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viii RÉSUMÉ

Résumé

Les fournisseurs d'accès Internet souhaitent avoir une bonne connaissance du tra�c traversant
leur réseau, pour de nombreuses opérations contribuant à la bonne gestion du tra�c et à la
maintenance du réseau. Une partie essentielle de l'information dont ils ont besoin pour ces tâches
est la matrice de tra�c, qui indique les volumes de tra�c pour chaque paire origine-destination
du réseau pendant un laps de temps donné, c'est à dire le nombre d'octets ayant transité depuis
chaque n÷ud d'entrée vers chaque n÷ud de sortie pendant la période considérée. L'importance des
opérations d'ingénierie du tra�c s'appuyant sur la donnée de cette matrice ne cesse d'augmenter,
puisque le tra�c à traiter augmente et se diversi�e, devenant plus complexe d'année en année.
Mais en pratique, il est très di�cile d'obtenir des estimations précises des demandes de tra�c
en origine-destination. Contrairement à ce que l'intuition peut laisser croire, les mesures sur les
réseaux sont : (i) souvent indisponibles au niveau de certains routeurs non instrumentés ; (ii)
coûteuses ; (iii) susceptibles d'a�ecter la qualité de service. Les décision concernant l'emplacement
des mesures à prendre, ainsi que leur taux d'échantillonage constituent donc un enjeu crucial.

Nous abordons le problème de l'optimisation des mesures dans les réseaux par une approche
fondée sur lathéorie des plans d'expériences optimaux. Cette théorie étudie comment allouer l'ef-
fort expérimental à un ensemble d'expériences disponibles, quand le but est de maximiser la qualité
de l'estimation d'unparamètre inconnu. Si l'on considère chaque localisation possible du logiciel
de mesure comme uneexpérience, et la matrice de tra�c comme leparamètre inconnu, on obtient
une formulation de typeplans d'expériencesde notre problème de télécommunications. Cepen-
dant, les algorithmes classiques en conception optimale d'expériences se révèlent ine�caces sur les
grands réseaux. Par ailleurs, la di�culté est augmentée par le fait que chaque mesure peut four-
nir plusieurs observations simultanées des demandes de tra�c (conception optimaled'expériences
multiréponses).

Dans la première partie de cette thèse, nous développons une approche fondée sur l'Optimisation
Conique du Second Ordre(SOCP), pour résoudre des problèmes de grande taille en conception
optimale d'expériences multiréponses. Un avantageclé de notre approche est que lesolver PCSO
ne gère que des matrices creuses et de tailles modérées, tandis que les algorithmes classiques
ont besoin de gérer de grandes matrices pleines pour résoudre les même instances. De plus, l'ap-
proche par PCSO permet une grande �exibilité dans la dé�nition des contraintes sur les plans
d'expériences. Le c÷ur de notre méthode est un théorème de réduction du rang en optimisation
semi-dé�nie, qui permet une description géométrique simple des plans d'expériences optimaux.
Certains aspects combinatoires �qui apparaissent typiquement lorsque l'opérateur souhaite choisir
un sous-ensemble de routeurs à instrumenter pour qu'ils puissent prendre des mesures� sont égale-
ment étudiés. Grâce à des inégalités matricielles et à des techniques d'optimisation sous-modulaire,
nous formulons des bornes sur la performance de l'algorithme glouton et de techniques d'arrondis.

