Microrhéologie de suspensions colloïdales non ergodiques: Relaxations locales, dynamiques lentes et vieillissement

Fabrice Monti

To cite this version:

HAL Id: pastel-00560061
https://pastel.archives-ouvertes.fr/pastel-00560061

Submitted on 27 Jan 2011
THÈSE DE DOCTORAT DE
L'UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité
PHYSIQUE ET CHIMIE DES MATÉRIAUX (ED 397)

Présentée par

M. MONTI Fabrice

Pour obtenir le grade de

DOCTEUR de l'UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :
Microrhéologie de suspensions colloïdales non ergodiques :
Relaxations locales, dynamiques lentes et vieillissement

Soutenue le 3 décembre 2010

Devant le jury composé de :

Mme COHEN-ADDAD Sylvie Rapporteur
M. TASSIN Jean-François Rapporteur
M. GUENOUN Patrick Examineur
M. HOURDET Dominique Examineur
M. CLOITRE Michel Directeur de thèse
Sommaire

Chapitre I Introduction et objectifs

1. La synthèse des microgels polyélectrolytes. ... 5
2. Préparation des échantillons ... 6
3. Structure des échantillons dans différents régimes de concentrations 7
4. Caractérisation rhéologique des pâtes de microgels ... 9

4.1 Principe des mesures de rhéologie ... 9
4.2 Détails expérimentaux ... 10
4.3 Détermination du régime de rhéologie linéaire: balayage en déformation 11
4.4 Mesure des modules élastique et visqueux en fonction de la fréquence 12
4.5 Variation du module élastique en fonction de la concentration 13
4.6 Courbe d'écoulement ... 14
4.7 Relaxation de contrainte, dynamique lente et vieillissement 16
5. Comportement aux parois ... 17
6. Objectifs de ce travail ... 20
7. Références Bibliographiques .. 23

Chapitre II Diffusion multiple de la lumière: principes et mise en œuvre

1. La diffusion simple de la lumière .. 28
2. Propagation de la lumière dans un milieu fortement diffusant: la diffusion multiple ... 31
 - 2.1 Définition du libre parcours moyen ... 31
 - 2.2 Principe de la mesure de ϵ^* .. 34
 - 2.3 Montage expérimental ... 35
3. Spectroscopie en diffusion multiple de la lumière (DWS) 37
 - 3.1 Fonction de corrélation du champ électrique et en intensité 37
 - 3.2 Importance de la fonction d'appareil ... 41
 - 3.3 Présentation du dispositif expérimental pour l'étude de la dynamique par DWS ... 43
 - 3.4 Exemple d'application à l'étude de la micro-rhéologie hautes fréquences d'un polymère associatif ... 44
4. Références Bibliographiques ... 52

AVANT PROPOS

1

PARTIE I: MICRORHEOLOGIE PAR DIFFUSION MULTIPLE DE LA LUMIERE

25

Chapitre II Diffusion multiple de la lumière: principes et mise en œuvre

27
Chapitre III Spectroscopie en diffusion multiple des matériaux non ergodiques et en écoulement 55

1	Montage expérimental	56
1.1	Calcul de fonctions de corrélations - algorithme multi-τ	58
1.2	Logiciel du corrélateur multi-τ développé	61
1.3	Analyse des conditions expérimentales	68
1.4	Analyse des fonctions de corrélation	72
2	Références Bibliographiques	74

Chapitre IV Double responsive polymer-microgel composites: Rheology and structure 77

1	Introduction	78
2	Materials and experimental techniques	81
2.1	Materials	81
2.2	Preparation of double responsive composites	82
2.3	Rheology	82
2.4	Multiple light scattering	83
2.5	Fluorescence confocal microscopy	85
2.6	Fluorescence measurements	86
3	Results	86
3.1	Rheology of microgel-PNIPAm composites	86
3.2	Turbidity and multiple light scattering above the LCST	91
3.3	Microscopic observation of phase-separated PNIPAM microdomains	94
4	Discussion	101
4.1	Origin of the thermo-mechanical responsiveness of composites	101
4.2	Structure of PNIPAm microdomains above the LCST	103
4.3	Importance of confinement	104
5	Conclusion	105
6	References	106

Chapitre V Microscopic dynamics of a soft colloidal glass 109

1	Introduction	110
2	Experiments	113
2.1	Sample preparation	113
2.2	Macroscopic rheology	115
2.3	DWS experiments	115
3	Theory and method of analysis	118
3.1	Characterization of nonergodic samples	118
3.2	Microrheology	123
4	High frequency rheology of microgel glasses	125
4.1	Results	125
4.2	Interpretation	132
Sommaire

5 Slow dynamics and aging of microgels glasses ... 135
5.1 Results and data analysis .. 135
5.2 Discussion and interpretation ... 138
6 References ... 141

PARTIE II: MICRORHEOLOGIE PAR MICROSCOPIE A FLUORESCENCE ... 145

Chapitre VI Dispositif de microrhéologie par suivi de particules .. 147

1 Présentation du dispositif expérimental ... 148
1.1 Le système microscopique .. 148
1.2 La platine de cisaillement .. 149
2 Système d’acquisition d’images .. 157
2.1 Caméra et logiciel d’acquisition .. 157
2.2 Optimisation du contraste ... 158
2.3 Gestion du temps ... 160
3 Analyse d’image ... 161
3.1 Seuillage et filtrage ... 161
3.2 Construction des trajectoires .. 164
3.3 Détermination de la vitesse moyenne ... 165
4 Applications ... 166
4.1 Introduction ... 166
4.2 Microvélocimétrie par suivi de particule .. 168
5 Application à la détermination de profil de vitesse... 171

Chapitre VII Yielding, Slip, and Flow of Soft Glasses: The Role of Surface Forces .. 177

1 Introduction ... 178
2 Materials and experiments .. 179
3 Discussion ... 182
4 References ... 188

CONCLUSION GENERALE ... 191
A ma grand-mère maternelle
qui aurait été fière de moi
A mes grands-parents paternels
qui ont eu le courage d’immigrer en France
A mes parents et leur rencontre
A Fabienne, ma chérie
A Thomas et Alice mes enfants
... Merci ...

Dur de remercier en quelques lignes toutes les personnes que j'ai rencontré durant ces 8 années de "MMC" et ces 12 ans de vie CNRS, mais c'est un exercice que je me fais un point d'honneur de faire et que je réalise avec le plus grand plaisir et de façon chronologique.

Ma gratitude va en premier à Michel Cloitre avec qui j'ai travaillé de nombreuses heures sur des projets stimulants. Je pense bien sûr au suivi de crémage des mousses, aux journées et aux nuits à l'ESRF, aux manip de DLS et DWS dans l'ancien Centre d'Application de Levallois, aux manip de rhéologie, aux manip de suivi de particule... C'est lui qui m'a permis de concrétiser ce que j'ai eu longtemps du mal à imaginer: devenir "Docteur". Je dois l'avouer aujourd'hui, sa curiosité et son impatience sont parfois pesantes mais c'est pour moi un bon chercheur et il excelle dans l'art de présenter les choses sous des angles toujours différents. C'est une grande force, encore Merci Michel.

Je me dois aussi de remercier chaleureusement les membres de mon jury, Sylvie Cohen-Addad et Jean-François Tassin, mes rapporteurs qui ont fait un travail de lecture très minutieuse au regard des questions posées lors de la discussion. Je n'ai pas toujours su y répondre mais la science est un métier où l'on peut, sans avoir honte, répondre "Je ne sais pas". Merci également à Patrick Guenoun et Dominique Hourdet qui sans être rapporteur ont lu avec attention ce manuscrit. Merci à tous les quatre, en espérant avoir l'occasion de travailler ensemble.

Le protocole ne serait pas respecté sans un remerciement franc et sincère au directeur du laboratoire, Ludwik Leibler. Merci Ludwik de m'avoir permis de réaliser ce travail de thèse, de me l'avoir proposé au moment opportun. Je pense avoir été un soutien technique sans faille pour l'UMR jusqu'à mon départ et malgré nos divergences, je garde un excellent souvenir de ces 8 années et je vous dire encore une fois "Merci".

Je souhaite également remercier tous les membres du laboratoire, les noms qui me viennent en tête sont nombreux…. Je pense à l'équipe du CAL, en vrac: Djamel, Manuel, Claudine, Jean-Claude, Claudine, Christian (le roi des mousses et de la sieste dans son bureau), Cyprien (toujours à MSC?), Anne-Valérie (reviens vite), les thésards de l'époque: Fabrice, Guillaume, le trio d'enfer Hélène, Carinne et Fabienne et tous les stagiaires.

Les variables de l'économie nous ont fait migrer de Levallois vers l'ESPCI, où une nouvelle équipe s'est mise en place. Il y a eu Corinne (merci pour ces astuces de pliage de draps), Michèle Milléquant (toujours en train de raler mais un grand cœur et une grande efficacité. Bonne retraite Michèle), Ilias (fils du soleil, merci de tes conseils et ta recette de oumousse et je te dirai: 'I did it'), Sophie (le rayon vert existe), François (et son pas caractéristique), et Sylvie (qui navigue entre industrie et recherche académique). Les labos ne pourraient pas tourner sans petites mains merci à Marie-France, à Anne-Claire, à Gaëlle (immigrer à Damas, quelle idée!), à Pat'Boq', Laurent. Merci à eux.

Un remerciement chaleureux aux "temporaires" qui sont maintenant éparpillés aux quatre coins du monde, ceux qui viennent faire une thèse, un post-doc ou un stage, repartent
en laissant un souvenir derrière eux… Je ne pourrais pas citer tout le monde car ma mémoire me fait défaut mais un grand merci à Adam (un anglais hyper sympa et heureux papa), Mathilde et Chantal (trois enfants à elles deux), Steve (je ne sais toujours pas prononcer à l'anglaise "magnifying glass", c'est bien Bordeaux?), France (j'attends l'invitation), Philippe (immigrer à Damas, quelle idée!), Léa (what up doc'), Sylvia (heureux que ce soit toi qui est pris ma place), Clémentine à qui j'ai passé un peu le flambeau du suivi de particule (mariage en blanc?) , Emanuela (que de souvenirs avec la DLS), Nathalie (courage bientôt un poste fixe), Laurent (galette des rois chez toi?), Cécile (Word apprend la zénitude), Maxime (un fou du nord capable de faire le tour de monde en sac à dos), Stéphane (son sport? La lutte chinoise je crois), Rami (que de souvenirs avec l'ESPCI?), Anne-Carine (qui ne connait pas les gateaux?), Nicolas (c'est vert la Normandie), Nick (il faudra lever un jour le loup sur ces manips de particule tracking), Julie (mon bureau pour un café est dispo), le poisson rouge et tifou (quelle star ce chien!), Pierre (j'avoue c'est moi qui est fait planté ID07 durant la nuit..), Jyoti (un mélange de théoricienne, d'expérimentatrice et de charme indien, j'adore).... Merci pour tous ces bons moments et c'est avec plaisir que je viendrai vous rendre visite avec ma petite famille.

2007, nouvelle vie, nouvelle équipe, Merci à l'équipe du MMN de leur accueil, certaines lectrices comme Caro ou Magalie seront infiniment remercier même si visiblement elles ont laissé passé des coquilles. Merci à Hervé pour son savoir, Merci à mon public de répétition de soutenance, Merci à Clémence d'avoir toujours un truc à réparer et de jouer avec moi à la roulette café, Merci aussi à Patrick pour me confier les clés du Labo presque les yeux fermés. Un remerciement spécial pour Elie pour son soutient personnel et professionnel. Merci aux d'jeunes de NBP et de PCT et à V.V. Merci Khadija qui devrait prendre un peu de recul et être plus cool…. Même si ces gens là ne sont pas impliqués directement dans ce travail, ils sont devenus mon quotidien et je les remercie d'être simplement eux.

Merci aussi aux gens que j'ai croisé dans d'autres cadres, les amis du GIOP, du CNAM ou de CANON.

Merci à ma famille, à mes parents qui ont toujours cru en moi et mon toujours offert le maximum. Je n'ai pas un parcours linéaire, mais si je devais choisir je n'en changerai pas une minute. Merci enfin à Fabienne qui m'a donné deux enfants, Thomas et Alice. Merci de son soutien sans faille et de son amour.

Un mot enfin aux futurs doctorants; c'est une phrase que j'ai lu il y a peu mais qui pour moi symbolise le travail de thèse: "Ce que l'on cherche à faire sera toujours moins important que ce que l'on va apprendre pour le faire".

A tous,

..Merci...
Remerciements
Avant propos

Solide : adj. et n.m. : Se dit d'un corps, d'un état de la matière dans lequel les molécules sont très rapprochées les unes des autres et vibrent avec une très faible amplitude autour de leurs position d'équilibre; garde une forme relativement constante lorsqu'il n'est pas soumis à des forces extérieures.

Liquide : adj. et n.m. : Qui coule ou tend à couler. Substance caractérisée par sa fluidité et sa faible compressibilité; un corps liquide prend la forme du récipient qui le contient.

Petit Robert

Ces seules définitions ne permettent pas de caractériser des produits de la vie quotidienne comme la mousse à raser, la boue, les gels, les pâtes dentifrices....

Ce sont des solides qui s'écoulent au cours du temps, ce que le Petit Robert n'a pas imaginé.

Ces produits et beaucoup d'autres aux comportements similaires sont utilisés dans le milieu industriel, les scientifiques les ont placés dans la catégorie des fluides complexes.

L'étude du comportement de ces fluides complexes est apparue dans le milieu des années 80, sous l'impulsion d'applications industrielles (cosmétique, agroalimentaire, biologie, encre d'impression textile...), mais également avec le développement de technique de plus en plus performantes (rayon X, rhéologie, diffusion de la lumière...). Les produits industriels répondent à un besoin exprimé en amont et sont souvent étudiés à l'échelle macroscopique. Un travail conséquent de formulation, souvent basé sur des règles empiriques, est nécessaire pour obtenir un produit final à la mécanique complexe. Dans le même temps, les mécanismes microscopiques sont encore peu connus alors que c'est à cette échelle que beaucoup de choses se décident. Les mécanismes microscopiques collectifs dictent le comportement macroscopique.

Parmi ces exemples de fluides, nous avons choisi de concentrer notre étude sur des microgels polyélectrolytes industriels utilisés dans le contrôle de la rhéologie pour formuler des fluides à seuil d'écoulement. Les propriétés des ces microgels sont intéressantes à des nombreux niveaux. A faible fraction volumique, inférieure ou égale à 1, ils forment des
fluides visqueux simples. Il est possible d'augmenter la concentration pour atteindre pratiquement la fraction volumique de 1. Le matériau formé est alors un solide élastique qui présente des propriétés rhéologiques comme: une contrainte seuil, un module élastique élevé, une dynamique de relaxation lente. Ces dernières propriétés évoluent de façon reproductible à partir d'un état mécanique connu. Cet état est obtenu après un cisaillement très fort du matériau créant une carte de répartition des contraintes aléatoires. La relaxation de contrainte dans ces microgels semble ne jamais s'arrêter, ce qui conduit à faire des analogies de ce type de comportement avec des systèmes vitreux ou hors d'équilibre.

Par ailleurs, au cours de la mise en écoulement de ces microgels, l'influence de la nature des parois est cruciale. La nature chimique, la rugosité ou encore les interactions courtes et longues portées vont en réalité influencer la manière dont s'écoule ces microgels.

Classiquement, les études mécaniques de rhéologie sont utilisées pour sonder, mesurer, cisailler ce type de matériaux, mais cette technique ne donne qu'une information moyennée sur tout le volume de l'échantillon: aucune caractérisation de la dynamique à l'échelle locale n'est possible.

L'objectif de cette thèse a été de proposer et de mettre au point un ensemble de techniques optiques permettant d'étudier la dynamique de pâtes très concentrées à l'échelle des particules. Nous avons ainsi développé deux dispositifs originaux utilisant l'une la diffusion multiple de la lumière et l'autre la vidéomicroscopie par fluorescence. Ce manuscrit est donc divisé en deux grandes parties suivant chacune des ces deux techniques: l'une dans l'espace de Fourrier avec l'étude de la microrhéologie à l'aide de la technique de diffusion multiple de la lumière, l'autre dans l'espace direct avec l'étude de la microrhéologie par suivi de particule.

Le chapitre I présente un état de l'art de la structure, des propriétés physico-chimiques et de la rhéologie macroscopique des microgels polyélectrolytes qui seront utilisés dans ce travail.

Dans la première partie nous étudierons par diffusion multiple de la lumière ces microgels. Les chapitres II et III présentent les bases théoriques de la diffusion multiple de la lumière, les algorithmes utilisés et les tests de la technique sur un homopolymère acrylique.

Le chapitre IV est un article paru dans la revue Langmuir présentant l'étude que nous avons réalisé sur un composite stimulable entre un microgel polyélectrolyte et un polymère thermosensible. L'augmentation du module élastique du produit obtenu est contrôlée soit via le pH, soit via la température. Des mesures rhéologiques, des observations de microscopie
confocale et de diffusion multiple en température, nous avons permis de comprendre les mécanismes physiques à l'origine des propriétés remarquables de ces composites.

Le chapitre V est présenté sous forme d'un article, présentant la technique de microrhéologie appliquée aux microgels polyelectrolytes. Ces pâtes de microgels sont étudiées à des fractions volumiques élevées, donnant des matériaux figés dans un état hors d'équilibre. Dans ces conditions, la technique de diffusion de lumière ne permet pas d'effectuer directement des mesures fiables. Pour traiter la non-ergodicité, nous avons utilisés des techniques d'analyses issues de protocoles de diffusion simple de la lumière. Nous sommes parvenus à sonder la dynamique locale des pâtes sur des échelles de temps s'étendant depuis le domaine Brownien (~10^{-7}s) jusqu'à plusieurs heures. Ceci nous a permis de proposer des mécanismes microscopiques pour les phénomènes de relaxation à temps courts et les dynamiques lentes.

Dans ce chapitre, nous avons également étudié en diffusion multiple la relaxation des microgels justes après l'arrêt d'un écoulement et comparé aux résultats obtenus en rhéologie ou au cours du suivi de la particule.

La seconde partie se concentre sur l'étude de ces phénomènes en visualisation directe. Des traceurs fluorescents sont ajoutés aux échantillons, ce qui permet de faire deux types de mesures: soit de suivre des particules au cours de l'écoulement, soit de les suivre durant la phase de relaxation de contrainte.

Le chapitre VI présente le dispositif réalisé pour l'occasion.

Le chapitre VII présente un article, soumis à Physical Review Letters, utilisant ce montage de suivi de particule pour extraire des profils de vitesse d'écoulement de microgels dans différentes conditions d'interactions avec les parois (rugueux, attractifs ou glissant).

Le dernier chapitre est une conclusion générale sur les résultats obtenus et donne un point de vue critique sur ce travail pour envisager les orientations futures.
Chapitre I

Introduction et objectifs

Dans ce chapitre nous présenterons les microgels polyélectrolytes sur lesquels nous allons nous focaliser dans ce travail. Cette présentation s'appuie notamment sur un état de l'art après le travail de thèse de Régis Borrega qui a étudié en détails les mécanismes de neutralisation et mis en évidence les propriétés particulières d'écoulement et de relaxation de ces pâtes. Cette brève introduction nous permettra de mieux situer notre approche et les objectifs de nos travaux.

1 La synthèse des microgels polyélectrolytes.

Les microgels sont des copolymères d'acrylate d'éthyle (AE) et d'acide méthacrylique (AMA) réticulés par un monomère, le dicyclopentényloxyéthyle méthacrylate (DCPOEMA). La synthèse est effectuée en émulsion directe en solvant aqueux. Chaque gouttelette va servir de réacteur à la croissance des chaînes de polymère; l'ajout de DCPOEMA va former des points de réticulation au sein de ce réseau sans stopper la croissance des chaînes. Nous obtenons un copolymère AE-co-AMA statistique.

Un travail important de mise au point a été nécessaire pour trouver les conditions optimales de synthèse, notamment dans le rapport des quantités d'AMA et AE. C'est ainsi que l'on a montré que le rapport AMA/AE doit être inférieur à 1. L'ensemble du travail de synthèse de ces matériaux a été réalisée par les techniciens et ingénieurs du Centre de Recherche et de Développement d'Arkeman (CERDATO) à Serquigny.

Notre étude comportera deux types de microgels en fonction du taux d'agent réticulant ajouté.
Introduction et objectifs

- Soit 64% d'AE, 35% d'AMA, et 1% de DCPOEMA

- Soit 62% d'AE, 33% d'AMA et 5% de DCPOEMA

Les produits obtenus sont lavés des surfactants de synthèse par ultrafiltration jusqu'à ce que la solution présente la même résistivité que l'eau ultrapure (18,2 MΩ.cm). Le résultat de la synthèse donne une solution mère de microgels sous forme de petites sphères en suspension dans l'eau, présentant un extrait sec de l'ordre de 10% et un pH acide (~3-4).

Régis Borrega, au cours de sa thèse[1], s'est intéressé à la taille de ces microgels dans les solutions mères en fonction des différentes conditions de synthèse. Il a montré que le rayon hydrodynamique mesuré par diffusion simple de la lumière était quasiment constant quelque soit la quantité de DCPOEMA et vaut environ 50 nm.

2 Préparation des échantillons

Les microgels en suspension dans l'eau sont effondrés sur eux-mêmes (structure en pelote) et l'une des façons la plus simple de se les représenter est d'imaginer que chaque particule est un filet de pêcheur roulé en boule où les cordes représentent les chaînes de monomères et les nœuds sont les points de réticulation chimique. Le réseau est maintenu dans cet état effondré par la présence des fonctions d'acide méthacrylique. La neutralisation des fonctions acides, par de la soude, va entraîner la création de charges -COO⁻, le réseau s'ouvre. Sous l'effet de la pression osmotique, l'eau va pénétrer dans le réseau: les particules gonflent. Les mécanismes de neutralisation ont été étudiés théoriquement et expérimentalement par I.Borukhov et al[2]. La taille des particules de microgel gonflées est intimement liée au degré de réticulation, plus le réseau comporte de points de réticulation, plus il sera difficile pour le solvant d'y pénétrer et de s'y piéger. Le rayon hydrodynamique des microgels réticulés à 5% de DPCOMA et gonflés est de 125 nm, avec seulement un taux de 1% de réticulant les microgels gonflent jusqu'à 250 nm de rayon.
La préparation des échantillons se fait en mélangeant deux volumes égaux contenant d'une part une solution diluée de microgel dans l'eau et d'autre part la quantité de soude nécessaire pour neutraliser les fonctions acides diluées dans l'eau.

Nous avons remarqué qu'il est préférable de préparer les échantillons par cette technique au lieu d'ajouter de la soude fortement concentrée directement dans la solution de microgel diluée. Une goutte de soude fortement concentrée va faire gonfler les microgels et la viscosité locale va augmenter rapidement. Il sera long et difficile de rendre homogène une solution très concentrée. La quantité de soude ajoutée sera calculée pour neutraliser 90% des fonctions acides.

3 Structure des échantillons dans différents régimes de concentration.

Durant son travail de thèse, Régis Borrega a largement décrit les différentes structures que présentent des solutions de microgel à différentes concentrations. Il a notamment mis en évidence une concentration critique, notée C^*, où chaque particule est juste en contact avec ses voisines. Cette concentration dépend de la teneur en AE, en AMA, du degré de réticulation et des conditions physico-chimiques (pH, présence de sel). La concentration C^* est souvent comparée au régime d'empilement compact observé dans le cas des sphères dures.
Introduction et objectifs

Au-delà de cette concentration, la surface de contact entre deux particules forme une facette (représentées en traits noir sur la Figure I–2). Le nombre de facettes et leurs surfaces dépendent de la concentration en polymère et sont à l'origine des propriétés d'écoulement à seuil et de la dynamique particulière des échantillons.

La fraction volumique de l'empilement compact pour des sphères dures monodisperses est voisine de 0.64. Régis Borrega a déterminé que la fraction volumique dans le cas des microgels que nous étudions est très proche de cette valeur une fois la taille des particules corrigée pour tenir compte du dégonflement osmotique[3]. La concentration en polymère permettant d'atteindre cette concentration critique dépend des paramètres physico-chimiques comme le taux de réticulation, le taux de neutralisation…
Une solution de microgel à une concentration inférieure à C^* est une suspension de particules colloïdales soumises au mouvement Brownien. La viscosité de ce type de solution est une dizaine ou une centaine de fois supérieure à celle de l'eau. Les particules de microgel sont des particules molles et déformables de telle sorte qu'il est possible de dépasser largement la concentration C^*. Pour des concentrations $C > C^*$, et en absence de contrainte, les échantillons se comportent comme des solides. Dans ce régime, chaque particule est confinée dans un volume restreint formé par leurs voisines. Les particules sont agitées thermiquement, elles explorent un petit volume en s'appuyant sur leurs voisines qui, de part leur propre élasticité, les repoussent. Les particules ne peuvent pas s'extraire de la cage formée par leurs voisines. Malgré l'existence d'un mouvement à l'échelle locale, le système est piégé à l'échelle macroscopique.

Nous utiliserons dans ce manuscrit des suspensions de microgels dans des concentrations au-delà de C^* dont nous allons maintenant présenter les propriétés rhéologiques en détail.

4 Caractérisation rhéologique des pâtes de microgels

4.1 Principe des mesures de rhéologie

La technique souvent utilisée pour caractériser les propriétés telles que la viscosité, les modules élastique et visqueux, est regroupée sous le nom de rhéologie. Le principe de la rhéologie est d'appliquer une contrainte ou une déformation et de mesurer sa réponse mécanique. Les principales grandeurs que nous allons utiliser sont: la contrainte notée τ, la déformation notée γ, le module élastique noté G' et le module visqueux noté G''.

En pratique, cette technique consiste à l'aide d'un rhéomètre à appliquer, de façon oscillante ou continue une contrainte ou une déformation à un échantillon. Il existe plusieurs
Introduction et objectifs

Les types de géométrie de travail. Une géométrie est constituée en pratique d'une partie mobile, le rotor, qui va transmettre la contrainte demandée mais également mesurer la réponse du matériau via des capteurs situés sur l'axe de rotation et d'une partie fixe, le stator. C'est souvent autour du stator que se trouve l'ensemble de contrôle en température.

4.2 Détails expérimentaux

Nous utiliserons un rhéomètre à contrainte imposée (Thermon electron; RS600) équipé d'une géométrie cône-plan de 60 mm de diamètre et de 2° d'angle. Les surfaces du rotor et du stator présentent une rugosité d'une dizaine de microns afin de supprimer les effets du glissement. S.Meeker[4] a largement détaillé ces phénomènes de glissement et il a montré notamment que cette rugosité suffisait à supprimer le glissement. Les échantillons sont isolés de l'atmosphère ambiante grâce à un piège à solvant permettant de limiter les phénomènes d'évaporation.

Les microgels très concentrés présentent des temps de relaxation très longs, aussi pour assurer une bonne reproductibilité des mesures, toutes les mesures sont précédées d'un échelon élevé et continu de contrainte pendant quelques secondes. Cette étape permet de supprimer les contraintes résiduelles accumulées lors de la mise en place dans la géométrie de mesure. Les variations de température ne jouent pas un rôle majeur dans ces systèmes, néanmoins, le contrôle en température est effectué par un plan Peltier qui permet une régulation à 0,1°C près. La température de travail est fixée à 23°C.

Nous décrivons par la suite les mesures et les résultats typiques obtenus sur des pâtes dont la concentration se trouve au dessus de C^\ast.

- 10 -
4.3 Détermination du régime de rhéologie linéaire: balayage en déformation.

Le balayage en déformation consiste à appliquer une déformation croissante en mode dynamique à une fréquence donnée. Concrètement, après un fort cisaillement nous appliquons une déformation, \(\gamma \), comprise entre \(10^{-4} \) et 10 \% en oscillation à fréquence constante (1 Hz) et nous mesurons les modules élastique \((G') \) et visqueux \((G'') \).

\[Figure I–4: Graphique représentant l'évolution de G'(+) et G''(\theta)(axe de gauche) pour une déformation croissante et \(\gamma_c \) représente la déformation critique au dessus de laquelle la suspension s'écoule.\(\gamma_c \) marque la transition de la phase solide à la phase liquide. La contrainte (\(\tau \)) est également portée (axe de droite), le changement de pente nous fournit une information sur la déformation et la contrainte seuil (\(\gamma_s - \tau_s \)).

Le comportement viscoélastique de ces suspensions peut se décomposer en trois régimes différents:

- Le premier régime, aux petites déformations, est obtenu quand, \(\gamma < \gamma_c \). Le matériau est alors un solide élastique. Il stocke l'énergie grâce au module élastique élevé et retrouve
sa forme d'origine lorsque l'on cesse d'appliquer cette déformation. Le rapport G'/G'' est constant et proche de 10: c'est le régime de réponse linéaire, $\gamma \sim \tau$. Au delà de γ_c et jusqu'à γ_y, G' varie assez peu au début mais G'' augmente ce qui traduit l'existence de mouvements internes dans le matériaux. L'énergie apportée au système n'est plus stockée totalement mais dissipée en partie. C'est la limite entre le régime linéaire et non-linéaire. Le matériau se déforme de façon irréversible

- A partir $\gamma > \gamma_y$, la relation $\tau(\gamma)$ change brutalement de forme et suit une loi de puissance (présenté par une droite en coordonnées double logarithme)

- Le dernier régime, $\gamma > \gamma_f$, est le régime d'écoulement continu, G'' est supérieur à G', la suspension est complètement fluidisée et s'écoule comme une fluide visqueux.

Ce type de mesure nous fournit des indications sur les déformations et la contrainte seuil mais également sur les limites du régime linéaire et du régime de fluidisation.

4.4 Mesure des modules élastique et visqueux en fonction de la fréquence.

Nous venons de mettre en évidence que pour des pâtes concentrées, il existe une gamme où la contrainte est directement proportionnelle à la déformation. En appliquant une déformation égale à 1% de façon oscillante, nous nous assurons de mesurer les propriétés du matériau en introduisant le minimum de perturbation. La gamme de fréquence accessible est comprise entre 10^{-4} et 10 Hz, les fréquences les plus basses demandent une grande patience de l'opérateur et demandent de contrôler les effets d'évaporation ce que nous avons réalisé en mettant en place un piège à solvant. Nous avons porté sur le graphique suivant les modules G' et G'' mesurés entre 10^{-2} et 10 Hz pour un échantillon dont la concentration se situe bien au delà de $2C^*$. Le module élastique est environ dix fois plus grand que le module de perte, et sur toute cette plage, le rapport est quasiment constant. Il existe néanmoins une zone où G'' est
minimum, cette valeur sera notée ω_m. Nous attribuons de manière arbitraire que les modules G' et G'' seront systématiquement déterminée à la fréquence ω_m.

![Graphique représentant les modules élastique (G') et visqueux (G'') d'une suspension de microgel $C_{m}=0.02$ g/g et 1% de réticulant. Les losanges sont représentatifs de G' et les triangles de G''. Le rapport de G'/G'' est quasiment constant sur toute la gamme de fréquence étudiée.](image)

4.5 Variation du module élastique en fonction de la concentration

La valeur du module élastique évolue en fonction de la concentration en polymère dans la solution. La Figure I–6 montre l'évolution du module G' pour des concentrations comprise entre 0.012 et 0.022 g/g. Les modules mesurés sont compris entre 8 et 550 Pa soit environ 2 décades de variation. Le module élastique dans cette région de concentration est fortement dépendant de la concentration. L’origine de cette augmentation s'explique par l'augmentation du nombre de contacts entre les particules et leur déformation de plus en plus
important à mesure que la fraction volumique, c'est à dire la concentration, augmente. Ceci a été étudié et modélisé en détaillé par Seth et al[5].

