote a nite elastic body ifRY (d = 3 or d = 2), bounded by the external surfaeand

characterized by the shear modulysPoisson's ratio and mass density, and referred in the following
as thereference bodyA cavity (or a set thereoff bounded by the closed traction-free surface($3
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embedded in . The external surfac®, which is identical for the reference domainand the cavitated
domain ( B)= nB, is split into a Neumann pa8y and a Dirichlet parSp, respectively associated
with prescribed time-varying tractiorntg; and displacementsp. Under this dynamical loading, an
elastodynamic stateg arises in( B), which satis es the following set of eld equations, boundary
and initial conditions (hereinafter referred to for gen@&iasP (B)):

Lug (;t)=0 (2 (B);t>0)
tlug]( ;t)=0 (2 ;t>0)

P(B): tlug]( ;t) = tn( ;1) ( 2Sn:t>0) (1.2.1)
ug( ;t)= up( ;t) ( 2Sp;t>0)

ug(;0)=us(;00=0 ( 2 (B))

where andt denotes the position vector and the tihalenotes the governing Navier space-time partial
differential operator de ned by

Lw(;)=r [w](;t) w(;0) (1.2.2)

where [w]= C:r w denotes the elastic stress tensor associated with a displacenteetfourth-order
elasticity tensof being given (for isotropic materials) by

=2 Iy | | 1.2.
C 1 2 (1.2.3)
(with 1 Y™ and| respectively denoting the symmetric fourth-order and the second-order identity ten-
sors)t[w] = [w]n isthe traction vector associated with(n being the unit normal o8[ oriented
outward from( B)), and(3 and(®) indicate rst- and second-order time derivatives.

Cavity identi cation problem. The location, topology and geometry of an unknown cavity system
B'"'® (or equivalently ™“®) is sought by exploiting measured values of the response of the awed solid
tue = (B grising due to the probing excitation. Speci cally, the displacemetf induced in
true hy (up;ty) is monitored over the measurement surf&85 Sy and time intervat 2 [0; T]
(other possibilities, e.g. nite sets of measurement locations and/or times, being also allowed by the
ensuing treatment). Ideally, a defect con gurat®#'® such that

ul™e( 1) = u°PY ;t) ( 25°S 0616 T) (1.2.4)

is sought, where " solves probleni (B ") de ned by (1.2.7). In practice, due to many factors (e.g.
incomplete and/or inexact measurements, modelling uncertainties), the cavity is sought so as to minimize
a mis t cost functional which is naturally (in the present context) expressed as a double integral over the
measurement surface and the experiment duration:
Z,Z
J(( B);T)= lus(5y; st]dS dt (1.2.5)
0 SO S

where ( B) is a trial cavitated solid de ned by the trial cavi, ug solves problenP (B) de ned
by (1.2.1), and the mis t functiorl is chosen so as to de ne a distance betwegrandu °PS. Numerical
experiments presented herein are based on the commonly-used least squares mis t function:

= gw o u o) (1.2.6)
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1.3 Topological sensitivity

1.3.1 Small-cavity asymptotics

The topological sensitivity of the cost functiondl.2.5 is de ned as its sensitivity with respect to the
creation of an in nitesimal object of characteristic sizat a given locatioz in . Here, such in nites-
imal object is taken to be a trial cavi§-(z), de ned byB-(z) = z + "B in terms of its centeg, its
shape speci ed by the unit bounded 8et RY (with boundaryS and volumeBj) containing the origin,
and its radius' > 0. The corresponding trial cavitated solid is denotedz). Following Sokolowski
and Zochowski(1999 or Garreau et al(2001), one seeks the asymptotic behaviord¢f -(z); T) as
"1 0through the expansion:

IO +(2):;T)=3C;T)+ (MiBjT(z;T)+ o (") ("' 0) (1.3.1)

where the function ("), to be determined, vanishes in the lihit 0 and thetopological sensitivity
T(z;T) is a function of the sampling poiatand duratiorT .

To evaluate the expansioh.8.1) and nd the value ofT (z; T), it is necessary to consider the asymp-
totic behavior of the displacememt governed by probler® (B+(z)). Towards that aim, it is convenient
to decompose - as

u-( ;)= u( ;t)+ v-( ;t) (1.3.2)

where the free eldu is the response of the cavity-free domaino the prescribed excitation, i.e.

