S. Millipore and F. ). Quentin-en-yvelines, Cette étape est réalisée grâce au robot, Genesis Proteam, vol.150

. Après-Évaporation-de-l-'acn, chaque fraction est reprise dans 10L de solvant A, transférée dans un tube LC classique et réinjectée successivement pour une séparation RP-HPLC. Pour l'élimination des contaminants sur le circuit SCX, une cartouche de purification (C18 PepMap100, 5m, 100 Å, 1 mm d.i

. Le-kit-d-'essai-enzcheck, Molecular Probes) contenant de la caséine BODIPY FL comme substrat générique a été utilisé en suivant la procédure du fabricant, i.e. en maintenant un rapport extrait L'incubation dure une nuit à 37°C. Cette étude a été faite à différents pH : tampon acétate 0, p.10

N. L. Anderson and N. G. Anderson, 37°C à pH=8. L'absorbance est mesurée à la longueur d'onde de 405nm. PARTIE VIII-BIBLIOGRAPHIE 1 Proteome and proteomics: new technologies, new concepts, and new words, Electrophoresis, issue.11, pp.19-1853, 1998.

D. N. Perkins, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, vol.447, issue.18, pp.3551-67, 1999.
DOI : 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

S. T. Kosak and M. Groudine, Gene Order and Dynamic Domains, Science, vol.306, issue.5696, pp.306-644, 2004.
DOI : 10.1126/science.1103864

P. A. Haynes, N. Fripp, and R. Aebersold, Identification of gel-separated proteins by liquid chromatography-electrospray tandem mass spectrometry: Comparison of methods and their limitations, Electrophoresis, vol.22, issue.6, pp.939-984, 1998.
DOI : 10.1002/elps.1150190609

M. Schrader and P. Schulz-knappe, Peptidomics technologies for human body fluids, Trends in Biotechnology, vol.19, pp.55-60, 2001.
DOI : 10.1016/S0167-7799(01)00010-5

P. Schulz-knappe, Peptidomics The Comprehensive Analysis of Peptides in Complex Biological Mixtures, Combinatorial Chemistry & High Throughput Screening, vol.4, issue.2, pp.207-224, 2001.
DOI : 10.2174/1386207013331246

S. P. Gygi and R. Aebersold, Mass spectrometry and proteomics, Current Opinion in Chemical Biology, vol.4, issue.5, pp.489-94, 2000.
DOI : 10.1016/S1367-5931(00)00121-6

E. Clynen, A. De-loof, and L. Schoofs, The use of peptidomics in endocrine research, General and Comparative Endocrinology, vol.132, issue.1
DOI : 10.1016/S0016-6480(03)00158-8

G. Baggerman, Peptidomic analysis of the larvalDrosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry, Journal of Mass Spectrometry, vol.95, issue.2, pp.250-60, 2005.
DOI : 10.1002/jms.744

D. M. Desiderio, Mass spectrometric analysis of neuropeptidergic systems in the human pituitary and cerebrospinal fluid, Journal of Chromatography B: Biomedical Sciences and Applications, vol.731, issue.1, pp.3-22, 1999.
DOI : 10.1016/S0378-4347(99)00172-3

F. Y. Che, Identification of peptides from brain and pituitary of Cpe(fat)/Cpe(fat) mice, Proc Natl Acad Sci U S A, issue.17, pp.98-9971, 2001.

C. D. Georgiou, Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins, Analytical and Bioanalytical Chemistry, vol.1, issue.1, pp.391-403, 2008.
DOI : 10.1007/s00216-008-1996-x

C. H. Chen, Review of a current role of mass spectrometry for proteome research, Analytica Chimica Acta, vol.624, issue.1, pp.16-36, 2008.
DOI : 10.1016/j.aca.2008.06.017

E. F. Petricoin, Use of proteomic patterns in serum to identify ovarian cancer, The Lancet, vol.359, issue.9306, pp.572-579, 2002.
DOI : 10.1016/S0140-6736(02)07746-2

X. S. Puente, A genomic view of the complexity of mammalian proteolytic systems, Biochemical Society Transactions, vol.33, issue.2, pp.331-335, 2005.
DOI : 10.1042/BST0330331

X. S. Puente, Human and mouse proteases: a comparative genomic approach Evolution of proteolytic enzymes, Nat Rev Genet Science, issue.474647, pp.544-58, 1984.

G. A. Mcquibban, Inflammation Dampened by Gelatinase A Cleavage of Monocyte Chemoattractant Protein-3, Science, vol.289, issue.5482, pp.1202-1208, 2000.
DOI : 10.1126/science.289.5482.1202

C. Lopez-otin and C. M. Overall, Protease degradomics: A new challenge for proteomics, Nature Reviews Molecular Cell Biology, vol.3, issue.7, pp.509-528, 2002.
DOI : 10.1038/nrm858

S. A. Gerber, Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS, Proceedings of the National Academy of Sciences, vol.100, issue.12, pp.6940-6945, 2003.
DOI : 10.1073/pnas.0832254100

R. Birner-gruenberger, The Lipolytic Proteome of Mouse Adipose Tissue, Molecular & Cellular Proteomics, vol.4, issue.11, pp.1710-1717, 2005.
DOI : 10.1074/mcp.M500062-MCP200

H. Schmidinger, A. Hermetter, and R. Birner-gruenberger, Activity-based proteomics: enzymatic activity profiling in complex proteomes, Amino Acids, vol.256, issue.4, pp.333-50, 2006.
DOI : 10.1007/s00726-006-0305-2

C. M. Whitehouse, Electrospray interface for liquid chromatographs and mass spectrometers, Analytical Chemistry, vol.57, issue.3, pp.675-679, 1985.
DOI : 10.1021/ac00280a023

C. M. Whitehouse, Electrospray interface for liquid chromatographs and mass spectrometers, Analytical Chemistry, vol.57, issue.3, pp.675-684, 1985.
DOI : 10.1021/ac00280a023

K. Chatman, Nanoelectrospray Mass Spectrometry and Precursor Ion Monitoring for Quantitative Steroid Analysis and Attomole Sensitivity, Analytical Chemistry, vol.71, issue.13, pp.71-2358, 1999.
DOI : 10.1021/ac9806411

M. Karas, F. Hillenkamp, A. , G. Irinyi, R. Gijbels et al., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons Hydrodynamic Model of Matrix-Assisted Laser- Desorption Mass-Spectrometry Ion formation in MALDI: the cluster ionization mechanism, Anal Chem Analytical Chemistry Chem Rev, vol.103, issue.20172, pp.60-2299, 1988.

W. C. Chang, Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited Exploring the limits and losses in MALDI sample preparation of attomole amounts of peptide mixtures Etude et caractérisation structurale de modifications post-traductionnelles de la tubuline par spectrométrie de masse Instrument design and characterization for high resolution MALDI-MS imaging of tissue sections, Anal Chim Acta International Journal of Mass Spectrometry Vinh, J. J Mass Spectrom, vol.582, issue.424, pp.1-9, 1999.