Figure 1–6: Graphique représentant l'évolution du module élastique $G'(\omega_m)$ en fonction de la concentration en polymère. Les microgels contiennent 1% de réticulant et 90% de fonctions acides sont neutralisées.

4.6 Courbe d'écoulement

Comme nous l'avons vu dans la section 4.3, l'un des comportements singuliers de ces pâtes est l'existence d'une contrainte seuil en dessous de laquelle l'échantillon se comporte comme un solide. Pour déterminer les propriétés d'écoulement au dessus de la contrainte seuil, il faut construire une courbe d'écoulement en suivant le protocole suivant[6]:

- Nous appliquons un précisaillement continu de quelques centaines de Pascals pendant 30 secondes.
- Puis nous appliquons une contrainte donnée et observons sa valeur et celle du taux de cisaillement \(\dot{\gamma} \). La valeur du gradient va évoluer plus ou moins rapidement et va converger vers une valeur plateau.

En relevant cette valeur, constante à 1% près, et en recommençant pour différentes contraintes, nous pouvons construire point à point la courbe d'écoulement.

![Graphique présentant la courbe d'écoulement d'une suspension de microgel contenant C_m= 0,02 g/g et 1% de réticulant. Chaque point est déterminé en appliquant une contrainte et en relevant la valeur de \(\dot{\gamma} \) dans le régime stationnaire. Avant chaque mesure l'échantillon est placé dans un état mécanique reproductible en applique un fort échelon de contrainte. Cette courbe montre clairement l'existence d'une contrainte en dessous de laquelle le matériau ne s'écoule pas. Cette mesure est réalisée en utilisant des surfaces rugueuses pour s'affranchir des problèmes de glissement. La présence de glissement serait caractérisée par un brusque changement de pente pour des valeurs de contrainte juste au dessus de la contrainte seuil\(^4\).
4.7 Relaxation de contrainte, dynamique lente et vieillissement.

La présentation du comportement rhéologique de ces microgels ne serait pas complète si nous ne parlions pas de dynamique lente. Le test rhéologique mettant en lumière ces comportements consiste à appliquer une forte contrainte pendant 1 minute et de mesurer la façon dont la déformation va évoluer. Nous voyons sur la Figure I–8 la courbe de la déformation au cours du temps d'un échantillon ayant subi un fort cisaillement. Le temps d'acquisition débute à environ 0,5 sec après la fin du cisaillement, ce temps est incompressible et dépend uniquement de la vitesse de transmission des données entre le rhéomètre et l'ordinateur d'acquisition. Le temps le plus long ne sera limité que par la patience de l'opérateur, l'échantillon est isolé par un piège à solvant de l'air ambiant le risque d'évaporation est donc limité.

Durant la phase de précisaillement la valeur de la déformation augmente constamment, pour comparer les différentes expériences, nous imposons que la déformation soit remise à zéro à la fin du cycle de cisaillement. L'évolution de la déformation au cours du temps est monotone et décroissante. La déformation ne tend pas vers une valeur constante pendant toute la durée de la mesure. La dynamique de l'ensemble de la suspension ralenti de plus en plus sans jamais s'arrêter totalement, on parle alors de vieillissement en faisant le parallèle avec le comportement de dynamique lente observé dans les verres. Les verres sont des matériaux hors d'équilibre qui présentent une dynamique rapide à l'échelle locale mais restent figés par des contraintes emprisonnées à long terme [7].
5 Comportement aux parois

Régis Borrega et Steve Meeker ont étudié chacun à leur façon les comportements des microgels confinés à la paroi.

R. Borrego a utilisé un système de plan rugueux dont les côtés sont transparents. L'un des plans est fixe pendant que l'autre se déplace, créant ainsi un gradient de vitesse. En y plongeant une aiguille contenant un colorant dans l'échantillon, une marque très fine était réalisée qui se déforme lors du déplacement de la plaque mobile. La déformation de la colonne de colorant est fonction du cisaillement et des interactions à la paroi. La visualisation directe, perpendiculairement au cisaillement, a fourni beaucoup de renseignements qui ont été corréllés plus tard avec la rhéologie.
Les principaux résultats sont de deux natures. À forts gradients, les parois n'ont pas d'influence, l'écoulement est homogène sur toute l'épaisseur de l'échantillon pour des parois lisses ou rugueuses. À bas gradient, les parois contrôlent l'écoulement. Pour des surfaces rugueuses, l'écoulement est toujours homogène mais si l'une des parois est lisse, seule la couche superficielle en contact avec la partie rugueuse se déplace, le reste du matériau ne se déforme pas. Il y a glissement à la paroi.

S. Meeker a utilisé un système un peu différent. Il a inclus des particules de verre de 10 µm de diamètre dans ces échantillons. Grâce à un système vidéo, il a observé le comportement des sondes à la périphérie d'une géométrie cône-plan utilisée avec un rhéomètre RS600 (Thermo Haake). En modifiant les surfaces, il a observé également que le comportement à hautes vitesses n'était pas dépendant des surfaces. Il a confirmé la présence de glissement aux faibles vitesses pour des surfaces lisses.
Introduction et objectifs

Figure I–10 : Courbe d'écoulement réalisée avec des surfaces rugueuses (symbole pleins) et lisse (symboles ouverts). Les deux courbes présentent une zone de divergence à partir de laquelle la contrainte apparente semble diminuer.

Les profils de vitesse sont portés sur la Figure I–11; l'utilisation du rhéomètre lui a permis de mesurer avec précision la courbe d'écoulement (Cf. Figure I–10) et de relier la forme des profils de vitesse aux défauts dans la courbe d'écoulement.

Figure I–11 : Profils de vitesse mesurés pour des surfaces rugueuses (a) et, des surfaces lisses (b, c, d) pour différentes gammes de vitesse.
Introduction et objectifs

6 Objectifs de ce travail

Les différentes études ont mis en évidence que les microgels présentent des propriétés élastiques et d'écoulement particulières et il nous apparaît intéressant de comprendre les mécanismes physiques en jeux. Ces comportements sont communs avec des systèmes comme les mousses \cite{8,9} ou les émulsions \cite{10}.

Ces études ont également montré que les techniques de caractérisation mécanique utilisées dans ces problèmes ne suffisent pas à elles seules. R.Borrega et S.Meeker ont dû avoir recours à des méthodes de visualisation directes pour mieux appréhender les mécanismes physiques en jeu.

Le but de cette thèse s'inscrit donc dans la droite ligne de ces études. Elle vise à mettre au point de nouvelles techniques de caractérisation et l'étude de la dynamique de ces microgels. Nous avons exploré différents aspects et divisé le manuscrit selon le plan détaillé.

L'étude de l'élasticité des pâtes de microgels a été étudiées en rhéologie classique dans des gammes de fréquences classique (10 Hz et 10^{-3} Hz). Pour étendre la gamme de mesure, nous nous sommes orientés vers une technique récente, la diffusion multiple de la lumière. Le premier chapitre vise à présenter cette technique et les paramètres qui la gouverne notamment le libre parcours moyen, ℓ^*. La maîtrise de ce paramètre nous a permis d'étudier la variation de taille de globules d'un matériau thermosensible (chapitre II et chapitre IV).

Pour élargir la gamme de fréquence vers les hautes fréquences, nous avons réalisé un montage de diffusion multiple de la lumière et mis en place un protocole particulier afin de déterminer les modules élastiques et visqueux à hautes fréquences (l'ordre de 1 Mhz) pour des suspensions très concentrées. Cela est rendu possible par l'utilisation d'un capteur très sensible, comme un photomultiplicateur (PM), couplé à une acquisition à des temps courts, typiquement 50 ns. Cette technique appelée microrhéologie détermine les mouvements de
traceurs inclus dans les échantillons pour en déduire les propriétés élastiques. De nombreux articles dans la littérature présentent cette technique de microrhéologie. Elle est notamment utilisée pour suivre la gélification de gels\[11\], en biophysique\[12\] pour mesurer l'élasticité de cellule. Notre approche est innovante non pas dans l'acquisition des données mais dans leurs analyses. Les systèmes concentrés ont un module élastique élevé de telle sorte que les sondes sont piégées, l'intensité captée en point par un photomultiplicateur n'est représentatif que de la dynamique locale et non de la dynamique d'ensemble. Les solutions utilisant des caméras CCD comme capteurs résolvent partiellement le problème de statistique mais ne sont pas capables d'atteindre des temps d'acquisition meilleurs que quelques millisecondes, soit un 5 ou 6 décades de moins qu'un PM. Le protocole que nous avons mis au point permet d'utiliser la grande dynamique du PM avec une statistique proche d'une caméra CCD dans un temps de mesure raisonnable. L'étude de la microrhéologie haute fréquence nous a permis de comprendre le rôle du solvant dans le comportement rhéologique de ces matériaux. Nous donnerons les détails au chapitre III et les résultats de cette technique au chapitre V de ce manuscrit.

Après avoir étudié, les dynamiques hautes fréquences, nous avons caractérisé les dynamiques lentes à l'aide des techniques de diffusion multiple. Nous nous sommes appuyés sur certains montages décrits dans la littérature\[13\][14] pour réaliser une expérience de suivi de relaxation dans une suspension de microgel. Cette partie du travail est décrite dans les chapitres V et VI et inclut le montage expérimental, la mise en place d'un système d'acquisition et de traitement de données en temps réel. L'utilisation de cette technique nous a donné des résultats sur l'évolution de la dynamique et nous a permis d'interpréter l'étude du vieillissement par Régis Borrega en terme de mécanismes microscopiques à l'échelle des particules.
Nous avons enfin développé une technique de visualisation directe qui doit nous permettre de compléter nos connaissances dans la façon dont ces systèmes évoluent à long terme. Nous avons mis au point un montage de suivi de particule qui consiste à inclure des particules fluorescentes dans les microgels et de faire subir à l'échantillon un cisaillement que l'on peut suivre par microscopie à fluorescence. Ce montage et les algorithmes sont inspirés en partie du travail de J.Crocker[15] et E.Weeks[16], mais l'utilisation que nous en avons fait nous a conduit à des applications originales.

Nous pouvons déterminer les trajectoires individuelles de chaque particule et calculer leur vitesse pendant un écoulement stationnaire. Les traceurs considérés sont dans un plan optique de quelques microns d'épaisseur de telle sorte qu'en déplaçant le plan de mise au point nous pouvons calculer le profil de vitesse en fonction de l'épaisseur de l'échantillon. Ce type de mesure permet de caractériser les écoulements en fonction des concentrations, des interactions avec les parois et met en évidence l'existence ou non de bandes de cisaillement. Par rapport aux premières expériences de Régis Borrega et de Steve Meeker, notre dispositif permet de mesurer des profils de vitesse dans des suspensions en écoulement avec une précision spatiale de l'ordre de 1 µm. Ces progrès nous ont permis de découvrir de nouveaux phénomènes dont le rôle des parois et des forces de surface sur les propriétés d'écoulement de ces matériaux. Ces mesures et les résultats de ces mesures ont été effectués en collaboration avec Jyoti Seth, doctorante de l'université d'Austin (Texas) qui avait préalablement étudiée théoriquement le problème de glissement[5].

Un second aspect de cette expérience est de caractériser les relaxations d'un matériau ayant subit une forte contrainte. Le microgel contenant des sondes est soumis à un échelon de contrainte pendant quelques dizaines de seconde. Au moment de l'arrêt du cisaillement, la position des traceurs est déterminée, puis suivi durant la relaxation. Ces résultats sont comparés à ceux obtenus aux expériences de rhéologie présentant la même histoire.
mécanique. Nous présenterons les détails regroupant les détails techniques et les résultats en écoulement et en relaxation dans les chapitres V et VII.

7 Références Bibliographiques

PARTIE I:

Microrhéologie par
diffusion multiple de la lumière
Chapitre II

Diffusion multiple de la lumière: principes et mise en œuvre

Avant d'aborder l'étude de la diffusion multiple de la lumière, il est commode de revenir brièvement à une présentation rapide de la diffusion simple de la lumière. De nombreux ouvrages expliquent clairement les divers mécanismes physiques entrant en jeu lors de la diffusion d'un photon par de la matière, aussi nous ne présentons ici que ce qui est utile pour appréhender la notion de diffusion multiple de la lumière. La diffusion simple et la diffusion multiple de la lumière présentent de fortes similitudes, par les moyens mis en œuvre et les méthodes d'analyse. Nous considérerons que les photons sont diffusés par des particules dures et sphériques en solution, mais le principe reste identique pour des photons diffusés par un polymère en solution.

La technique de diffusion simple se place dans l'approximation où un photon diffusé une fois par une particule voit sa phase modifiée lors de cette interaction. Une analyse fine des fluctuations temporelles des photons diffusés selon un vecteur d'onde nous apporte des informations sur la taille, la forme ou la dynamique des particules diffusantes.

La technique de diffusion multiple se place dans le cas où un photon est diffusé de nombreuses fois par un grand nombre de particules avant d'être détecté. Chaque interaction d'un photon avec une particule modifie sa phase et cet effet est cumulatif tout au long du chemin emprunté par le photon. Une analyse poussée des fluctuations de l'intensité permet d'extraire le déplacement moyen carré des particules et cela avec une sensibilité de...
La grande résolution est liée à cet effet cumulatif apporté par chaque diffusion. La contre partie est la perte totale d'information sur les particules individuelles (taille et forme).

Le chapitre suivant présente succinctement les bases de la diffusion simple de la lumière et la technique de la diffusion multiple.

1 **La diffusion simple de la lumière.**

Le détecteur est placé sur un bras mobile en rotation autour du goniomètre et mesure l’intensité diffusée par un petit volume de l’échantillon. L’optique de détection assure que le volume observé reste toujours le même. L’angle formé par la position du détecteur par rapport au faisceau direct est appelé l’angle de détection θ et varie entre 15° et 150°.
Le vecteur d’onde \vec{q} est défini par :

$$\vec{q} = \frac{4n\pi}{\lambda} \sin\left(\frac{\theta}{2}\right)$$

λ est la longueur d’onde du laser et n l’indice optique du solvant. Le vecteur \vec{q} est proportionnel à l’inverse d’une longueur ; avec un choix de grandeurs classiques ($\lambda = 500$ nm et $n = 1.33$), le vecteur d’onde analysé est compris entre $30 \, \mu m^{-1}$ et $3 \, \mu m^{-1}$.

Une étude de la répartition d’intensité sur tout le domaine angulaire étudié nous fournit des informations sur la géométrie des particules, comme leur rayon de giration ou encore leur forme. Une analyse des fluctuations de l’intensité diffusée aux différents angles apporte des informations sur la dynamique du milieu. C’est à cette classe de problème que nous allons consacrer la suite.

Les informations sur la dynamique des fluctuations de concentration peuvent être obtenues à partir de la fonction de corrélation de l’intensité normalisée noté $g_2(t,q)$.

$$g_2(t,q) = \frac{\langle I((0),q)I(t,q) \rangle}{\langle I(t,q) \rangle^2}$$

Où $\langle \rangle$ note la moyenne temporelle de l’intensité. Au cours du manuscrit, nous utiliserons deux formes différentes de moyennes, les moyennes calculées en un point au cours du temps, notées $\langle \rangle_t$, et les moyennes calculées sur un temps court mais sur un grand nombre de point répartis dans l’espace, notées $\langle \rangle_e$. Néanmoins pour alléger les notations, les moyennes temporelles pourront être écrites simplement $\langle \rangle$.

La relation de Siegert permet de relier la fonction de corrélation en intensité avec la fonction de corrélation du champ électrique, noté $g_1(t,q)$ selon :
PARTIE I: Diffusion multiple de la lumière: principes et mise en œuvre

\[g_2(t, q) = 1 + \beta |g_1(t, q)|^2 \]

Où \(\beta \) représente la fonction d’appareil du système (Cf. 3.2) compris entre 0 et 1.

Le cas \(\beta = 1 \) est obtenu lorsque l’aire de cohérence sur le détecteur est comparable à la surface de celui-ci. Cette situation est obtenue dans le cas de l’utilisation d’une fibre optique. Dans la plupart de montages utilisant une optique classique, \(\beta \) est inférieur à 1.

Pour des particules monodisperses en solution diluée et se déplaçant de façon purement diffusive, la fonction de corrélation \(g_1(t, q) \) décroît de façon exponentielle comme :

\[g_1(t, q) = \exp \left(-D q^2 t \right) \]

où \(D \) représente le coefficient de diffusion des particules. Comme \(D = \frac{\langle \Delta r^2(t) \rangle}{6t} \), ou \(\langle \Delta r^2(t) \rangle \) représente le déplacement moyen carré des particules. Nous pouvons écrire :

\[g_1(t, q) = \exp \left(-q^2 \frac{\langle \Delta r^2(t) \rangle}{6} \right) \]

En utilisant cette dernière équation, nous déduisons les variations de déplacement \(\langle \Delta r^2(t) \rangle \) à partir d’une fonction de corrélation \(g_2(t, q) \) mesurée expérimentalement.

La limite de cette technique est imposée par les hypothèses suivantes. Ces équations ne sont valables que dans le cas où un photon est diffusé une seule fois par une particule avant d’être détecté. Ce principe limite donc les concentrations accessibles aux échantillons très dilués et/ou peu diffusants. Pour mesurer la dynamique de milieux plus concentrés, nous sommes contraints d’utiliser une technique mise au point au début des années 1980 et appelée diffusion multiple de la lumière ou Diffusive Wave Spectroscopy (DWS).
2 Propagation de la lumière dans un milieu fortement diffusant: la diffusion multiple.

A contrario de la diffusion simple, la diffusion multiple de la lumière utilise des échantillons fortement diffusant. Il est même courant d’ajouter des traceurs pour rendre les échantillons turbides. Les traceurs sont souvent des sphères de polystyrène de petit diamètre < 1 µm.

La technique de diffusion multiple repose sur le fait qu’un faisceau laser éclairant un milieu turbide va être diffusé dans toutes les directions. Chaque photon subit plusieurs événements diffusifs lors de la traversée du matériau. Il se forme alors sur le détecteur une figure d'interférence appelée "figure de speckle". Cette figure semble être composée de grains sombres et brillants dont l’intensité varie au cours du temps. L’information sur la dynamique des traceurs est contenue dans les variations temporelles de l'intensité lumineuse de ce speckle. Une analyse appropriée permet de déterminer le déplacement moyen carré $<\Delta r^2(t)>$ des sondes à des échelles de distance de quelques nm2 et cela sur des échelles de temps s’étalant sur une dizaine de décades (10 ns à 1000 s).

Nous détaillons les principales notions relatives à cette technique dans les paragraphes suivants.

2.1 Définition du libre parcours moyen

La sensibilité de la diffusion multiple prend origine dans l’effet cumulatif des événements diffusifs subit par un photon lors de la traversée d’un milieu dense. Il est possible de caractériser les chemins empruntés par les photons à l’aide de quelques grandeurs physiques que nous détaillons dans la suite.
Une description simple du phénomène de diffusion multiple consiste à considérer que chaque photon effectue une marche au hasard dans le milieu diffusant comme représenté sur la Figure II–1.

![Figure II–1 : Description d'un chemin parcouru par un photon traversant un échantillon turbide de longueur L. La distance entre deux diffuseurs est notée \(\ell \). La distance au bout de laquelle la direction initiale de propagation est perdue est notée \(\ell^* \).](image)

Le parcours des photons dans le matériau est décrit à l’aide de deux longueurs bien distinctes : le libre parcours moyen ("mean free path") noté \(\ell \) qui représente la distance entre deux événements diffusifs et le libre parcours moyen de transport ("transport mean free path") noté \(\ell^* \) qui représente la distance au bout de laquelle la direction de propagation de la lumière est devenue aléatoire.

Chaque événement diffusif des photons change la direction de propagation. Néanmoins il faut quelques événements diffusifs pour rendre aléatoire la direction initiale, de telle sorte que \(\ell^* \) est toujours plus grand que \(\ell \). Le chemin parcouru par un photon dans le matériau s'apparente à une marche au hasard dont le pas est \(\ell^* \). De façon intéressante ce chemin à la même topologie qu'une chaîne idéale de polymère. \(\ell^* \) représente donc une longueur de persistance.
PARTIE I: Diffusion multiple de la lumière: principes et mise en œuvre

Si l'on appelle θ l'angle fait par le photon après chaque nouvelle diffusion alors les grandeurs ℓ^* et ℓ sont liées par

$$\ell^* = \frac{\ell}{\langle 1 - \cos \theta \rangle} = \frac{1}{\rho \sigma} \frac{1}{\langle 1 - \cos \theta \rangle}$$

ρ est la densité du nombre de diffuseurs et σ, représente la section efficace totale de diffusion pour une particule seule en suspension issue de la théorie de Mie[7].

La longueur de persistance ℓ^* est fonction de la densité, c'est-à-dire de la concentration des diffuseurs dans le milieu, de leur diamètre, de leur forme géométrique et de leur structure par l'intermédiaire de leur indice optique. Cette grandeur apporte donc des informations de nature structurale sur le milieu traversé par le faisceau lumineux.

Dans le cas général, et compte tenu du grand nombre de paramètres que fait intervenir la prédiction de la valeur de ℓ^* pour un système donné, il est difficile de remonter à la structure interne d'un matériau à partir de la seule connaissance de ℓ^*. Dans les cas simples, il est possible d'utiliser la mesure de ℓ^* pour caractériser de façon non intrusive la taille de particules de géométries connues dans une solution concentrée.

Dans les cas plus compliqués, la mesure de ℓ^* nous permet d'obtenir des informations quantitatives précieuses sur l'évolution d'un système subissant une transformation chimique ou physique. Dans le chapitre IV, nous appliquons cette méthode pour caractériser les agrégats formés lors de la précipitation d'un polymère à LCST (lower critical solution température).

Auparavant, nous devons présenter le principe de la mesure de ℓ^* et décrire le montage expérimental mis en œuvre.
2.2 Principe de la mesure de ℓ^*

Pour mesurer ℓ^* nous utilisons le fait que le coefficient de transmission d'un échantillon dense est directement proportionnel à la longueur de persistance et à l'épaisseur de l'échantillon (L) suivant la relation\[^{10}\]:

$$ T \propto \frac{\ell^* / L}{1 + 4 \ell^* / 3L} = \frac{I_t}{I_0} \tag{2-2} $$

T est le rapport entre l'intensité transmise I_t et l'intensité incidente I_0.

Le principe pour mesurer la longueur de persistance d'une solution inconnue est le suivant. Nous comparons le coefficient de transmission du matériau à caractériser avec celui d'une solution de référence composée de sphères de polystyrène calibrées.

La solution de référence est composée d'eau ultrapure et de sphères de polystyrène de 160 nm de diamètre fournies par Duke Corporation à une concentration $C=0,01$ g/g. Cette solution est placée dans une cellule parallélépipédique en verre optique (Hellma). L'intensité lumineuse du faisceau est mesurée avec et sans la cellule contenant la solution de référence pour obtenir les valeurs de I_{ref} et I_0. Le coefficient de transmission (T_{ref}) est déduit du rapport I_{ref} / I_0. La valeur de ℓ^*_{ref} est calculée indépendamment en utilisant la théorie de la diffusion de Mie, qui tient compte de l'indice optique, de la concentration et de la taille des diffuseurs.

$$ T_{\text{ref}} \propto \frac{\ell^*_{\text{ref}} / L}{1 + 4 \ell^*_{\text{ref}} / 3L} \tag{2-3} $$

En remplaçant la solution de référence par la solution où ℓ^* est inconnue et en mesurant l'intensité lumineuse transmise avec le même protocole, nous obtenons son coefficient de transmission T_X:
A partir du rapport des coefficients de transmission \(\frac{T_X}{T_{ref}} \), nous pouvons donc extraire \(\ell^*_x \) grâce à:

\[
\ell^*_x = \frac{T_X}{T_{ref} + \frac{4\ell^*_x}{3L}(T_{ref} - T_X)}
\]

D'autres auteurs\(^{[11][16][17]}\) proposent d'autres approximations mathématiques pour relier le coefficient de transmission \(T \) à la longueur de persistance \(\ell^* \), nous avons vérifié que les différentes solutions proposées donnent le même résultat à mieux que 1% près.

Nous allons maintenant décrire le montage expérimental qui permet de réaliser ces mesures.

2.3 Montage expérimental

Pour effectuer ces mesures nous avons mis en œuvre le montage expérimental suivant:

Figure II–2: Schéma de montage de diffusion multiple pour la mesure de \(\ell^ \)*
PARTIE I: Diffusion multiple de la lumière: principes et mise en œuvre

Un laser de marque Torus de 150 mW monomode passe au travers d’un filtre spatial dont le rôle est d’élargir le faisceau jusqu’à un diamètre de 10 mm, d’obtenir une répartition homogène de l’intensité et de supprimer les variations dues aux poussières présentent dans l’air. Le filtre spatial destiné à mettre en forme le faisceau est composé de deux lentilles et d’un diaphragme. La focale de la première lentille est courte, 10 mm au plus, pour permettre une bonne focalisation, la focale de la seconde est ajustée pour obtenir le grandissement final voulu. Le diaphragme est centré et placé dans le plan focal commun aux deux lentilles. De façon cruciale, le filtre spatial permet aussi de limiter les problèmes liés à la diffusion parasites du faisceau laser par les poussières de l’environnement.

La solution étudiée est placée entre deux polariseurs croisés. La fonction de ces polariseurs est "d'éteindre" la lumière directement transmise par la solution. Ceci est crucial dans le cas de solutions peu turbides où un grand nombre de photons subissent un très petit nombre d'événements diffusifs, ce qui met en défaut l'approximation de diffusion multiple. Ces photons conservent leur polarisation initiale alors que les photons multiplement diffusés la perdent. La présence d'un analyseur croisé avec le polariseur permet donc de limiter la contribution des photons ayant subi un faible nombre d'événements diffusifs.

Dans le cas de l'étude du matériau composite présenté dans le chapitre suivant, nous plaçons l'échantillon dans une cuve parallélépipédique en verre de chez Hellma fermée hermétiquement par un couvercle fixé, soit par un parafilm, soit par un joint silicone pour s'affranchir des problèmes d'évaporation. Pour contrôler la température des matériaux thermosensibles détaillés dans le chapitre suivant, nous avons placé l’échantillon dans un bain d’eau thermostaté. La solution de référence est composée de sphères de polystyrène monodisperses distribuées par la société Duke et diluées à la fraction volumique $\Phi = 5.10^{-4}$ dans l’eau.
Le détecteur utilisé peut être soit un photomultiplicateur, soit une caméra CCD comme représenté ici. Le photomultiplicateur a l’avantage d’avoir une large dynamique de 10 à 14 décades, mais la mesure est ponctuelle. Pour une bonne reproductibilité, l’intensité doit être mesurée pendant plusieurs minutes. Le risque de perturbation mécanique ou de fluctuation thermique de l’ensemble sont alors non négligeables. Dans le cas de l’utilisation d’une caméra CCD, l’intensité mesurée est la somme de l’ensemble des pixels considérés. La moyenne est alors spatiale et s’affranchie des problèmes précédents. Nous détaillerons dans le Chapitre III à la description des applications comment sont réalisées ces différentes moyennes.

Nous avons réalisé les mesures avec les deux types de capteur, les résultats sont similaires à moins de 10% près, néanmoins l’utilisation d’une caméra augmente considérablement la rapidité de mesure, mais implique, lors des calculs, de ne pas tenir compte des pixels saturés et de s’assurer de l'homogénéité de la répartition d’intensité lumineuse dans le champ considéré.

3 Spectroscopie en diffusion multiple de la lumière (DWS)

3.1 Fonction de corrélation du champ électrique et en intensité

De la même façon qu’en diffusion simple de la lumière, les informations liées à la dynamique du milieu traversé sont contenus dans les variations d’intensité de la figure de speckle. L’outil statistique pour caractériser ces variations est la fonction de corrélation en intensité noté $g_2(t)$:
PARTIE I: Diffusion multiple de la lumière: principes et mise en œuvre

\[g_2(t) = \frac{\langle I(0)I(t) \rangle}{\langle I(0) \rangle^2} \tag{3-1} \]

Où I(0) et I(t) représentent les intensités mesurées aux instants 0 et t. Cette fonction de corrélation est normalisée par l’intensité moyennée en temps. La nature gaussienne de la statistique impose que cette fonction soit bornée entre 2 et 1.

\[g_2(t) \] est reliée avec la fonction de corrélation du champ électrique, noté \(g_1(t) \), par la relation de Siegert :

\[g_2(t) = 1 + \beta [g_1(t)]^2 \tag{3-2} \]

\(\beta \) représente la fonction d’appareil, nous consacrerons un paragraphe à l’étude de cette fonction d'appareil et à son optimisation.

\(g_1(t) \) est appelé la fonction de corrélation du champ électrique que nous allons étudier maintenant. Pour cela revenons au schéma de principe de la Figure II–1. La lumière incidente sur le matériau a pour vecteur d'onde \(\vec{k}_0 \). Chaque photon exécute une marche au hasard constituée de pas de longueur \(\ell^* \). La longueur totale du chemin suivi par un photon dans le matériau est notée \(s \). Il existe une distribution statistique des longueurs parcourues caractérisée par la distribution \(P(s) \).

L'expression complète de la fonction de corrélation \(g_1(t) \) est alors :

\[g_1(t) = \int P(s) \exp \left(-\frac{\vec{k}_0^2}{3} < \Delta r^2(t) > \frac{s}{\ell^*} \right) ds \tag{3-3} \]

\(<\Delta r^2(t)> \) représente le déplacement carré moyen des diffuseurs au cours du temps. Cette équation s’interprète de la façon suivante. Nous pouvons dire que chaque pas effectué par un
photon au sein du milieu diffusant contribue à la décorrélation du champ électrique, c'est-à-dire que la fonction $g_1(t)$ décroît à chaque pas comme $\exp\left(-\frac{k_0^2}{3} \langle \Delta r^2(t) \rangle\right)$. Or le long d'un chemin de longueur s, le photon effectue s/ℓ^* pas, et chaque pas contribue à la décorrélation du champ électrique (effet cumulatif). Ce terme de décroissance totale est pondéré par $P(s)$ afin de tenir compte de la distribution de l'ensemble des chemins. Finalement, $g_1(t)$ est l'intégrale sur l'ensemble de toutes les longueurs de chemins possibles.

Pour calculer $g_1(t)$, il est primordial de bien maîtriser la géométrie de mesure et de connaître $P(s)$. En effet, la distribution des longueurs de chemin parcouru est différente si l'on observe l'échantillon du même côté que le laser incident, on parle alors de mesure en rétrodiffusion, ou bien si l'intensité est captée du côté opposé au laser incident, on parle alors de mesure en transmission [2]. En rétrodiffusion, la distribution des chemins $P(s)$ est très large, car il est possible de capter des photons qui ont parcouru un court chemin avant de ressortir ou bien de capter des photons qui ont voyagé sur des longues distances avant de finalement ressortir du même côté que la lumière incidente. En transmission, la distribution des chemins est bien plus étroite, le plus court chemin est imposé par l'épaisseur de la cellule, L, ainsi seuls les photons ayant parcouru une distance supérieure ou égale à L, peuvent être détectés. Statistiquement, ces photons ont subi un nombre de pas égal à $(L/\ell^*)^2$ avec une distance moyenne entre chaque pas de ℓ^*.