Lu (;t)=0 (2 ;t>0)
L tulC s =ta(st) ( 2Swt>0)
PG): u( ;t)= up( ;t) ( 2Sp;t>0) (1.3.3)
u(;0=u(;0=0 ( 2)
while the scattered eld/+ solves
Lve (;t)=0 (2 ;t>0)
tive]( ;)= tu]( ;t) ( 2 -(z);t>0)
t[v-]( ;t)=0 ( 2SN;t>0) (1.3.4)
ve( ;)= 0 ( 2Sp;t>0)

ve( ;0)=ve(;00=0 (2);

with +(z) denoting the boundary d&-(z). Since the scattered eld is expected to vanish for in nites-
imal cavities, i.e. kv-( ;t)k = of"), expansion 1.3.]) is sought by invoking the rst-order Taylor
expansion of with respect to its rst argument. The topological sensitivityz; T) and the leading
asymptotic behavior(") are thus to be identi ed on the basis of:

Z:Z @
0 Gobs @l

[u( ;t); stv=( ;t)dS dt= (")jBjT(z;T)+ o (") (1.3.5)

In what follows, emphasis will be given to the 3D case.
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1.3.2 Leading contribution ofv- as"! 0

To address this issue, it is convenient to reformulate the governing boundary-initial prabize) iy
terms of an integral equation. LBt(x;t; ) andT (x;t; ;n) denote the time-impulsive elastodynamic
Green's tensors, de ned such that U (x;t; ) andex T(x;t; ) are the displacement and traction
vectors at 2 resulting from a unit time-impulsive point force actingxain thek-th direction at time

t =0 and satisfying the boundary conditions

U(x;t; )=0 ( 2Sp;t>0); T(x;t; ;n)=0 ( 2SN;t>0); (1.3.6)

One also de nes the elastodynantfidl-spacefundamental tensofd ; (x;t; ) andT (X;t; ;n)ina
similar way, replacing boundary conditions §.6 with decay and radiation conditions at in nitye(in-
gen and SuhubiL975 see Section.A.2). The governing integral equation for the scattered eldhen
reads (see SectiahA.1)

1 z z

év"(x;t)+ T(x;t, ;n)?v-( ;t)dS = U(x;t; )?2t( ;t)ds

“(2) “(2)
(x2 «(z);t>0); (1.3.7)

R
in which indicates a (strongly singular) integral de ned in the Cauchy principal value (CPV) sense and
? denotes the time convolution at instant 0 de ned by
Z t
[a?b]( ;t)= a(; )b(;t  )d: (1.3.8)
0

where the inner product appearing in the integral is suchahats a tensor of the lowest possible order
(e.g.U ?t hasorder 1t u? [v]isascalar), and generic tensor eldsandb respectively verify initial
and nal conditions

a(; )=a(; )=0( 60) b(; )=1h(; )=0( >t) (1.3.9)

Equations governing the leading contributiorvefon -(z) as" ! 0 are sought as the asymptotic
form of integral equationl(3.7). For this purpose, scaled coordinaxesr , de ned by

Xx=(x 2z)=" =( z)=" (x; 2 «(z2); x; 2S) (1.3.10)

are introduced. Consequently, the volume and surface differential elementpice are rescaled ac-
cording to

(@ av ="3dv; (b) dS = "2dS ( 2 «(z); 29) (1.3.11)
where & ; dS denote corresponding volume and surface differential elemenB amdS, respec-

tively. The leading behavior ds! 0 of the right- and left-hand sides of integral equatiar3(7) are
then given by the following Lemmalsand2, whose proof is given in SectiochA.2.

Lemma 1. Assume that 7! r u( ; ) is Lipschitz-continuous (uniformly forin a neighbourhood of
z) and differentiable in a neighbourhood of= t. Then, one has
z z

Ut )?2t(;)ds =" Up (x; ) n()dv : [ul(z;t)+o(") (x2 +(2))
S

(1.3.12)
whereU 1 (Xx; ) is theelastostatidull-space (Kelvin) fundamental displacement, givenloy (12).

