R. Radi, Nitric oxide, oxidants, and protein tyrosine nitration, Proceedings of the National Academy of Sciences, vol.101, issue.12, pp.4003-4008, 2004.
DOI : 10.1073/pnas.0307446101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384685

H. Ohshima, M. Friesen, I. Brouet, and H. Bartsch, Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins, Food and Chemical Toxicology, vol.28, issue.9, pp.647-52, 1990.
DOI : 10.1016/0278-6915(90)90173-K

J. Kanski, A. Behring, J. Pelling, and C. Schöneich, Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging, AJP: Heart and Circulatory Physiology, vol.288, issue.1, pp.371-381, 2005.
DOI : 10.1152/ajpheart.01030.2003

A. Sarver, N. K. Scheffler, M. D. Shetlar, B. W. Gibson, and J. , Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.96, issue.4, pp.439-448, 2001.
DOI : 10.1016/S1044-0305(01)00213-6

G. Nikov, V. Bhat, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry, Analytical Biochemistry, vol.320, issue.2, pp.214-222, 2003.
DOI : 10.1016/S0003-2697(03)00359-2

A. Amoresano, G. Monti, C. Cirulli, and G. Marino, Selective detection and identification of phosphopeptides by dansyl MS/MS/MS fragmentation, Rapid Communications in Mass Spectrometry, vol.15, issue.9, pp.1400-1404, 2006.
DOI : 10.1002/rcm.2461

A. Amoresano, G. Chiappetta, P. Pucci, M. D-'ischia, and G. Marino, Bidimensional Tandem Mass Spectrometry for Selective Identification of Nitration Sites in Proteins, Analytical Chemistry, vol.79, issue.5, pp.2109-2126, 2007.
DOI : 10.1021/ac0620361

C. Leeuwenburgh, M. M. Hardy, S. L. Hazen, P. Wagner, S. Oh?ishi et al., Reactive Nitrogen Intermediates Promote Low Density Lipoprotein Oxidation in Human Atherosclerotic Intima, Journal of Biological Chemistry, vol.272, issue.3, pp.1433-1436, 1997.
DOI : 10.1074/jbc.272.3.1433

V. H. Wysocki, G. Tsaprailis, L. L. Smith, and L. A. Breci, Mobile and localized protons: a framework for understanding peptide dissociation, Journal of Mass Spectrometry, vol.13, issue.12, pp.1399-1406, 2000.
DOI : 10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R

S. J. Park, J. S. Song, and H. Kim, Dansylation of tryptic peptides for increased sequence coverage in protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric peptide mass fingerprinting, Rapid Communications in Mass Spectrometry, vol.28, issue.21, pp.3089-96, 2005.
DOI : 10.1002/rcm.2166

S. Biswas, A. S. Chida, and I. Rahman, Redox modifications of protein???thiols: Emerging roles in cell signaling, Biochemical Pharmacology, vol.71, issue.5, pp.551-564, 2006.
DOI : 10.1016/j.bcp.2005.10.044

A. S. Dafre, N. S. Artenib, I. R. Siqueirab, and C. A. Netto, Perturbations in the thiol homeostasis following neonatal cerebral hypoxia-ischemia in rats, Neuroscience Letters, vol.345, issue.1, pp.65-68, 2003.
DOI : 10.1016/S0304-3940(03)00510-X

L. I. Leichert and U. Jakob, 2: e333, 1.6 References 1. EPA Interim Genomics Policy 2. International Human Genome Sequencing Consortium, Nature, issue.7011, pp.431-931, 2004.

M. Zhou and T. D. Veenstra, Proteomic analysis of protein complexes, PROTEOMICS, vol.8, issue.16, pp.2688-2697, 2007.
DOI : 10.1002/pmic.200700048

D. Josic and J. G. Clifton, Mammalian plasma membrane proteomics, PROTEOMICS, vol.101, issue.16, pp.3010-3029, 2007.
DOI : 10.1002/pmic.200700139

L. Naour, F. André, M. Greco, C. Billard, M. Sordat et al., Profiling of the Tetraspanin Web of Human Colon Cancer Cells, Molecular & Cellular Proteomics, vol.5, issue.5, pp.845-57, 2006.
DOI : 10.1074/mcp.M500330-MCP200

A. Incamps, F. Hély-joly, P. Chagvardieff, J. C. Rambourg, A. Dedieu et al., Industrial process proteomics: Alfalfa protein patterns during wet fractionation processing, Biotechnology and Bioengineering, vol.3, issue.4, pp.447-459, 2005.
DOI : 10.1002/bit.20520

D. Josic, M. K. Brown, F. Huang, Y. P. Lim, M. Rucevic et al., Proteomic characterization of inter-alpha inhibitor proteins from human plasma, PROTEOMICS, vol.77, issue.9, pp.2874-85, 2006.
DOI : 10.1002/pmic.200500563

P. Gupta and K. H. Lee, Genomics and proteomics in process development: opportunities and challenges, Trends in Biotechnology, vol.25, issue.7, pp.324-330, 2007.
DOI : 10.1016/j.tibtech.2007.04.005

Y. Li, S. Powell, E. Brunette, J. Lebkowski, and R. Mandalam, Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products, Biotechnology and Bioengineering, vol.3, issue.6, pp.688-698, 2005.
DOI : 10.1002/bit.20536

C. Pieiro, J. Barros-velázquez, J. Velázquez, A. Figueras, and J. M. Gallardo, Proteomics as a Tool for the Investigation of Seafood and Other Marine Products, Journal of Proteome Research, vol.2, issue.2, pp.127-135, 2003.
DOI : 10.1021/pr0200083

A. Kern, E. Tilley, I. S. Hunter, M. Legisa, and A. Glieder, Engineering primary metabolic pathways of industrial micro-organisms, Journal of Biotechnology, vol.129, issue.1, pp.6-29, 2007.
DOI : 10.1016/j.jbiotec.2006.11.021

T. Köcher and G. Superti-furga, Mass spectrometry???based functional proteomics: from molecular machines to protein networks, Nature Methods, vol.104, issue.10, pp.807-815, 2007.
DOI : 10.1038/nmeth1093

O. N. Jensen, Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry, Current Opinion in Chemical Biology, vol.8, issue.1, pp.33-41, 2004.
DOI : 10.1016/j.cbpa.2003.12.009

J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and W. C. , Electrospray ionization for mass spectrometry of large biomolecules, Science, vol.246, issue.4926, pp.64-71, 1989.
DOI : 10.1126/science.2675315