Les fonctions de corrélation du champ électrique de différentes géométries ont été calculées analytiquement [4][9]. Pour une géométrie en transmission et avec un faisceau incident étendu, qui est ce qui nous intéressera dans la suite, l'expression de la fonction de corrélation du champ électrique $g_1(\tau)$ est la suivante:
PARTIE I: Diffusion multiple de la lumière: principes et mise en œuvre

\[
g_r(\tau) = \frac{L/\ell^* + 4/3}{5/3} \sinh\left(\frac{\sqrt{x}}{\sqrt{}}\right) + \frac{2}{3} \sqrt{x} \cosh\left(\frac{\sqrt{x}}{\sqrt{}}\right)
\]

où \(x = k_0^2 \Delta r^2(\tau) \).

Cette fonction présente deux paramètres remarquables:

- Le rapport \(L/\ell^* \), ce paramètre est exclusivement géométrique et conditionne la sensibilité maximale de la mesure. Il est fixé par les conditions expérimentales. Plus le rapport \(L/\ell^* \) est grand, plus le déplacement détectable sera petit.

- Le déplacement moyen carré, \(<\Delta r^2(t)\rangle\), qui représente la dynamique des particules. En mesurant \(g_r(t) \), il est possible d'inverser point à point cette fonction pour déterminer le déplacement des sondes au cours du temps.

À ce niveau de l’analyse, les équations semblent très semblables à celles de la diffusion simple, excepté que le vecteur d'onde \(\vec{q} \) a disparu. C’est la différence majeure entre ces deux techniques. La diffusion multiple de la lumière perd totalement la notion de vecteur d’onde, il n’est plus possible d’extraire des informations sur les particules individuelles et donc de reconstruire le facteur de structure dynamique du matériau. Par contre la sensibilité sur leurs déplacements est largement augmentée. De la même façon qu’en diffusion simple de la lumière, la décorrélélation totale intervient lors d’un changement de la phase de \(\pi \). Le faisceau subit de très nombreuses diffusions par les traceurs de telle sorte qu’il suffit que chaque traceur se déplace d’une faible quantité pour introduire une différence totale de phase de \(\pi \). La grande sensibilité de cette technique est liée à cet effet de levier.

Il est malheureusement impossible d'augmenter la sensibilité de cette technique indéfiniment pour deux raisons. La première provient de l'environnement mécanique du montage: si la sensibilité est trop grande, les mesures seront systématiquement perturbées par
PARTIE I: Diffusion multiple de la lumière: principes et mise en œuvre

l’environnement mécanique (vibrations hautes et basses fréquences, mouvement de l’air, variation de température…). Quand bien même l’environnement mécanique du montage serait exempt de vibrations parasites, le nombre de traceurs défini le coefficient de transmission de l’échantillon en réduisant la distance entre deux diffuseurs ℓ. Si ℓ est très petit, trop peu de photons sont transmis pour constituer une mesure correcte.

3.2 Importance de la fonction d'appareil

La relation de Siegert, donnée par la relation I.3, inclut un paramètre que l'on nomme fonction d'appareil β. La fonction d'appareil β inclus dans la relation de Siegert, est une valeur numérique comprise entre 0 et 1 et est fonction de deux paramètres: la polarisation de la lumière incidente et la taille de l'ouverture du capteur.

L'ouverture de l'optique utilisée pour la détection fixe indirectement la valeur de β. L'ouverture du détecteur impose la taille du speckle observé. Le speckle est composé d'interférences à l'infini de telle sorte que la taille de chaque grain est inversement proportionnelle à la taille du détecteur qui l'observe.

Dans ce problème, les conditions idéales imposeraient d'avoir le détecteur le plus petit possible pour observer un grain de speckle dont la taille serait grande devant celle du détecteur. Mais cette condition impose alors qu'un nombre faible de photons soit détecté. Une des solutions les plus flexibles est de connecter une fibre optique à un photomultiplicateur, ainsi nous optimisons la valeur de β et la sensibilité de détection.

La polarisation joue également un rôle important. En plaçant l’échantillon entre deux polariseurs croisés, nous éliminons les photons hors de l’approximation de la diffusion multiple de la lumière. Comme nous l'avons discuté précédemment, sans l'aide de ce système
de polariseurs croisés, la valeur maximale de β est de 0.5, si les polariseurs ne sont pas parfaitement croisés, la valeur de β sera comprise entre 0.5 et 1.

La valeur maximale de β ($\beta = 1$) est obtenue en utilisant une fibre optique, pour augmenter la taille du grain de speckle, et deux polariseurs parfaitement croisés.

Il est difficile d'estimer la fonction d'appareil sans la mesurer et il est primordial d'avoir une bonne estimation de cette valeur pour extraire des informations pertinentes des fonctions de corrélation. Il existe différentes techniques pour estimer cette fonction d'appareil, nous citerons les deux plus utilisées.

La première consiste à prendre comme échantillon une solution d'eau et de sondes de polystyrène monodisperses de petites tailles < 1 µm. La concentration et la taille de la cellule doivent être choisies de telle sorte que le rapport L/ℓ^* soit supérieur à 10. La mesure d'une fonction de corrélation de l'intensité transmise $g^2(t)$ suit la relation de Siegert $1+\beta g^2(0)$.

Au temps $t = 0$, les particules n'ont pas changé de configuration de telle sorte que la fonction de corrélation du champ électrique $g_1(0)$ vaut 1 alors que la fonction de corrélation en intensité $g_2(0)$ vaut $1+\beta$.

Expérimentalement $t = 0$ est inaccessible. Le temps le plus court accessible est de 50 ns. Une approximation de β est donc de considérer la valeur $g_2(50 \text{ ns})$ égale à $g_2(0)$. Une seconde alternative est de modéliser les points expérimentaux par la fonction exacte et de l'extrapoler à zéro. La dérivée de la fonction de corrélation dans cette zone étant proche de 0, les deux méthodes donnent des résultats proches à mieux que 10^{-2} près.

La seconde méthode souvent utilisée consiste à calculer une fonction d'autocorrélation sur un verre dépoli ou présentant une forte rugosité. La fonction $g_2(t)$ est constante au cours du temps et sa valeur est toujours égale à $1+\beta$.

- 42 -
Nous avons utilisé les deux méthodes qui donnent des résultats identiques à 10^{-3} près, la méthode du verre dépoli présente l'avantage d'être plus flexible dans son utilisation et avec un minimum de préparation.

3.3 Présentation du dispositif expérimental pour l'étude de la dynamique par DWS.

Le dispositif expérimental est légèrement différent de celui présenté dans le paragraphe II.3 pour la mesure de la longueur de persistence.

![Figure II-3: Schéma de principe du montage de diffusion multiple de la lumière](image)

Les mesures de rhéologie hautes fréquences imposent aux échantillons d'avoir un rapport L/ℓ^* grand ce qui conduit à un coefficient de transmission faible. Le laser utilisé doit être puissant et avoir une longueur de cohérence de plusieurs dizaines de mètres. Nous utilisons un laser continu Argon série Innova de la société Coherent émettant dans le visible à 514,5 nm avec une puissance maximale de 1,5 W. Ce laser est stabilisé en fréquence grâce à un étalon Fabry Pérot intra cavité lui assurant une longueur de cohérence supérieure à 100 m. La détection est assurée par un photomultiplicateur EMI 983 associé avec un amplificateur d'impulsions de type BI-HV de la société Brookhaven. Ce montage est complété par une fibre.
optique monomode de 2 \(\mu \)m de diamètre de cœur, à faible ouverture numérique. Une extrémité de cette fibre optique est connectée au photomultiplicateur tandis que l'autre collecte la lumière diffusée par l'échantillon. Les échantillons sont placés dans des cellules rectangulaires en verre optique commercialisées par la société Hellma. Ces cellules sont fermées par un couvercle en verre et scellées par un morceau de Parafilm assurant l'étanchéité. Les dimensions extérieures sont 100X100X10 mm ou 50X50X5 mm selon les échantillons utilisés.

La cellule est fixée sur une platine de translation Microcontrole MM2500 d'une résolution de 0.1 \(\mu \)m pilotée par ordinateur. Le déplacement est perpendiculaire au faisceau de telle façon que l'intensité reçue par la fibre optique est comparable d'une position à l'autre. Deux polariseurs croisés sont placés de part et d'autre de la cellule pour supprimer les photons hors de l'approximation de diffusion multiple.

3.4 Exemple d'application à l'étude de la micro-rhéologie hautes fréquences d'un polymère associatif.

3.4.a Éléments de théorie

Au cours des expériences décrites, nous calculons une fonction de corrélation du champ électrique \(g_1(\tau) \). Grâce à l'équation 3-4, nous avons vu qu'il est possible en inversant point à point la fonction \(g_1(\tau) \) d'obtenir la fonction \(<\Delta r^2(t)> \). La relation de Stockes Einstein relie la fonction \(<\Delta r^2(t)> \) aux propriétés mécaniques du matériau selon \(^{[10],[11],[12],[13],[14],[15],[16],[17]}\) :

\[
G^*(\omega) = \frac{k_B T}{\pi a i \omega \Im \left< \Delta r^2(\tau) \right>}
\]

Où \(\Im \left< \Delta r^2(\tau) \right> \) est la transformée de Fourier de \(<\Delta r^2(\tau)> \), \(k_B \) est la constante de Boltzmann, \(T \) la température en Kelvin, \(a \) le rayon des sondes et \(\omega \) la pulsation.
En considérant que le $\langle \Delta r^2(t) \rangle$ se décompose d'une partie élastique et d'une autre visqueuse, nous déduisons $G'(\omega)$ et $G''(\omega)$ comme:

$$G'(\omega) = G(\omega) \cos\left(\frac{\pi \alpha(\omega)}{2}\right) \tag{3-6}$$

et

$$G''(\omega) = G(\omega) \sin\left(\frac{\pi \alpha(\omega)}{2}\right) \tag{3-7}$$

Avec $G(\omega)$ égal à :

$$G(\omega) = \frac{k_y T}{\pi \alpha <\Delta r^2(1/\omega)> \Gamma[1 + \alpha(\omega)]} \tag{3-8}$$

Où $\alpha(\omega)$ est la dérivée logarithme locale donnée par $\frac{\partial}{\partial \tau} \ln \left< \Delta r^2(t) \right>/\partial \ln \tau \bigg|_{\tau=1/\alpha}$. Γ est la fonction gamma qui peut-être approximée par: $\Gamma(1+\alpha) \approx 0.457(1+\alpha)^2 - 1.36(1+\alpha) + 1.90$.

Le calcul de la dérivée logarithmique à partir de la courbe $\langle \Delta r^2(t) \rangle$ expérimentale ne se fait sans modéliser tout ou partie de cette courbe.

Il est difficile en pratique de trouver une fonction qui représente parfaitement les variations expérimentales de $\langle \Delta r^2(t) \rangle$, surtout dans le domaine des temps explorés. Nous avons calculé $\alpha(\omega)$ de façon locale. Nous avons considéré les points expérimentaux sur une décade et avons appliqué un modèle de droite ou un polynôme de degré 2. Ce polynôme ou cette droite nous permettent de connaître la valeur de $\alpha(\omega)$ sur cet intervalle. Nous pouvons dès lors calculer autant de points que possible de $\alpha(\omega)$. L'idée la plus simple est de se dire qu'avec la forme de la fonction $\langle \Delta r^2(t) \rangle$, un polynôme serait plus adapté qu'une droite, c'est en fait l'inverse. En effet, les deux zones importantes sont la zone de diffusion des particules et du plateau élastique sont facile à représenté par une droite. La zone intermédiaire peut se
découper en un nombre de segments suffisamment petits pour que chacun soit représenté par une droite.

3.4.b Présentation du polymère associatif

Le copolymère statistique AE-co-AMA permet de concevoir d'autres types de copolymères plus élaborés en introduisant un troisième monomère portant des fonctions associatives, réactives, cristallisables....

Le polymère utilisé dans la suite est un copolymère AE/AMA/PEGBEAM obtenu par polymérisation radicale présentant un rapport massique de 55/37/8. Ce copolymère est notamment utilisé pour ses propriétés d'associativité donnant un caractère rhéofluidifiant aux solutions aqueuses.

![Figure II–4: Mesures rhéologique réalisée sur le copolymère AE/AMA/PEGBEAM en fonction de la fréquence.](image)

La réalisation d'échantillons avec ce type de copolymère suit le même protocole que celui détaillé pour la mise en œuvre des pâtes de microgels. Le copolymère est tout d'abord dilué dans de l'eau ultrapure avant la neutralisation des fonctions acides par de la soude. L'échantillon obtenu a une consistance quasi identique au copolymère AE-co-AMA, il est
translucide et légèrement bleuté. De la même façon que pour l'étude des microgels, nous incorporons une faible quantité de traceurs pour l'étude en diffusion multiple de la lumière.

L'échantillon présenté ici présente une concentration en polymère de 1,5 % en masse dont 90 % des fonctions AMA ont été neutralisé. Les traceurs utilisés sont des sondes de polystyrène d'un diamètre de 190 nm et leur concentration est fixée à 0,2 % en masse, correspondant à une longueur de persistance (ℓ^*) de 0.98 mm. Cette longueur a été mesurée expérimentalement et correspond à la valeur théorique visée. La rhéologie macroscopique a été réalisée sur un échantillon ne comportant pas de sonde et comparée avec un second incluant ces traceurs. Les résultats sont identiques aux incertitudes de préparation près. Nous présentons sur le graphique suivant la courbe rhéologique de l'échantillon étudié par diffusion multiple.

La courbe de rhéologie montre une fréquence en-dessous de laquelle le module visqueux est plus élevé que le module élastique, le matériau s'écoule comme un fluide. Pour des fréquences plus élevées, G' est plus grand que G'', le matériau se comporte comme un solide élastique.

3.4.c Etude de la rhéologie haute fréquence du polymère.

Les mesures obtenues en diffusion multiple ont été réalisées en plaçant l'échantillon dans deux cellules rectangulaires de largeur L différentes, 5 mm et 10 mm. Nous avons ainsi étudié l'influence du rapport L/ℓ^* sur la sensibilité de la mesure. L'acquisition des fonctions de corrélation est réalisée sur plusieurs minutes pour s'assurer d'une bonne statistique.
Figure II–5 : Fonctions de corrélation obtenues sur un échantillon de AE/AMA/PEGBEMA présentant des rapports L/ℓ^* différents. Pour le rapport L/ℓ^* plus grand, le plateau élastique est plus marqué et la seconde décorrélation apparaît plus tôt.

Les fonctions de corrélation ci-dessus montrent deux temps caractéristiques. Le temps le plus court ($10^{-4} - 10^{-3}$ s) exprime le mouvement local des sondes, celui-ci varie légèrement en fonction de la taille des sondes et de la viscosité du solvant. Le temps le plus long (0,1 - 1s) est caractéristique d'un mouvement à une échelle macroscopique et est fonction des propriétés physico-chimiques (concentration, empilement, module élastique).

Même si les fonctions de corrélation sont différentes, le déplacement quadratique moyen $<\Delta r^2(t)>$ calculé selon l'équation 3-4 en tenant correctement en compte du rapport L/ℓ^* montre sur le graphique suivant la même dynamique des diffuseurs dans les deux cas.
PARTIE I: Diffusion multiple de la lumière: principes et mise en œuvre

Figure II–6 : Graphique représentant le $\langle \Delta r^2(t) \rangle$ calculé pour deux fonctions de corrélation ayant des rapports L/ℓ^* différents. Les deux courbes se superposent, mais diffèrent légèrement dans les extrénums. Ces différences sont liées à la sensibilité de la mesure.

Nous pouvons identifier l'intervalle temporel (10^{-7} - 10^{-4} s) où les particules se déplacent de façon diffusive. La pente de cette région présente une variation en $t^{0.5}$ qui est représentatif d'un régime sub-diffusif.

La région du plateau élastique apparait pour un déplacement compris entre 30 et 80 nm2. Enfin chaque courbe tend vers une valeur maximale liée à la valeur L/ℓ^*.

Nous pouvons dès lors déterminer les modules élastiques en utilisant les expressions 3-5, 3-6, 3-7 et 3-8.
Les résultats obtenus sont :

![Image](image-url)

Figure II–7 : Courbes de microrhéologie; la figure a) est obtenue dans le cas où le rapport \(L/\ell^* \) est égal à 10, la sensibilité est meilleure dans les hautes fréquences (>10⁵ rd/s); la figure b) est obtenue dans le cas où le rapport \(L/\ell^* \) est égal à 5. la sensibilité de ces mesures est la meilleure dans les basses fréquences (<10 rd/s).

La figure de gauche montre les modules calculés dans le cas où \(L/\ell^* \approx 10 \), la figure de droite sont ceux obtenus dans le cas où \(L/\ell^* \approx 5 \). Encore une fois les deux jeux de données sont très semblables. Néanmoins, il apparaît que les fréquences supérieures à \(10^5 \) rd/s ne sont pas définies dans le cas où \(L/\ell^* \) est égal à 5. Le rapport \(L/\ell^* \) augmente la sensibilité de mesure: plus le rapport \(L/\ell^* \) est grand, plus les photons subissent un grand nombre de diffusion avant d'être détecté de telle sorte qu'un petit déplacement devient détectable. A l'inverse, les données obtenues aux basses fréquences (1-10 rd/s) sont plus proches de valeurs mesurées en rhéologie lorsque \(L/\ell^* \approx 5 \) et ceci car le nombre d'événements diffusifs est moins grand. En conséquence, les particules peuvent se déplacer sur des distances plus grandes (ou des temps plus longs) avant que la fonction de corrélation ne rejoigne la ligne de base.

En combinant ces deux jeux de données, il est possible de construire une courbe décrivant le comportement rhéologie de ce type d'échantillons entre \(10^{-1} \) et \(10^7 \) rd/s.
Les résultats combinés de microrhéologie décrivent parfaitement la rhéologie macroscopique dans la gamme 10^{-1}-10^{2} rd/s, mais permettent d'étendre de cinq décades supplémentaires la connaissance du comportement rhéologique de cet échantillon.

S'il nous était possible de mesurer des fonctions de corrélation à des temps plus courts que 50 ns, l'analyse rhéologique au-delà de 10^{7} rd/s devrait tenir compte des effets inertiels des sondes ainsi que de la viscosité du solvant.

3.4.d Conclusions

Nous avons présenté ici un dispositif expérimental permettant de déterminer la rhéologie sur 8 décades en temps d'un polymère dans un cas simple. Ce montage sera exploité au Chapitre V pour étudier la dynamique haute fréquence de suspensions concentrées de microgels. Ces suspensions de microgels sont non ergodiques, c'est-à-dire que la fonction de corrélation en temps calculée en un point de la figure de speckle (c'est-à-dire pour une position donnée de la fibre optique) dépend du speckle choisi. Ceci est dû au fait que les particules diffusantes sont piégées pendant des temps très longs dans des configurations.
métastables. Pour obtenir des informations sur la dynamique du milieu, il faut calculer la fonction de corrélation d'ensemble à partir d'une moyenne des fonctions de corrélation en temps mesurées pour différents speckle. Ceci impose de pouvoir déplacer la cellule contenant la suspension par rapport à la fibre optique. Dans notre montage ceci a été réalisé en plaçant la suspension sur une platine motorisée. Il existe différents algorithmes permettant de calculer les fonctions de corrélations d'ensemble\[17]\[18]\[19]. Dans ce travail nous avons adapté une méthode initialement proposée dans le cadre de la diffusion simple\[20].

4 Références Bibliographiques

Chapitre III

Spectroscopie en diffusion multiple des matériaux non ergodiques et en écoulement

Dans le paragraphe précédent, nous avons décrit un montage de diffusion de lumière pour l'étude de la dynamique haute fréquence des suspensions concentrées. Ce montage utilise un corrélateur numérique classique associé à un algorithme particulier pour calculer les fonctions de corrélation d'ensemble. La gamme des temps accessibles par ce dispositif varie de 10^{-7} à environ 10 secondes.

Nous souhaitons maintenant étudier le vieillissement des suspensions qui implique des échelles de temps beaucoup plus longues, comme nous l'avons décrit au chapitre I (cf Figure I–8). Nous avons donc besoin d'explorer des gammes de temps comprises entre 10 ms et plusieurs heures. Pour cela nous avons développé un nouveau dispositif expérimental qui fait l'objet de la suite de ce chapitre.

Nous devons résoudre deux contraintes expérimentales. La première est liée à la mesure et plus précisément à la stabilité mécanique au cours du temps. C’est pourquoi nous avons apporté un grand soin à choisir des composants mécaniquement stables sur toute la durée des expériences. La détection est assurée par une caméra CCD permettant l'enregistrement d'un grand nombre de pixels simultanément. Ceci assure d'un moyennage spatial efficace.
La seconde difficulté est liée à la physique des phénomènes observés. Les études rhéologiques précédant ce travail ont montré que les relaxations lentes sont en perpétuelles évolution. La seule façon de placer l’échantillon dans un état reproductible est de lui appliquer un fort écoulement pendant quelques secondes. Cette étape porte différents noms dans la littérature : "trempe mécanique", "rajouissement", "effacement des contraintes"…. L’idée principale est de faire s’écouler l’échantillon afin d’appliquer un nouveau champ aléatoire de contrainte. L’arrêt du cisaillement, noté $t_w = 0$, constituant le point de départ des expériences. Nous avons choisi pour réaliser cette trempe mécanique à l’aide d’une platine de cisaillement commerciale (Linkam).

1 Montage expérimental

La Figure III–1 présente le montage expérimental que nous avons réalisé. Ce montage se compose d’un laser solide YAG Torus de la société Optonprim émettant en continu à 532 nm avec une puissance de 150 mW. Ce laser a une longueur de cohérence supérieure à 50 m et une grande stabilité en puissance et en pointé < 0.1 mrd.
La stabilité en puissance du laser est un élément primordial dans nos expériences. Le laser Torus est composé d’un cristal YAG dont le pompage optique est assuré par des diodes. Le rendement de cet ensemble est lié à la température de fonctionnement. Pour assurer un excellent contrôle thermique ce laser est composé de quatre plans à effet Peltier. Nos premières expériences ont montré que ces éléments Peltier ne pouvaient compenser totalement les grandes variations de température de la pièce. Nous avons conçu et réalisé un support thermalisé et asservi aux variations thermiques de la salle sur lequel nous avons fixé le laser. De ce fait les variations de température de la salle sont compensées par ce support tandis que les éléments Peltier assurent une régulation de plus faible amplitude. La température de référence est fixée à 22°C, température pour laquelle la puissance du laser est maximale.
Le faisceau laser est élargi par un filtre spatial et renvoyé vers la cellule de cisaillement vendue par Linkam sous la référence CSS450. Cette cellule permet d’appliquer des gradients de cisaillement compris entre 100 s\(^{-1}\) et 10\(^{-2}\) s\(^{-1}\) selon nos conditions expérimentales. Dans ce chapitre nous utiliserons uniquement les fonctions de base de cette platine de telle sorte que nous repoussons sa description complète au chapitre VI où elle sera utilisée dans le dispositif de vélocimétrie.

Cette platine est fixée sur une potence de telle sorte que le faisceau laser illumine une large zone de la cellule par le dessous. Des polariseurs croisés sont fixés de part et d’autre de la cellule pour éliminer les photons hors de l’approximation de diffusion multiple.

La partie détection est assurée par une caméra CCD de type progressive scan de marque Pulnix série TM6703 dont la résolution est de 640 X 484 pixels codés sur 8 bits. Les pixels sont carrés de 9 µm de côté. La fréquence maximale en pleine résolution est de 60 im/sec. Nous utiliserons une carte d'acquisition Matrox Meteor II pour réaliser l'acquisition et nous avons développé une interface à l'aide d'IDL dédiée à la gestion des calculs. Nous détaillerons plus loin l’interface et les algorithmes développés et utilisés. Cette caméra est dotée d'un objectif à grossissement variable comportant un diaphragme d'ouverture permettant d'ajuster la taille du speckle par rapport à la taille du pixel.

1.1 Calcul de fonctions de corrélations - algorithme multi-\(\tau\)

Le calcul de fonction de corrélation à l'aide d'une caméra est réalisé en utilisant la relation suivante:

\[
g_2(t_w, t_w + \tau) = \frac{\langle I_i(t_w)I_i(t_w + \tau) \rangle}{\langle I_i(t_w) \rangle \langle I_i(t_w + \tau) \rangle}
\]

La moyenne \(\langle \rangle\) est ici effectuée sur un grand nombre de pixels. Le calcul de la fonction de corrélation consiste à multiplier la valeur du pixel \(i\) à l'instant \(t_w\) par la valeur du
même pixel à l'instant \(t_w + \tau \). La normalisation s'effectue sur l'ensemble des pixels de la caméra et cela sur deux images séparées par l'intervalle de temps \(\tau \). Par rapport à l'expression classique que nous avons donnée au Chapitre II (cf éq 3.1), nous constatons que notre définition considère que le temps d'origine est variable. Il s'agit du temps \(t_w \) qui sépare l'arrêt de la préparation du matériau par le précisaillement et le début du calcul de la fonction de corrélation. Cette généralisation est inspirée par le fait que les propriétés d'un matériau en vieillissement dépend du temps écoulé depuis la préparation.

Une fonction de corrélation type obtenue par ce calcul est représentée sur la figure suivante:

![Diagramme de corrélation](image.png)

Figure III–2 : Fonction de corrélation unique obtenue sur un microgel en cours de vieillissement.
Il est possible d’optimiser les paramètres d’acquisition ainsi que les algorithmes de calcul pour extraire le maximum d’information. Les paragraphes suivants présentent en détails ces paramètres.

L’utilisation d’une caméra CCD dans un montage de DWS se justifie par le fait que chaque pixel peut-être considéré comme un capteur indépendant et augmente la statistique permettant une convergence plus rapide vers une fonction de corrélation moyenne.

Les algorithmes développés sont de type multi-τ, c'est-à-dire que le temps d’échantillonnage τ est variable, ce qui permet de calculer des fonctions de corrélation correctement échantillonnées sur des temps très longs. Ils sont largement inspirés des travaux de L.Cipellitti d’une part et de V.Viasnoff et F.Lequeux[1].

Le principe du calcul en multi-τ est de construire un faisceau de fonction de corrélation en temps réel. Chaque fonction de corrélation $g_2(t_w+\tau, \tau)$ représentant un âge (t_w) différent du système. Ce calcul est basé sur l'algorithme et schématisé par le graphique ci-dessous.

La première image $n = 1$ est utilisée comme référence pour le corrélateur $j = 1$, la fonction de corrélation est alors calculée avec les N (N est fixe) images suivantes, définissant une zone linéairement espacée. L’image suivante est utilisée comme référence pour le corrélateur $j = 2$ et de nouveau la zone linéaire est calculée. Les images suivantes sont
PARTIE I: Spectroscopie en diffusion multiple des matériaux non ergodiques et en écoulement

utilisées pour calculer les points suivants sur les fonctions \(j = 1 \) et \(j = 2 \). Le numéro du corrélateur est alors incrémenté. L'ensemble des fonctions se construisent donc en temps réel.

Cet algorithme a montré des limites lors de l'étude de nos systèmes. Le nombre de points calculés dans la zone de décorréléation de la fonction était insuffisants pour extraire de façon satisfaisante le temps caractéristique et la forme de la fonction de corrélation. Afin de lever cette indétermination, nous avons apporté une modification à cet algorithme. Nous avons introduit une variable \(i \) qui vient augmenter le nombre de points dans la zone linéaire. Le nombre total, \(N_t \), de point linéairement espacés suit la loi \(N_t = N + (j - 1) \times i \), a chaque nouvelle fonction, la valeur de \(i \) est multipliée par le numéro du corrélateur actif – 1.

L'algorithme se transforme comme suit :

![Diagramme montrant l'algorithme](image_url)

Les valeurs de \(N \) et de \(i \) sont totalement libres de choix par l'utilisateur. Quelques tests ont suffit à déterminer les valeurs expérimentales de \(N \) et \(i \) satisfaisantes:

Dans le cas où \(i=0 \), l'algorithme retrouve sa forme initiale, des valeurs typiques dans nos mesures sont \(N = 15 \) et \(i = 5 \)

1.2 **Logiciel du corrélateur multi-\(\tau \) développé**

Durant la mise au point de cette expérience, il est apparu crucial de pouvoir analyser les images issues de la caméra en temps réel. Nous avons développé une interface capable de visualiser les images issues de la caméra et de calculer en temps réel les fonctions de
corrélation selon les algorithmes décrits précédemment. Cette interface a été entièrement réalisée à l’aide d’un environnement nommé « Interactive Data Language » plus connu sous l’acronyme IDL. Ce langage permet la création d’interface pour l’acquisition et le traitement des données.

Nous détaillons les fonctions principales de cette interface en présentant un exemple concret d’utilisation. Cette interface est composée de différents onglets ayant chacun un rôle au cours des expériences.

1. L’onglet « Live » est destiné à visualiser les images issues de la caméra et permet d’ajuster les conditions expérimentales.

2. L’onglet « \(\ell^* \) » est consacré à la mesure de la longueur de persistance d’un échantillon par les méthodes décrites dans le chapitre IV.

3. L’onglet « Pixel » est destiné à l’optimisation du rapport taille de pixel/taille de speckle. Cette fonction affiche en temps réel le résultat d’une fonction de corrélation spatiale permettant l’ajustement de l’ouverture de diaphragme et donc le réglage de la fonction d'appareil \(\beta \).

4. L’onglet « Corrélation Simple » est destiné au calcul d’une seule fonction de corrélation temporelle à partir d’une origine \(t_w \) fixée.

5. L’onglet « Corrélation Multiple » est destiné au calcul d’un grand nombre de fonctions de corrélation, calculé à partir de différents temps \(t_w \). Cette fonction est destinée à l’étude de phénomènes hors d’équilibre et en vieillissement.

6. L’onglet « Infos » permet de recueillir des informations relatives à l’expérience en cours comme les références de l’échantillon, la date de prise de vue….

- 62 -
Après cette brève description de ces fonctions, il semble utile de présenter les fonctions essentielles de cette interface en passant rapidement en revu tous les onglets.

1.2.a L’onglet « Live »

![Figure III-3 : interface de l’application gérant les modules d’analyse des expériences de diffusion multiple.](image)

Cet onglet est le premier qui s’affiche lors de la mise en route du logiciel. Il contient une fenêtre graphique qui affiche en direct les images issues de la caméra. Il y a quelques fonctions relatives à l’optimisation de l’affichage comme la possibilité de soustraire un bruit de fond, d’appliquer une palette de couleur à l’image ou encore de visualiser la répartition de l’intensité de l’image au travers d’une fonction de répartition.
Un rectangle blanc est superposé à l’image et représente la zone d’intérêt utilisée (souvent appelée « ROI ») dans les calculs de cette interface. Il est possible d’ajuster la taille et la position de cette zone et de connaître sa superficie en pixels. Cette valeur est primordiale pour assurer une statistique représentative, nous discuterons un peu plus loin des valeurs seuils et de l’importance de cette zone de travail.

Le fait d’utiliser une zone réduite de l’image permet un gain de temps dans le traitement des données. Nous verrons également que cette zone réduite apporte un vrai plus dans la sensibilité des mesures.

L’ensemble des fonctions, calculs et résultats obtenus grâce à cette interface sont sauvegardés sous forme de fichiers ASCII en sélectionnant les fonctions voulues dans le menu déroulant FICHIER\Sauvegarder… .

La visualisation d’image en direct permet un ajustement optique très facile.

1.2.b L’onglet « Mesure de ℓ^* »

Cette capture d’écran montre l’onglet "Mesure de ℓ^*" . La fenêtre principale représente la somme des niveaux de gris des pixels contenus dans la ROI au cours du temps. Sous la fenêtre graphique se trouve l’ensemble des commandes permettant la détermination de ℓ^*.