J. C. Lee, Reactivity-based one-pot synthesis of the tumor-associated antigen N3 minor octasaccharide for the development of a photocleavable DIOS-MS sugar array

N. Y. Hsu, Desorption Ionization of Biomolecules on Metals, Analytical Chemistry, vol.80, issue.13, pp.5203-5213, 2008.
DOI : 10.1021/ac800435r

M. L. Reyzer and R. M. Caprioli, MALDI-MS-based imaging of small molecules and proteins in tissues, Current Opinion in Chemical Biology, vol.11, issue.1, pp.29-35, 2007.
DOI : 10.1016/j.cbpa.2006.11.035

M. A. Baldwin, Mass Spectrometers for the Analysis of Biomolecules, Methods Enzymol, vol.402, pp.3-48, 2005.
DOI : 10.1016/S0076-6879(05)02001-X

B. Domon and R. Aebersold, Mass Spectrometry and Protein Analysis, Science, vol.312, issue.5771, pp.312-212, 2006.
DOI : 10.1126/science.1124619

N. L. Anderson and N. G. Anderson, The human plasma proteome: history, character, and diagnostic prospects, Mol Cell Proteomics, issue.111, pp.845-67, 2002.

M. P. Washburn, D. Wolters, and J. R. Yates, Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat Biotechnol, vol.3, issue.193, pp.242-249, 2001.

D. A. Wolters, M. P. Washburn, J. R. Yates-clauser, K. R. , P. Baker et al., An automated multidimensional protein identification technology for shotgun proteomics 73(23): p. 5683-90. 43 Role of accurate mass measurement (+/-10 ppm) in protein identification strategies employing MS or MS/MS and database searching Utility of accurate mass tags for proteome-wide protein identification, Anal Chem Anal Chem Anal Chem, vol.3, issue.4414, pp.71-2871, 1999.

L. Sleno, D. A. Volmer, A. G. Marshall, and E. J. , Assigning product ions from complex MS/MS spectra: the importance of mass uncertainty and resolving power Accurate mass measurements using MALDI-TOF with delayed extraction, J Am Soc Mass Spectrom J Protein Chem, vol.16, issue.25, pp.16-363, 1997.

R. A. Zubarev, P. Hakansson, and B. Sundqvist, Accuracy Requirements for Peptide Characterization by Monoisotopic Molecular Mass Measurements, Analytical Chemistry, vol.68, issue.22, pp.68-4060, 1996.
DOI : 10.1021/ac9604651

M. V. Gorshkov and R. A. Zubarev, On the accuracy of polypeptide masses measured in a linear ion trap, Rapid Communications in Mass Spectrometry, vol.144, issue.24, pp.19-3755, 2005.
DOI : 10.1002/rcm.2248

A. Keller, Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search, Analytical Chemistry, vol.74, issue.20, pp.74-5383, 2002.
DOI : 10.1021/ac025747h

W. J. Qian, Probability-Based Evaluation of Peptide and Protein Identifications from Tandem Mass Spectrometry and SEQUEST Analysis:?? The Human Proteome, Journal of Proteome Research, vol.4, issue.1, pp.53-62, 2005.
DOI : 10.1021/pr0498638

T. Liu, High Dynamic Range Characterization of the Trauma Patient Plasma Proteome, Molecular & Cellular Proteomics, vol.5, issue.10, pp.1899-913, 2006.
DOI : 10.1074/mcp.M600068-MCP200

J. Peng, Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC???MS/MS) for Large-Scale Protein Analysis:?? The Yeast Proteome, Journal of Proteome Research, vol.2, issue.1, pp.43-50, 2003.
DOI : 10.1021/pr025556v

S. A. Beausoleil, Large-scale characterization of HeLa cell nuclear phosphoproteins, Proceedings of the National Academy of Sciences, vol.101, issue.33, pp.12130-12135, 2004.
DOI : 10.1073/pnas.0404720101

J. V. Olsen and M. Mann, Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation, Proceedings of the National Academy of Sciences, vol.101, issue.37, pp.13417-13439, 2004.
DOI : 10.1073/pnas.0405549101

M. L. Nielsen, M. M. Savitski, and R. A. Zubarev, Improving Protein Identification Using Complementary Fragmentation Techniques in Fourier Transform Mass Spectrometry, Molecular & Cellular Proteomics, vol.4, issue.6, pp.835-880, 2005.
DOI : 10.1074/mcp.T400022-MCP200

W. Haas, Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics, Molecular & Cellular Proteomics, vol.5, issue.7, pp.1326-1363, 2006.
DOI : 10.1074/mcp.M500339-MCP200

F. He, Theoretical and experimental prospects for protein identification based solely on accurate mass measurement An accurate mass tag strategy for quantitative and high-throughput proteome measurements On the proper use of mass accuracy in proteomics, J Proteome Res Proteomics Mol Cell Proteomics, vol.3, issue.63, pp.61-68, 2002.

M. B. Comisarow and A. G. Marshall, Theory of Fourier transform ion cyclotron resonance mass spectroscopy. I. Fundamental equations and low???pressure line shape, The Journal of Chemical Physics, vol.64, issue.1, pp.110-119, 1976.
DOI : 10.1063/1.431959

J. Dawson and M. Guilhaus, Orthogonal-acceleration time-of-flight mass spectrometer, Rapid Communications in Mass Spectrometry, vol.57, issue.5, pp.155-159, 1989.
DOI : 10.1002/rcm.1290030511

A. Makarov, Electrostatic Axially Harmonic Orbital Trapping:?? A High-Performance Technique of Mass Analysis, Analytical Chemistry, vol.72, issue.6, pp.1156-62, 2000.
DOI : 10.1021/ac991131p

J. A. Hipple, H. Sommer, and H. A. Thomas, A Precise Method of Determining the Faraday by Magnetic Resonance, Physical Review, vol.76, issue.12, pp.76-1877, 1949.
DOI : 10.1103/PhysRev.76.1877.2

S. H. Guan and A. G. Marshall, Ion traps for Fourier transform ion cyclotron resonance mass spectrometry: principles and design of geometric and electric configurations, International Journal of Mass Spectrometry and Ion Processes, vol.146, issue.147, pp.261-296, 1995.
DOI : 10.1016/0168-1176(95)04190-V

A. G. Marshall, C. L. Hendrickson, and G. S. Jackson, Fourier transform ion cyclotron resonance mass spectrometry: A primer, Mass Spectrometry Reviews, vol.68, issue.166, pp.1-35, 1998.
DOI : 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K

H. Dehmelt, Experiments with an Isolated Subatomic Particle at Rest. Reviews of Modern Physics, pp.525-530, 1990.

K. H. Kingdon and D. F. Hunt, A method for the neutralization of electron space charge by positive ionization at very low gas pressures Sequence analysis of polypeptides by collision activated dissociation on a triple quadrupole mass spectrometer The Interpretation of Collision-Induced Dissociation Tandem Mass-Spectra of Peptides, Physical Review Biomed Mass Spectrom Mass Spectrometry Reviews, vol.21, issue.141, pp.408-418, 1923.