M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Analytical Chemistry, vol.60, issue.20, pp.2299-2301, 1988.
DOI : 10.1021/ac00171a028

M. R. Emmett, R. M. Caprioli, and J. , Micro-electrospray mass spectrometry: Ultra-high-sensitivity analysis of peptides and proteins, Journal of the American Society for Mass Spectrometry, vol.1, issue.7, pp.605-613, 1994.
DOI : 10.1016/1044-0305(94)85001-1

T. J. Cornish and R. J. Cotter, A curved-field reflectron for improved energy focusing of product ions in time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry, vol.6, issue.11, pp.1037-1077, 1993.
DOI : 10.1002/rcm.1290071114

A. H. Payne and G. L. Glish, Tandem Mass Spectrometry in Quadrupole Ion Trap and Ion Cyclotron Resonance Mass Spectrometers, Methods Enzymol, vol.402, pp.109-157, 2005.
DOI : 10.1016/S0076-6879(05)02004-5

M. Nappia, C. Weila, C. D. Clevena, L. A. Horna, H. Wollnikb et al., Visual representations of simulated three-dimensional ion trajectories in an ion trap mass spectrometer, International Journal of Mass Spectrometry and Ion Processes, vol.161, issue.1-3, pp.77-85, 1997.
DOI : 10.1016/S0168-1176(96)04416-3

A. G. Marshall, C. L. Hendrickson, and G. S. Jackson, Fourier transform ion cyclotron resonance mass spectrometry: A primer, Mass Spectrometry Reviews, vol.68, issue.166, pp.1-35, 1998.
DOI : 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K

B. Domon and R. Aebersold, Mass Spectrometry and Protein Analysis, Science, vol.312, issue.5771, p.212, 2006.
DOI : 10.1126/science.1124619

H. R. Morris, T. Paxton, A. Dell, J. Langhorne, M. Berg et al., High Sensitivity Collisionally-activated Decomposition Tandem Mass Spectrometry on a Novel Quadrupole/Orthogonal-acceleration Time-of-flight Mass Spectrometer, Rapid Communications in Mass Spectrometry, vol.10, issue.8, pp.889-896, 1996.
DOI : 10.1002/(SICI)1097-0231(19960610)10:8<889::AID-RCM615>3.0.CO;2-F

R. W. Vachet, A. D. Winders, and G. L. Glish, Correlation of Kinetic Energy Losses in High-Energy Collision-Induced Dissociation with Observed Peptide Product Ions, Analytical Chemistry, vol.68, issue.3, pp.522-526, 1996.
DOI : 10.1021/ac950893r

S. A. Mcluckey, D. E. Goeringer, and G. L. Glish, Collisional activation with random noise in ion trap mass spectrometry, Analytical Chemistry, vol.64, issue.13, pp.1455-1460, 1992.
DOI : 10.1021/ac00037a026

A. K. Shukla and J. H. Futrell, Tandem mass spectrometry: dissociation of ions by collisional activation, Journal of Mass Spectrometry, vol.195, issue.196, pp.1069-1090, 2000.
DOI : 10.1002/1096-9888(200009)35:9<1069::AID-JMS54>3.0.CO;2-C

K. Biemann and I. A. Papayannopoulos, Amino acid sequencing of proteins, Accounts of Chemical Research, vol.27, issue.11, pp.370-378, 1994.
DOI : 10.1021/ar00047a008

J. M. Wells and S. A. Mcluckey, Collision???Induced Dissociation (CID) of Peptides and Proteins, Methods Enzymol, vol.402, pp.148-185, 2005.
DOI : 10.1016/S0076-6879(05)02005-7

V. H. Wysocki, G. Tsaprailis, L. L. Smith, and L. A. Breci, Mobile and localized protons: a framework for understanding peptide dissociation, Journal of Mass Spectrometry, vol.13, issue.12, pp.1399-1406, 2000.
DOI : 10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R

M. Ferro, M. Tardif, E. Reguer, R. Cahuzac, C. Bruley et al., PepLine: A Software Pipeline for High-Throughput Direct Mapping of Tandem Mass Spectrometry Data on Genomic Sequences, Journal of Proteome Research, vol.7, issue.5, pp.1873-83, 2008.
DOI : 10.1021/pr070415k

P. Waridel, A. Frank, H. Thomas, V. Surendranath, S. Sunyaev et al., Sequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automatedde novo sequencing, Hirosawa M, Hoshida M, pp.2318-2341, 2007.
DOI : 10.1002/pmic.200700003

H. Xu, L. Yang, and M. A. Freitas, A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time, BMC Bioinformatics, vol.9, issue.1, p.347, 2008.
DOI : 10.1186/1471-2105-9-347

J. Klose and U. Kobalz, Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome, Electrophoresis, vol.8, issue.1, pp.1034-1059, 1995.
DOI : 10.1002/elps.11501601175

D. J. Pappin, P. Hojrup, and A. J. Bleasby, Rapid identification of proteins by peptide-mass fingerprinting, Current Biology, vol.3, issue.6, pp.327-332, 1993.
DOI : 10.1016/0960-9822(93)90195-T

M. Mann, P. Højrup, and P. Roepstorff, Use of mass spectrometric molecular weight information to identify proteins in sequence databases, Biological Mass Spectrometry, vol.252, issue.6, pp.338-383, 1993.
DOI : 10.1002/bms.1200220605

M. Wilm, A. Shevchenko, T. Houthaeve, S. Breit, L. Schweigerer et al., Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry, Nature, vol.379, issue.6564, pp.466-469, 1996.
DOI : 10.1038/379466a0

M. Wilm and M. Mann, Analytical Properties of the Nanoelectrospray Ion Source, Analytical Chemistry, vol.68, issue.1, pp.1-8, 1996.
DOI : 10.1021/ac9509519

R. Tonge, J. Shaw, B. Middleton, R. Rowlinson, S. Rayner et al., Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology, PROTEOMICS, vol.1, issue.3, pp.377-96, 2001.
DOI : 10.1002/1615-9861(200103)1:3<377::AID-PROT377>3.0.CO;2-6

K. Martin, T. H. Steinberg, T. Goodman, B. Schulenberg, J. A. Kilgore et al., Strategies and Solid-Phase Formats for the Analysis of Protein and Peptide Phosphorylation Employing A Novel Fluorescent Phosphorylation Sensor Dye, Combinatorial Chemistry & High Throughput Screening, vol.6, issue.4, pp.331-340, 2003.
DOI : 10.2174/138620703106298581