Les commandes START/STOP/CLEAR, démarre, arrête ou effectue respectivement une remise à zéro de la mesure. Une mesure consiste à placer une cellule contenant des traceurs de référence entre le faisceau laser et la caméra et de mesurer l’intensité moyenne
notée \(\langle I_{ref} \rangle \), puis de comparer cette valeur avec l’intensité moyenne mesurée en remplaçant la cellule par la cellule de mesure. Les calculs permettant de déterminer \(\ell^* \) sont fonction de l’épaisseur mécanique de la cellule et de la valeur de \(\ell^* \) de la solution de référence. Ces paramètres expérimentaux sont entrés dans les champs prévus à cet effet.

1.2.c L’onglet « pixel »

Nous avons vu dans le chapitre consacré à la description du principe de la diffusion multiple qu’un des paramètres utilisé dans la détermination de la fonction de corrélation \(g_2(\tau) \) est la fonction d’appareil noté \(\beta \).

\[
 g_2(\tau) = 1 + \beta |g_1(\tau)|^2
\]

1-2

Dans le cas de l’utilisation d’une fibre optique, les mesures montrent que la valeur de la fonction d'appareil \(\beta \) est proche de 1. En utilisant une caméra CCD et un objectif, la valeur de \(\beta \) est fonction de l’ouverture du diaphragme de l’objectif. La difficulté de ce montage est que l'ouverture du diaphragme contrôle deux paramètres: d'une part la taille du speckle et d'autre part l'intensité mesurée. Pour des mesures optimales, l'intensité ne doit pas être trop élevée pour ne pas saturer le capteur, mais il n’est pas judicieux d'utiliser qu'une partie de la dynamique du détecteur. La question suivante se pose: comment obtenir le \(\beta \) le plus grand possible en utilisant la plus large dynamique? Pour répondre à cette question, nous devons pouvoir mesurer \(\beta \) rapidement et régulièrement au cours des expériences.

L’onglet « Pixel » ci-contre permet de mesurer en temps réel la valeur de la fonction d’appareil du montage. Cet onglet ne comporte qu’un minimum de commande, START/STOP pour débuter ou arrêter la mesure. Nous avons vu au
paragraphe 3.2 qu'il était possible de déterminer β par deux méthodes, l'une utilisant une suspension de sphère de polystyrène dans de l'eau, la seconde à l'aide d'une plaque de verre dépolie.

L'utilisation d'une suspension de sphères de polystyrène et d'eau n'est pas utilisable dans ce cas, le mouvement de diffusion étant supérieur à la vitesse d'acquisition de la caméra. Nous aurions pu essayer d'utiliser un autre solvant que l'eau, comme par exemple un mélange d'eau et de glycérol, mais pour ralentir suffisamment le mouvement des particules le taux de glycérol est supérieur à 80% et à ces concentrations là, il est long et difficile d'obtenir une solution homogène. Nous avons donc préféré l'utilisation d'une plaque de verre épaisse et dépolie. La plaque choisie présente un coefficient de transmission quasiment identique à celui d'un mélange de microgel contenant 0,5 % de sonde et présentant un ℓ^* égal à 0.388 mm placé dans une cellule de 2 mm d'épaisseur. Il suffit alors de fixer la plaque à la place de l'échantillon (entre les deux polariseurs croisés) et de calculer la fonction de corrélation du speckle formé. La valeur est constante au cours du temps et vaut $1+\beta$. En fermant le diaphragme de l'objectif, nous pouvons faire varier l'intensité reçue et l'ajuster pour que les pixels les plus brillants soient le plus proches du niveau 255 sans atteindre cette valeur.

Les pixels les plus sombres sont théoriquement fixés à 0, en pratique le fonctionnement de la caméra demande qu'une tension de synchronisation soit imposée périodiquement aux pixels. Cette tension fixe alors la valeur minimale soit à un niveau de 8. Ce niveau est facile à déterminer, il suffit d'enregistrer une centaine d'image en plaçant le capteur dans le noir et de calculer la moyenne de tous les pixels sur toutes les images. Nous avons contrôlé que ce niveau est insensible à la température ambiante (15°C$\leq T < 30^\circ$C).

Dans les meilleures conditions, la fonction d'appareil mesurée pour cet ensemble est de 0.85. Cette valeur sera mesurée par la méthode dite du « dépoli » pour chaque expérience.
1.2.d L’onglet "Corrélation simple"

Cette capture d’écran montre l’onglet "Corrélation Simple".

Les commandes de cet onglet sont :

- START/STOP, qui démarre et arrête le calcul de la fonction de corrélation temporelle à partir des pixels de la ROI.

- CLEAR efface toutes les données courantes de la mémoire.

- Xlin permet de passer de l’échelle logarithmique à linéaire sur l’axe X.

La valeur affichée dans le champ suivant représente la valeur courante de la fonction de corrélation.

1.2.e L’onglet "Corrélation Multiple"

Cette capture d’écran montre l’onglet "Corrélation Multiple". Cet onglet présente :

Une fenêtre graphique où sont représenté d’une part le résultat des fonctions de corrélation et d’autre part une image réduite de la ROI considérée.

À droite se trouvent deux champs. Le premier permet d’imposer un délai avant le début du calcul (utile pour fixer le temps du précisaillement), le second représente le temps écoulé depuis le début de l’expérience.

Au dessous se trouve deux curseurs utilisés pour fixer les valeurs de N et i, leur rôle est défini dans ce chapitre au paragraphe 1.2 traitant des algorithmes de calcul. Les commandes START/STOP, qui démarre ou arrête le calcul de la fonction de corrélation

- 67 -
temporelle à partir des pixels de la ROI. La commande **CLEAR** efface toutes les données courantes de la mémoire.

Nous avons également des informations concernant la cadence de travail, ici 24 im/sec. Enfin deux cases d’option, la première permet de mettre à jour le graphique, la seconde met à jour l’image. Ces deux fonctions ont une grande influence sur la cadence du calcul puisque le rafraîchissement de l’écran impose une utilisation des ressources du processeur et utilise ou non plus de puissance de calcul. Dans le cas le plus défavorable de rafraîchissement constant du graphique la cadence de calcul peut descendre à 10-15 im/sec.

1.2.f **L’onglet « Infos »**

Les informations sauvegardées en même temps que les données sont: la référence de l’échantillon, la taille des traceurs, le ℓ^* considéré, l’entrefer utilisé lors de l’expérience, le gradient de cisaillement appliqué et sa durée. Les données sont en plus horodatées. Ces informations sont sauvegardées dans une zone prédéfinie au début des fichiers de données appelé "Header".

1.3 **Analyse des conditions expérimentales**

La mise au point de cette interface n’aurait jamais pu être possible sans une solide étude des paramètres importants tels que : la pertinence des informations statistiques, l’optimisation des fonctions de corrélation ou encore quelques algorithmes utilisés. Nous discutons ces différents points dans la suite.
PARTIE I: Spectroscopie en diffusion multiple des matériaux non ergodiques et en écoulement

1.3.a Statistique sur un grand nombre de pixel

L'utilisation d'une caméra CCD se justifie par le fait que chaque pixel doit être considéré comme un détecteur indépendant et que le nombre de "détecteur" est grand. Jusqu'où peut-on réduire le nombre de pixel pour conserver une statistique suffisante? Pour répondre à cette question nous aurions pu réaliser différentes expériences en faisant varier le nombre de pixel à analyser. Nous avons préféré faire un travail de simulation en générant deux images ayant des valeurs de pixels aléatoirement répartie entre 0 et 255 et réaliser le calcul de la fonction de corrélation des images obtenues. Le résultat du calcul de la fonction de corrélation doit être fixé à 0. Toutes autres valeurs est le résultat d’une erreur relative à un manque de statistique.

Nous avons généré deux images de \(N \) pixels de coté et fait varié la valeur de \(N \). Nous présentons sur le graphique suivant l'évolution de la valeur de la fonction de corrélation calculée à partir de ces images en fonction du nombre de pixels. La valeur attendue pour la fonction de corrélation de deux images totalement décorrélées est égale à 0.

![Graphique III–4: Valeur de la ligne de base obtenue en calculant la fonction de corrélation de deux images aléatoires l'une par rapport à l'autre en fonction du nombre de pixel composant chaque image. La valeur de \(10^{-3} \) fixée comme correcte pour une fonction de corrélation expérimentale est obtenue dans le cas où les deux images comportent au moins \(100 \) Pixels, soit un carré de 100x100.](image-url)
PARTIE I: Spectroscopie en diffusion multiple des matériaux non ergodiques et en écoulement

Toutes valeurs différentes obtenues lors du calcul est induite par l'erreur statistique sur le nombre d'événement choisi.

Nous avons porté deux limites sur ce graphique (correspondant aux droites roses), la première à environ 10^4 pixels représente le nombre minimum pour avoir une valeur égale à 10^{-3} qui représente la limite expérimentale, la seconde à 3×10^5 représente la résolution de la caméra CCD. Une image contenant 10000 pixels suffit à atteindre valeur limite expérimentale.

Durant l'expérience, un grain de speckle est plus gros que la taille d'un pixel. Pour avoir une fonction d'appareil élevée un grain de speckle doit s'inscrire dans un carrée de 2 ou 3 pixels de coté. Ce qui augmente d'un facteur 4 ou 9 le nombre de pixel minimum à considérés pour la mesure.

En pratique, nous sélectionnerons la partie de l'image où l'intensité est la plus homogène, avec un nombre de pixel minimum toujours supérieur à 10^5, ce qui représente environ 1/3 de l'image originale.

1.3.b Optimisation de la ligne de base des fonctions de corrélation.

Nous venons de voir que la hauteur des premiers points de la fonction de corrélation est liée à la fonction d'appareil; après un temps caractéristique du système, la fonction de corrélation $g_1(\tau)$ tend vers sa ligne de base proche de 0 ($\sim 10^{-3}$). Nous verrons comment cette ligne de base conditionne la sensibilité de nos mesures, mais il est important de se rendre compte qu'une ligne de base définit à 0.1 ou bien à 10^{-3} donne des sensibilités bien différentes. La ligne de base reflète la décorréléation totale du signal avec lui-même au cours du temps. Dans le cas de l'utilisation d'une fibre optique et d'un photomultiplicateur, la ligne de base est définit sans problème à 10^{-3} près sans attention particulière. La grande dynamique du photomultiplicateur et la faible ouverture numérique de la fibre jouent un rôle favorable. Dans
le cas de l'utilisation d'une caméra CCD, la ligne de base peut-être améliorée uniquement dans le cas ou la répartition de l'intensité est homogène sur l'ensemble des pixels. Nous avons compris cela après avoir calculé la fonction de corrélation à partir d'image de speckle générées artificiellement. Voici ci-dessous l'exemple le plus flagrant.

Les deux images A et C générées par une fonction aléatoire représentent des figures de speckle. La première présente un profil moyen uniforme, la seconde est multipliée par une fonction gaussienne 2D (B) donnant une répartition spatiale inégale.

Les fonctions implémentées sous Mathlab ou IDL permettent de générer ce type d'images.

Le calcul de la fonction de corrélation entre deux images différentes et présentant des niveaux de gris aléatoires mais avec une répartition uniforme (cas A) correspond à la valeur de la fonction de corrélation expérimentale dans la région de la ligne de base. Dans ces conditions, la valeur de la ligne de base est proche de 10^{-3}. Tandis que le calcul de la fonction de corrélation en utilisant des images dont l'intensité n'est pas uniforme est supérieur à 0,1

Figure III–5 : Images de speckle obtenue à l'aide d'IDL en imposant une valeur aléatoire comprise entre 0 et 255 pour chaque pixel. À gauche une image homogène, au milieu une fonction gaussienne 2D et à droite le résultat de la multiplication des deux premières images.
Cette simple simulation nous a convaincu que la seule façon d'optimiser la ligne de base est d'obtenir une répartition la plus homogène possible dans le champ de la caméra.

Il y a deux possibilités pour homogénéiser la répartition de l'intensité dans l'image. La première consiste à élargir le faisceau, mais l'intensité décroît inévitablement, ce qui est néfaste pour les mesures. La seconde est de ne pas considérer l'image entière mais de travailler sur une zone où l'intensité des pixels est homogène.

1.4 Analyse des fonctions de corrélation

Pour faciliter l'analyse des fonctions de corrélation, nous avons créé une interface dédiée à l’analyse des données brutes. Nous décrivons ici ses principales fonctions.

Cette capture d’écran illustre l’interface d'analyse.

La fenêtre principale montre la fonction expérimentale, les points blancs et la courbe modélisée en rouge à l'aide des paramètres situés en bas à gauche de la fenêtre.
La partie en bas à droite donne des informations sur l'échantillon et contient les boutons de commandes de la modélisation.

Le bouton CALCUL démarre le calcul des paramètres définis comme ajustables. Les boutons SUIVANT et PRECEDENT, permette de faire défiler les différentes fonctions de corrélations représentant différents âges. La case "Mise à Jour", impose la mise à jour du modèle à chaque fois que l'on affiche une nouvelle fonction à l'aide de SUIVANT ou PRECEDENT. La case "Défilement Auto" permet d'automatiser le calcul sur toutes les fonctions. Si cette case est cochée, l'appui sur le bouton SUIVANT lance le calcul de tous les paramètres de toutes les fonctions de corrélations. Enfin la case Lin/Log, permet d'afficher l'axe X soit en échelle linéaire soit en échelle logarithmique. Par défaut, X est présenté en linéaire pour observer la ligne de base.

Une fois les fonctions de corrélations modélisées, les fichiers résultats sont sauvegardés au format ASCII classique et avec l'extension *.TXT.

Les fonctions servant de modèle pour l'analyse des fonctions de corrélation sont de deux types. La plus simple est une fonction exponentielle étirée de la forme:

\[
g_z(\tau) = A \cdot \exp\left(\frac{t}{\tau}\right)^{\beta}
\]

où \(A \) représente la valeur des premiers points de la fonction de corrélation, \(\tau \) le temps de décroissance caractéristique et \(\beta \) la pente la fonction de corrélation.

Pour optimiser la vitesse de convergence des calculs, nous imposons des contraintes aux valeurs initiales du solveur.

- La valeur initiale de \(A \) est la moyenne calculée sur les 25 premiers points de la fonction considérée.
PARTIE I: Spectroscopie en diffusion multiple des matériaux non ergodiques et en écoulement

- Seules les valeurs de la fonction de corrélation supérieures à la ligne de base (typiquement 10^{-3}) sont utilisées pour le calcul

- La valeur de τ de la fonction N est utilisée comme valeur initiale pour le calcul de la fonction $N+1$.

Nous utilisons également un modèle issu de l’équation Chapitre II 3-4 appelé “forme complète” de la fonction de corrélation:

$$g_1(\tau) = \frac{L/\ell^*+4/3}{5/3} \frac{\sinh(\sqrt{Y})+2\sqrt{x}\cosh(\sqrt{Y})}{1+4/9 Y} \frac{L/\ell^*}{\sinh(\sqrt{Y})} + 4/3 \sqrt{Y} \cosh(\sqrt{Y})$$

où $Y = (k_0 V_0 \tau)\beta$ et

$$g_2(\tau) = 1 + A|g_1(\tau)|^2$$

Dans ce modèle, les variables $k_0 V_0; \tau; \beta$ et A sont des paramètres ajustables. Nous discuterons en détails des résultats obtenus en utilisant l'un ou l'autre des modèles et en analysant l'évolution des paramètres $k_0 V_0$ et τ dans le Chapitre V

2 Références Bibliographiques

Double responsive polymer-microgel composites: Rheology and structure

Fabrice Monti, Shang-Yi Fu, Ilias Iliopoulos and Michel Cloitre

Mixtures of alkali swellable microgels and linear PNIPAm chains exhibit double responsive properties both with pH and temperature. Below the lower critical solution temperature (LCST), the linear chains of PNIPAm are soluble and increase the osmotic pressure outside the microgels, which causes them to de-swell. Above the LCST, the PNIPAm chains become insoluble and form spherical colloidal particles confined between the microgels which subsequently re-swell. The swelling and de-swelling of the microgels change the rheological properties of the composites, providing a unique way to tune the elasticity of
the composites with temperature. The structure of the composites above the LCST is studied using multiple light scattering and fluorescence confocal microscopy. The phase separation of PNIPAm above the LCST is strongly affected by the confinement of the PNIPAm chains between the microgels.

1 Introduction

Microgel dispersions form an important class of colloidal particles that are extremely interesting both for practical and fundamental issues. Microgels are soft latex particles consisting of an intramolecular cross-linked polymeric network which is swollen by a good solvent. One advantage of microgel dispersions is that they exhibit all the hallmarks of colloidal behavior (i.e. crystallization\cite{1}\cite{2} and glass formation\cite{3}) at very low polymer content. Microgel suspensions can be highly concentrated because individual particles are soft and deformable. The degree of swelling of the particles is the key parameter that determines the flow properties of concentrated microgel dispersions\cite{4}\cite{5}. At low swelling degree, the dispersions are weakly elastic viscous fluids that behave very much like conventional particulate suspensions\cite{6}. At high swelling degree, the microgels are in contact and pack into a continuous elastic network that behaves like a weak solid. Upon application of a sufficiently high stress, the particles can flow past one another appreciably and the elastic network is disrupted making the dispersion strongly shear-thinning\cite{7}\cite{8}. This unique property is widely exploited to impart solid-like behavior to formulations that are used extensively in a range of industries for coatings, inks, personal care products and foods\cite{9}.

Another characteristic feature that makes microgel particles extremely attractive is their capacity to change their volume almost reversibly when the properties of the suspending medium are modified. The swelling of neutral microgels, which primarily depends on the solvent quality, can be finely tuned through small variations of temperature\cite{10}. Microgels
PARTIE I: Double responsive polymer-microgel composites: Rheology and structure

comprising thermosensitive monomers undergo a volume transition with temperature$^{[4][12]}$. In the case of polyelectrolyte microgels, the osmotic pressure of counter-ions is responsible for swelling. This renders ionic microgels highly sensitive to variations of pH or ionic strength$^{[5][14]}$. Recently the synthesis and the use of microgels combining complex response to pH and temperature have also been described$^{[15]}$. Polymer responsive microgels have become central components of advanced functional colloidal materials, with promising applications in the fields of bio encapsulation and controlled targeted drug release$^{[16]}$, metal ion adsorption$^{[17]}$, and photonic materials$^{[18]}$. A rich literature describes how the composition and the architecture of microgels (monomer composition, crosslink density, particle size, surface charge, introduction of functional groups) can be customized to meet the requirements of specific situations.

At swelling equilibrium, the osmotic pressures of solvent inside and outside microgels balance each other. A direct consequence is that any change of the osmotic pressure of the continuous phase can induce osmotic de-swelling. This effect is crucial in complex formulations which generally comprise many components. For instance an increase of the ionic strength provokes the osmotic de-swelling of ionic microgels$^{[19]}$. Similarly the addition of excluded linear free chains causes the de-swelling of neutral and polyelectrolyte microgels$^{[9][20][21][22][23]}$. Osmotic de-swelling is responsible for a reduction in particle size and a decrease of the volume fraction. In general these modifications alter the macroscopic behavior of suspensions in a dramatic way.

In this work, we show that this apparent drawback provides new and simple ways of manipulating soft particle pastes and tuning their rheological properties. We formulate composites by mixing alkali-swellable acrylic microgels and linear chains of a thermosensitive polymer (PNIPAm) that does not interact with the microgels. The free polymer chains exhibit a Lower Critical Solution temperature (LCST) below which they are
soluble in water and above which they phase-separate. Below the LCST, the linear chains do not interact with the microgels; their osmotic pressure causes the de-swelling of the microgels, which lowers the effective volume fraction. Above the LCST the PNIPAm chains are insoluble, their osmotic pressure becomes negligible and the microgels re-swell. As a result, the elastic modulus of composites made of a mixture of microgels and thermosensitive linear chains jumps from low to high values in the vicinity of the LCST. In this work we explore this line of thought to develop concentrated dispersions that have good flow ability at low temperature but that instantaneously solidify at higher temperature.

The materials, the preparation of the composites and the experimental techniques are presented in section II. The rheological properties of the composites and their structure are studied in section III. The rheological properties of the composites with temperature are measured using conventional shear rheology. The structure of the composites above the LCST is characterized using a combination of multiple light scattering techniques (turbidity and transport mean free path measurements) and of fluorescence confocal microscopy. We take advantage of the solvatochromic fluorescent properties of Nile Red to selectively stain PNIPAm above the LCST, which allows the direct visualization of phase-separated PNIPAm microdomains. These results are discussed in section IV. The composites respond to variations of pH and of temperature. As anticipated, their elastic modulus increases when the temperature becomes larger than the LCST. We suggest simple rules that could help optimizing the amplitude of the effect in real applications. The careful analysis of the phase-separated microdomains above the LCST indicates that phase-separation of PNIPAm in composites is strongly affected by the confinement induced by the presence of microgels.
2 Materials and experimental techniques

2.1 Materials

The colloid-polymer composites used in this study are prepared by mixing polyelectrolyte microgels and linear chains of a thermosensitive polymer. The microgels have been prepared by copolymerizing the two monomers ethyl acrylate (EA) and methacrylic acid (MAA) in presence of dicyclopentenyloxyethyl methacrylate (DCPOEMA), using standard emulsion polymerization technique. The weight fractions of EA, MAA and DCPOEMA are equal to 65 wt %, 35 wt % and 1 wt % respectively. The product of the reaction is filtered, diluted and carefully washed by ultrafiltration to eliminate the surfactant used during the synthesis. At low pH the microgels are insoluble in water and behave essentially as hard sphere suspensions of spherical particles ($r_0 = 55 \text{ nm}$). Upon addition of sodium hydroxide, the carboxylic groups of the MAA units become ionized and the microgels swell due to the osmotic pressure of the Na$^+$ counter ions$^{[5][6]}$. The swelling of the microgels is associated with a sharp increase of the pH to a value of about 8.5. At low concentration, swollen microgels have a spherical shape with a hydrodynamic radius $r = 240 \text{ nm}$; the suspensions are then purely viscous. Above close-packing (volume fraction: $\Phi = 0.64$; concentration: $C_C = 8.5 \times 10^{-3} \text{ g/g}$), swollen microgels form concentrated pastes that exhibit solid-like properties characterized by a finite low-frequency storage modulus$^{[5][24]}$. At $C \simeq 2C_C$, the volume fraction Φ becomes close to 1. It is possible to increase the concentration much further although swelling equilibrium is not reached.

The thermosensitive polymer is poly(N-isopropylacrylamide) (PNIPAm). It has been synthesized by free-radical polymerization in aqueous solvent (0.2 mole/L NaCl) according to the procedure described by Bokias et al$^{[25]}$. The molar masses have been measured by size exclusion chromatography at 40 °C using 0.1 mol.L$^{-1}$ LiBr in DMF as solvent$^{[26]}$. Most
Some rheological experiments have been realized using a PNIPAm with a slightly lower molecular weight ($M_w = 23.5$ kg/mole) but the results are nearly undistinguishable from the previous ones. PNIPAm is a thermosensitive polymer that exhibits a lower critical solution transition in aqueous solutions; PNIPAm is soluble below the LCST but phase separates above it. At the LCST, the optical transmission of PNIPAm solutions drops sharply due to turbidity. The LCST temperature of the PNIPAm polymer used in this study has been determined from turbidity measurements and found equal to 34°C.

2.2 Preparation of double responsive composites

We have prepared several composites containing variable amounts of microgels ($C_m = 1.5 \times 10^{-2}$ g/g, 2×10^{-2} g/g, 2.5×10^{-2} g/g, 3×10^{-2} g/g) and PNIPAm ($C_{PNIPAm} = 2.5 \times 10^{-3}$ g/g, 1×10^{-2} g/g, 4×10^{-2} g/g). All polymer concentrations are expressed with respect to the total weight of composite. The composites are prepared by mixing two equal volumes containing respectively: (1) the required amount of microgels eventually diluted with high purity water; (2) the required amount of PNIPAm carefully dissolved in high purity water and the amount of sodium hydroxide which is necessary to neutralize the microgels. The mixture is gently stirred to avoid air bubble formation and kept at rest for at least 24 hours. With this protocol we obtain perfectly homogeneous composites that look transparent at room temperature.

2.3 Rheology

The viscoelastic properties of the composites have been investigated using conventional rheology. The rheometer is a RS600 controlled stress rheometer from Thermo Electron Scientific. Measurements are made using cone and plate geometry (diameter: 35 mm; angle: 2°). Both the cone and the plate are slightly roughened by sandblasting to suppress slip phenomena that are ubiquitous for this type of materials. We characterize the
linear viscoelastic properties of the composites by the storage and loss moduli \(G' \) and \(G'' \), which are obtained from oscillatory measurements performed at small strain (typically <0.01) and variable frequency (\(10^{-2} \) rad/s < \(\omega < 100 \) rad/s). After loading the sample, a thin layer of low viscosity silicone oil (20 mPa.s) is spread at the periphery. This layer isolates the sample from the ambient atmosphere, which totally suppresses evaporation up to temperatures as high as 70 °C. The bottom plate is in contact with a Peltier stage allowing fast and reproducible temperature control inside the sample. A typical measurement proceeds as follows. The sample is first allowed to equilibrate at 20 °C, i.e. well below the LCST temperature. Then the temperature is raised to the target temperature at a heating rate \(\Delta T = 20 \) °C/min. The values of \(G' \) and \(G'' \) are continuously monitored during the quench; we consider that steady state is reached when \(G' \) and \(G'' \) reach constant values. This is generally achieved in less than 120 s.

2.4 Multiple light scattering

At high temperature the microgel-PNIPAm mixtures are turbid due to strong multiple scattering. The turbidity of a solution can be conveniently characterized by the ratio of the intensity transmitted through the sample to the incident intensity (transmittance). It is possible to gain more information about the structure of a concentrated solution by analyzing the multiply scattered light in a more detailed manner.

The propagation of light in the multiple-scattering limit can be described as a diffusive process: each photon is scattered a very large number of times and its path can be described as a random walk\(^{27}\). The elementary step of this random walk is the transport mean free path \(\ell^* \), which represents the length over which the direction of propagation is totally randomized. At the macroscopic scale, \(\ell^* \) is the optical depth for transmission. Since \(\ell^* \) is a function of the geometry and size of the scatterers, of their optical index and of the concentration\(^{27}\), it can be
used to characterize the properties of a time evolving system. In a previous paper, we have applied multiple light scattering to follow the colloidal phase separation of PNIPAm in concentrated aqueous solutions\cite{28}. Here we specifically use the variations of ℓ^* with temperature to characterize the structural properties of dense microgel-PNIPAm composites. Experimentally the transport mean free path ℓ^* of a multiply scattering sample can be easily determined by comparing the static intensity of the light transmitted through the sample (I) with that transmitted through a reference sample (I_r) of known ℓ^*_r. The ratio of transmitted intensities directly yields the unknown ℓ^*\cite{29}.

$$\frac{I}{I_r} = \frac{\ell^*}{\ell^*_r} \frac{3L + 4\ell^*_r}{3L + 4\ell^*}$$ \hspace{1cm} (2-1)$$

L is the thickness of the sample. Expression (1) is valid for $L/\ell^* > 10$ but it still provides valuable results for $L/\ell^* > 5$.

The transport mean free path ℓ^* and the turbidity of the composites have been measured as follows. The microgel-PNIPAm composites are put in parallelepiped quartz cells with a path length of 10 mm. The cells are sealed with silicone paste and immersed into a water bath which serves as a temperature-control reservoir. The temperature of the bath is maintained at the desired temperature ($30 \, ^\circ\text{C} < T < 50 \, ^\circ\text{C}$) with an excellent accuracy ($< 0.1 \, ^\circ\text{C}$). The cells are illuminated by an expanded laser beam coming from a solid laser operating at a wavelength of 532 nm. The transmitted light is collected by a camera lens coupled to a progressive scan CCD camera (Pulnix TM-6703; 684x480 pixels). The images from the CCD are directed to a computer equipped with a digital frame grabber (Matrox Meteor II). The transmitted light intensity is calculated by summing the intensity over 5×10^4 pixels in each image and averaging over 500 images. A measurement takes less than
15 seconds. It is crucial to carefully adjust the intensity of the incident light to avoid saturation of the CCD detector. The transmittance of a composite is simply equal to the light intensity emerging from the composite divided by that transmitted through a cell filled with pure water. To measure the transport mean free path, the intensity transmitted by the composite is measured against that transmitted by a reference solution. The reference sample is a suspension of calibrated Polystyrene beads from Duke Scientific Corporation (diameter: 160 nm; volume fraction: 0.01 wt %). The transport mean free path of the reference solution calculated from Mie theory\cite{31} is $\ell^*_r = 0.215$ mm.

2.5 Fluorescence confocal microscopy

We have used fluorescence confocal microscopy to visualize the structure of composites. The fluorescent dye is Nile Red which stains selectively PNIPAm microdomains above the LCST. The dye is first dissolved in ethanol at a molar concentration of 10^{-4} M. A very small amount of this stock solution is then added to the microgel-PNIPAm mixtures before neutralization of the microgels and gently stirred. The concentration of Nile Red in the composites is of the order of 10^{-6} M. Stained composites are transferred into LabTek Chamber Slides for microscopy observations. The cover slip of the chamber is in contact with a Peltier stage (Linkam PE100-ZAL) allowing fast and reproducible temperature quenches.

The microscope is an inverted Laser Scanning Fluorescence Microscope (Carl Zeiss, LSM510). The observations are made with an incident laser beam of wavelength $\lambda = 543$ nm. A low-pass filter (LP 560 nm) is installed in front of the detector (photomultiplier) in order to separate the fluorescence due to the Nile Red molecules from the incident light. The settings of the multiplier (gain and offset) are carefully adjusted to maintain the residual fluorescence of the microgel background at a low level. Under these conditions, the phase-separated PNIPAm microdomains appear as a bright phase under the fluorescence LCSM.
immersed ×63 Apochromatic lens with a numerical aperture of 1.4 was used for all the observations. The fluorescence intensity from a particular point in a focal plane (XY plane) at a given depth Z is recorded behind a confocal pinhole which eliminates out-of-focus light. To optimize the quality of the images, the diameter of the pinhole is systematically comparable to the size of the Airy disk. The resolutions in the XY plane and in the Z direction are then better than 0.2 µm and 0.8 µm respectively. The laser beam is scanned in the lateral plane yielding an optically sliced image of 512×512 pixels. Each pixel has an 8-bit resolution so that its intensity ranges from 0 to 255. To improve the signal to noise ratio, 10 images are systematically recorded (at the same position and at steady state) and averaged. All optical slices are at least 50 µm distant from the cover-slip to avoid possible influence of the boundaries on the phase-separated structures.

2.6 Fluorescence measurements

The fluorescence properties of Nile Red in composites have been studied with a Shimatzu RF 5301 PC spectrofluorometer. The samples are put into parallelepiped quartz cells (10 x 10 mm cross section). A monochromatic beam (532 nm) illuminates the cell. The emitted light is detected at 90° with respect to the incident beam (570 nm< λ < 700 nm). The temperature of the composites is controlled very accurately using a PT100 thermocouple directly immersed inside the cells.