"(2)
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Lemma 2. Let the vector functiov-( ;t) be de ned byv-( ;t) = v-( ;t), with and related

through (L.3.10. Then, one has

Z z

Tt ;n)?ve(;t)dS =  Tq (X5t ;n)?ve( ;1) dS + o(kv-(;t)k) (x2 -(z2))
s

(1.3.13)
whereT 1 - is thefull-spaceelastodynamic fundamental traction tensor de ned in terms of rescaled
wave velocities, ="; cr="andkv-( ;t)kis anormof 7! v-( ;t), e.g. itsL-norm onS.

"(2)

Lemma 1 means that the leading contribution to the right-hand side of integral equatiol &s
" I 0 has a special structure wherein the time varidbéad the (normalized) space varialXeare
separated. Lemma 2 indicates that the left-hand side of integral equatior) (s of orderO(kv-k) as
"1 0. Lemmas 1 and 2 together thus suggest to seek the leading contributieh to) = v-( ; ) as
"1 0in the following form, in which the third-order tensor functio2 S 7! V( ) is to be determined:

va( 0= V() I+ o) (2 +(2); 28): (1.3.14)

Lemma 3. Letv-( ;t) be of form (..3.19 for someV ( ). Under the assumptions of Lemrheone has
Z 4
Tt sn)?2ve(;)dS =" Ta(x; ;n)V()dS : [ul(z;t)+ of") (x2 -(2))
s
(1.3.15)
whereT 1 (X; ;n) isthe traction associated with the elastostatic Kelvin solution, giveriBy.Z9.

"(2)

Proof. See Sectioni.A.2. O

Combining lemmasl and 3, one nds that representatiori.3.19 indeed holds provided that
solves the integral equation
1 Z z
éV(x)+ STl(x; ;n)V()ds = SUl(x; ) n()dS (x2S) (1.3.16)

Upon inspection, X.3.1§ can in fact be interpreted as an integral equation formulation governing the
solutionsV = V- =(ex e):V to a set of six canonicalastostatiexterior problems

r (Cir Vie)()=10 ( 2RnB);

1 16 k6 "6 3 (1.3.17)
(Cr Vie)()n() = s(()e+n()e) ( 25)
which are independent af, " and time. The tensor functiovi( ) is in fact completely de ned, through
problems {.3.17, by B.

The scattered eld/- at any point 0f5°PS (and more generally at any point away from the trial cavity
B-(z)) is given by the integral representation formula (see Sedtiéml):

Z n 0
ve(x;t) = . U(x;t, )?g( D+ EXE )? (5 adv
TRt ;n)2v+( ;t) dS (x 2 S°S t>0); (1.3.18)
‘@)
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whereE (x;t; ) denotes the strain associated will{x ;t; ). Expanding the rst integral by means
of (1.3.1%7a) and a Taylor expansion of the densities abost z, substituting {.3.14 and introducing
scaled coordinatesinto the second integral, one obtains the leading contribution as" ! 0 as:

ve(x;t) = "SW (x;t;z) + of"3) (1.3.19)
with
W (x;t;z) = jB] [C:E(X;t;2)]?[A: J(z;t)+ W(x;t;z)?u(z;t) (1.3.20)
and where the constapblarization tensoiA depends only oB (throughV) and is de ned by
z
1
= n V()ds 1.3.21
B O VO (1.3.21)
Inserting (L.3.19 into (1.3.9, the TST(z;t) and leading behavior(") are then found to be given by
Z:Z @
T(z;T) = [u( ;t); ;tTW( ;t;z)dS dt; (")y="3 (1.3.22)
0 Sobs @J

Expression 1.3.22 provides a useful basis for discussing some of the features of the time-domain
TS, see Section.4.1 It can also conceivably be used for the purpose of computing theTéid T),
and is indeed so used ithikichev and Guzing§2008 wherein is an elastic half-space with a traction-
free surface, a con guration for which the Green's tensor is known. For arbitrary reference bodies
implementation of {.3.22 would require a numerical evaluation of the Green's tensor for source points
located orS°Ps (typically taken as Gauss quadrature points associated with the evaluation of the integral
overS°PS) and eld points taken as sampling poirgs

However, a computationally more ef cient approach for evaluating the B(d; T), based on an
adjoint solution, is usually preferable and was used for all numerical examples presented thereafter.