T. H. Steinberg, K. Pretty-on-top, K. N. Berggren, C. Kemper, L. Jones et al., Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots, PROTEOMICS, vol.1, issue.7, pp.841-55, 2001.
DOI : 10.1002/1615-9861(200107)1:7<841::AID-PROT841>3.0.CO;2-E

H. Ravalason, G. Jan, D. Mollé, M. Pasco, P. M. Coutinho et al., Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood, Applied Microbiology and Biotechnology, vol.290, issue.4, pp.719-752, 2008.
DOI : 10.1007/s00253-008-1596-x

M. Pocaly, V. Lagarde, G. Etienne, M. Dupouy, D. Lapaillerie et al., Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance, PROTEOMICS, vol.21, issue.12, pp.2394-406, 2008.
DOI : 10.1002/pmic.200701035

D. Fenyo, J. Qin, and B. T. Chait, Protein indentification using mass spectrometric information, Electrophoresis, vol.68, issue.6, pp.998-1005, 1998.
DOI : 10.1002/elps.1150190615

J. Bernhardt, K. Büttner, C. Scharf, and M. Hecker, Dual channel imaging of two-dimensional electropherograms inBacillus subtilis, Electrophoresis, vol.20, issue.11, pp.2225-2240, 1999.
DOI : 10.1002/(SICI)1522-2683(19990801)20:11<2225::AID-ELPS2225>3.0.CO;2-8

E. C. Yi, X. J. Li, K. Cooke, H. Lee, B. Raught et al., Increased quantitative proteome coverage with13C/12C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme, PROTEOMICS, vol.76, issue.2, pp.380-387, 2005.
DOI : 10.1002/pmic.200400970

P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker et al., Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents, Molecular & Cellular Proteomics, vol.3, issue.12, pp.1154-1169, 2004.
DOI : 10.1074/mcp.M400129-MCP200

I. I. Stewart, T. Thomson, and D. Figeys, 18O Labeling: a tool for proteomics, Rapid Communications in Mass Spectrometry, vol.19, issue.24, pp.2456-2465, 2001.
DOI : 10.1002/rcm.525

S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen et al., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.1, issue.5, pp.376-386, 2002.
DOI : 10.1074/mcp.M200025-MCP200

R. Ahrends, S. Pieper, A. Kühn, H. Weisshoff, M. Hamester et al., A Metal-coded Affinity Tag Approach to Quantitative Proteomics, Molecular & Cellular Proteomics, vol.6, issue.11, pp.1907-1916, 2007.
DOI : 10.1074/mcp.M700152-MCP200

H. Sies, Oxidative stress: oxidants and antioxidants, Experimental Physiology, vol.82, issue.2, pp.291-296, 1997.
DOI : 10.1113/expphysiol.1997.sp004024

J. Emerit, M. Edeas, and F. Bricaire, Neurodegenerative diseases and oxidative stress, Biomedicine & Pharmacotherapy, vol.58, issue.1, pp.39-46, 2004.
DOI : 10.1016/j.biopha.2003.11.004

J. M. Matés, J. A. Segura, F. J. Alonso, and J. Márquez, Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis, Archives of Toxicology, vol.350, issue.5, pp.273-299, 2008.
DOI : 10.1007/s00204-008-0304-z

C. M. Bergamini, S. Gambetti, A. Dondi, and C. Cervellati, Oxygen, Reactive Oxygen Species and Tissue Damage, Current Pharmaceutical Design, vol.10, issue.14, pp.1611-1637, 2004.
DOI : 10.2174/1381612043384664

N. Ishii, Role of Oxidative Stress From Mitochondria on Aging and Cancer, Cornea, vol.26, issue.9, pp.3-9, 2007.
DOI : 10.1097/ICO.0b013e31812f6745

M. Y. Lee and K. K. Griendling, Redox Signaling, Vascular Function, and Hypertension, Antioxidants & Redox Signaling, vol.10, issue.6, pp.1045-59, 2008.
DOI : 10.1089/ars.2007.1986

L. Fialkow, Y. Wang, and G. P. Downey, Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function, Free Radical Biology and Medicine, vol.42, issue.2, pp.153-64, 2007.
DOI : 10.1016/j.freeradbiomed.2006.09.030

D. Donne, I. Scaloni, A. Giustarini, D. Cavarra, E. Tell et al., Proteins as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomics, Mass Spectrometry Reviews, vol.22, issue.235, pp.55-99, 2005.
DOI : 10.1002/mas.20006

J. V. Bannister, W. H. Bannister, and G. Rotilio, Aspects of the Structure, Function, and Applications of Superoxide Dismutas, Critical Reviews in Biochemistry, vol.262, issue.2, pp.111-80, 1987.
DOI : 10.1016/S0176-1617(86)80006-2

J. O. Lundberg, E. Weitzberg, and M. T. Gladwin, The nitrate???nitrite???nitric oxide pathway in physiology and therapeutics, Nature Reviews Drug Discovery, vol.336, issue.2, pp.156-67, 2008.
DOI : 10.1038/nrd2466

M. N. Hughes, Chemistry of Nitric Oxide and Related Species, Methods Enzymol, vol.436, pp.3-19, 2008.
DOI : 10.1016/S0076-6879(08)36001-7

J. H. Tsai, T. P. Hamilton, J. G. Harrison, M. Jablosky, M. Van-der-woerd et al., Role of Conformation of Peroxynitrite Anion (ONOO-) with Its Stability and Toxicity, Journal of the American Chemical Society, vol.116, issue.9, pp.4115-4116, 1994.
DOI : 10.1021/ja00088a072

R. Radi, Nitric oxide, oxidants, and protein tyrosine nitration, Proceedings of the National Academy of Sciences, vol.101, issue.12, pp.4003-4008, 2004.
DOI : 10.1073/pnas.0307446101

S. Pfeiffer, K. Schmidt, and B. Mayer, Dityrosine Formation Outcompetes Tyrosine Nitration at Low Steady-state Concentrations of Peroxynitrite. IMPLICATIONS FOR TYROSINE MODIFICATION BY NITRIC OXIDE/SUPEROXIDE IN VIVO, Journal of Biological Chemistry, vol.275, issue.9, pp.6346-52, 2000.
DOI : 10.1074/jbc.275.9.6346

H. Ischiropoulos, L. Zhu, J. Chen, M. Tsai, J. C. Martin et al., Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase, Archives of Biochemistry and Biophysics, vol.298, issue.2, pp.431-437, 1992.
DOI : 10.1016/0003-9861(92)90431-U