R. S. Johnson, Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine Proposal for a common nomenclature for sequence ions in mass spectra of peptides, 601. 72. Biemann, K., Appendix 5. Nomenclature for peptide fragment ions, 1984.

M. J. Polce, D. Ren, and C. Wesdemiotis, Dissociation of the peptide bond in protonated peptides, J Mass Spectrom, issue.12, pp.35-1391, 2000.

V. H. Wysocki, Mobile and localized protons: a framework for understanding peptide dissociation, Journal of Mass Spectrometry, vol.13, issue.12, pp.35-1399, 2000.
DOI : 10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R

G. Chen, Applications of LC/MS in structure identifications of small molecules and proteins in drug discovery, Journal of Mass Spectrometry, vol.314, issue.3, pp.279-87, 2007.
DOI : 10.1002/jms.1184

W. M. Bodnar, Maximum Number of Components Resolvable by Gel Filtration and Other Elution Chromatographic Methods Peak Capacity in Chromatography Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations, J Am Soc Mass Spectrom Analytical Chemistry Analytical Chemistry J Chromatogr A, vol.14, issue.85712, pp.971-980, 1967.

U. D. Neue and J. R. Mazzeo, A theoretical study of the optimization of gradients at elevated temperature, Journal of Separation Science, vol.255, issue.12, pp.24-921, 2001.
DOI : 10.1002/1615-9314(20011201)24:12<921::AID-JSSC921>3.0.CO;2-2

M. Gilar, Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography, Journal of Chromatography A, vol.1061, issue.2, pp.1061-183, 2004.
DOI : 10.1016/j.chroma.2004.10.092

G. Guiochon, The limits of the separation power of unidimensional column liquid chromatography, Journal of Chromatography A, vol.1126, issue.1-2, pp.6-49, 2006.
DOI : 10.1016/j.chroma.2006.07.032

X. Wang, W. E. Barber, and P. W. Carr, A practical approach to maximizing peak capacity by using long columns packed with pellicular stationary phases for proteomic research, Journal of Chromatography A, vol.1107, issue.1-2, pp.139-51, 2006.
DOI : 10.1016/j.chroma.2005.12.050

Y. Shen, MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabolomics Comparing monolithic and microparticular capillary columns for the separation and analysis of peptide mixtures by liquid chromatography-mass spectrometry Two-dimensional separations: concept and promise, Theoretical Investigation of the Potentialities of the Use of a Multidimensional Column in Chromatography, pp.77-3090, 1983.

D. R. Stoll, Fast, comprehensive two-dimensional liquid chromatography, Journal of Chromatography A, vol.1168, issue.1-2, pp.3-43, 2007.
DOI : 10.1016/j.chroma.2007.08.054

M. Gilar, Orthogonality of Separation in Two-Dimensional Liquid Chromatography, Analytical Chemistry, vol.77, issue.19, pp.77-6426, 2005.
DOI : 10.1021/ac050923i

Y. C. Tyan, Proteomic Profiling of Human Pleural Effusion Using Two-Dimensional Nano Liquid Chromatography Tandem Mass Spectrometry, Journal of Proteome Research, vol.4, issue.4, pp.1274-86, 2005.
DOI : 10.1021/pr049746c

T. Kislinger, Global Survey of Organ and Organelle Protein Expression in Mouse: Combined Proteomic and Transcriptomic Profiling, Cell, vol.125, issue.1, pp.173-86, 2006.
DOI : 10.1016/j.cell.2006.01.044

A. J. Alpert and P. C. Andrews, Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)-silica, Journal of Chromatography A, vol.443, issue.443, pp.85-96, 1988.
DOI : 10.1016/S0021-9673(00)94785-X

M. Chen, Analysis of human liver proteome using replicate shotgun strategy, PROTEOMICS, vol.24, issue.14, pp.2479-88, 2007.
DOI : 10.1002/pmic.200600338

H. Wang, Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment, Journal of Proteome Research, vol.5, issue.2, pp.361-370, 2006.
DOI : 10.1021/pr0503681

A. I. Nesvizhskii, O. Vitek, and R. Aebersold, Analysis and validation of proteomic data generated by tandem mass spectrometry, Nature Methods, vol.5, issue.10, pp.787-97, 2007.
DOI : 10.1038/nmeth1088

E. Kapp, F. Schutz, J. K. , A. L. Mccormack, and J. R. Yates, Overview of tandem mass spectrometry (MS/MS) database search algorithms An Approach to Correlate Tandem Mass- Spectral Data of Peptides with Amino-Acid-Sequences in a Protein Database, Curr Protoc Protein Sci Journal of the American Society for Mass Spectrometry, vol.25, issue.511, pp.976-989, 1994.

N. Zhang, R. Aebersold, and B. Schwikowski, ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data, PROTEOMICS, vol.70, issue.10, pp.1406-1418, 2002.
DOI : 10.1002/1615-9861(200210)2:10<1406::AID-PROT1406>3.0.CO;2-9

R. Craig and R. C. Beavis, TANDEM: matching proteins with tandem mass spectra, Bioinformatics, vol.20, issue.9, pp.1466-1473, 2004.
DOI : 10.1093/bioinformatics/bth092

J. Colinge, OLAV: Towards high-throughput tandem mass spectrometry data identification, PROTEOMICS, vol.3, issue.8, pp.1454-63, 2003.
DOI : 10.1002/pmic.200300485

L. Y. Geer, Open Mass Spectrometry Search Algorithm, Journal of Proteome Research, vol.3, issue.5, pp.958-64, 2004.
DOI : 10.1021/pr0499491

R. Matthiesen, VEMS 3.0:?? Algorithms and Computational Tools for Tandem Mass Spectrometry Based Identification of Post-translational Modifications in Proteins, Journal of Proteome Research, vol.4, issue.6, pp.2338-2385, 2005.
DOI : 10.1021/pr050264q

D. L. Tabb, C. G. Fernando, and M. C. Chambers, MyriMatch:?? Highly Accurate Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric Analysis, Journal of Proteome Research, vol.6, issue.2, pp.654-61, 2007.
DOI : 10.1021/pr0604054

H. Lam, Development and validation of a spectral library searching method for peptide identification from MS/MS, PROTEOMICS, vol.5, issue.5, pp.655-67, 2007.
DOI : 10.1002/pmic.200600625

R. Craig, J. P. Cortens, and R. C. Beavis, The use of proteotypic peptide libraries for protein identification, Rapid Communications in Mass Spectrometry, vol.20, issue.13, pp.19-1844, 2005.
DOI : 10.1002/rcm.1992

B. E. Frewen, Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries, Analytical Chemistry, vol.78, issue.16, pp.78-5678, 2006.
DOI : 10.1021/ac060279n