L'application à l'inférence des matrices de tra�c dans les réseaux de télécommunication fait
l'objet de la seconde partie de ce manuscrit. Lorsque l'on dispose uniquement de mesures partielles
sur le réseau, l'état de l'art est une méthode �ditetomogravitaire� qui comble les données man-
quantes en résolvant des problèmes de minimisation d'entropie. La qualité de l'estimation obtenue
dépend toutefois grandement de la localisation et des taux d'échantillonage des mesures dispo-
nibles. Les expériences numériques présentées en première partie montrent que notre approche
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par PCSO est la plus e�cace pour le problème de conceptionc� optimale, i.e. lorsque l'expéri-
mentateur cherche à estimer une combinaison linéaire seulement des paramètres inconnus (dans
notre cas, les demandes de tra�c) ; nous développons donc une méthode �baptiséeplans successifs
d'expériencesc� optimales� dans laquelle on considère plusieurs combinaisons linéaires (tirées de
façon aléatoire) des demandes de tra�c. Notre approche est comparée aux précédentes, et évaluée
sous de nombreux points de vue, par l'intermédiaire de simulations avec des données réelles. En
particulier, nous traitons des instances pour lesquelles les approches précédentes étaient incapable
de fournir une solution. Finalement, nous proposons de nouvelles directions pour les techniques
d'estimation de la matrice de tra�c dans un chapitre d'ouverture. Nous mettons en évidence la
structure de petit rang des matrices de tra�c, grâce à la théorie des matrices aléatoires et à des dé-
compositions de tenseurs. En�n, nous présentons l'esquisse préliminaire d'une approche tensorielle
qui semble améliorer la méthodetomogravitaire.
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Summary

Internet Service Providers (ISP) wish to have a good knowledge about the tra�c which transit
through their networks, for many tra�c engineering and network planning tasks. An essential part
of the required information is thetra�c matrix , which contains the volumes of tra�c for each
origin-destination pair of the network during a given period of time, i.e. the number of bytes that
has travelled from any entry node to any exit node. The importance of the networking operations
relying on the tra�c matrix is increasing as the tra�c grows in volume and becomes more complex,
but in practice, obtaining accurate estimations of the demands of tra�c is a challenging issue.
Contrarily to what intuition may suggest, network measurements are: (i) often not available
everywhere; (ii) expensive; (iii) likely to a�ect the quality of service. It is thus a crucial issue to
decide where network measurements should be performed, as well as their sampling rates.

We approach the problem of optimizing the network measurements by using thetheory of
optimal experimental designs. This theory studies indeed how to allocate the experimental e�ort
to a set of available experiments, in order to maximize the quality of estimation of anunknown
parameter. Thinking of each potential location of the measuring software as anexperiment, and
the tra�c matrix as the unknown parameter, one obtains a niceoptimal experimental design
formulation of our telecommunications problem. However, the classic optimal experimental design
algorithms are intractable on large scale networks, because very large matrices are involved. In
addition, the di�culty is increased by the fact that each measurement yields several simultaneous
observations of the unknown volumes of tra�c (optimal design ofmultiresponse experiments).

In the �rst part of this thesis, we develop an approach relying onSecond Order Cone Pro-
gramming (SOCP) to solve large-scale, multiresponse optimal experimental design problems. An
important advantage of our approach is that the SOCP solver handles sparse matrices of moderate
size, while classic algorithms need store large full matrices to solve the same instances. Moreover,
SOCP solvers allow one to de�ne constraints on the experimental design with lots of �exibility. At
the heart of our method is a rank reduction theorem in semide�nite programming, which allows a
simple geometrical characterization of the optimal designs. Some combinatorial problems �which
typically arise when an ISP wants to choose a subset of routers to upgrade, so that they will
support a measuring software� are also studied. Thanks to matrix inequalities and submodular op-
timization techniques, we specify some lower bounds for the performance of greedy and rounding
algorithms.

The application to the inference of the tra�c matrix in telecommunication networks is the
object of the second part of this manuscript. When partial measurements are available, the state of
the art is the so-calledtomogravity method, in which the lack of information is handled by solving
entropy minimization problems. The quality of the obtained estimation nevertheless depends
grandly of the localization and sampling rates of the available measurements. The numerical
experiments presented in the �rst part show that our SOCP approach is most e�cient for the
c� optimal design problem, i.e. when the experimenter wants to estimate only a linear combination
of the unknown parameters (in our case, the tra�c demands); we therefore develop a method �
calledsuccessivec� optimal designs� in which several randomly drawn linear combinations of the
tra�c demands are considered. This approach is compared to previous ones, and is fully evaluated
by mean of simulations relying on real data. In particular, we handle some instances that were
previously intractable. Finally, new directions for the techniques of estimation of the tra�c matrix
are considered in a perspectives chapter. By mean of the theory of random matrices and tensor
decompositions, we evidence the low-rank structure of tra�c matrices. The preliminary sketch of
a tensorial approach, which seems to improve on the classictomogravity method, is presented.
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Chapitre 1