J. M. Souza, E. Daikhin, M. Yudkoff, C. S. Raman, and H. Ischiropoulos, Factors Determining the Selectivity of Protein Tyrosine Nitration, Archives of Biochemistry and Biophysics, vol.371, issue.2, pp.169-178, 1999.
DOI : 10.1006/abbi.1999.1480

S. A. Greenacre and H. Ischiropoulos, Tyrosine nitration: Localisation, quantification, consequences for protein function and signal transduction, Free Radical Research, vol.277, issue.6, pp.541-581, 2001.
DOI : 10.1080/01635588609513875

H. Ohshima, M. Friesen, I. Brouet, and H. Bartsch, Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins, Food and Chemical Toxicology, vol.28, issue.9, pp.647-52, 1990.
DOI : 10.1016/0278-6915(90)90173-K

F. R. Salsbury, S. T. Knutson, L. B. Poole, and J. S. Fetrow, Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid, Protein Science, vol.279, issue.2, pp.299-312, 2008.
DOI : 10.1110/ps.073096508

S. Biswas, A. S. Chida, and I. Rahman, Redox modifications of protein???thiols: Emerging roles in cell signaling, Biochemical Pharmacology, vol.71, issue.5, pp.551-564, 2006.
DOI : 10.1016/j.bcp.2005.10.044

T. J. Phalen, K. Weirather, P. B. Deming, V. Anathy, A. K. Howe et al., Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery, The Journal of Cell Biology, vol.114, issue.5, pp.779-789, 2006.
DOI : 10.1158/0008-5472.CAN-04-0946

A. Salmeen and D. Barford, Functions and Mechanisms of Redox Regulation of Cysteine-Based Phosphatases, Antioxidants & Redox Signaling, vol.7, issue.5-6, pp.560-577, 2005.
DOI : 10.1089/ars.2005.7.560

N. K. Tonks, Protein tyrosine phosphatases: from genes, to function, to disease, Nature Reviews Molecular Cell Biology, vol.5, issue.11, pp.833-846, 2006.
DOI : 10.1038/nrm2039

A. S. Dafre, N. S. Artenib, I. R. Siqueirab, and C. A. Netto, Perturbations in the thiol homeostasis following neonatal cerebral hypoxia-ischemia in rats, Neuroscience Letters, vol.345, issue.1, pp.65-68, 2003.
DOI : 10.1016/S0304-3940(03)00510-X

R. M. Canet-avilés, M. A. Wilson, D. W. Miller, R. Ahmad, C. Mclendon et al., The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization, Proceedings of the National Academy of Sciences, vol.101, issue.24, pp.9103-9108, 2004.
DOI : 10.1073/pnas.0402959101

J. L. Marcum, J. K. Mathenia, R. Chan, and R. P. Guttmann, Oxidation of thiol-proteases in the hippocampus of Alzheimer???s disease, Biochemical and Biophysical Research Communications, vol.334, issue.2, pp.342-350, 2005.
DOI : 10.1016/j.bbrc.2005.06.089

T. Okamoto, T. Akaike, T. Sawa, Y. Miyamoto, . Van-der et al., Activation of Matrix Metalloproteinases by Peroxynitrite-induced Protein S-Glutathiolation via Disulfide S-Oxide Formation, Journal of Biological Chemistry, vol.276, issue.31, pp.29596-29602, 2001.
DOI : 10.1074/jbc.M102417200

H. J. Zhang, W. Zhao, S. Venkataraman, M. E. Robbins, G. R. Buettner et al., Activation of Matrix Metalloproteinase-2 by Overexpression of Manganese Superoxide Dismutase in Human Breast Cancer MCF-7 Cells Involves Reactive Oxygen Species, Journal of Biological Chemistry, vol.277, issue.23, pp.20919-20926, 2002.
DOI : 10.1074/jbc.M109801200

C. W. Gruber, M. Cemazar, B. Heras, J. L. Martin, and D. J. Craik, Protein disulfide isomerase: the structure of oxidative folding, Trends in Biochemical Sciences, vol.31, issue.8, pp.455-464, 2006.
DOI : 10.1016/j.tibs.2006.06.001

F. Li, P. Sonveaux, Z. N. Rabbani, S. Liu, B. Yan et al., Regulation of HIF-1?? Stability through S-Nitrosylation, Molecular Cell, vol.26, issue.1, pp.63-74, 2007.
DOI : 10.1016/j.molcel.2007.02.024

A. Riccio, R. S. Alvania, B. E. Lonze, N. Ramanan, T. Kim et al., A Nitric Oxide Signaling Pathway Controls CREB-Mediated Gene Expression in Neurons, Molecular Cell, vol.21, issue.2, pp.283-294, 2006.
DOI : 10.1016/j.molcel.2005.12.006

R. G. Hu, J. Sheng, X. Qi, Z. Xu, T. T. Takahashi et al., The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators, Nature, vol.437, issue.7061, pp.981-986, 2005.
DOI : 10.1038/nature04027

I. V. Turko, L. Li, K. S. Aulak, D. J. Stuehr, J. Y. Chang et al., Protein Tyrosine Nitration in the Mitochondria from Diabetic Mouse Heart: IMPLICATIONS TO DYSFUNCTIONAL MITOCHONDRIA IN DIABETES, Journal of Biological Chemistry, vol.278, issue.36, pp.33972-33977, 2003.
DOI : 10.1074/jbc.M303734200

N. Rabbani and P. J. Thornalley, Assay of 3???Nitrotyrosine in Tissues and Body Fluids by Liquid Chromatography with Tandem Mass Spectrometric Detection, Methods Enzymol, vol.440, pp.337-59, 2008.
DOI : 10.1016/S0076-6879(07)00822-1

T. D. Oberley, J. M. Swanlund, H. J. Zhang, and K. C. Kregel, Aging Results in Increased Autophagy of Mitochondria and Protein Nitration in Rat Hepatocytes Following Heat Stress, Journal of Histochemistry & Cytochemistry, vol.17, issue.6, pp.615-642, 2008.
DOI : 10.2174/1566524033479582

X. Zhan and D. M. Desiderio, The human pituitary nitroproteome: detection of nitrotyrosyl-proteins with two-dimensional Western blotting, and amino acid sequence determination with mass spectrometry, Biochemical and Biophysical Research Communications, vol.325, issue.4, pp.1180-1186, 2004.
DOI : 10.1016/j.bbrc.2004.10.169

J. Kanski, A. Behring, J. Pelling, and C. Schöneich, Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging, AJP: Heart and Circulatory Physiology, vol.288, issue.1, pp.371-381439, 2001.
DOI : 10.1152/ajpheart.01030.2003