3 Results

3.1 Rheology of microgel-PNIPAm composites

3.1.a Linear viscoelasticity of composites

Figure 1 shows the frequency dependence of the storage and loss moduli for a concentrated microgel suspension and a microgel-PNIPAm composite at two different
PARTIE I: Double responsive polymer-microgel composites: Rheology and structure

Temperatures situated respectively below and above the LCST. The different sets of data show the same trends but the values of the moduli are significantly different. In all cases there is a plateau in \(G'(\omega) \), which extends over the full window of frequency investigated. The loss moduli \(G''(\omega) \) is much smaller than \(G'(\omega) \). In the following, we characterize the viscoelastic moduli of suspensions and composites by their values \(G'_0 \) and \(G''_0 \) at fixed frequency \(\omega_0 = 1 \text{ rad/s} \). The variations of \(G'(\omega) \) and \(G''(\omega) \) with frequency are associated with solid-like behavior and yielding properties. Concentrated microgel suspensions behave like weak elastic solids at low stresses whereas they flow very much like viscous liquids above the so-called yield stress \(\sigma_y \). The yield stress is proportional to the elastic modulus: \(\sigma_y = G'_0 \gamma_y \) where \(\gamma_y = 0.05 \) is defined as the yield strain\[^8\].

Figure IV–1: Variations versus frequency of the storage (full symbols) and loss moduli (open symbols) of a pure microgel suspension (●○; \(C_m = 1.5 \times 10^{-2} \text{ g/g}; \ T = 30 \degree \text{C} \)) and of a microgel-PNIPAm composite (△•; \(C_m = 1.5 \times 10^{-2} \text{ g/g}; \ C_{PNIPAm} = 4 \times 10^{-2} \text{ g/g} \)) below the LCST (▼■; \(T = 30 \degree \text{C} \)) and above the LCST (▲△; \(T = 50 \degree \text{C} \)).
In figure 2 we compare the variations of the storage and loss moduli G'_0 and G''_0 of a pure microgel suspension and a microgel-PNIPAm composite as a function of temperature. For the microgel suspension we observe that G'_0 and G''_0 decrease by about 10% between $T = 20 {^\circ}C$ and $T = 60 {^\circ}C$, the ratio G'_0/G''_0 (≈ 10) remaining constant. The results for the composite are completely different. For $T \leq 35 {^\circ}C$, the storage and loss moduli are much smaller than for the pure microgel suspensions. The ratio G'_0/G''_0 is now of the order of 4, which indicates that the composites are much weaker solids than the pure microgel suspensions. For $35 {^\circ}C < T < 40 {^\circ}C$, G'_0 and G''_0 increase sharply by nearly one order of magnitude and become significantly larger than for pure microgel suspensions. The ratio G'_0/G''_0 recovers the value standing for pure microgels. For $T \geq 40 {^\circ}C$, there is again a small decrease in G'_0 and G''_0 but the viscoelastic properties of the composites remain essentially unchanged.

Figure IV–2: Variations with temperature of the storage modulus G'_0 (●, ○, ---) and of the loss modulus G''_0 (■, □, ----) of a microgel-PNIPAm composite ($C_m = 1.5 \times 10^{-2}$ g/g; $C_{PNIPAm} = 4 \times 10^{-2}$ g/g; full symbols) and of a pure microgel suspension ($C_m = 1.5 \times 10^{-2}$ g/g; open symbols). The lines are guides for the eye; note that the scales of the vertical axes are different.
In conclusion, the viscoelastic properties of concentrated microgel suspensions can be modulated by a change of temperature in the presence of thermosensitive PNIPAm linear chains. The composites behave like very weak solids at room temperature. Increasing the temperature above the LCST of the PNIPAm triggers a sharp increase of both the storage and loss moduli and reinforces the solid-like character of the composites.

3.1.b Varying the PNIPAm and microgel concentrations

We now investigate the influence of the PNIPAm concentration on the viscoelastic properties of the composites. Figure 3 shows the variations with temperature of the plateau modulus G'_0 of composites containing different amounts of PNIPAm, the microgel concentration being kept constant ($C_m = 1.5 \times 10^{-2}$ g/g). We also give the variations of the pure microgel suspension for comparison. The different composites exhibit the same behavior but we note that the jump of the elastic modulus near the LCST is much more pronounced when the PNIPAm concentration is higher. There is still a clear effect for $C_{PNIPAm} = 1 \times 10^{-2}$ g/g but for $C_{PNIPAm} = 2.5 \times 10^{-3}$ g/g, the increase of the elastic modulus is hardly detectable.
Figure IV–3: Variations with temperature of the storage modulus G'_0 of microgel-PNIPAm composites. The microgel concentration is kept constant ($C_m = 1.5 \times 10^{-2}$ g/g) while the PNIPAm concentration is varied (▲: 4×10^{-2} g/g; ●: 1×10^{-2} g/g; ■: 2.5×10^{-3} g/g; ○: 0 g/g).

Similarly, Figure 4 shows the variations with temperature of the plateau modulus G'_0 of different composites when the PNIPAm concentration is constant but the microgel concentration increases. We also give the variations of G'_0 for the pure microgel suspensions for comparison. Again the different curves have the same shape as in Figures 2 and 3. Although the PNIPAm concentration is relatively low, the increase of G'_0 in the vicinity of the LCST exists for all the composites. Interestingly the effect is even more pronounced for the composite where the microgel concentration is larger ($C_m = 2.5 \times 10^{-2}$ g/g).
PARTIE I: Double responsive polymer-microgel composites: Rheology and structure

Figure IV–4 Variation with temperature of the storage modulus G'_0 of microgel-PNIPAm composites (full symbols) and pure microgel suspensions (open symbols). The PNIPAm concentration is kept constant ($C_{PNIPAm} = 1 \times 10^{-2}$ g/g) while the microgel concentration is varied (\blacksquare, \blacktriangle: 1.5×10^{-2} g/g; \diamond, \blacklozenge: 2×10^{-2} g/g; \blacktriangleleft, \triangle: 2.5×10^{-2} g/g).

3.2 Turbidity and multiple light scattering above the LCST

3.2.a Turbidity measurements

Microgel-PNIPAm composites are optically clear at room temperature but they become highly turbid at higher temperature when the PNIPAm chains are insoluble in water. In order to correlate the change of viscoelastic properties with the phase-separation of PNIPAm, we have measured the turbidity of a composite and that of a solution of pure PNIPAm at the same concentration as a function of temperature. The results are shown in Figure 5.
PARTIE I: Double responsive polymer-microgel composites: Rheology and structure

Figure IV–5: Variation with temperature of the transmittance (●) and of the storage modulus G'_0 (▲) of a microgel-PNIPAm composite ($C_m = 1.5 \times 10^{-2}$ g/g; $C_{PNIPAm} = 10^{-2}$ g/g). The transmittance of a solution of PNIPAm in water ($C_{PNIPAm} = 1 \times 10^{-2}$ g/g) is given for comparison (○).

The two sets of data are nearly superimposed especially in the low ($T < 35 \, ^\circ\text{C}$) and high temperature ($T > 40 \, ^\circ\text{C}$) ranges. For $35 \, ^\circ\text{C} < T < 40 \, ^\circ\text{C}$, we note some very slight discrepancies that can be attributed to experimental uncertainties. The temperature at which the transmission begins to drop is the same for the pure PNIPAm solution and for the composite ($T = 34 \pm 0.5 \, ^\circ\text{C}$). This temperature marks the beginning of the phase-separation of the linear chains of PNIPAm. The fact that the LCST is not changed in the composites indicates that the PNIPAm chains do not interact and/or associate with the microgels32. In Figure 5 we have also plotted the variations with temperature of the plateau modulus of the composite. Interestingly we observe that the increase of G'_0 in the range $35 \, ^\circ\text{C} < T < 40 \, ^\circ\text{C}$ is perfectly correlated to the decrease of the transmission of the samples and therefore to the phase-separation of PNIPAm in the composite. This important result is central to the
interpretation of the responsive properties of composites, which will be presented in section IV.

3.2.b Multiple scattering: determination of the transport mean free path \(\ell^* \)

To better characterize the phase-separation of PNIPAm in the presence of microgels we have measured the transport mean free path of different composites as a function of temperature. The results which are presented in Figure 6 exhibit several noteworthy features. First, we observe that \(\ell^* \) systematically decreases as the temperature increases, irrespectively of the composite composition. This is to relate with the increase of the turbidity with temperature, which has been observed in Figure 5.

![Figure IV–6: Variation with temperature of the transport mean free path \(\ell^* \) of microgel-PNIPAm composites (full symbols) and of a PNIPAm solution at pH = 8.5 (○). The PNIPAm concentration is the same in all samples (\(C_{\text{PNIPAm}} = 1 \times 10^{-2} \text{ g/g} \)). Different microgel concentrations are studied (■: 3 \(\times 10^{-2} \text{ g/g} \); ◆: 2 \(\times 10^{-2} \text{ g/g} \); ▲: 1.5 \(\times 10^{-2} \text{ g/g} \)). We also represent the transport mean free path values calculated from Mie theory using parameters deduced from real-space LCSM observations (□: \(C_m = 3 \times 10^{-2} \text{ g/g} \).)
The decrease is particularly significant between $T = 35 \, ^\circ\text{C}$ and $T = 40 \, ^\circ\text{C}$ but it persists above $T = 40 \, ^\circ\text{C}$. We have also observed that ℓ^* does not change significantly when the temperature is raised or lowered after the initial quench. This shows that the structures formed during PNIPAm phase-separation are determined by the final temperature of the quench and that they are not affected by subsequent variations of temperature. Secondly we observe that the transport mean free path of composites for different microgel contents ($C_m = 1.5 \times 10^{-2}$ g/g, 2×10^{-2} g/g and 3×10^{-2} g/g) are all different, although the PNIPAm concentration is the same ($C_{\text{PNIPAm}} = 1 \times 10^{-2}$ g/g). They also differ from the values measured for an aqueous solution containing pure PNIPAm at the same concentration and same pH. The smaller the microgel concentration, the greater is ℓ^*. In conclusion the structures formed during the phase-separation of PNIPAm are strongly affected by the confinement due to the presence of microgels. To confirm this important result we have used fluorescence microscopy techniques in order to visualize phase-separated PNIPAm microdomains in real space.

3.3 Microscopic observation of phase-separated PNIPAM microdomains

3.3.a Selective staining of PNIPAm above the LCST

The interest of Nile Red is that its fluorescence is strongly dependent of the polarity of the environment. It is strong and remarkably selective in the presence of a hydrophobic environment but totally quenched in water. This property has found many applications in biology where it is widely used to stain intracellular lipids or phospholipid bilayer membranes[33]. Recently it has been used to investigate dispersed systems such as microemulsions[34] and micelles[35]. In the following we show that Nile Red selectively stains phase-separated PNIPAm structures above the LCST.
Figure 7 shows the fluorescence spectra of Nile Red in microgel-PNIPAm composites and in microgel suspensions as a function of temperature. The wavelength of the excitation ($\lambda = 543$ nm) is the same as that used in the Laser Scanning Confocal Microscope. In pure microgels, we observe a broad emission peak centered on $\lambda = 638$ nm and a secondary peak at $\lambda \approx 600$ nm. The position and the shapes of these emission peaks reflect the complexity of the environment experienced by the Nile Red molecules. The detailed description is beyond the scope of this paper. For our purpose it is enough to note that they have a low intensity that is independent of temperature. The fluorescence spectrum of microgel-PNIPAm mixtures below the LCST is similar to that measured for pure microgels except that the secondary peak at $\lambda \approx 600$ nm is now absent. The spectrum completely changes when the temperature becomes comparable to or larger than the LCST temperature. The emission peak centered on $\lambda = 638$ nm is still present but now there is a secondary peak at $\lambda = 612$ nm. Most importantly the intensity of fluorescence considerably increases revealing the fact that PNIPAm is precipitating into hydrophobic microdomains.
PARTIE I: Double responsive polymer-microgel composites: Rheology and structure

Figure IV–7: Fluorescence spectra of Nile Red in a microgel-PNIPAm composite ($C_m = 1.5 \times 10^{-2}$ g/g; $CPNIPAm = 1 \times 10^{-2}$ g/g; thick lines) and in a microgel suspension ($C_m = 1.5 \times 10^{-2}$ g/g; thin lines) at different temperatures. In the case of the composite, temperatures are indicated above the curves. In the case of the pure microgel suspensions we only show the spectra measured at 30 °C (---), 39 °C (.....) and 45 °C (------) for clarity. The wavelength of excitation is $\lambda = 543$ nm. The molar concentration of Nile Red is 10^{-6} M.

This is more clearly seen in Figure 8 where we have plotted the intensity emitted at $\lambda = 638$ nm by Nile Red in pure microgels and in microgel/PNIPAm mixtures. In the former case, the fluorescence intensity has a low and almost constant value independently of temperature. In the latter case, the intensity remains small below 33 °C but it increases sharply in the vicinity of the LCST. In conclusion the fluorescence intensity of Nile Red is triggered by the phase-separation of PNIPAm above the LCST. In the following, we apply this property to visualize the phase-separated PNIPAm microdomains in composites.
3.3.b Observation of phase-separated microstructures in composites

Figure 9 shows 2D images of microgel-PNIPAm composites observed above the LCST in the range $37 \, ^\circC < T < 50 \, ^\circC$. The PNIPAm concentration is $C_{\text{PNIPAm}} = 1 \times 10^{-2} \, \text{g/g}$. We present data for two different microgel concentrations, $C_m = 1.5 \times 10^{-2} \, \text{g/g}$ and $C_m = 3 \times 10^{-2} \, \text{g/g}$. Clearly the excellent spatial resolution of the LCSM allows us to visualize the geometry and the spatial organization of phase-separated PNIPAm. On all images PNIPAm form small disconnected microdomains with a quasi spherical shape. A simple visual inspection of the images reveals some important differences however. For $C_m = 1.5 \times 10^{-2} \, \text{g/g}$, the number of PNIPAm particles remains approximately constant between $T = 37 \, ^\circC$ and $T = 50 \, ^\circC$ but their size increases, especially for $37 \, ^\circC < T < 40 \, ^\circC$.
Figure IV–9: Laser scanning confocal microscopy of microgel/PNIPAm composites above the LCST ($C_{PNIPAm} = 1 \times 10^{-2}$ g/g; $C_{m} = 1.5 \times 10^{-2}$ g/g (left) and $C_{m} = 3 \times 10^{-2}$ g/g (right)). The size of the horizontal bar is 5 μm.
The results for $C_m = 3 \times 10^{-2}$ g/g show opposite trends: the size of the PNIPAm particles remains nearly constant while their number increases. We also note that the average size of the particles looks the largest for the lowest microgel concentration. In order to put these results on a quantitative basis we have calculated the number of particles and their average size on each image, using conventional image processing tools implemented in the ImageJ software\[^{36}\]. The results that are presented in Figure 10 confirm the different trends discussed above.
PARTIE I: Double responsive polymer-microgel composites: Rheology and structure

Figure IV–10: Characterization of the microstructure of phase-separated PNIPAm above the LCST. From top to bottom, we show: (a) the variations with temperature of the average radius $<R>$; (b) of the number of spherical domains N detected in a confocal volume (24.4 μm×24.4 μm×0.8 μm); (c) and of the PNIPAm concentration Γ calculated from $<R>$ and N. The PNIPAm and microgel concentrations are: $C_{\text{PNIPAm}} = 1\times10^{-2}$ g/g; $C_m = 1.5\times10^{-2}$ g/g (○) and $C_m = 3\times10^{-2}$ g/g (●).
4 Discussion

4.1 Origin of the thermo-mechanical responsiveness of composites

The results presented in section III.1 definitely demonstrate that the presence of PNIPAm linear chains in a microgel suspension greatly affects the rheological properties of the mixture. Below the LCST, the elastic character and therefore the yielding properties of the composites are weakened with respect to the pure microgel situation. Above the LCST they are enhanced. Most interestingly these modifications of the rheological properties induced by temperature are entirely reversible. To understand the physical origin of the thermo-mechanical responsiveness of the composites it is necessary to take into account the effect of PNIPAm linear chains on microgels and the particular structure of these soft composites.

The addition of free linear polymer chains to microgel suspensions affects the behavior of the mixtures through at least two basic mechanisms. First as it has been discussed earlier, below the LCST linear chains are non-absorbing onto the microgels and provoke the osmotic de-swelling of microgels, which leads in turn to a decrease of the effective volume fraction. Secondly they can induce short range attraction between microgels via a depletion force mechanism. It has been reported that strong attractive interactions in colloids cause a shift of the glass-transition line to higher volume fractions and induce a re-entrant solid-liquid transition[37][38][39]. Strong depletion interactions can also provoke the aggregation of ionic microgels[23]. Several observations suggest that these attractive depletion forces play a negligible role in our experiments. First it is important to note that, in our system, attractive interactions are necessarily counter-balanced by a net repulsion arising from the presence of ionized carboxylic groups on the microgel polymer backbone. The Debye length associated with the presence of free mobile counter-ions is of the order of a few nanometers. The range of the depletion interactions is set by the radius of gyration of the excluded free chains. The
radius of gyration in water of the PNIPAm chains below the LCST is smaller than 2.5 nm\cite{26}. Therefore the ranges of the attractive and repulsive forces are comparable in our composites. Secondly we have observed that the composites remain transparent below the LCST without any indication of flocculation even at the largest concentrations investigated. Finally we have found that both the frequency dependence of the linear viscoelastic moduli and the yielding behavior of microgel-PNIPAm composites are qualitatively similar to those of pure microgel dispersions. In conclusion, attractive interactions do not play a significant role below the LCST and the main action of the PNIPAm linear chains is to change the size of the microgels and the volume fraction by osmotic de-swelling.

To rationalize the variations of the storage modulus of the composites it is useful to come back to the origin of elasticity in concentrated microgel dispersions. Above close-packing, microgels pack into a disordered amorphous structure. They adapt their shape to steric constraints by forming flat facets at contact. The particle oppose to external deformation by exerting repulsive forces through their contacting facets. These repulsive forces are responsible for the low-frequency storage modulus of the concentrated suspensions. In a previous work\cite{24} we have shown both experimentally and theoretically that the storage modulus is extremely sensitive to the microgel volume fraction ($G_0 \sim \Phi^n$ with $n \approx 6.5$). According to this expression, the volume fraction decreases by about 20 % when the storage modulus drops by a factor 3 (figure 2). In conclusion, any small decrease of volume fraction caused by osmotic de-swelling (below the LCST) causes a drop of storage modulus. Above the LCST, the PNIPAm chains are insoluble and the microgels re-swell. As a result the volume fraction of the microgels increases and the storage modulus of the composites jumps to a higher value. This value is even greater than the one measured in pure suspensions because the phase-separated PNIPAm particles contribute to increase the total volume fraction of solid.
4.2 Structure of PNIPAm microdomains above the LCST

Above the LCST, phase-separated PNIPAm form spherical colloidal particles located in the interstitial volume between the microgels. The existence of stable colloidal PNIPAm particles (mesoglobules) has already been reported for the case of dilute solutions of various thermoresponsive polymers$^{[40]}$ and for concentrated PNIPAm solutions$^{[28]}$. The existence of such particles was inferred from scattering techniques. In this work we visualize phase-separated PNIPAm microdomains in real space.

An interesting question is whether these observations quantitatively capture the totality of the PNIPAm and its spatial distribution. This question is all the more important as the smallest particle size which is measured is close to the spatial resolution in the observation plane. The images of Figure 9 can be used to estimate the concentration of phase-separated PNIPAm in each image. We assume that the PNIPAm microdomains are independent spheres of average size $<R>$ and volume $\nu = 4\pi <R>^3/3$. The confocal volume (V) is defined by the field depth (0.8 μm) and the field of observation (24.4 μm \times 24.4 μm). It contains N particles. The particles are not made of pure polymer but they also contain some amount of water. \(\varphi\) denotes the polymer weight fraction inside the particles. It was estimated that the polymer weight fraction (φ) in PNIPAm mesoglobules formed from very dilute solutions ($C_{\text{PNIPAm}} \approx 6 \times 10^{-5}$ g/g) is $\varphi \approx 0.5^{[40]}$. It increases with the polymer concentration; for $C_{\text{PNIPAm}} \approx 6 \times 10^{-2}$ g/g, it is larger than $\varphi \approx 0.9^{[28]}$. Finally the total weight fraction of polymer detected is: $\Gamma = N\varphi V$. Taking for $<R>$ and N the experimental values reported in Figures 10a and 10b and assuming that $\varphi = 0.9$, we can easily calculate Γ. The results are shown in Figure 10c. The uncertainties are probably relatively large (20%) but we can draw some interesting conclusions. Above $T = 40$ °C, we can consider that the weight fraction of PNIPAm detected is comparable to the weight fraction of polymer in the solutions. This shows that most of the
PARTIE I: Double responsive polymer-microgel composites: Rheology and structure

PNIPAm present in the solution has precipitated and that our visualization and analysis techniques are reasonably quantitative. Below \(T = 40 \, ^\circ\text{C} \), \(\Gamma \) is smaller than \(C_{\text{PNIPAm}} \) especially in the case of the composite prepared with \(C_m = 1.5 \times 10^{-2} \, \text{g/g} \). It is likely that the particles formed under these conditions are too small to be detected by confocal microscopy, that the efficiency of the fluorescent dye is not sufficient to allow good detection or that some amount of PNIPAm still remain soluble in this range of temperature\(^{[26]}\).

It is also interesting to correlate the transport mean free path measurements and the microscopic data obtained from confocal microscopy. In this purpose, we use the values of \(<R> \) and \(N \) presented in Figure 10a and 10b to calculate the transport mean free path using Mie approximation. The calculation involves the refractive index of water and that of PNIPAm particles. The latter is calculated using the volumetric rule of mixtures, the refractive index of pure PNIPAm being equal to \(n_{\text{PNIPAm}} = 1.52 \)\(^{[41]}\). The calculated values of the transport mean free path are plotted in Figure 6 for the case \(C_m = 3 \times 10^{-2} \, \text{g/g} \). The agreement with the experimental values is reasonable, which further supports the validity of our observations.

4.3 Importance of confinement

The results presented in the previous section point to a major difference between PNIPAm phase separation in aqueous solutions and in our composites. In the former, the size of the globules formed above the LCST decreases with the depth of the thermal quench. This result is compatible with a mechanism involving spinodal decomposition in the early stages\(^{[28]}\). By contrast in microgel/PNIPAm composites, the average size of phase-separated PNIPAm particles is constant \((C_m = 3 \times 10^{-2} \, \text{g/g}) \) or increases with temperature \((C_m = 1.5 \times 10^{-2} \, \text{g/g}) \). In addition the particle size decreases by a factor 2 when the microgel concentration is doubled. This result shows that the phase-separation of PNIPAm is strongly influenced by the
confinement of the polymer chains between the microgels. Among the different parameters that play a role, we can mention the reduced mobility of the chains, the incompatibility between insoluble PNIPAm chains and the copolymer microgel networks, the elastic pressure exerted by the microgels. A complete understanding of the underlying phenomena at work is far beyond the scope of this paper.

5 Conclusion

We have shown that it is possible to tune the rheological properties of soft repulsive microgel pastes via the addition of non absorbing linear chains of a thermosensitive polymer exhibiting a LCST transition. The osmotic pressure of the linear chains changes at the LCST, which results in the de-swelling or re-swelling of the microgels. The variations of volume fraction which are associated are sufficient to modify the viscoelastic properties of the composites. The best results should be obtained when the microgel backbone and the thermosensitive polymer are fully incompatible, which prevents the adsorption of the free chains by the microgel network. Using a low molecular weight polymer is recommended since the osmotic pressure is then the highest. High molecular weight polymers should promote attractive interactions via a depletion force mechanism. The method has been successfully applied to ionic microgel pastes but the underlying concepts are general and could be used to a large class of soft wet particulate systems.

ACKNOWLEDGEMENTS

The authors are grateful to Roger T. Bonnecaze and Dimitris Vlassopoulos for stimulating discussions. We thank the European Network of Excellence “Softcomp” for supporting this research.
6 References

[31] The transport mean free path have been calculated using a public domain software available at http://www.lightscattering.de/MieCalc/index.html.
[36] ImageJ is a public domain image processing software (http://rsb.info.nih.gov/ij/)
Chapitre V

Microscopic dynamics of a soft colloidal glass

Fabrice Monti et Michel Cloitre
Matière Molle et Chimie,
ESPCI-Paristech (UMR ESPCI-CNRS 7167)
10, rue Vauquelin
75231 Paris Cedex, France

Abstract

We probe the dynamics of a model microgel glass using a combination of microrheology techniques based on Diffusive Wave-Spectroscopy (DWS). High frequency measurements in the range \(10^{-1} < \omega < 10^7\) rad/s are performed using a single-mode detection associated with a mathematical scheme which accounts for nonergodicity. The results give evidence for a short-time \(\beta\)-like relaxation which can be characterized by a mean relaxation
PARTIE I: Microscopic dynamics of a soft colloidal glass

Our results indicate that the microgels do not escape from their cage over accessible time scales. The long time dynamics upon flow cessation exhibit features characteristic of aging materials and can be interpreted in terms of the slow relaxation of elastic stresses trapped inside the material. Our results show that the dynamics at the particle scale is essentially controlled by a subtle interplay between viscous effects associated with thin films of solvent between particles and elastic deformation between squeezed particles.

1 Introduction

Today, it is possible to design and synthesize hybrid colloidal particles that share common features with polymers and colloids. A non-exhaustive list of hybrid colloids include microgel networks, multi-arm star polymers, hairy particles covered with grafted or adsorbed polymer chains, and star polymer and block copolymer micelles \[1\]. In these different examples, the particles are inherently soft and deformable because of their polymeric nature and, at the same time, they are partially impenetrable like colloids. It is well-known that they form glasses when their volume fraction exceeds a value \(\phi_g \approx 0.58\). The dynamical behavior of soft particle glasses such as microgel or emulsion glasses at volume fraction below close-packing \((\phi_c \approx 0.64 \text{ for monodisperse particles})\) has been studied both experimentally and theoretically \[2\][3][4][5]. In this regime, soft particle glasses exhibit strong analogies with hard sphere glasses. Each particle is kinetically trapped in a cage formed by its neighbours. At short times, particles move in their cage, a process termed \(\beta\)-relaxation. At long times, which are generally inaccessible to experiments, particles eventually escape from their cages via a thermally activated process termed \(\alpha\)-relaxation, which represents the longest relaxation process in the glass. Glasses display both liquid-like and solid-like behavior, with the solid-liquid transition and taking a variety of forms \[6\]. The application of an external flow...
exceeding the yield point breaks the cages and speeds up α- relaxation. At high volume fraction exceeding the close-packing volume fraction, the particles are squeezed and form facets through which they exert repulsive interactions, resulting in so-called soft glasses. Soft glasses are extremely useful in applications and constitute a fascinating scientific field. Understanding their dynamics is an outstanding challenge for statistical and condensed-matter physics as well as for materials science and biology. Important open questions that stimulate a lot of attention concern the characterization of nonergodicity, the viscoelastic response near-equilibrium, the non-linear rheology and the slow time evolution after flow cessation.

The characterization of nonergodicity is a major issue in light scattering investigations of the dynamics of soft glasses. Over the duration of an experiment, particles are localized at fixed average positions around which they execute limited excursions, so that they explore restricted parts of the phase space potentially accessible to them. Special methods are required to access ensemble average data from time average data. The brute force algorithm consists in summing many independent measurements performed translating the sample in front of the detector [7]. This method can be easily implemented using multispeckle detection which is well-suited for low-frequency measurements [8][9]. The necessity to access much larger frequencies, i.e. longer time scales, has prompted the invention of more clever schemes [10][11][12][13][14]. The respective advantage of a particular method over the others is still a matter of discussion and convenience for practical implementation.

There has been considerable experimental and theoretical work on the linear viscoelastic properties of soft particle dispersions composed of compressed emulsions [15][16][17][18][19][20], concentrated microgel suspensions [21][22][23][24] and multilamellar vesicles [25][26][27]. At intermediate frequencies, typically in the range covered by conventional rheology, soft glasses behave like solids with $G' \sim \omega^0$ and $G' \gg G''$. The variations of the plateau modulus, G_0, have been modeled in terms of the repulsive forces that the particles exert at contact on
one another\cite{22}\cite{24}. The high frequency viscoelastic behavior of soft glasses is associated with the in-cage motion associated and β-relaxation. It has been far less studied due to the experimental limitations of most rheometers in the high frequency domain. The conventional viscous response with $G'' \sim \omega$ with $G' < G''$ is rarely observed. Instead it has been shown that emulsions experience anomalous viscous dissipation with a loss modulus varying like $G'' \sim \omega^{1/2}$. The same behavior has been described in liquid foams\cite{28}. This scaling has rationalized in terms of a collective slipping motion of clusters of droplets along weak planes randomly oriented\cite{29}. However, it is not clear whether this behavior is generic or depends on specific dissipation mechanisms in the liquid films separating the emulsion droplets and foam bubbles.

Aging is another important property of glasses. It manifests itself as a slow evolution of the rheological properties at rest or under a stress smaller than the yield stress. Very often the age of the glass, i.e. the period elapsed between the end of preparation and the beginning of the experiment, is the relevant parameter for scaling the aging properties. Aging has been described at length in glasses of microgels\cite{30}\cite{31}, multilamellar vesicles\cite{32}\cite{33}, hairy colloidal particles\cite{34} and in gels\cite{35}\cite{36}. This seems to be a generic property of colloidal glasses where α-relaxation is not accessible. On the theoretical side, the Soft Glassy Rheology based on the trap model provides a phenomenological description of aging\cite{37}. On the experimental side aging seems to be closely associated with the slow relaxation of internal stresses trapped during the preparation step\cite{38}. Unfortunately there is little microscopic evidence for the nature of the structural changes associated with aging if any\cite{35}\cite{36}\cite{39}. The most comprehensive study concerns the aging properties of multilamellar vesicles which can be tuned by changing the temperature\cite{39}. It was shown that aging is associated with the release of local shear deformation created by small fluctuations of temperature, which induces internal ballistic rearrangements.
It is thus evident that systematic local investigations of the microscopic dynamics of model soft glasses over a range of time scales and distances spanning wide range of relaxation processes is highly desirable. One important objective is to build a generic framework connecting the local dynamics and the dense amorphous structure to the macroscopic rheology. In the following, we take-up on this challenge by addressing the case of the model soft colloidal glasses formed by well-characterized densely packed microgel particles. Using a combination of microrheology techniques based on Diffusive Wave Spectroscopy and different characterization of nonergodicity, we are able to probe the dynamics of microgel glasses over a huge range of timescales ranging from Brownian time scales to hours. Most importantly, we are able to relate the behavior at short-times and long-times to microscopic mechanisms.

The content of this paper is divided into four sections. We first present the materials and techniques used to conduct this study. The next section documents the theory used to analyze the experimental data in relation with the nonergodic character of the materials. Section 3 is devoted to the high frequency viscoelastic properties of microgel glasses and more specifically to characterization of the β-relaxation process. Section 4 presents the long time behavior of microgel glasses.

2 Experiments

2.1 Sample preparation

In this study we investigate concentrated dispersions of polyelectrolyte microgels in water. Each microgel particle comprises a crosslinked polymer network of acrylate chains bearing ionisable methacrylic acid units[40]. They are prepared by standard emulsion polymerization techniques using ethyl acrylate, methacrylic acid (MAA) and a crosslinker. At the end of the synthesis, surfactants, unreacted monomers and initiators are removed by ultrafiltration. At
PARTIE I: Microscopic dynamics of a soft colloidal glass

At low pH the microgels are insoluble in water and behave essentially as hard sphere suspensions of spherical particles \(R_0 = 55 \text{ nm} \). Upon the addition of sodium hydroxide, the carboxylic groups of the MAA units become ionized and the microgels swell due to the osmotic pressure of the \(\text{Na}^+ \) counter ions. The swelling of the microgels is associated with a rise of the pH to a value of about 8.5. The degree of swelling depends on the microscopic structure of microgels through several physicochemical parameters such as the degree of neutralization, the ionic strength and the crosslink density. It is convenient to characterize the crosslink density by the average number of monomeric units between two crosslinks, \(N_X \). In this paper, we investigate two batches of microgel particles with \(N_X = 28 \) and \(N_X = 140 \).