Introduction (en Français)

1.1 Plans d'expériences optimaux et Mesures dans les réseaux

Les fournisseurs d'accès Internet souhaitent avoir une bonne connaissance du tra�c tra-
versant leur réseau, pour de nombreuses opérations contribuant à la bonne gestion du tra�c
et à la maintenance du réseau. Une partie essentielle de l'information dont ils ont besoin
pour ces opérations est lamatrice de tra�c, qui indique les volumes de tra�c pour chaque
paire origine-destination du réseau pendant un laps de temps donné, c'est à dire le nombre
d'octets ayant transité depuis chaque n÷ud d'entrée vers chaque n÷ud de sortie pendant la
période considérée. L'importance des opérations d'ingénierie du tra�c reposant sur la donnée
de cettematrice de tra�c ne cesse d'augmenter, puisque le tra�c à traiter augmente et se
diversi�e, devenant plus complexe d'année en année. Mais en pratique, il est très di�cile
d'obtenir des estimations précises des demandes de tra�c en origine-destination. Contraire-
ment à ce que l'intuition peut laisser croire, les mesures sur les réseaux sont : (i) souvent
indisponibles au niveau de certains routeurs non instrumentés ; (ii) coûteuses ; (iii) suscep-
tibles d'a�ecter la qualité de service. Les décisions concernant l'emplacement des mesures
à prendre, ainsi que leur taux d'échantillonage constituent donc un enjeu crucial.

Nous abordons le problème de l'optimisation des mesures dans les réseaux par une ap-
proche fondée sur la théorie desplans d'expériences optimaux1. Cette théorie étudie com-
ment allouer l'e�ort expérimental à un ensemble d'expériences disponibles, dans le but de
maximiser la qualité de l'estimation d'unparamètre inconnu. Si l'on considère chaque loca-
lisation possible du logiciel de mesure comme uneexpérience, et la matrice de tra�c comme
le paramètre inconnu, on obtient une formulation de typeplans d'expériencesde notre
problème de télécommunications. Cependant, les algorithmes classiques pour la conception
optimale d'expériences se révèlent ine�caces sur les grands réseaux, principalement parce
que de très grandes matrices entrent en jeu.

Cette observation a été notre motivation principale pour rechercher des algorithmes
qui passent à l'échelle en conception d'expériences optimales. Nous avons développé une

1. ou conception d'expériences optimales

1



2 CHAPITRE 1. INTRODUCTION

approche reposant sur laOptimisation Conique du Second Ordre(SOCP), une classe de
problèmes d'optimisation généralisant la Programmation Linéaire (LP), et qui peuvent être
résolus par des méthodes de points intérieurs en un temps bien plus court que les Problèmes
d'optimisation Semi-Dé�nie (SDP) de la même taille. Cette approche se révèle particuliè-
rement e�cace pour les problèmes où l'on cherche à estimer un petit nombre de fonctions
linéaires des paramètres inconnus.

En fait, notre approche ne s'applique pas directement au le problème de télécommunica-
tions initial. Cela vient du fait que l'opérateur cherche généralement a estimer l'intégralité
de la matrice de tra�c (tandis que notre approche par SOCP est la mieux adaptée pour
l'estimation d'une combinaison linéaire des volumes de tra�c). Pour résoudre ce problème,
nous avons introduit une méthode pour l'estimation de tous les paramètres du modèle, qui
repose repose sur le calcul de plusieurs plansc� optimaux.

Un autre problème est lié aux aspects combinatoires de l'application industrielle : si un
opérateur souhaite instrumenter un certain nombre de n÷uds du réseau a�n qu'ils supportent
un logiciel de mesure, la formulation naturelle pour choisir quel n÷ud du réseau équiper en
priorité est unplan d'expériences optimal en nombre entiers. Ce problème est principalement
traité par des approches heuristiques dans la littérature. Ceci a motivé notre travail sur la
sous-modularité des critères d'information pour les plans optimaux, et a conduit à des
résultats d'approximabilité en temps polynomial de certains problèmes NP-di�ciles.