D. B. Martin, J. K. Eng, A. I. Nesvizhskii, A. Gemmill, and R. Aebersold, Investigation of Neutral Loss during Collision-Induced Dissociation of Peptide Ions, Analytical Chemistry, vol.77, issue.15, pp.4870-4882, 2005.
DOI : 10.1021/ac050701k

J. Yagüe, A. Paradela, M. Ramos, S. Ogueta, A. Marina et al., Peptide Rearrangement during Quadrupole Ion Trap Fragmentation:?? Added Complexity to MS/MS Spectra, Analytical Chemistry, vol.75, issue.6, pp.1524-1535, 2003.
DOI : 10.1021/ac026280d

T. Vaisar, J. W. Heinecke, J. Seymour, and F. Turecek, Copper-mediated intra-ligand oxygen transfer in gas-phase complexes with 3-nitrotyrosine, Journal of Mass Spectrometry, vol.30, issue.5, pp.608-614, 2005.
DOI : 10.1002/jms.829

G. Nikov, V. Bhat, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry, Analytical Biochemistry, vol.320, issue.2, pp.214-222, 2003.
DOI : 10.1016/S0003-2697(03)00359-2

Q. Zhang, W. J. Qian, T. V. Knyushko, T. R. Clauss, S. O. Purvine et al., A Method for Selective Enrichment and Analysis of Nitrotyrosine-Containing Peptides in Complex Proteome Samples, Journal of Proteome Research, vol.6, issue.6, pp.2257-2268, 2007.
DOI : 10.1021/pr0606934

A. S. Petersson, H. Steen, D. E. Kalume, K. Caidahl, and P. Roepstorff, Investigation of tyrosine nitration in proteins by mass spectrometry, Journal of Mass Spectrometry, vol.340, issue.6, pp.616-625, 2001.
DOI : 10.1002/jms.161

C. Cirulli, G. Chiappetta, G. Marino, P. Mauri, and A. Amoresano, Identification of free phosphopeptides in different biological fluids by a mass spectrometry approach, Analytical and Bioanalytical Chemistry, vol.29, issue.1-2, pp.147-59, 2008.
DOI : 10.1007/s00216-008-2266-7

J. V. Johnson, R. A. Jost, P. A. Kelley, and P. E. Bradford, Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps, Analytical Chemistry, vol.62, issue.20, pp.2162-2172, 1990.
DOI : 10.1021/ac00219a003

R. Niggeweg, T. Köcher, M. Gentzel, A. Buscaino, M. Taipale et al., A general precursor ion-like scanning mode on quadrupole-TOF instruments compatible with chromatographic separation, PROTEOMICS, vol.5, issue.1, pp.41-53, 2006.
DOI : 10.1002/pmic.200501332

R. S. Annan, M. J. Huddleston, R. Verma, R. J. Deshaies, and S. A. Carr, A Multidimensional Electrospray MS-Based Approach to Phosphopeptide Mapping, Analytical Chemistry, vol.73, issue.3, pp.393-404, 2001.
DOI : 10.1021/ac001130t

J. C. Schwartz, M. W. Senko, J. E. Syka, and J. , A two-dimensional quadrupole ion trap mass spectrometer, Journal of the American Society for Mass Spectrometry, vol.190, issue.191, pp.659-669, 2002.
DOI : 10.1016/S1044-0305(02)00384-7

D. J. Douglas, A. J. Frank, and M. D. , Linear ion traps in mass spectrometry, Mass Spectrometry Reviews, vol.13, issue.1, pp.1-29, 2005.
DOI : 10.1002/mas.20004

J. W. Hager, A new linear ion trap mass spectrometer, Rapid Communications in Mass Spectrometry, vol.101, issue.6, pp.512-526, 2002.
DOI : 10.1002/rcm.607

G. Marino and V. Buonocore, Mass-spectrometric identification of 1-dimethylaminoaphthalene-5-sulphonyl-amino acids, Biochemical Journal, vol.110, issue.3, pp.603-604, 1968.
DOI : 10.1042/bj1100603

J. C. Mcintyre, F. Schroeder, and W. D. Behnke, Synthesis and characterization of the dansyltyrosine derivatives of porcine pancreatic colipase, Biochemistry, vol.29, issue.8, pp.2092-2101, 1990.
DOI : 10.1021/bi00460a019

C. Gross and B. Labouesse, Study of the Dansylation Reaction of Amino Acids, Peptides and Proteins, European Journal of Biochemistry, vol.239, issue.4, pp.463-470, 1969.
DOI : 10.1111/j.1432-1033.1969.tb19632.x

C. Leeuwenburgh, M. M. Hardy, S. L. Hazen, P. Wagner, S. Oh?ishi et al., Reactive Nitrogen Intermediates Promote Low Density Lipoprotein Oxidation in Human Atherosclerotic Intima, Journal of Biological Chemistry, vol.272, issue.3, pp.1433-1436, 1997.
DOI : 10.1074/jbc.272.3.1433

E. Schwedhelm, D. Tsikas, F. M. Gutzki, and J. C. Froulich, Gas Chromatographic???Tandem Mass Spectrometric Quantification of Free 3-Nitrotyrosine in Human Plasma at the Basal State, Analytical Biochemistry, vol.276, issue.2, pp.195-203, 1999.
DOI : 10.1006/abio.1999.4361

D. Tsikas, Affinity chromatography as a method for sample preparation in gas chromatography/mass spectrometry, Journal of Biochemical and Biophysical Methods, vol.49, issue.1-3, pp.705-731, 2001.
DOI : 10.1016/S0165-022X(01)00230-5

D. Yi, B. A. Ingelse, M. W. Duncan, G. A. Smythe, and J. , Quantification of 3-nitrotyrosine in biological tissues and fluids: Generating valid results by eliminating artifactual formation, Journal of the American Society for Mass Spectrometry, vol.70, issue.6, pp.578-586, 2000.
DOI : 10.1016/S1044-0305(00)00113-6

P. J. Thornalley, S. Battah, N. Ahmed, N. Karachalias, S. Agalou et al., Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry, Biochemical Journal, vol.375, issue.3, pp.581-592, 2003.
DOI : 10.1042/bj20030763

T. Delatour, F. Fenaille, V. Parisod, J. Richoz, J. Vuichoud et al., A comparative study of proteolysis methods for the measurement of 3-nitrotyrosine residues: Enzymatic digestion versus hydrochloric acid-mediated hydrolysis, Journal of Chromatography B, vol.851, issue.1-2, pp.268-276, 2007.
DOI : 10.1016/j.jchromb.2006.11.005