1.3.3 Adjoint eld formulation

The adjoint formulation, previously presenteddnnnet(2006 and now summarized for completeness,
stems from treating the integral in.3.5 as one of the terms arising in the elastodynamic reciprocity
identity. For any generic domait and pair of elastodynamic states; u, satisfying the homogeneous
elastodynamic eld equations i@ as well as homogenous initial conditions

ui( ;0)=ua(;00=0 and uz( ;0)=ux( ;0)=0 ( 20);
the following reciprocity identity holds (see elgringen and Suhupil975 Achenbach2003:
z

ftlui]?u, tluzx]?uig( ;t)dS =0 (2.3.23)
@
De ning the adjoint state} as the solution of:
La (;t)=0 (2 ;06t6T)
t[a]( ;t) = @[u( T t); ;T t] (2S%5061t6T)
@ 1.3.24
t[e]( :t)= 0 ( 2SynS°S06 t6 T) (1.3.24)

a( ;t)=0 ( 2Sp;06t6T)
a(;0=0(;0=0 (2)
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using relation {.3.23 with O = +(z),u; = @ andu, = v+ and exploiting the relevant boundary
conditions in (.3.4 and (..3.29, equation {.3.5 becomes:
Z

MiBjT(z;T)+ o (") = ft[@]?v-g( ;t) dS ftlu]?ag( ;t)ds  (1.3.25)
“(2) "(2)
On inserting the asymptotic behaviat.8.19 in the rst integral, recasting the second integral as a
volume integral oveB-(z) using the divergence identity, and working out the leading contribution as
"1 0in the resulting equality, one arrives at

T(z;T)=f [a]?(A: [uD)+ O0?ug(z;T); (")y="3 (1.3.26)
where the polarization tensér is again de ned by 1.3.2)).

Remark 1. The O("%) asymptotic behaviorl(3.26 of J( +(z):T) relies onv+ approaching (up to

a scaling factor) astaticsolution as" ! 0. This requires the free- eld to be suf ciently regular at
(z;1), e.g. according to the suf cient condition given in Lemmiaand 2. To put this another way,

the TS (.3.29 may (invoking the Fourier convolution theorem) be formulated as the inverse Fourier
transform of the (previously established Bponnet and Guzing004) frequency-domain expression

T(z;')=f [0]:(A: [u]) ! 20 ug(z;!)

The Fourier integral then convergedif7! T(z;!) 2 L1(R), i.e. provided the high-frequency content of
the excitation is limited. Related considerations are developédimari et al.(2009, where the order

in " of the leading perturbation by a small inclusion of the fundamental solution of the transient wave
equation is shown to depend on the high-frequency content of the time-modulated point source.

Remark 2. In a previous article Bonnef 2006, the small-cavity asymptotics was conducted by relying
on estimates

u(x;t; )?a( ;t)= %Ul (x; ) a(z;t)+ O() @)
1 ;2 -(2)

TOGt n)?b( )= 5T1 (x; :n) bz )+ O@1) (b)

(i.e. identities (27) therein) instead of Lemniaand 2, yielding the same resulf.(3.26 but in a not en-
tirely correct way: (i) these estimates hold under smoothness conditioastpsimilar to the suf cient
conditions given in Lemmadsand 2, that were not mentioned, and (ii) estimate (b) above is in fact not
directly applicable here as it is needed fof ;t) = v-( ;t), which is not de ned at = z. Lemmasl
and?2 were therefore needed to x this aw in the asymptotic analysis.

Remark 3. The cavity-identi cation setting of the model inverse problem formulated in Settivis
consistent with, but does not constitute a mathematical prerequisite for, the small-cavity asymptotics
developed in this section. In fact, the latter procedure may in principle be applied to any cost function of
format (L.2.5 whatsoever, regardless of its physical meaning or engineering motivation.

Remark 4. The same canonical problem$.8.17) and subsequent polarization tensdr.§.2]) also
occur inBonnet(2006 and in a previous frequency-domain formulation of the &84jna and Bonnet
2004).