1.2 Organisation et contributions de ce manuscrit

Cette thèse est organisée en deux parties. La première partie est consacrée à des résultats
théoriques et algorithmiques en conception optimale d'expériences, qui reposent sur des
outils de programmation mathématique et d'optimisation sous-modulaire. Ces résultats ont
émergé d'un problème industriel concernant les réseaux de télécommunication, dont l'étude
fera l'objet de la seconde partie de ce manuscrit. Nous détaillons ci-dessous le contenu de
cette thèse, chapitre par chapitre. Nous dresserons ensuite une liste des contributions de ce
manuscrit.

1.2.1 Résumé détaillé

Première Partie : Plans d'expériences optimaux

Dans la première partie, nous présentons des résultats théoriques pour le calcul de plans
d'expériences optimaux. Nous nous focaliserons sur les modèles de régression linéaire où le
nombre d'expériences disponibles est �ni, et nous mettrons l'accent sur le cadremultiré-
ponses. Ce dernier correspond à la situation dans laquelle une seule et même expérience
peut fournir plusieurs observations simultanées du paramètre inconnu. Les deux premiers
chapitres de cette partie reprennent essentiellement l'état de l'art sur la théorie des plans
d'expériences optimaux. Les chapitres suivants (4�7) contiennent de nouveaux résultats.
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Chapitre 2 : Une introduction à la théorie des plans d'expériences optimaux La théorie
desplans d'expériences optimauxest une branche importante des statistiques, à l'interface
avec l'optimisation, qui a de nombreux champs d'applications. Son but est de trouver les
valeurs qu'un expérimentateur doit donner auxvariables de contrôledes expériences à sa
disposition,avant de les réaliser. Ces variables de contrôle peuvent prendre di�érentes formes
(nombre de fois qu'on va réaliser une expérience, taux d'échantillonage d'un appareil de
mesure, temps pendant lequel on enregistre des résultats, etc.), et a�ectent les données
mesurées. L'estimation que l'expérimentateur fait des quantités qu'il souhaite mesurer va
donc dépendre de ces variables.

Dans ce chapitre, nous passons en revue un certain nombre de résultats classiques en
conception optimale d'expériences. Nous nous focalisons sur les modèles de régression li-
néaires, où l'espérance de chaque quantité mesurée est une combinaison linéaire des para-
mètres inconnus. Nous nous plaçons en outre dans le cadre où une seule et même expérience
peut fournir plusieurs mesures simultanées : ce cadremultiréponsesintervient naturellement
dans l'étude du problème de télécommunications traité en Partie II. Nous nous concen-
trons sur la théorie desplans approchés, où la variable de conception est un vecteurw
de somme1, qui indique le pourcentage d'e�ort expérimental alloué à chaque expérience.
Dans le cas où l'ensemble des expériences disponiblesX (l'espace de régression) est in�ni,
l'expérimentateur doit également choisir le sous-ensemble des expériencesx 1; : : : ; x s 2 X
à réaliser.

Ce chapitre débute par une rétrospection historique de la théorie des plans d'expériences
optimaux, avec une présentation succincte des contributions d'Elfving, Kiefer, Fedorov et
Pukelsheim (entre autres). Nous introduirons ensuite la notation standard, et nous mon-
trerons que le théorème de Gauss-Markov donne une borne inférieure pour la matrice de
covariance de tout estimateur linéaire sans biais du vecteur des paramètres inconnus. De
plus, cette borne est atteinte par l'estimateur des moindres carrés. Ceci conduit à la dé�-
nition de lamatrice d'informationd'un plan d'expériences (l'inverse de la meilleure matrice
de covariance possible), et à la formulation standard des problèmes de conception optimale
d'expériences (maximisation d'une fonction scalaire de la matrice d'information). Nous pas-
serons ensuite en revue les critères d'information les plus utilisés dans la littérature, et qui
permettent de dé�nir les concepts dec; A; E; D; T; � p-optimalité, et deS� optimalité
robuste.

La dernière partie de ce chapitre rappelle quelques résultats fondamentaux en conception
optimale d'expériences :

� Le théorème d'Elfving, qui donne une caractérisation géométrique simple de la
c� optimalité.