Y. Kamisaki, K. Wada, K. Nakamoto, Y. Kishimoto, M. Kitano et al., Sensitive determination of nitrotyrosine in human plasma by isocratic high-performance liquid chromatography, Journal of Chromatography B: Biomedical Sciences and Applications, vol.685, issue.2, pp.343-347, 1996.
DOI : 10.1016/S0378-4347(96)00202-2

S. J. Nicholls, Z. Shen, X. Fu, B. S. Levison, and S. L. Hazen, Quantification of 3???Nitrotyrosine Levels Using a Benchtop Ion Trap Mass Spectrometry Method, Methods Enzymol, vol.396, pp.245-266, 2005.
DOI : 10.1016/S0076-6879(05)96022-9

C. Vadseth, J. M. Souza, L. Thomson, A. Seagraves, C. Nagaswami et al., Pro-thrombotic State Induced by Post-translational Modification of Fibrinogen by Reactive Nitrogen Species, Journal of Biological Chemistry, vol.279, issue.10, pp.8820-8826, 2004.
DOI : 10.1074/jbc.M306101200

N. Rabbani and P. J. Thornalley, Assay of 3???Nitrotyrosine in Tissues and Body Fluids by Liquid Chromatography with Tandem Mass Spectrometric Detection, Methods Enzymol, vol.440, pp.337-359, 2008.
DOI : 10.1016/S0076-6879(07)00822-1

G. Nikov, V. Bhat, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry, Analytical Biochemistry, vol.320, issue.2, pp.214-222, 2003.
DOI : 10.1016/S0003-2697(03)00359-2

Q. Zhang, W. J. Qian, T. V. Knyushko, T. R. Clauss, S. O. Purvine et al., A Method for Selective Enrichment and Analysis of Nitrotyrosine-Containing Peptides in Complex Proteome Samples, Journal of Proteome Research, vol.6, issue.6, pp.2257-2268, 2007.
DOI : 10.1021/pr0606934

A. Amoresano, G. Chiappetta, P. Pucci, M. D-'ischia, and G. Marino, Bidimensional Tandem Mass Spectrometry for Selective Identification of Nitration Sites in Proteins, Analytical Chemistry, vol.79, issue.5, pp.2109-2117, 2007.
DOI : 10.1021/ac0620361

P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker et al., Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents, Molecular & Cellular Proteomics, vol.3, issue.12, pp.1154-1169, 2004.
DOI : 10.1074/mcp.M400129-MCP200

S. Y. Ow, T. Cardona, A. Taton, A. Magnuson, P. Lindblad et al., sp. PCC 7120 Using 8-Plex Isobaric Peptide Tags, Journal of Proteome Research, vol.7, issue.4, pp.1615-1628, 2008.
DOI : 10.1021/pr700604v

M. Bantscheff, M. Boesche, D. Eberhard, and T. Matthieson, Robust and Sensitive iTRAQ Quantification on an LTQ Orbitrap Mass Spectrometer, Molecular & Cellular Proteomics, vol.7, issue.9, pp.1702-1715, 2008.
DOI : 10.1074/mcp.M800029-MCP200

R. Tyther, A. Ahmeda, E. Johns, and D. Sheehan, Proteomic identification of tyrosine nitration targets in kidney of spontaneously hypertensive rats, PROTEOMICS, vol.101, issue.24, pp.4555-4564, 2007.
DOI : 10.1002/pmic.200700503

A. S. Pettersson, H. Steen, D. E. Kalume, K. Caidahl, and P. Roepstorff, Investigation of tyrosine nitration in proteins by mass spectrometry, Journal of Mass Spectrometry, vol.340, issue.6, pp.616-625, 2001.
DOI : 10.1002/jms.161

W. J. Jencks, Enforced general acid-base catalysis of complex reactions and its limitations, Accounts of Chemical Research, vol.9, issue.12, pp.425-432, 1976.
DOI : 10.1021/ar50108a001

M. Geng, J. Ji, and F. E. Regnier, Signature-peptide approach to detecting proteins in complex mixtures, Journal of Chromatography A, vol.870, issue.1-2, pp.295-313, 2000.
DOI : 10.1016/S0021-9673(99)00951-6

F. L. Brancia, S. G. Oliver, and S. J. Gaskell, Improved matrix-assisted laser desorption/ionization mass spectrometric analysis of tryptic hydrolysates of proteins following guanidination of lysine-containing peptides, Rapid Communications in Mass Spectrometry, vol.31, issue.166, pp.2070-2073, 2000.
DOI : 10.1002/1097-0231(20001115)14:21<2070::AID-RCM133>3.0.CO;2-G

X. Zhang, Q. K. Jin, S. A. Carr, and R. S. Annan, N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry, Rapid Communications in Mass Spectrometry, vol.924, issue.24, pp.2325-2332, 2002.
DOI : 10.1002/rcm.864

F. Zappacosta and R. S. Annan, N-Terminal Isotope Tagging Strategy for Quantitative Proteomics:?? Results-Driven Analysis of Protein Abundance Changes, Analytical Chemistry, vol.76, issue.22, pp.6618-6627, 2004.
DOI : 10.1021/ac049169b

A. Scholten, N. F. Visser, R. H. Van-den-heuvel, A. J. Heck, and J. , Analysis of protein-protein interaction surfaces using a combination of efficient lysine acetylation and nanoLC-MALDI-MS/MS applied to the E9:Im9 bacteriotoxin???immunity protein complex, Journal of the American Society for Mass Spectrometry, vol.12, issue.381, pp.983-994, 2006.
DOI : 10.1016/j.jasms.2006.03.005

Y. S. Cong, E. Fan, and E. Wang, Simultaneous proteomic profiling of four different growth states of human fibroblasts, using amine-reactive isobaric tagging reagents and tandem mass spectrometry, Mechanisms of Ageing and Development, vol.127, issue.4, pp.332-343, 2006.
DOI : 10.1016/j.mad.2005.12.005

K. Aggarwal, L. H. Choe, and K. H. Lee, Shotgun proteomics using the iTRAQ isobaric tags, Briefings in Functional Genomics and Proteomics, vol.5, issue.2, pp.112-120, 2006.
DOI : 10.1093/bfgp/ell018

J. V. Jorrín, A. M. Maldonado, and M. A. Castillejo, Plant proteome analysis: A 2006 update, PROTEOMICS, vol.6, issue.16, pp.2947-2962, 2007.
DOI : 10.1002/pmic.200700135

