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viii RESUME

Résumé

Les fournisseurs d'accés Internet souhaitent avoir une bonne connaissance du tra c traversant
leur réseau, pour de nombreuses opérations contribuant a la bonne gestion du trac et a la
maintenance du réseau. Une partie essentielle de l'information dont ils ont besoin pour ces taches
est lamatrice de trac, qui indique les volumes de tra c pour chaque paire origine-destination
du réseau pendant un laps de temps donné, c'est a dire le nombre d'octets ayant transité depuis
chaque n+ud d'entrée vers chaque n+ud de sortie pendant la période considérée. L'importance des
opérations d'ingénierie du tra ¢ s'appuyant sur la donnée de cette matrice ne cesse d'augmenter,
puisque le tra c a traiter augmente et se diversi e, devenant plus complexe d'année en année.
Mais en pratique, il est trés dicile d'obtenir des estimations précises des demandes de trac
en origine-destination. Contrairement a ce que l'intuition peut laisser croire, les mesures sur les
réseaux sont : (i) souvent indisponibles au niveau de certains routeurs non instrumentés; (ii)
colteuses; (iii) susceptibles d'a ecter la qualité de service. Les décision concernant I'emplacement
des mesures a prendre, ainsi que leur taux d'échantillonage constituent donc un enjeu crucial.

Nous abordons le probléme de l'optimisation des mesures dans les réseaux par une approche
fondée sur lahéorie des plans d'expériences optima®@ette théorie étudie comment allouer I'ef-
fort expérimental & un ensemble d'expériences disponibles, quand le but est de maximiser la qualité
de l'estimation d'unparameétre inconnuSi I'on considére chaque localisation possible du logiciel
de mesure comme urexpérienceet la matrice de tra c comme lgparametre inconnuon obtient
une formulation de typeplans d'expériencesle notre probléme de télécommunications. Cepen-
dant, les algorithmes classiques en conception optimale d'expériences se révélent ine caces sur les
grands réseaux. Par ailleurs, la di culté est augmentée par le fait que chaque mesure peut four-
nir plusieurs observations simultanées des demandes de tra ¢ (conception optiiedpériences
multiréponses.

Dans la premiere partie de cette thése, nous développons une approche fondézpimiation
Conigue du Second OrdréSOCP), pour résoudre des problémes de grande taille en conception
optimale d'expériences multiréponses. Un avantatfede notre approche est que olver PCSO
ne gére que des matrices creuses et de tailles modérées, tandis que les algorithmes classiques
ont besoin de gérer de grandes matrices pleines pour résoudre les méme instances. De plus, I'ap-
proche par PCSO permet une grande exibilité dans la dé nition des contraintes sur les plans
d'expériences. Le c+ur de notre méthode est un théoréme de réduction du rang en optimisation
semi-dé nie, qui permet une description géométrique simple des plans d'expériences optimaux.
Certains aspects combinatoires qui apparaissent typiquement lorsque l'opérateur souhaite choisir
un sous-ensemble de routeurs a instrumenter pour qu'ils puissent prendre des mesures sont égale-
ment étudiés. Grace a des inégalités matricielles et a des techniques d'optimisation sous-modulaire,
nous formulons des bornes sur la performance de I'algorithme glouton et de techniques d'arrondis.

L'application a l'inférence des matrices de tra c dans les réseaux de télécommunication fait
I'objet de la seconde partie de ce manuscrit. Lorsque I'on dispose uniqguement de mesures partielles
sur le réseau, I'état de I'art est une méthode ditemogravitaire qui comble les données man-
guantes en résolvant des problémes de minimisation d'entropie. La qualité de I'estimation obtenue
dépend toutefois grandement de la localisation et des taux d'échantillonage des mesures dispo-
nibles. Les expériences numériques présentées en premiére partie montrent que notre approche
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par PCSO est la plus e cace pour le probleme de conceptionoptimalg i.e. lorsque I'expéri-
mentateur cherche a estimer une combinaison linéaire seulement des paramétres inconnus (dans
notre cas, les demandes de tra c) ; nous développons donc une méthode bapiaée successifs
d'expériences optimales dans laquelle on considéere plusieurs combinaisons linéaires (tirées de
fagcon aléatoire) des demandes de tra c. Notre approche est comparée aux précédentes, et évaluée
sous de nombreux points de vue, par l'intermédiaire de simulations avec des données réelles. En
particulier, nous traitons des instances pour lesquelles les approches précédentes étaient incapable
de fournir une solution. Finalement, nous proposons de nouvelles directions pour les techniques
d'estimation de la matrice de tra ¢ dans un chapitre d'ouverture. Nous mettons en évidence la
structure de petit rang des matrices de tra c, grace a la théorie des matrices aléatoires et a des de-
compositions de tenseurs. En n, nous présentons I'esquisse préliminaire d'une approche tensorielle
qui semble améliorer la méthodemogravitaire
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Summary

Internet Service Providers (ISP) wish to have a good knowledge about the tra ¢ which transit
through their networks, for many tra ¢ engineering and network planning tasks. An essential part
of the required information is thdéra ¢ matrix , which contains the volumes of tra ¢ for each
origin-destination pair of the network during a given period of time, i.e. the number of bytes that
has travelled from any entry node to any exit node. The importance of the networking operations
relying on the tra ¢ matrix is increasing as the tra ¢ grows in volume and becomes more complex,
but in practice, obtaining accurate estimations of the demands of tra c is a challenging issue.
Contrarily to what intuition may suggest, network measurements are: (i) often not available
everywhere; (ii) expensive; (iii) likely to a ect the quality of service. It is thus a crucial issue to
decide where network measurements should be performed, as well as their sampling rates.

We approach the problem of optimizing the network measurements by usingthiery of
optimal experimental designsThis theory studies indeed how to allocate the experimental e ort
to a set of available experiments, in order to maximize the quality of estimation otiaknown
parameter Thinking of each potential location of the measuring software asexperiment and
the tra c matrix as the unknown parameterone obtains a niceoptimal experimental design
formulation of our telecommunications problem. However, the classic optimal experimental design
algorithms are intractable on large scale networks, because very large matrices are involved. In
addition, the di culty is increased by the fact that each measurement yields several simultaneous
observations of the unknown volumes of tra c (optimal design ofultiresponse experimens

In the rst part of this thesis, we develop an approach relying 8econd Order Cone Pro-
gramming (SOCP) to solve large-scale, multiresponse optimal experimental design problems. An
important advantage of our approach is that the SOCP solver handles sparse matrices of moderate
size, while classic algorithms need store large full matrices to solve the same instances. Moreover,
SOCP solvers allow one to de ne constraints on the experimental design with lots of exibility. At
the heart of our method is a rank reduction theorem in semide nite programming, which allows a
simple geometrical characterization of the optimal designs. Some combinatorial problems which
typically arise when an ISP wants to choose a subset of routers to upgrade, so that they will
support a measuring software are also studied. Thanks to matrix inequalities and submodular op-
timization techniques, we specify some lower bounds for the performance of greedy and rounding
algorithms.

The application to the inference of the tra ¢ matrix in telecommunication networks is the
object of the second part of this manuscript. When partial measurements are available, the state of
the art is the so-calledomogravity method in which the lack of information is handled by solving
entropy minimization problems. The quality of the obtained estimation nevertheless depends
grandly of the localization and sampling rates of the available measurements. The numerical
experiments presented in the rst part show that our SOCP approach is most e cient for the
c optimal design problem, i.e. when the experimenter wants to estimate only a linear combination
of the unknown parameters (in our case, the tra c demands); we therefore develop a method
calledsuccessive optimal designsin which several randomly drawn linear combinations of the
tra c demands are considered. This approach is compared to previous ones, and is fully evaluated
by mean of simulations relying on real data. In particular, we handle some instances that were
previously intractable. Finally, new directions for the techniques of estimation of the tra ¢ matrix
are considered in a perspectives chapter. By mean of the theory of random matrices and tensor
decompositions, we evidence the low-rank structure of tra ¢ matrices. The preliminary sketch of
a tensorial approach, which seems to improve on the clagsitogravity method, is presented.
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Chapitre 1

Introduction (en Francais)

1.1 Plans d'expériences optimaux et Mesures dans les réseaux

Les fournisseurs d'acces Internet souhaitent avoir une bonne connaissance du tra c tra-
versant leur réseau, pour de nombreuses opérations contribuant a la bonne gestion du tra c
et a la maintenance du réseau. Une partie essentielle de l'information dont ils ont besoin
pour ces opérations est taatrice de tra ¢ qui indique les volumes de tra ¢ pour chaque
paire origine-destination du réseau pendant un laps de temps donné, c'est a dire le nombre
d'octets ayant transité depuis chaque n+ud d'entrée vers chaque n+ud de sortie pendant la
période considérée. L'importance des opérations d'ingénierie du tra c reposant sur la donnée
de cettematrice de tra c ne cesse d'augmenter, puisque le tra c a traiter augmente et se
diversi e, devenant plus complexe d'année en année. Mais en pratique, il est tres di cile
d'obtenir des estimations précises des demandes de tra ¢ en origine-destination. Contraire-
ment a ce que l'intuition peut laisser croire, les mesures sur les réseaux sont : (i) souvent
indisponibles au niveau de certains routeurs non instrumentés; (ii) codteuses; (iii) suscep-
tibles d'a ecter la qualité de service. Les décisions concernant I'emplacement des mesures
a prendre, ainsi que leur taux d'échantillonage constituent donc un enjeu crucial.

Nous abordons le probleme de I'optimisation des mesures dans les réseaux par une ap-
proche fondée sur la théorie dalans d'expériences optimauCette théorie étudie com-
ment allouer I'e ort expérimental a un ensemble d'expériences disponibles, dans le but de
maximiser la qualité de I'estimation d'paramétre inconnuSi I'on considére chaque loca-
lisation possible du logiciel de mesure commeexpeérienceet la matrice de tra c comme
le paramétre inconnuon obtient une formulation de typplans d'expériencede notre
probléme de télécommunications. Cependant, les algorithmes classiques pour la conception
optimale d'expériences se révelent ine caces sur les grands réseaux, principalement parce
gue de trés grandes matrices entrent en jeu.

Cette observation a été notre motivation principale pour rechercher des algorithmes
qui passent a I'échelle en conception d'expériences optimales. Nous avons développé une

1. ou conception d'expériences optimales
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approche reposant sur faptimisation Conique du Second Ordi®@OCP), une classe de
problemes d'optimisation généralisant la Programmation Linéaire (LP), et qui peuvent étre
résolus par des méthodes de points intérieurs en un temps bien plus court que les Problémes
d'optimisation Semi-Dé nie (SDP) de la méme taille. Cette approche se révele particulie-
rement e cace pour les problémes ou I'on cherche a estimer un petit nombre de fonctions
linéaires des parameétres inconnus.

En fait, notre approche ne s'applique pas directement au le probleme de télécommunica-
tions initial. Cela vient du fait que l'opérateur cherche généralement a estimer l'intégralité
de la matrice de tra c (tandis que notre approche par SOCP est la mieux adaptée pour
I'estimation d'une combinaison linéaire des volumes de tra c). Pour résoudre ce probléme,
nous avons introduit une méthode pour I'estimation de tous les paramétres du modele, qui
repose repose sur le calcul de plusieurs gamgptimaux.

Un autre probleme est lié aux aspects combinatoires de l'application industrielle : si un
opérateur souhaite instrumenter un certain nombre de n+uds du réseau a n qu'ils supportent
un logiciel de mesure, la formulation naturelle pour choisir quel n+ud du réseau équiper en
priorité est urplan d'expériences optimal en nombre enti€esprobleme est principalement
traité par des approches heuristiqgues dans la littérature. Ceci a motivé notre travail sur la
sous-modularité des criteres d'information pour les plans optimaux, et a conduit a des
résultats d'approximabilité en temps polynomial de certains problemes NP-di ciles.

1.2 Organisation et contributions de ce manuscrit

Cette thése est organisée en deux parties. La premiére partie est consacrée a des résultats
théoriques et algorithmiques en conception optimale d'expériences, qui reposent sur des
outils de programmation mathématique et d'optimisation sous-modulaire. Ces résultats ont
émergé d'un probléme industriel concernant les réseaux de télécommunication, dont I'étude
fera I'objet de la seconde partie de ce manuscrit. Nous détaillons ci-dessous le contenu de
cette these, chapitre par chapitre. Nous dresserons ensuite une liste des contributions de ce
manuscrit.

1.2.1 Résumé détaillé
Premiére Partie : Plans d'expériences optimaux

Dans la premiére partie, nous présentons des résultats théoriques pour le calcul de plans
d'expériences optimaux. Nous nous focaliserons sur les modeles de régression linéaire ou le
nombre d'expériences disponibles est ni, et nous mettrons l'accent sur le roattnes-
ponses Ce dernier correspond a la situation dans laquelle une seule et méme expérience
peut fournir plusieurs observations simultanées du parametre inconnu. Les deux premiers
chapitres de cette partie reprennent essentiellement I'état de I'art sur la théorie des plans
d'expériences optimaux. Les chapitres suivants (4 7) contiennent de nouveaux résultats.
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Chapitre 2 : Une introduction a la théorie des plans d'expériences optimaux La théorie
desplans d'expériences optimaest une branche importante des statistiques, a l'interface
avec l'optimisation, qui a de nombreux champs d'applications. Son but est de trouver les
valeurs qu'un expérimentateur doit donner aaxiables de controldes expériences a sa
dispositionavant de les réaliseCes variables de contrble peuvent prendre di érentes formes
(nombre de fois qu'on va réaliser une expérience, taux d'échantillonage d'un appareil de
mesure, temps pendant lequel on enregistre des résultats, etc.), et a ectent les données
mesurées. L'estimation que I'expérimentateur fait des quantités qu'il souhaite mesurer va
donc dépendre de ces variables.

Dans ce chapitre, nous passons en revue un certain nombre de résultats classiques en
conception optimale d'expériences. Nous nous focalisons sur les modeles de régression li-
néaires, ou I'espérance de chaque quantité mesurée est une combinaison linéaire des para-
metres inconnus. Nous nous plagons en outre dans le cadre ou une seule et méme expérience
peut fournir plusieurs mesures simultanées : ce cadltiréponsesntervient naturellement
dans I'étude du probleme de télécommunications traité en Partie Il. Nous nous concen-
trons sur la théorie deplans approchésu la variable de conception est un vectaur
de sommel, qui indique le pourcentage d'e ort expérimental alloué a chaque expérience.
Dans le cas ou I'ensemble des expériences dispoXil{lespace de régression) est in ni,
I'expérimentateur doit également choisir le sous-ensemble des expéxiencesxs 2 X
a réaliser.

Ce chapitre débute par une rétrospection historique de la théorie des plans d'expériences
optimaux, avec une présentation succincte des contributions d'Elfving, Kiefer, Fedorov et
Pukelsheim (entre autres). Nous introduirons ensuite la notation standard, et nous mon-
trerons que le théoréme de Gauss-Markov donne une borne inférieure pour la matrice de
covariance de tout estimateur linéaire sans biais du vecteur des parameétres inconnus. De
plus, cette borne est atteinte par I'estimateur des moindres carrés. Ceci conduit a la dé -
nition de lamatrice d'informationd'un plan d'expériences (I'inverse de la meilleure matrice
de covariance possible), et a la formulation standard des problemes de conception optimale
d'expériences (maximisation d'une fonction scalaire de la matrice d'information). Nous pas-
serons ensuite en revue les criteres d'information les plus utilisés dans la littérature, et qui
permettent de dé nir les concepts de A; E; D; T; ,-optimalité, et deS optimalité
robuste.

La derniére partie de ce chapitre rappelle quelgues résultats fondamentaux en conception
optimale d'expériences :

Le théoréme d'Elfving, qui donne une caractérisation géométrique simple de la
c optimalité.
Le théoreme de Kiefer-Wolfowitz (1960), qui montre que le probleme de conception
D optimale est équivalent a un probléme dual (apg&léoptimal), et donne une
condition nécessaire et su sante d'optimalité, facile a véri er en pratique.
Le théoreme d'équivalence général, découvert par Kiefer (1974) et étendu par Pu-
kelsheim (1980), qui généralise le résultat précédent a une large classe de criteres
d'information.
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Plusieurs conséquences du théoreme d'équivalence général, comme des bornes pour les
poids en conceptioB® optimale ou une formule explicite du plan optimal quand
les vecteurs de régressions forment une famille libre.

Chapitre 3 : Algorithmes classiques pour le calcul de plans optimaux De nombreux algo-

rithmes ont été proposés pour le calcul de plans d'expériences optimaux. Nous en présentons
certains dans ce chapitre. Nous restreignons notre étude au cas ou le nombre d'expériences
est ni (ou lorsque les expériences optimales sont données), de sorte que seul le vecteur
de poidsw entre en jeu dans le probleme d'optimisation, ce qui rend le probléme convexe.
Ce cadre correspond & celui du probléme telecoms étudié dans la seconde partie, puisque le
logiciel de mesures ne peut étre activé que sur un ensemble ( ni) de points du réseau.

Le premier algorithme que nous étudions est celui de Fedorov and Wynn pour le calcul de
plansD optimaux. Cet algorithme s'inspire du théoréme de Kiefer-Wolfowitz : le principe
consiste a partir d'un plan d'expériences arbitraire, puis de se déplacer a chaque itération
dans une direction donnée par I'évaluation du criteresdeoptimalité. Le théoreme de
Kiefer-Wolfowitz garantit qu'il s'agit d'une direction de descente. En fait, cet algorithme
appartient a la classe des méthodesddscentes faisablelous présentons I'extension de
cet algorithme a d'autres critéres d'information et quelques résultats de convergence.

Nous présentons ensuite la classe des algorithmes multiplicatifs introduits par Titte-
rington. Dans ces algorithmes, I'ensemble des poids du plan d'expériences est mis a jour
a chaque itération, en les multipliant chacun par un facteur proportionnel au gradient du
critere d'information qu'‘on maximise. Nous présentons l'algorithme original de Titterington
et certaines de ses variantes, ainsi que des résultats récents concernant la convergence de
ces méthodes, obtenus par Dette, Pepelyshev et Zhigljavsky (2008) et Yu (2010).

Enn, nous passons en revue les formulations basées sur l'optimisation semi-dé nie
(SDP) pour les problémes de plans d'expériences optimaux. Les méthodes de points in-
térieurs pour résoudre ces problémes d'optimisation semi-dé nie sont en général plus lentes
gue les algorithmes multiplicatifs, mais I'approche SDP o re une grande exibilité. En par-
ticulier, l'utilisateur peut ajouter sans e ort des contraintes sur les plans d'expériences.
Nous donnerons plusieurs exemples des avantage de l'approche SDP.

Chapitre 4 : Un théoreme de réduction du rang en Optimisation Semi-dé nie Ce chapitre
contient les résultats de [Sag09a], et présente un intérét indépendemment du reste de ce
manuscrit. Le résultat principal arme qu'une classe de problemes d'optimisation semi-
dé nie qui comprend la plupart des SDP étudiés au Chapitre 3 admet des solutions de
petit rang. En fait, l'intuition de ce résultat nous a été donnée par I'extension du théoreme
d'Elfving au cadre multiréponses (Chapitre 5). Nous avons néanmoins choisi d'insérer ce
chapitre a cet endroit du manuscrit, car le théoreme principal va s'avérer utile dans plusieurs
preuves du Chapitre 5, et mettre en lumiere notre approche basée sur I'optimisation conique
du second ordre.
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La classe des problémes considérés est cellprogsammes de packing semi-dé,nis
qui sont les analogues SDP des problemgsagkingclassiques en programmation linéaire.
Notre résultat montre que si la matrice qui dé nit la fonction objectif du SDP est demang
alors le programme de packing semi-dé ni a une solution dont le rang est inférieuna
conséguence intéressante est le cas dans lequél, car la variable optimalX du SDP
peut alors se factoriser sous la fordhe= xx T, et nous montrons que trouver revient
a résoudre un probleme d'optimisation conique du second ordre (qui est plus simple que le
SDP initial).

La preuve de notre résultat peut en fait s'étendre a une classe de problemes plus large,
dans laquelle toutes les contraintes ne sont pas depgipking Nous présentons également
cette version étendue de notre résultat.

Chapitre 5 : L'approche par Optimisation Conique du Second Ordre  Ce chapitre reprend

les résultats de [Sag09b]. Nous montrons que de nombreux problemes en conception optimale
d'expériences peuvent étre formulés grace a I'optimisation coniques du second ordre (SOCP).
Contrairement aux approches SDP vues au Chapitre 3, I'approche par SOCP reste e cace
pour de trés grandes instances, et combine ainsi les avantages de exibilité des SDP avec
la performance des algorithmes multiplicatifs.

Nous commencons par donner une extension du théoréme d'Elfving. Ce résultat ca-
ractérise géometriqguement les plansoptimaux dans le cadreultiréponses les poids
optimaux peuvent étre lus a l'intersection d'une droite vectorielle et de la bordure de I'en-
veloppe convexe d'un ensemble d'ellipsoides. Nous montrons ensuite que tout probléme de
plan A optimal se raméne a un probleme de ptaroptimal, pour des matrices d'obser-
vations augmentées. Notre résultat fournit donc une caractérisation géométrique des plans
A optimaux.

Nous mentionons toutefois qu'un résultat équivalent a été formulé de fagcon indépendante
par Dette et Holland-Letz en 2009, dans un cadre di érent. Dette et Holland-Letz ont
considéré un modéle hétéroscedastique (c'est a dire un modéle ou la metylerveriance
des observations sont des fonctions du paramétre inconnu). Ce modéle peut se ramener a
considérer des matrices d'observations de tang 2, de facon similaire au modele des
expériencemultiréponsesNous proposons une preuve et une analyse des conséquences de
ce résultat di érentes de celles de Dette et Holland-Letz.

Un corollaire de cette extension du théoreme d'Elfving est une formulation SOCP du
probléme de plac  (ou A ) optimal pour des expériences multiréponses. Nous donnons
une seconde preuve de cette réduction basée sur le théoreme du Chapitre 4 : Le SDP pour
lac optimalité a une solution de rarig et se raméne a un SOCP. De facon plus générale,
nous verrons que les problemes de conceptiooptimale ou le plan d'expériences est sujet
a plusieurs contraintes linéaires admettent une formulation SOCP. La encore, nous donnons
deux preuves de ce résultat, I'une s'appuyant sur un argument de statistiques et l'autre sur
notre théoréme de réduction du rang.
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Nous nous intéressons ensuite a d'autres critéres d'optimalité. Nous montrons que le
probleme de plam optimal pour un sous-systeme des parameétres inconnus se ramene
lui aussi a un SOCP. En n, nous considérons le critére robusg& dptimalité introduit
par Lauter; le probléeme de plan optimal correspondant se ramene a la minimisation d'une
moyenne géométrique sous des contraintes de type SOCP. En suivant une approche similaire
a celle de Dette (1993), nous obtenons alors une formulation SOCP pour le probleme de
conceptionD optimale. De plus, nous montrons que les conditions d'optimalité de notre
programme géomeétrique généralisent un théoreme de Dette (1993) au cadre multiréponses.

Chapitre 6 : Comparaison numériques des algorithmes Nous évaluons dans ce chapitre

les béné ces de notre approche par SOCP pour le calcul des plans d'expériences optimaux.
Notre approche se réveéle trés e cace pour plusieurs critéres d'optimalité, surtout lorsque
le nombrer de fonctions linéaires des parameétres que I'on cherche a estimer est petit (en
particulier pour le probléeme de plan optimal).

Nous comparons notre approche avec les algorithmes classiques présentés au Chapitre 3,
a savoir les algorithmes d'échange de type Wynn Fedorov, les algorithmes multipdicatifs
la Titterington, et I'approche par optimisation semi-dé nie.

Plusieurs types d'instances sont considérées. Dans un premier temps, nous étudions
des instances aléatoires, dans le but d'évaluer dans quelle mesure les di érents parametres
(nombre d'expériences, nombre d'inconnues, critére maximisé€, nombre de fonctions linéaires
gue I'on cherche a estimer,...) a ectent le temps de calcul. Nous nous intéressons ensuite a
des problémes de régressions polynomiales, qui ont été tres étudiés dans la littérature sur les
plans d'expériences. Nous présentons en n quelques résultats numériques sur des instances
provenant de l'application aux réseaux qui fait I'objet de la seconde partie de ce manuscrit.

Chapitre 7 : Problemes combinatoires en conception optimale d'expériences Ce cha-

pitre présente les résultats de [Sagl10]. Certains résultats avaient également été annoncés
dans [BGSO08]. Nous nous intéressons aux aspects combinatoires dans les problemes de plans
d'expériences optimaux. Dans de nombreuses applications, les variables contrblant les plans
d'expériences sont discrétes, voire binaires. Ce chapitre fournit des résultat d'approximabi-
lité en temps polynomial pour le probléme de conception optimale d'expériences en nombres
entiers, qui est NP-di cile.

En particulier, nous établissons une inégalité matricielle qui montre que la fonction ob-
jectif du probleme d'optimisation considéré sstis-modulaireNous en déduisons que l'ap-
proche gloutonne qui a souvent été utilisée pour ce probléme fournit toujours un plan
d'expériences qui approche l'optimum par un facteur d'au mbind=e 62% Notre ré-
sultat d'approximabilité peut également s'étendre au cas ou les expériences n'ont pas toutes
le méme codt.

Nous étudions ensuite les algorithmes consistant a arrondir la solution du probléme re-
laché continu, une approche qui a été appliquée par de nombreux auteurs. Lorsque I'on
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souhaite choisir un sous-ensemblendparmi s expériences, nous montrons que le plan

D optimal peut étre arrondi aléatoirement, de fagon a obtenir un plan d'expégatiee

pour lequel la dimension du sous-espace observable approche l'optimum par ungfacteur
avec une grande probabilité. Si ce résultat peut sembler plus faible que le résultat d'ap-
proximation gloutonne précédent, nous montrons néanmoins que le fgctsti(presque)
optimal, car il y a des instances pour lesquelles le ratio d'approximabilité moyen@st de

Seconde Partie : Contrble optimal des grands réseaux

Dans la seconde partie de ce manuscrit (page 145), nous étudions une application de
la théorie des plans d'expériences optimaux pour le contrle optimal des grands réseaux
backboneLes fournisseurs d'acces a Internet souhaitent surveiller le tra c sur leur réseau
pour plusieurs raisons. Dans cette these, nous nous concentrons sur l'une d'entre elles
uniquement : le probleme de l'estimation la plus précise possible de la matrice de trac.
Cette matrice donne le volume de tra ¢ pour chaque paire Origine-Destination du réseau,
et est nécessaire pour de nombreuses opérations contribuant a la bonne gestion du tra c et
a la maintenance du réseau. Nous pensons que notre approche (optimisation des mesures
pour l'estimation de la matrice de tra c) est bien fondée car elle indiqgue comment choisir
les mesures a n de capturer le plus d'information possible sur le tra ¢c dans le réseau.

Les deux premiers chapitres de la seconde partie présentent I'état de Il'art sur I'esti-
mation des matrices de tra ¢ dans les réseaux IP (Chapitre 8), avec un accent particulier
sur les approches basées sur la théorie de l'information et les projections entropiques, ainsi
qgue leur rapport historique avec les problemenddrix balancing(Chapitre 9). Le cha-
pitre 10 contient les principaux résultats de cette partie, et des perspectives sont présentés
au Chapitre 11.

Chapitre 8 : Estimation des matrices de tra ¢ : Etat de I'art L'estimation des matrices de

tra c dans les réseaux a fait I'objet de recherches intensives pendant la derniere décennie, de
la part des opérateurs Internet et de la communauté académique travaillant sur les réseaux.
Dans ce chapitre, nous passons en revue les di érentes méthodes qui ont été proposées pour
faire cette estimation. On peut principalement les séparer en deux catégories : les méthodes
gui n'utilisent que les mesures sur les liens, et celles qui se fondent sur des mesures directes
des volumes de tra c en origine-destination enregistrées par un logiciel de contréle.

L'inférence de la matrice de trac a partir des mesures sur les liens est un probleme
classique, tres pur d'un point de vue mathématique : étant donné un réseau avec son
ensemble de liens, et un ensemble de paires origine-destination (OD) qui empruntent ces
liens (le chemin utilisé pour chaque OD est supposé connu), le probléeme est de trouver
comment se répartit le volume total de tra ¢ parmi les paires OD, cette répartition devant
étre cohérente avec les volumes observés sur chaque lien. Ce probleme est typiquement
sous-déterming, puisque sur un réseau aveeuds, le nombre de liens est de I'ordrerde
tandis que le nombre d'inconnues (les volumes de tra ¢ sur chaque OD) est daiérdre
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Pour résoudre ce probleme, des méthodes Bayesiennes ou basées sur la théorie de I'in-
formation ont été proposées. Dans l'approche Bayesienne, on suppose que la matrice de
tra c suit une un loi paramétrique, et on maximise la vraisemblance des mesures sur les
liens pour choisir la valeur des paramétres. Cette maximisation peut se faire, par exemple,
avec l'algorithme Espérance-Maximisation. L'approche basée sur la théorie de l'information
se ramene a résoudre des problemes de maximisation d'entropie, qui seront étudiés en détail
au Chapitre 9.

Les méthodes les plus évoluées se basent sur des mesures directes des volumes de trac
en OD, enregistrées par un logiciel comme Net ow de Cisco Systems. Pour des raisons que
nous détaillerons dans ce chapitre, l'utilisation intensive de Net ow n'est cependant pas
souhaitable. La encore, on peut séparer les méthodes d'estimation de la matrice de tra c en
deux catégories : il a été proposé d'une part d'utiliser Net ow de facon intensive pendant
une certaine période seulement, pour construire un modéle précis des demandes de tra c. Ce
modéele est ensuite utilisé pour estimer la matrice de tra ¢ a des temps ultérieurs ou Net ow
est désactivé. Le modéle doit étre recalibré au bout d'un certain temps, car le tra c n'est
pas stationnaire. Cette classe de méthodes utilisant Net ow pour la calibration d'un modéle
du tra c regroupe, entre autres, la technique du Itre de Kalman, l'analyse en composantes
principales, et la méthode d&mouts Leur inconvénient commun est la durée des périodes
de recalibration, qui est relativement longue (au moins 24 heures de mesures intensives
sont nécessaires). D'autre part, des méthodes récentes utilisent des mesures partielle de
Net ow, enregistrées de facon régulieres, mais au niveau d'un petit nombre de routeurs
seulement. Nous présentons brievement I'ensemble de ces méthodes et nous les comparons
sous plusieurs criteres.

Chapitre 9 : Théorie de l'information et projections entropiques Dans l'approche basée

sur la théorie de l'information, nous normalisons la matrice de tra ¢ de sorte qu'elle somme
a 1. La matrice ainsi obtenue peut s'interpréter comme la distribution de probabilité qu'un
paquet choisi au hasard appartienne a telle ou telle paire OD. En suivant le principe de
maximisation d'entropie, la distribution de probabilité qui représente le mieux I'état de notre
connaissance est, parmi I'ensemble des distributions qui véri ent les équations de mesures
sur les liens, celle avec la plus grande entropie. Cette approche justi e le maldtiaire

de la matrice de tra c, qui est la matrice de tra ¢ avec I'entropie maximale lorsque les seules
mesures disponibles sur le réseau sont sur les liens externes (liens d'entrées et de sortie)
c'est a dire lorsque le comportement interne du réseau est représenté par une boite noire.

Le modele gravitaire peut étre utilisé comme une bonne estinafaori de la matrice
de tra c. Toujours en suivant la théorie de l'information, une approche naturelle consiste
a choisir la distribution des volumes de tra ¢ qui satisfait les équations de mesures, et est
la plus dicile a distinguer de I'estimatioa priori Cette approche conduit a formuler des
problémes deprojections entropiquesu I'on minimise la divergence de Kullback-Leibler
entre les volumes de tra c et I'estimation gravitaire, sous les contraintes imposeées par les
mesures au niveau des liens.
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Nous présentons ensuite quelques résultats sur ce probléme d'optimisation, dont une
partie a été obtenue au cours d'un stage de recherche précédent la présente thése. Nous
montrons que les points stationnaires sont en correspondance avec les racines d'un systeme
d'équations polynomiales linéaires en chaque variable. Nous donnons des conditions simples
qui garantissent l'existence et l'unicité de la solution de ce systeme. En particulier, nous
analysons la similarité entre I'algorithme classique lIterative proportional tting (IPF) qui
a souvent été utilisé pour le probleme d'inférence de la matrice de tra c et les algorithmes
classiques dmatrix balancingNous montrons que la généralisation directe des algorithmes
dematrix balancingaux projections entropiques dans les réseaux ne fonctionne que si toutes
les paires OD sont de longueurs inférieures ou égald3ans I'algorithme IPF, les variables
sont mises a jour une a une, de facon cyclique (au lieu d'étre modi ée simultanément comme
dans les problemes @alancing. Cette di érence fait de I'lPF un algorithme de projections
cycliques, et on sait en conséquence qu'il a un taux de convergence linéaire.

Chapitre 10 : Optimisation des mesures Netow  Ce chapitre présente plus en détails les
résultats de [SBG10, SGB10]. Nous montrons que le probleme consistant & trouver les loca-
lisations optimales de Net ow, ainsi que celui de choisir les meilleurs taux d'échantillonnages,
peuvent se formuler sous la forme de problemes standards de plans d'expériences optimaux.
Le probleme principal est la taille des matrices impliquées dans ce probléeme, qui sont de
taille n> n? pour un réseau avet n+uds. Quandn 17, les approches semi-dé nies
deviennent alors ine caces.

Nous proposons une nouvelle procédure, que nous avons appeléec ptatBnaux
successifs (PCOS), dans lequel un plan d'expérience est construit en prenant la moyenne
de plusieurs plars optimaux. Cette approche a I'avantagetdes bien passer a I'échelle
est a souligner que des éléments heuristiques laissent penser que lorsque le\smteurs
tirés selon une loi Gaussienne, la limite théorique du plan construit par I'approche PCOS est
proche du plarA optimal. Nous montrons des exemples ou cette a rmation est véri ée
en pratique.

De nombreux réseaux ne sont pas (ou seulement partiellement) instrumentés avec Net-
ow. Lorsqu'un opérateur décide d'équiper un nombre additionnel de routeurs avec Net ow,
le probléme est de choisir quels routeurs instrumenter en priorité. Nous comparons notre
approche (PCOS) avec l'algorithme glouton pour le probleme de déploiement de Net ow.
Toutes nos expériences sont basées sur des données réelles provenant deAhiéseaux
et Opentransit(ce dernier est le backbone international de France Telecom).

Nous adaptons ensuite notre approche pour prendre en compte les mesures prises a des
instants antérieurs (dans un contexte dynamique, I'opérateur peut ne pas avoir intérét a
activer Net ow avec des hauts taux d'échantillonage sur la méme interface pendant des
périodes successives; si un point du réseau est bien mesuré a lingtaemble intuitif
de concentrer I'e ort de mesure a un autre endroit du réseada &). Pour ce faire, nous
utilisons un article récent de Singhal and Michailidis. Ces auteurs ont formulé un probléme
de plan optimal dans lequel la matrice d'information comprend un terme supplémentaire
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pour les erreurs des mesures passées qui est mis a jour a chaque pas de temps grace a un
Itre de Kalman. En fait, nous montrons par un exemple sur Abilene qu'en raison de la
grande variabilité du tra c, il est parfois préférable d'ignorer I'e et des mesures passées.

Finalement, nous évaluons notre approche pour le probleme d'échantillonage optimal
avec Net ow, pour le cas de contraintpar routeur Etant donné un nombre maximal de
paquets que Net ow peut analyser au niveau de chaque routeur, le but est de trouver la
répartition optimale des mesures au niveau de chaque routeur, c'est a dire régler au mieux
les taux d'échantillonage sur chaque interface tout en maintenant le nombre de paquets
échantillonnés sous le seuil autorisé. Nous étudions par notre approche PCOS une instance
de ce probleme sur le réseau Opentransit, qui comprend 13456 paires OD, 116 routeurs
et 436 interfaces. Nous ne connaissons pas d'autres approches qui pourraient traiter des
instances de cette taille.