R. S. Johnson and J. A. Taylor, Searching Sequence Databases via De Novo Peptide Sequencing by Tandem Mass Spectrometry, Molecular Biotechnology, vol.22, issue.3, pp.301-316, 2002.
DOI : 10.1385/MB:22:3:301

A. Frank and P. Pevzner, PepNovo:?? De Novo Peptide Sequencing via Probabilistic Network Modeling, Analytical Chemistry, vol.77, issue.4, pp.964-73, 2005.
DOI : 10.1021/ac048788h

B. Ma, PEAKS: powerful software for peptidede novo sequencing by tandem mass spectrometry, Rapid Communications in Mass Spectrometry, vol.11, issue.20, pp.17-2337, 2003.
DOI : 10.1002/rcm.1196

D. L. Tabb, A. Saraf, and J. R. Yates, GutenTag:?? High-Throughput Sequence Tagging via an Empirically Derived Fragmentation Model, Analytical Chemistry, vol.75, issue.23, pp.75-6415, 2003.
DOI : 10.1021/ac0347462

S. Tanner, InsPecT:?? Identification of Posttranslationally Modified Peptides from Tandem Mass Spectra, Analytical Chemistry, vol.77, issue.14, pp.4626-4665, 2005.
DOI : 10.1021/ac050102d

P. Hernandez, Popitam: Towards new heuristic strategies to improve protein identification from tandem mass spectrometry data, PROTEOMICS, vol.3, issue.6, pp.870-878, 2003.
DOI : 10.1002/pmic.200300402

I. V. Shilov, The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra, Molecular & Cellular Proteomics, vol.6, issue.9, pp.1638-55, 2007.
DOI : 10.1074/mcp.T600050-MCP200

J. R. Yates, Method to Correlate Tandem Mass Spectra of Modified Peptides to Amino Acid Sequences in the Protein Database, Analytical Chemistry, vol.67, issue.8, pp.67-1426, 1995.
DOI : 10.1021/ac00104a020

J. R. Yates, J. K. Eng, and A. L. Mccormack, Mining Genomes: Correlating Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in Nucleotide Databases, Analytical Chemistry, vol.67, issue.18, pp.67-3202, 1995.
DOI : 10.1021/ac00114a016

E. A. Kapp, An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis, Proteomics, issue.513, pp.3475-90, 2005.

D. J. Pappin, P. Hojrup, and A. J. Bleasby, Rapid identification of proteins by peptide-mass fingerprinting, Current Biology, vol.3, issue.6, pp.327-359, 1993.
DOI : 10.1016/0960-9822(93)90195-T

E. Brunner, A high-quality catalog of the Drosophila melanogaster proteome, Nature Biotechnology, vol.287, issue.5, pp.576-83, 2007.
DOI : 10.1038/nbt1300

A. I. Nesvizhskii, Dynamic Spectrum Quality Assessment and Iterative Computational Analysis of Shotgun Proteomic Data: Toward More Efficient Identification of Post-translational Modifications, Sequence Polymorphisms, and Novel Peptides, Molecular & Cellular Proteomics, vol.5, issue.4, pp.652-70, 2006.
DOI : 10.1074/mcp.M500319-MCP200

M. Mann and M. Wilm, Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags, Analytical Chemistry, vol.66, issue.24, pp.4390-4399, 1994.
DOI : 10.1021/ac00096a002

K. A. Holbrook and K. Wolff, The structure and development of skin, Dermatology in General Medecine, pp.92-131, 1987.

G. F. Odland, Histology and fine structure of the epidermis, in The skin: by 30 authors, pp.28-46, 1971.

A. Laplante, Mécanismes de réépithéliation des plaies cutanées : expression des protéines de stress chez la souris et analyse à l'aide d'un nouveau modèle tridimensionnel humain développé par génie tissulaire, 2002.

E. Fuchs and H. Green, Changes in keratin gene expression during terminal differentiation of the keratinocyte, Cell, vol.19, issue.4, pp.1033-1075, 1980.
DOI : 10.1016/0092-8674(80)90094-X

R. L. Eckert, Structure, function, and differentiation of the keratinocyte, Physiol Rev, vol.69, issue.4, pp.1316-1362, 1989.

S. M. Thacher and R. H. Rice, Keratinocyte-specific transglutaminase of cultured human epidermal cells: Relation to cross-linked envelope formation and terminal differentiation, Cell, vol.40, issue.3, pp.40-685, 1985.
DOI : 10.1016/0092-8674(85)90217-X

T. Mehrel, Identification of a major keratinocyte cell envelope protein, loricrin, Cell, vol.61, issue.6, pp.61-1103, 1990.
DOI : 10.1016/0092-8674(90)90073-N

H. Green, Terminal differentiation of cultured human epidermal cells, Cell, vol.11, issue.2, pp.405-421, 1977.
DOI : 10.1016/0092-8674(77)90058-7

P. M. Elias, Epidermal Lipids, Barrier Function, and Desquamation, Journal of Investigative Dermatology, vol.80, issue.1s, pp.44-49, 1983.
DOI : 10.1038/jid.1983.12

A. V. Rawlings and C. R. Harding, Moisturization and skin barrier function, Dermatologic Therapy, vol.287, issue.5, pp.43-51, 2004.
DOI : 10.1159/000066140

S. J. Chapman and A. Walsh, Desmosomes, corneosomes and desquamation. An ultrastructural study of adult pig epidermis, Archives of Dermatological Research, vol.68, issue.5, pp.304-314, 1990.
DOI : 10.1007/BF00375724

R. Moll, M. Divo, and L. Langbein, The human keratins: biology and pathology, Histochemistry and Cell Biology, vol.281, issue.24, pp.705-738, 2008.
DOI : 10.1007/s00418-008-0435-6

M. Hesse, T. M. Magin, and K. Weber, Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18, J Cell Sci, pp.114-2569, 2001.

E. Fuchs, Epidermal differentiation and keratin gene expression, Journal of Cell Science, vol.1993, issue.Supplement 17, pp.197-208, 1993.
DOI : 10.1242/jcs.1993.Supplement_17.28

D. R. Roop, Regulated expression of differentiation-associated keratins in cultured epidermal cells detected by monospecific antibodies to unique peptides of mouse epidermal keratins, Differentiation, vol.35, issue.2, pp.143-50, 1987.
DOI : 10.1111/j.1432-0436.1987.tb00162.x

I. Moll, Distribution of a special subset of keratinocytes characterized by the expression of cytokeratin 9 in adult and fetal human epidermis of various body sites, Differentiation, vol.33, issue.3, pp.254-65, 1987.
DOI : 10.1111/j.1432-0436.1987.tb01565.x

T. S. Stappenbeck and K. J. Green, The desmoplakin carboxyl terminus coaligns with and specifically disrupts intermediate filament networks when expressed in cultured cells, The Journal of Cell Biology, vol.116, issue.5, pp.1197-209, 1992.
DOI : 10.1083/jcb.116.5.1197

J. J. Meng, Two-hybrid Analysis Reveals Fundamental Differences in Direct Interactions between Desmoplakin and Cell Type-specific Intermediate Filaments, Journal of Biological Chemistry, vol.272, issue.34, pp.272-21495, 1997.
DOI : 10.1074/jbc.272.34.21495

T. S. Stappenbeck, Functional analysis of desmoplakin domains: specification of the interaction with keratin versus vimentin intermediate filament networks, The Journal of Cell Biology, vol.123, issue.3, pp.691-705, 1993.
DOI : 10.1083/jcb.123.3.691

N. O. Ku, The cytoskeleton of digestive epithelia in health and disease, Am J Physiol, vol.2776, issue.1, pp.1108-1145, 1999.