� Le théorème de Kiefer-Wolfowitz (1960), qui montre que le problème de conception
D� optimale est équivalent à un problème dual (appeléG� optimal), et donne une
condition nécessaire et su�sante d'optimalité, facile à véri�er en pratique.

� Le théorème d'équivalence général, découvert par Kiefer (1974) et étendu par Pu-
kelsheim (1980), qui généralise le résultat précédent à une large classe de critères
d'information.
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� Plusieurs conséquences du théorème d'équivalence général, comme des bornes pour les
poids en conceptionD� optimale où une formule explicite du planA� optimal quand
les vecteurs de régressions forment une famille libre.

Chapitre 3 : Algorithmes classiques pour le calcul de plans optimaux De nombreux algo-
rithmes ont été proposés pour le calcul de plans d'expériences optimaux. Nous en présentons
certains dans ce chapitre. Nous restreignons notre étude au cas où le nombre d'expériences
est �ni (où lorsque les expériences optimales sont données), de sorte que seul le vecteur
de poidsw entre en jeu dans le problème d'optimisation, ce qui rend le problème convexe.
Ce cadre correspond à celui du problème telecoms étudié dans la seconde partie, puisque le
logiciel de mesures ne peut être activé que sur un ensemble (�ni) de points du réseau.

Le premier algorithme que nous étudions est celui de Fedorov and Wynn pour le calcul de
plansD� optimaux. Cet algorithme s'inspire du théorème de Kiefer-Wolfowitz : le principe
consiste à partir d'un plan d'expériences arbitraire, puis de se déplacer à chaque itération
dans une direction donnée par l'évaluation du critère deG� optimalité. Le théorème de
Kiefer-Wolfowitz garantit qu'il s'agit d'une direction de descente. En fait, cet algorithme
appartient à la classe des méthodes dedescentes faisables. Nous présentons l'extension de
cet algorithme a d'autres critères d'information et quelques résultats de convergence.

Nous présentons ensuite la classe des algorithmes multiplicatifs introduits par Titte-
rington. Dans ces algorithmes, l'ensemble des poids du plan d'expériences est mis à jour
à chaque itération, en les multipliant chacun par un facteur proportionnel au gradient du
critère d'information qu'on maximise. Nous présentons l'algorithme original de Titterington
et certaines de ses variantes, ainsi que des résultats récents concernant la convergence de
ces méthodes, obtenus par Dette, Pepelyshev et Zhigljavsky (2008) et Yu (2010).

En�n, nous passons en revue les formulations basées sur l'optimisation semi-dé�nie
(SDP) pour les problèmes de plans d'expériences optimaux. Les méthodes de points in-
térieurs pour résoudre ces problèmes d'optimisation semi-dé�nie sont en général plus lentes
que les algorithmes multiplicatifs, mais l'approche SDP o�re une grande �exibilité. En par-
ticulier, l'utilisateur peut ajouter � sans e�ort � des contraintes sur les plans d'expériences.
Nous donnerons plusieurs exemples des avantage de l'approche SDP.

Chapitre 4 : Un théorème de réduction du rang en Optimisation Semi-dé�nie Ce chapitre
contient les résultats de [Sag09a], et présente un intérêt indépendemment du reste de ce
manuscrit. Le résultat principal a�rme qu'une classe de problèmes d'optimisation semi-
dé�nie �qui comprend la plupart des SDP étudiés au Chapitre 3� admet des solutions de
petit rang. En fait, l'intuition de ce résultat nous a été donnée par l'extension du théorème
d'Elfving au cadre multiréponses (Chapitre 5). Nous avons néanmoins choisi d'insérer ce
chapitre à cet endroit du manuscrit, car le théorème principal va s'avérer utile dans plusieurs
preuves du Chapitre 5, et mettre en lumière notre approche basée sur l'optimisation conique
du second ordre.
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La classe des problèmes considérés est celle desprogrammes de packing semi-dé�nis,
qui sont les analogues SDP des problèmes depackingclassiques en programmation linéaire.
Notre résultat montre que si la matrice qui dé�nit la fonction objectif du SDP est de rangr ,
alors le programme de packing semi-dé�ni a une solution dont le rang est inférieur àr . Une
conséquence intéressante est le cas dans lequelr = 1, car la variable optimaleX du SDP
peut alors se factoriser sous la formeX = xx T , et nous montrons que trouverx revient
à résoudre un problème d'optimisation conique du second ordre (qui est plus simple que le
SDP initial).