R. Niggeweg, T. Köcher, M. Gentzel, A. Buscaino, M. Taipale et al., A general precursor ion-like scanning mode on quadrupole-TOF instruments compatible with chromatographic separation, PROTEOMICS, vol.5, issue.1, pp.41-53, 2006.
DOI : 10.1002/pmic.200501332

S. J. Park, J. S. Song, and H. Kim, Dansylation of tryptic peptides for increased sequence coverage in protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric peptide mass fingerprinting, Rapid Communications in Mass Spectrometry, vol.28, issue.21, pp.3089-96, 2005.
DOI : 10.1002/rcm.2166

A. Pashkova, E. Moskovets, and B. L. Karger, Coumarin Tags for Improved Analysis of Peptides by MALDI-TOF MS and MS/MS. 1. Enhancement in MALDI MS Signal Intensities, Analytical Chemistry, vol.76, issue.15, pp.4550-4557, 2004.
DOI : 10.1021/ac049638+

R. Zenobi and . R. Knochenmuss, Ion formation in MALDI mass spectrometry, Mass Spectrometry Reviews, vol.169, issue.170, pp.337-366, 1998.
DOI : 10.1002/(SICI)1098-2787(1998)17:5<337::AID-MAS2>3.0.CO;2-S

M. Nakagawa, T. Yamagaky, and H. Nakinishi, Fluorescent modification for peptide sequencing by postsource decay-matrix assisted laser desorption/ionization-mass spectrometry, Electrophoresis, vol.38, issue.170, pp.1651-1652, 2000.
DOI : 10.1002/(SICI)1522-2683(20000501)21:9<1651::AID-ELPS1651>3.0.CO;2-L

M. Nakagawa and H. Nakanishi, Fluorescent Modification Of N-Terminal Amino Group In Peptides For Complete Sequence Analysis Using Psd Method In Maldi-Tof-Ms, Protein & Peptide Letters, vol.11, issue.1, pp.71-77, 2004.
DOI : 10.2174/0929866043478464

A. Napoli, D. Aiello, D. Donna, L. Moschidis, P. Sindona et al., Vegetable Proteomics: The Detection of Ole e 1 Isoallergens by Peptide Matching of MALDI MS/MS Spectra of Underivatized and Dansylated Glycopeptides, Journal of Proteome Research, vol.7, issue.7, pp.2723-2732, 2008.
DOI : 10.1021/pr700855u

S. Lin, D. Yun, D. Qi, C. Deng, Y. Li et al., Novel Microwave-Assisted Digestion by Trypsin-Immobilized Magnetic Nanoparticles for Proteomic Analysis, Journal of Proteome Research, vol.7, issue.3, pp.1297-307, 2008.
DOI : 10.1021/pr700586j

W. Sun, S. Gao, L. Wang, Y. Chen, S. Wu et al., Microwave-assisted Protein Preparation and Enzymatic Digestion in Proteomics, Molecular & Cellular Proteomics, vol.5, issue.4, pp.769-76, 2006.
DOI : 10.1074/mcp.T500022-MCP200

P. Poullet, S. Carpentier, and E. Barillot, myProMS, a web server for management and validation of mass spectrometry-based proteomic data, PROTEOMICS, vol.5, issue.15, p.2553, 2007.
DOI : 10.1002/pmic.200600784

K. D. Roth, Z. H. Huang, N. Sadagopan, and J. T. Watson, Charge derivatization of peptides for analysis by mass spectrometry, Mass Spectrometry Reviews, vol.6, issue.170, pp.255-274, 1998.
DOI : 10.1002/(SICI)1098-2787(1998)17:4<255::AID-MAS1>3.0.CO;2-4

W. Yu, J. E. Vath, M. C. Huberty, and M. S. , Identification of the facile gas-phase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser desorption time-of-flight mass spectrometry, Analytical Chemistry, vol.65, issue.21, pp.3015-3023, 1993.
DOI : 10.1021/ac00069a014

. D. Renner and . G. Spiteller, Sequencing of Short Peptides Using FAB Mass Spectrometry?Increased Information via Derivatization, Angewandte Chemie International Edition in English, vol.56, issue.5, pp.408-409, 1985.
DOI : 10.1002/anie.198504081

B. Schilling, C. B. Yoo, C. J. Collins, and B. W. Gibson, Determining cysteine oxidation status using differential alkylation, International Journal of Mass Spectrometry, vol.236, issue.1-3, pp.117-127, 2004.
DOI : 10.1016/j.ijms.2004.06.004

L. Gonzales-segura, R. Velasco-garcia, and R. A. Munoz-clares, Modulation of the reactivity of the essential cysteine residue of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa, Biochemical Journal, vol.361, issue.3, pp.577-585, 2002.
DOI : 10.1042/bj3610577

J. Sun, C. Steenbergen, and E. Murphy, -Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress, Antioxidants & Redox Signaling, vol.8, issue.9-10, pp.1693-1705, 2006.
DOI : 10.1089/ars.2006.8.1693

URL : https://hal.archives-ouvertes.fr/hal-00655897

P. Han, X. Zhou, B. Huang, X. Zhang, and C. Chen, On-gel fluorescent visualization and the site identification of S-nitrosylated proteins, Analytical Biochemistry, vol.377, issue.2, pp.150-155, 2008.
DOI : 10.1016/j.ab.2008.03.023

M. Sethuraman, M. E. Mccomb, H. Huang, S. Huang, T. Heibeck et al., Isotope-Coded Affinity Tag (ICAT) Approach to Redox Proteomics:?? Identification and Quantitation of Oxidant-Sensitive Cysteine Thiols in Complex Protein Mixtures, Journal of Proteome Research, vol.3, issue.6, pp.1228-1261, 2004.
DOI : 10.1021/pr049887e

M. T. Forrester, M. W. Foster, and J. S. Stamler, Assessment and Application of the Biotin Switch Technique for Examining Protein S-Nitrosylation under Conditions of Pharmacologically Induced Oxidative Stress, Journal of Biological Chemistry, vol.282, issue.19, pp.13977-83, 2007.
DOI : 10.1074/jbc.M609684200

N. Ramachandran, S. Jacob, B. Zielinski, G. Curatola, L. Mazzanti et al., N-Dansyl-S-nitrosohomocysteine a fluorescent probe for intracellular thiols and S-nitrosothiols, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1430, issue.1, pp.149-54, 1999.
DOI : 10.1016/S0167-4838(98)00286-6