T. Bruno, The RNA polymerase II core subunit 11 interacts with keratin 19, a component of the intermediate filament proteins, FEBS Letters, vol.18, issue.3, pp.273-280, 1999.
DOI : 10.1016/S0014-5793(99)00733-4

J. M. Bonifas, A. L. Rothman, E. H. Epstein, and J. , Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities, Science, vol.254, issue.5035, pp.254-1202, 1991.
DOI : 10.1126/science.1720261

D. Bernard, Etude du mécanisme de la desquamation et des processus enzymatiques qui lui sont associés au cours de la différentiation tardive de l'épiderme humain, 2005.

G. Serre, Identification of Late Differentiation Antigens of Human Cornified Epithelia, Expressed in Re-Organized Desmosomes and Bound to Cross-Linked Envelope, Journal of Investigative Dermatology, vol.97, issue.6, pp.97-1061, 1991.
DOI : 10.1111/1523-1747.ep12492589

D. L. Stokes, Desmosomes from a structural perspective, Current Opinion in Cell Biology, vol.19, issue.5, pp.565-71, 2007.
DOI : 10.1016/j.ceb.2007.09.003

A. Lundstrom, Evidence for a role of corneodesmosin, a protein which may serve to modify desmosomes during cornification, in stratum corneum cell cohesion and desquamation, Arch Dermatol Res, issue.7, pp.286-369, 1994.

E. Fuchs and S. Raghavan, GETTING UNDER THE SKIN OF EPIDERMAL MORPHOGENESIS, Nature Reviews Genetics, vol.3, issue.3, pp.199-209, 2002.
DOI : 10.1038/nrg758

O. Keefe, E. J. , H. P. Erickson, and V. Bennett, Desmoplakin I and desmoplakin II. Purification and characterization, J Biol Chem, issue.14, pp.264-8310, 1989.

M. Hatzfeld, Plakophilins: Multifunctional proteins or just regulators of desmosomal adhesion?, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.1, pp.69-77, 2007.
DOI : 10.1016/j.bbamcr.2006.04.009

H. J. Choi, Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure, Nature Structural Biology, issue.98, pp.612-632, 2002.
DOI : 10.1038/nsb818

K. J. Green, Structure of the human desmoplakins. Implications for function in the desmosomal plaque, J Biol Chem, vol.265, issue.5, pp.2603-2615, 1990.

N. A. Chitaev, The binding of plakoglobin to desmosomal cadherins: patterns of binding sites and topogenic potential, The Journal of Cell Biology, vol.133, issue.2, pp.359-69, 1996.
DOI : 10.1083/jcb.133.2.359

H. L. Palka and K. J. Green, Roles of plakoglobin end domains in desmosome assembly, J Cell Sci, issue.110, pp.2359-71, 1997.

A. P. Kowalczyk, The Head Domain of Plakophilin-1 Binds to Desmoplakin and Enhances Its Recruitment to Desmosomes: IMPLICATIONS FOR CUTANEOUS DISEASE, Journal of Biological Chemistry, vol.274, issue.26, pp.274-18145, 1999.
DOI : 10.1074/jbc.274.26.18145

A. P. South, Lack of plakophilin 1 increases keratinocyte migration and reduces desmosome stability, Journal of Cell Science, vol.116, issue.16, pp.3303-3317, 2003.
DOI : 10.1242/jcs.00636

L. Goodwin, Desmoglein shows extensive homology to the cadherin family of cell adhesion molecules, Biochemical and Biophysical Research Communications, vol.173, issue.3, pp.1224-1254, 1990.
DOI : 10.1016/S0006-291X(05)80917-9

L. A. Nilles, Structural analysis and expression of human desmoglein: a cadherin-like component of the desmosome, J Cell Sci, pp.99-809, 1991.

J. Arnemann, Stratification-related expression of isoforms of the desmosomal cadherins in human epidermis, J Cell Sci, vol.104, pp.741-50, 1993.

I. A. King, Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse, Differentiation, vol.62, issue.2, pp.83-96, 1997.
DOI : 10.1046/j.1432-0436.1997.6220083.x

A. J. North, Distinct desmocollin isoforms occur in the same desmosomes and show reciprocally graded distributions in bovine nasal epidermis., Proceedings of the National Academy of Sciences, vol.93, issue.15, pp.93-7701, 1996.
DOI : 10.1073/pnas.93.15.7701

N. A. Chitaev and S. M. Troyanovsky, -dependent Heterophilic Interaction between Desmosomal Cadherins, Desmoglein and Desmocollin, Contributes to Cell???Cell Adhesion, The Journal of Cell Biology, vol.109, issue.1, pp.193-201, 1997.
DOI : 10.1083/jcb.117.2.415

C. Marcozzi, Coexpression of both types of desmosomal cadherin and plakoglobin confers strong intercellular adhesion, J Cell Sci, issue.111, pp.495-509, 1998.

N. Jonca, Corneodesmosin, a Component of Epidermal Corneocyte Desmosomes, Displays Homophilic Adhesive Properties, Journal of Biological Chemistry, vol.277, issue.7, pp.5024-5033, 2002.
DOI : 10.1074/jbc.M108438200

C. Caubet, Homo-Oligomerization of Human Corneodesmosin Is Mediated by Its N-Terminal Glycine Loop Domain, Journal of Investigative Dermatology, vol.122, issue.3, pp.747-54, 2004.
DOI : 10.1111/j.0022-202X.2004.22331.x

M. Simon, Refined Characterization of Corneodesmosin Proteolysis during Terminal Differentiation of Human Epidermis and Its Relationship to Desquamation, Journal of Biological Chemistry, vol.276, issue.23, pp.276-20292, 2001.
DOI : 10.1074/jbc.M100201200

T. Yang, Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice, Genes & Development, vol.18, issue.19, pp.18-2354, 2004.
DOI : 10.1101/gad.1232104

M. Simon, Persistence of both peripheral and non-peripheral corneodesmosomes in the upper stratum corneum of winter xerosis skin versus only peripheral in normal skin, J Invest Dermatol, vol.116, issue.1, pp.23-30, 2001.