Remark 5. The foregoing analysis has been performed for the 3D case, deemed the most important, but
can be reproduced with the necessary adjustments for the 2D casé {séeleading to similar results
where (")= "?instead of (")= "3.
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1.4 Discussion and implementation

1.4.1 Discussion

Topological sensitivity as a defect indicator function. T(z; T) quanti es the sensitivity of the fea-

tured cost functional to a perturbation of the reference medium in the form of an in nitesimal cavity at

Z. Itis then natural to considér(z; T) as a possible defect indicator function, as was previously done

on several occasions (see Sectiofi), whereby actual defects are expected to be located at sampling
pointsz at whichT(z; T) attains its most pronounced negative values, i.e. at which a suf ciently small
defect would induce the most pronounced decreadelofother wordsin nitesimal trial cavities placed

at such sampling points improve the t between simulated and actual measurements, and intuition then
suggests thahite defects having the same location also induce a decrease of the cost function. Itis im-
portant to emphasize that such exploitation of the information provided by thél €|d’) is natural but

not backed by a rigorous mathematical proof, despite the fact that the analysis of the cost function leading
to the de nition and evaluation of (z; T) is itself mathematically rigorous. It is however substantiated

by various numerical experiments performed for several classes of physical settings (see references given
in Sectionl.1). The present study aims at contributing to this substantiation within the present context
of time-domain elastodynamics, seldom considered in this context, through the examples of Segtions
and1.6.

Topological sensitivity allows non-iterative approximate global search. Defect identi cation based

onthe TS eldT(;T) of a mist function has the following important characteristics:

(&) The numerical procedure is non-iterative, as it just requires two solutions evaluated on the refer-
ence (defect-free) con guration, namely the free elil§.3 and the adjoint eld {.3.29. It is
thus computationally much faster than usual iterative optimization-based inversion methods. This
non-iterative nature is also one of the main features of the linear sampling methmus (2001
Nintcheu Fata and Guzina007).

(b) The approach is of a qualitative nature, as the underlying approximatidr)(of J does not lend
itself to optimization with respect to

(c) Itis globalin nature, as (i) it does not require an initial guess, and (ii) it allows simultaneous identi -
cation of multiple defects without prior knowledge of their number (see last example of Séciion
and the dual-cavity example in Sectiorb.2).

(d) The experimental information about sought defects ent&r{ngr) is entirely contained in the ad-
joint solution (through the de nition of the adjoint forces in terms of the derisjty

(e) ATS eld may be de ned and computed using the present approach for cost functions associated to
any overdetermined data, no matter how scarce, which makes TS-based identi cation a very exible
approach.

Transient versus time-harmonic data; time reversal. Compared to previous works based on wave-
based imaging under time-harmonic conditions (8gnnet and Guzina2004 Feijog 2004 Guzina
and Bonngt2006 Masmoudi et al.2009, the time-domain approach to TS bene ts from richer data
as it exploits measurements taken over a durafigithe mathematical framework allowing to exploit
other ways to collect data over timé&)ominguez et al(2005 have compared this approach to imaging
processes based on time reversadgsereau et all990), since the adjoint eld® de ned by (1.3.29
constitutes a time-reversed state related to the \@l¢f scattered by the actual defetve.
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In uence of measurement noise. When observed valuas®®s differ from their true counterpari ¢
because of measurement noise or modelling uncertainties, the sensitiVity o to such uncertainties
is directly related to the sensitivity of the adjoint solution to the same uncertainties. In the frequently-used
case of least-squares cost functionals, based on (possibly wei@jftedyms of measurement residuals

= u u%s the adjoint forces featured in.(3.249 depend linearly on. More generally, mis t
functionals based onla norm (withl1< < 1 )lead toO(k k 1) adjoint forces (the cases =
1; 1 do not satisfy the required differentiability of mis t density). AsT( ; T) also depends linearly
on the adjoint solution (irrespective of the nature of the cost functional), the perturbation undergone
by the topological sensitivity of least-squares cost functions is, when wsingorms, linear in the
measurement uncertainties. This suggests that identi cation procedures based on the TS eld are better-
behaved with respect to measurement noise than usual inversion procedures, known to be highly sensitive
to the latter unless properly regularized. Indeed, numerical results of Sdcfidn based on mis't
functionals without regularization term, corroborate this expectation.