At low polymer concentration, dilute suspensions of microgels are purely viscous\(^{[41]}\). Above the close-packing concentration \(C_m \), concentrated suspensions exhibit all the hallmarks of soft glassy materials, i.e. a plateau elastic modulus and a yield stress, and become non-ergodic\(^{[42]}\). In a previous paper, we have shown that microgels are soft and deformable and that the elastic properties above close-packing result from the specific repulsive interactions that microgels exert one on the other\(^{[22]}\). The purpose of this work is to study the dynamics at the local scale of concentrated dispersions above close-packing using Diffusive Wave Spectroscopy. The dispersions are seeded with Polystyrene beads with diameters of 0.167 \(\mu \text{m} \) and 1.53 \(\mu \text{m} \), which play the role of probe particles. The concentration of the beads is sufficiently high to ensure strong multiple scattering for the DWS experiments. It is important to note that the microgel dispersions alone being transparent, the scattering signal is dominated by the contribution from the tracers. Although the tracer concentration can reach values of the order of 1 wt\%, the corresponding volume fraction is always much smaller than the effective volume of the microgels so that the final properties are not affected \((0.64<\phi<1)\). The surface of the beads is modified by negatively charged carboxylate groups, which provides efficient stabilization against aggregation. The samples have been systematically...
checked by confocal microscopy to detect any possible anomaly due to aggregation, which
was never observed in practice. Similarly, attractive interactions between the microgels and
the seeding particles are very unlikely since both types of particles carry negative charges. To
fully assess the validity of our measurements, we checked that the results of DWS
experiments performed using different bead sizes were identical, which indicate the absence
of strong spatial heterogeneities and of specific interactions between the microgels and the
tracers \cite{43}.

2.2 Macroscopic rheology

The bulk viscoelastic properties of the dispersions were investigated using conventional
rheology. The rheometer is a ThermoRheo RS600 controlled stresses rheometer. The
measurements were made using cone and plate geometry (diameter: 35mm; angle: 2°). Both
the cone and the plate were slightly roughened by sandblasting to suppress slip phenomena
that are ubiquitous for this type of materials. The use of a solvent reduces evaporation. We
characterize the linear viscoelastic properties by the storage and loss moduli G' and G'', which are obtained from oscillatory measurements performed at small strain (typically <0.01)
over the accessible frequency window ($10^{-3} \text{ rad/s} < \omega < 10 \text{ rad/s}$).

2.3 DWS experiments

The experimental setup is represented in Figure V-1. The experiments are performed
in the transmission geometry. They are illuminated using an Argon laser (Coherent Innova
300) operating in the TEM$_{00}$ mode and emitting at $\lambda = 514.5$nm. The output power is about 1
W. The laser beam is first collimated on a spatial filter which removes its imperfections and
expands it to a diameter to a diameter of about 20 mm so that the sample will be considered as
being uniformly illuminated. Since the beam is linearly polarized by the Brewster windows
that limit the two ends of the cavity, the intensity impinging on the sample can be finely
adjusted using a Glan-Thompson polarizer. Since multiply scattered light is depolarized, the intensities of light with parallel and perpendicular polarizations (with respect to the incident beam) are equal and independent, which reduces the signal-to-noise ratio. To avoid this, a polarization analyzer placed at the exit of the sample before the detector selects one particular polarization. The direction of the analyzer is adjusted in order to be perpendicular to that of the Glan-Thompson polarizer, which has the additional advantage to suppress the photons that have not been multiply scattered.

Our setup enables measurements on samples in the quiescent state, under flow and during aging. For quiescent state studies, the samples are kept at rest into parallelepiped glass cells (Hellma GmbH) with various internal thicknesses \(L\) ranging from 2 mm to 20 mm. The cell is moved in front of the beam by using a motorized linear stage (Melles Griot), which has a resolution of 0.1 \(\mu\)m. For out-of-equilibrium state studies, the suspension is placed in a rotational shearing stage Linkam CSS450, consisting of a movable glass plate at the bottom and a fixed microscope cover slip at the top \(D = 22\) mm.
PARTIE I: Microscopic dynamics of a soft colloidal glass

Figure V–1: DWS setup; The laser pass trough a spatial filter and trough a glass polarised. In microrheology experiment we used the right part of the setup. The sample in fixed on a linear motorised stage and the scattered light is collected by an optical fiber and a PMT. During the ageing experiment, we used the upper part of this setup, the sample is into the shear cell, the beam is reflected by a mirror, pass trough the shear cell and is collected by the CCD.

Two different detections are implemented to cover a broad range of timescales. For high speed measurements giving access to the dynamics of the material over short time scales ($10^{-8} \text{ s} < t < 10 \text{ s}$), a monomode optical fiber with low acceptance angle collects the scattered light emerging from the opposite side of the sample and sends it to a EMI photomultiplier (PMT). The signal from the PMT is first treated by an amplifier discriminator before being directed to a Brookhaven correlator (BI-9000AT). This correlator operates in multi-tau mode. There are 26 high speed channels (with sampling times $\Delta \tau$ ranging from 25 ns to 2.4 μs), 256 medium speed channels ($5 \mu s < \Delta \tau < 1.6 \text{ s}$) and 240 low speed channels ($1.6 \text{ s} < \Delta \tau < 1300 \text{ s}$). The correlator calculates the time-averaged intensity correlation function (ICF), $g^{(2)}(t)$.

- 117 -
For low speed measurements giving access to the slow dynamics of the material, the detector is a CCD camera equipped with a photographic lens equipped with a zoom (focal distance: 25-80 mm; numerical aperture: 2.1). The CCD camera 8 bit digital camera with 640X480 pixel sensor, each pixel being 9 μm². The maximum camera speed is 30 frames per second. The digitized speckle patterns are acquired by a frame grabber (Matrox Meteor II) and processed using a custom-written software with a friendly-user interface[45] developed in IDL environment[46]. The autocorrelation functions are calculated in real time and in parallel for all pixels processed using a multitau scheme. The technique is described in details in[8][9].

The intensity correlation function is related to the electric field correlation function, \(f(t) \), through the Siegert relation[47]:

\[
g^{(2)}(t) = 1 + \beta^2 f^2(t)
\]

(1)

where \(\beta \) is the coherence factor. It is a function of the detector area/speckle size ratio. The optical fiber detection has a very small aperture and detects essentially a few spatial speckles so that \(\beta \) is very close to 1. The signal-to-noise ratio and the coherence factor in the CCD detection mode can be optimized by changing the size of the speckles by varying the collection optics. Finally, the coherence factor was measured in both cases using various standard polystyrene beads solutions before the beginning of experiments.

3 Theory and method of analysis

3.1 Characterization of nonergodic samples

Introduction

Conventional simple light scattering and DWS experiments imposes to record the fluctuations of the intensity in a single speckle mode over a time much longer than the relaxation time of the systems. Concentrated microgel suspensions are non ergodic materials
like many other slowly relaxing and arrested colloidal systems. The particles are trapped near fixed average locations making the longest relaxation time inaccessible. As a result the time average intensity correlation function (ICF), which has been introduced in previous section, does not coincide with the ensemble-average ICF that ultimately characterizes the dynamics. The importance and the treatment of such nonergodic situations have been addressed for the case of simple light scattering (DLS) [3][11][12][48][49][50] and more scarcely for Diffusive Wave Spectroscopy (DWS) [51][52]. The ensemble average ICF can be constructed by summing a collection of consecutive intensity average ICF measured on different sample configurations. This can be achieved easily by translating or rotating the samples in front of the detector[49]. Two major drawbacks are the existence of a long-time cut-off associated with the translational or rotational velocity of the sample and the prohibitive duration of experiments, which can exceed several hours. The latter difficulty can be circumvented using a detection scheme based on a two-cell geometry, which does not require additional time averaging[52][53]. In the following we adopt a different perspective.

Multispeckle detection mode for low-frequency measurements

An elegant and powerful way of accounting for nonergodicity and getting ensemble-averaged ICF is to use the multispeckle scheme associated with CCD detection. The pixels of the camera can be considered as independent detectors, offering the possibility to perform a great number of independent measurements simultaneously. The multispeckle software calculates the correlation functions for different detectors simultaneously. The ensemble average ICF is obtained from an average over the different pixels analyzed[8][9].

\[
g^{(2)}(t,t_w) = \frac{\langle I(t_w)I(t,t_w) \rangle}{\langle I(t_w) \rangle \langle I(t,t_w) \rangle},
\]

(2)
where \(<\>) denotes an average performed over pixels.

Although very appealing the multispeckle scheme suffers from the fact that CCD cameras have a limited time resolution (most often of the order of 50ms, to be compared with 10ns with a photomultiplier-digital correlator set-up). This temporal resolution is insufficient to probe most of the fast relaxation processes involved in DWS investigations of concentrated dispersions which led us to develop a technique combining a conventional digital correlator with a powerful averaging procedure of data acquired using single detection mode.

Single detection mode for high-frequency measurements

Pusey and Van Megen were the first to propose a very clever treatment of non-ergodicity using the above decomposition of the electric field into fluctuating and frozen components\[^48\]. Below we extend this scheme initially developed for conventional light scattering to DWS. In transmission geometry, light is incident on one side of the sample and the scattered field is collected from a small area on the opposite side of the detector. Each photon passing through the sample follow a complex path along which it undergoes a great number of scattering events. The amplitude of the electric field from path \(p\) at the detector is \(E^{(p)}\). It is a function of the laser beam intensity and of the number of scattering events along path \(p\). The phase shift of the photon as it passes from the laser to the detector is then

\[
\Phi^{(p)}(t) = \sum_{i} q_i \tilde{r}_i(t) \quad \text{where} \quad \tilde{r}_i(t) = \text{instantaneous position of the scattering particles along path} \ p.
\]

For a non-ergodic medium, we assume that each scatterer has a limited excursion \(\delta_i(t)\) around a fixed position \(R_i\), with \(<\delta_i(t)\> = 0\). It follows that the phase shift along a path involves a constant value, which only depends on the path, and a time dependent contribution:

\[
\Phi^{(p)}(t) = \Phi_c^{(p)} + \Phi_f^{(p)}(t).
\]

The total electric field on the detector is the superposition of all fields from all light paths through the sample to the detector so that:
The key result here is that the electric field can be decomposed into a time-independent frozen component E_C and a fluctuating part E_f. We can thus apply the formalism developed by Pusey and van Megen for DLS to DWS measurements of non-ergodic samples.

Below we recall the main steps of the procedure, full derivation being found in the original publications\cite{48}\cite{11}. A single experiment performed at one particular position of the optical fiber gives access to the time-averaged intensity correlation function $g_1^{(2)}(t)$ and to the time average intensity $<I>$. Pusey and van Megen showed that it is possible to compute the ensemble average intensity correlation function, $f(t)$, from a single time average intensity correlation function $g_1^{(2)}(t)$ using the basic equations:

$$g_1^{(2)}(t) = 1 + Y^2 \left[f^2(t) - f^2(\infty) \right] + 2Y(I - Y) \left[f(t) - f(\infty) \right]$$

(4.1)

$$Y = \frac{<I>_e}{<I>_t}$$

(4.2)

$$f(\infty) = 1 - \frac{I_f}{<I>_e}$$

(4.3)

$<I>_e$ is the total ensemble average intensity scattered by the sample. It is easily measured by averaging the intensity over a great number of speckles by translating the sample relatively to the detector. I_f represents the ensemble average intensity associated to the fluctuating component of the electric field in relation (3). Since E_f is the sum of many fields with random phases and amplitudes that fluctuate rapidly around zero over the duration of an experiment and the scattering volume is much larger than the displacement of the tracers, I_f is an ergodic Gaussian variable. $f(\infty)$ denotes the long time limit of the ensemble-average field correlation function, which depends only of the ensemble average total intensity and on the...
fluctuating intensity. If we assume that the coherence factor is equal to 1, we know that \(f(0) = 1 \) and at \(t = 0 \) relation (4.1) reduces to:

\[
\left[g_{t}^{(2)}(0) - 1 \right] \langle I(t) \rangle_{t}^{2} = -I_{f}^{2} + 2\langle I(t) \rangle I_{f}
\]

(5)

\(f(\infty) \) can be eliminated from Equation 1 leading to:

\[
g_{t}^{(2)}(t) - g_{t}^{(2)}(0) = Y^{2} \left[f^{2}(t) - 1 \right] + 2Y(I - Y)\left[f(t) - 1 \right]
\]

(6)

Equation (6) can be solved with respect to \(f(t) \):

\[
f(t) = 1 - \frac{1}{Y} \left\{ 1 - \sqrt{g_{t}^{2}(t) - g_{t}^{2}(0) + 1} \right\}
\]

(7)

This relation was derived independently for the first time in [12].

In conclusion, the extension to DWS of the Pusey and van Megen algorithm initially derived for DLS provides two efficient methods to study nonergodic colloidal glasses using single detection mode. The first method consists in measuring the ensemble average intensity \(\langle I \rangle_{e} \), the time average intensity \(\langle I \rangle \), and the time average correlation function over a collection of independent speckles by translating the sample in front of the detector. The fluctuating component of the scattered intensity \(I_{f} \) is computed from (5), the nonergodicity parameters \(f(\infty) \) follows from (4.3). The ensemble average correlation function is then obtained from a single time average function by solving (4.1). The second method requires the measurement of \(\langle I \rangle_{e} \) and only one time average correlation function at one particular location of the detector. Although the two methods are equivalent, the second one appears at first sight to be much cleverer since it requires only one time average correlation function. However, the first method provides an unambiguous proof of the validity of the treatment and avoids experimental bias and artefacts. In the following we used the two methods in parallel.
and we checked accurately that they both give the same nonergodicity parameter within a 1% accuracy.

3.2 Microrheology

The DWS formalism provides analytical expressions of the electric field correlation function in terms of the mean-square displacements (MSD) of the tracer beads, \(<\Delta r^2(t)> \). The correlation function involves an integral over the path length distribution \(P(s) \):

\[
f(t) = \int_0^\infty P(s) \exp \left[-\frac{1}{3} k_0^2 \left< \Delta r^2(t) \right> \right] s^{\ell^*} ds
\]

where \(s \) is length of a path, \(k_0 \) is the wavevector of the incident light and \(\ell^* \) is the transport mean-free path, i.e. the length over which the direction of light propagation becomes uncorrelated with the incident beam. This expression can be integrated using the appropriate path length distribution, which depends on the geometry. For transmission geometry and uniform illumination[54]:

\[
f(t) = \frac{\sinh(\sqrt{X}) + \frac{2}{3} \sqrt{X} \cosh(\sqrt{X})}{\left(1 + \frac{4}{9} \sqrt{X}\right) \sinh\left(\frac{L}{\ell^*} \sqrt{X}\right) + \frac{4}{3} \sqrt{X} \cosh\left(\frac{L}{\ell^*} \sqrt{X}\right)}
\]

\[
X = k_0^2 <\Delta r^2(t)>
\]

where \(L \) is the sample thickness and \(k_0 \) and \(\ell^* \) have already been defined. For an unknown sample, \(\ell^* \) can be measured by comparing the intensities of light that are scattered respectively by the sample and a reference polystyrene bead solution[55][56]. The validity of expression (9) is limited to isotropic multiple scattering with the requirement that \(L > \ell^* \). In the following, we calculate the MSD of the tracers by numerically inverting the field correlation function \(f(t) \) using expression (1). This provides valuable information about the local dynamics in the studied medium.
The MSD variations can be used to obtain the frequency dependence of the storage and loss moduli using the method introduced by Mason and Weitz\cite{57}. It consists in solving a generalized Stokes Einstein relation that assumes that the stress response follows the relaxations that determines the local dynamics of the tracers. This requires that the medium is incompressible and that inertia is negligible\cite{58}. Various techniques have been implemented to extract the viscoelastic moduli from the MSD\cite{57,59,60,61,62}. In this work, we have followed the algorithm presented in\cite{61}, which has the advantage of estimating the moduli algebraically.

$\langle \Delta r^2(t) \rangle$ is expanded locally around the frequency of interest using a power law. The exponent $\alpha(\omega)$ is the logarithmic derivative $\langle \Delta r^2(t) \rangle (t = 1/\omega)$:

$$\alpha(\omega) = \frac{d \ln \langle \Delta r^2(t) \rangle}{d \ln(t)} \bigg|_{t=1/\omega}$$

We then calculate the complex modulus:

$$|G(\omega)| = \frac{k_B T}{\pi R \langle \Delta r^2(1/\omega) \rangle \Gamma(1+\alpha(\omega))}$$

where k_B is the Boltzmann constant, T the temperature, R the particle radius, and Γ the gamma function. The expressions of the storage modulus G' and of the loss modulus G'' are:

$$G'(\omega) = |G(\omega)| \sin \left(\frac{\pi \alpha(\omega)}{2} \right)$$

$$G''(\omega) = |G(\omega)| \cos \left(\frac{\pi \alpha(\omega)}{2} \right)$$

For a purely elastic medium, $\langle \Delta r^2(t) \rangle$ is constant, $\alpha(\omega)$ is zero and G' dominates as expected. On the opposite for a purely viscous materials, $\langle \Delta r^2(t) \rangle$ varies linearly with t, $\alpha(\omega)$ is equal to 1 and G'' dominates.
In conclusion, the key point to determine the frequency dependence of the viscoelastic moduli from $<\Delta r^2(t)>$ is to compute the logarithmic derivative (9).

4 High frequency rheology of microgel glasses.

4.1 Results

Ensemble-average correlation functions

The ensemble average field correlation functions of a series of microgel suspensions have been determined as explained in Section 3.1. Figure V–2 details the different steps of the procedure. Figure V–2.a shows the variations of the time average intensity $<I(t)>_t$ over 500 independent speckles and the ensemble average intensity $<I>_e$ calculated from the average of $<I(t)>_t$. The general assumptions of the treatment are tested in Figure V–2.b where we plot the variations of $[g_{\tau}^{(2)}(0) - 1] <I(t)>_t^2$ against $<I>_e^2$ for the same collection of speckles as in Figure V–2.a. The data can be fitted to a linear relationship as predicted by equation (5). The values of the fluctuating intensities I_f determined from the slope and the intercept with the horizontal axis of the best fitting line are the same within a ±1% relative accuracy. This validates the applicability of the method to our microgel glasses. Figure V–2.c shows the time-average intensity correlation function which is measured at one particular location of the detector. After treatment using relations (4) on one hand and relation (7) on the other hand, we obtain the ensemble-average correlation functions shown in Figure V–2.d. Both methods are in very good agreement, which validates our technique.
Figure V–2: a) Time average intensity measured in a collection of independent speckles when the scattering samples is translated in front of the optical fibre; the ensemble average intensity is represented by the straight line $\langle I \rangle_e = 2.83 \times 10^5$ counts/s. b) Determination of the ensemble average fluctuating part of the intensity, I_f, using relation (5); the straight line is the best fit to the data. I_f can be determined independently from the slope ($I_f \approx 2.02 \times 10^5$ counts/s) and the intercept with the horizontal axis ($I_f \approx 2.01 \times 10^5$ counts/s). c) Intensity average correlation function measured for one particular speckle. d) Ensemble average correlation function obtained from relations 4.1, 4.2 and 4.3 (solid lines) and (7) (open circles). The data are for a concentration suspension of microgels ($N_x = 128$; $C = 0.02$ g/g).

We have used this method to measure the ensemble-averaged correlation functions $f(t)$ of microgel glasses with different concentrations ranging from $C = 0.016$ g/g to $C = 0.03$ g/g. The results are shown in Figure V–3. At long time, the correlation functions tend to a nearly constant plateau which expresses the non-ergodic character of the suspensions over the experimental time window investigated. At short times, the correlation functions exhibit an initial decay which is associated with local relaxation phenomena.
PARTIE I:
Microscopic dynamics of a soft colloidal glass

Figure V–3: Ensemble average field correlation functions of microgel glasses. For bottom to top: C = 0.016, 0.018, 0.02 and 0.03 g/g.

Mean-square displacements

These correlation functions have been converted to the mean-square displacements plotted in Figure V–4 using relation (9). These data illustrate the high sensitivity of the DWS technique that can detect local displacements as small as 1 nm at Brownian time scales as small as 10^{-8} s. At short times the mean-square displacements increase with time while at longer time they reach nearly constant values due to the arrest of the dynamics. The motion of the tracers at short times is subdiffusive indicating nontrivial viscoelastic behaviour. The long time plateaus reflect the elastic response of the materials. Figure V–4 shows that the mean-square displacements depend essentially on two parameters: the total polymer concentration and the viscosity of the continuous phase. The height of the plateau which depends on the
polymer concentration decreases when the latter increases while the curves translate along the horizontal axis when the viscosity is varied.

\[\langle \Delta r^2(t) \rangle = \delta^2 \left(1 - \exp \left[-\left(\frac{t}{\tau_\beta} \right)^\beta \right] \right), \quad (13) \]

where \(\delta \) quantifies the maximum excursion of the tracers at the long time plateau, \(\tau_\beta \) is a characteristic time which marks the crossover between the short and long times regimes and \(\beta \) is an exponent. The fitting procedure works well for all the suspensions investigated allowing us to determine \(\beta, \tau_\beta \) and \(\delta \) for many different experimental conditions. The
PARTIE I: Microscopic dynamics of a soft colloidal glass

exponent β is smaller than 1. It decreases with increasing concentration (for $N_x = 140$, $\beta = 0.75$ for $C = 1.1C_m$ and $\beta = 0.45$ for $C = 3C_m$). This shows that the short time dynamics associated with local displacements of subdiffusive, even at very short times, and that it is related to the degree of compactness of the glasses. The displacement at the plateau, δ, represents the maximum excursion of the probe particles in their environment. Interestingly, δ represents only a small fraction of the particle size. As C increases, δ becomes smaller, reflecting more and more restricted motion. The parameter τ_β is the time scale associated with local relaxation. It mainly depends on the plateau modulus G_0 and the solvent viscosity η_s, which are known independently from conventional macroscopic rheology.

Figure V–5: Scaling of the relaxation time τ_β for $N_x = 140$ (circles) and $N_x = 28$ (squares). Open and filled symbols refer to samples prepared in water ($\eta_s = 1$ mPas). Open and filled symbols refer to samples prepared with water and water/glycerol mixtures respectively ($\eta_s = 7.5$ mPas; $\eta_s = 11$ mPas).
In Figure V–5, we plot the variations of τ_β as a function of η_s/G_0 when the polymer concentration, the solvent viscosity, and the cross-link density are varied. Clearly τ_β is proportional to η_s/G_0 through a coefficient, which depends slightly on the cross-link density, thus providing a generic description of the local dynamics of microgel glasses.

Viscoelastic moduli

The generalized Stokes-Einstein equations have been used to extract the elastic and viscous moduli from the mean-square displacements represented in Figure V–4. The noisy regions of the mean-square displacements data at very short times have not been included. We also paid attention not to include long time data that would have been within the uncertainty of the base line of the correlation function. This limits the variations of $G'(\omega)$ and $G''(\omega)$ to a range of frequencies between 10^{-7} rad/s and 1 rad/s. The microrheological measurements obtained from DWS are plotted in Figure V–6 and compared to bulk rheology measurements. We present data obtained for microgels with two different crosslink densities ($N_x = 140$ in Figure V–6a and Figure V–6b, $N_x = 28$ in Figure V–6c and Figure V–6d), different concentrations and different solvent viscosities. The variations of $G'(\omega)$ and $G''(\omega)$ for these different samples all show the same trends. First we observe that the microrheology and bulk rheology data are in good agreement in the range of angular frequencies where they overlap ($10^{-2} < \omega < 10$ rad/s). This definitely excludes the presence of experimental artefacts associated with uncontrolled interactions between the tracer beads and the microgel particles.[43]. It also suggests that the tracers experience uniform local environments throughout the suspension contrary to what has been reported in previous studies.[50]. At low frequencies the behaviour of the microgel glasses is essentially elastic as revealed by the presence of an elastic plateau in $G'(\omega)$ and a much lower loss modulus G'' below 10^{-3} rad/s. At high frequencies there are two interesting features. First the loss modulus follows a robust
\(\omega^{1/2} \) dependence over about 4-5 decades of frequencies. Secondly while the storage and loss moduli cross at some frequency, the storage modulus remain comparable to the loss modulus instead of levelling off as observed in other studies. Most importantly our results exemplify the strength of the technique which probes nearly 9 decades in frequency which is considerably larger than the frequency range accessible by conventional mechanical techniques.

Figure V–6 : Viscoelastic moduli extracted from the mean-square displacements data shown in Figure 4 (----: \(G'(\omega) \); -----: \(G''(\omega) \)) and measured using conventional rheology (symbols).
4.2 Interpretation

To understand the results presented in the previous section, we offer the following microscopic interpretation based on the cage concept which was originally proposed to describe the dynamics of hard sphere glasses\(^{63}\). It considers that in a glass, each particle is constrained in a cage formed by a small number of neighbours, which restrict and eventually arrest macroscopic motion. At short times, particles execute thermally activated in-cage motion, a process which is termed \(\beta\)-relaxation. The same picture applies to the highly concentrated microgel suspensions studied here except that the individual particles are now deformed at contact. They adapt their shape to the steric constraints by forming flat facets at contact through which they exert repulsive forces of elastic origin\(^{1}\). We further assume that the probe particles, which are used at low fraction, do not alter the overall properties of the suspensions and reflect the local properties experienced by the microgels\(^{64}\). We also consider that at large crosslink density and high frequencies the polymer and the solvent inside the microgels are coupled so that the local displacements reflect pure shear motion. The in-cage motion of the tracers at short times results from the action of three forces: the Brownian stochastic forces, the net elastic forces exerted by the cage and the frictional forces that the particles exert on one another as they move from their equilibrium position. A probe particle of radius \(R\) which moves over a distance \(\delta\), deforms elastically its cage, creating elastic forces which push it back inside the cage. The value of \(\delta\) is set by the condition that at maximum excursion the thermal energy balances the accumulated elastic energy, i.e. \(G_0\delta R = kT\), where \(G_0\) is the local cage elasticity which has been found equal to the bulk storage modulus (Figure V–4). This constitutes a simple and straightforward method to measure the elasticity of highly concentrated suspensions made of soft particles\(^{42}\)\(^{65}\).

We can go further and propose a microscopic interpretation for the characteristic time \(\tau_\beta\) involved in equation (13). This quantity represents the \(\beta\)-relaxation time of the particles.
inside their cage. In our description, τ_β is controlled by two antagonist forces: the elastic restoring force which is proportional to G_0 and the viscous drag due to the flow of solvent in the films which lubricate the contacts between the particle and its neighbours. The resulting motion between the interlocked particles is well described in the general framework provided by the elastohydrodynamic model. This model which was initially proposed to explain the sliding motion of soft particles against a solid wall predicts that the shear stress varies as

$$\tau = \frac{2}{\eta S} \left(\frac{\dot{\gamma}}{G_0} \right)^{1/2}$$

where $\dot{\gamma}$ is the macroscopic effective shear rate. Substituting $\dot{\gamma}$ by ω, we predict that the viscoelastic moduli must vary as $\left(\eta S \omega / G_0 \right)^{1/2}$. With this approach we recover two essential features of the short time dynamics of soft glasses, i.e the role played by $\eta S / G_0$ as the key variable that controls the β–relaxation processes, and the square-root variation of the loss modulus at high-frequencies. This provides a generic description of the viscoelastic moduli of microgel glasses by scaling the moduli by the plateau modulus G_0 and the frequency by the β–relaxation time τ_β. Figure V–7 shows that this set of variables collapse the viscoelastic moduli of microgel glasses when the crosslink density, the concentration and the solvent viscosities are systematically varied.
Figure V–7: Normalized storage (full symbols) and loss (open symbols) moduli extracted from the mean-square displacements data shown in Figure 4 plotted against the scaled frequency; circles and squares: \(N_x = 28, C = 0.06\, g/g, \eta_s = 7.5 \, m\text{Pas} \) and \(1 \, m\text{Pas} \) respectively; diamonds: \(N_x = 140, C = 0.02\, g/g, \eta_s = 1 \, m\text{Pas} \); triangles: \(N_x = 140, C = 0.03\, g/g, \eta_s = 1 \, m\text{Pas} \).

We can go further and propose a microscopic interpretation for the characteristic time \(\tau_\beta \) involved in equation (1). This quantity represents the \(\beta \)-relaxation time of the particles inside their cage. In our description, \(\tau_\beta \) is controlled by two antagonist forces: the elastic restoring force which is proportional to \(G_0 \) and the viscous drag due to the flow of solvent in the films which lubricate the contacts between the particle and its neighbours. The resulting motion between the interlocked particles is well described in the general framework provided by the elastohydrodynamic model. This model which was initially proposed to explain the sliding motion of soft particles against a solid wall predicts that the shear stress varies as
\[(\eta_s \dot{\gamma} / G_0)^{1/2}\] where \(\dot{\gamma}\) is the macroscopic effective shear rate. Substituting \(\dot{\gamma}\) by \(\omega\), we predict that the viscoelastic moduli must vary as \((\eta_s \omega / G_0)^{1/2}\).

5 Slow dynamics and aging of microgels glasses

5.1 Results and data analysis

We have used CCD camera detection associated with multispeckle analysis to probe the slow dynamics of microgel glasses over long times after pre-shearing. Figure V–8 shows the evolution of the ensemble averaged correlation functions \(f(t, t_w)\) for a set of waiting times spanning the interval \(1 \to 10^4\) seconds.

\[\text{Figure V–8: Time evolution of the intensity correlation functions measured for different waiting times in DWS experiments for a microgel glass (C = 0.02 g/g; N_x = 140). From right to left: t_w = 3.4, 7.8, 21, 60, 182, 1415, 1474, 6039, and 10347 s. The fill lines are the best fits to the theoretical expression of the correlation function.}\]
The correlation functions are characterized by a long time relaxation which shifts to longer time scales as the waiting times are increased. In Figure V–9, these correlations functions are converted to mean-square displacements using the theoretical expression (9). The MSDs exhibit a constant plateau at short times followed by a power-law increase at long times. These curves show clearly the evolution of the MSD with the waiting time \(t_W \). With increasing \(t_W \), the transition from the short time plateau to the long time behavior of the MSD takes place at longer times while the value of the plateau decreases. These two features can be used to characterize the aging properties of microgel glasses.

![Figure V–9: Variations of the mean square displacements extracted from the correlation functions shown in Figure 8. From right to left: \(t_W = 3.4, 7.8, 21, 60, 182, 1415, 1474, 6039, \) and 10347 s. The inset shows the time evolution of the storage modulus measured from the short-time plateau value of the mean-square displacements (+) and macroscopic shear rheology for the same preshear history.](image)

We have used the value of the plateau to extract the variations of the low-frequency storage modulus \(G_0 \) with \(t_W \) as explained in section III.B. The results are plotted in the inset of Figure V–9 together with the variations of the storage modulus measured using conventional
PARTIE I: Microscopic dynamics of a soft colloidal glass

macroscopic rheology. Both sets of data are in good agreement supporting the idea that aging proceeds homogeneously through the sample. Moreover we observe that the storage modulus increases logarithmically with the waiting time.