E. R. Stadtman, Protein Oxidation in Aging and Age-Related Diseases, Annals of the New York Academy of Sciences, vol.363, issue.1, p.22, 2001.
DOI : 10.1111/j.1749-6632.2001.tb05632.x

E. Gianazza, J. Crawford, and I. Miller, Amino Acids, pp.51-56, 2007.

P. Poullet, S. Carpentier, and E. Barillot, myProMS, a web server for management and validation of mass spectrometry-based proteomic data, PROTEOMICS, vol.5, issue.15, p.2553, 2007.
DOI : 10.1002/pmic.200600784

A. Amoresano, G. Monti, C. Cirulli, and G. Marino, Selective detection and identification of phosphopeptides by dansyl MS/MS/MS fragmentation, Rapid Communications in Mass Spectrometry, vol.15, issue.9, pp.1400-1404, 2006.
DOI : 10.1002/rcm.2461

A. Amoresano, G. Chiappetta, P. Pucci, M. D-'ischia, and G. Marino, Bidimensional Tandem Mass Spectrometry for Selective Identification of Nitration Sites in Proteins, Analytical Chemistry, vol.79, issue.5, pp.2109-2117, 2007.
DOI : 10.1021/ac0620361

C. Cirulli, G. Marino, and A. Amoresano, mass spectrometry: a preliminary report, Rapid Communications in Mass Spectrometry, vol.14, issue.14, pp.2389-97, 2007.
DOI : 10.1002/rcm.3104

K. L. Hsi, S. A. O-'neill, D. R. Dupont, and P. M. Yuan, Visualization of Proteins by Modification of Lysines, Cysteines, and Phosphorylated Serines Facilitates Sample Preparation for Microsequencing, Analytical Biochemistry, vol.258, issue.1, pp.38-47, 1998.
DOI : 10.1006/abio.1998.2582

X. Zhao, T. Kobayashi, Z. Gryczynski, I. Gryczynski, J. Lakowicz et al., Calcium-induced flexibility changes in the troponin C???troponin I complex, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1479, issue.1-2, pp.247-54, 2000.
DOI : 10.1016/S0167-4838(00)00026-1

J. Beckwith and L. B. Poole, Molecular cell, pp.36-45, 2008.

M. Fratelli, E. Gianazza, and P. Ghezzi, Redox proteomics: identification and functional role of glutathionylated proteins, Expert Review of Proteomics, vol.1, issue.3, pp.365-376, 2004.
DOI : 10.1586/14789450.1.3.365

R. Lahti, M. Suonpaa, and J. , Role of Glutathione in the Regulation of Inorganic Pyrophosphatase Activity in Streptococcus faecalis, Microbiology, vol.128, issue.5, pp.1023-1026, 1982.
DOI : 10.1099/00221287-128-5-1023

Y. W. Hwang, A. Sanchez, M. C. Hwang, and D. L. Miller, The Role of Cysteinyl Residues in the Activity of Bacterial Elongation Factor Ts, a Guanosine Nucleotide Dissociation Protein, Archives of Biochemistry and Biophysics, vol.348, issue.1, pp.157-162, 1997.
DOI : 10.1006/abbi.1997.0375

K. N. Gracy, C. Y. Tang, K. U. Yüksel, and R. W. Gracy, The accumulation of oxidized isoforms of chicken triosephosphate isomerase during aging and development, Mechanisms of Ageing and Development, vol.56, issue.2, pp.179-86, 1990.
DOI : 10.1016/0047-6374(90)90008-4

L. B. Poole, K. J. Nelson, and . Curr, Discovering mechanisms of signaling-mediated cysteine oxidation, Current Opinion in Chemical Biology, vol.12, issue.1, pp.18-24, 2008.
DOI : 10.1016/j.cbpa.2008.01.021

K. Czechowska, D. R. Johnson, and J. R. Van-der-meer, Use of flow cytometric methods for single-cell analysis in environmental microbiology, Current Opinion in Microbiology, vol.11, issue.3, pp.205-212, 2008.
DOI : 10.1016/j.mib.2008.04.006

P. Weber, F. W. Harrison, and L. Hof, The histochemical application of dansylhydrazine as a fluorescent labeling reagent for sialic acid in cellular glycoconjugates, Histochemistry, vol.56, issue.4, pp.271-277, 1975.
DOI : 10.1007/BF00492629

M. Takahashi, D. Black, B. Hughes, and R. Marks, Exploration of a quantitative dansyl chloride technique for measurement of the rate of desquamation, Clinical and Experimental Dermatology, vol.103, issue.4, pp.246-249, 1987.
DOI : 10.1007/BF00504128

D. Mustafa, J. M. Kros, and T. Luider, 159-78 i A INDEX A: table of abbreviations ACN: acetonitrile AMBIC: ammonium hydrogen carbonate BSA -DAZ: dansyl aziridine modified albumin serum bovine BSA: bovine serum albumin CHAPS, Cholamidopropyl)dimethyl ammonio)-1-propanesulfonateas, p.3, 2008.

A. Amoresano, G. Chiappetta, P. Pucci, M. D-'ischia, and G. Marino, Bidimensional Tandem Mass Spectrometry for Selective Identification of Nitration Sites in Proteins, Analytical Chemistry, vol.79, issue.5, p.21091, 2007.
DOI : 10.1021/ac0620361

C. Cirulli, G. Chiappetta, G. Marino, P. Mauri, and A. A. , Identification of free phosphopeptides in different biological fluids by a mass spectrometry approach, Analytical and Bioanalytical Chemistry, vol.29, issue.1-2, pp.147-159, 2008.
DOI : 10.1007/s00216-008-2266-7

G. Chiappetta, C. Corbo, A. Palmese, G. Marino, and A. Amoresano, Quantitative identification of protein nitration sites Proteomics, 2008.

M. Ms-fragmentation, G. Chiappetta, C. Corbo, G. Marino, and A. Amoresano, A novel method to selectively detect, identify and quantify post translational modifications by, Acitrezza, 2007.

C. Corbo, G. Chiappetta, A. Amoresano, and G. Marino, Quantitative analysis of nitrated proteins probed by iTRAQ reagents, XX Congresso Nazionale di Chimica Analitica, 2007.

A. Zattoni, D. C. Rambaldi, P. Reschiglian, A. Amoresano, G. Chiappetta et al., An approach to whole blood serum Proteomics using flow field-flow fractionation with multiangle laser scatting detection and nano-chip ion trap mass spectrometry, 2008.

G. Chiappetta, Y. Verdier, H. Senechal, J. P. Sutra, A. Amoresano et al., A new strategy for selective detection of thiols oxidative modifications in vivo, 2008.