Chapitre 11 : Perspetives pour la modélisation spatio-temporelle des matrices de trac

Nous présentons dans ce chapitre quelques perspectives pour I'estimation des matrices de
tra c. Il s'agit d'un travail préliminaire, basé sur la théorie des matrices aléatoires et des
décompositions de petit rang des tenseurs.

Quand on la considére au cours du temps, la matrice de trac est en fait un objet
tridimensionnel (origines x destinations x temps), qui a presque toujours été traité comme
un objet a deux dimensions par les auteurs de la communauté réseaux. Pour se ramener
a des matrices, les matrices origine-destination sont vectorisées sous la forme d'un vecteur
colonne a chaque pas de temps. Cependant, cette vectorisation fait perdre une précieuse
information sur les corrélations qui existent entre les origines et les destinations.

Nous avons étudié la distribution empirique des valeurs singulieres des matrices de tra c
OD, a partir des données reelles dont nous disposons sur Abilene et Opentransit. Il est
intéressant de remarquer que mise a part quelques grandes valeurs singuliéres, la distribution
du bas du spectre correspond tres bien a la distribution théorique que devrait avoir le
spectre d'une matrice aléatoire, dite Wéshart Cette remarque laisse penser que chaque
matrice origine-destination peut se décomposer comme la somme d'une matrice de petit
rang (qui supporte la partie déterministe du signal), plus une matrice de bruit aléatoire, dont
la distribution est reliée a la loi de Wishart. Cette étude préliminaire n'est pas encore une
méthode pour ltrer le bruit et estimer les matrices de tra ¢ a partir de mesures incomplétes.
En revanche, il nous semble essentiel de modéliser la structure de petit rang des matrices de
tra ¢ Origine-Destination. C'est chose faite dans la derniére section de ce chapitre, consacrée
a l'étude de décompositions de petit rang du tenseur de tra c tridimensionnel.

Si les approximations de petit rang de matrices sont des problémes parfaitement compris
de nos jours (grace aux troncations de la décomposition en valeur singulieres), les approxi-
mations de petit rang des tenseurs font en revanche I'objet de recherches actives. Nous
passons en revue quelques résultats et algorithmes sur les décompositions de tenseurs, et
nous montrons le potentiel de ces méthodes en analysant les décompositions de tenseur
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de tra c avec des données réelles (Abilene et Opentransit). Finalement, nous présentons
I'esquisse d'une méthode basée sur les décompositions tensorielles pour I'estiemation
ligne des matrices de tra ¢ a partir de mesures incomplétes. Nous montrons par un exemple
sur Opentransit que notre méthode conduit & une amélioration par rapport a la méthode
classiqgugaomogravitaire

1.2.2 Contributions de cette thése

Nous listons ci-dessous les contributions principales de cette these :

Théoreme 4.1.2, et son extension Théoreme 4.2.2. Tout probleme de la classe des
programmes de packing semi-dé ras la matrice dans la fonction objectif est de
rangr a une solution de rang inférieur ou égal.&Nous discutons les extensions et
conséquences de ce résultat. Ce théoreme sera utilisé plusieurs fois au Chapitre 5.
Théoreme 5.1.1 : Extension du théoreme d'Elfving au cadre multiréponses ( Nous avons
présenté ce résultat a la conférence [SBG09]. Il a été découvert de facon indépendante
par Dette et Holland-Letz [DHL09]).

Théoreme 5.2.1 : Formulation SOCP du probleme de plaoptimal. Nous donnons

une interprétation géomeétrique de ce résultat.

Extension du résultat précédent au critére Ale optimalité (Théoréme 5.2.2), et

au cas ou le plan d'expériences est soumis a plusieurs contraintes linéaires (Théo-
reme 5.2.3).

Théoreme 5.2.5 : Formulation SOCP du probléme de Pplaoptimal pour un sous-
systéme de paramétrés’

Théoreme 5.3.1 : Formulation sous forme d'un programme géométrique du probléeme
robuste deS optimalité. Les conditions d'optimalité de ce probleme généralisent un
résultat de Dette [Det93] au cadre multiréponses (Théoreme 5.3.2).

Un corollaire du résultat précédent est un SOCP pour le probleme dB plaptimal

(cf. Equation 5.25).

Tests numérigues et comparaisons avec d'autres algorithmes (Chapitre 6), montrant
I'e cacité de l'approche par SOCP lorsque le nombrede fonctions linéaires des
parametres a estimer est petit (en particulier pour les ptangptimaux our = 1).
Théoreme 7.2.1 : Réduction du probleme combinatoinglales d'expériences de rang
maximala MAXCOVERAGE. En conséquence, si I'on admét NP, il n'existe pas
d'algorithme polynomial qui approche pan de rang maximgbar un facteur plus

grand quel e 1.

Proposition 7.2.4 : Si° est operateur antitone suR,, alors pour tout triplet
(X;Y;2)2 S,

tracef (X + Y + Z)+trace f(Z) tracef(X + Z)+trace f(Y + Z):

Corollaire 7.2.6 : Le critere, de Kiefer (vu comme une fonction ensembliste) est
sous-modulaire croissapburp 2 [0; 1].
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Théoreme 7.2.7 : En conséquence, l'algorithme glouton retourne toujours une solu-
tion approchant par un facteur d'au moias e ! I'optimum du probléme de plan

p optimal (pourp 2 [0; 1]). Des extensions possibles de ce théoreme sont présen-
tées.
Proposition 7.3.4 (cf. également Théoréme 2.4.7) . Généralisation des bornes supé-
rieures pour les poid3 optimaux au cadre multiréponses (découvert indépendem-
ment par Harman et Trnovska [HTO09] pour le cas de I'estimation du vecteur complet
des parameétres, i.e. quandK = 1).
Théoreme 7.3.7 : Si I'on doit choigir expériences parns, nous donnons deux al-
gorithmes d'arrondi randomisé qui retournent une solution approchant l'optimum du
probléme deplan de rang maximagdar un facteum=s (en moyenne).
Nous montrons des instances pour lesquelles le ratio d'approximation des algorithmes
randomisés précédents est(s 1) (cf. Remarque 7.3.2).
Proposition 9.5.7 : Pour le probléeme de projection entropique avec contraintes linéaires
sur un réseau, l'algorithme de point xe naturel est contractant si et seulement si toutes
les paires OD sont de longueurs inférieures ou égales a 2. (Résultat obtenu pendant
un stage antérieur a cette thése.)
Formulation de type plan d'expériences pour le probleme du déploiement optimal de
Net ow, et le probleme de I'échantillonnage optimal de Net ow (cf. Section 10.2).
Proposition d'une nouvelle méthode (baptigdansc Optimaux Successijf®COS)
basée sur le calcul de plusieurs plansptimaux pour traiter les problemes de grande
taille en conception d'expériences (cf. Section 10.4.1). Ebauche d'une justi cation
heuristique de notre approche (Sections 10.4.2 et 10.4.3).
Validation de notre approche par des tests utilisant des données réelles (cf. Sec-
tion 10.5).
Mise en évidence de la structure de petit rang des matrices de tra c origine-destination.
Proposition d'un modéle signal bruit, et analyse préliminaire dwuit par des outils
de la théorie des matrices aléatoires (cf. Section 11.1).
Mise en évidence de la structure de petit rangtdaseurs de tra ctridimensionels
(origines destinations temps). Esquisse d'une méthode reposant sur les tenseurs
pour estimer les matrices de traen ligne(cf. Section 11.2.3).



Introduction (in English)

This chapter brie y presents our motivation and the scienti ¢ path which has led to this
thesis. At the end of this chapter, we draw a detailed outline and list the contributions of
this thesis.

1.3 Optimal design of experiments and Network measurements

Internet Service Providers (ISP) wish to have a good knowledge about the tra ¢ which
transit through their networks, for many tra ¢ engineering and network planning tasks. An
essential part of the required information is treec matrix , which contains the volumes of
tra c for each origin-destination pair of the network during a given period of time, i.e. the
number of bytes that has travelled from any entry node to any exit node. The importance
of the networking operations relying on the tra ¢ matrix is increasing as the tra ¢ grows in
volume and becomes more complex, but in practice, obtaining accurate estimations of the
demands of tra c is a challenging issue. Contrarily to what intuition may suggest, network
measurements are: (i) often not available everywhere; (ii) expensive; (iii) likely to a ect the
guality of service. It is thus a crucial issue to decide where network measurements should
be performed, as well as their sampling rates.

We approach the problem of optimizing the network measurements by using the theory of
optimal experimental desighsThis theory studies indeed how to allocate the experimental
e ort to a set of available experiments, in order to maximize the quality of estimation of an
unknown parameterThinking of each potential location of the measuring software as an
experimentand the tra ¢ matrix as theunknown parameterone obtains a niceptimal
experimental desigformulation of our telecommunications problem. However, the classic
optimal experimental design algorithms are intractable on large scale networks, because very
large matrices are involved.

This observation motivated us to search for scalable algorithms in optimal experimental
design. We developed an approach relyingecond Order Cone Programmi(8§OCP), a
class of mathematical optimization problems which generalizes Linear Programs (LP), and
which can be solved by interior-point methods in a much shorter time than Semide nite

2. or theory of optimal experiments

13
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Programs (SDP) of the same size. This approach turns out to be very e cient for problems
in which a small number of linear functions of the unknown parameter must be inferred.

In fact, our approach can not be directly applied to the initial telecommunications prob-
lem. The reason is that the ISP usually wishes to estimate the whole tra ¢ matrix (while
our SOCP approach is best-suited for the estimation of a linear combination of the volumes
of tra c). To overcome this problem, we have proposed a new method which rely on the
computation of several optimal designs, and can be e ciently implemented by solving a
sequence of SOCP.

Another issue arising from the industrial problem is the combinatorial aspect: when
an ISP wishes to upgrade a set of routers of the network, so that they can support the
measuring device, the natural formulation isreger optimal design problenihis problem
is mainly handled by heuristic approaches in the literature, which motivated our work on
the submodularity of the experimental design information criteria. This approach led to
polynomial-time approximability bounds for some NP-hard optimization problems.

1.4 Organization and contributions of this manuscript

This thesis is organized in two di erent parts. The rst part is devoted to theoretical and
algorithmic results in optimal experimental design, which rely on mathematical programming
and submodular optimization. These results have emerged from an industrial problem in
telecommunication networks, which we study in the second part of this manuscript. We
detail below the content of each chapter. Then, we shall list the contributions of this thesis.

1.4.1 Detailed outline
Part I: Optimal Design of Experiments

In a rst part, we present theoretical results for the numerical computation of optimal
experimental designs. The focus is on linear regression models, when the number of available
experiments is nite, with a special interest for the situation in which one single experiment
can produce several observations at the same tmmdtifesponsdramework). The rst
two chapters of this part essentially recall the necessary background on the theory of optimal
experimental designs. The following chapters (4 7) contain new results.

Chapter 2: An introduction to the theory of Optimal Experiments The theory ofoptimal
experimental desigris an important branch of statistics at the interface with Optimization,
which has a very wide spectrum of applications. It aims at nding the optimal value that the
experimenter should give to the control variables of the experiments at his digedced,

to perform them These control variables (number of times that we perform a measurement,
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sampling rate of a device, time at which the measurement will be recorded, etc.) a ect the
measured data, and so the inference of the quantities of interest depends on those variables.

In this chapter, we review classic results of the theory of optimal experimental design. We
focus on the linear regression models, in which the expected value of the measurements is
linear with respect to the unknown parameters. In addition, a single experiment is allowed to
produce a multidimensional observation: this is the natural setting for the optimal monitoring
problem which will be studied in Part Il. We concentrate our attentioragproximate
designsthat is, the design variable is a continuous veetosumming to 1 ( 7, w; =
1), which indicates the allocation of the experimental e ort to the available experiments.

If in addition the set of potential experimen¥s (the regression regigns in nite, the
experimenter should also nd the optimal measurement points::;Xs 2 X where to
perform the experiments.

This chapter starts with a historical review of the theory of optimal experimental design,
with a brief presentation of the contributions of Elfving, Kiefer, Fedorov and Pukelsheim
(among others). We next introduce the standard notation, and we shall see that the Gauss-
Markov theorem gives lawer boundon the covariance matrix for an unbiased estimator of
the parameters, which is attained for the least-square estimator. This yields the de nition
of the information matrixof a design (as the inverse of this best variance), and the general
formulation of the optimal design problem, i.e. theaximization of a scalar function of
the information matrix We next review the popular information criteria from the optimal
experimental design literature, which de ne the concepts &; E; D; T; ,, and robust
S optimality.

The last part of this chapter is devoted to a review of some fundamental results in
optimal experimental design:

The Elfving theorem (1952), which gives a simple geometric characterization of
c optimality.
The Kiefer-Wolfowitz theorem (1960), which shows that the optimal problem is
equivalent to a dual problem (call& optimal) and gives optimality conditions that
one may easily check.
The general equivalence theorem, discovered by Kiefer (1974) and extended by
Pukelsheim (1980), which generalizes the latter result to a large class of informa-
tion criteria.
Some consequences of the general equivalence theorem, like bound® orofitenal
weights or a close form formula of tihe optimal design on independent regression
vectors.

Chapter 3: Classic algorithms for computing optimal designs ~ Many algorithms have been
proposed to compute optimal experimental designs. We review some of them in this chapter.
We restrict our study to the case in which the number of available experiments is nite (or
the optimal measurement points are given). Thus, the optimization is carried over the vector
of weightsw only, and the optimization problem becomes convex. This is also the setting
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of the optimal monitoring problem studied in Part Il, where the monitoring devices may be
activated at a nite number of given locations.

The rst algorithm that we study is the one of Fedorov and Wynn for the computation of
D optimal designs, which was inspired by the the Kiefer-Wolfowitz theorem. The idea is to
start from an arbitrary design and to move at each step in a direction which is given by the
evaluation theG criterion. The Kiefer-Wolfowitz theorem ensures that this is a descent
direction. This algorithm is in fact a feasible descent method. We present the extension of
this algorithm to a wider class of information functions and discuss convergence issues.

We next review the class of multiplicative algorithms, introduced by Titterington. The
principle of this class of algorithms is to update simultaneously all the weights of a design, by
multiplying them by a factor which is proportional to the gradient of the objective function.
We present the original algorithm of Titterington and some of its variants, as well as recent
convergence results from Dette, Pepelyshev and Zhigljavsky (2008) and Yu (2010).

Finally, we review some semide nite programming (SDP) formulations of optimal exper-
imental design problems. The interior point algorithms for semide nite programming are
usually slower than the multiplicative update algorithms, but they o er a lot of exibility,
and the possibility to add without e ort new constraints in the problem. We give several
examples of the advantages of the SDP approach.

Chapter 4: A Low rank reduction Theorem in Semide nite Programming This chapter
contains the results of [Sag09a], and is of independent interest. The main result is that a
class of semide nite programs which encompass the semide nite programs of Chapter 3
admits solutions of low rank. In fact, we got the intuition of this result from the extension
of Elfving's theorem to the multiresponse framework (Chapter 5). We have chosen to
insert this chapter at this point of the manuscript though, because our theorem will provide
alternative proofs of the results of Chapter 5, shedding more light on our Second order cone
programming approach.

The class of semide nite programs consideredsaraide nite packing programehich
are the SDP analogs to the packing problems in linear programming. Our main result states
that if the matrix de ning the objective function of this SDP has rankhen the semide nite
packing program has a solution that is of rank at mosfn interesting corollary is the case
in whichr = 1, because the optimal SDP varialdecan be factorized asx T, and we show
that nding x reduces to a Second-Order Cone Program (SOCP), which is computationally
more tractable than the initial SDP.

The proof of this result actually carries over a wider class of programs, in which not all
variables are subject fpackingconstraints. We next present this extended version of our
result.

Chapter 5: The Second Order Cone Programming approach This chapter contains the
results of [Sag09b]. We show that several optimal experimental design problems may be
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formulated as second order cone programs. In contrast to the SDP approach of Chapter 3,
the SOCP approach remains tractable and e cient on very large instances, thus combin-
ing the performance of multiplicative update algorithms and the exibility of semide nite
programs.

We start by giving an extension of the Elfving theorem. The result is a geometric char-
acterization of thec optimal designs for multiresponse experiments: the optimal weights
can be read at the intersection of a straight line and the boundary of the convex hull of
ellipsoids. We next point out that th& optimal design problem can be formulated as a
c optimal design problem with augmented observation matrices, such that our result also
yields a geometric characterization/fdf optimality.

It should be mentioned that an equivalent result was established independently by Dette
and Holland-Letz in 2009, but in a di erent context. Dette and Holland-Letz considered a
heteroscedastic model (i.e. an experimental model where both the mean and the variance
of the observations depend on the parameter of interest), which led them to study the case
in which the observation matrices are of rdnk 2, just as in the model amultiresponse
experimentsThe proof and the analysis of the consequences of the present result presented
in this chapter are di erent than those of Dette and Holland-Letz.

A consequence of this extended Elfving theorem is that théand A ) optimal design
of multiresponse experiments can be formulated as a second order cone program. We give
an alternative proof of this result, relying on the rank reduction theorem of Chapter 4. the
c optimality SDP presented in Chapter 3 has a rank-one solution and so it reduces to a
SOCP. More generally, we shall see that Aheoptimal design problem with multiple linear
constraints can be formulated as a SOCP. Again, we give two proofs of this result, one
relying on a statistical argument and the other one on our rank reduction theorem.

We next investigate other optimality criteria. We shall see thatTtheoptimal design
problem for the estimation of a parameter subsystem can also be formulated as a SOCP.
Then, we consider the robuSt optimality criterion introduced by Lauter: the correspond-
ing optimal design problem reduces to the maximization of a geometric mean under SOCP
constraints. As a consequence, we obtain a SOCHDfooptimality, by following the
approach of Dette (1993). Moreover, we show that the optimality condition of our geomet-
ric program generalizes a theorem of Dette (1993) which geometrically characterizes the
S optimality.

Chapter 6: Numerical comparison of the algorithms In this chapter, we evaluate the
bene ts of our SOCP approach for the computation of optimal experimental designs. We
shall see that for several optimization criteria, the second order cone programs presented
in Chapter 5 are very e cient when the numberof linear functions of the parameter to
estimate is small (in particular far optimality).

We compare our approach to the algorithms presented in Chapter 3, namely semide nite
programs, Wynn Fedorov-type exchange algorithms, and Titterington-type multiplicative
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algorithms.

We consider several kind of instances. At rst, we study random instances of optimal
design problems, in order to evaluate to which extent each parameter (number of exper-
iments, number of unknowns, number of linear functions to estimate, design criterion,...)

a ects the computation time. Then, we consider classic polynomial regression models that
have been extensively studied in the experimental design literature. Finally we present some
computational results from the network application which will be developed in the second
part of this thesis.

Chapter 7: Combinatorial problems arising in optimal design of experiments  This chapter
contains the results presented in [Sag10]. Some of them were already announced in [BGSO08].
We investigate combinatorial aspects of the optimal experimental design problems. In a
number of real-world applications, the variables controlling the experimental design are
discrete, or binary. This chapter provides some polynomial-time approximability results for
the discrete optimal experimental design problem, which is NP-hard.

In particular, we establish a matrix inequality which shows that the objective function is
submodular, from which we deduce that the greedy approach, which has often been used
for this problem, always gives a design within 1=e  62% of the optimum. Our result
also extends to the budgeted case, in which experiments have di erent costs.

We next study the design found by rounding the solution of the continuous relaxed
problem, an approach which has been applied by several authors: When the goal is to select
n out of s experiments, we show that th2 optimal design may be rounded to a random
subset ofn experiments for which the dimension of the observable subspace is Wihin
the optimum with a high probability. This result may look disappointing in the rst place,
but we show that the} factor is (almost) optimal since there are some instances for which
the average ratio of approximation js;.

Part 1l: Optimal monitoring in large Networks

In the second part of this manuscript (page 145), we study an application of the theory
of optimal experimental designs to the monitoring of large backbone networks. Internet
providers want to monitor their networks for several di erent objectives, but in this thesis
we concentrate on the problem of accurately inferring the tra ¢ matrix only: this matrix
gives the volume of tra c for every origin-destination pair of the network, and is needed
for many networking applications. We believe that this approach is well funded, because
it indicates which part of the network captures the most valuable information about the
trac.

The rst two chapters of part Il present the background on the tra ¢ matrix estimation in
IP networks (Chapter 8), with a particular insight into the information theoretic approaches
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relying on entropic projections, and their historic relation with matrix balancing problems
(Chapter 9). Chapter 10 contains the main results of this part, and Chapter 11 presents
some perspectives.

Chapter 8: Inference of the tra ¢ matrix: a review The estimation of tra ¢ matrices in
networks has attracted much interest for the last decade, from both Internet providers and
the network research community. In this chapter, we review the di erent methods that have
been proposed for this task; they can principally be classi ed in two types: those relying
on the link counts only, and those which take advantage of direct network measurements
provided by a monitoring software.

The inference of the tra ¢ matrix from link counts is a classic problem, very pure on a
theoretical point of view: given a network with its set of links, and a set of Origin-Destination
(OD) pairs routed on these links (the path for each OD is assumed to be known), the goal
is to nd the repartition of the total volume of tra c between the di erent OD pairs, such
that this allocation is consistent with the volumes observed on the links. This problem is
typically underdetermined, since on a network withodes, the number of links is in the
order ofn, while the number of unknown OD ows is typically of ordér

To tackle this issue, Bayesian and information theoretic methods have been proposed. In
the Bayesian approach, a parametric law is assumed for the distribution of the ow volumes
(i.e. the volumes of tra c on the OD pairs), and we select the parameters of this law so
as to maximize the likelihood of the observation on the link counts. Typically, this can be
carried out by the Expectation-Maximization algorithm. The information theoretic approach
leads to entropic projections, which will be studied with more details in Chapter 9.

Some more evolved methods allow the use of direct measurements, which can be col-
lected by a network monitoring tool, like Net ow from Cisco Systems. For technical reasons
which we detail in this chapter, the intensive use of Net ow on the network is not suited.
Here again, we can separate the estimation methods in two types, depending on the mea-
suring scheme: on the one hand, some methods require an intensive use of Net ow during a
certain period, in order to build an accurate model of the tra c. This model is then used for
the inference of the tra c on subsequent time periods, until the model becomes inaccurate
and needs to be updated. This class of methods, relying on Net ow for the calibration of a
temporal model of the ows, includes but is not limited to the Kalman lItering technique,
the principal component analysis, and the method of fanouts. Their common inconvenient
is that the time period required for the calibration is long (at least 24 hours of measurements
are needed). On the other hand, most recent methods use partial measurements of Net ow,
which are collected on a regular basis, but at a limited number of locations in the network.
We brie y present these methods and draw a comparative summary.

Chapter 9: Information theory and entropic projections  In the information theoretic ap-
proach, we scale the vector of ow volumes so that it sums to one; the resulting vector thus
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represents the distribution of probability that a packet travelling on the network belongs to
a particular OD pair. Following the principle of maximum entropy, the probability distribu-
tion which best represents the current state of knowledge is, among all those distributions
satisfying the measurement equations, the one with largest entropy. This gives raise to the
gravity estimate of the tra ¢ matrix, which is the ow distribution with maximum entropy
when all we know is the volume of tra ¢ on the external links (ingress and egress) of the
network that is, when the internal behaviour of the network is a black box.

This gravity estimate can be used as a good prior for the tra ¢ matrix. According to
Information theory, a natural approach is to select the distribution of ows which satis es
all the measurement equations (internal link counts), and is as hard to discriminate from
the prior as possible (Principle of Minimum Discrimination Information). This leads to
optimization problems, in which the Kullback-Leibler divergence of the ows (with respect
to the gravity prior) must be minimized, subject to the constraints imposed by the linear
measurements.

We next present some unpublished results on the latter optimization problem that the
author obtained during his master studies. We shall see that the stationarity condition of
this problem is equivalent to nding the root of a system of polynomials that is linear in
every variable. We give simple conditions which ensure that a solution of this system exists
and is unique. Then, we review the existing algorithms to solve this optimization problem.
In particular, we analyze the similarity of the popular Iterative proportional tting (IPF)
algorithm with classic algorithms for matrix balancing. We shall see that the direct gen-
eralization of the matrix balancing algorithm to the case of entropic projections works if
and only if all the OD pairs considered in the network are of length at most 2. In the IPF
algorithm, the coordinates of the variable are updated one at a time, in a cyclic manner
(instead of being updated simultaneously). This di erence lets the IPF belong to the class
of cyclic projection algorithms, and thus it has a linear rate of convergence.

Chapter 10: Optimization of Netow measurements  This chapter presents in greater
details the results of [SBG10, SGB10]. We show that both the problem of selecting the
optimal locations of Net ow and the problem of selecting the optimal sampling rates can
be formulated as (linear) optimal experimental design problems. The main issue is the size
of the matrices involved in this problem, which are of sze n? for a network withn

nodes. In particular, SDP approaches become intractable as soon 43.

We propose a new procedure, called Successioptimal designs (SCOD), in which
we take the average of sevetal optimal designs, where the vectarsare drawn from a
Gaussian distribution. This method can be implemented on very large networks, by solving
a sequence of SOCP. Interestingly, there are some heuristic arguments which let us think
that the theoretical limit of the design returned by the SCOD procedure is closed to the
classicA optimal design. We show by examples that this fact is veri ed in practice.

We next compare our SCOD approach to the greedy algorithm for the Net ow deploy-
ment problem: several networks are not (or only partially) instrumented with routers that
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support Net ow. If an Internet provider wishes to equip a number of additional routers with
Net ow, an interesting problem is thus to identify the most meaningful subset of locations
for the monitoring-tool. Our experiments rely on real data fromAhgeneand Opentransit
networks (the latter is the international backbone of France Telecom).

Then, we adapt our approach so that it can take into account the past measurements (in
a dynamic context, the Internet provider may not want to apply high sampling rates at the
same location during successive periods of time; if a location is well measured tatitime
seems intuitive to concentrate the experimental e ort to some other locations at) To
do this, we use the ideas of a recent article of Singhal and Michailidis, in which an optimal
experimental problem is stated, with an additional term in the information matrix which
accounts for the errors on the past measurements, and which is computed via a Kalman
lter. In fact, we shall see by an example on the Abilene network that due to the very high
variability of the tra c, it is better to ignore the impact of past measurements.

Finally, we evaluate our approach for the problem of selecting the optimal sampling rates
of Net ow, with per-router constraints. Given a maximal number of packets that may be
sampled at each router location, the goal is to allocate optimal sampling rates to every
incoming interface of each router, while keeping the number of sampled packets under the
threshold. We study an instance on the Opentransit network, which contains 13456 OD
pairs, 116 routers, and 436 interfaces. To the best of our knowledge, there is no other
algorithm which can handle problems of this size.

Chapter 11: Perspectives for a better spatio-temporal modelling of tra ¢ matrices We
present in this chapter some perspectives for the estimation of tra ¢ matrices. This is a
preliminary work, based on the theory of random matrices and low-rank tensor decomposi-
tions.

When observed over time, the tra c matrix is a tridimensional object ( origin x desti-
nation x time), which has almost always been handled as a two-dimensional object by the
authors from the networking community. To this end, the Origin-Destination matrices of
each time period are stacked as a column vector. By performing this vectorization though,
important information on the spatial correlations between the origins and the destinations
in the tra ¢ matrix may be lost.

We have studied the empirical distribution of the singular values of the OD matrices,
with the real data at our disposal from the Abilene and Opentransit backbones. Inter-
estingly, apart from a few large singular values, the lower part of the spectrum of the OD
matrices has a very good t with the theoretical distribution of the singular values of random
matrices from the so-calléd/ishart distribution. This remark lets us think that any Origin-
Destination matrix can be decomposed as the sum of a low-rank matrix (which carries the
energyof the signal), plus a noise matrix whose distribution is related to the Wishart's law.
This preliminary study does not give a method for the estimation of tra ¢ matrices from
partial measurements yet. However, it sheds light on the importance of modelling the low
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rank structure of OD matrices. This is done in the nal section of this chapter, where low
rank decompositions of the tridimensiotral ¢ tensor are studied.

While low-rank approximations of matrices is a completely understood problem (through
the singular value decomposition), the low-rank approximation of tensors is an active research
topic. We review a few basic results and algorithms for tensor decompositions, and we
show the potential of these methods by analyzing decompositions of real tra ¢ tensors.
Finally, we present the sketch of a new method based on tensor decompositions for
the online estimation of tra ¢ matrices from incomplete measurements. We show by an
example on Opentransit that our method yields an improvement, by comparison to the
classicomogravity method.

1.4.2 Contributions of this thesis

We next list the main contributions of this thesis:

Theorem 4.1.2, and its extension Theorem 4.2.2. Any problem from the class of
semide nite packing programsvhere the matrix in the objective function is of rank

r, has a solution of rank at most Extensions and consequences of this result are
discussed. This theorem shall be used several times in Chapter 5.

Theorem 5.1.1: Extension of Elfvinfg's theorem to the multiresponse case (We pre-
sented this result at the conference [SBGO09]. It was discovered independently by Dette
and Holland-Letz [DHL09]).

Theorem 5.2.1: SOCP formulation of tlee optimal design problem. A geometric
interpretation of this result is given.

Extension of the latter result to the case Af optimality (Theorem 5.2.2), and to

the case of problems with several linear inequality constraints (Theorem 5.2.3).
Theorem 5.2.5: SOCP formulation of tiie optimal design problem for a subsystem

of parameteK T .

Theorem 5.3.1: Geometric programming formulation of the model r@usbptimal
design problem. The optimality conditions of this program generalize a theorem of
Dette [Det93] to the case of multiresponse experiments (Theorem 5.3.2).

A corollary of the latter result is an SOCP formulation Bor optimality (cf. Equa-

tion 5.25).

Numerical tests and comparisons to other algorithms (Chapter 6), showing the im-
portance of our SOCP approach when the number of quantities of interegmall
(typically, forc optimality wherer = 1).

Theorem 7.2.1: Reduction of the combinatomaéxrank design probleto MAX-
COVERAGE. As a consequenceRi® NP, there is no polynomial-time algorithm
which approximates the maxrank design by a factor larger tham *.

Proposition 7.2.4: If %is operator antitone oiR, , then for all triple(X;Y;Z) 2 S,

tracef (X + Y + Z)+trace f(Z) tracef(X + Z)+trace f(Y + 2Z):
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Corollary 7.2.6: The Kiefer's, criterion (seen as a set function) n®ndecreasing

submodularfor p 2 [0; 1].

Theorem 7.2.7: A a consequence, the greedy algorithm always return a solution within

1 e ! of the optimum of the , optimal design problenp(2 [0; 1]). Some possible

extensions of this theorem are presented.

Proposition 7.3.4 (cf. also Theorem 2.4.7). Multiresponse generalization of the

upper bound forD optimal weights (discovered independently by Harman and

Trnovska [HT09], for the case in which the full vector of parameteis of inter-

est, i.e.K = 1).

Theorem 7.3.7: Ih experiments are to be selected ouspive present two randomized

rounding algorithms which return a solution witmnas of the maxrank optimum (in

average).

We show some cases in which the performance of the latter randomized algorithms is

n=(s 1) (cf. Remark 7.3.2).

Proposition 9.5.7: For the entropic projection problem with linear constraints on a

network, the natural x-point algorithm is nonexpansive if and only if every OD pair

of the network is of length at most 2. (This result was obtained during the master

studies of the author.)

Optimal experimental design formulation of the Net ow deployment problem, and the

Net ow optimal sampling problem (cf. Section 10.2).

Proposition of a new method (call&lccessive Optimal DesignsSCOD) funded

on the computation of several optimal designs to handle a certain class of large

scale optimal experimental design problems (cf. Section 10.4.1). Sketch of a heuristic

justi cation of our approach (Sections 10.4.2 and 10.4.3).

Validation of our approach with experimental tests relying on real data (cf. Sec-

tion 10.5).

Evidence of the low-rank structure of origin-destination tra ¢ matrices (at a given

point in time). Proposition of a signal noise model, preliminary analysis of the noise

relying on the theory of random matrices (cf. Section 11.1).

Evidence of the low rank structure of the three-wayc tensor (origin  destination
time). Sketch of a method relying on tensor to estimate tra ¢ matrices in real

time (cf. Section 11.2.3).
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Chapter 2

An introduction to the theory of
Optimal Experiments

In this chapter, we introduce the theory of optimal experimental design, and we review
the fundamental results which will be useful for the rest of this thesis.

2.1 History

The theory of optimal experimental designs has been developed since the 1920's, after
some work of Gosset [Stul7] (known under the pseudonym Student) and Fisher, who
introduced several useful concepts for a theoretical approach to the design of experiments
in his book [Fis35]. We refer the reader to the article of Atkinson and Bailey [ABO1] for a
review on the early development of the theory of optimal experiments.

One of the earliest theoretical results was obtained by Elfving in 1952 [EIf52], who
focused on the problem where the experimenter dispossexjieriments, the outcome
of which are linear functions of an unknown parameter (up to a zero-mean noise on the
measurements). Elfving interested himself in the problem of optimally allocating a total
number ofn observations to the potential experiments, i.e. to select the nuntheo$
times that a measurement will be performed with experimewith  {_, n; = n. An idea
of Elfving has been to replace the discrete design variapleg the real numbers; = °-
which satisfy:

w O w =1; (2.1)
i=1

and then to drop the integer constraint om;. In other word, Elfving posed the problem of
nding the optimal amount of experimental e os; to spend on each experiment, where
w is any continuous vector on lengshsatisfying Condition (2.1). A lot of results have
emerged from this smoothness, starting with Elfving's Theorem (Theorem 2.4.1, [EIf52])
which characterizes geometrically the optimal degigwhen there is a single quantity of
interest € optimal design).

27
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This setting was then generalized, to allow the experiments to be selected in a compact
region X, and the the design variable has become a probability measaneX. The
power of this generalization was revealed in the proof of the Kiefer-Wolfowitz Theorem
(Theorem 2.4.2, [KW60]), which establishes the equivalence between the two popular
andG optimality criteria.

This theorem gave birth to a sequential algorithm for the computatio® obptimal
designs, simultaneously discovered by Wynn [Wyn70] and Fedorov [Fed72] (see Section 3.1),
who further generalized the theory of optimal designs to the casmliiresponse experi-
ments where a single experiment is allowed to produce several uncorrelated observations.

Many of the optimality criteria that have been introduced for the design of experiments
(including the aforementioned andD criteria, as well as the popular ,A ,andT
criteria which we will describe in Section 2.3.2) are convex functions of the design variable
w (or ), and are encompassed in the class @f criteria introduced by Kiefer [Kie75].
The work of Silvey and Titterington [ST73] and Kiefer [Kie74] showed that the Kiefer-
Wolfowitz theorem could be seen as a consequence of the strong Lagrangian duality theory
for convex optimization problems. Later, this result was generalized by Pukelsheim [Puk80],
who established a duality theorem for a very wide class of criteria which includes the Kiefer's

p Criteria.

For more details on the development of the theory of optimal experimental designs, the
reader is referred to the book of Pukelsheim [Puk93].

2.2 Notation and preliminaries

2.2.1 Some notation

Throughout this thesis, we denote vectors by boldface letters and matrices by capital

are Xi;Xz; 11, Xn. The (i;] )-element of a matriXM is denotedM;;. The L, norm of

the vectorx 2 R" is kxk, := P xR 1_p. We shall simply denote the Euclidean norm
k ky, by k k. The vector of all zeros is writted; similarlyl stands for the vector of all
ones. Vector inequalities should be understood elementwise, e.d indicates that every
component ofk is nonnegative. The symbbldenotes the transposition operation.

The identity matrix of sizen n is denoted byl ,, or simplyl when there is no
ambiguity. We denote bRiag(x) the diagonal matrix with the elements of the vectoon
its diagonal, and byliag (M) the vector containing the diagonal entriesNéf The range
and nullspace of a matrid are respectively denoted by M = fx : 9y : My = xg
andKer M := fx : Mx = 0g. We denote by5, the space of symmetrim  m matrices.
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This space is equipped with the inner product

. T X
hA;Bi =trace(A'B) = a; by ;
i5j
L . q - ap—
which induces the Frobenius nokAksr = bA;Ai = i a%: We also denote by
S, Sn the cone ofm m symmetric positive semide nite matrices, and &y its
interior, which consists of positive de nite matrices. The space of symmetric matrices is
equipped with the_éwner orderingwhich is de ned by

8B;C 2 Sy; B C() B C2S.: (2.2)
Similarly, the notatiorB  C indicates thatB  C is positive de nite.