Dynamical versus static measurements. Expression 1.3.229 shows the value of (z; T) to be in-
uenced by that ofW (; ;z). The latter, de ned by 1.3.20 in terms of the elastodynamic Green's
displacement and strain tensors, is a decreasing function of the disl@n@®S) of z to S°S. Hence,
sampling points located close &S are more apt to lead to high (negative) valued pincreasing the

risk of false identi cations there when seeking a buried defect. Moreover, it is instructive to compare the
behavior of T for sampling points remote from the observation surface according to whetisezval-

uated under dynamic (i.e. time-dependent) or static (i.e. time-independent) loading conditions. Indeed,
W (; ;z) behaves likgd(z; S°P9)] 1 inthe former case, but likigl(z; S°°9] 2 in the latter case: (i) this
behavior is directly observed f& ( ; ;z) on the full-space Green's tensor, see equatians.{) and
remark6, and is also explicit for scalar half-space Green's functions, constructed from their full-space
counterpart using the method of images; (i) the second terfh (9 vanishes in the time-independent
case. The static TS is thus a priori less sensitive than its dynamic counterpart to defects that are remote
from the measurement surface.

Computational issues. Anticipating on the nite element implementation discussed next, all numer-

ical results of Secsl.5and 1.6 are based on solvingnear dynamical problems in the time domain,

using an unconditionally-stable version of the Newmark time-marching algorithm. Such linear evolution
problems have well-established convergence properties with respect to decreasing mesh size and time
step, and hence do not raise mesh dependency issues. Note however that discretization error affecting
displacement solutions affect quadratically the TS due to the bilinear structure of fortriti2g(. The

meshes and time steps used thereafter are chosen solely so as to adequately model geometry and rep-
resent expected spatial and time variations in the computed “true”, free and adjoint solutions. Also, no
attempt to improve the accuracy of computed stresses through re ned postprocessing of displacement
solutions has been made (although such procedures might conceivably improve TS evaluation), so as to
show the usefulness of the TS concept within a standard FEM framework.

1.4.2 Implementation and numerical experiments

In spite of the previously-mentioned current lack of a mathematical proof to validate rigorously the
heuristic idea of a TS-based defect indicator function, it is nevertheless useful to evaluate its practical
ef ciency through numerical experiments. This study aims at establishing the ability of the time-domain
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TS to identify defects (here mostly taken as impenetrable objects such as cavities in elastic solids), em-
phasizing the computational ef ciency of the approach and its ease of implementation within a standard
nite element framework, and discussing the main features of such wave-based imaging approach. In the
sections to follow, results from numerical experiments will be presented for the 2D scalar wave equation
(Sectionl.5), then for 2D and 3D elastodynamics (Sectiof).

Discretization. Aiming at a FEM-based implementation of the time-domain topological sensitivity
of J,let , and (B) denote FEM discretizations of the reference domaiand any cavitated trial
domain ( B), whose meshes are assumed to coincide over the (discretized) observation Sﬁﬁ‘face
Then, a discretized least-squares cost function is be set up in the form

XOXRT g b 2
In( n(B);T)= Skuen (i5t) upP itk (1.4.1)
i=1 j=0
wheren®s denote the number of nodes Iocated&@‘is, fto=0;:::;th, = Tgis a sequence of discrete

time instants (a constant time steg being assumed for simplicity), angg ; ugbs denote the FE-
computed trial displacement and the observed displacement sampled at the nsﬁf?ésrefspectively.
For the purposes of computing the TS eld, itis necessary to set up the discretized reference dgmain
whereas the discretized trial domaip(B) is introduced for the purpose of a consistent de nitionpf
but is not actually needed.

In the numerical results to follow, the dauﬁbs is generated synthetically, using a discretized version
irue of the “true” domain with the defects (or set thereof) to be identi ed. In that case, the meshes of
rue andSePs are not required to coincide ovef®s.

All forward and adjoint solutions are performed using an unconditionally-stable Newmark time-

marching scheme with parameters 1=4; =1=2 (Hughes1987).

Discretized time convolution. A discrete version of the time convolutiof.B.9 is also adopted as
X
Vi ?wWh]( i5tk) t Va( istp)wn( stk tj) (06 k6 nt): (1.4.2)
j=0
Then the adjoint statéy corresponding to the discretized cost functian(l) is de ned on  and
results from time-dependenbdalforcesF overSﬁbs de ned by

Fr( :t)=un( 5tr t) ulP it t) (16i6n°S 06 k6 nt) (1.4.3)

Truncated topological sensitivity. To focus on areas of whereT attains suf ciently low (negative)
values, a thresholded versidn of T depending on a cut-off parameters used in some of the following
examples. Itis de ned by

T(z;T) (T6 TMn);

T (z;T)= 0 (T> -I-min)

with TMn = min T(z;T); < & (1.4.4)

with the implicit assumption thaf™" < 0. Moreover, letBeo( ) denote the geometrical support of
T (z;T), i.e. theregion of de ned by