H. Goldschmidt and A. M. Kligman, Desquamation of the Human Horny Layer, Archives of Dermatology, vol.95, issue.6, pp.583-589, 1967.
DOI : 10.1001/archderm.1967.01600360029004

L. M. Milstone, J. Mcguire, and J. F. Lavigne, Retinoic Acid Causes Premature Desquamation of Cells from Confluent Cultures of Stratified Squamous Epithelia, Journal of Investigative Dermatology, vol.79, issue.4, pp.253-60, 1982.
DOI : 10.1111/1523-1747.ep12500073

T. D. Allen and C. S. Potten, Desmosomal form, fate, and function in mammalian epidermis, Journal of Ultrastructure Research, vol.51, issue.1, pp.94-105, 1975.
DOI : 10.1016/S0022-5320(75)80011-6

A. Walsh and S. J. Chapman, Sugars protect desmosome and corneosome glycoproteins from proteolysis, Archives of Dermatological Research, vol.16, issue.3, pp.174-183, 1991.
DOI : 10.1007/BF00372058

A. Lundstrom and T. Egelrud, Evidence that Cell Shedding from Plantar Stratum Corneum In Vitro Involves Endogenous Proteolysis of the Desmosomal Protein Desmoglein I, Journal of Investigative Dermatology, vol.94, issue.2, pp.216-236, 1990.
DOI : 10.1111/1523-1747.ep12874531

Y. Suzuki, The role of two endogenous proteases of the stratum corneum in degradation of desmoglein-1 and their reduced activity in the skin of ichthyotic patients, British Journal of Dermatology, vol.126, issue.2, pp.460-464, 1996.
DOI : 10.1111/1523-1747.ep12614489

I. A. King, Expression of Distinct Desmocollin Isoforms in Human Epidermis, Journal of Investigative Dermatology, vol.100, issue.4, pp.373-382, 1993.
DOI : 10.1111/1523-1747.ep12471843

D. Bernard, Analysis of Proteins with Caseinolytic Activity in a Human Stratum Corneum Extract Revealed a Yet Unidentified Cysteine Protease and Identified the So-Called ???Stratum Corneum Thiol Protease??? as Cathepsin L2, Journal of Investigative Dermatology, vol.120, issue.4, pp.592-600, 2003.
DOI : 10.1046/j.1523-1747.2003.12086.x

T. Egelrud and A. Lundstrom, A chymotrypsin-like proteinase that may be involved in desquamation in plantar stratum corneum, Archives of Dermatological Research, vol.45, issue.Suppl 162, pp.108-120, 1991.
DOI : 10.1007/BF00371618

M. Brattsand and T. Egelrud, Purification, Molecular Cloning, and Expression of a Human Stratum Corneum Trypsin-like Serine Protease with Possible Function in Desquamation, Journal of Biological Chemistry, vol.274, issue.42, pp.274-30033, 1999.
DOI : 10.1074/jbc.274.42.30033

T. Horikoshi, Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation, British Journal of Dermatology, vol.36, issue.3, pp.453-462, 1999.
DOI : 10.1002/(SICI)1097-4644(19980101)68:1<74::AID-JCB7>3.3.CO;2-C

J. Sato, Cholesterol Sulfate Inhibits Proteases that are Involved in Desquamation of Stratum Corneum, Journal of Investigative Dermatology, vol.111, issue.2, pp.189-93, 1998.
DOI : 10.1046/j.1523-1747.1998.00244.x

K. List, Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1, The Journal of Cell Biology, vol.208, issue.4, pp.901-911, 2003.
DOI : 10.1046/j.1523-1747.2002.00133.x

A. Eissa and E. P. Diamandis, Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions, Biological Chemistry, vol.389, issue.6, pp.669-80, 2008.
DOI : 10.1515/BC.2008.079

A. Lundstrom and T. Egelrud, Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotrypsin-like enzyme, Archives of Dermatological Research, vol.45, issue.4, pp.234-241, 1990.
DOI : 10.1007/BF00371642

A. Watkinson and C. Smith, The role of pro-SCCE and SCCE in desquamation, Proceedings of the 21st IFSCC Congress, 2000.

C. Caubet, Degradation of Corneodesmosome Proteins by Two Serine Proteases of the Kallikrein Family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7, Journal of Investigative Dermatology, vol.122, issue.5, pp.1235-1279, 2004.
DOI : 10.1111/j.0022-202X.2004.22512.x

M. Brattsand, A Proteolytic Cascade of Kallikreins in the Stratum Corneum, Journal of Investigative Dermatology, vol.124, issue.1, pp.198-203, 2005.
DOI : 10.1111/j.0022-202X.2004.23547.x

A. Rawlings, The effect of glycerol and humidity on desmosome degradation in stratum corneum, Archives of Dermatological Research, vol.56, issue.1, pp.457-64, 1995.
DOI : 10.1007/BF00373429

T. Horikoshi, Isoforms of cathepsin D and human epidermal differentiation, Biochimie, vol.80, issue.7, pp.605-617, 1998.
DOI : 10.1016/S0300-9084(98)80013-8

S. Igarashi, Cathepsin D, but not cathepsin E, degrades desmosomes during epidermal desquamation, British Journal of Dermatology, vol.14, issue.2, pp.355-61, 2004.
DOI : 10.1111/1523-1747.ep12874531

A. Watkinson, Stratum corneum thiol protease (SCTP): a novel cysteine protease of late epidermal differentiation, Archives of Dermatological Research, vol.291, issue.5, pp.260-268, 1999.
DOI : 10.1007/s004030050406

N. Komatsu, Elevated Stratum Corneum Hydrolytic Activity in Netherton Syndrome Suggests an Inhibitory Regulation of Desquamation by SPINK5-Derived Peptides, Journal of Investigative Dermatology, vol.118, issue.3, pp.436-479, 2002.
DOI : 10.1046/j.0022-202x.2001.01663.x

P. Descargues, Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity, Nature Genetics, vol.81, issue.1, pp.56-65, 2005.
DOI : 10.1111/1523-1747.ep12475646

M. Guerrin, Expression Cloning of Human Corneodesmosin Proves Its Identity with the Product of the S Gene and Allows Improved Characterization of Its Processing during Keratinocyte Differentiation, Journal of Biological Chemistry, vol.273, issue.35, pp.273-22640, 1998.
DOI : 10.1074/jbc.273.35.22640

M. R. Emmett and R. M. Caprioli, Micro-electrospray mass spectrometry: Ultra-high-sensitivity analysis of peptides and proteins, Journal of the American Society for Mass Spectrometry, vol.1, issue.7, pp.605-613, 1994.
DOI : 10.1016/1044-0305(94)85001-1

A. Mihailova, E. Lundanes, and T. Greibrokk, Determination and removal of impurities in 2-D LC-MS of peptides, Journal of Separation Science, vol.8, issue.4, pp.576-81, 2006.
DOI : 10.1002/jssc.200500496