We denote byM Y the Moore-Penrose pseudo-inversévof and byM a generalized
inverseof M , i.e. any matrixG verifyingMGM = M. The reader can verify that the matrix
KM K, does not depend on the choice of the generalized inverse when the columns of
K1 andK are included in the range ®™f .

The convex hull (resp. conic hull) of a s&tis denoted byconv(S) (resp.cone@)).
The orthogonal of a seb isS” := fx : 8v2S:xTv =0g:

2.2.2 The linear model

The most common model in optimal experimental design assumes that each experiment
provides a measurement which is a linear combination of the parameters up to the accuracy
of the measurement. In this thesis, we deal with linear modelstonly.

Let X denote the set of available experiments. Every experimehtX provides a
(multidimensional) observation

y(x)=Ax) + (x);  E[(x)]=0 (2.3)
where is them dimensional vector of unknown parameters,

A(x) is a(l(x) m) observation matrix, and(x) is a zero-mean noise on the mea-
surements with a known diagonal covariance mafrix). The number of simultaneous
observations that are collected when a measurement is performedsaf(x) |. To
alleviate the notation, we shall eventually write that all the observation mathifey are
of sizel m. We may always reduce to this case by settingl(x) rows ofA(x) to 0.
The mappingX 3 x 7! A(x) 2 R' ™ is supposed to be continuous over Note that
this setting includes the common case whéres nite, of cardinalitys, equipped with the

1. We point out that there is a theory of optimal experiments for nonlinear models, in which the design criteria
depends on the unknown parameters. The basic idea is thus to search fdoeally optimal design which minimizes
a criterion from the linear theory, for a linearization of the model at a point which is the best guess of the unknown
parameters.
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discrete topology, in which case we assockatwith [s] and the observation matrices are
simply denoted bA;;:::;As.

We will assume without loss of generality that the noises have unit varignge:=
E[ (x) (x)T] = 1. We may always reduce to this case after a left diagonal scaling of the
observation equations (2.3). The errors on the measurements are assumed to be mutually
independent, i.e.
8x16 x22X =) E[ (x1) (x2)']=0:

Uncorrelated experiments are choseRr gt: : : ; X s from the experimental regiok, and the
objective is to determine both the optimal choice of xhgand the number of experiments

n; to be conducted ak; ; we call such a subset of experimentdesign As mentioned

at the beginning of this chapter, it has been proposed to work apgroximate designs
which is simply done by releasing the integer constraints on;thi this setting, a mass
indicates the proportion from the total number of experiments to be conducted for each
available experiment. For example, if the weight forifAeexperiment isv;, and thatn
experiments are allowedy; are chosen ak;, which suggests that each quantityy; is
integer. However, this continuous relaxation proved to be very useful and we shall only
consider approximate designs until Chapter 7, where we will focus on some combinatorial
problems arising in optimal experimental design.

The design where thpercentage of experimental e odt x iS wy is written as
!
X 1 XS

Wy Ws

or = fxy;wg for short. The set of pointéx; 2 X :w; > 0g is called the support of
and is denoted bgupp( ).

Whenn; = nw; experiments are conducted &f, we denote by (x;) the average of
these observations: we hak§y(x;)] = A(x;) , andVar(y(x;)) = %I . For the design
= fxx;wWkg, we denote by ( ) the aggregate vector of observations:

Ely()l= A() (2.4)
° y(x1) " ’ A(X1) >
where y():%5 §; and A():gi
Y(Xs) A(Xs)
In addition, the variance of this aggregate observation vector saNagy ( )) = % (w),
where 0 1
1=wl
(w)=% §; (2.5)
1=wl

with (I(x;) 1(x;)) identity blocks on the diagonal. W; = 0 for somei 2 [s], we simply
remove the measurement poirt from . For ease of presentation, we get rid of the
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multiplication factorl=n, since it does not a ect the results on optimal designs.

2.2.3 Gauss-Markov Theorem and Information matrices

The linear theory assumes that the experimenter is interested in estimating the vector
— KT .

whereK is of sizem r and has full column rank. In other words, the experimenter wants

8i 2 [r]; i = CiT .

This setting includes the casks= |, in which the experimenter wants to estimate each
individual parameter;, and the case = 1 (known asc optimality in the literature) in
which there is a single quantity of interest ¢’ .

It can easily be seen that a linear estimato= HTy( ) is unbiased if and only if
A( )TH = K. Thus, linear unbiased estimators forexist as long as the columns kf
are in the range oA( )7. In the sequel, we will say that the vector KT is estimable
if there exists a designsuch that the latter condition is satis ed. Notice that a su cient
condition which ensures th&t™ is estimable for angn r matrixK is that the matrices
A(x) L ox contain m linearly independent vectors among their rows. For an estimable

quantity KT , we de ne the feasibility con¢ K) as the set of designssuch thatA( )7
span the columns df , and a design will be saidfeasibleif it lies in the feasibility cone.

We are interested in nding théest unbiased estimator for, in the sense that its
variance should be minimal. The variance of a vector is in fact a positive semide nite
matrix, and so the comparison between two covariance matrices should be in terms of
Léwner ordering (cf. Page 29). ThHeauss-Markowheorem, which is a classical result in
the eld of statistics, gives the form of this best estimator. We give below a proof of this
theorem relying on the Schur complement lemma.

Theorem 2.2.1 (Gauss-Markov Theorem)et KT be estimable and = fx;wg 2
( K) be a feasible design. For any matrxsuch thatA( )TH = K, " = HTy( ) is an
unbiased estimator for, and its covariance matrix satis es

Var(M = HTVvar(y( )H=HT (w)H KT A()T(w) !'A() K
Moreover, this latter bound is attained for the estimafor= H Ty( ), where

H = ( w) "AC)AC)" (w) *A())K: (2.6)
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Proof. The fact that the lower bound is attained fér = H Ty( ) is clear by substituting
H to H in the expression of the variance gfand by using the fact that for any matrix
M, we haveMYMM Y = MY,

Hence, the only thing to prove is the matrix inequality. The matrix
!

AC)T (w) *A() K
KT HT ( w)H

is positive semide nite, because it can be written as the following product:

AT (w) =2

HT( W)l:Z ( W) 1=2A( ) ( W)lzzH

The Schur complement lemma indicates that sinde( w)H 0, the matrix
HT(w)H KT A()T(w) *A() K

must be positive semide nite. This completes the proof. O

Remark2.2.1 An alternative formulation of the Gauss-Markov Theorem states thatisf
nonsingular and the columns i6f are in the range of the matriX", then the optimization
problem

mn H' H
H
sit: ATH = K;

where the minimum is taken with respect to the Léwner ordering, attains its solution for
H= :AAT AYK, and the value of theninimumis K T(AT !A) K.

Gauss Markov theorem gives the form of best unbiased linear estimat@nd shows
that its variance is

Var(")= KT(A()T ((w) *A()) K=K™M() K; 2.7)

whereM () is ageneralized inversgf M ( ) := A( )" ( w) *A( ) and the reader can
verify that the latter expression does not depend on the choice of the generalized inverse.
The positive semide nite matri¥ ( ) is called thenformation matrixof the design. We
also de ne the partial information matrices of each experimdifk) := A(x)TA(x), so
that M ( ) can be decomposed as a weighted sum of the information matrices of the selected
experiments:
x - x
M()=  WAX) AXi)=  wM(X;) (2.8)

i=1 i=1

Remark2.2.2 If we further assume that the noise follows a normal distributd; 1),
then the estimator” described in (2.6) is also the maximum likelihood estimator, ahd
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the bound given by the Cramer-Rao inequality is attained, i.e. its covariance matrix equals
the inverse of the Fisher information matrix.

We next de ne theK information matrixQx ( ) = (K ™M () K) ! as the inverse of
the covariance matrk Note that the inverse is well de ned wher2 ( K). Otherwise, it
is still possible to extend the de nition Qi ( ) per continuity; in fact, the correct de nition
of the K information matrix is given in Chapter 3 of [Puk93]:

Qu():= min L™ ()L (2.9)
st: KTL=1,;

where the minimum is taken with respect to Léwner ordering. Pukelsheim shows that
the minimum exists indeed (which is not obvious since the Lowner ordering is a partial
ordering), as a consequence of the Gauss-Markov Theorem (cf. Theorem 1.21 in [Puk93]).
In the sequel, the reader needs only remind the simple exprégsion= (K ™M () K) 1,
which is valid in the regular cas® ( K), and that the matrixQk ( ) exists and is singular
when the range o¥ ( ) does not include the range Kf (that is, when 2 ( K)).

The reader may wonder why we reduce ourselves to the case of designs with a nite
or even countable number of support points. It was proposed indeed to work in a more
general framework, by allowing the design to take the form of a probability meéaswer
the regression regioX, so that the information matrix becomes

z
M()= AX)TAX)! (x):
X

However, this continuous form of the information matrix is still a symmetric matrix from
the closed convex hull 6A(x)TA(x); x 2 Xg. WhenX is compact, anck 7! A(x) is
continuous, the set of all information matrides(x)TA(x); x 2 Xg is closed, and we know

from Caratheodory's theorem th (! ) can be written as barycenter of(m+1)=2+1
information matrices (see Fedorov [Fed72]). Therefore, the optimal design can always be
expressed with a discrete measures w; (X X1)+ i+ ws (X Xs), wheres
m(m+1)=2+1, and we will consider only such designs in this work. Moreover, the study of
designs with a discrete support is appropriate for the framework of the industrial application
of the second part of this thesis.

2.3 Optimality criteria

2.3.1 c-optimality

The experimental design approach consists in choosing the desigorder to make
the variance of the estimator (2.4s small as possibl@he problem is well posed when

2. Note that If K = | (i.e. when the experimenter wants to estimate the whole parameter), then the
K information matrix Qk ( ) coincides with the information matrixM ( ).
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r =1, since in this case the variance is a scalar. This is the framework for thetimal
design problem, in whidk has a single columz and the problem is now to nd the design
= fX;Wxg minimizing the variance (2.7):

min c'™™() c (2.10)
=fxiwyg2 ( ¢)

xs
st. M()= wWA(X;)TA(X;)
i=1

wi=1; 8i2[sjw Ox;2X:

This problem was rst studied by Elfving, in the casesbfgle response experiments
i.e. when each experiment yields only one observaeon2(X ; I(x) = 1 and A(x) is
a row vector.) In his pioneer work, Elfving discovered a geometrical characterization of
c optimality [EIf52] which we will detail in Section 2.4.1.

2.3.2 The class of Kiefer's , criteria

Whenr > 1, the natural problem is to minimize the covariance matrix of the best linear
unbiased estimator (2.7) with respect to the Léwner ordering. A geometrical interpreta-
tion of this problem is the following: with the assumption that the no{s@ is normally
distributed for allx 2 X, for every probability level, the best estimator” lies in the
con dence ellipsoid centered atand de ned by the following inequality:

N

(")) ) (2.11)

where depends on the speci ed probability level. We would like to make these con dence
ellipsoidsas small as possible order to reduce the uncertainty on the estimation ofTo

this end, we can express the inclusion of ellipsoids in terms of matrix inequalities. One can
readily check that for any value of the probability levekhe con dence ellipsoid (2.11)
corresponding tQ ( ) is included in the con dence ellipsoid correspondin®gq 9 if and

only if Qe () Qk( 9. Hence, we will prefer desigrto design °if the latter inequality

is satis ed, and we want to select a design which maxin@e§ ) (or equivalently which
minimizes its inversik "M () K) for the Léwner ordering.

Since Lowner ordering is only a partial orderingSgn(and the inclusion relation is a
partial ordering on the ellipsoids Bf"), the problem consisting in maximiziQ ( ) is ill-
posed. Hence, we will rather maximize a sdafarmation functionof the K  information
matrix, i.e. a function mappin&;, onto the real line, and which satis es natural proper-
ties, as positive homogeneity, monotonicity with respect to Léwner ordering, and concavity.
Kiefer [Kie75] proposed to make use of the class of matrix megn$hese functions are
de ned like theL ,-norm of the vector of eigenvalues of the information matrix, but for
p2[1 ;1] For positive de nite matriced! 2 S.° with eigenvalue$ ;;:::; ng, the
matrix mean , is de ned by
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8
3 min(M) forp=1 ;

o(M)= | (& traceMP)i forp2] 1 ;1} p60; (2.12)
" (det(M))w for p=0,

where we have used the extended de nition of powers of matkice$or arbitrary real
parametersp: trace MP = = T, Jp For singular positive semide nite matrices,, is
de ned by continuity:

(

(M) = 0 forp2[1 ;0];

1 2.13
(£ trace MP)» for p 2 ]0;1]. (2.13)

The reader is referred to Pukelsheim [Puk93] for a complete analysis of these information
functions. Foraregh2 [1 ;1] the problem of , optimality is

max p Qx() (2.14)

=fxk;wkg2 ( K)

S.t. wi=1;, 8i2[s];w Ox;2X:

This class of problems was introduced by Kiefer in 1975, and it interpolates several
popular criteria which were used long before. We next review these criteria, which are
obtained for special value @f A remarkable property of these optimization problems
is that, if KT is estimable, and except for the pathological case 1, the constraint

2 ( K) can be removed without changing the optimum. The extended feasible space

f =fx;wg, 8i2]s]; xi 2Xw; 0 w; =19 (2.15)

is compact, which guarantees the existence of an optimal soluti(because the objective
function is continuous). This fundamental existence result is presented in a uni ed way
for Kiefer's , criteria (p < 1) in [Puk93]. Following Pukelsheim's terminology, we call a
designformally  optimal if it maximizes( Qg ( )) in the set (2.15). The estimability of
KT implies that there is a designsuch thatQg ( ) is nonsingular. Now, for afi O,
the |, criterion vanishes for singular matrices. It follows that any formajlyoptimal
design is such that ,(Qk ( )) > 0. Recall that the de nition ofQk ( ) can be extended
to the designs that are not feasible, and for whichM ( )K fails to be invertible (see
the discussion following Equation (2.9)). The key point is tQat( ) becomes singular
when 2 ( K). Hence, the optimal design2 ( K) and solves Problem (2.14). For all
p 2]0; 1, a similar argument holds, by considering the Fenchel conjugate fumetigrof

» (here,qis the real number such th%t+ % =0, see Section 7.13 in Pukelsheim [Puk93)).
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D-Optimality

The D criterion is obtained fop = 0, and consists in maximizing the determinant of
the K information matrix:

max det Qx () (2.16)

=fxk;wkg

s.t. wi=1;, 8i2[s;w Ox;2X:

We have seen above that the maximizatioQgf( ) with respect to the Léwner ordering
was equivalent to the minimization of any ellipsoid of the form (2.11) for the inclusion
relation. In fact, such ellipsoids have their axis aligned with the eigenvectQs(of,
and the semi-axis in the direction of the eigenvector associated with the eigenvis
length proportional toplji. This allows a nice geometrical interpretation of this criterion:
The volume of the ellipsoid (2.11) is given ®y ™2det(Qk ( )) 2 whereC,, > 0 is
a constant depending only on the dimension. ThereforePth@ptimal design minimizes
the volume of the ellipsoids (2.11), which coincide with the con dence ellipsoidsinf
the Gaussian case (cf. Figure (&J)).

E-Optimality

The E criterion is obtained fop= 1 . It consists in maximizing the smallest eigen-
value of Qg () .

_ma_x min QK( ) (2-17)
=fxy;wkg

S.t. wi=1;, 8i2[s;w Ox;2X:

As for the D criterion, we can give a geometrical interpretation to this criterion: the
E optimal design minimizes the length of the largest semi-axis of the ellipsoids (2.11), as
plotted on Figure 2.(b) .
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A-Optimality

The A criterion is obtained fop= 1, and aims at maximizing the harmonic average
of the eigenvalues of the information matrix, or equivalently at minimizing its inverse:

min  —trace Qg () *? (2.18)

=fxk;wkg

S.t. wi=1; 8i2[s;w Ox;2X:

If we denote the eigenvalues @k () * = KT () K by 1;:::; m, this harmonic
average can also be written as
!
xn o1 L T
a()=m —=m p=
I

i=1 i=1 i

From this expression, we see that tAe optimal design minimizes the diagonal of the
bounding box of the ellipsoids (2.11), as shown on Figurg)2.1

T-Optimality

The T criterion is obtained fop = 1, and aims at maximizing the trace of the
K information matrix.

sup trace Qg () (2.19)
=fxiiwkg 2 (K)

s.t. wi=1;, 8i2[s;w Ox;2X:

This criterion is not much used in practice, because of its pathological behavior. Since
M 7! (M) is notstrictly concave (it is linear), a formally; optimal design can fail
to be feasible for problem (2.19), i.e2 ( K). Moreover, we will see in Section 2.4.3 that
everyT optimal design for the full parameteris concentrated on the points such that
kA (x)ke is maximal, which is not a good recommendation in practice. We give below an
example where Problem (2.19) has no solution, i.e. where the supremuma2veK ) is
not attained. Consider a simple regression model with only two experinersts (; 29g),
and row observation matrices; = [1;0]; A, = [0;2]. The information matrix for this
model is !

_ W
M ( ) a 4W2
When the full parameter is of interes{ (= | ), the designw is feasible if and only M ( )
is invertible, i.,ew > 0. We haveQ,( )=(M() ) = M( ), which remains true even
for the nonfeasible designs wherg= 0 or w, = 0 by continuity of 7! Q,( ). The trace
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of the information matrix is maximized over the $&t : w; + w, =1; w  0Og for the
non-feasible design = [0; 1]". Furthermore, the optimal value of Problem (2.19) can be
approached from below with arbitrary precision by the feasible desigss[";1 "];
where ! 0.

2.3.3 S-optimality: a model robust criterion

The S-criterion was introduced by Lauter [L&u74] in order to tackle the uncertainty of
the experimenter on thieue model by considering a class ioplausible models with means

Ely ()] = Ay i 2[r];
in which the quantity to estimate is = ¢; " .

In other words, the measuremen{x) at x is modeled as a linear function of the
parameter , which depends on the model, and must be used to estimate a linear function
of the parameter in each model. In practice, the parameters of each of these models
may be dierent. This can be handled by setting §t{& column ofA)x to O whenever
the i" model atx does not depend o). Note that we write the index of the model in
parenthesis, in order to avoid ambiguities with the index of the experiment.

Given a nonnegative vector of sizer with sum1, where ; indicates the importance
that the experimenter attaches to the modgbr the importance of the linear combination
c;'" ,theS criterion is:

X
S()= ilog(ci "M@ () ci);

i=1

where

X

Moy ()= WA, A

k=1
is the information matrix in thé!™ model. A design minimizing this criterion is called
S optimal. An interesting case occurs when ghmodels are identical. This is an alter-
native approach to thé& optimality forK T , with weightings on each linear combination
ci' to be estimated. Dette studied the di erence between these two approaches in Sec-
tion 4 of [Det93].
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()

(b)

Figure 2.1: Geometrical interpretation ob , E and A optimality criteria. The ellip-
soids (2.11) are plotted in two dimensions, for = 1 and when theK information matrix
has a singular value decomposition of the fo@g ( ) = 1uju1' + »uou»'. TheD criterion
(a) corresponds to the volume, the criterion (b) to the largest semi-axis and th& criterion
(c) to the diagonal of the bounding box of the ellipsoids.
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2.4 Fundamental results

2.4.1 Elfving's Theorem for c-optimality

Elfving's result [EIf52] describes the geometrg obptimal designs. This is one of the
earliest theoretical result in the theory of optimal design of experiments, and its importance
was illustrated in many works [Che99, Det93, DS93, HHS95, Stu71, Stu05]. Elfving studied
the c-optimal design problem in the casesifigle response experimehtgse. when each
experiment yields only one observati&x (2 X ; I(x) = 1 and A(x) is a row vector
which we denote by, T; beware of the transposition, we use a di erent convention for
the observation matrix in the single response case because we prefer seeing the regression
vectors as column vectgrsWe will show that a generalization of Elfving's theorem to the
case of multiresponse experiments is possible in Chapter 5.

We rst de ne the Elfving setas the convex hull of the vectorsay:
E=conv f ay; x 2Xg ; (2.20)

and we denote its boundary IGE.

Theorem 2.4.1 (Elfving [EIf52]) A design = fx;;wjgisc optimal if and only if there
exists scalars = 1 and a positive redl such that

xs
tc=  way 2 @
i=1

Moreovert 2= c"M () cis the minimal variance.

The generalization to multiresponse experiments that we give in Section 5.1 has a proof
relying on original ideas of Elfving, and so we will only prove this generalization (Theo-
rem 5.1.1)). Elfving's theorem shows that tlee optimal design is characterized by the
intersection between the vectorial straight line directed land the boundary of the Elfv-
ing setE. We also point out that when the vectoris not spanned by the regression vectors
(ax)x2x , in other words whee' is not estimable (i.e( c) = ;), then the only scalar
such thattc lies inE is 0, and so ac optimal design does not exist, in accordance with
the discussion in the second paragraph of Section 2.2.3.

We show on Figure 2.2 a representation of Elfving's theorem in dimeRsidiere,
X = 11,2;3;4g is nite, so that the Elfving set is a polyhedron, and we waitefor ay, .
The vectorc is along the ; axis, which means that the experimenter wants to estimate

= ;. The intersection between this axis and the Elfving set indicates the optimal weights

of thec optimal designw; = % andw, = %. Note that sincea, is in the interior of the
Elfving set, the experimer2is never selected, whatever is the vectoil his example also
shows that the optimal desigm can be computed by linear programming wiers nite
(intersection of a straight line and a polyhedron). We will study this feature in Chapter 3.

3. The more general setting omultiresponse experimentsvas introduced by Fedorov in 1972 [Fed72]
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Figure 2.2: Geometrical representation of Elfving's theorem in dimension two. The grey area

represents the Elfving set, which is a polyhedron becaXise nite (here, X = f1;2;3;4g). The

intersectiont ¢ determines the weights of the optimal design:w =]0;0; %; %]T.

2.4.2 The Kiefer-Wolfowitz Theorem for D-optimality

The Kiefer-Wolfowitz theorem [KW60] was established for single-response experiments
in 1960, and then extended to the multiresponse framework by Fedorov [Fed72]. We give
below both versions of this theorem.

A special case af optimality is when the experimenter wants to estimate a quantity

= a,' which can be observed by a single experiment (here, the experimenwitt
regression vecta, ). In this case, the variance of the best estimata,iSM ( ) ay. This
case is highly trivial since the experimenter's interest is to a ect all the experimental e ort
to x. However, an interesting case occurs when the experimenter is not interested in the
observation of a single experiment’™ , but in the wholeregression surfadea, " ; x 2
Xg. A global criterion is needed to measure the performance of a design in this case. The
global criterion(known asG criterion) is

— T
c()=max a. M() ax

and theG optimal design guards one against the worst case, by minimizing the variance
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of every observation in the regression surface:

min  max a, M () ay (2.21)
X
st M()=" WAX)TAXi)

wi=1; 8i2[sjwi O0;x;2X:

The Kiefer-Wolfowitz theorem establishes the equivalence betwedd tloptimal de-
sign and theG optimal design:

Theorem 2.4.2 (Kiefer-Wolfowitz [KW60]) Assume that the regression ranfg)y2x
containsm linearly independent vectors. Then the following statements are equivalent:

(i) The design isG optimal,
(i) The design isD optimal for the full parameter (i.e. withK = 1);
(i) Forallx inX,a,"M() ax m.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of
the optimal design:
Xi 2supp() =) ax, M() ay =m:

Proof. We rst show that for all design = fxy;wkg, we have g() m. IfM( ) is
singular, then by assumption there is a regression vegtavhich is not in the range of
M(),andso g()=1 m. If M ( ) is nonsingular, we write:

X
m=trace | =trace M( )M () *=trace( Wwayay, 'M() 1)
i=1
x T 1
wi max(ay M () “ay)
i=1 x2X

= &():
This proves the partiii ) =) (i).

Now, we consider B optimal designp, and we show thag, "M ( p) ax m for
every pointx 2 X , with equality wherx is in the support of 5. Note that aD optimal
design exists indeed, since we are maximizing a continuous function over a compact set.
Moreover the optimal information matrM ( p) is nonsingular, since there arelinearly
independent vectors in the regression range (the mitrixp) must contain the columns
of I in its range because we are interested in the whole paramgtdret x 2 X, and
consider the design = (1 )b+ (X), where (x) is the design where all the
experimental e ort is concentrated at. The applicationf : ! logdet(M ), where
M =(1 M ( p)+ ayay' isthe information matrix corresponding to the design
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is well de ned or{0; 1], and its derivative at = 0 exists and coincides with the directional
derivative oflogdetat M ( p) in the direction ofaya,” M ( p):

o
q =trace M ( p) (axax’ M(p))= ay'M(p) ax m:
=0
The concavity of thdog det criterion and the optimality of the design imply thatf is
nonincreasing of0; 1], and so the latter derivative must be nonpositive. Hence,

8x2X:a, M(p) ay m;

and we have proved the p&ii) =) (iii). We further show that the latter inequality
becomes an equalityxfis a support point ofp. We denote byX;)iz[s the support points
of p and byw the vector of the associated weights, and we write:

X
m =trace | =trace M( p)M( p) *=trace( wayayx,' M(p) %)
i=1
= W|aXITM( D) axi:
ijwj>0

The latter expression is a weighted average of terms all smallernthand takes the
valuem. Hencew; > 0) a,,"M( p) ay, = m.

Assume conversely thats notD optimal. IfM () is singular, then there is a regression
vectora, which is not in the range d¥l ( ), and so(iii ) does not hold. 1M () has full
rank, then in view of the strict concavity of tHeg det function overS;,, and similarly
to the previous discussion, there exists a desiguch thatlog det(M ( )) has a positive
derivative in the direction df1 ( 9 M ( ):

traceM() *M(9 M())=trace M() ‘M(Y m> 0
Denoting the support points and the weights 8by x;° andw? respectively, we obtain:

X
traceM () ‘M ( 9= wa,o M () ayo>m:

ijwo> 0

This expression is a weighted average strictly larger thawhich implies the existence of
a support poinix® of %such thataye™M (') aye > m. Henceiii ) does not hold and we
have proved the paiii ) =) (ii).

The existence of ® optimal design, for which theg criterion takes the value,
in conjunction with the fact that ¢( ) m for all design shows that a design is
G optimal if and only if g( ) = m. This proves the part§i) =) (iii ) and the proof is
complete. ]

The previous result was extended to the case of multiresponse experiments by Fe-
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dorov [Fed72]. Th& criterion for multiresponse experiments becomes
c()=max traceA(X)M( ) A(X)T:
X

We omit the proof of this extended result, which is analogous to the previous one.

Theorem 2.4.3 (Fedorov [Fed72])Assume that the regression ran@e(X) " z),.x : ,orie)
contains at least linearly independent vectors. Then the following statements are equiv-
alent:

(i) The design isG optimal;
(i) The design isD optimal for the full parameter (i.e. withK = 1);
(ii) For all x in X, traceA(x)M () A(xX)T m.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of
the optimal design:

x; 2 supp() =) traceA(X)M( ) AX)" = m:

This result was used by Fedorov to construct a sequential algorithm toDui@ptimal
designs: at each step, the poirt which maximizesraceA(x)M () A(x)T is sought,
and the design is replaced by a convex combination oénd the design (x) which
concentrates all the experimental e ort at(cf. Section 3.1).

2.4.3 General Equivalence Theorem

In fact, the Kiefer-Wolfowitz theorem appears as a particular case of the General Equiva-
lence Theorem proved by Kiefer in 1974 for some di erentiable information criteria [Kie74],
and extended by Pukelsheim in 1980 [Puk80] to any information criterithrat is non-
negative, positively homogeneous and concave. The proof of Pukelsheim emphasizes on the
convex duality avour of the general equivalence theorem (his proof relies on Fenchel duality,
and he proposed another approach based on subgradients with Titterington [PT83]). We
give below a version of this theorem for the class of Kiefgy'sriteria. For a proof, the
reader is referred to Pukelsheim [Puk93].

Theorem 2.4.4 (General Equivalence Theorem [Kie74, Puk8QPnsider a real number
p2] 1 ;1] (p nite). The design is , optimal forK™ if and only if there is a
generalized inversg of M ( ) such that

8x 2X: trace A(X)GKQk ( )P 'K TGA(x)" trace Qx ()

In case of optimality, the latter inequality becomes an equality for any supportqomft .

Specically, is , optimal for the whole parameter if and only if

8x 2 X; trace A(X)M ()P *A(x)T trace M ()P:
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We point out that there is a simpler version of this theorem when the information
matrix M () is assumed to be nonsingular at the optimum. The proof of this simpli ed
version of the theorem is very close to that of the Kiefer-Wolfowitz equivalence theorem
for D optimality (Theorem 2.4.2). It relies on the directional derivative gfQk ( )) in
the direction of the design(x) completely atomized at, which is well de ned iM () is

invertible:
h i

S;K( : X) - |i|m0+ p QK (1 ) + (X) p[QK( )] (2.22)

= trace AX)M () *KQx()P"*K™™M() AX)" trace Qk ()"

In the nonsingular case, we can formulate a general equivalence theorem that is very close
to the original formulation of Kiefer and Wolfowitz fbor optimality:

Theorem 2.4.5 (General Equivalence theorem: Nonsigular case [AtwB6fp 2] 1 ;1]
(p nite), and K anr m matrix such thatK T is estimable. Then, the following three
statements are equivalent:

(i) The design is , optimal forK T ;
(i) ox( ;x) Oforallx 2X;
(i) minimizemax,ox gy ( ;x) over ( K).

In addition, we haveg;K( ;X) =0 for allx 2 supp

This fundamental theorem, which gives an e cient method to check whether a given
design is optimal, has several interesting consequences, which we next present.

Bound on D-optimal weights

We give below an interesting result of Pukelsheim [Puk80], which states that for single-
response experiments, the weights of e optimal design foK ™ are bounded from
above byrl (recall thatr is the number of quantities that the experimenter wishes to
estimate, i.er is the number of columns &f).

Theorem 2.4.6 (Bounds onD optimal weights [Puk80])EveryD optimal design for
KT has all its weights bounded from above %by As a consequence, if the regression
range(ay)x2x consists in exactly independent vectors which span the columnis pthen
the D optimal design foK T is unique and is de ned by; = % for alli 2 [r].

Proof. Let be aD optimal design foK ™ , and letx; andw; denote respectively the
support points of and their weights. By the generalized equivalence theorem 2.4.4 for
p=0 (D optimality), there exists a generalized inve@&ef M ( ) such that:

8i 2 [s]; r =trace Qg ( )%= ay, ' GKQk ( )K"Gay, = ay,'Za,,; (2.23)
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where we have s& = GKQ ( )KTG. In the latter expression, we can replége( ) by
Qk( )KTM () KQk(), since the optimaK information matrix must be invertible and
Qk() = KT () K. Besides, notice that singg is a generalized inverseMf( ), so
is GM ( )G, and we can take this particular choice #r( ) :

r=ay GKQg( )KTGM( )GKQk ( )KTGay,:

P . .
We develoM () as ;g Wiayx, ax, | in order to obtain:

X
r= Wi(ax, TZay,)?  Wwi(ay, ' Zay)? = wir?;

k2[s]

where we have used the expressiontbit is given in (2.23). We nally obtain the desired
upper bound:

r
r2

q.‘-H

Wi

The second part of this theorem is a simple consequence of this upper boXind.[ H
and the regression vectors are linearly independent and span the colukintheh K T
is estimable and th® optimal design foK T aects a weightw; no larger than% to
Sach of these regression vectors. We can conclude that= % from the constraint
ir:1 w; =1. ]

An extension of this result to the framework of multiresponse experiments is possible.
We made an announcement of the present result to the conference ISCO 2010 [BGS10]
and it was discovered independently for the dase | by Harman and Trnovska [HTQ9].

The proof mimics that of Theorem 2.4.6, and relies on an additional argument showing
that whenX is a positive semide nite matrix, the ratio betweteace X andtrace X ? is
bounded from below by a constant that depends on the rank.ofe will give a proof of

this extension under a slightly di erent form in Chapter 7.

Theorem 2.4.7. Let = fx,;wcgbe aD optimal design foK T . Then, the weightw
of the experiment ak is bounded from above:

rank A(Xg)
—

. . . . . P
As a consequence,(if) the regression regioX is nite (of sizes), (i) g rankAg =r,
and (iii ) the quantityK T is estimable, then thB optimal design foK T is unique and

is de ned by

Wi = W, 8k 2 [S]:

A-Optimal weights on linearly independent regression vectors

Another interesting consequence of the general equivalence theorem was given by
Pukelsheim and Torsney [PT91]. They showed that we can givéAtheptimal design
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for KT in close form when the regression raiges nite and the vectorgay)y.x are
linearly independent. In this section, we assocfatgith [s], so that the regression vectors

where the st inequality is necessary becaudmust be in the feasibility con¢ K), and
the second inequality is enforced by the independence of the vactdssides, the design

is completely de ned by the weight vecter 2 RS sinceX is nite, so that we simply
substitutew to in the subsequent discussion.

The theorem of Pukelsheim and Torsney is actually proved in a more general context
in [PT91], valid for any information criterion that is nonnegative, positively homogeneous
and concave, and establishes a nonlinear equation that the weights of thygimal design
must satisfy. A powerful corollary from their result is that this nonlinear equation can be
solved in close form for the Kiefer's criterion; (A optimality). We give below an
elementary proof of this powerful result.

Theorem 2.4.8 (A optimal weights on independent regression vectors [PT%lihe

regression vectos, ; :::;as are linearly independent and span the columns ofhen the
the A optimal design foK T is given in close form by
p__
B2k W= b
j=1 QJ
whereby;;:::; by are the diagonal elements of the matrix

B=(AAT) AKK TAT(AAT) %

which reduces t® = (AAT) ! when the full parameter is of interest K = 1).

Proof. Letw be anA optimal design foK T . We rst show that the statement of the
theorem is true for all experiments which are in the support of the desjgre. for alli
such thatw; > 0. Leti denote the index of such an experiment. By the General equivalence
theorem 2.4.4 fop = 1 (A optimality), there exists a generalized inve@ef M ( )
such that:

trace Qx (W) = a;"GKK "Ga;: (2.24)

The columns oK are in the range d¥l (w) becausev must be in the feasibility coneé K ).
Besidesa, isinthe range oM (W) = = 54 w;a;a; " becausev; > 0. Therefore, the vector
K TGa; is invariant to the choice of the generalized inv&s& M (w). Notice thatM (w)
can be decomposed as Diag(w)A. The linear independence of the vectars:::;as



48 CHAPTER 2. AN INTRODUCTION TO THE THEORY OF OPTIMAL EXPERIMENTS

implies that the matriXAA T is invertible, and so a particular choice for a generalized inverse
of M(w) isGy = AT(AAT) !Diag(w)¥(AAT) A. We use this particular choice f&
in (2.24), and we use thaa; = ATe;, whereg; is the it" vector of the canonical basis
of R®:
trace Qx (w) = e Diag(w)'B Diag(w)’e;:
In fact, the matrixDiag(w)’ is the diagonal matrix where tHé" diagonal entry is either

ﬁ or 0 according asvx > 0 or wy = 0, so that the right hand si%e of the latter expression
is equal toby; w; 2. We have thus shown that; is proportional to b;.