Be( )= 22 T (z;T)<O0 : (1.4.5)



16 CHAPTER 1. FEM-BASED APPROACH FOR CAVITY IDENTIFICATION

Thus an estimation of the unknown cavity (or set thereof) suggested by the thresholded TS may be
de ned in terms ofBeq( ). The following additional de nitions will also be useful: the characteristic
radiusReq( ) of Beg( ), given by

1 1=2 3 1=3
Reg= ~jBed ~ (2D)i Req= ,-iBed  (3D); (1.4.6)

wherejB ¢ stands for the volume d@¢q, and the distance( ) between the centroixleq of Beg( ) and

the true cavity centroig™®2 | i.e.
Z

d=jx"™® Xeg WithXeq= i av (1.4.7)
JBeOJ Beq

1.5 Defectimaging using acoustic time-domain data

In this set of examples, the reference domairs the unit square, i.e.= f06 1; 26 1g(Fig.1.1).

The primary eld is governed by the two-dimensional scalar wave equation of e.g. linear acoustics.
The identi cation of a seB ""® of impenetrable obstacles, such that a homogeneous Neumann boundary
condition describing a zero normal velocity is prescribed on the obstacle bountt&rys considered,
based on four (simulated) experiments of duraffonThe free pressure eldk) associated to experi-
ment numbek is de ned through the boundary-initial value problem

u®( sty w®(:t)=0 ( 2 ;06t6T)
ru®C:t)n()=1 ( 2S¢ 06t6T)
ru®(:t)yn()=0 ( 2S(6k); 06t6T)
u(;0=u®(;0=0 ( 2)

(1.5.1)

where eacls: is one of the sides of the square boundary phumbered according to Fid.1, and
denotes the two-dimensional Laplacian operator. Note that the wave velocity iscsefltoso that the
travel time of waves propagating vertically frof to Sz or horizontally fromS; to S4 is one unit of
time. All simulations presented in this section were performed using a nite element method based on a
piecewise-linear interpolation, i.e. three-noded triangular elements. The cost function
Z.Z
CICE S jug’( 51 uged D% ds dt
2 0 S1+ So+ S3+ Sy
is then introduced (in a discretized form similar fo4.1)), whereugfj)e denotes the pressure eld arising
in ™= nB'efrom the external excitation de ned irl.(5.1), uggs is the corresponding (possibly
polluted) observation, and® is the predicted measurement for an assumed con gurdiasf the
obstacle. The topological sensitivity(z; T) of J (), such that

IO (2 T) = 30T+ "%BIT(Z; T) + o("?)
is given (following an analysis similar to that of Sectibr) by

n 4 0
T(z;T)= 21 a®W2r ul+ go(k)?u(k) (z;1)
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o)

S ow S,

Figure 1.1: Defect imaging using acoustic time-domain data: geometry and notations.

Figure 1.2: Identi cation of a single scatterer: meshes used for generating the synthetic data (left) and
computing the topological sensitivity (right).

Identi cation of a single scatterer. Let B'€ denote the ellipse with parameters as given for scatterer
1 in Tablel1.1 (where “inclination” refers to the angle between thedirection and the major princi-
pal axis). The meshes used for generating the synthetic@,@geand for computingu; @ andT( ; T)

(Fig. 1.2) feature 16, 268 and 9, 841 DOFs, respectively.

Figure 1.3 shows the distribution of ( ; T) obtained for the above-de ned single-scatterer identi-
cation problem (having used =2, =0:5and t=2:510 2). The regionBe( ) clearly pinpoints
correctly the location of the defect, while its size gives a reasonable estimation of the actual defect size.
Figure 1.4 moreover shows, by means of a sequence of blow-ups of the region surrounding the actual
defects for ranging from 0.1 to 0.9, thaBeq( ) is relatively insensitive to the choice of within a
fairly wide range of values (approximatedy26 6 0:6 for this example).