The increase of the MSDs at long times follows a non-trivial behavior which is difficult to characterize accurately and to interpret directly from the experimental curves shown in Figure V–9. To circumvent this difficult we go back to the correlation functions presented in Figure V–8. We consider that the long time relaxation results from the accumulation of phase shifts induced by local motion as the light is multiply scattered within the glass. Again we describe the propagation of a photon as a path comprising many steps of length ℓ^*. We consider that the contribution to the decay of $f(t)$ from a single step is an exponential term of the form $f(t) \propto \exp\left[-(t/\tau_\alpha)^\alpha\right]$ where τ_α an average relaxation time and $\alpha>1$ an exponent. This compressed exponential form generalizes the classical exponential form when there is a wide distribution of relaxation times\[66\]. For a path of length s, comprising s/ℓ^*, the correlation function decays as: $f(t) \propto \{\exp\left[-(t/\tau_\alpha)^\alpha\right]\}^{s/\ell^*}$. Assuming that the microscopic mechanisms at the origin of the relaxation do not depend on the path, we can express the correlation function $f(t)$ as an integral over the path length distribution $P(s)$:

$$f(t) = \int_0^\infty P(s)\left\{\exp\left[-(t/\tau_\alpha)^\alpha\right]\right\}^{s/\ell^*} ds$$

(14)

This expression is formally equivalent to expression (8) above except for the form of the phase term in the integral. Finally after integration we get a relation similar to (9) with $X = 3(t/\tau_\alpha)^\alpha$. We have fitted the experimental data using this relation to determine the relaxation time τ_α and the exponent α. The results are plotted against the waiting time t_w in Figure V–10. The relaxation time τ_α increases with t_w; the variation is linear up to $t_w = 10^3$ s but there is a slight curvature at longer times although there is no clear evidence of dynamical
PARTIE I: Microscopic dynamics of a soft colloidal glass

arrest. The time evolution of the exponent α is shown in the inset of Figure V–10. We note that β remains remarkably constant and equal to 1.5 over the whole range of waiting times investigated.

![Figure V–10: Evolution of the relaxation time τ_α with the time elapsed after the end of preshearing. The inset shows the exponent of the compressed exponential used to describe the experimental correlation functions in Figure 8.](image)

5.2 Discussion and interpretation

The results highlighted in Figure V–9 and Figure V–10, i.e. the compressed exponential shape of the correlation function at long times, the value $\alpha = 3/2$ of the compression exponent and the nearly linear increase of τ_α with the waiting time, have been found in many other different soft glassy materials probed by light and X-ray scattering techniques or DWS, including onion gels$^{[32][33]}$, silica gels$^{[36][66]}$. This behaviour is often interpreted in terms of ultraslow ballistic relaxation driven by the internal stress stored inside
the material[38]. This motion can be rationalized by generalizing the qualitative argument presented in section III.B and previously detailed in[42]. We consider that the preshear which is applied to rejuvenate the glass into a reproducible mechanical initial state creates internal stresses which slowly relax due to the jammed disordered structure of the glass. During relaxation, regions of characteristic size D move under the combined action of the driving elastic force and the elastohydrodynamic drag force associated with viscous flow in the films of solvent lubricating the particles. They follow straight ballistic trajectories with a distribution of local velocities leading to the compressed exponential shape line observed at long times. To test this idea we have reinterpreted the data shown in Figure V–10 in terms of this so-called ballistic relaxation. This is achieved by making the average ballistic velocity V_0 equal to $1/k\tau_\alpha$. The full derivation is presented in[36]. We then plot in Figure V–11 the variations of the characteristic velocity with the waiting time. The velocity decreases with time roughly as $V_0 \sim 1/t_{\alpha}$.

Although quite appealing, this picture raises several issues. First our analysis does not prove anything about the very nature of the microscopic relaxation. Second there are few direct space investigations in the literature that support the existence of ballistic motion. The latter has never been observed directly except in the pioneering work of Mazoyer \textit{et al} for onions glasses[39]. We thus decided to replace the scattering particles used for DWS by fluorescent probe particles (1 μm in diameter) which can be observed directly using fluorescence microscopy. Interestingly, after preshear the particles follow linear trajectories which can be assimilated to the ballistic displacements postulated in our model. From the displacements of the particles we were also able to measure the velocity V_0 as a function of the time elapsed after preshearing. The results are compared in Figure V–11 with the data obtained from DWS. The agreement between the two sets of data is quite good given the assumptions involved in the interpretation and the experimental uncertainties.
To go further we decided to determine the velocity from macroscopic rheology in cone and plate geometry by following the elastic recovery after flow cessation. From the angular velocity of the rotating cone, we deduce directly the local velocity at a radius R equal to the radius of observation in the DWS and fluorescence microscopy experiments. This velocity is successfully compared in Figure V–11 with the velocities deduced from DWS and microscopy.

In conclusion, the elastic recovery of microgel glasses after flow cessation which has been shown to exhibit the characteristic features of aging, corresponds at the microscopic level to a slowly decaying ballistic motion driven by the elastic stress stored inside the material during rejuvenation.
6 References

[45] F. Monti, theèse Université Paris VI.
[46] IDL Software from ITT; www.itvis.com
PARTIE II:
Microrhéologie par microscopie à fluorescence
Chapitre VI

Dispositif de microrhéologie par suivi de particules

Ce chapitre présente la technique de rhéologie par suivi de particules ainsi que le montage expérimental que nous avons développé. Le principe de cette technique consiste à suivre au cours du temps le mouvement de sondes colloïdales fluorescentes diluées dans le matériau à étudier afin de déterminer leurs déplacements et leurs trajectoires. L’analyse des données permet de mesurer le coefficient de diffusion de ces particules ou encore leur vitesse de déplacement à différentes positions dans un matériau en écoulement. Cette technique ouvre la possibilité de reconstruire des profils de vitesse, d’étudier les phénomènes de vieillissement d’échantillon ayant subit une forte contrainte ou encore les phénomènes de glissement à la paroi.

Nous détaillerons le montage expérimental qui comprend un microscope épifluorescent, une platine de cisaillement commerciale, un système d’acquisition d’image et un système d’analyse de données. L’acquisition et l’analyse d’image ont fait l’objet d’un travail de développement informatique en langage IDL pour créer des interfaces « presse-bouton » permettant de gérer l’ensemble des paramètres sans que l’utilisateur n’intervienne dans le code source. Ces interfaces ont été utilisées par les différents expérimentateurs qui ont mis à profit ce dispositif expérimental pour étudier la déformation de matériaux sous cisaillement.
1 Présentation du dispositif expérimental.

1.1 Le système microscopique

Nous utilisons un microscope Zeiss Axiovert, équipé d’une lampe à vapeur de mercure (HBO), configuré pour des observations en épifluorescence (cf. Figure VI–1). Ce mode de fonctionnement consiste à illuminer un échantillon avec une lumière dont la bande de longueur d’onde est étroite et à observer la fluorescence émise par l’échantillon. Dans ce montage, un filtre optique permet de sélectionner une bande de longueur d’onde de 30 nm de largeur centrée autour de 500 nm, correspondant à la longueur d’onde d’excitation. Le faisceau est envoyé sur l’échantillon par un miroir dichroïque, présentant un coefficient de réflexion élevé dans cette gamme de longueurs d’onde. Les marqueurs contenus dans l’échantillon émettent un rayonnement de fluorescence dont la longueur d’onde est supérieure à celle de la lumière.

Figure VI–1 : Schéma de principe d’un microscope fonctionnant en épifluorescence. Une bande de longueur d’onde étroite est focalisée sur l’échantillon qui émet un rayonnement de fluorescence. Les deux bandes excitation et d’émission sont séparées par un miroir dichroïque. Le miroir dichroïque a la caractéristique d’être très réfléchissant pour les longueurs d’excitation (ici $\lambda < 515\text{nm}$) et d’être transparent pour les longueurs d’onde du rayonnement de fluorescence (ici $\lambda > 520\text{nm}$). Dans notre montage, les observations sont réalisées à l’aide d’une caméra CCD.
d’excitation. Le rayonnement émis traverse l’objectif et le miroir dichroïque (transparent à cette longueur d’onde) avant d’illuminer la caméra CCD. Un dernier filtre optique est placé juste avant la caméra permet de renforcer le contraste en supprimant la lumière parasite. L’objectif, d’un grossissement de 50X et d’une ouverture numérique de 0,60, présente une résolution de 0,5 µm dans un plan perpendiculaire à l’axe optique et de 1,4 µm selon cet axe. Sa distance de travail de 3 mm autorise une grande flexibilité quant à l’épaisseur des échantillons étudiés.

1.2 La platine de cisaillement.

Le cisaillement des échantillons est réalisé à l'aide d'une platine commercialisée par la société Linkam (CSS450 ; cf. Figure VI–2) qui fonctionne en géométrie plan-plan. Deux modes de contrôles sont disponibles, le pilotage de la déformation ou de la vitesse de rotation. C’est dans ce dernier mode que nous travaillerons principalement. Cette platine est entièrement pilotée par un logiciel dédié. Nous décrivons ici ses grandes caractéristiques et ainsi que les conditions optimales d’utilisation.

1.2.a Caractéristiques techniques.

La rotation du rotor, ajustable entre 0,001 et 10 rd.s⁻¹, est assurée par un moteur pas à pas. L’entrefer entre le stator et le rotor est piloté par un second moteur pas à pas avec une résolution de 1 µm pour un entrefer compris entre 300 et 2500 µm.
Figure VI–2 : Schéma de principe de la platine Linkam CSS450. La fenêtre du stator a été remplacée par une lamelle de microscope et un support en inox permettant d’augmenter la qualité des images et d’avoir une grande flexibilité sur le contrôle de cette surface.

Cette cellule de cisaillement est conçue pour se fixer à la place de la platine d’observation du microscope. Dans cette configuration, la position de la platine selon un plan XY est fixée par construction. Seul le déplacement selon l’axe optique pour ajuster la mise au point est autorisé. La zone d’observation de l’objectif est fixe et se situe sur un rayon \(R = 7,5 \text{ mm} \) par rapport à l’axe de rotation de la platine. Le cisaillement vaut alors :

\[
\gamma = \frac{\Omega R}{e}
\]

Où \(\Omega \) représente la vitesse de rotation (rd.s\(^{-1}\)), \(R \) le rayon sur lequel s’effectue la mesure et \(e \) représente la valeur de l’entrefer.
La gamme de gradient s’étend de 3×10^{-3} et 250 s$^{-1}$ calculée respectivement avec l’entrefer le plus petit et la vitesse la plus rapide pour le maxima et l’entrefer le plus large et la vitesse la plus lente pour le minima.

La plupart de nos observations sont effectuées pour un entrefer de 0,75 mm fixant la plage de cisaillement entre 10^{-2} et 100 s$^{-1}$.

1.2.b Optimisation des fenêtres d’observation

Les plans inférieur (rotor) et supérieur (stator) de cette cellule sont des disques de quartz de, respectivement, 32 et 28 mm de diamètre et de 1 mm d’épaisseur.

Pour obtenir des images de bonne qualité, le plan supérieur d’origine est remplacé par une lamelle de verre de 150 µm et de 25 mm de diamètre, collée sur une bague en inox remplaçant parfaitement le plan d’origine. La lamelle est fixée sur un épaulement de telle sorte qu’il n’existe pas de différence de hauteur entre la lamelle collée et son support. La colle utilisée dans ce montage est de la NOA 81, qui est une colle à très faible viscosité et réticulable sous UV. Elle se dissout facilement dans l’acétone permettant un remplacement aisé de la lamelle.

L’intérêt de ce dispositif par rapport au montage initial du constructeur est de permettre l’utilisation de surfaces dont les propriétés physico-chimiques sont parfaitement contrôlées et l'amélioration de la qualité des observations.

1.2.c Parallélisme des fenêtres.

Le parallélisme entre les plans constituant le rotor et le stator est nécessaire pour supprimer les écoulements secondaires. Par construction, les deux plans en quartz sont parallèles à une dizaine de microns près sur un tour mais après le remplacement de la fenêtre
du stator par une lamelle collée, l’erreur sur le parallélisme peut-être de l’ordre de 30 à 50 µm.

Le contrôle et l’ajustement du parallélisme de ces deux surfaces s’effectue en trois étapes : le réglage du rotor puis du stator et enfin une étape de contrôle optique in situ. Pour toutes les étapes de mesure nous utiliserons un comparateur numérique de la marque Mitutoyo dont l’incertitude est de 1 µm.

1.2.d Le réglage du rotor

Les défauts du rotor sont mis en évidence en appliquant la pointe du comparateur préalablement fixé sur un support de référence, sur le rotor en mouvement à vitesse moyenne, typiquement 0,5 rd.s⁻¹.

Le comparateur permet de mettre en évidence des variations relatives de hauteur. La pointe est placée sur le diamètre le plus large pour avoir la meilleure sensibilité. Les cales de 5 µm sont placées aux points les plus bas jusqu’à obtenir une variation inférieure à 5 µm.

Dans ces conditions, la variation de hauteur de deux points diamétralement opposés est au maximum de 5 µm. Le diamètre du stator étant de 22 mm, il est possible d’estimer le défaut : $\Delta z_{\text{rotor}} = \frac{5 \times 10^{-6}}{22 \times 10^{-3}} = 0,227 \ mrad$. La zone d’observation est fixée sur le rayon situé à 7,5 mm du centre de rotation, la variation d’altitude dans cette zone est de 1,70 µm.

1.2.e Le réglage du stator

Le protocole de contrôle des défauts du stator est légèrement différent: le stator est posé sur une surface de
référence (table optique, plan en marbre…), la pointe du comparateur est appliquée sur la fenêtre pendant que le stator est déplacé linéairement. Le déplacement met en évidence l'amplitude et la position des défauts de collage. Les vis de réglages sont ajustées afin d'obtenir une variation inférieure à 5 µm pour un déplacement entre deux points diamétralement opposés.

Le défaut de parallélisme du stator n’affecte pas la variation de l’entrefer au cours d’une mesure comme le montre la Figure VI–3.

\[\Delta e = 1,70 \text{ µm durant la rotation du rotor.} \]

Figure VI–3: Estimation du défaut de parallélisme dans la zone d'observation. L'entrefer vaut \(e \pm \Delta e \), avec \(\Delta e = 1,70 \text{ µm} \) durant la rotation du rotor.

1.2.f Contrôle du parallélisme

L’étape de contrôle la plus efficace consiste à observer des traceurs fluorescents fixés sur la surface du rotor et de contrôler qu’ils restent dans le plan de mise au point sur toute la rotation. Pour cela nous déposons une goutte de suspension de particules fluorescentes sur la surface du stator. Après une dizaine de minute, toute l’eau s’est évaporée et les billes se retrouvent collées à la surface du rotor. Nous faisons la mise au point sur ce plan particulier et le rotor est mis en rotation à vitesse moyenne, 0,5 rd.s\(^{-1}\) et l’image des traceurs reste nette durant toute la révolution du rotor.
1.2.g **Le contrôle en position**

La détermination de la position relative de trois plans de référence est nécessaire, ces plans sont : l’interface lamelle air (A), l’interface lamelle échantillon (B) et le plan du rotor (C). Pour repérer tous ces plans, la procédure utilisée est identique à la précédente et consiste à déposer une goutte d’un mélange eau/traceurs sur ces trois faces pour visualiser leur position.

![Diagram](image)

Ensuite le protocole est le suivant: nous visualisons l’image de l’interface lamelle/air (A) sur la caméra. Le détecteur de position est posé délicatement sur la surface de la platine et mis à 0. Le plan de mise au point est modifié en déplaçant la platine vers le haut, nous observons un second plan image (B), c’est la position de l’interface entre la lamelle et l’intérieur de la cellule. La distance séparant ces deux plans optique est de 95 µm. Cette valeur correspond à l’épaisseur mécanique de la lamelle, 150 µm, divisée par son indice optique, $n_{verre} = 1.55$. Le calcul exact donne 96.77 µm. La différence avec la valeur expérimentale peut avoir trois explications :

- la mesure mécanique s’effectue grâce à un palmer dont la précision est de 1 µm
- l’indice optique de la lamelle n’est connu qu’à 10^{-2} près
- la position des traceurs est décalée de 1 µm par rapport à la position réelle de la surface. Le maxima d’intensité représente en réalité le plan passant par les diamètres et non celui tangent aux particules.
Le détecteur de position est fixé à 0, ce plan sera l’origine considéré pour la détermination des profils de vitesse. Dans tout les cas, la résolution du capteur de position ne permet pas de faire la correction mieux que de 0.5 µm.

En déplaçant encore la platine vers le haut, nous observons un nouveau plan image (C) représentant la position du rotor. La différence entre les positions B et C donne la valeur réelle du gap.

1.2.h La correction de position

Le paragraphe précédent nous a enseigné comme définir la position mécanique des différentes interfaces. L’interface lamelle/échantillon est souvent considéré comme le plan de référence pour les différentes mesures, mais toutes les interfaces détaillées précédemment peuvent être utilisées et doivent donner les mêmes résultats après normalisation.

En considérant l’interface échantillon/lamelle comme le point de référence, nous pouvons visualiser les traceurs au cours du cisaillement dans les différents plans optique. La position mécanique est mesurée par un comparateur posé sur la platine de cisaillement et qui mesure en permanence la position de la platine selon l’axe optique. Cette position est un Δz mécanique mais ne correspond pas à la position réelle des traceurs dans l’échantillon. La position du plan d’observation est noté $z = \Delta z/n_{ech}$ où n_{ech} est l’indice optique de l’échantillon. Les pâtes de microgels sont constitués de moins de 2% de polymère et de 98% d’eau, l’indice retenu est celui de l’eau à la température de 25°C soit $n = 1,333$.

1.2.i Contrôle de la vitesse.

Avant l'utilisation de la platine Likam dans le cadre d’une expérience, nous avons caractérisé la stabilité de la vitesse de rotation par analyse d’image. Nous collons sur le rotor des pastilles de 1 mm de diamètre que nous imageons à l’aide d’une caméra CCD et d’un objectif photo.
Figure VI–4 : À gauche image des particules de 1mm placées sur le rotor, À droite trajectoires reconstruites de ces particules en déplacement.

L’image obtenue représente environ ¼ de la surface du rotor. Le rotor est mis en mouvement à différentes vitesses, les images sont enregistrées à 60 im/sec puis analysées par les procédures décrites dans les paragraphes suivants. Cette analyse d’image nous permet de reconstruire les différentes trajectoires des pastilles en incluant leur vitesse moyenne.

Les résultats obtenus montrent qu’aux vitesses supérieures à 0,01 rd/sec la vitesse mesurée est conforme à la consigne.

Figure VI–5 : Graphique présentant la vitesse de particule mesurée en fonction de la vitesse de rotation du rotor.

- 156 -
En dessous, la vitesse moyenne reste conforme à la consigne mais il est possible d’observer les sauts générés par le moteur pas à pas et résolu par le sur-échantillonnage vidéo. Les mesures effectuées dans cette gamme de vitesse devront être moyennées sur plusieurs minutes pour être représentatives.

2 Système d’acquisition d’images

Nous décrivons ici la solution retenue pour réaliser l’acquisition des images et les moyens d’optimisation mis en place.

2.1 Caméra et logiciel d’acquisition.

Nous avons choisi de développer un logiciel propre à cette expérience car aucune solution commerciale ne répondait à nos besoins. Cette interface informatique a entièrement été écrite à l’aide d’IDL. Quelques librairies codées en C gèrent la communication entre la carte d’acquisition et l’affichage dans l’interface. La version finale de cette interface est présentée dans la figure suivante.
La qualité de l’acquisition facilite énormément l’analyse d’image. C’est pour cela que nous avons inclus un module d’optimisation de contraste au moment de l’acquisition.

Ce module fonctionne sur le principe suivant: les images issues de la caméra sont codées sur 8 bits soit 256 niveaux de gris. Selon la qualité de l’éclairage et la sensibilité de la caméra, seule une partie de ces niveaux est utilisée. Pour utiliser l'ensemble de la dynamique de la caméra et obtenir ainsi des images correctement contrastées, nous allons créer une
nouvelle table de correspondance des intensités lumineuses et répartir l’histogramme des niveaux de gris sur l’ensemble des 256 niveaux. Cette technique est couramment utilisée en traitement vidéo et se trouve souvent sous le nom de « modification de LUT » (Look-Up Table)

L’exemple suivant (cf. Figure VI–7) montre une image brute dont le niveau le plus bas est d’environ 10 et le niveau le plus haut est 200, après une répartition de cet histogramme, l’image est plus contrastée : la différence entre le minimum et le maximum utilise la dynamique entière de la caméra.

<table>
<thead>
<tr>
<th>L'image initiale</th>
<th>L'image corrigée</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure VI–7 : Influence de l’application de la pleine échelle lors de l’acquisition d’image. Le contraste est renforcé dans l’image où l’histogramme des niveaux de gris est correctement étalé.
2.3 Gestion du temps

La gestion du temps de prise de vue est le point crucial qui nous a imposé la création d’une interface « maison ».

Nous avions deux solutions pour réaliser l’acquisition et gérer l’enregistrement de l’instant de la prise de vue :

- Soit le stockage des images est réalisé en mémoire puis transféré vers le disque dur à la fin de la séquence.
- Soit les images sont enregistrées directement sur le disque dur (« direct to disk »).

L’avantage de la première solution est une plus grande maîtrise de la précision des intervalles de temps entre deux images et une cadence de prise de vue élevée 60 im/sec. Le gros inconvénient est que le nombre d’image est limité à la taille de la mémoire (quelques mégas) embarquée sur le PC.

L’avantage de la seconde solution est que le nombre d’image d’une séquence est limité à la place libre sur le disque dur (plusieurs gigas) ; l’inconvénient est que les intervalles de temps entre deux prises d’images peuvent varier légèrement en fonction de la vitesse d’écriture sur le disque dur, réduisant la cadence d’acquisition maximale à 20 im/sec.

Dans l’optique d’étudier des phénomènes pouvant durer plusieurs heures, nous avons choisi d’enregistrer les images sur le disque dur pour la plupart des applications. Nous enregistrerons les instants de la prise de vue à partir d’informations extraits directement du signal émis par la carte d’acquisition (Matrox Meteor II). Pour quelques expériences étudiant le déplacement très rapide de sonde, nous avons gardé la possibilité d’enregistrer des courtes séquences en mémoire avant le transfert sur disque dur. Les différentes analyses utiliseront les informations temporelles enregistrées dans un fichier au format ASCII indépendant des
images. La précision sur le temps de prise de vue est directement fonction de la cadence de la carte d’acquisition. Cette cadence est fixée à 30 MHz.

3 Analyse d’image.

Nous décrivons ici le protocole permettant de construire les trajectoires à partir des images enregistrées. La philosophie de cette application suit celle imposée dans les procédures écrites par E.Weeks. Le suivi de particules se détaillle en trois parties: le filtrage de toute la pile d'image, la détection des particules individuelles dans chaque images et enfin construction des trajectoires à l’aide de critères statistiques.

3.1 Seuillage et filtrage.

La première opération réalise un seuillage des images, permettant d’imposer la valeur 0 aux pixels ayant une valeur inférieure à une consigne. Cette opération n’a aucune influence sur la valeur des pixels représentants les particules, seuls les pixels sombres sont fixés à 0.

Le seuillage peut s'effectuer des deux façons différentes, soit être fixe, soit être dynamique.

![Schéma de principe du seuillage dynamique comparé au seuillage fixe.](image.png)

Le seuillage à une valeur fixe donne de bons résultats sur des séquences d'image où les traceurs sont constamment renouvelés. L'exemple typique est une expérience de détermination de profil de vitesse. La valeur des maxima est pratiquement constante, il est
facile de trouver une valeur de seuillage valable pour toute la séquence vidéo. Pour des séquences où les mêmes particules sont suivies dans un plan pendant plusieurs dizaines de minutes, cas de l’étude du vieillissement, l'intensité de fluorescence va décroitre de façon exponentielle au cours du temps. Une valeur de seuil choisi au début de la séquence se verra rapidement erronée. Pour résoudre ce problème nous avons développé un algorithme de seuillage calculé sur la moyenne des maxima de l'image brute considérée. La valeur de seuil est typiquement 30 à 50% de la moyenne de maxima. Dans ce cas, l’intensité moyenne des maxima décroit au cours du temps, mais le seuil s’ajuste à cette baisse comme le montre la Figure VI–8.

Les coordonnées X/Y des maxima sont extraits de l’image.

La seconde opération consiste à appliquer un filtre passe-bas gaussien permettant de supprimer les hautes fréquences et transformer la répartition d'intensité autour d’un maximum en une fonction gaussienne 2D. En modélisant l’intensité répartie autour de chaque maxima par un modèle gaussien à 2D, nous pouvons extraire les coordonnées du maximum avec une résolution meilleure que 0,5 pixels.

La Figure VI–9 est un exemple de ce traitement. Sur une image de 100X100 pixels comportant une particule, nous avons tracé le profil d’intensité selon une droite passant par le centre de cette particule, ainsi qu’une représentation surfacique de cette image. La seconde colonne représente l’image après le seuillage, le bruit de fond est fixé à zéro améliorant le contraste. Enfin la dernière colonne, présente l’image filtrée. Les coordonnées X/Y de cette particule sont données par la position du maximum.
PARTIE II: Dispositif de microrhéologie par suivi de particules

Image brute Image seuillée Image filtrée

Profil d’intensité selon une ligne passant par le milieu de la particule

Représentation des images sous forme 3D ; La direction Z représente l’intensité des pixels.

Figure VI-9 : Exemple d’un seuillage et de l’utilisation d’un filtre gaussien sur une particule. A partir de l’image brute il est difficile de déterminer le centre de la particule, tandis que l’image traitée fait correspondre une fonction gaussienne 2D à chaque particule. Le centre est donné par la position du maximum.

Nous venons de trouver dans une image la position de chaque maxima. Si l’intensité de tous les maxima était égale, nous pourrions conclure que tous les traceurs sont dans un seul est même plan, ce qui n'est pas le cas dans la réalité. Malgré l'attention portée lors du choix de l'objectif et lors de l'acquisition une tranche optique mesure environ 1,5 µm et permet de visualiser plusieurs couches de traceurs ayant des intensités lumineuses différentes.
Pour supprimer les traceurs en dehors du plan principal, nous calculons la somme des valeurs des pixels contenu dans un cercle autour de chaque maxima. Nous portons ces valeurs sous la forme d’un histogramme des intensités. L’intensité maximale de cet histogramme représente les particules se trouvant exactement dans le plan de mise au point. En considérant uniquement les intensités supérieures ou égales à 30 % de l’intensité maximum, nous supprimons les particules hors champ.

3.2 Construction des trajectoires.

Grâce aux étapes précédentes, nous déterminons les coordonnées de chaque particule à 0,5 pixels près dans une tranche optique de 1,5µm d’épaisseur et dans une pile complexe d’image. A l’issue de cette étape, nous avons construit une matrice contenant le numéro de l’image concernée ainsi que les couples X/Y des particules qu’elle contient. Pour reconstruire une trajectoire, nous utilisons le principe du plus proche voisin d’une image à l’autre, c'est-à-dire que pour chaque particule de l’image N, l’algorithme, développé par E.Weeks, associe la coordonnée X/Y d’une particule dans l’image N+1. La zone de recherche dans l’image N+1 est limitée à un cercle de 10 pixels autour de la position de l’image N. Cette valeur correspond à deux fois le diamètre d’une particule de tel sorte que le calcul est rapide et que la probabilité de connecter deux particules différentes est faible.

Il est aussi possible qu’une particule sorte du plan d’observation définitivement ou réapparaisse après quelques images. Un critère, fixé par l’utilisateur, permet de considérer une particule absente dans l’image N et présente dans l’image N+1, soit comme une nouvelle particule indépendante, soit comme faisant partie d’une trajectoire précédente. Ce critère porte à la fois sur le nombre d’image pendant lesquelles la particule a disparu et à la fois sur la distance parcourue par rapport à la dernière position connue. Typiquement, une particule sera
considérée comme une nouvelle si elle disparaît pendant plus de 10 sec (entre 600 et 20 images selon la cadence) ou si elle a parcourue une distance égale à deux fois son diamètre.

3.3 Détermination de la vitesse moyenne.

Au cours de l’acquisition l’instant de prise de vue est enregistré dans un fichier de données, nous permettant de calculer l’intervalle exact entre deux images. Les images considérées peuvent être deux images successives ou bien deux images espacées d’un temps plus ou moins long. La vitesse ne peut être calculée qu’en présence de deux points, nous avons développé une procédure testant la validité du calcul en examinant la présence des traceurs dans les deux images considérées.

La vitesse d’une particule est donnée par l’expression \(V = \frac{D}{T} \), où \(D \) est la distance parcourue et \(T \) l’intervalle de temps considéré. L’incertitude sur le temps est plus petite que \(10^{-4} \) s et \(\Delta D \) est fixé par la détermination de la position du centre des particules.

L’erreur sur la mesure de vitesse devient uniquement fonction de la distance parcourue et de l’intervalle de temps sondé. Plus l’intervalle de temps est grand, plus la distance est grande, plus l’erreur sur la détermination de la vitesse moyenne sera faible. Cette relation reste vraie à une condition : il faut considérer que le traceur a parcouru la distance \(D \) en ligne droite, ce qui est toujours vérifier dans le cas de particules sous écoulement, mais ce qui n’est pas toujours vrai pour des particules libres de mouvement (mouvement brownien) ou du moins subissant des mouvements lents (mouvement de relaxation).

La vitesse moyenne de particule dans un plan sera calculée comme étant la moyenne de toutes les vitesses des particules considérées:

\[
<V> = \frac{1}{P} \sum_{i=0}^{p} V_i
\]

L’intervalle de temps étant connu, la vitesse de ces traceurs est le rapport distance/temps. Nous calculons alors la vitesse moyenne à un instant \(T \) comme étant la moyenne des vitesses instantanées de tous les traceurs.

- 165 -
4 Applications

4.1 Introduction

La Figure VI–10 représente des trajectoires obtenues par suivi de particules dans différentes situations. Les trajectoires du graphique A représentent le suivi de particules dans une suspension diluée au repos. Les particules exécutent une marche au hasard qu’il est possible de caractériser par le déplacement quadratique moyen $<\Delta r^2(t)>$. Une fois cette quantité, connue il est possible de remonter aux propriétés rhéologiques locales en utilisant le formaliste présenté au Chapitre III. Cette technique s'adresse à des échantillons peu visqueux ou peu élastiques pour pouvoir détecter des déplacements de particules supérieures à la résolution du montage. Elle est complémentaire de la technique de DWS qui s'adresse comme nous l'avons vu à des matériaux très visqueux ou très élastiques grâce à sa capacité à détecter de très faibles déplacements. Notons aussi que la méthode dans l'espace directe impose de moyenner les déplacements des particules sur un grand nombre de trajectoires. A ce jour cette méthode de microrhéologie est relativement classique dans la littérature où elle est largement utilisée et discutée [ref]. Dans ce contexte, nous ne l'aborderons pas plus longuement dans la suite et consacrons nos efforts à deux applications originales.
La figure B représente les trajectoires de particules fluorescentes dans une suspension concentrée de microgels en écoulement permanent. Comme nous l'avons expliqué dans le paragraphe 3.3, la longueur des trajectoires Δx correspond au déplacement des particules pendant un temps Δt fournissant une mesure de la vitesse locale $V(z)$. En déplaçant le plan de mise au point verticalement entre les deux plaques de la cellule et en effectuant le même calcul, nous sommes capable de mesurer le profil de vitesse locale. Nous avons appelé cette technique de suivi de particule.
La figure C représente les trajectoires dans une suspension concentrée en cours de vieillissement. La suspension a été précisaiillée au début de l'expérience conformément au protocole utilisé dans l'étude des dynamiques lentes (cf. Chapitre I 4.7). Les trajectoires décrivent les mouvements locaux associés à la relaxation du champ de déformation dans la suspension après l'arrêt du cisaillement.