It remains to show that the formula holds when = 0, i.e. thej th diagonal term of
B is zero ifw; = 0. To see this, we assume without loss of generality gt : : ws, > 0
andws,41 = 10 = Ws = 0 for an indexs S. Then, a;;:::;as, Span the range
of M(w) = %, wia;a;". Moreover, the columns df are in the range oM (w) by
feasibility of the optimal vectow, from which we deduce that there iss@ r matrix H
such that I

H
— AT
K=A 0

Finally, for an index> s ¢ (i.e. such thatw; = 0), we obtain:

hj = e 'Be =¢e (AAT) 'AKK TAT(AAT) g =g

The latter result admits a straightforward generalization to the multiresponse case, which
we do not think has been published elsewhere. The nfatriew stands for the aggregate

then the theA optimal design fokK T is given in close form by

P
. traceB;
8i 2 [s]: W = p—4q L.
71 traceB;
whereB1;:::;Bs are the diagonal blocks of sike |4;:::;1s |5 of the matrix

B=(AAT) IAKK TAT(AAT) %

c-Optimal weights on linearly independent regression vectors

As a corollary from the latter result, we obtain a simple closed-form formula for the
weights of thec optimal design over independent regression vectors:
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Corollary 2.4.10 (c optimal weights on independent regression vectdfshe regression

design is given in close form by

_ i(AAT) *Aqj |
"~ K(AAT) 1Ack;

(In the latter formula, the absolute value of the vector in the numerator is element-wise.) If
in addition the number of regression vectors s m, then the matrixA is invertible and

the latter formula simpli es to:
iI(AT) ¢
w= >~
k(AT) *cky

Proof. We know from Theorem 2.4.8 that the optimal desigrw is proportional to the
square root of the diagonal of

B= (AAT) 'Ac (AAT) lAc ';

thatis,w /j (AAT) Agj: O

T-Optimal design for the full parameter
The next propositions show that tie optimal design problem for the full parameter
is trivial. We start with the single-response case:

Proposition 2.4.11 (T optimality for , single-responsep design igormallyT optimal
if and only if all its support points correspond to regression vectors of maximal length, i.e.

8i 2 [s]; wi > 0) Kkay k=maxkaxk :
x2X

The extension to the multiresponse case is straightforward:

Proposition 2.4.12 (T optimality for , multiresponse)A design igormallyT optimal
if and only if all its support points correspond to observation matrices of maximal Frobenius
norm, i.e.

8i2[s]; wi>0) KA(Xjkr = max KA(X)kg :

Proof. The (formal) T optimal design problem for can be formulated as:
x
max  trace  WA(X;)A(X;)T (2.25)
=fXk;wkg i=1

S.t. wi=1, 8i2[s;w Ox;2X:
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We have the following bound on the objective function:

X X X
trace  WAMX)AX)T = wkA(x;)k2 Wi maxKA(X)ke;

i=1 i=1 | :_]{Z_}
1

and it is clear that this bound is attained if and onlwifassigns all its weight to poinis
where the observation matr(x) is of maximal Frobenius norm. ]



Chapter 3

Classic algorithms for computing
optimal designs

the optimal experimental design problem reduces to nd the vector of werghtdhis

arises in many practical situations, and in particular for the problem of optimal monitoring
in networks that we present in the second part of this thesis. In the more general case
whereX is a compact region, many authors have proposed to solve a discretized version
of the problem, by selecting a large (but nite) number of sample points in the regression
region. A good motivation for this discretization is that the optimization problem is usually
convex with respect tav. Hence, if we ignore the optimization step over the support points,
any local optimum is in fact a global optimum. This remarkable property is at the origin
of several algorithms which converge to the optimal design vectdn this chapter, we
study the Fedorov-Wynn exchange algorithm, a class of multiplicative algorithms, and the
semide nite programming (SDP) formulations fér ;A ;D andT optimality.

In this chapter and the following ones, we associate the regression kegiothn [s].
Hence, every variable that was indexedk® X will now be indexed by2 [s]. Similarly,
every variable depending on the desigwill now be denoted as a function of. For
example, the observation from ti#8 experiment is

yi= A +7;
and the information matrix reads

xs
MWw)=  wATA;:
i=1

3.1 Federov-Wynn rst order algorithm

Federov [Fed72] and Wynn [Wyn70] have described independently a method to compute
D optimal designs, inspired from the Kiefer-Wolfowitz theorem 2.4.2. The idea of this

51
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algorithm is to start from an arbitrary desigrf® and to move at each step in the direction of
the design that is concentrated on tH& experiment, whergis the index which maximizes
traceA;M (w) AT. More precisely, the following operation is performed atkiestep of
the algorithm:

w® =@  PJwk D+ e: where i2 argmax traceA;M (w) AT:
121]S

In the latter expression; is thei standard unit vector oRS, and | is an appropriate
sequence of step sizes. This algorithm was then generalized to a wider class of information
functions that are su ciently regular by Atwood [Atw76, Atw80]. This includes the class

of , criteria forK T , when the optimal design is such thet(w) is non singular, and

we restrict our discussion to this case.

This algorithm is in fact a feasible descent method: At each step, the desgmoved
in the directionw® w, wherew? is a feasible design for which the directional derivative
ok (W;w9 is maximal (. (w;w? denotes the directional derivative of[Qk (w)] at
w, in the direction ofv® w). By linearity of the derivative, we have:

X
0 . — 00 . .
bk wiwd = w D (wie);
i

where 3, is the directional derivative in the direction of an atomic design, as de ned

in (2.22). Hence, a simple choice fof is:

X

0— 0 . — . - 0 . .
w —avrjgpmVa\Z(1 Vi p(W;ei)=e; where j —argrirgts)]( ok (Wi e):
i vis i

The general Fedorov-Wynn algorithm follows. Its stopping criterion directly comes from the
general equivalence theorem 2.4.5.

Algorithm 3.1.1 Fedorov-Wynn rst order algorithm
Set a precision > 0
Let w(©@ be a design such thavl (w(©@ ) is nonsingular.
k 0
repeat
k k+1
Find i, = argmaxiprg Sk (W) ei):
Choose 2 [0;1] and constructw ) = (1 Ywk D+ e .
until - D (w();ey)

Classical stepsizes from literature on the the feasible direction methods can be used.
Fedorov [Fed72] proposed the following rules:

(i) lim; ¢ =0; ke k=1
(i) x=argmins o p(Qc(w®)); where wk =@ H)wk D+ g;

i) = k1 it p[Qk (W(kk).l)] p[Qi (W D]
k 1= > 1 otherwise.
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The convergence of this algorithm is proved in [WW?78] for the (ujesd(ii ). Another
proof for the rule(ii) is presented in [Atw80]. Cook and Fedorov claim [CF95] that the
convergence of the algorithm for the three above rules on the step sizes is standard, without
giving a proof. We also indicate that Richtarik [Ric08] recently proposed a Fedorov-Wynn
type algorithm with speci ed steplengthg, for which it is guaranteed that a approximate
solution is returned afte®(1=) iterations.

An important property of the Fedorov-Wynn type algorithms is the following. By rewrit-
ing the update rule ofv as:

wh =1 ) wk D4 K

ST

we see that the information matrid (w (%)) can be written as:

k
k

MW®) =@ ) MW D)+ A AL
We usually havk << m , and so the latter formula is law-rankupdate of the information
matrix. Therefore, much computational saving can be obtained by using the Sherman-
Morrison formula to update the inverse Mf(w), which is often required to evaluate the

ok (W e). In some situations, it can be su cient to compute low rank updates of the
LU decomposition a¥l (w).

We point out that for the sequence of step sizes= (1 + k) ! (which satis es

the rule(i)), the algorithm can be interpreted as a sequential algorithm for constructing
non-normalizeddesigns: At each step of the algorithm, a new measurement is added on
the experiment which maximizes the directional derivatfye(w);e;). The step sizes

« = (1+ k) ! mimics this sequential procedure while keeping the designs normalized (i.e.

~w(k) =1). This was proposed by Fedorov [Fed72] for the constructidd obptimal
designs. A re nement of this sequential procedure is possible: at each step, the experimenter
has both the possibility to add a good measurement point (corresponding to the largest
value of the derivative) and to remove a bad one (corresponding to the small value of the
derivative). This procedure is known as tedorov Exchange algorithr®ne can further
de ne forward and backward excursions, wherenew measurement points are added and
n are deleted, as in Mitchell [Mit74].

3.2 Multiplicative weight updates

Multiplicative algorithms were proposed in 1976 by Titterigton to compute the weights
of the D optimal design [Tit76] (for the full vector). The idea is to multiply, at each
step, every coordinate; of the current desigw (! by a factor which is proportional to the

derivative
@og detM (w)

Wi

= trace AiM (wV) IAT:

w=w(t)
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At each step, the normalization factor is simply

X
w traceAM (w®) AT =trace M(w®) M(w®) =tracel = m;
i=1

such that the iterations are:

(t+1) — (O traceAiM (w(®) AT
i - i .

8i2[s];, w p

(3.1)

Titterington proved in [Tit76] that the sequence of determinashiesM (w () generated
by this sequence is nondecreasing, and converges to the optimal valueDof ¢higerion.
He also proposed [Tit78] a variant of the form:

(t+1) _ W(t) traceAiM (W(t)) lA;r
i - i

8i2[s]; w o

; (3.2)

which is faster than the iterations (3.1) in practice, and conjectured the monotonic behaviour
of the sequence of determinants for= 1. Under a slightly di erent setting, Dette,
Pepelyshev and Zhigljavsky [DPZ08] proved the monotonicigé (w (")), for iterations

of the form (3.2), with a dynamic parametef! instead of . The conjecture was nally
resolved in 2010 by Yu [Yul0Db].

A general class of multiplicative algorithms was proposed in 1978 by Silvey, Titterington
and Torsney [STT78], for the optimal design problem:

di (w V)
t )
j2[s] Wj( gy (w)

8i 2 [s], w' =w"p (3.3)

where d;(w®) = @[+W e and is a power parameter if0;1]. For the
A optimal design problem, the monotonicity of the sequengfM (w(")] was proved

by Torsney [Tor83] for the power parameter 1=2. Yu proved recently [YulOa] the con-
vergence of this general class of multiplicative algorithms for the design cfit®fiew)]

such thatM 7! ( M 1) is concave (with respect to Lowner ordering). This includes as
a special case the, optimal design problem fé¢ ™ , whenp 2 [ 1;0] (in particular, for

A andD optimality).

The di erent versions of the multiplicative weight updates are presented in a uni ed way
in Algorithm 3.2.1, for the ,-optimal design problem fd¢ T . The stopping criterion is
based on the general equivalence theorem 2.4.4, and we have used the fact that for every
designw; we have ,wd(w®) = trace Qx (w(V)P.

We also point out that fop = 1 (A optimality), the derivative of the criterion
A[Qk M (w) ] takes the simple form

d(w®)= kKAM(w®) Kk2:
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In particular, forc optimality, we obtain:
d(w®) = KAIM (wV) ck?:

For the case oE optimality, the criterion is not di erentiable in general, but a subgradient
is given by
d(w®) = KAIM (W) Kvk?

wherev is an eigenvector associated to the largest eigenvale’ df (w) K.

Algorithm 3.2.1 Titterington-type multiplicative algorithm
Set a precision > 0
Choose a power parameter
Let w(©@ be a design such thatl (w(©@ ) is nonsingular.
t O
repeat
t t+1
for i 2 [s] do
dV  trace AM (WD) IKQy (WD)PLKTM (w®) IAT
end for
for i 2 [s] do
Choose an acceleration parameteft).
S Y G

(1) 4(t) t
Wi 9 ©

end for P
. t t t
until maxizgd” @+ ) pgwd?

3.3 Mathematical programming approaches

In this section, we review the linear programming (LP), semide nite programming (SDP),
and determinant maximization (MAXDET) formulations that have been proposed to solve
some optimal experimental design problems.

When Pukelsheim have proved the general equivalence theorem 2.4.4 for any infor-
mation function that is nonnegative, positively homogeneous and concave, he incidentally
gave a dual formulation of thE optimal design which is nothing but a semide nite pro-
gram [Puk80]. However, this feature does not seem to have been noticed at this period,
probably because the semide nite programming theory and algorithms were still at a very
early stage of their development. The SDP approach to optimal experimental design was
then rediscovered by Vandenberghe, Boyd and Wu in 1999 [VBW98], who were able
to formulate semide nite programs for theé and A optimal design problems, and a
MAXDET problem for theD optimal design (for the full parametel). A review of these
formulations is presented by Fedorov and Lee [FLOOQ]; another one is available in Chapter 7.5
of Boyd and Vandenberghe [BV04].
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Recently, Harman and Jurik [HJ08] showed that the Elfving theorem 2.4.1 yields a linear
programming formulation of the optimal design. On the other hand, tlee optimal
design problem also admits a semide nite programming formulation which was studied by
Qi [QI09]. In the analysis of his multiplicative-low rank update algorithm, Richtarik [Ric08]
pointed out the equivalence between the latter LP and SDP approaches, and noticed that a
rank 1 solution of the SDP always exist. We will extend this result of existence of low rank
solutions to a wider class of semide nite programs in Chapter 4.

3.3.1 E-optimality

The E optimal design for the full parameteraims at maximizing the smallest eigen-
value of the information matrii (w). We will make use of the characterization of the
smallest eigenvalue of a symmetric matrix by Rayleigh-Ritz quotight®.S,,:

T
. v Mv
V2R™: v60 v'v

The latter expression implies that for every scalar i, (M) and for all vectorv 2 R™;
VIMV  tvTv:

This can be rewritten a8v; v'(M tl)v 0, or equivalently:M tl : Similarly, if
t> min(M), there must exist a vectary such thatvy" (M tl)vg < 0, andM  tl.
This proves:

8M 2 Sm; min('\/I ) = n??%( t (34)
st. M tl:

Thanks to this SDP formulation of the smallest eigenvalue of a symmetric matrix, and by
associativity of thenax operator, we can formulate tHe optimal design problem (2.17)
as:

r%x t (3.5)
s.it. M(w) tl
X

wi=1; 8i2][sw O

In fact, the more gener&l optimal design problem for the estimationkof can also
be expressed as a semide nite program, by substitu€iKkg' to | in the right hand side of
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the linear matrix inequality of Problem (3.5):

max t (3.6)
tw
st. M(w) tKKT

w,=1; 8i2][sw O

We recall that the optimal desigm must lie in the feasibility coné K '), which means that
the range oK must be included in that d¥1 (w). This, of course, is automatically implied
by the linear matrix inequalityl (w) tKK T of Problem (3.6), in accordance with our
discussion following Equation (2.15).

We show below that the Lagrangian dual of t&e optimality SDP (3.6) already ap-
peared in Pukelsheim [Puk80], as a special case of his duality theorem. For an information
function that is nonnegative o8y, positive orf;’ , positively homogeneous and concave,
its polar function is de ned as:

. hZ; Xi
(X)= Izmco (2)

We give below a version of Pukelsheim's duality theorem for the case inXvhschite:

Theorem 3.3.1 (Duality theorem [Puk80])

sup (Quw)) = inf 1= (KTXK)
st w2 (K) sit: PATA;Xi 1(8i2[s]):
Now, for = g = nin(),itis easytoseethat(X) =trace X, and the expression

at the right hand side of the equality sign in Theorem 3.3.1 is the inverse of
max KK T;:Xi (3.7)
X 0
st: PATA; X 1(8i 2 [s));

which is a semide nite program. Its dual is:
min i (3.8)

s.t. ATA; KK T:
i=1
The Slater condition holds for the pair of problems (3.7) and (3.8), because they are both
strictly feasible (under the assumption thi&t” is estimable). This means that strong
duality holds, and these programs share the same optimal value. Finally, we can see that the
inverse of the optimal value of Problem (3.8) coincides with the optimum of Problem (3.6),
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thanks to the normalization= P-—, w = t

3.3.2 D-optimality

A D optimal design for the full parametermaximizes the determinant of the infor-
mation matrixM (w). The problem of maximizing a determinant under some linear matrix
inequality (LMI) constraints has been studied by Vandenberghe, Boyd and Wu [VBW98].
They showed that this class of problems can be considered as a generalization of semidef-
inite programs and give an interior point algorithm for their resolution. The MAXDET
formulation of theD optimal design ( for the full parametey) is:

max log detM (w) (3.9)
wi=1; 8i2][sw O
where the logarithm in the objective function ensures the convexity of the criterion. The
dual of this problem is of particular interest:
max log detW (3.10)
PATA; Wi m; 8i2[sw, O

Under the generic assumption that the full vectais estimable, i.e. that there is a design
w such thatM (w) has full rank, strong duality holds between Problems (3.9) and (3.10)
(Slater's condition is ful lled), and the complementary slackness relation yields:

wi(PATA;; Wi m)=0:

In the single-response ca#g € a;"), the dual problem (3.10) can be interpreted as nding

the minimal-volume ellipsoid centered at the origin which contains the paints: ;as.

The complementary slackness relation further indicates that the support @f tregtimal

design consists in experiments whose regression vector lies on the surface of this minimal
ellipsoid (cf. Figure 3.1).

3.3.3 A-optimality

An A optimal design problem fd¢ T minimizes

Ci'M(W) c1+ i+ ¢ TM(W) ¢
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Figure 3.1: This gure is extracted from [BVO04]. It shows the geometric interpretation of the
D optimal design for single-response experiments. The origin is marked with a cross and the

measurement vectors indicated with solid circles. Since the corresponding regression vectors are
linearly independent, it follows from Theorem 2.4.6 that tiile optimal design puts equal weights

wy = Wy = 0:5 on each of them. The ellipse corresponds to the minimal-volume ellipsoid centered
at the origin and that contains all the measurement points.

above thanks to a linear matrix inequality, by using the Schur complement lemma:
|

t c,TM(W) ¢ ( % 0

This property allows one to formulate the optimal design problem (2.18) as a semide nite
program:

rvnvltn | t (3.11)
j=1 !
st Mw) | ¢ o j2Ir];
CjT tJ
X

wi=1; 8i2][slw O

This was rst noticed by the authors of [VBW98] in the case where the full parameter

is of interest, i.,eK = 1, r = m, andc; = € (the i standard unit vector oR™M).

An alternative formulation involving an auxiliary matrix variablebut only one LMI was
proposed by Fedorov and Lee [FLOO]. We extend their formulation to the case in which
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KT s of interest:

min_ trace Y (3.12)
Y2§

W, |
L MWw) K

s
w=1; 8i2][sw O
i=1

We point out that the formulation proposed by the authors of [AS08] turns out to be
valid only if every information matrid; = ATA; is diagonal: their SDP is analogous
to Problem (3.12), butY is forced to be a diagonal matri¥ (= Diag(y)). Contrarily
to what they claim, this does not yield optimal designs: the positivity of the Schur
complemenDiag(y) K TM(w) K impliestrace(Diag(y)) traceK ™™ (w) K, but
there are simple examples where this inequality is strict at the optimum.

3.3.4 c-optimality
Single-response case: LP approaches

In presence of scalar observatioAs € a;'), Elfving's geometric characterization of
c optimality (Theorem 2.4.1) yields a linear program. Finding the optimum indeed reduces
to computing the intersection of the vectorial straight line directea laynd the boundary
of the polyhedron with verticesa; (see Figure 2.2):

max t (3.13)

X
St tc = a;

X k
k {&Z? 1

Elfving's Theorem further indicates that the optimal value of the critecibi (w) c

ist 2. After the change of variable= % = , the dual of this problem is:
max c'x (3.14)
X2RmM

st: jai'xj 1;i2][s]

General case: SDP approaches

A c-optimal design is a particular case oEa (or A ) optimal design, for = 1.
Hence, we obtain the following formulations for theoptimal design problem: from the
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E optimality SDP (3.6) we get
ng@x t (3.15)
st. M(w) tec’
w,=1; 8i2][sw O
We also obtain its dual in the form of Problem (3.7):
max c'Xc (3.16)
X 0
st: PATA;;Xi 1 (8i 2 [s]):

The A optimality SDP (3.11) yields an alternative formulation:

WmlgR | (3.17)
S t: M‘i 0,
C
x

wi=1; 8i2][slw O
i=1
which reduces to Problem (3.15) after the change of variable! and the reformulation
of the LMI by the Schur complement lemma.

Richtarik [Ric08] and Qi [Qi09] noticed independently that the Elfving theorem (in the
single-response setting) implies that a solution of rank one of Problem (3.16) always ex-
ists. The search for a solution of the folh = xx T indeed reduces to Problem (3.14)

(up to a square in the objective function which can be removed, sinkeisifa solution

of Problem (3.14), so is x). We will see in Chapter 5 that this property is also valid

in the generamultiresponsecase. An important consequence is that the semide nite pro-
gram (3.16) reduces to a Second order cone program (SOCP), which we study in Chapter 5.
This contradicts Qi's claim [Qi09], according to which computing the best rank-one solution
of Problem (3.16) is a nonconvex problem which is extremely di cult to solve.

3.3.5 Flexibility of mathematical programming approaches

In general, the mathematical programming approaches studied in this section are slower
than the specialized algorithms of Section 3.2 (a comparative study of the algorithms is done
in Chapter 6). However, we point out that the SOCP approaches, which will be studied in
Chapter 5, are competitive with the specialized algorithms in many situations. But the great
advantage of mathematical programming formulations resides mostly in their exibility, and
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the possibility to add without e ort new constraints in the problem. We now give a few
examples of these possibilities.

Multiple resource constraints

Elfving studied the case in which the available experiments have di erent costs [EIf52].
If the cost of thei™ experiment i, and the experimenter disposes of a budgethe

constraint becomes: xS

wipi b
i=1
Now,w; can not be interpreted as thgercentage of experimental e ort to spend on tffe
experimentanymore. Instead, the quantity; & should be seen as the percentage of budget
to allocate to the experiment Elfving noticed that the change of variab= w; & brings
the problem back to the previous situation, and is equivalent to a scaling of the observation
equations (2.3).

Consider now the more general case in whidk a control variable for the experiments,
such that the information matrix takes the standard faur(w) = = >, w;ATA; for some
observation matriced;. We assume thaiv is constrained by several linear inequalities

Rw  b; (3.18)

whereb 2 R"; R is an s matrix and the inequality is elementwise. Contrarily to the
previous situation with a singteidget constrailgtthere is no simple change of variable which
brings the problem back to the standard case \{; = 1), because we do not know which
inequalities will be saturated in (3.18) at optimality. This constrained problem has been
studied by Cook and Fedorov [CF95], who proposed an extension of the Fedorov exchange
algorithm (cf. Section 3.1). However, this algorithm exhibits a very slow convergence in
practice.

This constrained framework arises in the problem of optimally setting the sampling rates
of a measuring device on a network (see Part I): heres the vector of the sampling rates
of the monitoring tool at di erent locations of the network, and the constraww b
re ects the fact that only a certain number of packets should be sampled at each router.
This multiple resource constrairdan be added in any of the previous SDPs without any
reformulation e ort. For example, Singhal and Michailidis [SM08] considered the following
resource constrained SDP far optimality:

X
mwltn t (3.19)

j=1 |

" M(w)|c o .

Rw b; 8i2][s;w, O
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Bounding the eigenvalues

Harman, Jurik and Trnovska [HJTO7] have proposed to add a lower bound on the
minimum eigenvalue of the information matrix,(, (Qx (W)) 0). Geometrically, this is
equivalent to impose an upper bound on the diameter of the con dence ellipsoids (2.11),
or to guarantee that thée criterion is at least 5. This constraint guards us against the
case in which one of the quantities= c;" is badly estimated. It is of particular interest
for the D optimal design problem, where the con dence ellipsoids are of minimal volume
at the optimum, but can theoretically have an arbitrarily large diameter. In practice, a way
to introduce this constraint is to impose the LMI

M(w) KK T

on the design (see Section 3.3.1).

Avoiding concentrated designs

Vandenberghe, Boyd and Wu [VBW98] have described another useful constraint that can
be imposed on the model: The goal is to avoid a large fraction of the experimental e ort,
say90% of being concentrated on a small number of experimentsl@#of the possible
observations. This 90-10 constraint has the e ect to spread out the measurements over

the possible experiments:
b§f10c
Wiip 0:9;
i=1
wherewy; is the i largest component ofv. The authors of [VBW98] show that this
constraint is satis ed if and only if there exists a vecta2 R® and a scalat such that:
S xs
— t+ x; 09
10 i=1 |
t+xi  w; i2][s];
x O

This constraint can be added intke ,A ,D orc optimal design problem formulations
studied in this section .
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Chapter 4

A Low rank reduction Theorem In
Semide nite Programming

In this chapter which essentially recalls the work of [Sag09a] we study the class of
semide nite packing problemwhich encompasses as special cases some SDPs encountered
in Section 3.3. The main result of this chapter is that these semide nite packing problems
admit a solution which is of low rank. A a consequence, we will see in Chapter 5 that the
andA optimal design problems reduce to a Second Order Cone Program (SOCP) which is
computationally more tractable than the initial SDP; that tBe optimal design problem
for KT can be solved e ciently by a low-rank SDP solver whes small { is the number
of columns oK, i.e. the number of linear functions ofto be estimated); and that the
D optimal design problem for the full paramete{K = | ) reduces to the maximization
of a geometric mean subject to SOCP constraints, which is computationally more tractable
than the initial MAXDET problem.

Semide nite packing problems were introduced by lyengar, Phillips and Stein [IPSO05].
They showed that these arise in many applications such as relaxations of combinatorial
optimization problems or maximum variance unfolding, and gave an algorithm to compute
approximate solutions, which is faster than the commonly used interior point methods.
The problems of this class, which are the SDP analogs to the packing problems in linear
programming, can be written as:

max hC: Xi (Ppek )
st. hM:Xi h; I 2 [s];
X28s,;

whereC 0, andM; 0; i 2 [s]. Our result states that when the matrX is of rankr,
Problem P, ) has a solution that is of rank at most(Theorem 4.1.2). In particular, when

r = 1, the optimal SDP variablX can be factorized asx ", and we show that nding

X reduces to a Second-Order Cone Program (SOCP). In this chapter, we will discuss the
signi cance of our rank reduction theorem for the relaxations of combinatorial optimization

65



66 CHAPTER 4. A LOW RANK REDUCTION THEOREM IN SDP

problems that are presented in [IPS05] (the hypothesis on the rank of the iGatppears

to be very restrictive). The consequences for the computation of optimal experimental
design are the object of Chapter 5. In Section 4.2, we will extend our result to a wider class
of semide nite programs (Theorem 4.2.2), in which not all the constraints apacking

type. The proofs of the theorems of this chapter are given in Section 4.3.

Related work  Solutions of small rank of semide nite programs have been extensively stud-
ied over the past years. Barvinok [Bar95] and Pataki [Pat98] discovered independently that
any SDP withs constraints has a solutiod whose rank is at most
0
o= P 8+1 1 /0_
%

whereb c denotes the integer part. This was one of the motivations of Burer and Monteiro
for developing the SDPLR solver [BM03], which searches a solution of the SDP in the form
X = RRT, whereR is an r matrix. The resulting problem is non-convex, and so the
augmented Lagrangian algorithm proposed in [BMO3] is not guaranteed to converge to a
global optimum. However, it performs remarkably well in practice, and some conditions
which ensure that the returned solution is an optimum of the SDP are provided in [BMO5].
Our result shows that for a semide nite packing problem in which the m@trhas rank
r, one can force the matriR to be of sizen r (rather thann r ), which can lead to
considerable gains in computation time whes small.

We point out that the ratio between the optimal value of Probldt,() and the value
of its best solution of rank one has been studied by Nemirovski, Roos, and Terlaky [NRT99].
They show that the value of the SDP and the valug of its best rank-one solution satisfy:

1

Vi oines)Y

where = min(s;r_rzu[ai( rank M;): (4.1)
12{S

This ratio can be considerably reduced in particular con gurations, but to the best of our
knowledge, the fact that the gap in (4.1) vanishes when the marii the objective
function is of rankl is new, except in the particular case in which ewryis of rankl,

too [Ric08].

4.1 A rank reduction theorem

4.1.1 Main result

We start with an algebraic characterization of the semide nite packing problems that
are feasible and bounded.
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Theorem 4.1.1. Problem(P, ) is feasible if and only if evelgyis nonnegative. Moreover
if Problem (P, ) is feasible, then this problem is bounded if and only if the ran@eisf
included in the range of ; M;.

The reader should note that the range inclusion condition in Theorem 4.1.1 is in fact
equivalent to the feasibility of the Lagrangian dual of Probl&pg,():

mig Tb (DPCK )

X
S.t. iM; C:

The main result of this chapter follows:

Theorem 4.1.2. We assume that the conditions of Theorem 4.1.1 are ful lled, so that
Problem (P, ) is feasible and bounded. rdinkC = r, then the semide nite packing
problem(P.c ) has a solution which is a matrix of rank at most

Under a few additional conditions, we can also bound the rank of every solution. For a
proof of the next statement, we refer to the last page of this chapter (proof of the second

case the condition {_; M;  0Ois equivalent to the strict dual feasibility).

. . P
Theorem 4.1.3. We assume that ProblerfP,., ) is feasibleC 6 0 and -, M; 0.
Then, every solutiorX of Problem(P.c« ) must be of rank at mosh 1 + r, where

r:=min rank M.
i2[s]

A consequence of Theorem 4.1.2 is that when the matrix in the objective function is
of rank1 (C = cc'), the computation of a solutioX of Problem P, ) reduces to the
computation of a vectox such thatX = xx 7. The next result shows that this can be
done very e ciently by a Second Order Cone Program (SOCP).

Corollary 4.1.4. We assume that the conditions of Theorem 4.1.1 are ful lled, and that
C = cc' for a vectorc 2 R™ (i.e. rank C = 1). Then, Problem(P;. ) reduces to the
SOCP:

max c'x (4.2)
X2 RmMm
s.t. kAixk, b; i=12]Js];

where the matrice#,; are such thaM; = AT A;. Moreover, ifx is any optimal solution of
Problem(4.2), then X = xx T is an optimal solution of ProbleiP.. ), and the optimal
value of (Pse ) is (cTx)2.

Proof. The SOCP (4.2) is simply obtained frorR.{. ) by substitutingxx T from X and
ATA; from M;. The objective functiolC; Xi becomegcTx)?, and we can remove the
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square by noticing thatT x 0 without loss of generality, since»f is optimal, so is
X: L]

In fact, the proof of Theorem 4.1.2 relies on the projection of ProbRny § on an ap-
propriate subspace, which lets the reduced semide nite packing problem be strictly feasible,
as well as its dual. This reduction is not only of theoretical interest, since in some cases it
may Yyield some important computational savings. Therefore, we next state this result as a
proposition.

Letlg:=fi2[s]:h =0gandl :=[s]nlq. Letthe columns of then my matrix U
form an orthonormal basis th(_ i, M;), and the columns of the, m®matrix V form
an orthonormal basis ¢fer(UT * ;5 , M;U): We further de neC%:= (UV)TC(UV) 2 S,
andM%:= (UV)™M;(UV) 2 S, (fori 21 ), and we consider the reduced problem

max hc®zi (P
228 o
st WM%Zi  h; i21:

Proposition 4.1.5. We assume that the conditions of Theorem 4.1.1 are ful lled, so that

Problem(P, ) is feasible and bounded. Then, the following properties hold:
(i) Problem(P2, ) is strictly feasible, i.€9Z 0: 8i 21 ;hM%Zi <b;;

PCK

(i) The Lagrangian dual ofP2, ) is strictly feasible, i.e9—> 0 : i iz M2 CC

(iii) If Z is a solution of ProblertP2,, ), thenX := (UV)Z(UV)T is an optimal solution of
Problen{P:. ) (which of course satis esank X rank Z andhC;Xi = hC%Zi).

4.1.2 Relation with combinatorial optimization

SDP relaxations of combinatorial optimization problems have motivated the authors
of [IPS05] to study semide nite packing problems. Hence, we discuss the signi cance of
our result for this class of problems in this section.

Semide nite programs have been used extensively to formulate relaxations of NP-hard
combinatorial optimization problems after the work of Goemans and Williamson on the
approximability of MAXCUT [GW95]. These SDP relaxations often lead to optimal solutions
of the related combinatorial optimization problems whenever the solution of the SDP is of
small rank. As shown by lyengar et. al. [IPS05], SDP relaxations of many combinatorial
optimization problems can be cast as semide nite packing programs. Our result therefore
identi es a subclass of combinatorial optimization problems which are solvable in polynomial
time. Unfortunately, this promising statement only helped us to identify trivial instances
so far. For example, the MAXCUT semide nite packing problem [IPS05] yields an exact
solution of the combinatorial problem whenever it has a fasklution. The matrixC in
the objective function of this SDP is the Laplacian of the graph, and so it is known that

rank C = N X
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whereN is the number of vertices andis the number of connected components in the
graph. Our result therefore states that if a graphMfvertices hadN 1 connected
components, then it de nes a MAXCUT instance that is solvable in polynomial time. Such
graphs actually consist in a pair of connected vertices,lus2 isolated vertices, and the
related MAXCUT instance is trivial.

Another limitation for the application of our theorem in this eld is that most semide -
nite packing problems arising in combinatorial optimization (including but not limited to the
Lovasz# function SDP [Lov79] and the related Szegedy number SDP [Sze94], the vector
colouring SDP [KMS98], the sparsest cut SDP [ARV09] and the sparse principal compo-
nents analysis SDP [dAEJLO7]) can be written in the formRyg(), with an additional
trace equality constraintrace(X) = 1. In fact, we can show that if such an equality
constrained semide nite packing problem is strictly feasible, then it is equivalent to the
following classical semide nite packing problem:

max hC+ | ;Xi (4.3)
st. WM; Xi b; i 2 [s];

traceX 1,

X 0

where is any scalar larger thgn j, where is the optimal Lagrange multiplier associated
to the constrainttrace(X ) = 1 (we omit the proof of this statement which is of secondary
importance). SinceC + | is a full rank matrix, our result does not seem to yield any
valuable information for this class of problems.

4.2 Extension to combined problems

The proof of our main result also applies to a wider class of semide nite programs, which
can be written as:

sup hC;Xi+ hRg;Yi+hg' (Pes )

X)Y;

st. WMi:Xi QB+ hR:Yi+h ; i 2 [s]:
XZS;];Y2%; 2 RY:

whereevery matrix M; and C are positive semide nite, while the R; are arbitrary
symmetric matrices. The vectorsh; are inRY9. We denote byH theq s matrix formed



70 CHAPTER 4. A LOW RANK REDUCTION THEOREM IN SDP

inf b (Dews )

S.t. iMi  C;

We have seen in Section 4.1.1 that the feasibility of both the prifa| § and the
dual Dee ) is sucient to guarantee that Problem R..« ) has a solution of rank at
mostr = rank C. For combinedproblems however, the feasibility of the couple of pro-
grams Pqws ) ( Dews ) IS NOt su cient to guarantee the existence of a solutipk; Y; ) of
Problem P ) in whichrank X  r. We give indeed an example (Example 4.2.3) where
the optimum in ProblemK,,,; ) is not even attained. However, we show in the next theorem
that an asymptotic result subsists. Moreover, we shall see in Theorem 4.2.2 that a solution
in whichX is of rank at most exists as soon as an additional condition holds (strict dual
feasibility). The proof of Theorem 4.2.2 essentially mimics that of Theorem 4.1.2 and is
presented in Section 4.3.2. Theorem 4.2.1 turns out to be a consequence of Theorem 4.2.2
and is proved in Section 4.3.3.

Theorem 4.2.1. We assume that Problen{®.,; ) and (D, ) are feasible. iank C = r,
then there exists a sequence of feasible primal varigble¥y; «)«k2n such thatrank X

r forallk 2 NandhC; Xi+HRo; Yei+ho' converges to the optimum of Problgil.,; )
ask!1

Theorem 4.2.2. We assume that Problef#.,; ) is feasible, and a re ned Slater condition
holds for Problem{(D.ys ), i.e. there is a feasible dual variable which strictly satis es the
non-a ne constraints:

X X
9~ O0: —“M; C;, Ro+ —“Ri 0, hg+ H—=0:
i i
If rank C = r, then Problem(P,s ) has a solution(X;Y; ) in whichrank X r.
Moreover, ifC 6 0, then every solutio(X;Y; ) of Problem(P.s ) is such thatank X

n T+ r, wherer = r_r;i[n] rank M;.
1Z2|S
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As in the previous section, we have a result of reduction to a SOCP, which holds when
C is of rankl, everyR; =0 andhy = 0. Recall thatH denotes the matrix formed by the

Corollary 4.2.4. Consider the following combined semide nite packing problem:

sup hC; Xi (4.5)
X2Sn; 2R4

st. M Xi h;T +h; i 2 [s];
X 0:

Assume thatC = cc™ has rankl. If Problem(4.5) and its Lagrangian dual are feasible,
ie.