G. R. Strasser and I. Varadi, Investigations of artifact peaks in sensitive high-performance liquid chromatography methods, Journal of Chromatography A, vol.869, issue.1-2, pp.85-90, 2000.
DOI : 10.1016/S0021-9673(99)01135-8

S. Williams, Ghost peaks in reversed-phase gradient HPLC: a review and update, Journal of Chromatography A, vol.1052, issue.1-2, pp.1-11, 2004.
DOI : 10.1016/j.chroma.2004.07.110

K. M. Verge and G. R. Agnes, Plasticizer contamination from vacuum system o-rings in a quadrupole ion trap mass spectrometer, Journal of the American Society for Mass Spectrometry, vol.45, issue.8, pp.13-901, 2002.
DOI : 10.1016/S1044-0305(02)00386-0

A. Schlosser and R. Volkmer-engert, Volatile polydimethylcyclosiloxanes in the ambient laboratory air identified as source of extreme background signals in nanoelectrospray mass spectrometry, Journal of Mass Spectrometry, vol.70, issue.5, pp.523-528, 2003.
DOI : 10.1002/jms.465

X. K. Zhang, R. C. Dutky, and H. M. Fales, Rubber Stoppers as Sources of Contaminants in Electrospray Analysis of Peptides and Proteins, Analytical Chemistry, vol.68, issue.18, pp.68-3288, 1996.
DOI : 10.1021/ac960245n

J. V. Olsen, Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-trap, Molecular & Cellular Proteomics, vol.4, issue.12, pp.2010-2031, 2005.
DOI : 10.1074/mcp.T500030-MCP200

J. B. Fenn, J. Rosell, and C. K. Meng, In electrospray ionization, how much pull does an ion need to escape its droplet prison?, Journal of the American Society for Mass Spectrometry, vol.116, issue.11, pp.1147-1157, 1997.
DOI : 10.1016/S1044-0305(97)00161-X

A. M. Hesse, Simple and universal tool to remove on-line impurities in mono- or two-dimensional liquid chromatography???mass spectrometry analysis, Journal of Chromatography A, vol.1189, issue.1-2, pp.175-82, 2008.
DOI : 10.1016/j.chroma.2007.12.060

URL : https://hal.archives-ouvertes.fr/hal-00348106

F. M. Mccarthy, Differential Detergent Fractionation for Non-electrophoretic Eukaryote Cell Proteomics, Journal of Proteome Research, vol.4, issue.2, pp.316-340, 2005.
DOI : 10.1021/pr049842d

H. Liu, Development of an online two-dimensional nano-scale liquid chromatography/mass spectrometry method for improved chromatographic performance and hydrophobic peptide recovery, Journal of Chromatography A, vol.1135, issue.1, pp.1135-1178, 2006.
DOI : 10.1016/j.chroma.2006.09.030

K. Horie, Calculating Optimal Modulation Periods to Maximize the Peak Capacity in Two-Dimensional HPLC, Analytical Chemistry, vol.79, issue.10, pp.79-3764, 2007.
DOI : 10.1021/ac062002t

J. M. Davis, D. R. Stoll, and P. W. Carr, Effect of First-Dimension Undersampling on Effective Peak Capacity in Comprehensive Two-Dimensional Separations, Analytical Chemistry, vol.80, issue.2, pp.461-73, 2008.
DOI : 10.1021/ac071504j

L. P. Liu and C. M. Deber, Guidelines for membrane protein engineering derived from de novo designed model peptides, Biopolymers, vol.46, issue.1, pp.41-62, 1998.
DOI : 10.1002/(SICI)1097-0282(1998)47:1<41::AID-BIP6>3.0.CO;2-X

M. D. Stapels and D. F. Barofsky, Complementary Use of MALDI and ESI for the HPLC-MS/MS Analysis of DNA-Binding Proteins, Analytical Chemistry, vol.76, issue.18, pp.76-5423, 2004.
DOI : 10.1021/ac030427z

J. V. Olsen, S. E. Ong, and M. Mann, Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues, Molecular & Cellular Proteomics, vol.3, issue.6, pp.608-622, 2004.
DOI : 10.1074/mcp.T400003-MCP200

G. A. Shabir, Validation of high-performance liquid chromatography methods for pharmaceutical analysis, Journal of Chromatography A, vol.987, issue.1-2, pp.57-66, 2003.
DOI : 10.1016/S0021-9673(02)01536-4

D. M. Creasy and J. S. Cottrell, Error tolerant searching of uninterpreted tandem mass spectrometry data, PROTEOMICS, vol.73, issue.10, pp.1426-1460, 2002.
DOI : 10.1002/1615-9861(200210)2:10<1426::AID-PROT1426>3.0.CO;2-5

M. Mann and O. N. Jensen, Proteomic analysis of post-translational modifications, Nature Biotechnology, vol.154, issue.3, pp.255-61, 2003.
DOI : 10.1038/nbt790

L. D. Fricker, Peptidomics: Identification and quantification of endogenous peptides in neuroendocrine tissues, Mass Spectrometry Reviews, vol.16, issue.2, pp.327-371, 2006.
DOI : 10.1002/mas.20079

G. Baggerman, Peptidomics, Journal of Chromatography B, vol.803, issue.1, pp.3-16, 2004.
DOI : 10.1016/j.jchromb.2003.07.019

L. Schoofs, Peptides in the Locusts, Locusta migratoria and Schistocerca gregaria, Peptides, vol.18, issue.1, pp.145-56, 1997.
DOI : 10.1016/S0196-9781(96)00236-7

J. A. Dias, Is there any physiological role for gonadotrophin oligosaccharide heterogeneity in humans?: II. A biochemical point of view, Human Reproduction, vol.16, issue.5, pp.825-855, 2001.
DOI : 10.1093/humrep/16.5.825

B. Polevoda and F. Sherman, N-terminal Acetyltransferases and Sequence Requirements for N-terminal Acetylation of Eukaryotic Proteins, Journal of Molecular Biology, vol.325, issue.4, pp.595-622, 2003.
DOI : 10.1016/S0022-2836(02)01269-X

P. Torfs, Isolation, identification, and synthesis of a disulfated sulfakinin from the central nervous system of an arthropods the white shrimp Litopenaeus vannamei, Biochemical and Biophysical Research Communications, vol.299, issue.2, pp.312-332, 2002.
DOI : 10.1016/S0006-291X(02)02624-4

S. Rieg, Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions, British Journal of Dermatology, vol.350, issue.3, pp.534-543, 2004.
DOI : 10.1046/j.0022-202x.2001.01401.x

B. Schittek, Dermcidin: a novel human antibiotic peptide secreted by sweat glands, Nature Immunology, vol.50, issue.12, pp.1133-1140, 2001.
DOI : 10.1111/1523-1747.ep12874590