4.2 Microvélocimétrie par suivi de particule

4.2.a Matériaux et méthodes.

Nous détaillons ici les différents matériaux que nous avons utilisés pour réaliser cette étude.

4.2.b Les échantillons

Les échantillons utilisés sont des microgels polyelectrolytes auxquelles nous ajoutons des traceurs fluorescents. Ces traceurs sont fournis par la société Sigma-Aldrich et sont des sphères de polystyrène de 1 µm de diamètre avec un spectre d’absorption et d’émission respectivement de 505 nm et 530 nm. La concentration en traceurs est de 0.005 g/g dans chaque échantillon. Cette concentration représente un optimum permettant à la fois d’avoir une statistique suffisante pour la détermination de la vitesse moyenne et à la fois de conserver un coefficient de transmission suffisant pour l’observation de l’ensemble de l’entrefer. En effet, si les plans supérieurs au plan d’observation comptent un trop grand nombre de traceurs, d’une part la longueur d’onde d’excitation arrivant dans ce plan est largement diminuée et, d’autre part, la longueur d’onde d’émission est diffusée un grand nombre de fois avant
d’atteindre le détecteur. Il devient très difficile d’obtenir des images contrastées de ce plan et la construction des trajectoires devient difficile.

4.2.c Les surfaces

Un des buts de cette étude est d’étudier l’influence des parois sur l’écoulement des pâtes de microgels, nous avons utilisé des parois d’origine physique ou chimique contrôlées.

Les parois utilisées sont les suivantes : verre, rugueuses, hydrophobe, cationique.

Les parois en verre sont simplement les parois d’origine en verre ayant subi un nettoyage avec un papier optique imbibé d'un mélange d'alcool et d'acétone.

Les parois rugueuses sont de deux natures différentes, le rotor est rendu rugueux en collant du papier de verre d’une grande rugosité ≈ 100 µm. La partie supérieure (fixe) est rendue rugueuse par sablage en conservant un hublot clair pour l’observation. Ce hublot fait environ 1,5 mm² et est négligeable devant la surface de la lamelle (≈ 1000 mm²). La rugosité dans la lamelle n’est pas mesurée mais est estimée à environ 30-50 µm.

Les parois hydrophobes sont recouvertes d’un film polymère présentant des propriétés de mouillage faible. Ce film est un scotch commercial transparent et dont la largeur permet de recouvrir l’ensemble de la surface sans aucun raccord. Nous avons mesuré l’angle de contact d’une goutte d’eau pure posée sur ce genre de revêtement, l’angle fait par la goutte est supérieur à 110°.

Les surfaces cationiques sont des surfaces réalisées par greffage chimique de trichloro(1H,1H,2H,2H-perfluoroctyl)silane en utilisant le processus suivant:

Les lames de verre sont nettoyées à l’aide d’un nettoyeur plasma à oxygène dont l’action consiste à retirer les parties O₂ des sites SiO₂ superficielles. Les sites Si sont alors libres pour une nouvelle réaction notamment un greffage de silane. Ce greffage s’effectue en
phase vapeur en laissant la surface réactive dans une boîte de pétri fermée hermétiquement et contenant un cruset avec une goutte de trichloro(1H,1H,2H,2H-perfluorooctyl)silane pendant au moins 2 heures. Les fonctions silanes se greffent alors à la surface qui acquière un caractère hydrophobe pendant plusieurs jours.

4.2.d Protocole de mesure

La suspension de microgels comportant les traceurs fluorescents est placée dans la cellule de cisaillement en prenant un grand soin de ne pas incorporer de bulles d’air. Le tour de main expérimental pour éviter la présence de bulle est de laisser s’écouler le microgel du flacon au centre de la plaque inférieure. L’échantillon forme alors un cône qui va être écrasé par la mise en place du stator. L’air ne peut pas rester piégé dans la cellule. Afin de s’assurer que l’écoulement est stationnaire le rotor est mis en rotation plusieurs minutes avant la mesure.

Initialement l’interface entre l’échantillon et le stator a été mécaniquement repéré comme le point 0. Le plan d’observation est repéré à l’aide d’un comparateur mécanique d’une précision de 1 µm.

La cadence d’acquisition est ajustée selon la vitesse et la position d’observation dans l’échantillon. Lorsque la vitesse de rotation est lente et que le plan d’observation est proche de la paroi fixe, l’acquisition est réalisée à 1 ou 2 im/sec, au contraire si la vitesse de rotation est rapide ou le plan d’observation est très éloigné de la paroi fixe la cadence sera fixée au maximum (60 im/sec). La cadence variable nous permet d’optimiser le nombre d’images enregistrées, optimisant par ailleurs la quantité de données stockées et le temps d’analyse.

Le résultat typique de ce genre de mesure est similaire à la Figure VI–11. Les positions des particules qui passent au travers du champ sont capturées et enregistrées d’image en image. Grâce à cette analyse, nous somme capable de mesurer le déplacement des
traceurs d’une image à l’autre puis de diviser ce déplacement par l’intervalle de temps de prise de vue. Nous obtenons la vitesse moyenne des particules dans un plan donné.

5 Application à la détermination de profil de vitesse.

Nous venons de mesurer la vitesse de particule dans un plan optique, en variant la position du plan de mise au point, nous sommes capables de sonder différentes régions de l’entrefer. Nous avons fait l’acquisition d’images dans ces différents plans en relevant systématiquement la variation en position de l’objectif ce qui nous permet de déterminer la vitesse moyenne de ces différents plans. Ce travail permet de construire point par point le profil de vitesse d’écoulement. La résolution de cette méthode est de 1 µm, limitée par la précision du déplacement de l’objectif. La profondeur maximale (notée z) sondée est de 750 µm. La qualité des images obtenues au-delà de cette distance ne permet plus de résoudre correctement les traceurs.

Nous avons fait une expérience avec un mélange d’eau et de glycérol contenant des traceurs en utilisant des surfaces de verres propres. La Figure VI–11 présente le résultat de cette mesure.
Dans ce cas simple, les profils de vitesse sont directement reliés à la vitesse imposée. La vitesse est linéaire dans tout l’entrefer et la vitesse à la paroi est nulle démontrant l’absence de glissement visible.

La Figure VI–12 montre des profils de vitesse obtenus en utilisant une suspension de microgels de concentration $C=1,4\times10^{-2} \, \text{g/g}$ dans l’eau contenant des traceurs.
Les surfaces sont en verre propre. Cette figure met en évidence trois régimes d'écoulement :

- Le premier à basse vitesse (<0,005 rad.s\(^{-1}\)), la vitesse est constante dans tout l’entrefer, l’échantillon s’écoule sous forme d’un bloc, c’est la zone de glissement total.

- La seconde à haute vitesse (>0,1 rad.s\(^{-1}\)), l’écoulement est linéaire dans l’entrefer mais présente une forte zone de glissement à la paroi. L’épaisseur de cette couche de glissement est très faible.

- La troisième zone se situe entre ces deux vitesses de cisaillement, il y a coexistence entre un écoulement linéaire et une zone de plusieurs dizaines de microns ou le profil d’écoulement est déformé. C’est le régime de glissement partiel.
Nous avons montré dans ce chapitre la stratégie que nous avons choisie pour suivre la déplacement de particule dans l'espace direct. Ces déplacements sont quantifiables à 1 μm près et nous permettent de reconstruire des profils de vitesse lors de l'écoulement de fluides simples. Dans le chapitre suivant, nous avons utilisé cette technique pour étudier l'écoulement de microgels et nous avons mis en évidence l'importance des interactions avec les surfaces de la cellule de rotation.
Chapitre VII

Yielding, Slip, and Flow of Soft Glasses: The Role of Surface Forces

Jyoti Seth, Clementine Locatelli, Fabrice Monti, Roger Bonnecaze and Michel Cloitre

Ce chapitre met en pratique les techniques de microvélocimétrie et de rhéologie pour mettre en évidence le rôle principal des interactions des parois avec les suspensions concentrées de microgels lors d'un écoulement permanent. Nous avons étudié le cas de surfaces attractives et répulsives et démontrer le changement de comportement d'écoulement dans ces deux cas. Nous avançons des hypothèses hydrodynamiques ou elastohydrodynamiques pour expliquer ces comportements.

Ce travail a été réalisé en collaboration avec une équipe de l'université d'Austin qui ont préalablement étudié de façon théorique ces phénomènes. Il a été proposé à la publication de Physical Review Letters sans être accepté pour le moment.

Abstract

We use fluorescence microscopy and particle tracking velocimetry to image the motion of soft glasses near smooth surfaces. A combination of slip, continuous shear-banding and flow account for the total deformation, depending on the attractive or repulsive nature of the particle-surface interactions. Adhering surfaces induce a generic surface rheology distinct from macroscopic bulk rheology. The effect of the surface is long-ranged and decays exponentially with distance. Our results establish a link between surface forces, lubrication and yielding in soft glasses.
1 Introduction

Soft glasses encompass a broad class of dense amorphous materials as diverse as emulsions, soft particle dispersions, colloidal pastes, foams, slurries, biological tissues and geological fluids. These materials display both solid-like and liquid-like properties which have received much attention recently. Concepts and approaches borrowed from the physics of molecular and polymeric materials have proved very useful in understanding bulk properties such as yielding [1] flow [2][3][4], aging and slow dynamics [5][6][7][8] in relation with their dense amorphous structure.

Interestingly, the motion of soft glasses depends not only on their bulk rheology but also on the shearing surfaces. Soft glasses tend to slip rather than flow near smooth, weakly adhering surfaces [9]. The deformation is then localized to a thin solvent layer adjacent to the wall, resulting in an apparent rheology completely different from the bulk rheology [10][11][12]. Another intriguing phenomenon is the formation of fluidized shear-bands, which coexist with an unsheared plug flow or a slowly sheared region. Although shear-banding occurs in many different soft glassy materials - emulsions [13], colloidal crystals [14], hard sphere glasses [15], star polymer solutions [16], and Lennard-Jones glasses [17] – the underlying physics remains a subject of active research. Recently, shear-banding has been described as an intrinsic mechanical instability associated with thixotropy [18] or aging [19]. However this picture is probably not universal since parameters like physical roughness of the shearing surfaces [20] or confinement of the material [14][15][21] play a significant role. These various observations suggest that soft glasses have a surface rheology distinct from bulk rheology, which raises a number of important questions. How are surface phenomena connected to bulk rheology? Which properties of the shearing surface influence one particular scenario? Is there any underlying universality or does every system exhibit a different behavior?
In this Letter we answer these questions for the case of repulsive soft glasses. We use high resolution fluorescence microscopy and particle tracking techniques to investigate slip, yielding, and flow of microgel pastes and emulsions sheared along smooth surfaces with well-controlled surface properties. We identify two slip mechanisms associated with elasto-hydrodynamic or simple hydrodynamic lubrication, depending on whether the particle-wall interactions are weakly attractive or repulsive, respectively. When the material starts to yield, bulk deformation is initiated. Remarkably, at the same applied stress, the local shear rate is larger near adhering surfaces than near non-adhering and rough surfaces. The velocity profiles near adhering surfaces decay exponentially over a characteristic length which is unique for a given sheared material. A spectacular consequence is that adhering or partially adhering surfaces can be used to induce a specific surface rheology different from bulk rheology.

2 Materials and experiments

Microgel pastes and emulsions, whilst very different in architecture and composition are dispersions of deformable particles packed into an amorphous structure and interacting through repulsive interactions \(^{[22]}\). The microgels used in this study are negatively charged polyelectrolyte networks swollen by water or water/glycerol mixtures \((R_H \approx 125\ \text{nm in dilute suspensions})^{[23]}\). The concentrated emulsions are made from silicon oil (viscosity 0.5 Pa.s) in a water/glycerol mixture stabilized by the non-ionic surfactant Triton X-100. Excess surfactant is eliminated to avoid depletion interaction between droplets \((<10^{-2}\ \text{g/g})^{[10]}\). The size distribution is moderately polydisperse with a mean droplet size \(R = 2\ \mu\text{m}\). The compositions of the water/glycerol mixtures used to prepare microgel pastes and emulsions are carefully adjusted so that their refractive-index matches that of the polymer and of the silicon oil droplets, respectively. Both systems display the nonlinear rheology of yield stress
The yield stress σ_y is proportional to the shear modulus G_0: $\sigma_y = G_0 \gamma_y$ with the yield strain $\gamma_y = 0.05$.

We have measured the velocity profiles of microgel pastes and concentrated emulsions using Particle Tracking Velocimetry (PTV). The samples are seeded at very low concentration (10^{-2} wt %) with fluorescent microspheres ($R = 0.5 \, \mu m$). Experiments are performed in a rotational shear cell (Linkam CSS 450) consisting of a movable glass plate at the bottom and a fixed microscope cover slip at the top ($D = 22 \, mm$). The two plates are parallel within $\pm 2 \, \mu m$ over the entire shear zone. Angular velocity of the moving plate is varied using a micro-step motor. The cell is mounted on a direct epifluorescence microscope (Zeiss) equipped with a 50X objective ($NA = 0.6$, field depth $\Delta z \approx 1 \, \mu m$). Observations are made at a fixed radius $R = 7.5 \, mm$ from the axis of rotation. The flow is scanned vertically by moving the shear cell relative to the objective by increments of about $5 \, \mu m$. At each depth we collect a great number of $109 \, \mu m \times 72 \, \mu m$ images at a rate of 20 frames per second. The local velocity is obtained by tracking the positions of about 100 tracers (in-plane resolution: $0.15 \, \mu m$) from frame to frame using image processing techniques. The local density of tracer particles is constant throughout the gap even after long shearing periods.
PARTIE II: Yielding, Slip, and Flow of Soft Glasses: The Role of Surface Forces

The mobile plate of the rotational cell is coated with waterproof sandpaper to avoid slip (roughness: 20 μm). The fixed plate is a microscope coverslip with negligible residual roughness (< 5 nm) but different surface properties. Most of the results presented here have been obtained using glass coverslips and glass coverslips coated with a polymer film[10]. To confirm the generality of our results we also used glass coverslips grafted with octadecyltrichlorosilane (OTS) and a cationic silane[24]. The shearing surfaces are cleaned using a systematic washing procedure before experimentation.

These surfaces interact with microgel particles and emulsion droplets through various surface forces. For microgels, a net attraction is expected for particle-surface combinations that involve attractive dispersive forces, e.g., microgels in water over polymer or OTS
surfaces and microgels in water-glycerol mixtures over glass, or electrostatic forces between opposite charges, e.g. microgels in water over cationic surfaces[25]. Dispersive forces are negligible when the refractive indices of particles, solvent and substrate are matched, e.g. for microgels in water/glycerol mixtures over polymer surfaces. Oil in water emulsion droplets generally do not adhere to hydrophilic glass surfaces but they tend to stick onto hydrophobic polymer surfaces[26].

3 Discussion

We have measured the flow profiles for different sample-surface combinations when the applied angular velocity is varied. When sheared between two rough surfaces, microgel pastes and emulsions flow homogeneously over the entire range of accessible velocities. When one of the shearing surfaces is smooth, the flow profiles depend on the chemical nature of the smooth surface as depicted in Figure VII-1 for an index-matched water-glycerol/emulsion E and microgel paste M. When the smooth surface is non-adhering, the local deformation involves wall-slip and uniform shear-flow (Figs. VII-1a- VII-1a′). At low applied velocities, motion is entirely due to slippage on the smooth surface. The bulk velocity is equal to the applied velocity up to distances from the wall comparable to the particle size, indicating that the first layer of particles slips. At higher velocities, the materials yield and we observe a constant non-zero velocity gradient in the bulk in addition to wall slip. When the surface is weakly adhering, slip is still dominant at low applied velocities but in the yielding regime the velocity profiles are highly non-linear with greater velocity gradient near the smooth surface than in the bulk (Figs. VII-1b- VII-1b′). When the surface is strongly adhering, i.e. for a glass surface coated with a cationic silane, slip is suppressed but velocity profiles are again non-linear[24].

- 182 -
Figure VII-2 shows the dependence of slip velocity V_S on stress σ at the observation radius for a concentrated emulsion. For $\sigma > \sigma_y$, V_S increases linearly with σ irrespective of the surface chemistry at the smooth wall. For $\sigma < \sigma_y$, V_S depends on the nature of the particle-wall interactions. For a weakly adhering surface, the emulsion slips above a finite stress σ_S that we term the sliding yield stress. The slip velocity is well represented by the quadratic variation: $V_S/V_y \propto [(\sigma - \sigma_S)/(\sigma_y - \sigma_S)]^2$, where V_y is the slip velocity for $\sigma = \sigma_y$. When the surface is non-adhering, σ_S is very small and the slip velocity varies as: $V_S/V_y \propto \sigma/\sigma_y$. Similar properties are found for microgel pastes.

Figure VII-3 shows the local flow curves which relate the shear rates at the smooth and rough walls to the shear stress. We use the non-dimensional set of coordinates $(\dot{\gamma}_i = \eta \dot{\gamma}_i / G_0, \Sigma = \sigma/\sigma_y; i = R$ and S represent shear rates at the rough and smooth walls, respectively), which are known to collapse the flow curves of different materials onto a
master curve[^27]. The local flow curves of the paste and emulsion sheared between rough and smooth non-adhering surfaces coincide with the macroscopic flow curve measured with rough surfaces (\(\dot{\Gamma}_R = \dot{\Gamma}_S \)). The latter is well described by the phenomenological Herschel-Buckley equation. With a rough and a smooth adhering surface, \(\dot{\Gamma}_R \) and \(\dot{\Gamma}_S \) are different. \(\dot{\Gamma}_R \) falls on the macroscopic flow curve but \(\dot{\Gamma}_S \) follows a distinct stress-shear rate relationship, which is well described by the power law \(\Sigma \propto \dot{\Gamma}_S^{0.35} \). Thus, two different states of the sheared materials coexist at the same stress.

![Figure VII–3: Macroscopic and local rheology of emulsion E (○, ⊙, •) and microgel paste M (□, ◊, ■) for smooth adhering (○, ⊙, Γ\(_R\); •, ◊, Γ\(_S\)) and non-adhering surfaces (○, □; Γ\(_R\) = Γ\(_S\)). The continuous line is the macroscopic flow curve: \(\Sigma = 1 + K\dot{\Gamma}_R^n \); \(K = 180; n = 0.52 \pm 0.02 \).]

The results above suggest that the surfaces contribute independently to the deformation so that the velocity profile can be written as \(V(z) = V_R(z) - V_e(z) \), where \(V_R(z) = V_\alpha - (h - z) \dot{\gamma}_R \) is the linear velocity profile due to the rough surface and \(V_e(z) \) is an extra term representing the disturbance due to the smooth surface (\(V_\alpha \) is the applied velocity). Figure 4 shows the reduced velocity \(\tilde{V}_e(z) = V_e(z)/V_e(0) \) against the distance from the smooth surface.
\[(V_e(0) = V_a - h\dot{R} - V_S) \]. For each material, the data collapse on a master curve, irrespective of the applied velocity and slip velocity. The master curves are well described by single exponentials, \(\tilde{V}_e(z) = \exp(-z/\xi) \), where \(\xi = 150 \pm 10 \mu m \) for microgels and \(\xi = 70 \pm 10 \mu m \) for emulsions. The characteristic length \(\xi \) is much larger than the particle size indicating that the effect of surfaces is non-local.

Our results show that slip and yielding near smooth surfaces are largely influenced by short range forces. Slip occurs between the first layer of particles and droplets and the wall (Figure VII-1). Therefore the deformation is localized to a thin layer of solvent of thickness \(\delta \), which lubricates the contacts between the particles and the wall. Below \(\sigma_y \), the stress is due to the viscous drag associated with the flow of solvent inside the lubricating film: \(\sigma \sim \eta S V_S/\delta \). In the non-adhering case, the wall is totally wetted by the continuous phase so that the particle or droplets slip even at very low velocities (\(\sigma_S \equiv 0 \)). The lubricating film has a constant thickness so that the stress-velocity relationship must be linear. We shall refer to this mechanism as hydrodynamic lubrication (HL) \(^{12}\). In the weakly-adhering case, the particles stick at rest to the surfaces through their contacting facets. However any relative motion between squeezed particles and the surface deforms the particles asymmetrically, which results in a lift force opposing the bulk osmotic pressure and maintaining a lubricating film. We refer to this mechanism as elastohydrodynamic lubrication (EHL) \(^{10}\). The sliding yield stress \(\sigma_S \) is the stress at which the lift force becomes larger than the attractive interactions and EHL becomes effective \(^{25}\). For \(\sigma \gg \sigma_S \), the thickness of the lubricating film is \(^{10}\): \(\delta \propto (\eta S V_S^{1/2} R)/G_0 \), which leads to \((V/V_y) \propto (\sigma/\sigma_y)^2 \) where \(V_y \propto \gamma_y^2 (G_0 R/\eta_S) \equiv 52 \mu m/s \). Our predictions for EH and EHL agree with the experimental results presented in Figure VII-4. To conclude, in soft glasses surfaces forces decide on the mechanism at the origin of slip.
The second important result is the coexistence of two different flow regimes when microgel suspensions or emulsions are sheared between a rough and a smooth adhering surface. Experiments show that there is no significant change in particle concentration, and so one may conclude that the sheared microstructure is on average different near the rough and smooth surfaces. Although details of the difference are uncertain at this time, we speculate that the plasticity of the materials plays a central role. Asperities of the rough surface induce shear-activated rearrangements at different length scales, which propagate in the bulk. Particles break their cages, move past one another, and continually change their spatial distribution. Near the yield stress, the dominant contribution to the stress is the elastic component, σ_E, which, according to MCT theories and recent simulations, increases slowly as: $\sigma_E \propto \gamma_R^m$, i.e. $\Sigma \propto \dot{\gamma}_R^m$, with $m = 0.1/0.2$. At the smooth surface, the mechanical constraint exerted by the attractive particle-wall interactions modifies the mechanism by
which the materials yield. The exponential velocity profiles near smooth adhering surfaces suggest a self-similar distribution of rearrangements so that at a distance \(z \) to the wall, only rearrangements smaller than \(z \) exist. This issue has been discussed in a different context for the case of granular materials and foams which also exhibit exponential shear bands near solid boundaries\(^{[28]}\)\(^{[29]}\). Near the wall, clusters of close-packed particles slip relative to each other instead of rearranging. The plane between the first and second layer of particles constitutes the perfect realization of a slip plane but far away there are other weak regions that allow slipping\(^{[30]}\). The viscous stress associated with internal slip, \(\sigma_V \), now dominates the total stress. \(\sigma_V \) can be estimated by considering that internal slip is driven by the EHL mechanism as for simple slip near smooth solid surfaces. For two well-aligned planes slipping parallel to each other with relative velocity \(V_S = \dot{y}_R \), we predict:\(\left(\sigma_V / \sigma_y \right) \propto \left(\eta_S \dot{y}_S / G_0 \right)^{1/2} \), i.e. \(\Sigma \propto \dot{y}_S^{-1/2} \). The results in figure VII-3 agree with this interpretation. The experimental exponent is smaller than expected as the model does not account for the actual distribution of slip planes.

Our results raise important issues. What is the microscopic origin of the length \(\xi \) over which yielding is influenced by the smooth surface? Which microscopic parameters and/or material properties determine the value of \(\xi \)? How does the interplay between adhesion and plasticity result in internal slip over macroscopic distances? They prompt us to revisit recent experimental observations. In their study of the pressure-driven flow of concentrated emulsions in confined channels, Goyon et al. suggested the existence of a so-called cooperative length that is intrinsic to the material\(^{[21]}\). Here, the continuous shear-band near the smooth surface has the characteristic features of a slip layer related to specific boundary conditions and to elastohydrodynamic lubrication. This urges for direct determination of the
sheared microstructure near different surfaces and for theoretical and numerical investigations of the interplay between adhesion and shear-induced plasticity.

4 References

Conclusion générale

L'objectif de ce travail était de développer de nouvelles techniques de mesures pour compléter les techniques de rhéologiques classiques et ainsi améliorer notre compréhension des dynamiques hautes et basses fréquences de systèmes complexes des matériaux pâteux.

Nous avons dans un premier temps appréhendé les bases de la diffusion de la lumière en étudiant les propriétés d'un polymère composite microgels/PNIPAm (cf. Chapitre IV). L'étude de ce matériau nous a permis d'observer le changement de conformation par microscopie confocale et de le quantifier à l'aide de la technique de diffusion multiple de la lumière.

Nous avons ensuite mis au point un dispositif de mesure de microrhéologie. La microrhéologie par diffusion de lumière n'est pas une technique nouvelle en soi, l'originalité de notre travail se situe au niveau du protocole de mesure et dans son analyse. La microrhéologie s'effectue sans gros problème expérimentale sur des systèmes non ergodiques, ce que nous avons montré au Chapitre II 3.4, mais pose toujours des soucis dans les cas d'échantillons non ergodiques tels que les microgels. Dans ce dernier cas, notre approche a été différente de celle utilisée par d'autres groupes de recherche puisqu'avec un détecteur unique nous avons déterminé l'intensité moyennée en temps et celle moyennée spatialement. Nous avons appliqué ce principe à l'étude de la rhéologie des microgels avec succès (cf Chapitre V) et nous avons mesuré les modules élastiques et visqueux sur plus de 8 décades. Nous avons également établi une courbe maitresse où les modules mesurées sont normalisés par la valeur...
de G' au plateau et où la fréquence est multipliée par le temps caractéristique microscopique du système (cf. Figure VII–5).

Nous avons utilisé les techniques de diffusion de lumière pour suivre les dynamiques lentes de relaxation. Pour cela nous avons inclus une cellule de cisaillement dans un montage de diffusion multiple de la lumière. Ce dispositif mécanique permet de cisailler fortement l'échantillon pour le placer dans un état mécanique connu. L'arrêt du cisaillement est le point de départ de ces expériences. Tout ceci est mis en place pour être le plus proche des expériences de rhéologique classique dans ce domaine. Nous avons pu mesurer en temps réel les fonctions de corrélation d'un système en cours de vieillissement pendant 10.000 sec. La dynamique d'ensemble se ralenti en loi de puissance avec un exposant compris entre 0,7-0,9 confirmant les résultats rhéologiques précédents.
Les techniques de diffusion multiple de la lumière présentent un inconvénient majeur, les mesures sont effectuées dans l'espace de Fourier et il nous a semblé judicieux de mettre au point une technique de visualisation directe des ces phénomènes. C'est pour cela que nous avons développé un montage de suivi de particule sous microscopie à fluorescence et utilisé ce montage dans deux applications. La première a pour but de suivre et déterminer la vitesse de particule dans différents plans optique afin de construire des profils de vitesse sous écoulement. Ce travail a été mené en collaboration avec J.Seth (Université d'Austin) et C.Locatelli (ESPCI). Nous avons pu montrer la forte influence des parois dans l'écoulement macroscopique. Lorsque les interactions sont suffisamment fortes pour empêcher les phénomènes de glissement l'échantillon s'écoule selon un profil linéaire et attendu. Nous avons mis en évidence deux autres résultats intéressants; dans le cas où les surfaces sont totalement non mouillantes vis-à-vis de l'échantillon, nous observons l'écoulement de l'ensemble du matériau à vitesse constante. Enfin un régime intermédiaire où les profils de vitesse à la paroi présentent une courbure. Nous avons attribué ces observations à l'hypothèse d'un phénomène élasto-hydrodynamique. Lors de la mise en mouvement du rotor, les particules de la première couche subissent une force normale à la paroi qui les soulèvent et permet la formation d'un film de solvant entre la particule et la paroi mobile.

Une seconde application est le suivi de particule après un fort cisaillement. Le but était de compléter les observations obtenues en diffusion multiple de lumière par des observations dans l'espace directe. Nous avons ainsi pu quantifier la relaxation à l'échelle microscopique n'est pas différentes de ce que l'on mesure à l'échelle macroscopique.

Durant ce travail, nous avons montré que le couplage de différentes techniques permettait de lever des indéterminations sur les phénomènes physiques en jeu.

- 193 -
Il serait intéressant de coupler un rhéomètre avec les mesures de diffusion multiple de la lumière pour étudier les phénomènes de vieillissement. Le rhéomètre assurerait la qualité de la mécanique et les mesures de la relaxation de contrainte pendant que les mesures de diffusion de lumière suivraient la dynamique du milieu. Avec un dispositif de ce type il serait possible de mesurer les fonctions de corrélation au cours d'un écoulement contrôlé qui pourrait mettre en lumière la dynamique de réarrangement du système.

Il est possible d'imaginer de remplacer les mesures de diffusion de la lumière par un système de suivi de particule pour caractériser différemment l'influence des parois sur l'écoulement.

Une dernière question reste en suspend, quel est le rôle des parois lors de l'étape du vieillissement? En effet dans ces expériences, nous appliquons un fort cisaillement au matériau. Le rotor applique sur le matériau une contrainte, mais que se passe-t-il lors de l'arrêt brutal de cette contrainte? Dans le cas d'interaction fortes entre l'échantillon et le rotor, l'énergie accumulée lors de la trempe mécanique se relâche lentement, mais si les parois sont glissante, est ce que la majeur partie de cette énergie n'est pas libérée immédiatement? Enfin peut-on visualiser dans comportement différents si ces tests sont effectués à contrainte imposée ou à déformation imposée?

Ces questions seront probablement les challenges de demain.
Résumé

Les suspensions concentrées et les verres colloïdaux forment une classe de matériaux intéressante d'un point de vue de la physique mais également des applications. Ces matériaux présentent des comportements rhéologiques remarquables comme la présence d'un seuil d'écoulement, des phénomènes de glissement ou encore des dynamiques de relaxation très lentes et du vieillissement. Les techniques rhéologiques classiques ne permettant pas à elles seules de remonter à l’origine microscopique de ces phénomènes, il est nécessaire de les associer à des techniques permettant de sonder la structure et la dynamique à des échelles très locales.

Dans ce travail nous développons et mettons en œuvre une série d’outils complémentaires utilisant la diffusion multiple de la lumière ou la microscopie par fluorescence et nous les appliquons à l’étude de la dynamique de suspensions concentrées de microgels polyélectrolytes au voisinage de l’équilibre, en cours de vieillissement ou en écoulement. Les principaux résultats portent sur la mesure des propriétés viscoélastiques linéaires dans une fenêtre de fréquences comprises entre des temps browniens et plusieurs heures, sur le vieillissement physique, et sur le rôle des parois dans la structuration des écoulements.

Mots-clés: diffusion multiple de la lumière, vélocimétrie par suivi de particules, vieillissement physique, rhéologie haute fréquence, microgels, microscopie à fluorescence, microscopie confocale.

Summary

Concentrated suspensions and soft colloidal glasses are interestingly broad class of materials in physics perspective but also in applications. These materials display both solid-like and liquid-like properties, slip phenomena or slow dynamic and ageing. Bulk rheology does not give access to a microscopic view of these phenomena and it is necessary to associate other techniques to monitor local structure and local dynamics.

In this thesis we developed and used new tools like diffusive wave spectroscopy (DWS) or fluorescence microscopy. We studied the dynamics of concentrated suspensions near equilibrium, during ageing process or during flow. The main results are focused on linear viscoelasticity in a large frequency range from Brownian time scale to a few hours, on ageing phenomena and on the role played by surfaces on the flow profile.

Key-words : Diffusive wave spectroscopy (DWS), particle tracking by velocimetry, ageing, high frequency rheology, microgels, fluorescent microscopy, confocal microscopy.