9 2RI: HT +b O

@9~ 0:" .~ M, Ciho+H =0
then, Problem(4.5) is bounded, and its optimal value is the square of the optimal value of
the following SOCP:

sup c'X (4.6)

x2RM; 2R4 "
2AiX

nToan 1, MoThEl 020

s.t.
2

where the matriceg\; are such thatM; = ATA;. Moreover, if(x; ) is a solution of
Problem(4.6), then(xx "; ) is a solution of Probler(4.5), and the optimal value of4.5)
is(cTx)2.

Proof. Theorem 4.2.1 guarantees the existence of a sequence of feasible variables
(X« Wken in whichX has ranki, i.e. X, = X X", andhC; X,i = (c"xy)? converges
to the optimum of Problem (4.5). This optimal value is therefore equal to the supremum

Example 4.2.3. Consider the followingcombined semide nite packing problem:

3 81 9

Sup 100 9 1

+
X2S,;

;X 1 32 (4.4)

2R?
st. 0 1+ 1

X1 1+ 2

Xo2 1+3 1+ 3

p_
This problem is in the form of Pcye ) indeed, withC = cc™, c= 2[9 1], ho=[1 3] ;

A _ 1 0 . _ 0 o0 _ 1 0 3

Ml—O,Mz— 0 0 ,M3— 0 1 and H = 0 1 1

Problem (4.4) is clearly feasible (e.g. foK =0, = 0), and the reader can verify that = %[1 27 3 is
dual feasible (in fact, this is the only dual feasible vector, and hence the dual problem does not satisfy the Slater
constraints quali cation). The value of the optimum is%, and can be approachgd arbitrarily closely for the
sequence of feasible variablég X} ; «)k2n, Whereforallk 0, xx =[ 3+ k  kI', v =[1 k+2]T,

while this optimum is not attained by any coupl€X; ) of (bounded) feasible variables.
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of (c"x)?, over all the pairs of vectorx; ) 2 R™ RY such that(xx T; ) is feasible

for Problem (4.5). As in the proof of Corollary 4.1.4, we notice thgkif"; ) is feasible

for Problem (4.5), soi§( x)( x)T; ), hence we can remove the square in the objective
function.

The SOCP (4.6) is simply obtained from (4.5) by substitutiag”™ from X and AT A,
from M;. We also used the fact that for any vectorand for any scalar, the hyperbolic
constraint

kzk3
is equivalent to the second order cone constraint
) #
z
+1:
1

2

4.3 Proofs of the theorems

4.3.1 Results of Section 4.1.1

Proof of Theorem 4.1.1The fact that Problem P.. ) is feasible if and only if evely is
nonnegative is clear, singe = 0 is always feasible in this case aigd 0;X 0, implies
hvi i Xi 0.

Now, we assume that eadhp is nonnegative, and we show that ProbleRyf ) is

bounded if and only ifm C Im  ; M;. The positive semide niteness of the ma-
trices M; implies that there exists matrices; (i 2 [s]) such that ATA; = M;, and
[AT;  AINAL;  ;AIl" = | M;. We also consider a decompositor | _; cxcy'.

For any factorizationrM = ATA of a positive semide nite matrid, it is known that
ImM =1Im A, and so the following equivalence relations hold:

X X
ImC Im M08 k2[r]; c2Im( M) =Im([A]; Al

\s ?

08 k2]r]; ck 2 Ker(Ai). | : 4.7)

i=1

We rst assume that the range inclusion condition does not hold. Relation (4.7) shows
that
9k 2 [r;9h 2 R™:8i 2 [s];, Aih=0; c'h60:

Now, notice thatX = hh ' is feasible for all> 0, since hAiTAi;hhTi =0 b. This
contradicts the fact that ProblemP;, ) is bounded, becaus€; X i (c"h)?; and
can be chosen arbitrarily large.
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Conversely, if the range inclusion holds, we consider the LagrangianDdua) ©Of
Problem P« ): The range inclusion condition indicates that this problem is feasible, be-
cause it implies the existencg of a scalar 0 such that ; M; C (we point out
that a convenient value foris ., ¢ (" ; M;)Yc; this can be seen with the help of the
Schur complement lemma). This means that Problém.() has a nite optimal value
OPT i b, and by weak duality, ProblenfP{. ) is bounded (its optimal value cannot
exceedOPT). m

Before proving Theorem 4.1.2, we need to show that we can project ProBlem) (
on a subspace such that the projected probl&f}, () and its Lagrangian dual are strictly
feasible (Proposition 4.1.5).

Proof of Proposition 4.1.5Let | (;1 ;U andV be de ned as in the paragraph preceding the
statement of the proposition (page 68). Note that every matfixcan be decomposed as
M; = UN;UT for a given matrist;, because its range is included in the range of1; (we
haveNt; = UTM;U). The same observation holds for which can be decomposed@s-
UCUT (we have assumed the range includimC Im  ; M;). Hence, ProblemR... )

is equivalent to:

max hC;U"XUi
X 0
st. WV UT™XUi b i 2 [s]:

After the change of variablg, = UTXU (Z, is a positive semide nite matrix X is), we
obtain a reduced semide nite packing problem

max hC; Zoi (4.8)
Zo O
s.it. hVIi;Zoi  b; i 2 [s]:

By construction, ifZy is a solution of (4.8), therX := UZUT is a solution of Pec ).
Note that the projected matrices in the constraints now satisfyt; = UT( ; M;)U 0.

We shall now consider a second projection, in order to get rid of the constraints in
whichh = 0. Note that each constraint indexed by | ¢ is equivalent to imposing that
Zo belongs to the nullspace of the matii%. Since the columns dof form a basis of
\ 21 , Ker Nrj, any semide nite matrix, which is feasible for Problem (4.8) must be of the
formV ZVT for some positive semide nite matr&. Hence, Problem (4.8) reduces to:

max WTCV;Zzi (4.9)
st. WWTMV;Zi  b; i21:

which is nothing but ProblemP{,, ), becauseV'M;V = VTUTM;UV = M? and
VTCV = C°% By construction, IfZ is a solution of (4.9) (P2, ), then VZVT is a
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solution of (4.8), andlUV)Z(UV)T is a solution of the original problenP4, ). This
proves the pointiii ) of the proposition.

. P :
We hav% pointed out abO\ée that,; VT % Therefore, there exists a real> 0
such that =~ ;M; C,and M?%2= VT Nt V. VTCV = C° This proves
the strict dual feasibility of ProblenPg., ) (point (ii) of the proposition). Finally, since

everyh is positive fori 2 | , it is clear that the matriXxZ = "I 0 is strictly feasible for
Problem P2, ) as soon a$ > 0 is su ciently small. This establishes the poi(i, and
the proposition is proved. ]

We can now prove the main result of this chapter. In fact, Theorem 4.1.2 can be derived
from the extension to combined problems (Theorem 4.2.2), but this would somehow hide
the fact that the proof is much simpler in the non-combined case. Therefore we provide
the proofs of these two similar results separately.

We will rst show that the result holds when evévly is positive de nite, thanks to the
complementary slackness relation. Then, the general result is obtained by continuity. We
point out at the end of this section the sketch of an alternative proof of Theorem 4.1.2 for
the case in whiclh = 1, based on the bidual of ProblerR:{ ) and Schur complements,
that shows directly that ProblenP{., ) reduces to the SOCP (4.2).

Proof of Theorem 4.1.2We will show that the result of the theorem holds for any semidef-
inite packing problem which is strictly feasible, and whose dual is strictly feasible. Then,
by Proposition 4.1.5, we can say that ProbleRf( ) has a solutiorZ of rank at most
r:=rank C% andX := (UV)TZ(UV) is a solution of the original problem which is of
rank at mostr® r.

So let us assume without loss of generality tHai.() and (D, ) are strictly feasible:

8i2[sjh>0 and 9 > 0: X M; C:
|
The Slater condition is ful lled for this pair of programs, and so strong duality holds (the
optimal value of P.., ) equals the optimal value oD, )), and the dual problem attains
its optimum. In addition, the strict dual feasibility implies th&.{; ) also attains its
optimum. The pairs of primal and dual solutigq6 ; ) are characterized by the Karush-
Kuhn-Tucker (KKT) conditions:

Primal Feasibility: 8i2[s];, MM;X i b;
X 0;

Dual Feasibility: 0; M C;
xs
Complementary Slackness: ( «Mj C)X =0;

i=1

8i2[sl; (b hM;:;X i)=0:
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Now, we consider the case in whigh 0 for all i, and we choose an arbitrary pair
of primal and dual optimal solutiofX ; ). The dual feasibility relation implies 6 0O,
and so ; ;M is a positive de nite matrix (we exclude the trivial c&e 0). SinceC
is of rankr, we deduce that

X
rank( Mi C) n =
i
Finally, the complementary slackness relation indicates that the colun¥nslz#long to the

nullspace of ; ;M; C), which is a vector space of dimension at most(n r)=r,
and so we conclude thaank X r

We now turn to the study of the general case in wikch 0. To this end, we consider
the perturbed problems

max hC; Xi
s.t. AM;+"1;Xi R (P.)
X 0
and
X
min ib; (D)
0 .
i=1
S.t. i(Mi + " ) C:

i=1

where" 0. Note that the strict feasibility of the unperturbed probler®s.( ) and (Dpc )
implies that of P-) and (D) on a neighborhoot 2 [0; "], "o > 0. We denote byX"; ")
a pair of primal and dual solutions d®-( ( D-).

If"> 0, M; + "I 0 and it follows from the previous discussion tiat is of rank at
mostr. We show below that we can choose the optimal varigfdes )20, Within a
bounded region, so that we can construct a converging subseqénce «)on; "k ! 0
from these variables. To conclude, we will see that the lfxit; °) satis es the KKT
conditions for ProblemsP{., ) ( Dycx ), and that X © is of rank at most.

Let us denote the optimal value of Probler®s)(( D-) by OP T("): Since the constraints
of the primal problem becomes tighter whegrows, it is clear thaOP T(") is nonincreasing
with respect to", so that

8" 2 [0;"q]; OPT("y) OPT(") OPT(0):
We have:

X X
( Mi+"l) C ( M) G
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and so we can write
X .E X .
h M; C;X h Mi+"l) CX
i Xi "E
= h (Mj+"l);X OPT(")
i

X
b OPT(')

E

where the equality comes from the expressio@ﬂ'("})and the latter inequality follows

from the constraints of the Probleni(). The matrix = ;M; C is positive de nite by
assumption and its smallest eigenvaldés therefore positive. Hence,
0 " X "E T X
trace X h M; C;X —b OPT(") h OPT("o):

This shows that the positive semide nite mat¥x has its trace bounded, and therefore all
its entries are bounded.

It remains to show that the dual optimal variable 0 is bounded. This is simply
done by writing:
8i2[s; b b "=O0OPT(") OPT():

By assumptionh > 0, and the entries of the vector’ 0 are bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(X"; "®)kon that converges, with |(!|1 0, "« > 0. The limit X © of this sequence is of
rank at mostr, because the rank is a lower semicontinuous functiorrami X "« r for
allk 2 N. It remains to show thak ° is a solution of ProblemP(. ). The" perturbed
KKT conditions must hold for ak 2 N, and so they hold for the paiX,; ©) by taking the
limit (the limit of any sequence of positive semide nite matrices is a positive semide nite
matrix becausé&, is closed). This concludes the proof. ]

Sketch of an alternative proof of Theorem 4.1.2 when r =1

Proof. By Proposition 4.1.5, we only need to show that the result holds for the reduced
problem P2, ), and so we assume without loss of generality that strong duality holds for
all the optimization problems considered below.

Whenr = 1, there is a vectoc such thatC = cc™ and the dual problem ofP¢c )
takes the form:

min b (4.10)
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Now, settingt = Th, andw = +, so that the new variablev satisesw™b = 1,

. : ‘ P . o .
the constraint of the previous problem beconigs i W;M;. This matrix inequality,
together with the fact that the optimat is positive, can be reformulated thanks to the
Schur complement lemma, and (4.10) is equivalent to:

min _ t (4.11)
t2Rw 0 b |
WM, | ¢’
s.t. athiad o:
cT t
w'b=1:

We dualize this SDP once again to obtain the bidual of ProgrBm. | (strong duality
holds):

max v'c (4.12)
2R;Z2S; 4
st PW;Mii - b §2]g]
_ Wlv
Z= 1 O

We notice that the last matrix inequality is equivalentb vv T, using a Schur comple-
ment. SinceM; 0, we can assume that/ = vv T without loss of generality, and (4.12)
becomes:

max 2v'c (4.13)
2R;v2RM
s.t. kAivk?®  bi; i2]s];
whereA; is a matrix such thaATA; = M;.

We now de ne the new variables= P ~,andx = Y, so that (4.13) becomes:

max max 2 2 Xx'c (4.14)
X2RmM
s.t. kA;xk b; 1=12]s]

The reader can nally verify that the value of the max within parenthegis'is)?, and we
have proved that the SDFP{.. ) reduces to the SOCP (4.2). By the way, this guarantees
that the SDP P, ) has a rank-one solution. O

4.3.2 Proof of Theorem 4.2.2

Before we give the proof of Theorem 4.2.2, we need one additional technical lemma,
which shows that one can assume without loss of generality that the primal problem is
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with the cone generated by the same vectors. One can consider this lemma as the analog
of Proposition 4.1.5 for combined problems.

Lemma 4.3.1. We assume that the conditions of Theorem 4.2.2 are ful lled. Then, there
exists a subsdt  [s], as well as matrice8® 0andM? 0 (i 21 ), so that the reduced
combined semide nite packing problem

, Max_ hC®Zi + Ry Yi + ho' st. 8i21;mM%Zi b+ HR;Yi+h;'

has the same optimal value éB.,; ) and satis es the following properties:
(i) 9(Z° OY° 0O 9: 8i2I;MM;Z9<bj+MR:Yd+h" ©

(i) The coneK generated by the vecto($; )i ogn IS @ vector space.

(iii ) rank C° rank C;

(iv) There is a matrixJ with orthonormal columns such that (Z;Y; ) is a solution
of the reduced problem, thefX := UZUT;Y; ) is a solution of ProbleniP.,; )
(which of course satis esank X  rank Z).

Proof. In this lemma,(i) and (ii) are the properties that we will need to prove Theo-
rem 4.2.2. Propertiegiii ) and (iv) ensure that if the theorem holds for the reduced
problem, then the result also holds for the initial problétg,{ ). We handle separately the
cases in which the initial problem does not satisfy the progerty (ii ). If both cases arise
simultaneously, we obtain the result of this lemma by applying successively the following
two reductions.

Let(X ;Y ; ) be an optimal solution of Probler®{,; ) ; the existence of a solution
is guaranteed by the (re ned) Slater condition satis ed by the dual problem indeed (see e.qg.
[Roc70, Ber95]). We denote by,  [s] the subset of indices for whidh+ hR;;Y 1 +
h;" =0 (note that we havéh + R;;Y i+ h;' O for alli becauseM; 0 implies
Mi; X i 0). Wedenel :=[s]nlgy. In Problem P, ), we can replace the constraint
M Xi h+HR:Yi+h' by M;; Xi =0 foralli 21, since(X ;Y ; ) satises
this stronger set of constrainlgs. For a feasible positive semide nite matrithis implies
h 5 ,M;i;Xi =0, and even ;5 ,M;X = 0. Therefore,X is of the formUZUT for
some positive semide nite matrik, where the columns dad form an orthonormal basis of

P . : . . .

the nullspace oM, := * j, , M; (U is obtained by taking the eigenvectors corresponding
to the vanishing eigenvaluesiMf). Hence, ProblemR,,; ) is equivalent to:

max hUTCU:;Zi + hRo;Yi + ho' (4.15)
st. WUTM,U;Zi b+ HR;Yi+h" ; i21;
Z 0Y O

We have thus reduced the problem to one for which hR;;Y i + h;" > 0 for all
i, and strict feasibility follows (i.e. propery) holds, consider®= ;Y%=Y + 4l,
andz®= ,I for suciently small reals ; > 0 and , > 0). Moreover, the projected
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matrix C°:= UTCU in the objective function has a smaller rank th@r(i.e. (iii ) holds).
Finally, (iv) holds for the reduced problem by construction(4fY; ) is a solution of
Problem (4.15), ther(X := UZUT;Y; ) is a solution of ProblemP,; ), both problems
have the same optimal value, and of coumak X rank Z.

We now handle the second case, in which Progentgoes not hold for ProbleniP(,s ).
The setK = f [hg;H]v; v 2 R®*';v  0Og is a closed convex cone. Hence, it is known
that it can be decomposed & = L + Q, whereL is a vector space anQ L’ is a
closed convex pointed cone € K \ ( K) is thelineality spaceof K). The interior of
the dual coneQ is therefore nonempty, i.€ :892 Qnf0Og; "q > O: Let , be the
orthogonal projection of onL?, sothat 'qg= 'q > Oforallq 2 Qnf0g, and

o'x =0 forallx 2 L. Now, we de ne the set of indicds= fi 2 [s] : h; 2 Lg, and its
complement o = [s]nl. Foralli 214, hj = x; + q; for a vectorx; 2 L and a vector
g2 Qnf0g, sothat o'hi= o'Xi+ o'gi = o' g > 0. Forthe indices 21 , it is
clear that ' h; = 0. Finally, sincdhg + H— =0, we have hy 2 K, so thathy 2 L and
ho" =0:To sum up, we have proved the existence of a vecioior which

8i2f0g[l ;: o'hi=0 and 8i2lg o h;>0:

Let (X ;Y ; ) be an optimal solution of ProblenP4, ). For all positive reat,

(X ;Y ; +1t () is also a solution, because it is feasible and has the same objective
value. Lettingt ! 1 , we see that the constraints of the problem that are indexed by

i 21 ¢ may be removed without changing the optimum. We have thus reduced the problem
to one for which(ii ) holds.

We can now prove Theorem 4.2.2. The proof mimics that of Theorem 4.1.2, i.e. we
rst show that the result holds when eadh; is positive de nite, and the general result is
obtained by continuity. The only di erence is how we show that we can choose optimal
variablegX ;Y"; "; ")-210, for a perturbed problem within a bounded region.

Proof of Theorem 4.2.2By Lemma 4.3.1, we may assume without loss of generality that

K =conefhg;:::;hg K and that the primal problem is strictly feasible. The strict
feasibility of the primal problem ensures that strong duality holds, i.e. the optimal value
of (Pove ) €quals the optimal value oD(,, ), and the optimum is attained in the dual
problem. Moreover, the (re ned) Slater constraints quali cation for the dual problem guar-
antees the existence of primal optimal variables as well (see e.g. Theorem 28.2 in [Roc70]).
The pairs of primal and dual solutioneX ;Y ; ); are characterized by the Karush-
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Kuhn-Tucker (KKT) conditions:

Primal Feasibility: 8i2[s];, Mi;Xi h+HMR;Yi+h' ;

X 0 Y 0;
Dual Feasibility: 0; M C;
i=1
x
Rgo + i R; 0; ho + H =0;

X xS
Complementary Slackness: ( {Mi C)X =0; (Ro + iRi)Y =0;
i=1 i=1

8i2[s; ;(b+HMR;Yi+h™ hM;;Xi)=0:

Now, we consider the case in whigh O for all i, and we choose an arbitrary pair of
primal and dual optimal solutiongX ;Y ; ); . The dual feasibility relation implies
6 0, and so ; ;M; is a positive de nite matrix (we exclude the trivial c&e= 0).

SinceC is of rankr, we deduce that

X
rank( iMi C) n

Finally, the complementary slackness relation indicates that the colun¥nsh¥long to the
nullspace of ; ;M; C), which is a vector space of dimension at most(n r)=r,
and so we conclude thaank X r:

We now turn to the study of the general case in wikth 0. To this end, we consider
the perturbed problems

max hC;Xi + hRg;Yi + hg'

S.t. HV|i+"|;Xi b+mi;Yi+hiT I2[S], (PC"MB)
X 0Y 0
and
. xs
min L ib;
S.t. i(Mj+"1) C; (D;MB)
i=1
xs
RO+ IRI Ol
i=1
h0+ H = 0:

where" 0. Note that the re ned Slater constraints quali cation for the unperturbed
problems Pq,; ) and Doy ) (.. simultaneous feasibility (resp. strict feasibility) of all
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the a ne constraints (resp. non-a ne constraints)) implies the quali cation of the con-
straints for @, ) and D, ) on a neighborhood 2 [0;"¢], "o > 0. We denote by
(X;Y"; "), 7 a pair of primal and dual solutions d?{, ) (D¢ )- If "> 0, M; +
"I 0and it follows from the previous discussion tiat is of rank at most. We show
below that we can choose the optimal variall§s;Y"; *; ")z, Within a bounded
region, so that we can construct a converging subsequ@neeY «; "«; ")on; "k ! 0
from these variables. To conclude, we will see that the (¥ft; Y?; ©; 0) satis es the
KKT conditions for ProblemsR.,s ) ( Dews ), and that X © is of rank at most.

Let us denote the optimal value of Probleni,( ) ( D, ) by OPT("): Since the
constraints of the primal problem becomes tighter whegnows, it is clear thaDP T(") is
nonincreasing with respect tg so that

8" 2 [0;"g]; OPT("o) OPT(") OPT(0):
Now let" 2]0;"o]. By assumption, there exists a vector 0 such that
X X X
(M + ) —“M; C; and Rp+ Ry O (4.16)
i i i
Therefore, we have

OPT(")= hC:X"i+ Rg;Y'i+ hy" °
Dx E ) )
(M + ") XY+ R YT+ ho'
i

—h+MR;Yi+h"T " +MReY'i+hg'

:*ITb+ h “Ri+ R Y i+(hotHD" 7
o 0 Po_{z_ ;

where the rst inequality follows from (4.16), and the second one from the feasibility con-
diton hM; + "1;X"i b+ hR;;Y'i + h;T ". The assumption (4.16) moreover implies
that ( ; Ri + Rp) is positive de nite, so that its smallest eigenvalifés positive, and

. Db X E
° trace Y (" SRi+Ro:;Y b OPT(") —Tb OPT("):

This shows that the trace of ' is bounded, and s¥~ 0 is bounded.
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Similarly, to boundX *, we write:
X E X E
h —M; C;X h  —(Mj+"l) C;X
i % "E ] )
h —(M;+"I);X OPT(")+ MRy Y'i + ho'
Xi . . . R
— h+MR;Y'i+h' OPT(")+ MRy Y'i + hgo'
i X ) )
7Tb OPT(") + h 7iRi + Ro, Y | +( |’]0 .|{.ZH 7})1- :
— S

0

. . P .
where the rst equality comes from the expressio®@&T("). The matrix ; M; Cis
positive de nite and its smallest eigenvalUl®is therefore positive. Hence,

DOtrace X° —Tb OPT(") —b OPT(");

and this shows that the matriX”~ 0 is bounded.

Now, note that the feasibility of "~ implies that the quantith + hR;;Y"i + h;"T " is
nonnegative for alil 2 [s]. SinceY " is bounded, we deduce the existence of a lower bound
m; 2 R such thath;T " m; (8i 2 [s]). Similarly, sincdro” =~ OPT("g) hC;X'i
hRo;Y'i, there is a scalamy such thath,” *~ mg. We now use the fact that every
vector ( h;) may be written as a positive combination of tg; (k 2 f Og [ [s]), and we
obtain that the quantitiesh;” " are also bounded from above. Let us denotddpythe
matrix [ho; H]; we have just proved that the vectbr] * is bounded:

O9M2R: kHy 'k, m

(the latter bound does not depend di). Note that one may assume without loss of
generality that * 2 ImH, (otherwise we consider the projection, of “ on ImHy
which is also a solution sin¢&] " = HJ : We know from the Courant-Fisher theorem
that the smallest positive eigenvaluettfH] satis es:

T T
V' HoH, Vv
> Ty — : offg V|
min(HoHg) = min —
v2Im HonfOg V'V
Therefore, since we have assumed® Im Ho:
kHd "k2 m?

k 'k — . ;
min(HoH(;)r) min(HoH(-Jr)

It remains to show that the dual optimal variable is bounded. Our strict primal
feasibility assumption (which does not entail generality thanks to Lemma 4.3.1) ensures the
existence of a matriY 0 and a vector such that

8i2[ﬂ;“&;7]+ b+‘hﬁ47: i > 0:
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. P . . . . . .
By dual feasibilityRo+ ; ;R; is a negative semide nite matrix, and we have:

0 hRgYi+ MRi;Yi = Ry Yi + (i b hT)

i=1 i=1

Hence, we have the following inequalities:
DS . . . .
8k 2 [s]; « « i b "+ H " hRgYi

= OPT(")  'ho hRgYi
OPT(0) ~'ho hRoYi;

and we have shown that 0 is bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(X" Yk "k K)o that converges, with' I(!'1 0, "x > 0. In this sequence, the

limit X 0 of X "« is of rank at most, because the rank is a lower semicontinuous function
andrank X'« r for allk 2 N. It remains to show thatX %, Y9 ©9) is a solution of
Problem . ). The" perturbed KKT conditions must hold for &l2 N, and so they
hold for the pair (X% Y% ©); © by taking the limit (this works becaus®, is closed).
This concludes the proof of the existence of a solution in wiaick X .

It remains to show the second statement of this theorem, namely tHat&f0 and

r= r_r;i[n] rank M, then the rank ofX is bounded byr 1+ r for any solution(X;Y; )
12{S

of (Pews )-

Let (X ;Y ; ) be a solution of ProblemP,; ). If the primal problem is strictly
feasible, then there exists a Lagrange multiplier 0 such that the KKT conditions
described at the beginning of this proof are satis ed. Sldc@ 0, we have 6 0, and
we can write: X

rank ( M C) 1
i2[s]
Hence, since by complementary slackngssyelongs to the nullspace ()Pf i2;gg iMi C),
we nd rank X n r+r.

If the primal problem is not strictly feasible, there must be an ind2Xs] such that
hM;; X i =0 (otherwise( 11 ;Y + ,l; ) would be strictly feasible for su ciently small
positive reals; and ,). Therefore,X is in the nullspace of a matrix of rank larger than
r, andrank X n r n T+r. O
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4.3.3 Proof of Theorem 4.2.1

We assume that Problem®{,; ) and (D ) are feasible, and for 0 we consider
the following pair of primal and dual perturbed problems.

sup hC;Xi+ hRo;Yi+ hg'

st. MMi:Xi b+hMR:Yi+hT i 2 [s]; (P)
(trace X +trace Y) 1,
X 0Y 0O
and
f X3
inf ~ ib+
s.t. iM; + I C; (D)
i=1
x
i=1
ho+H =0:

It is clear that the feasibility of Probleni{,s ) implies that of @ ) if > 0 is su ciently
small. Let— be a dual feasible variable for ProbleB( ), and > 0 be su ciently

large so that -, "M+ | CandRo+ ;R | 0: the re ned Slater
condition holds for the perturbed proble (). Hence, by Theorem 4.2.2, there exists
a solution(X ;Y ; ) of Problem P ) in whichrank X r. We next show that

hC: X i+ hRgy:Y i+ hg' converges to the value of the supremum in Probl&gys()
as ! 0", which will complete this proof.

Let ¢ be a positive sequence decreasing,tand de ne  := hC; X i + lRq; Y ki +
ho' . Itis clear that , is a nondecreasing sequence, because the constraints in Prob-
lem (P ) become looser asgets smaller, andy is bounded from above by the value of the
supremum in Problem P ). Therefore,( y)xon CcOnverges. Assumed absurdum
that the limit of this sequence is; < . Then, there are some variabl€s,; Yo; o)
that are feasible forR..s ), and such thathC; Xoi + hRo; Yoi + ho' o > 1. But then,
(Xo; Yo; o) is also feasible for Probler® (), when o := (trace X, +trace Yp) 1.
For anyk 2 N such that g o, this contradicts the optimality ofX «;Y ; «) for
Problem @ ). Hence, ; = and the proof is complete.



Chapter 5

The Second Order Cone Programming
approach

This chapter essentially recalls the results of [Sag09b]. We shall see that many optimal
experimental design problems can be formulate8exond order cone prograr(SOCP).
Unlike the SDP formulations of Chapter 3, the SOCP arising in optimal experimental design
remain tractable on very large instances. In addition, the second order cone programming
is a convenient framework which o ers both modelling exibility and theoretical safeguards.

The proposed second order cone programming approach arises naturally from a geo-
metrical characterization of optimality for multiresponse experiments. However, this
geometric point of view leaves unexplained the equivalence between the formerly known
SDPs (cf. Section 3.3) and the new SOCPs. In fact, most results from this chapter admit
an alternative proof relying on the rank reduction theorem of Chapter 4.

5.1 An Elfving Theorem for multiresponse experiments

In this section, we extend the result of Elfving (Theorem 2.4.1) to the case of multidi-
mensional observations. For the sake of generality, we turn temporarily back to the general
case in which the regression regkns a (possibly in nite) compact set. Throughout this
section, we will also make the assumption that every observation is of dimér(s®n
[(x) = 1forallx 2 X). We point out that this assumption is made with the only goal to
simplify the notation, and does not entail the generality (we handle the case in which the
experiment atx only givek <| measurements by setting k rows of the matrixA(x)
to zero).

Some results of this chapter, including Theorem 5.1.1, were presented at the confer-
ence [SBGO09], and the technical result justifying the reduction to a SOCP was posted on
arXiv [Sag09a]. Shortly before the time of submission, Dette and Holland-Letz published
an article inAnnals of Statisticsin which Theorem 5.1.1 was established independently

85
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(Theorem3:3 in [DHLO9]). They considered a heteroscedastic model (i.e. an experimental
model where both the mean and the variance of the observations depend on the parameter
of interest), which led them to study the case in which the observation matrices are of rank
k 2, just as in the model omultiresponse experimentdhey used their geometrical
characterization of the optimal design for heteroscedastic models in an application to
toxicokinetics and pharmacokinetics. It should also be mentioned that the proof of Dette
and Holland-Letz relies on an equivalence theorem (The8rem [DHLO9]), while ours is

closer to Elfving's original approach, as done previously by Studden [Stu05] for other results
in optimal design of experiments. The main result of our article (reduction to a SOCP, The-
orem 5.2.1), provides a new insight on the relations between these two approaches : they are
actually dual from each other (in the Lagrangian sense). Indeed, the approach of Dette and
Holland-Letz corresponds to the optimality conditions of the primal SOCP (5.3), while our
direct geometrical characterization corresponds to the dual SOCP (5.4), and strong duality
holds between these two optimization problems.

5.1.1 c-optimality
To state our result, we will need the following generalization of the Elfving set 2.20 for
multiresponse experiments:
E=conv fA(X)" ; x2X; 2R: kk, 1g:

Note thatE is a generalization of the classical Elfving set (the factbhas been substituted
by a vector in the unit ball ofR").

Theorem 5.1.1 (Extension of Elfving's theorem to the case of multiresponse experiments)
A design = fx;;wigisc optimal if and only if there exists a positive scéland vectors
i in the unit ball ofR' (i.e. k ik, 1), such that

X _
tc=  WAX)" i 2 @&

Moreovert 2= c"M () c is the minimal variance.

Proof. We consider an unbiased linear estimator fer c'
"= hTy(); with h =[h;";25hs']" 2 R¥; h; 2 R":
The unbiasedness property forces the following equality to hold :

A()Th = * A(x)Th; = c:

i=1
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Now, the Cauchy-Schwarz inequality gives the following lower bound for the varighce of

x 2 x
Khick khek °: (5.1)

Var(™)= h™ ( w)h =
k=1 Wk k=1

wherek k denotes thel, norm and ( w) was de ned in Equation (2.5). We recall that
we assumev > 0 without loss of generality, since an experiment with a zero weight can be
removed from the design

We show thathCTkk 2 E, by writing:

p— ppi A(X; )Tph—— X -A(X-)T -
k khik ckhik KDK ks 0g S
where ; = PXik _apd | = so thatk k=1, | Oandpi (=1,

 Khik kh K’

Lett be a positive scalar such thiat 2 @. The fact that P—{e— 2 E implies
k

Pl oty Tk ? otz (5.2)
Kk T T ' '

Combining (5.1) and (5.2) leads to the lower bound for the variance of any linear
unbiased estimator of.

We will show that this lower bound is attained if and only if the desigatis es the
condition of the theorem. To do this, notice that for a desigand an estimatoh "y ( ) to
be optimal, it is necessary and su cient that the inequalities (5.1) and (5.2) are equalities.
The Cauchy-Schwarz inequality (5.1) is an equality if and only i$ proportional to the
vector[khk; ::;; khgk]T; i.e.
W= khik
! khk’
The second inequality (5.2) is an equality When% 2 @, i.e. PlTkk = t; where

— k
t is the largest real such that 2 E. We can write

_ X X
@ 3tc=t A(xi)'h;= AXDT
i fikh; k> Og

with ; = tkh;k and ; kh .- We havek jk = 1, and the equality conditions are satis ed
if and only if | = w;. O

As a consequence of this theorem, we will see In Section 5.2.1 that tbptimal
design of nitely many multiresponse experiments can be formulated as a second order cone
program (SOCP).
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5.1.2 The case of A-optimality

When there are several quantities of interest, i.e. whaonsists in a collection of
linear combinations of the parameters¥ KT ; whereK =[c¢;:::;¢c.]ism 1), the
A optimal problem is to nd the designthat m|n|m|zes£race KT(M()) K). We recall
that an interesting case occurs whién= 1, i.e. when the experimenter wants to estimate
the whole vector of parameters (cf. Section 2.3.2).

We show in this section that computing tie optimal design foK T can be written
as ac optimal design problem with multidimensional observations. Up to the f%ctor
the objective function of (2.18) can indeed be written as

X
trace K TM() K)=  c"M() ¢
k=1

We now de ne the vectoe as the vertical concatenation of the columgs i.e. e =
[c1T: ¢ T]". Now , we havetrace(K TM () K)= e"M( ) e where:

° M() " % AX)TAX) '
)(S | |
|\7|’( ): % §: Wi ] §
M() A(xi)TA(X)
2 A {
e o AGD) T AG) i
:_ Wi - § % . §
= A(Xi) A(Xi)

xs
Wi A(Xi) T A(X;):

i=1

In the latter equationA(Xx;) containsr blocks and is of dimensioh rm. We can
now rewrite Problem (2.18) in the following form:

min trace (6" M () €)

x3
M()= wWAX)TAX;)
i=1

8i2[sjwi O;x;2X:

We have thus shown that the problem of nding tAe optimal design is nothing but a
e optimal design problem, with augmented observation matAg§gs). As a consequence,
our result of reduction of the optimal design problem (Section 5.2.1) also applies for the
more general class &f optimal design problem for a subsyst&m of the parameters
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(cf. Section 5.2.2).

We now show that the geometrical characterization in Theorem 5.1.1 generalizes the
result of Studden [Stu71], who established an Elfving type result for the characterization
of A optimal designs in the case of scalar observatibasl( and A(x) = a,' is a row
vector). This characterization is based on the following extension of the Elfving set when
the matrixK ism r:

Es=conv fa, "jx2X; 2R:;kk 1g R™f

Theorem 5.1.2 (Studden,1971)A design = fx;;wigisA optimal forK T if and only
if there exists a scalar> 0 and vectors; in the unit ball ofR" such that

X
tK = wiay, ' 2 @s:

Moreovert 2 =trace(K "M () K) is the optimal value of th& criterion.

One can easily verify that this theorem is a particular case of Theorem 5.1.1. Using the
previously introduced notation indeed, Theorem 5.1.1 says tkat x;;w;gis A optimal
for KT if and only if there exists a scala® 0 and vectors; in the unit ball ofR" such
that X
te= wWAX)" i 2 @
i

and we notice that is the vectorized version &f, and whenl = 1, E is the vectorized

5.2 The Second order cone programming approach

In this section, we will see that many optimal design problems can be formulated as
Second Order Cone Programs when the regression region is nit¥, &#¢.s]. We come
back to the initial notation, wherk denotes the rst dimension of the observation matrix
A; (we do not assumg = | for alli anymore).

5.2.1 c-optimality

We show in this section that the optimal design problem reduces to a Second Order
Cone Program (SOCP). We will give two proofs of this result : the rst one is a conse-
guence of our generalization of the Elfving theorem to the case of multiresponse experiments
(Theorem 5.1.1). The second proof uses the rank reduction theorem of Chapter 4.