X. Jiang, M. Ye, and H. Zou, Technologies and methods for sample pretreatment in efficient proteome and peptidome analysis, PROTEOMICS, vol.255, issue.4, pp.686-705, 2008.
DOI : 10.1002/pmic.200700617

M. Schrader and H. Selle, The Process Chain for Peptidomic Biomarker Discovery, Disease Markers, vol.22, issue.1-2, pp.27-37, 2006.
DOI : 10.1155/2006/174849

X. Zheng, H. Baker, and W. S. Hancock, Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer, Journal of Chromatography A, vol.1120, issue.1-2, pp.173-84, 2006.
DOI : 10.1016/j.chroma.2006.01.098

G. Denecker, Caspase-14 reveals its secrets, The Journal of Cell Biology, vol.25, issue.3, pp.451-459, 2008.
DOI : 10.1038/nature03963

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234247

S. Lippens, Caspase-14 is expressed in the epidermis, the choroid plexus, the retinal pigment epithelium and thymic Hassall's bodies, Cell Death and Differentiation, vol.10, issue.2, pp.257-266, 2003.
DOI : 10.1038/sj.cdd.4401141

L. Alibardi, E. Tschachler, and L. Eckhart, Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol.81, issue.2, pp.962-73, 2005.
DOI : 10.1002/ar.a.20234

A. J. Chien, R. B. Presland, and M. K. Kuechle, Processing of native caspase-14 occurs at an atypical cleavage site in normal epidermal differentiation, Biochemical and Biophysical Research Communications, vol.296, issue.4, pp.911-918, 2002.
DOI : 10.1016/S0006-291X(02)02015-6

K. Shibuya, Human Cystatin A Is Inactivated by Engineered Truncation. The NH2-Terminal Region of the Cysteine Proteinase Inhibitor Is Essential for Expression of Its Inhibitory Activity, Biochemistry, vol.34, issue.38, pp.34-12185, 1995.
DOI : 10.1021/bi00038a012

T. Egelrud and A. Lundstrom, Immunochemical analysis of the distribution of the desmosomal protein desmoglein I in different layers of plantar epidermis, Acta Derm Venereol, issue.6, pp.69-470, 1989.

J. X. Pang, Biomarker Discovery in Urine by Proteomics, Journal of Proteome Research, vol.1, issue.2, pp.161-170, 2002.
DOI : 10.1021/pr015518w

M. Simon, Evidence that filaggrin is a component of cornified cell envelopes in human plantar epidermis, Biochemical Journal, vol.317, issue.1, pp.317-173, 1996.
DOI : 10.1042/bj3170173

Y. Kamata, Neutral Cysteine Protease Bleomycin Hydrolase Is Essential for the Breakdown of Deiminated Filaggrin into Amino Acids, Journal of Biological Chemistry, vol.284, issue.19, 2009.
DOI : 10.1074/jbc.M807908200

E. Toulza, The Human Dermokine Gene: Description of Novel Isoforms with Different Tissue-Specific Expression and Subcellular Location, Journal of Investigative Dermatology, vol.126, issue.2, pp.503-509, 2006.
DOI : 10.1038/sj.jid.5700033

S. E. Syed, Molecular interactions between desmosomal cadherins, Biochem J, issue.2, pp.362-317, 2002.

A. Nose, A. Nagafuchi, and M. Takeichi, Expressed recombinant cadherins mediate cell sorting in model systems, Cell, vol.54, issue.7, pp.993-1001, 1988.
DOI : 10.1016/0092-8674(88)90114-6

T. J. Boggon, C-Cadherin Ectodomain Structure and Implications for Cell Adhesion Mechanisms, Science, vol.296, issue.5571, pp.1308-1321, 2002.
DOI : 10.1126/science.1071559

D. Garrod and M. Chidgey, Desmosome structure, composition and function, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.3, pp.1778-572, 2008.
DOI : 10.1016/j.bbamem.2007.07.014

URL : http://doi.org/10.1016/j.bbamem.2007.07.014

R. B. Troyanovsky, N. A. Chitaev, and S. M. Troyanovsky, Cadherin binding sites of plakoglobin: localization, specificity and role in targeting to adhering junctions, J Cell Sci, issue.109, pp.3069-78, 1996.

A. P. Kowalczyk, The Amino-terminal Domain of Desmoplakin Binds to Plakoglobin and Clusters Desmosomal Cadherin???Plakoglobin Complexes, The Journal of Cell Biology, vol.109, issue.3, pp.773-84, 1997.
DOI : 10.1074/jbc.271.18.10904

K. Yamasaki and R. L. Gallo, Antimicrobial peptides in human skin disease, Eur J Dermatol, vol.18, issue.1, pp.11-21, 2008.

D. Baechle, Cathepsin D Is Present in Human Eccrine Sweat and Involved in the Postsecretory Processing of the Antimicrobial Peptide DCD-1L, Journal of Biological Chemistry, vol.281, issue.9, pp.281-5406, 2006.
DOI : 10.1074/jbc.M504670200

S. Rieg, Generation of Multiple Stable Dermcidin-Derived Antimicrobial Peptides in Sweat of Different Body Sites, Journal of Investigative Dermatology, vol.126, issue.2, pp.354-65, 2006.
DOI : 10.1038/sj.jid.5700041

T. Flad, Detection of dermcidin-derived peptides in sweat by ProteinChip?? Technology, Journal of Immunological Methods, vol.270, issue.1, pp.53-62, 2002.
DOI : 10.1016/S0022-1759(02)00229-6

H. Steffen, Naturally Processed Dermcidin-Derived Peptides Do Not Permeabilize Bacterial Membranes and Kill Microorganisms Irrespective of Their Charge, Antimicrobial Agents and Chemotherapy, vol.50, issue.8, pp.50-2608, 2006.
DOI : 10.1128/AAC.00181-06

P. Madsen, Molecular Cloning, Occurrence, and Expression of a Novel Partially Secreted Protein ???Psoriasin??? That Is Highly Up-Regulated in Psoriatic Skin, Journal of Investigative Dermatology, vol.97, issue.4, pp.701-713, 1991.
DOI : 10.1111/1523-1747.ep12484041

R. Glaser, Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection, Nature Immunology, vol.32, issue.1, pp.57-64, 2005.
DOI : 10.1038/ni1142

K. C. Lee and R. L. Eckert, S100A7 (Psoriasin) ??? Mechanism of Antibacterial Action in Wounds, Journal of Investigative Dermatology, vol.127, issue.4, pp.945-57, 2007.
DOI : 10.1038/sj.jid.5700663

J. M. Schroder and J. Harder, Antimicrobial skin peptides and proteins, Cellular and Molecular Life Sciences, vol.63, issue.4, pp.469-86, 2006.
DOI : 10.1007/s00018-005-5364-0

P. Y. Venencie, Increased expression of gelatinases A and B by skin explants from patients with anetoderma, British Journal of Dermatology, vol.142, issue.4, pp.517-542, 1997.
DOI : 10.1111/1523-1747.ep12483956