Figurel.5thenillustrates how the choice of experiment con guration and duration affects the results.
Figurel.5(a) which repeats Fidl.3, is based on the single experimént 1 and a duratiod =2 large
enough for a wave emanating frdga to hit the defect and send scattered signals back to various parts of
the boundary. Hence, the cost function contains enough data about the object to make an identi cation
possible. In contrast, under the same conditions but with data collected only unfil, the scattering
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Figure 1.3: Identi cation of a single scatterer: distribution of thresholded topological sensitiVity
withT=2 and =0:5.

of a wave emanating fror8; seldom has suf cient time to send information to the boundary, and the
defect is not identi ed (Fig.l.5(b). Using the same reduced experiment durafios 1 but with an
incident wave emanating from surfa&g, located closer to the defect, some of the scattered signals
reach the boundary befote= 1 resulting in an identi cation (Fig1.5(c) that is not as good as in

Fig. 1.5(a)but still acceptable. Finally, maintainirig= 1 and using a multiple experimekt=1; 2; 3; 4

(with experimentk = 3 ; 4 contributing most of the usable data due to the chosen duration) yields again a
satisfactory identi cation (Figl.5(d). These observations entirely conform with what one would expect
based on physical intuition.

Scatterer # Semigxes Centroid Inclination
1 5Z6=10Q 35 26=500 (0:30,0:65) tan (1=5)
2 D 29=100 3p 26=400 (060;0:35) tan 1(5=2)
3 D 17=100 3p 17=200 (025;0:30) tan 1(1=5)
4 13=100 3 13=200 (055;0:75) tan 1(5=2)

Table 1.1: Identi cation of a multiple scatterer: geometrical parameters.

Simultaneous identi cation of a multiple scatterer. The simultaneous identi cation of a set of four
elliptical scatterers, whose characteristics are gathered in Tahles now considered. The mesh used

for generating the synthetic dané'fj)e now features 24,098 DOFs. The resulting distributio of ; T)
obtained for a multiple simulated experimént 1;2; 3; 4 with durationT = 2 and a cut-off =0:5

is shown in Fig.1.6. The corresponding regioBeq( ) is split into four connected components, each
one correctly located at one of the defects. The identi cation is simultaneous in that the topological
sensitivity is computed at once on the basis of the free and adjoint solutions, with no prior information
about the number of defects fed into the computation.
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(@ =0:1 (b) =0:2 (c) =0:3
(d =04 (e) =05 H =06
(99 =07 (hy =08 @ =0:9

Figure 1.4: Identi cation of a single scatterer: in uence of cut-off parameter

1.6 Defect imaging using elastodynamic time-domain data

1.6.1 Methodology

Synthetic experiment con guration. The reference elastic domains considered are the unit cube
fO6 1; 2; 36 lgorthe unitsquare= f06 1; 26 1g. The material parameters; are set so
that the longitudinal wave velocity (which is fastest) is unity:

CL = P = 2=-1 (161)

(with  de ned by (1.A.5)), so thatT =1 corresponds to the travel time of longitudinal waves propa-
gating between any two opposite faces®f in a direction normal to them. For both 3D and 2D cases,

a single synthetic experiment is considered throughout this section, whereby a compressional loading
tn =  H(t)ez (whereH (t) denotes the Heaviside step function) is applied on the facel of @

while a homogenous Dirichlet condition is prescribed on the fgge= f , = 0g. The observation
surface is taken as the whole Neumann surfS@é%z SN= @ (1 nSp.

The reference meshy, is based on an isoparametric piecewise-linear interpolation employing three-
noded triangular elements and 1,988 nodes (2D case) or four-noded tetrahedral elements and 19, 683
nodes (3D case). Moreover, to guard against the “inverse crimelt¢n and Kress1992, the syn-
thetic datau °*Sis computed by means of a ner discretization, witf“® discretized into isoparametric
piecewise-quadratic elements, i.e. six-noded triangular elements (2D case) or ten-noded tetrahedral ele-
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@k=1;T=2 (b)yk=1;T=1

c)k=4;T=1 (d)k=1;2;3,4, T=1

Figure 1.5: Identi cation of a single scatterer: in uence of experiment con guration and duration.

Figure 1.6: Identi cation of a multiple scatterer, with = 1;2;3;4andT =2: TS eld T (left) and its
thresholded versioi with =0:5 (right).

ments (3D case), arranged for convenience so that the elementsasfd “® coincide onS°*. The
simulated displacements at the vertex nodes f° on SObs gre then retained (and the values at the
midside nodes discarded), which provide the nodal values'¥sfon SePSused in the discrete cost func-

tion (1.4.7).
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