Theorem 5.2.1 (Computation of thec optimal design by SOCP)etu ;( ;h,) bea
pair of primal and dual solutions of the second order cone programs:
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(P-SOCP):  max c'u (5.3)
8i 2 [s]; XkAiuk 1
(D-SOCP) : min i (5.4)
2Rs; hj2R!i :
X
c= A;rh|
i
8i 2 [s]; khijk i
We de ne
x
wi=t ; where  t=( O L
k=1
Thenw is ac optimal design. Moreovef, % h yi is the best linear estimator of |,
and the optimal variance igr(") =t 2= (| I)2 =(c"u )2

Proof relying on the extended Elfving theorem

Proof. This result is actually a corollary of Theorem 5.1.1. As in the proof of the latter
theorem, de net as the largest scalar such thet 2 E, i.e. such that there existsy;
summing tol and vectors ; in the unit ball ofR' satisfying

x3
tc = W,AlT i
i=1

This decomposition gives the optimal weightsand the best estimator of:
x T
= hi'yi; (5.5)

i=1

N

whereh; = - ;. According to the proof of Theorem 5.1.1 indeed, an unbiased estimator
of the form (5 5) is optimal if and only if eveny is proportional to ; and has nornti.
Settingz; = w; j, one obtaing as the value of the following SOCP:

et (5.6)
x T
st tc = A z;;

i=1
8i 2 [s]; kzik wi;
X
wi=1;, w O
i
In order to get an SOCP in the standard form, we wwite= t ;, wheret = P— is an
arbitrary nonnegative scalar. Then, we bet= t 1z;, and we obtain a problem |n the form
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of (5.4). Finally, the value ofP SOCP) and(D SOCP) are equal, since the Slater
condition holds for this pair of programs (the dgal SOCP) is strictly feasible and the
primal (P  SOCP) is feasible). A proof of the strong duality theorem for SOCP can be
found e.g. in [NN94], Section 4.2. See [LVBL98] for more background on SOCP duality
theory. m

Remark5.2.1 This SOCP has a simple geometric interpretation. In the scalar case, we
have seen that the optimal design could be found at the intersection of a polyhedron
and a straight line directed ly(see Figure 2.2). In the multiresponse case, the generalized
Elfving set is no longer a polyhedron: instead, we compute the intersection between the
straight line directed bg and the set

E=conv fA! ;;i2][s]; i2R"; k ik, 1g;
n (0]
=conv E;i2][s ;

whereE is the ellipsoid with semi-axis (ul’ (k 2 [m]), wheref {);:::; (g are

the eigenvalues oA A; andfu(li); o ;ug)g are the corresponding eigenvectors. In the
common case, we hatte< m, such that some eigenvaluesAgfA; vanish and the ellipsoid

E is not full-dimensional (i.e. its volume is zero). We illustrate this geometric interpretation

in Figure 5.1.

We next present another proof of this result, based on the rank reduction theorem of
Chapter 4.

A rank reduction argument

Proof. We have seen in Chapter 3 that the optimal design problem can be formulated as
a SDP. The dual SDP (3.16) is in fact a semide ngackingproblem, in which the matrix
de ning the objective function i€ = cc™ and has rank one. Under the generic assumption
that ¢ is estimablec is in the range of >, AT A; and the conditions of Corollary 4.1.4
are ful lled: the SDP (3.16) reduces to the SOCP (5.3).

We have seen that strong duality holds between Problems (5.3) and (5.4). This implies
that any pair of primal and dual solutions ;( ;z;) must satisfy the complementary
slackness relation

8i 2 [s]; PAiu =z

Now, the dual feasibility implies that

X X .
Aiz, = iAj Aiu = c:
i i
: P
Settingw =t wheret 1=, . =c’u ,we ndthatt *M(w)u = c; and we have
the equality
cT™MWw)c=1t c"u =(c"u )z
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E
=1 3

asy

Ao all
asz2

E4 aay

az1

as3

ain
O X1

t C

X3

Figure 5.1: In the multiresponse case, the generalized ElfvingEsét the convex hull of the
ellipsoidsk. On this picture, we have plotted the rows of the observation matrice#: is thej
row of Aj. In the (common) case wherg  m, the vectors(aj );op,; are on the boundary of
the ellipsoidg (here, this is the case foE;; E;; and E,, but not for E; sincels = 3 > 2). Note
that whenl; <m, the ellipsoidE is not full dimensional (on the picture, we havg=1 < 2, so
that E4 is a segment). The intersection of the line directed byand the generalized Elfving set
(denoted by a brown circle on the gure) indicates the weights of tbe optimal design. Here,
t c is at equal distance of the two extremal poirt; 2 E; andx 3 2 E3, such that thec optimal
design isw =[0:5;0;0:5;0]".

By Corollary (4.1.4), the latter expression is the optimal value of the SDP (3.16), which
means thatw is ac optimal design. O

Theorem 5.2.1 shows that one can compute ¢heptimal design on a nite regression
range by solving a SOCP. This can be done very e ciently with the help of interior points
codes such as SeDuMi [Stu99]. Solving the SOCP (5.3) is a much easier task than solving the
SDP (3.16), because the number of variables is in the order @hstead ofm?); because
we have get rid o the positive semide niteness constraint of the SDP; and because the
SOCP solver is able to exploit the sparse structure of the observation ma&ri¢esile
the partial information matricedl; = ATA; are not very sparsen general. Moreover,
we will see in Section 5.2.3 that the SOCP approach adapts to the case of multiple linear
constraints. A numerical comparison of the di erent algorithms that can be used to compute
optimal experimental designs will be carried out in Chapter 6.
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5.2.2 A-optimality

We have seen in Section 5.1.2 that aky optimal design problem could be expressed as
ac optimal design problem with augmented observation matrices. Thus, by Theorem 5.2.1,

the A optimal design problem fd¢ 7

Theorem 5.2.2 (Computation

Us( 5 (Z)izs)
programs:
max
U2RM T
min
2Rs; Zi2Rli T
We de ne
wi=t

Thenw is A optimal forK T . Moreover,’\ =

KT , and the optimalA criterion is

of the A optimal
be a pair of primal and dual solutions of the second order cone

has a SOCP formulation:

design by SOCP)Let

trace K "U (5.7)
8i 2 [s], KkAUke 1
X

i (5.8)

i

X
K= Az

i
8i 2 [S], kZikF i

X

where t=( N e

k=1

P . . :
i(Z)Ty; is the best linear estimator of

A(W)=_Xr c'M(w ) ¢ =t 2=(X. )

i=1

Proof. We combine the result of Section 5.1.2 and Theorem 5.2.1. (]

5.2.3 c¢- (and A-) optimality with multiple resource constraints

In this section, we consider the generalized version ot theptimal design problem
with multiple resource constraints, that we already studied in Section 3.3.5:

min ¢c"M(w) ¢

- x3
st: M(w)= AjAp+

Rw

(5.9)

WiAiTAi;
i=1

dw O:
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Note that we have added a constaAf Ao in the information matrixM (w). This
can be useful to model faee-of-chargeexperiment, that the experimenter will conduct in
any case, or to model an intrinsic relationship between the parameters, such as Kirchho 's
circuit law. The constanA] A, appears irM (w) when we assume that the observation
matrix Ag has been normalized, in such a way that the additional observation ygdbas
a unit variance:
Yo=Ao +"o; E['0]=0; E['0"0']=1 (5.10)

Another case where it can be useful to introduce a constantAgrAy in the information
matrix is when a prior distribution for the parameter is given:

E( )= ; and Var( )= R: (5.11)

It is known (see e.g. [Puk93]) that when the prior covariance mRtrscpositive de nite,
the expected covariance matrix is minimized (with respect to Léwner ordering) among all
unbiased a ne estimators, conditionally to the prior distribution ofor:
x 1 x
Reo= R+ wWATAL TR+ Aly
i=1 i=1

AN

This Bayesian estimator has a variance which does not depend on the prior expected value
of :
Var("jr; )= R “+ A(w) A(w) (5.12)

In fact, the above discussion shows that prior information can be equivalently handled as
an additional observation equation =+ "; E['] = 0; E[™ '] = R; which we
normalize by settingo = R 2 , A = R ¥, ;= R ", so that (5.10) holds. In
conclusion, prior information (5.11) can be handled by adding the conBtaht= Al A,

in the information matrix.

The main result of this section is that Problem (5.9) can be formulated as a SOCP.
As in Section 5.2.1, we shall give two proofs of this result. Each proof yields a di erent
SOCP, formulated respectively in Theorem 5.2.3 and Theorem 5.2.4. Both SOCPs are
of course equivalent. We point out that a related result was obtained by Ben-Tal and
Nemirovskii [BTN92], for an application to truss topology design (see also [NN94, LVBL98]).
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A Statistical argument

Theorem 5.2.3. The following SOCP is feasible if and onlg'if is estimable for a feasible
design(Ow 0: Rw dandc 2 Im M (w)):

min i (5.13)

If moreover(w; ;(hj)i=o..s) iS @ solution of Problen5.13), thenw is ¢ optimal (in

the sense of the general probl€s9)), the best unbiased linear_estimator of= ¢' is
“=",h;Ty;, and the optimal variance i@ar(") = cTM (w) c= %, ;.

Proof. The Gauss Markov Theorem 2.2.1 allows us to rewrite the objective criterion of
Problem (5.9) as:

c'™™(w) c= mim h'"( w)h (5.14)
h2R il

st: [AL;A]; 5 Allh = ¢ (5.15)

where ( w) is de ned as in Equation (2.5), with an additional block corresponding to the
prior observationw, = 1):

0 I 1
wy
(w)= % y Ei
w

Decomposindgy as[ho':h:";:::;hs']": h; 2 R", the expressioh’ ( w)h can be rewrit-
ten as

X

khok?+  w; *kh;k?: (5.16)

i=1
Recall that when an experiment is unobserwgd=0), it could simply be removed from
the support of the experimental design. In other words, the sum (5.16) is taken on the
indices such that; > 0 only. We can now rewrite Problem (5.9) in a form that involves
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the vector of coe cientsh of the estimator™:

. kh;k?
min khok? + (5.17)
W (hiZRli)i=O nns fi:w;>0g Wi
xs
st ATh; = c;
i=0
Rw d;w O
Clearly, this is equivalent to:
. s
min o+ i (5.18)
w (h|2R|i)|— s i=1
x
st ATh; =c;
i=0
Rw d;w O
khok? 0
khi k2 iWi;
since we can assume without loss of generalitywhat 0 ) kK hik = ; = 0. Finally, the
SOCP (5.13) is obtained by reformulating the hyperbolic constréairis as
" #
2z
+
O

A rank reduction argument

We provide another proof of the reduction of theoptimal design problem to a SOCP,
which relies on the rank reduction theorem for combined semide nite packing prob-
lems 4.2.2. Interestingly, we obtain a SOCP which is equivalent to (5.13) but has a di erent
form.

Theorem 5.2.4. The following pair of primal and dual SOCP is feasible if and only if
c’ is estimable for a feasible desigrow 0: Rw dandc 2 ImM (w)):



5.2. THE SECOND ORDER CONE PROGRAMMING APPROACH 97

x
T min i+ t+
max C X 0;t 0;(hi)i=o0 ;s i=1
X; " # 0;
2A
dTox 2 d7 ; Alho+  AThi = c;
" 2# i=1
8i 2 [s]; fA'X L ri’ +1 R td’#
' 2 8i 2 [s]; h it 0
0: IV
o +t:
t 2
If moreover( ;t; (Ni)izro.usgs 5 ) IS @ solution of the dual problem, then the optimal

. . ) . . . . P
design variable i = t ! | the best unbiased linear estimator of ¢’ is M= hi Ty,

and the optimal variance igr(") = cTM(w) c=(c™x)2=( %, i+t+ )2

Proof. We assume that the optimal design problem (5.9) is feasible, i.e. there exists a
vector 0 such thatRW d andc is in the range oM (W). Note that we can assume
without loss of generality thatt > 0. Otherwise, this would mean that the constraints
Rw d; w 0 force the equalityy; = 0 to hold for some coordinate2 [s], and in this

case we could simply remove the experimdram the set of available experiments.

We can now express Problem (5.9) as an SDP thanks to the Schur complement lemma:

min t (5.19)
t2R; w 0 |
S.t. M‘i O:
cT t
Rw d:

Since the optimal is positive (we exclude the trivial case 0), the latter matrix inequality

may be rewritten as
cc’
M (w) T;

by using the Schur complement lemma again. Finally, we make the change of variables
= tw and Problem (5.19) is equivalent to

rrg)ltn0 t (5.20)
st tAJAQ+ ATA;  cc’
i=1
R td:

This problem belongs to the class of combined semide nite packing problems studied in
Section 4.2. We can see indeed that Problem (5.20) has the same form as PrbBhlgm (
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(cf. page 70), by settingC = cc’, <1 =t b =1[0;::5;0,1]7 2 RS*; Mgy =

introduce a nonnegative slack variable to handle the inequalities as equalities).

P P -
Let = cT( o Mj)c™, sothat ( o M;) cc’. We sett = maxiyg(=W; )
(t is well de ned becausé& > 0). We dene ™ := pr and we see that Problem (5.20)
is feasible, becaus®— td; andtMo+ 7, M, °o M cc'. In addition, the

corresponding primal problem is clearly feasible (fer O, sinceb 0), and thus we can
use Corollary 4.2.4: the optimal design problem with resource constraints (5.9) reduces
to the SOCP (4.6). With the parametets M., ;H and the slacks de ned as above, this
corresponds exactly to the primal SOCP in Theorem 5.2.4.

By construction, the optimal design varialleis related to the dual optimal variables
andt by the relatioow = t ' (according to the previous change of variable?j Moreover, the
dual problem satis es the (re ned) Slater condition, becaageIlm(' ; M;) = ; Im(AT),
so that9ho;:::;hs : §,ATh; = ¢, P~ td and for— > 0; > 0 large enough,
the non-a ne cone constraints are satis ed with a strict inequality. Hence, strong duality
holds and the values of these two problems are equal. Finally, Corollary 4.2.4 shows that
the optimal value of Problem (5.9) is the square of the optimal value of these SOCPs.

5.2.4 T-optimality for KT

We show in this section that it is possible to computéoamally T optimal design
for KT with a SOCP. We recall that contrarily to the other criteria of the class,
p < 1, a designw that maximizes ;(w) = trace Qk (w) can fail to be feasible, i.e.
ImK * ImM (w) (see Section 2.3.2). Aormally T optimal desigrw is T optimal if
and only if the latter range inclusion holds.

We have seen in Section 2.4.3 that the optimal design problem for the full parameter
is trivial: A design is formallly optimal for if and only if it allocates all the weight to the
experiments such thatkA;kr is maximal (Theorem 2.4.12). However, when the quantity
of interest is a parameter subsystem= KT , the problem becomes computationally
challenging. The present reduction gives another argument for saying that second order
cone programming is a natural framework for optimal experimental design problems.

Theorem 5.2.5 (T-optimality SOCP) Let (t;U);(Zj;w; ) be a pair of primal and dual
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solutions of the second order cone programs:

min t (5.21)
t2R; U2RM T
KTU =1
8i 2 [s]; kAUKZ t
xS
max (trace Zo + i) (5.22)
Zo2Rr r:Zzi2Rli ";w 0; O i=1
N xs
KZo= AlZ; w =1;
i=1 i=1

8i 2 [s]; kzikZ 4w ;:

Note that these are Second order cone programs indeed (we have let the hyperbolic con-
straints to simplify the notation; otherwise, the matricdes) and Z; need be vectorized).
Then,w is formallyT _optimal forK T , and the value of the supremum in Probl€il9)
ist=(trace(M)+ ; ;). If moreovew 2 ( K), thenw isT optimal.

Proof. We use the general de nition (2.9) @ik (w), which remains valid whem 2 ( K):
Qc (W) = min U™ (w)U
st: K'U=1,;

where the minimum is taken with respect to the Léwner ordering. Since the trace of a matrix
preserves the Lowner ordering, we can express the (fofmaiptimal design problem as:

npax min traceU™M (w)U

w O; cwi=1 U: KTu=1I,
. x> )

= m@ax min w; KA Ukz

w 0; Swi=1 U: KTu=I, =1

' r

=  min max kA;UkZ :

U: KTu=1, i2][g]

The exchange of the max and the min above is a consequence of Sion's minimax theorem
((w;U) 70 7, wikA;Uk2 is continuous, concave w and convex inUJ). We next
introduce a variablé which must be larger than all the quantitied;Uk2, and we have
shown that the (formal)l optimal design problem fé¢ ™ is equivalent to Problem (5.21).

The (formal) T-optimal desigw is the optimal dual variable corresponding to the hyperbolic
constraints in Problem (5.21). It follows that can be computed by solving the dual
optimization problem (5.22). Finally, the value of these optimization problems is the same
by Strong duality (Slater condition holds), and is equal to the optimum offtheptimal
problem (2.19). m
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5.2.5 A low rank SDP for E-optimality

Our rank reduction approach does not yield a SOCP for the computatién optimal
designs. However, note that tlie optimality SDP (3.6) takes exactly the form of Prob-
lem D, ) (cf. page 67), withh = 1 for alli 2 [s], andC = KK T. Here, the matrixC
has rankr, and so Theorem 4.1.2 indicates that tRe optimal design SDP has a solution
which is a matrix of rank at most This suggests the use of specialized low rank solvers
for this SDP whermr is small (cf. the paragraphRelated work page 66), which can lead
to a considerable improvement in terms of computation time.

5.3 A model robust criterion

In this section, we consider ti& optimality criterion presented in Section 2.3.3. We
are next going to show that th8 optimal design of multiresponse experiments reduces
to the problem of maximizing a weighted geometric mean under norm constraints. This
is of great interest for the computation & optimal designs. Indeed, this optimization
problem is ageometric programand so it can be reformulated in a form for which a self-
concordant barrier function is known, and it can be solved e ciently to the desired precision
by interior point techniques (see e.g. [BV04]).

Dette extended Elfving's result to the caseSf optimality for single-response experi-
ments [Det93] . We will see that our result yields a generalization of the Dette's theorem
for S optimality to the case of multiresponse experiments. In particular, we obtain a SOCP
for D optimality.

5.3.1 S-optimality

We recall that theS  optimal design problem for the quantities” ;:::;c,T is:
. X
min S (w) := klog(ck "My (W) cx) (5.23)
k=1

x T T

The next theorem gives geometric programmingGP) formulation of theS optimal
design problem.

Theorem 5.3.1. Let (t;(vik);w) be a solution of the following optimization problem.
Then, w also minimizes th& criterion. Moreover, the value of this program coincides
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with the value of its dual, which we give below.

X
min S (w)= 2 min k log(tk)
0; =1

t;(Vik )sw

w P Wi= k=1
g
tkCk = A(k);iVik; 8k 2 [r]; (P)
i=1
p—
1Vi1
p_ Wi 8i 2 [s];
rVir
xs
Wi 1
i=1
Th
= 2 max klogCk K (D)
hyihe k=1 K
Awihi= 1
- 1 8i 2 [s]:
Awyihe= ¢

The variables of the primal optimization problem ar&@ R™ (the design)t 2 R" and the
vectorsvy 2 Rx, fori 2 [s] andk 2 [r]. The variables of the dual problem are the vectors

The proof of this theorem relies on a series of reformulations of Problem (5.23) thanks to
Lagrange duality techniques and Theorem 4.1.2. We will prove this result in Section 5.3.3.
Then, we will show that the optimality conditions of our convex optimization problem can
be interpreted as geometrical conditions, which yields a generalization of the theorem of
Dette [Det93] forS optimality to the case of multiresponse experiments. This geometrical
characterization relies on the following generalization of the Elfving set:

0 0 T 1 1
1 A(l);x

X
D :conv% % : §; Xx2X: 2R Kokl § R" M (5.24)
rTA(r);x k=1

Theorem 5.3.2 (Geometrical characterization of multiresporge optimality). The de-
signw is S optimal (and solution of Prograr(P )) if and only if there exists a vector
t 2 R" and vectors j 2 R' (i 2 [s];k 2 [r]), such that
. P
(I) 8i 2 [S]; r=1 kk ik k2 1
6 1

tiCy " i1 Ay

iy biagt)c =B : §="s, wh
trCrT ir TA(r);i
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(iif) Diag(t)C lies on the boundary dd , with a supporting hyperplane whosermal

D2D =)h H;Di 1

(iv) H satis es the equalities
tkhkTCk = ks 8k 2 [r]:

In this case, the optimal variables of Problgi@s) and(P ) aret; vik := w; ik (8i 2
[s]; 8k 2 [r]), and (hk)«z[r}, SO that the optimalS  criterionis 2 |_; klog(ty).

Theorem 5.3.2 is established in the next section.

Remark5.3.1 As in the case of single response experiments [Det93], the geometrical char-
acterization remains true when the regression rangds in nite. It can also be shown

with semi-in nite programming techniques that the following convex semi-in nite program
is valid for the gener&@ optimal design Problem:

. X c'h
gin S ()= 2 max  log——
wi 0 le wi=1; hahe o k
x2X

p

A(l);xhl: 1

8x 2X; 0 1
A(r);xhr: r

5.3.2 D-optimality

Dette showed in [Det93] thaD optimality for the full parameter is a particular case
of S optimality. As a consequence, we can formulateDheoptimal design problem as a
convex optimization problem in the form @ ). To see this, Dette considered the virtual
nested models, where the parameter of interest irkthemodel is , and the observations
only depend on the rsk parametersA ., is the matrixA; restricted to its rstk columns,
so thatM ) (w) is the upper lefk k submatrix ofM (w), andcy = [0; :::;0; 1] is a vector
of lengthk. Using the relation
_ detM(k 1)(W)_

CkTM(k)(W) Ck = M(k)(w) ' Kk W(I()(VV),

it can be seen that
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which is exactly th® optimality criterion.
Theorem 5.3.1 can now be used to formulate Ethe optimal design problem as:

L logdetM(w) = 2 og |t "
max - og detM (w) = {U,?’SV 0g i
tCk = A Viks 8k 2 [m];
i
topl o
: m w; 8i 2 [s];
Vim
X3
Wi 1

(5.25)

5.3.3 Proof of Theorems 5.3.1 and 5.3.2

We start with the following lemma, where we show that $he optimal design problem
can be formulated as a convex optimization problem with SDP constraints:

Lemma 5.3.3. The optimal variablev of the following convex optimization problem also
minimizes theS criterion. The value of this program coincides with the value of its dual,
which we give below:

X
min S (w)= min k log « (P SDP)
0; iWi:]_ 2R"; w O k=1
MugW)  kCkCk'; 8k 2 [r];
x
w; =1
i=1
X TZ7
= max klogM (D SDP)
Z1;uZy O k=1 K

X
trace(Aqgi Zx Afyi) L 8i 2 [s]:

k=1

Proof. As in the derivation of the SDP fagk optimality (cf. page 59), we reexpress the
variance of th&™ quantity of interesty ' M (W) cx with the help of a generalized Schur
complement (for an arbitrary desigwn):

Ck Mo (W) cx max g | = max
M(k)(W)‘ Ck

CkT ‘ 1=«

0: M(k)(W) kaCkT:
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Since the optimaly is positive, the latter expression is well de ned. Now, by monotonicity
of the log function, we can write:

X
min S (w)= max klog c"M (W) cx
0; iWi=1 w 0; iWi=1 k=1
X
= P max klog «
w 0; iWi=1; 2R’ k=1

Ma(W)  kCkCk'; 8k 2 [r];

which is exactly ProbleifP ~ SDP). Itis clear that ProblenfD  SDP) is convex and
strictly feasible, so that the Slater condition is ful lled, and strong duality holds. It remains
to show that Problen{D SDP) is indeed the dual P  SDP). To this end, let us
form the Lagrangian of Proble(®® SDP):

X X . o
L (;w)(Z ) = klog k + Ry kekCk  Mgg(w)i+ ( w 1)
k=1 k=1 i=1

The Lagrange dual function is given by

9(z; )= min "L (;w)(Z )
X . X X o _
= + TILI%( kCk ' ZkCx klOg k)+ Wmlrg Wi( M(k);i A(m;Zkl):
k i k
P 81 2 [s]; | Ly AT Ay Zud
+ 1 log—%—) if TKE & "
k k( ngTZka) I 8k 2 [r]; CkTZka >0
1 otherwise

Note that in the above expression, the minimum oyeis attained for , = m and
this equation must be satis ed by the optimal variablesandZ, . Since we observed that
strong duality holds, the value of the dual optimization problem must be equal to the value
of the primal, and so the optimal variables (denoted with stars in superscript) satisfy:

S X @ | k) ) X 1

klog = + K o ——— = = Kk =1:

k=1 k Ck" Zy Cx k=1

We can now make the dual problem explicit:

X Cx ' ZKC
maxg(Z; )= _max g(Z;1)=_max klogu
Z; Z1;:uZy O Z1;:Zs O k=1 K

X
trace(Awyi Zk Alyi) L 8i 2 [s]:
k=1

This completes the proof of the lemma. H

Now, we show that there is a solution of Probl@m  SDP) for which every, has
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rank one, thanks to the theoretical result of Chapter 4

Proof of Theorem 5.3.1We rst write the program(D SDP) in the form of a sepa-
Eable optimization problem, by introducing some vectorgi 2 [s]) of sizer, satisfying
r .
ket kL

X
min S (w)= max fr( aksiioy sk
0: -1 1;:0 s2R7 k=1
) X
8i 2 [s]; ik 1
k=1

where we have set

i
8k2 [ fuly)=max log 2k
k

trace(Aggi Zk Alyi)  Yis 8 2 [s]:

By use of Theorem (4.1.2) (and monotonicity of the log function), the minimization
problem oveZ, in f() has a rank-one solutiorZ( = hyh"), and we obtain:

(ck"hy)?
f( it ) = max. k|097k

kA(k);i hkk P ik s 8i 2 [S]Z

Now, we use the associativity of the maximum to reformulateStheoptimum design
problem:

X T 2
.... k|ogw

min S (w)=  max
0; 1 hishs ) g K

X
kA(k);i hkk2 1; 8i 2 [S]:

Finally, we make the change of variablg® = hkp_k in order to obtain the desired
optimization problem, that igD ). It remains to show that ProblertP ) is the dual
of (D ). The convex problertP ) is strictly feasible, so that Slater condition is ful lled,
and strong duality holds.
We will now dualize Problef® ). This part of the proof is very similar to the dualization
of Problem(D SDP) of the previous lemma. We include it here, though, for the
reader's convenience. In the sequel, we denotg; ihe concatenation of the vectors
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to denote the Hadamard product (elementwise product). With this notation, we can write:
op_ 1

We denote by the family of vectorgvi )iz k2rrj @nd byH the family of vectorghy )i, g;.
Now, let us form the Lagrangian

X X T X -
L (t;Vsw);(H; ;) = k logty + hy ' (tkCk Ay Vik) (5.26)
k=1 k=1 i=1
X 1= X
+ i(k~ vik Wi) + ( W, 1)
i=1 i=1
The Lagrange dual function is given by
ogH; ; )=min L (t;Viw);(H; ;)
Vv, w
X ; X
= + mln(tkhk Ck K |Ogtk) + min Wi( i)
tk . Wi
k=1 i=1
+7 min( k=7 vk ziTvy);
B
where we have de ned the vectars” := [hyTA[);:ih TAT 1 2 R, In the latter

equation the minimum oveti, is nite if and only ifc,"h, > 0, and is attained for
ty = ; the expression imv; is bounded from below (b§) if and only if ; =

Ck Th !
The reader can also verify that the minimization with respeat; ts unbounded whenever
Kk~ zik > ;, and takes the valu® otherwise. The Cauchy Schwarz inequality
__ 1=2 1=2 . .. . .
between the vectors z; and v; shows indeed that the minimum is attained
. . 1 . 1=2
for a vector such thav; is proportional to™ zi ifk™ zik= ,and forvi =0
if k= 1 zik < ;. To summarize,
8 P 1=2
< . . _ 1=
aH: )= + 1o k(@ Iogﬁ) if8i2([s]; i= andk zik i
: 1 otherwise.

Now, since the primal and the dual share the same optimal value (we observed that strong
duality holds), it follows that the optimal variables (denoted with stars in superscript) satisfy

X X
gH ; ; )= + k(1 log——)= K logt,:
k=1 Cic " Nk k=1
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Combining this equality with the stationarity equatidps ST and ; = , we obtain:
X -
= .= Kk =1; 8i 2 [s]:
k=1
We can now make the dual O ) explicit:
. X ck'h
min S (w)= 2max k log L
w 0; wi=1 H k=1 K
0 1
Aw;ihs
Z = : § ;o 8i2[s];
A(r):ihr
1=2 .
k~ zik 1, 8i 2 [s]:

This program is the same &9 ), and it completes the proof of Theorem 5.3.1. [

Now, we can write that a design is optimal if and only if Karush Kuhn Tucker (KKT)
optimality conditions hold for proble® ). In fact, we show in Theorem 5.3.2 that these
KKT conditions are equivalent to a geometrical characterizatioS ofoptimality, which
generalizes the theorem of Dette [Det93] to the case of multiresponse experiments.

Proof of Theorem 5.3.2Since strong duality holds between Problgis) and (D ), the
Karush Kuhn Tucker (KKT) conditions characterize the optimal variables. We sum up the
KKT conditions here, which stem from the dualization step of the proof of Theorem 5.3.1:

xS
(FeaSIb”Ity) tkCk = Az—k);i Vik (527)
i=1
X
w =1 (5.28)
i=1
(Comp. Slackness) (k= > wvik w)=0"%) " w =k~ vik (5.29)
(Stationarity) &= thy T cx (5.30)

<k~ zk 1landvi=0 if w =0
k~ = zk=landv,=w ~ ' z; otherwise.
(5.31)

In the above equations, the vectoz; is used to denote the vector
[thA(Tl);i;:::;h TA(Tr)l]T 2 R'. Now, let(t;V;w) and H = [hy;::5;h,]" be a
pair of primal and dual solutions of Problém ) (D ): they satisfy KKT equations(5.27)-
(5.31). We set ; = W—livi whenevew; 6 0 and ; = 0 2 R" otherwise, so that (5.29)
implies

_ X

8i 2 [S], kk ik k2 =W 1

k=1
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and (5.27) implies

x X
8k 2 [r]; tkck = A;rk);iVik = WiAg-k);i ik -
i=1 i=1
These relations are nothing but conditiof$ and (ii) of Theorem (5.3.2). Clearly, the
stationarity equation (5.30) is the same as condit{on) of Theorem (5.3.2). It remains
to show that(iii ) holds. LetD be an arbitrary matrix from the generalized Elfving set
D (cf. Equation (5.24)). When the regression regioXis= [ s], there exists a vector

k“lz2 ik 1 such that

0 1
¥ i1 Ay
D= [
= i Ay
We now prove thaH =[hy;:::;h,]" is thedirectionof the supporting hyperplane Bf :
. X T
D;Hi = i ik Agihi
ik
x
= iz,
i=1
_A=2 _ 1=
= i( )7 ( zi)
i=1
[ 1

where the inequality is Cauchy-Schwarz, and we have used the stationarity condition (5.31).
Finally, (iii ) holds sincéiag(t)C lies on the boundary d :

, . X X
rDlag(t)C; Hi = tkaThk = Kk =1:
k=1 k

Conversely, assume that conditigqmys (iv) hold. We setv; = w; ;, and we show that
(t;V;w) andH satisfy the KKT equations(5.27)-(5.31). As in the direct part of this proof,
it is straightforward to show that the stationarity equation (5.30) holds, as well as the
feasibility condition (5.27).

Let us now de ne the vecta; as in(D ):

0 1
Aw:ihy

Z = :
Aqyihe

Condition (iii ) states that for all vector in the unit simplex oR®, and for all vectors
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(i 2 RY);,q satisfyingk ~= ik 1, we have

ik Agihe L
ik
~ 1
In particular, if = e is thei!™ unit vector of the canonical basisRf, and ; = k~1722'k
Zj

we obtain:
X 1 _ 1=2 _ 1=2 _1=2

i ikTA(k);ihk = 'z = —n z)'( zi)=k zik 1
ik k~ z;k

and we have shown the inequality of (5.31).

The fact thatv; = 0 whenw; = 0 is clear from the way we have de neg, and the
complementarity slackness equation (5.29) also holds in this case.

It remains to show thaw is feasible (5.28) and that (5.31) holds faf > 0. Note
that (5.31) in turn implies the complementarity slackness equation (5.29).

To this end, we write:

X X T T
1= k= e hie= " w  Awyih
k=1 k=1 ik
xs
= w 'z
i=1
1= 1=
= w; ( i)T( z;)
i=1
1=2 1=2
|k~ |k k~ Z|k

The latter inequality is Cauchy-Schwarz, and it provides an upper bound which is the
(weighted) mean of terms all smaller thanWe can therefore write

ﬁ = =
wk~7 o kk~ P zik=1; (5.32)

i=1

and the Cauchy-Schwarz inequality must be an equality whemg\&0, which occurs if

and only if ~172 i Is proportional to™ o z;. Finally, we must have ;w;, = 1, so
that w is feasible (5.28), and each positively weighted term in the sum (5.32) must be
8
1=2 1=2 < k"l:2 ik=1
wi60=)k ~ ik k™ zik=1=) . o
| | | Lk zk=1

These two norm constraints further force the coe cient of proportionality betwgen i

and ~ 2 Z; tobel, sothat ; = ! Zi,andv; = w;, ~ ! zi, which completes the
proof. m
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Chapter 6

Numerical comparison of the
algorithms

In this chapter, we compare the numerical performance of the di erent algorithms dis-
cussed in the previous chapters. We will see that the second order cone programs presented
in this chapter are very e cient when the numberof quantities to estimate is small (in
particular forc optimality).

We will compare our approach to the classic algorithms presented in Chapter 3. In
particular, we concentrate on the semide nite programming/MAXDET approach [VBW98],
Wynn Fedorov-type exchange algorithms [Wyn70, Fed72], and Titterington-type multiplica-
tive algorithms [Tit76]. Several versions and re nements of these procedures were proposed.
For the class of exchange algorithms, we will usdrtbBecprocedure of Richtarik [Ric08],
which speci es step lengths for which the precisias achieved if©(1=) iterations; for
the multiplicative algorithms, we will use the general class of iterations introduced by Silvey,
Titterington and Torsney [STT78], which is de ned by a power parametécf. Equa-
tion (3.3)) and is known to converge to an optimal design under certain conditions [Yul0a].
We will also consider a variant of the latter algorithm which uses an acceleration parameter

, for which Dette, Pepelyshev and Zhigljavsky [DPZ08] have established a convergence
result in the case dD optimality, and conjectured the convergence for other criteria. We
found that the values = 0:9 and = 0:9 gave the best results fé& optimality in our
experiments, and so those values will be used throughout this chaptdd. Fatimality,
we have used the acceleration parameter0:5.

We will rst consider random instances of optimal design problems, in order to evaluate
to which extent each parameter a ects the computation time. Then, we will consider a
simple polynomial regression model, for which we shall see that our approach is well-suited
when the number of support points is large. Finally we will present some results from the
network application which we be detailed in Chapter 10, where the sampling rates of a
monitoring tool should be optimized subject to multiple constraints.

111
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m SOCP (5.7) SDP IncDec Accelerated Mult. algo Mult. algo with Exponent
[this paper] [VBW98] Exchange [Ric08] E 0:9) [DPZ08] =0:9 [YulOa]

2 0:082 2897 10039 3026 2979

22 0:120 3017 99510 9598 9240

23 0:166 4798 13112 5883 6040

24 0:175 6828 24431 12574 12204

2° 0:352 15820 29454 11258 11123

26 0:816 66281 54379 13407 13419

27 2:636 338669 92537 37935 36679

28 10:496 failed 202509 96594 99751

2° 44:689 failed 412890 585619 597442
210 154187 failed 498616 551634 539130

Table 6.1: CPU time (s) of the di erent algorithms, for typical random instances of the optimal
design problem witts =210 | =1, r = 3, and di erent values ofm.

Figure 6.1: Comparison of two algorithms (SOCP vs. multiplicative algorithm with the acceleration
parameter = 0:9 [DPZ08]) on random instancesA  optimality) with m =120, =30,r =1,

and varyings. The box plots represent the distribution of the computing times ft® random
instances.

6.1 Random instances

In this section, we consider random instances of optimal experimental design problems,
in which the entries of thé  m matrices(A;)i»(s; are independently and identically dis-
tributed (iid) with a normal distribution, as well as the entries of the r matrix K. For
every considered instance, we use SeDuMi to solve the SOCP (5.7) aAd dptimality
SDP (3.11); we have implemented the other procedures in Matlab. In all our experiments,
the stopping criterion is based on the general equivalence theorem of Kiefer [Kie74]. the
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Figure 6.2: Comparison of four algorithms on Figure 6.3: Comparison of four algorithms on

typical random instancesA optimality) with typical random instances of the minimum cov-

m =75, s=150, | =1 and varyingr. ering ellipsoid D optimality for , m = 3)
and varyings.

computation stops as soon as the ratio between the largest entry of the gradient and the
value of the criterion is below 1.001 (as in [DPZ08]).

We start by evaluating the e ect af, which turns out to be the determining factor for
the performance of our SOCP approach. To this end, werset 75, s = 150, | = 1
(single-response experiments), and we leary betweerl and75. The computing time of
the di erent algorithms is plotted againstin Figure 6.2. We notice that our algorithm is the
fastest for small valugs  7), but performs badly whenis large, while the multiplicative
update algorithms are insensitive to the value.dfor this reason, we will chose small values
of r in further experiments, since our algorithm might not be well adapted for large

We next study the e ect ofs (the number of available experiments) for the case of
c optimality (r = 1). For these experiments, we sat= 120, | = 30, and we takes in the

to that of the multiplicative algorithm with an acceleration parameter 0:9 [DPZ08] on

the log-log plot of Figure 6.1. The boxes represent the distribution of the CPU tint) on
randomly generated instances. We see here that our approach is in average ten times faster
as soonas 32

To evaluate the e ect ofm, we sets = 210, | = 1, r = 3, and choosen in the set

the instance is almost surely feasibles if m; otherwise, the instance is almost surely
infeasible.) The results of each algorithm are displayed in Table 6.1. It is striking that the
SOCP approach is the best one, while the SDP is the worst whbacomes large, which
demonstrates the importance of the rank reduction discussed in Chapterdh F@&°, the

SOCP is 10 times faster than all other algorithms. In the last row of the table however, this
ratio is lower. This might be because= m = 20 in this case, such that all experiments

are support points of the optimal design, and classic algorithms certainly take advantage of
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this situation (while it does not make a di erence for interior point codes).

Pronzato [Pro03] has shown that we can improve the multiplicative algorithms thanks
to a simple test which allows to remowe the y experiments which do not belong to
the support of theD optimal design (i.e. experiments with a zero weight), and which was
re ned by Harman and Pronzato [HPO7]. This can considerably improve the performance
of the multiplicative algorithms when there are a lot of points with a zero weight. As
in [HPO7], we have studied random instances of the minimum covering ellipse, Rt in
m = 3, K = |3, and we draws independent random regression vectdrs (L) from a
normal distributiona; N (0;13), with s increasing fronb0 to 500 The D optimal
design problem is equivalent to nding the minimum volume ellipsoid which contains the
s vectorsa;, and theD optimal design is supported by points lying on the boundary of
this minimal ellipsoid (Figure 3.1). In accordance with intuition, the number of support
points of theD optimal design is small, and therefore the test of Pronzato and Harman
improves dramatically the computing time (cf. Figure 6.3). Note however that our SOCP
for D optimality (5.25) remains competitive with the latter approach.

6.2 Polynomial Regression

We have computed thé& and D-optimal designs (for the full paramete), for a
polynomial regression model of degsee

AX) =[1;x;x%;x3:x* x5

on the regression regiofi = [0; 3]. The optimal designs are represented on Figure 6.4. In
this problem, we have = m = 6, which issmall Therefore, we can hope that our SOCP
approach will perform well. The computation times are plotted on Figures 6.5 and 6.6,
as a function of the number of points considered for the discretization of the regression
intervalX =[0;3]. For theA optimal design, the experimental setting was the same that
the one of previous section. For tBe optimal design problem, we solved the geometric
program (5.4) with SeDuMi. We have also implemented the classic multiplicative algorithm,
the accelerated algorithm with= 0:5, and the MAXDET program (3.9). Contrarily to the
multiplicative algorithms, the SOCP and the MAXDET approaches seem to be insensitive to
the size of the discretization grid. For these instances, our SOCP is roughly two times faster
than the MAXDET program. Also note that the e ect of the acceleration parameter
clearly visible (red curve vs. green curve). We point out that for these polynomial regression
problems, the tests of Pronzato and Harman [Pro03, HPO7] to remove points that do not
belong to the support of th® optimal design did not yield any improvement.
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Figure 6.4: A- and D-optimal designs for the polynomial regression model of dégrex = [0; 3].

Figure 6.6: D-optimal design for the poly-
nomial regression model: evolution of the
computation time with the number of
points for the discretization of0; 3].

Figure 6.5: A-optimal design for the polyno-
mial regression model: evolution of the com-
putation time with the number of points for

the discretization of[0; 3].

6.3 Optimal Sampling in IP networks

We nally show some results for an application to the optimal monitoring of large IP
networks. Assume that an Internet provider wants to estimate the tra ¢ matrix of her
network, that is, the volume of tra ¢ between each pair of origin and destination during a
given time period. To this end, she disposes of a monitoring tool, which can be activated
at di erent sampling rates in di erent location of the network, and is able to nd the
destination of the sampled packets. For networking issues, the intensive use of this tool is
not suitable, because it creates an overload both in terms of CPU utilization of the router
and bandwidth consumption. The sampling rates should therefore be tuned cautiously on
each interface, in such a way that the number of sampled packets remains under a target
threshold.
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This situation can be represented by an optimal design model with multiresponse experi-
ments: the set of available experimeXtgoincides with the interfaces of the network where
the monitoring-tool can be activated: when the software is installed on a given interface,
we obtain an estimation of the sum of the ows that traverse this interface, and that have
destinationD, for every destinatioDd reachable from this interface. In Chapter 10, we shall
see that if the sampling rates are small, then the Fisher information matrix of the sampling
design has the standard form (2.8) (after an appropriate normalization of the observation
matrices relying on a prior estimate of the unknown OD tra ¢ matrix). The optimal mon-
itoring problem can thus be formulated as an optimal experimental design problem with
multiple resource constraints.

We rst study somec optimal sampling problem with the simple constr:ﬁrﬁl w; =
1, such that we can compare our approach to classic algorithms. Table 6.2 summarizes
the results (in terms of CPU time) for several problems: each instance is de ned by a
network and the type of interfaces considered. We used the topology of three networks:
Abilene, which consists ihl nodes,m = 121 OD pairs and50 links; the Opentransit
backbone of France Telecom, witli6 nodes,m = 13456 OD pairs and436 links; and a
clustered version of the latter network, thus reduce@imodes,m = 961 OD pairs and
133links. The natural problem is to activate the monitoring tool independently on each
link (interfaces= links ). We also considered the problem of imposing the same sampling
rates on all incoming links of each router, which is equivalent to consider each router as
a big interface(interfaces= Nodes ). This setting is consistent with older versions of the
monitoring software Net ow, still present on many routers in practice, and which do not
allow to set di erent sampling rates on di erent incoming interfaces. For all these instances
the vectorc was drawn from a normal distribution. The threshold for the stopping criterion
was lowered tdl:01 for this network application, since this value su ces to obtain good
designs in practice.

Network Abilene Abilene OTClusters OTClusters Opentransit  Opentransit
(m=121) (m=121) (M=961) (Mm=961) (m=13456) (m =13456)
Interfaces Nodes Links Nodes Links Nodes Links
(s=11) (s=50) (s=31) (s=133) (s=116) (s=436)

SOCP 0:021 Q036 Q078 0094 552 3303
SDP 1:095 1178 69237 73425 failed failed
IncDec Exchange 0:518 0823 457 1969 failed failed
Mult. algo ( =0:9) 0:009 Q043 Q018 1893 failed failed
Mult. algo ( =0:9) 0:008 Q038 Q018 1468 failed failed

Table 6.2: CPU time (s) for dierent instances of optimal gesign arising from an optimal
monitoring problem in IP networks (with the standard constraint; w; = 1)

We can see in the table that the multiplicative algorithms perform better than the
SOCP approach on the instances wheis small (1st and 3rd columns in Table 6.2). On
the other instances however, the SOCP performs well, and it is the only method which
returned a solution for the Opentransit network. The SDP and the multiplicative methods
failed because of memory issues (in the multiplicative algorithm, a full rank update of the
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13456 13456information matrix should be carried out at each time step). The IncDec
Exchange algorithm did not crash, but it had not converged after 2 hours of computation.

We next turn to the case of general constraints of the f&m d. Since we do not
know any other algorithm which can handle optimal design problems with multiple resource
constraints, we compare the SOCP and the semi-de nite programming approaches only.
Table 6.3 summarize the results (in terms of CPU time) for several problems, speci ed as
previously by the network and the type of interfaces considered, and also by the type of the
constraint matrixR. In the optimal sampling problem, the matfik usually depends on
the volume of tra c observed at each router (cf. [SGB10]). We simulated this data from a
uniform distribution, a lognormal distribution, or we used real tra c loads. To see the e ect
of the number of constraints, we also generated arbitrary constraints matrices of di erent
sizes.

In comparison to the SDP, the computation time can be reduced by a factor in the order
of 10000n the instances from the clustered network. Moreover, the SOCP approach is able
to handle huge instances arising from the Opentransit network (in vanisHL3456).

Network Abilene Abilene Abilene Abilene Abilene
(m=121) (m=121) (m=121) (m=121) (m=121)
Interfaces | Links (s = 50) Links (s = 50) Links (s=50) Nodes §=11) Nodes 6=11)
Constraints R 11 50 R:11 50 R:11 50 R 4 11 R 10 11
(uniform trac) (lognormal tra c) (real tra c) (arbitrary) (arbitrary)
SOCP 0:043 Q056 Qo061 Q051 Q053
SDP 0:714 Q842 Q944 Q827 0876
Network OTClusters OTClusters OTClusters Opentransit Opentransit
(m =961) (m =961) (m =961) (m = 13456) (m = 13456)
Interfaces | Nodes 6 = 31) Links (s=133) Links (s=133) Links (s=436) Links (s=436)
. R:4 31 R:31 133 R: 130 133 R:12 436 R: 116 436
Constraints . . ; :
(arbitrary) (uniform tra c) (arbitrary) (arbitrary) (real trac)
SOCP 0:141 0462 1135 2332 18759
SDP 35063 45169 43071 failed failed

Table 6.3: Computation time (s) for dierent instances of optimal design arising from an
optimal monitoring problem in IP networks (with multiple constrainBw  b).
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Chapter 7

Combinatorial problems arising In
optimal design of experiments

In this chapter, we study some combinatorial aspects of optimal experimental design
problems. The results of this chapter are presented in [Sag10]. Some of them were already
announced in [BGSO08].

In a number of real-world applications, the design variables are discrete, since the ex-
perimenter can only choose the experiments to conduce from a nite set, and perhaps how
many times to perform them. An exhaustive list of these applications is not possible, but
we wish to give the reader a few examples from these problems:

Uci«ski and Patan [UPO7] interested themselves in the estimation of parameters of
systems governed by partial dierential equations. They propose to solve a D-optimal
problem in order to nd an optimal subset of spatial locations of sensors on a nite grid.
Their approach is based on a Branch and Bound algorithm, where a multiplicative algorithm
is used to solve a continuous relaxation of the problem and provides some upper bounds.

Song, Qiu and Zhang [SQZ06] proposed an application of the optimal experimental
design for the estimation of performance in a large scale network. In their approach, a
discrete A- (or D-)optimal design is approximated by a greedy algorithm in order to select
some measurements of the network performance. This greedy algorithm entails smart rank-
one matrix updates, as rst suggested by Fedorov [Fed72].

Branderhorst, Walmsley, Kosut and Rabitz [BWKRO08] used the optimal design framework
to maximize the accuracy of the estimation of quantum states, by selecting the number
of experiments to be performed in each particular system con guration. A continuous
relaxation of the problem is solved, and they rounded to obtain an integer solution.

Finally, the present developments were motivated by a joint work with Bouhtou and
Gaubert [BGS08, SGB10] (see also Chapter 10) on the application of optimal experiment
design methods to the identi cation of the tra c on an Internet backbone. The approach
developed there consists in solving the continuous relaxation of an optimal experimental
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design problem, which is rounded with a simple heuristic in order to obtain a discrete design.

The rest of this chapter is organized as follows: in Section 7.1 we introduce the notation
and we state the combinatorial optimization problem which we shall study; particular care will
be given to the under-instrumented situation, where no discrete design lets the information
matrix be of full rank, and which may occur in monitoring problems on large size networks.
To the best of our knowledge, this combinatorial optimization problem has always been
handled by heuristic approaches. This chapter provides approximability bounds for this
NP-hard problem.

In Section 7.2, we show that this combinatorial optimization problem is NP-hard indeed,
and we establish a matrix inequality (Proposition 7.2.4) which shows that a class of spec-
tral functions is submodular (Corollary 7.2.5). As a particular case of the latter result, the
objective function of the experimental design problem is submodular. Due to a celebrated
result of Nemhauser, Wolsey and Fisher [NWF78], this implies that the greedy approach,
which has often been used for this problem, always gives a design ithin! of the
optimum (Theorem 7.2.7). We point out that the submodularity of ecriterion was
noticed earlier: Robertazzi and Schwartz used it to write an accelerated Wynn-Fedorov
Eype algorithm for the construction of approximate designs [RS89] (i.e. with the constraint

w, = 1;0 w 1), which is based on the accelerated greedy algorithm of Mi-
noux [Min78]. The originality of this chapter is to show that a whole class of criteria satis es
the submodularity property, and to study the consequences in terms of approximability of a
combinatorial optimization problem.

In Section 7.3, we study some rounding algorithms for the optimal experimental design.
Rounding a continuous solution to obtain a discrete one is a natural option [BWKRO08,
BGS08] since we dispose of a continuous relaxation of the problem, which is convex and
has been extensively studied. Moreover, we may exploit the work of Calinescu, Chekuri,
Pal and Vondrak [CCPa07, Von08], who showed how to use the pipage rounding algorithm
of Ageev and Sviridenko [AS04] to approximate the maximization of submodular functions.
Thanks to their ideas indeed, we show in Theorem 7.3.7 that when the goal is to select
n out of s experiments, thd® optimal design may be rounded to a design for which the
dimension of the observable subspace is withaf the optimum. While this result might
look weaker than the greedft e ) approximation factor, we show that one can not
hope for a better result with rounding algorithms. The proof is based on a generalization of a
result from Atwood [Atw73], who showed that the coordinates of@heoptimal design for
experiments with scalar response are bounde#l;byherem is the number of parameters
to estimate. For multiresponse experiments, we generalized his result in Proposition 7.3.4,
with inequalities involving the ranks of the observation matrices.
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7.1 Notation and statement of the problem

7.1.1 A combinatorial optimization problem

We consider the same model as the one described in Chapter 2 (Each experiment provides
linear multidimensional observations of the parameter (cf. Equation with a unit, centered
noise (2.3).) In addition, we dispose of a prior observation

Yo=Ap + 0!

We use the indef to denote this prior information. This can be useful to modfrka-of-
chargeexperiment, that the experimenter will conduct in any case, or to model an intrinsic
relationship between the parameters, such as Kirchho 's circuit law (cf. Section 5.2.3).

In this chapter, we assume that the experimenter wants to choose a well suited subset
I [s] of experiments that she will conduct in order to estimate the parameters. We
therefore de ne thedesignvariablew as the0=1 vector of sizes, wherewy takes the

experiments, such that the vector of observation reads :

y=AWw) + ; (7.1)
2 2 3
Yo Ao
wherey = g yjl é A(w) = g A:il %; and E[]=0; E( ")=1I
Yin Ai,

If we have enough measurements, such tAétv) is of full rank, thenM (w) =
AW)TA(W) = 7, wiATA, is the inverse of the covariance matrix for the best linear
unbiased estimator of (cf. Chapter 2). We can thus formulate thg, optimization prob-
lem in the same form as the one presented in Section 2.3.2, except that the design variable
w is now integer, and subject to a cardinality constraint:

Wrzrfl%?igs p M(w) (7.2)
x
sit: Wi n

i=1

Assume more generally that the cost of experimeistr;. If the experimenter has a
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limited budgetb, the (combinatorial) ,-optimal desigrproblem is:

Wrsz]%égs p M(w) (7.3)
x
sit: wiri b

i=1

Problem (7.2) is a particular case of Problem (7.3), when all the experiments have the
same cost, andn = b?c. Therefore, we refer to the constraints of Problem (7.2) as the
unit-cost case.

7.1.2 The under-instrumented situation

We note that the problem of maximizirlg (w) with respect to the Lowner ordering
remains meaningful even whigh(w) is not of full rank. This case does arise in under-
instrumented situations, in which some constraints may not allow one to conduct a number
of experiments which is su cient to infer all the parameters. In this case however, the
natural interpretation oM (w) asthe inverse of the covariance matrix of the best linear
unbiased estimatovanishes, because an unbiased estimator for the vector of parameters
does not exist. In a number of applications though, the parameters can still be estimated,
using a small number of measurements and prior information. cFherefore, a measure
of the quality of the under-instrumented designs is required.

An interesting and natural idea to nd an optimal under-instrumented design is to choose
the design which maximizes the rank of the observation mAifx), or equivalently of
M (w) = A(w)TA(w). The rank maximizatioris a nice combinatorial problem, where we
are looking for a subset of matrices whose sum is of maximal rank:

X
max rank AJAo+  WATA;  rank(AfAo) (Po)
w2f 0;1g8 i
X
s:it: wir; b:

In the above optimization problem, the temank(A[ Ao) has been subtracted so that the
objective criterion takes the val@for w = 0. In combinatorics, approximation factors are
generally given with respect to objective functions which satisfy the latter property.

More generally, we show below that the problem of maximixirfg/) with respect to
the Léwner ordering still has some statistical interest in the under-instrumented situation.
Moreover, we will see that the, maximization ofM (w) may be thought as a regular-
ization of therank optimizationproblem @,), and , can be seen as a deformation of
the rank criterion forp 2]0; 1]. First, we show that (w) still has a statistical meaning,
since its Moore-Penrose generalized inverse is the variance of the esﬁ[gagjven by
least square theory. More precisely, a linear estimater LTy for is unbiased if and
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only if LT is a left inverse oA(w) (i.e. LTA(w) = 1). In the under-observed case, no
such left inverse exists, but we know from least square theory that the trace of the co-
variance matrix Vaf\) = LTL is minimized in the class of the least biased estimators for
L = (A(w)")Y, whereM?Y denotes the Moore-Penrose generalized inversé ¢ie. L
minimizeskLke := trace LTL in the class of matrices such thatk(LTA(w) |)kg is
minimized). The resulting least square estima’fgr = A(w)Yy has variance

Var(".) = AW AW = AW)TAW) "= M (w):

Similarly to the full rank case (cf. Equation 2.11), we can see that for 2l[0; 1], ’\LS
lies in a cylinder of the form

( "MW ")

with probability , and these cylinders are minimized (for the inclusion relation) when
M (w) is maximized (for the Loéwner ordering).

Another argument for the use of this criterion is given by Bayesian optimal design, where
a prior distribution for the parameter is given:

E( )= ; and Var( )= R:

Itis known (see e.g. [Puk93]) that when the prior covariance mRtisxpositive de nite, the
expected covariance matrix is minimized among all unbiased a ne estimators, conditionally
to the prior distribution of for:

“e = RI+AMW)TAW) R +AW)Ty :
This Bayesian estimator has a variance which does not depend on the prior expected value
of

Var(“r )= R 1+ AW)TAW) (7.4)

In practice, prior information on the variance of the parameter is rarely known, and
the prior can be modeled instead by settiRg! = | for an arbitrarily small (see

e.g. [SQZ06]). The regularization parametdets the inverse in (7.4) exist, and we recover
the Moore-Penrose inverse Mf(w) by letting ! O.

When every feasible information matrix is singular, Equation (2.13) indicates that the
maximization of ,(M (w)) can be considered only for nonnegative valugs dfhe next
proposition shows that , can be seen as a deformation of the rank criteriorpfi0; 1].
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First notice that wherp > 0, the maximization of ,(M (w)) is equivalent to:

. T X . P T P
5?8‘1‘ p(w) = trace ApjAp+ WA A trace AyAg (Pp)
w ;198 K
X
sit: wWeC b
k

where we have subtracted the tetrace(A] Ao)P from the objective function, as in Prob-
lem (Po), in order to have the property,(0) = 0.

Proposition 7.1.1. For all positive semide nite matridd 2 S.,;

Iirg trace MP = rank M: (7.5)
p o*

Proof. Let 4;:::;  denote the positive eigenvaluesMf, counted with multiplicities,
such thatr is the rank ofM . We have the rst order expansion pg 0 :

X Y
trace MP = P=r+plog( )+ O(p?) (7.6)
k=1 k=1

]

Consequentlytrace M ° will stand forrank(M ) in the sequel and the rank maximization
problem @) is the limit of problemR,) asp! 0.

Corollary 7.1.2. If p > 0 is small enough, then every design which is a solution of
Problem(P,) maximizes the rank d¥l (w). Moreover, among the designs which maximize
this rank,w maximizes the product of nonzero eigenvaludg Oiv).

Proof. Since there is only a nite number of designs, it follows from (7.6) thapfor O
small enough, every design which maxim'izgmust maximize in the lexicographical order
rst the rank of M (w), and then the product’ ., «. ]

7.2 Submodularity and Greedy approach

In this section, we study the greedy algorithm for solving Problegh through the
submodularity of ,. We will rst prove that therank optimizationproblem is NP-hard by
reduction of MAXk-Coverage. Next, we show that the objective function of Problegh (
is nondecreasing submodulafhe maximization of submodular functions over a matroid
has been extensively studied [NWF78, CCPa07, Von08, KST09], and we shall use known
approximability results.

In combinatorics, approximability results are usually given for optimization problems
whose objective function takes the valutor the empty set. For this reason, all results will
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be given with respect to the maximization of the functign(Problem @,)). This problem

is equivalent to the , optimal problem (7.3) for positive values mf and to therank
optimization problem Pg) for p = 0. In addition, note that there is no point to consider
multiplicative approximation factors for the, optimal problem whep 0, since the
criterion is identically as long as the the information matrix is singular. por O indeed,

the instances of the ,-optimal problem where no feasible designM{sv) be of full rank

have an optimal value & For all the other instances, any polynomial-time algorithm with

a positive approximation factor would necessarily return a design of full rank. Provided
that P 6 NP, this would contradict the NP-hardness of the rank optimization problem
(Theorem 7.2.1). So, we investigate approximation algorithms only in thepcase

7.2.1 Hardness of Rank optimization

Theorem 7.2.1. Problem(Py) is NP-Hard. For all positivg, there is no polynomial-time
algorithm which approximatd®,) by a factor ofl % + " unlessP = NP.

Proof. We will show that the problem MAK-coverage, for which the statement of the
theorem is true [Fei98], reduces to trenk optimization(Pp) in polynomial time.

The problem MAXk-Coverage is de ned as follows : We are given a collection of subsets

indexes of nonzero entries are the element .ofFinally, letA, be the all-zero row vector
of sizem. Since all the matriceA A; have only diagonal entries, it is straightforward to
see that the rank oAJ Ao+ W Al A is equal to the number of nonzero elements on
its diagonal, i.e. the cardinal ¢f;;jw,-14Si, Which is exactly the objective function of the
MAX-k-Coverage problem. O

This is a negative result on the approximability of Probléy).(Nevertheless, we show
that the bound provided by Theorem 7.2.1 is the worst possible ever, and that the greedy
algorithm always attains it in the unit-cost case.

7.2.2 A class of submodular spectral functions

We recall that a real valued functién: 25 | R, de ned on every subset & is called
nondecreasing if for all subsétsandJ of E, | J impliesF(I) F(J). We also give
the de nition of asubmodularfunction:

De nition 7.2.2 (Submodularity) A real valued set functioR : 25 | R is submodular
if it satis es the following conditions :
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() F(;)=0;
(i) F()+ FQ) F(U[ J)+FQ\ J)forall:J E.

We next recall the de nition of operator monotone functions. The latter are real valued

De nition 7.2.3 (Operator monotonicity) A real valued functiof is operator monotone
onR.: (resp.R,) if for every pair of positive semide nite (resp. positive de nite) matrices
A andB

A B=) f(A) f(B):

We say thatf is operator antitonef f is operator monotone.

The next proposition is a matrix inequality of independent interest; it will be useful to
show that' ,, is submodular. Interestingly, it can be seen as an extension of the Ando-Zhan
Theorem [AZ99], which reads as followst A, B be positive semide nite matrices. For
any unitarily invariant nornp j , and for every nonnegative operator monotone fundtion
on[0;1),

IT(A+B)j 1 f(A)+ F(B):

Kosem [Kos06] asked whether it is possible to extend this inequality as follows:
jf(A+B+C)j j f(A+B)+f(B+C) f(C)j;

and gave a counter example involving the trace norm and the furfdpigr= ;5. However,
we show in next proposition that the previous inequality holds for the trace norm and every
primitivef of an operator antitone function (in particular, fo(x) = xP; p 2]0;1]). Note
that the previous inequality is not true for any unitarily invariant norm &afx) = xP

neither. It is easy to nd counter examples with the spectral radius norm.

Proposition 7.2.4. Letf be a real function de ned oR. and di erentiable onR, . If
f Ois operator antitone o, , then for all triple(X;Y;Z) of m m positive semide nite
matrices,

tracef (X + Y + Z)+trace f(Z) tracef(X + Z)+trace f(Y + 2Z): (7.7)

Proof. Since the eigenvalues of a matrix are continuous functions of its entries, and since
S, is dense ir§},, it suces to establish the inequality wheX ,Y, and Z are positive
de nite. Let X be an arbitrary positive de nite. We consider the map:

'S, ! R

T7! tracef(X +T) tracef(T):
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The inequality to be proved can be rewritten as
(Y + 2) (Z2):

We will prove this by showing that is nonincreasing with respect to the Léwner ordering
in the direction generated by any positive semide nite matrix. To this end, we compute the
Frechet derivative of at T 2 S} in the direction of an arbitrary matrid 2 S,. By

de nition,
1

D (MH]=lim = (T+ H) (T):

Whenf is an analytic functionX 7! tracef (X) is Frechet-di erentiable, and an explicit
form of the derivative is known (see [HP95, JBO®)):trace f (A) [B] =trace f {A)B .
Sincef %is operator antitone oR, , a famous result of Léwner [Léw34] tells us (in particular)
that f %is analytic at all point of the positive real axis, and the same holds. fBrovided
that the matrix T is positive de nite (and henc¥ + T  0), we have

D (T)[H]=trace fq{X +T) fqT) H

By antitonicity off °we know that the matriswv = f {X + T) f{T) is negative semidef-
inite. For a matrixd 0, we have therefore:

D (T)[H]=trace (WH) O:
Consider nown(s) := (sY + Z). For alls 2 [0; 1], we have
hds)= D (sY + Z)[Y] O©;

and so,h(1)= (Y +Z) h(0)= (Z), from which the desired inequality follows.[]

the assumptions of Proposition 7.2.4, then the set funckon2® | R de ned by

8l [s]; F(l)=trace f(Mo+X M;) trace f (My);

i21

is submodular

Proof. The relationF (;) = 0 follows from the de nition of.

Letl:J 261 We dene

X X X
X = Mi; Y = Mi; Z:Ang'i' M;:
i21nd i2Jnl i21\J
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It is easy to check that

F(l)=trace f (X + Z) tracef (My);
FJ)=trace f(Y + Z) tracef (My);
F(\ J)=trace f(Z) tracef (My);
F([ J)=trace f (X + Y + Z) tracef (My):

Hence, Proposition 7.2.4 proves the submodularitly of ]

We next point out some submodular set functions which can be found thanks to Corol-
lary 7.2.5.
Corollary 7.2.6. Let Mg;My;::;; Mg bem m positive semide nite matrices.
(i) 8p2]0;1];1 7! trace(Mq + P > Mj)P  trace M/ is submodular.
@) I 7' rank(Mq + P i»; Mj) rank Mg is submodular.
If moreoveM is positive de nite, or if everil; is positive de nite, then:

(i) 1 7! logdetMo+ "~ ., M;) logdet My is submodular.

Proof. It is known thatx 7! x9 is operator antitone oiR, for allq2 [ 1;0[. Therefore,
the derivative of the functiom 7! xP (which ispxP 1), is operator antitone oR, for all

p 2]0;1[. This proves the pointi) for p6 1. The casep = 1 is trivial, by linearity of the
trace.

The submodularity of the ranidi) and oflogdet (jii ) are classic. Interestingly, they
are obtained as the limit case @) asp! 0*. (For logdet, we must consider the second
term in the asymptotic development ¥f 7! trace XP asp tends to0" (7.6)). m

7.2.3 Greedy approximation

The next results show that for gl 2 [0; 1] Problem P;) is1 $ approximable in
polynomial time. This can be attained with the help of the greedy algorithm, whose principle
is to start from& = ; and to construct sequentially the sets

(G f ig),

Gt = G[ argmax g r

until the budget constraint is violated.

Theorem 7.2.7 (Approximability of , Optimal Design: Unit-cost case)et p 2 [0;1]
The greedy algorithm for proble(®,) yields al % approximation factor in the unit-cost
case.
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Proof. We know from Corollary 7.2.6 that for a@l2 [0; 1], ' , is submodularg= 0 corre-
sponding to the rank maximization problem). In addition, the functipms nondecreasing,
becauseX ! XPis a matrix monotone function fqr2 [0; 1] (see e.g. [Zha02]).

Nemhauser, Wolsey and Fisher [NWF78] proved the result of this theorem for any non-
decreasing submodular function over a uniform matroid. Moreover when the maximal num-
ber of interfa%es which can be selected,ighis approximation ratio can be improved to
1 1 1=n : O

Remark7.2.1 As mentionned in the introduction of this chapter, the submodularity of the

D criterion was already used by Robertazzi and Schwartz [RS89]. The problem studied
in the latter article is of a di erent nature, since the authors used a greedy algorithm to
solve Problem (7.2) (fop=0) whenn!1 |, and they normalize the result to obtain an
optimal approximate design. The submodularity gfallowed them to use the accelerated
greedy algorithm of Minoux [Min78]. This yields great computational savings, because at
each stage, the increment of the objective function need only be computed for a subset of
[s]. Note that this accelerated greedy algorithm can also be used in our case, in order to
construct al 1=e approximation of the , optimum.

One can obtain a better bound by considering tibtal curvatureof a given instance,
which is de ned by:

' S ' s|nfi
c=max 1 v Lo p_[] J 2 [0;1]:
i2[s] 'pf|g

Corollary 7.2.8 (Approximability of , Optimal Design in function of the curvature)et
p 2 [0;1] andc be the total curvature of a given instance of the Probl@?p) in the
unit-cost case, where the maximum number of experiments to be selentedhis greedy
algorithm for problen(Pp) yields a% 1 (1 £)" approximation factor.

Proof. This result follows from Conforti and Cornuejols [CC84], who proved it for the max-
imization of an arbitrary nondecreasing submodular function with total curvature ]

For the valuep = 1, ' ,, is additive and it follows that the total curvature d¢s= O,
yielding an approximation factor &f since

im>1 a S =1
c 0t C n

As a consequence, the greedy algorithm always give the optimal solution of the problem.

Note that Problem(P;) is nothing but aknapsackproblem, for which it is well known that

the greedy algorithm is optimal in the unit-cost case. However, it is not possible to give a

lower bound on the total curvatuefor other values gb 2 [0; 1[, andc has to be computed

for each instance. We now give a result for the budgeted problem:
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Corollary 7.2.9 (Approximability of' , Optimal Design) Problem (Pp) is still 1

1 approximable in polynomial time in the budgeted case, but the greedy algorithm for

e
problem(P,) yields a constant approximation factor of oélyl % :

Proof. This was proved for an arbitrary nondecreasing submodular function in [SviO4]. In
order to attain thel 1=e approximation guarantee, one can associate the greedy algorithm
with the partial enumeration of all triples of experiments. m

Remark7.2.2 The results of this section hold in particular fo= 0, and hence for the
rank maximizatiorproblem o).

7.3 Approximation by randomized rounding algorithms

The optimal design problem has a natural continuous convex relaxation which is simply
obtained by removing th@=1 constraint on the design variablg and has been extensively
studied (cf. Chapter 3). As mentioned in the introduction of this chapter, several authors
proposed to solve this convex relaxation and to round the solution to obtain a near-optimal
discrete design. We next investigate the legitimacy of this technique. We show in Theo-
rem 7.3.7 that theD-optimal design may be rounded to a random discrete design which
approximates the optimum of the rank optimization probld?p) (by an average factor of
5. While this result may look rather worse than the greedy approximation factor presented
in Section 7.2, it is (almost) optimal since there are some instances for which the average
ratio of approximation ig"; (cf. Remark 7.3.2).

Another motivation for this section arises from the recent results from Calinescu, Chekuri,
Pal and Vondrak [CCPa07, Von08], who showed that the problem of maximizing a nonde-
creasing submodular function over an arbitrary matroid is e !)-approximable, by rst
approaching the maximuwf a continuous extension of the submodular function, and then
using the pipage rounding of Ageev and Sviridenko [AS04] to return a discrete solution
which achieves thel e !) approximation factor. For our problem, the greedy algorithm
of Section 7.2 is preferable to obtain(h e !)-approximation factor, but the ideas of
Calinescu and his coauthors are useful to establish the approximability factor of the rank
optimization problemHW ,) by rounding algorithms.

We also want to underline that the greedy algorithm may rise some computational issue
when the number of parameters to estimates large. Fedorov [Fed72] suggested to make
use of the Sherman-Morrison formula to speed up the computation.p For 1 (resp.

p = 0) indeed, i.e. for the A- (resp. D-) optimal design problem, one has to compute
o(Gc [f ig) for each experimerit which is not yet inG, at the k™ stage of the greedy

process. This requires the computation of the inverse (resp. the determinant) ofra

matrix, which is a very time-consuming task. Instead, the Sherman-Morrison formula allows

one to compute the value of the increment thanks to a small-rank update. However, when

working with arbitrary values g, we cannot use these smart updates anymore. So at
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the ki stage of the greedy algorithm, one has to computertheigenvalues ofs k)
information matrices, which is not practicable wher(the dimension of the parametel)
is large (typically larger than 10000 in network applications).

In the sequel, we focus on the case in wigéhO, and we consider the unit-cost case,
where the number of experiments to select i¥Ve further assume without loss of generality
that there is no prior measurement on the paramefey € 0). Note that we may always
reduce to this case by de ning the augmented observation matices [Al= n;AT]T,

so that we have
xS

xS
WA A = AlAc+ WATA;:

i=1 i=1
7.3.1 A continuous relaxation

The continuous relaxation of ti@ optimal problem is obtained by removing the integer
constraintw 2 f 0; 1¢° :

X

I:‘mrlrla)O( det WAL A (7.8)
k

Wi n

k

We assume without loss of generality that the malifixl) = i b1 AF A is of full rank
(wherel denotes the vector of all ones), such that the optimal value of Problem (7.8) is
positive. If this is not the case (:= rank(M (1)) < m), we de ne instead a projected
version of Problem (7.8): Let) UT be a singular value decomposition\f(1). We
denote byU, the matrix formed with the leading singular vectors & (1), i.e. ther
rst columns ofU. The D optimal design problem is projected onto the observable space
by mean of the projected observation matriégs= A U, (see Paragrapfi:3in [Puk93]):

x T
max det WA Ag (7.8)
pw O _
Wk n k=1

k
The functionlog(det()) is strictly concave on the interior 8f,, and Problem (7.8) can
be solved by interior point techniques or multiplicative algorithms [Atw73, DPZ08, YulOa,
Sag09b]. The strict concavity of the logdet function indicates in addition that Problem (7.8)
admits a unique solution if and only if

that is to say whenever the matrichs = ATA; are linearly independent. In this chapter,

we focus on the rounding techniques only, and we assume that an optimal selutidrthe
D-optimal design problem (7.8) is readily known. In the sequel, we also denote a discrete
solution of ProblemRy) by S . SinceM (w ) is of maximal rank , we have:

r :=rank(M (1)) =rank(M(w )) = "ow ) 'o(S): (7.9)
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The aim of this section is to propose some randomized rounding techniques which as-
certain some approximation bounds. We clarify this statement in the following de nition:

De nition 7.3.1. We say that an algorithm approximates the optimal solution of the rank
optimization problem Ry) by a factor if for all possible instances, it returns a feasible
random subse$ such that:

E( o(é)) " o(S):

Notice that, due to inequality (7.9), it is su cient to show thd& ("' o(é)) "o(w )=
r to prove that some rounding approximates the optimal solution by a factor

7.3.2 Roundings of the optimal solution

We now present two ingredients which will be useful in the sequel : the pipage rounding
algorithm of Ageev and Sviridenko [AS04] and its relation with the extension by expectation
of a submodular function, brought to light by Calinescu et. al. [CCPa07].

Extension by expectation and Pipage Rounding

We will make use of the extension by expectation [CCPa07] of a submodular set function
", which is de ned by
F(y)= E[ (9)]; (7.10)

where$ is a random set ofs] which containg ig independently with probability;. In
other words, X v Y
F(y) = (S) v @ (7.11)

Sf 1;:sg i2S i2s
In our setting, we will denote blf, the extension by expectation of the rank function
' 0. Note that this extension can be de ned only if all coordinatey @re smaller than
1. Ify; > 1 for some experiment we have to use another rounding technique, like the
proportional roundingvhich we next present. Also note thayiis theO=1-vector associated
to S, we haveF (y) = ' (S), which tells us thaF. is an extension df indeed.

The idea of Calinescu et. al. (as reduced to the simple case of uniform matroids) is to
nd a vectory suchthatF (y ) (1 1=¢ OPT;whereOPT is the optimal value of
the problemmaxs; » ' (S). Then, they roundy to a feasible discrete solutid® with
the pipage roundinglgorithm of Ageev and Sviridenko [AS04], which satis es with a high
probability’ (S) F (y ). Similarly, we will ask ourselves whether one can guarantee that
Fo(w ) ' oS ) for some , in which case we could apply the pipage rounding technique
to return a feasible subs& satisfying (with a high probability)

' o(S) = FO(S) Fo(W ) ' O(S ):
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For the reader's convenience, we now present the randomized version of the pipage
rounding algorithm for the simple case of uniform matroids, and the ideas of the proof
of Calinescu and his coauthors on the e ciency of this roundiﬁg ()] F (w)).
Assume that we are given a nonnegative vegt@ [0; 1F such that ;y; = n, and two
indexed andj for whichy is fractional. The idea of this rounding technique is based on
the fact that, for any submodular function, the functionFijy t7MFE y+t(e g) is
convex [CCPa07], such thkt is increasing when we move in one of the directiens g;)
or (e e). Therefore, we can increase one of the two varialylesr(y; ) and decrease the
other one untily; or y; becomes & or al. Moreover, the sum of the vector is preserved
along this transformation, which guarantees that the set obtained with this rounding will
satisfy the desired propertySj = n). In the randomized version (Algorithm 7.3.1), we
choose between the two admissible directions with probabilities which ensure that we do not
loose in expectation. This avoids costly evaluatiors ¢y ).

: . P
Lemma 7.3.2 (Calinescu et al [CCPa07]iven a vectoy 2 [0; 1F such that ;y; = n,
PipageRound(y) returns ins iterations a random se® of cardinalityn, of expected value

E[ ()] F(y).

Proportional Rounding

We now present another rounding scheme, which can be used even if some coordinates
of y are larger thanl. The principle of this rounding is to start witg, = ;, and, for
k = 1;::;n, we constructSy from S ; by adding in it exactly one new element, namely
i 2 [s]nSk 1 with probabilityB—Y——_ If at some point, all the remaining coordinates

j2s Yi
(Y;)j2s, , are equal to0, uniformkplrobabilities are used. An alternative way to de ne
this rounding is to generate a random vector the i coordinate of which is following
an independent exponential distribution of expected vahye : X; exp(1=y). As a
consequence of the memoryless property of the exponential distribution, t6¢ sah be

Algorithm 7.3.1 PipageRound (y)
Input: y 2 [0;1]° such that ;y; = n
while y is not integraldo
Picki;j such thaty; andy; are not infO0; 1g.
fyi; visl yisyp 19

" minf";j"; > Og
maxf";j"; < Og
p T

with probability p

Vi Yit 5 Yi
else

Yi Yit ooy
end while
Output: vy.
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generated by selecting the indexes of themallest elements in the vectdr (we use the
conventionl=0 = 1 , and ify has no more tham positive components we choose with
uniform probabilities between the indicesXofsuch thatX; = 1 ).

We denote by5,(y) the random set of cardinality obtained by this procedure, which
we callproportional roundingf vectory.

7.3.3 Characterization of D optimality

We now give a characterization of tlie optimal design. This proposition is known
as the General Equivalence Theoramthe full rank case, and was rst stated by Fe-
dorov [Fed72] for multiresponse experiments (cf. Chapter 2). We show here that it can
also be stated in the degenerate case (whiarkk(M (1) = r < m)) with the help of
generalized Moore-Penrose inverses.

Proposition 7.3.3 (General Equivalence TheorenThe designw is D-optimal (i.e.w
is a solution of Problen(i7.8"), which reduces t@7.8) in the full rank case = m) if and
only if for alli 2 [s], we have either:

w; =0

orw, > 0, and trace AjM (w YAT = oW ) =

r_
n n’

Proof. This proposition is known as th&eneral Equivalence Theora@mthe full rank case
(wherer = m, and the Moore-Penrose inverse is a regular inverse). For a proof, see
Fedorov [Fed72], who deals with the normalized constraint {). The generalization to

an arbitrary value ohf is straightforward.

We now study the degenerate case, where& m, and theD optimal design is the
solution of Problem (7.8'). The projected observation matriégssatisfy the full rank
property by de nition (M (1) := kAkTAk Is of sizer r and has rank ). This
allows us to apply the full rank general equivalence theorem to charaeterizbe design
w isD optimal if and only if for all 2 [s], we have eithew, =0, or

— 1 r
trace AiM (w ) AiT = F; (7.12)

whereM (w ) := P kkakTAk = UTM(w )U, . Since the range df1 (w ) is included
in the one ofM (1), we have:

M(w ) O!

T.
0 OU’

M(w )=U

where the diagonal blocks are of size r and(m r) (m r ) respectively. We
can now express the Moore-Penrose inverdéd @f ):
0 1

1
— 1
gAUT:UrM(W) ur:

M(w )Y = U@M(V\C/))
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Finally, we re-express the left hand side of (7.12), which will conclude the proof:
1 1
trace AM(wW ) A;' =trace AjU; M(w ) UTAT =trace AM (w )YAT:

]

We next give a proposition which shows how we can bound the compovieatshe

D optimal design. This was proved in a simpler case by Atwood [Atw73], who obtained
% % when the observations are scalar (single response experiments), i.e. when the
observation matrices are row vectors. The rst part of the next result was discovered
independently (in the regular case = m) by Harman and Trnovsk& [HT09] (the latter
article was published shortly after we had submitted an announcement of the present results
to the conference ISCO 2010 [BGS10]). The proof of our result also adapts to the case
in which the experimenter wants to estimate a subsystem of the parameters (cf.

Theorem 2.4.7).

Proposition 7.3.4. Letw be aD optimal design. For all2 [s], we have the following
bound on the optimal coordinate, :

w; rankM;
n rank( T M;)’ (7.13)
whereM; := ATA;. More generally, for an arbitrary subsgfbf [s],
P P
i2sW;  rank(_iosMi) _ " o(S) | (7.14)
n rank( L, M) " o(w )’ '

Proof. The rst inequality is trivial whenv; = 0. For any other value of; > 0, we make
use of the characterization of optimality from the general equivalence theorem:

r
trace AiM (w )YAT = o

Now, we replacé (w )Y by M (w )YM (w )M (w )Y in the right hand side of this expres-
sion, and we obtain:

r — y X T YAT
" = trace AiM (w ) WA Ak M (w )YA,
k
X
w, trace A;M (w )AL AcM (w )YAT
k Mgy Ay |

X (ik)
X
w, trace X (i; k)X (i; k)"
k
w; traceX (i;i)X (i;i)"; (7.15)

where the inequality follows from the fact that the trace of any semide nite matrix is
nonnegative.



136 CHAPTER 7. COMBINATORIAL PROBLEMS IN OPT. DES. OF EXP.

Let r; denote the the rank oM;, such that there exists  m matrix H; such that
M; = HH;. We have:

traceX (i;i)X (i;i)" =trace AiM (w YATAM (w )YAT
= ) YHT H. YHT-
trace f_"M(‘f\é ) HI}H|M(W )’H;

X

Now, notice thatX; is ar; r; symmetric matrix which has trace. This allows us to
write:

T, _ X 2 X
trace(XiXi ) = X'i(j;k) X'i(j;,- )
ik =1
This latter expression is the sum of squares of elements which sumanod is minimized

when all these elements are equal, i.e. whengyer = r =r;. Finally,

Xiy r
trace(X‘iX“iT) . = —

Inserting this lower bound in (7.15), we nally obtain  w; rr—z or equivalently

W r _ r
I r 1 O(W )’
and the rst inequality is proved. In order to generalize this resultSléte a subset of
[s]. We exclude the trivial case;,sw; = 0, and we de neMs = ,5 B"—M;. We

w
consider the problem

j2s "

X
max det vsMg + VikM (7.16)
Vsi(Vk)kzs K2S
X
sit: vg+ Vk N
kzs

vs 0, 8kzZS;v O

(Eventually, we may instead consider the projected problemMits U’ MU, if we are
in the degenerate case < m). It is clear that this problem has solutiop = w, for

kZS, andvg = j,5W,, since any better value would contradict the optimality of
w . Applying the rst inequality, we nd:
P

P
j2sW, _ Vg rank Mg rank ( jos M)

n n r r
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7.3.4 Rounding approximation factor for rank-optimality

Before we give the approximation factor that one can guarantee by using our rounding
procedures, we need the two following technical lemmas.

. P
Lemma 7.3.5. Let ¢ dPenote the simplexx 2 (R:)°j iXi = ¢. We dene the
random variabl&V,(w) = = 55, w) Wi, WhereS,(w) is the random subset ¢$] obtained

by proportional rounding. Then, we have

8w 2 s E[Wh(w)] E[Wn(g;:::;g)]=ng:

Proof. First notice that we can give the expressiorEpiV,(w)] in close form by summing
over all permutation ofi elements irfs]:

X W \Wj W
E[W,(w)] = P p—2 P : (W, + i+ w, )
2 (ns) i Wi i ; Wi igf 1 0 1gWi

Although this expression looks particularly awful, the reader can verify that it can be obtained
by the following induction procedure:
8 P
2 EWy(w)] = B
S

> EWea ()] = PAT 8, wiw + EMW(Worig))

wherew ;4 is the vector of lengtls 1 with entries(wy;: ;W 1; Wisq;::1;Ws). The

latter formula is easily obtained by considering the expansion of a probability tree, and will
allow us to make a proof by induction. We are going to show&hkat s, E[W,(w)] attains

its minimum valuek; on s for the uniform vector. Fok = 1, E[Wy(w)] = 10 w?

on the simplex, which is a convex and symmetric function, the minimum of which is
attained for the uniform vector:

EPW (- S 3
[ l(gi---!g)]_ s — _g
S
Now, we assume that the statement is true for a gikehf 1;:::; 19

8w 2 g E[Wk(w)] E[\Nk(g;:::;*)]:k*:

Letw 2 s. For alli 2 [s], the vectorw g4 is in the simplexX wWi) s 1. SO, using
our induction hypothesis, we nd :

Wi_

E[Wk(Wntig)] ks 1
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and using the inductive construction Bf\W.; (w)],
1% Wi
EWia (W)l = wi(wi + k s 1 )
= { }

Ok (W)

It is clear thatgy is symmetric. Moreover, we can see thats convex since it is a separable

function and fok < s,
@g(w) _ 2 k

on —(1 ﬁ) 0:
This shows that, fok < s the minimum ofg, is attained on the simplex for the uniform
vector(s;:::;5). This gives the following lower bound BfiW.1 (W)]:
2 o E[Wes —in=)=(k+1)—:
8w si E[Wier (W)] g(s s) ( ) S

Moreover, this bound is attained for the uniform vector, since it leads to consider an expected
value on a uniform probability tree wifk + 1) - on each extremal leaf.

By induction, we conclude that our induction hypothesis holds fé&r alk, and in particular

for k = n. O

Lemma 7.3.6. For all vectorw 2 [0; 1F, the following equality holds:
X X |

Y v X
W, wi (1 ow)= w?

i
Sf 1;:sg i2S i2S i2S i=1

Proof. We proceed by induction an for s = 1, the equality is trivial, since the summation
reduces tdS = ; andS = f1g, and has only one nonzero term?.
Now, we assume that the equality from this lemma is true for a gyamd we write (by
separating between the sets which contdigs 1g and those which do not).

|

X X Y Y
Wi w1 w)
Sf 1;:s+lg 12S i2S i2S
0 | 1
X X Y Y
= Wes @wgyq + W, w1 w)A
Sf 1;5sg i2S i2S i2s
0 | 1
X X Y Y
(1 We)@ wiooow (1 owy)A
Sf 1;:sg i2S i2S i2S

—_ x® 2 2
= WT (1 Wse1) + Weeg) + Wgyy
i=1
§Q‘l
i=1

\I/DVhere the induction hypothesis has been used to replace the summatiod ovgs] by
S 2
g W [



7.3. APPROXIMATION BY RANDOMIZED ROUNDING ALGORITHMS 139

We can now formulate the main result of this section:

Theorem 7.3.7 (Rounding Approximability FactorL.etw be aD optimal design. The
proportional rounding of the vectar approximates the optimal solution of the rank max-
imization problem(Po) by ¢. Moreover, if all coordinates @ are smaller thari, then
the pipage rounding algorithm gives the same approximation factpr of

Proof. We rst point out that if w has no more tham positive entriesS,(w ) always
contains the indices of these entries, such that the rounded d8gs{gn ) is of maximal
rank: ' o(Sp(w )) = r , and the approximation ratio i4&. Otherwise, we bound the

approximation ratio™-*% . thanks to the result of Proposition 7.3.4 :
E[ oSaw )l _ X w, _w, W, o)
I O(W ) 2 (n;s) iWi i6 1Wi i2f 150 0 1gWi ' O(W )
X W W, - W (W +:i+w )
2 sy 1 Wi i 1 Wi iof 1o 19 Wi n

EWn(w )]

In the above, the summation is taken over glgé'nj permutations of n elements ifs],
and W, (w ) is the random variable which has been de ned in Lemma 7.3.5. ®ingg
in then simplex, we obtain the desired approximation factor from Lemma 7.3.5:

E[ o(Ss(w )] 1n*_ n

"o(w ) ns s

Similarly, if all coordinates af are smaller thari, then the extension by expectatiéi
is well de ned atw , and by Lemma 7.3.6:

Fo(w ) X "o(S) Y Y
. = . wi o (1 w)
oW ) g 1gq PO(W )i2s s
X SeW Y Y
|2r? i Wi (1 Wi)
Sf 1;:sg i2S i2S
1
== Wi2
Nz
sha2_n
n s ’

. - . T P .,

where the latter inequality is once again the minimalityxo?! = _; x{ overn ¢ for

w = (g5 3): Hence, the pipage rounding approximates the optimal solution within a
factor of ¢, thanks to Lemma 7.3.2. O

Remark7.3.1 The inequalitiesE[' o(Sp(w ))] %' o(w ) andFo(w ) %' o(w ) are
optimal. The reader can verify indeed that they are attained for the followings



140 CHAPTER 7. COMBINATORIAL PROBLEMS IN OPT. DES. OF EXP.

observation matrices:

In the last theorem we give an approximation factor by comparing the expected value of
' o for the rounded set tb o(w ). The reader may ask himself if these bounds are accurate,
since the approximation factor of a rounding algorithm is actually de ned with respect to
the discrete optimal valuey(S ). We answer partially with these two remarks:
Remark7.3.2 Fors > n +1, we can nd observation matrices for which the ratios
Lo and FUE) take the valuey";. This indicates that the optimal approxima-

tion factor is somewhere betweénand ;";. Consider the followings 1) (s 1)

1
observation matrices indeed:

0 1 0 1 0 1
1 0 0

0 0 1

where the nonzero block M, is of size(s n) (s n). The reader can easily verify
that for "< L, w; =0, andw, = ::: = wg = ", while the discrete solutio8 of
rank matrix. Hence, this example yields an approximation fact%ﬁfm =
for both the proportional and the pipage rounding.

Remark7.3.3 forn = 1 ands > 2, we can show that"™; is the optimal approximation
factor for the proportional rounding algorithm. Since= 1, the discrete optimun® of

Problem (7.8) is a singleton, which we can consider td lzpwithout loss of generality.
Now, we bound the the approximation ratio:

E[ ofSa(w )] _*® " olfig)

"o(flg) L o(flg)
x " o(fiQ)
W1+ i=2 Wi ' O(W )
x3

wy+ (W)

where the rst inequality follows frome(f1g) ' o(w ), and the second one from Propo-
sition 7.3.4. Now, using the fact that >, (w; )? is minimized on th¢1l w;) simplex for

the uniform vector\{, = ::: = wy = 2"%), we have:

S

EL oSu(w ))] 1 w)?
g Mt s 1
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The left hand side of this equation is an increasing functiow obn [0; 1], such that we
obtain the lower bound fowv, = 0:

E[' o(S1(w ))] 1
' o(f 1g) s 1

In the above discussion, we characterized the rounding approximation factor for Prob-
lem (Pp) whenp! 0. Our proof does not seem to adapt for other valuep 2{0; 1], but
we think that Proposition 7.3.4 might adapt to other valuegaon the following way:
Letp 2 [0;1] and letw be optimal for the continuous relaxation of ProbléRy). Is it
true that for an arbitrary subse$ of [s],

We leave it here as an open question, but we underline that, following the same reasoning as
above, this would provide an approximation factor @fl ® for Problem(Pp); p 2 [0; 1].
Interestingly, this bound is attained for diagonal observation matrices with disjoint support.
Note that this formula would show that there is a continuously increasing di culty from the
easy casep(= 1) to the most degenerate problem € 0).

7.4 Conclusion

This chapter gives bounds on the behavior of some classical heuristics used for combi-
natorial problems arising in optimal experimental design. Our results can either justify or
discard the use of such heuristics, depending on the settings of the instances considered.
Moreover, our results con rm some facts that had been observed in the literature, namely
that rounding algorithms perform better if the density of measurements is high, and that
the greedy algorithm always gives a quite good solution. We illustrate these observations
with two examples:

In a sensor location problem, Uci«ski and Patan [UPQ7] noticed that the trimming of a
Branch and Bound algorithm was better if they activated more sensors, although this led to
a much larger research space. The authors claims that this surprising result can be explained
by the fact that a higher density of sensors leads to a better continuous relaxation. This
is con rmed by our result of approximability, which shows that the larger is the number of
selected experiments, the better is the quality of the rounding.

It is also known that the greedy algorithm generally gives very good results for the
optimal design of experiments (see e.g. [SQZ06], where the authors explicitly chose not to
implement a local search from the design greedily chosen, since the greedy algorithm already
performs very well). Oufl 1=¢ approximability result guarantees that this algorithm
always well behaves indeed.
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Part I

Optimal monitoring in large Networks

143






Chapter 8

Inference of the tra ¢ matrix;: a
review

The tra ¢ matrix (TM) of a network gives the volume of tra ¢ between all pairs of origin
and destination nodes of a network. This matrix is a crucial input for many network planning
operations, and its estimation is therefore an essential problem. For example, the routing
table, which speci es the path between every pair of origin and destination, should clearly
be decided with an accurate prevision of the demand in order to avoid congestion. Similarly,
the tra c matrix is a deciding piece of information when an Internet Service Provider (ISP)
decides to upgrade the capacity of a link on its network. Other important applications of
the tra ¢ matrix include anomaly detection, billing and development of failover strategies.

However, the inference of tra c matrices turns out to be a dicult problem. The
estimation of tra ¢ matrices in networks has therefore attracted much interest for the
last decade, from both Internet providers and the network research community. In this
chapter, we shall review the di erent methods that have been proposed for this task; they
can principally be classi ed in two types: those relying on the link counts only, and those
which take advantage of direct network measurements provided by a monitoring software.
We also indicate the reviews of Benameur and Roberts [BR04], and Vaton, Bedo and
Gravey [VBGO05], which cover some of the techniques presented in this chapter.

8.1 Notation and de nitions

We refer adra ¢ matrix the set of volumes of tra ¢ on each Origin-Destination (OD)
pair of a network, during a given time interval whose typical length varies from ve minutes
to one hour. On a network with nodes (routers), this data can indeed be represented by
an n matrix, the(o;d) entry of which corresponds to the volume of tra ¢ from Nodle
to Noded (during the given time interval). In the practice, we often rearrange this matrix
as a vectox of lengthm = n? to facilitate the notation, but we still refer this vector as the
tra ¢ matrix , and we shall sometimes continue to use the double indexing notation

145
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This vector notation also allows one to handle the case in whighn 2 OD pairs are of
interest (and we use a vectrr of lengthm).

The tra ¢ matrix is a dynamic object, since tra c volumes are evolving over time. When
working over a global observation period which is dividddtime intervals, the unknown

wherex, represents the tra ¢ matrix during theé" time interval &; is asnapshotof the

tra c matrix at time t). We shall still refer toX as thetra ¢ matrix , or sometimes as the
dynamic tra ¢ matrix. The elements ok, are denoted by(gt)d and will be referred as the

ow volumes(at time t) these, however, should not be confused with the clasttipple

ows from the networking literature, which refer to packets sharing the same source address,

destination address, source port, destination port, and IP protocol.

8.2 Tra ¢ matrix estimation from link counts

In the classic problem, we consider a network withodes and links. Link measure-
ments are provided by the Simple Network Management Protocol (SNMP), which gives
some statistics on the links (for instance, the number of bytes seen on each link in a time
window). An analogy with road tra c can be useful: in this case the link counts corre-
spond to the number of vehicles seen on each road segment (during a time interval), and
can be gathered thanks to pneumatic tubes or magnetic loops. We will denote the vec-
tor of SNMP link counts by = (y;;:::;y))". Again, when the observation period

during thet™ time interval).

We are also given the set of OD pairs of interest (usuallyn = n?), and for each
pair, the set of links that a byte need traverse to go from Orgin Destinationd. The
information about the routing is assumed to be known, and is classically gathered in the
I m incidence matriA: this is a0=1 matrix whos€(i; r )-entry takes the valué if and
only if the OD pain traverses link. More generally, the Internet provider routing policies
may lead us to consider matrices in whigh is a real number representing the fraction of
the tra c from OD pair r that traverses link.

8.2.1 An ill-posed problem

The problem of estimating the tra ¢ matrix from the link countsy*™* (or, in a
dynamic framework, estimating from Y s"* ), has been studied since the late 1970's in
the framework of road trac (see e.g. Van Zuylan and Willumsen [ZW80]) or telephone
networks (e.g. Krupp [Kru79]). This work was a valuable source of inspiration for the
information theoretic approach which we present below.
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If we assume that the measurements are perfect, the following relation is easily seen to
hold:
ySWP = Ax: (8.1)

In typical networksl is in the order of, whilem is in the order of?, such that the routing
matrix A has more columns than rows, and the estimation of the tra c mawixs an
ill-posed problem (cf. Example 8.2.1). For the dynamic problem, the refdffdfi = AX

is true if the routing matrixA remains the same during the whole observation period. If
this is not the case, we have instegti"> = Ax, for allt 2 [T], whereA, is the routing
matrix during thet™ time interval.

8.2.2 The information theoretic approach

After an appropriate normalization, the vector of OD owscan be handled as a
probability distribution de ned on the OD pairs. This suggests to use the principle of
minimum entropy to complete the partial informationmnvhich is given by Equation (8.1).

This approach is detailed in Chapter 9: in absence of any other informatidra thenatrix
of minimal entropywhich respects the ingress/egress measurements is known as the gravity
modelx ©, in which the tra c from o to d is proportional to the product of the incoming

Example 8.2.1. Here is a small toy example, to illustrate how we obtain the measurement equations:

The incidence table between the ODs and the links of this network is:

ObD1l! 2| 0OD2! 3|, 0D1! 3
link a 1 0 1
link b 0 1 1

and one can easily verify that the vector of link countg = [ya;Ys]' must satisfy

10 1 X1:2
y = 01 1 X where X = Xz;3
|—{z— s

A

In absence of any additional information on the vector of OD ows, we can only say that belongs to the
space of the nonnegative solutions of the latter equation:

" #
Ya U
X= Y¥p u for a scalar u 2 [0; min(Ya;Yb)]:
u
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trac in o and the outgoing tra c atd:

6 - X7 (Ox°"(d).
T LX)

wherex'" (i) (resp.x®!(i)) denotes the total tra ¢ entering the network (resp. exiting
the network) at node. Thinking aboutx,.4 as the joint probability that a packet has the
origin o and the destinatiom, it means that the source of a packet and its destination are
independent. In practice, this model happens to be a good prior estimate for the real tra c
matrix x .

Zhang, Roughan, Lund and Donoho [ZRLDO05] further proposed an extension of the
gravity model, in which the ingress and egress links are separated in two classes: the class
C of links servingustomersand the clas$ of those linked tqeers If we know for each
ingress/egress link to which class it belongs, Zhang and his coauthors proposed a model
in which the source and the destination of a packet are indepencemdjtionally to the
class of the source and the class of the destinatidgsing the fact that there is no trac

transiting the network from one peer to another, they obtained the generalized gravity prior
x GG

if o2P; d2P;
% x!n (O)Xo“t(d)%(c) if o2P;d2(C;
= _ in (O)XOut(d) 2 if 02C: d2P: (8.2)

Xln (C)

od
In Out
.g X" (0)x°Ut (d) e O e " 0 if 02C;d2C:

c2cx!N (¢)  c2cxOut (¢)

In a dynamic context, if we assume that the time intervals are short enough so that no
big change occurs between two successive time steps, a natural pKerigagiven by the
estimation of the trac at timet 1. This prior can then be projected (in the sense of
entropy) on the feasible subspagg™ = Ax., see Chapter 9. The resulting estimate
is usually referred as thtemogravity estimate of the tra ¢ matrix. We summarize this
scheme of estimation of the tra ¢ matrix in Algorithm 8.2.1, in which a parametds
used to make a convex combination of the gravity prior and the previous estimate.

Algorithm 8.2.1 Dynamic estimation of the tra ¢ matrix via entropic projections
Input: parameter 2 [0;1]
fort=1;:::;T do
Build the gravity estimatex® (or generalized gravitx ©©), with the SNMP data of timet;

if t=1 then

Xprior XG (OI’ XGG);
else

x Prier Re 1+ xS (or Ry 1+ (1 )xCC);
end if

Compute the estimation of the tra c®¢ by projectingx P onto the space
fx: ye™ = Axg (in the sense of entropy, see Chapter 9 for algorithms).
end for
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8.2.3 The Bayesian approach

In the Bayesian approach, a simple parametric model for the ows is assumed, and we
search the parameters which maximize the likelihood of the observations. Two class of
models have been proposed: the Poisson model of Vardi [Var96], and the Gaussian model
with a mean-variance relation of Cao et. al. [CDVY00]. Since both methods are similar,
and Poisson distribution are approximated by Gaussian distribution in [Var96], we will only
review the latter one.

Cao and his coauthors proposed a moving iid model on a sliding window ohwidth

and identically distributed (iid) with a normal distributidh( ;  Diag( ¢)¢), where the
exponentc is supposed to be known (the authors of [CDVYO0OQ] claim that a typical value

distributionN (A ;A AT), where ; := ;Diag( )¢ and the log-likelihood of these
measurements is:

W+l gdeta (AT

T odiy =

(y A )T(A (AT) Yy A ).
h

2
1 XN
2 _,
The maximization of the latter expression with respect toand ; has no analytic
solution and is a complicated problem. Instead, Cao et. al. [CDVY00] suggested to use the
Expectation-Maximization (EM) algorithm [DLR77], for which convergence results toward a
local maximum are known [Wu83]. The principle of this algorithm is to iteratively conduce
an Expectation (E) step, in which the expectation of the log-likelihodd;; )jx is
parameterg Ek); §k)):

h i
Q (¢ 0i(® ¥y =5~ (¢ Oixiy; ¥ W

Then, a Maximization (M) step is applied in order to update the value of the current

parameter:
(k+1) . (k+1)
(¢ ¢ )

argmaxQ (i {5 {) :

In fact, Cao et. al. showed that the E-step is analytic. The log-likelihood with respect to
takes indeed the form

& h
E =

2h+1

(o X = > log det( )

=

(X o) tl(x t);
t h

and for all 2ft h;:::;t+ hg; the conditional distribution ok with respect to the
observationy and the current estimate of the parametdrs®; ) is Gaussian, with
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mean and variance

k I KATra (KAT pn (K

g) E) ( g) )1(y g));
k k K) AT K)YAT k).

Rt( ) = E) E)A (A §)A ) A g).

m

Hence, we can give the functighin close form:

) 2h+1
Q(w (¥ ) = log det( )
1 %h h . !
S (D S R A
=t h
2h+1
= > log det( ¢)
1 %
- trace | ‘E[x x Tjy_; 0; ®
2:th tF[ Jy{ZtTt;
R4 m (K (0
1 Xh
b 2 T 1Ex jy : ®. (0yp T2
2 . . ttF[Jy{Zt t;ttt
m(®
2h+1
= = logdet( ) +trace RN
1 %
> (mgk) t)T tl(mgk) t)

=t h

The M-step is equivalent to solving a systenmof 1 non-linear equations, which can be
done numerically thanks to the Newton-Raphson algorithm. However, the convergence of
the EM algorithm is slow in practice, so Cao et. al. use the EM iterations until the increase

of the likelihood function ( §k); §k))jy becomes small, and apply a second order method

to achieve convergence [CDVYO00]. This method is very heavy though, since a complicated
maximization must be carried out on each time window.

8.2.4 The method of routing changes

Consider the problem of estimating the mea# of the sequence of tra c matrices
X1;::0:X1. We rst assume that the routing matrix i& during the whole period of

least square estimate

2 3 2 3
argmin ky:  Axk?=argmin § : é § : 2x ;
A

t=1
YT
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Intuitively, when the number of observatiohdecomes large, this problem should provide
more and more accurate estimations of the megrof the time series of tra ¢ matrices.

and the problem has an in nity of solutions, which coincide with the solutions of
ATAX — AT t=1 Yt .
—

Hence, the problem of estimating the meaqis as ill-posedas the problem of estimating

If however the routing matrix is di erent during each observation period, it is likely that
the matrix 2 3

becomes of full column rank (i.eank A = m). In fact, Soule et. al. [SNQ)7] have
demonstrated that if the topology of the networkhglirectional biconnectedhen there

rank and each routing matriRk; corresponds to the shortest paths for a set of weights
on the links of the network. Soule and his coauthors therefore assumed that the network
provider could change the link weiglis purposgeso that the aggregated routing matrix

A on the global observation period becomes of full rank, and the least square estimation
of Xo becomes possible. They further propose a scheme for estimating the v&iahce
y=[yi";:::;y:"]" from the sample covariance of the link counts, and suggest to use the
Gauss Markov estimatdr of x (cf. Section 2.2.3):

Xy =(ATS A) 1ATS ly:

In fact, the number of routing changes required toAebe of full rank can be very high.
Instead, based on the observation that a small number of ows supports most of the tra c
(elephant and miceehaviour, 30% of the ows carry 95% of the tra c), and thatephant
ows have the largest variance, Soule et. al. [SRQ have proposed to simply ignore the
ows corresponding to the small diagonal terms in the estimated covariance r8afioi
setting them to0). The number of ows to be estimated is now approximatelymsf3,
and the aggregated routing matri is restricted to the corresponding columns, which can
dramatically lower the number of required routing changes.

The same method can be used to estimate a smooth approximation of the tra c: Based
on the fact that the tra c is cyclo-stationary with a period of 24 hours, a natural model
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for the tra c is:
Xt = Xo(t) + wq

wherex(t) is a deterministic, smooth periodic function (of period 24 hours),vent a
centered, stationary random noise process. The authors of [SNGhow that the same
approach as before can be used to estimate the rst Fourier coe cientsy(tf). To this
end, let us approximatey(t) by the Fourier expansion

Xo(t) = oft) o+ it 2(t) 2k

where the ; are the basis cos and sine functions

o(t) =1

t

i 2 [K]; t) = 21 —
8i2[k]; i(t)=cos 2i 4

t

k+i(t) =sin  2i 24 ;
where the time is indicatedn hours
The problem is now to estimate the vecto(®k+1) m coe cients =[ o';:::; 2 "

from the observations

A?

wherev; = A;w; IS a zero-mean stationary random process, whose covariance matrix is
A; A/, where can be estimated from the link counts [SNIZ]. So we can use the
Gauss-Markov estimator

:(AOI' OlA() 1A0|' 017.

where
A AT

A=§: ¢ a o= § §:

A9 Ar AT

8.2.5 Spline-based maximume-likelihood estimation

In the previous approach, the number of unknowns Y was reduced by considering a
temporal basis for the OD ows, which let the vector of parameters of the moddbe
identi able. Instead, Casas, Vaton, Fillatre and Chonavel have propose a model [CVFCO09]
in which a spatial basis is assumed: they empirically noticed that when the number of OD
ows is large, the sorted components of the vectpiform a smooth, nondecreasing curve,
and that the order of a ow (with respect to the sorted vector of ow volumes) remains
stable during long period of times.



8.3. ESTIMATION BASED ON A FEW DIRECT MEASUREMENTS 153

Casas et. al. [CVFC09] thus proposed to use a Isdsis: ;sg of cubic spline functions
(discretized as vectors witlhh coordinates) to approximate the smooth curve of the sorted
ows, the number of splineg being several order of magnitudes smaller than This
basis is then rearranged with respect to the order of the ow volumes within a tomogravity

estimatex ® of the tra c matrix: the new basisS = [s;;:::;sq] is such that ifi is the
index of thek™™ largest component of ¢, then thei" coordinates 0§;;::: ;Sq are set to
the k™ coordinate of?;::: ,So, respectively.

Now, since the order of the ows is stable over time, a natural model is
Xt =S (+ Wy

wherew, is a white Gaussian noise of covariancand . is a vector ofj coe cients which
indicates the importance of each spline basis function at tim@asas and his coauthors
suggest to estimate by using the SNMP data over a short training period and evaluating
the sample variances of the tomogravity estimates. The measurement equations can thus
be modelled as:

Yt = AXy = AS + vy,

wherev; N (0;A AT). Sinceqis small (typically between 5 and 10), the matii$ is
very likely to have the full column rank property, and the Gauss-Markov estimatgrisf

A= STAT(A AT) 'AS "AS(A AT) ly:

from which we deduce the spline-based estim&ter S”;. Casas et. al. call this estimator

the Spline-based Maximum Likelihood (SML) estimatox gf because under the Gaus-
sian assumption, the Gauss-Markov estimator above coincides with the maximume-likelihood
estimator.

8.3 Estimation based on a few direct measurements

The approaches presented in the previous section (which rely only on the link counts)
typically yield an average error of estimation in the order of 20%. Moreover, the error is
often huge on certain OD pairs. To overcome this problem, Feldmann et. al. (QEGhave
proposed a method relying on the network-monitoring tool Net ow which allows to perform
direct measurements on the OD ows.

8.3.1 Netow

Net ow is a network-monitoring tool developed by Cisco [CISb], which collects infor-
mation for each packet it analyzes. In practice, Net ow aggregates the data to the level
of a ow, where a ow is de ned as a sequence of packets sharing the same source and
destination IP address, source and destination port number, IP protocol, interface index
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