La preuve de notre résultat peut en fait s'étendre à une classe de problèmes plus large,
dans laquelle toutes les contraintes ne sont pas de typepacking. Nous présentons également
cette version étendue de notre résultat.

Chapitre 5 : L'approche par Optimisation Conique du Second Ordre Ce chapitre reprend
les résultats de [Sag09b]. Nous montrons que de nombreux problèmes en conception optimale
d'expériences peuvent être formulés grâce à l'optimisation coniques du second ordre (SOCP).
Contrairement aux approches SDP vues au Chapitre 3, l'approche par SOCP reste e�cace
pour de très grandes instances, et combine ainsi les avantages de �exibilité des SDP avec
la performance des algorithmes multiplicatifs.

Nous commençons par donner une extension du théorème d'Elfving. Ce résultat ca-
ractérise géométriquement les plansc� optimaux dans le cadremultiréponses: les poids
optimaux peuvent être lus à l'intersection d'une droite vectorielle et de la bordure de l'en-
veloppe convexe d'un ensemble d'ellipsoïdes. Nous montrons ensuite que tout problème de
plan A� optimal se ramène à un problème de planc� optimal, pour des matrices d'obser-
vations augmentées. Notre résultat fournit donc une caractérisation géométrique des plans
A� optimaux.

Nous mentionons toutefois qu'un résultat équivalent a été formulé de façon indépendante
par Dette et Holland-Letz en 2009, dans un cadre di�érent. Dette et Holland-Letz ont
considéré un modèle hétéroscedastique (c'est à dire un modèle où la moyenneet la variance
des observations sont des fonctions du paramètre inconnu). Ce modèle peut se ramener à
considérer des matrices d'observations de rangk � 2, de façon similaire au modèle des
expériencesmultiréponses. Nous proposons une preuve et une analyse des conséquences de
ce résultat di�érentes de celles de Dette et Holland-Letz.

Un corollaire de cette extension du théorème d'Elfving est une formulation SOCP du
problème de planc� (ou A� ) optimal pour des expériences multiréponses. Nous donnons
une seconde preuve de cette réduction basée sur le théorème du Chapitre 4 : Le SDP pour
la c� optimalité a une solution de rang1, et se ramène à un SOCP. De façon plus générale,
nous verrons que les problèmes de conceptionA� optimale où le plan d'expériences est sujet
à plusieurs contraintes linéaires admettent une formulation SOCP. Là encore, nous donnons
deux preuves de ce résultat, l'une s'appuyant sur un argument de statistiques et l'autre sur
notre théorème de réduction du rang.
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Nous nous intéressons ensuite à d'autres critères d'optimalité. Nous montrons que le
problème de planT� optimal pour un sous-système des paramètres inconnus se ramène
lui aussi à un SOCP. En�n, nous considérons le critère robuste deS� optimalité introduit
par Läuter ; le problème de plan optimal correspondant se ramène à la minimisation d'une
moyenne géométrique sous des contraintes de type SOCP. En suivant une approche similaire
à celle de Dette (1993), nous obtenons alors une formulation SOCP pour le problème de
conceptionD� optimale. De plus, nous montrons que les conditions d'optimalité de notre
programme géométrique généralisent un théorème de Dette (1993) au cadre multiréponses.

Chapitre 6 : Comparaison numériques des algorithmes Nous évaluons dans ce chapitre
les béné�ces de notre approche par SOCP pour le calcul des plans d'expériences optimaux.
Notre approche se révèle très e�cace pour plusieurs critères d'optimalité, surtout lorsque
le nombrer de fonctions linéaires des paramètres que l'on cherche à estimer est petit (en
particulier pour le problème de planc� optimal).

Nous comparons notre approche avec les algorithmes classiques présentés au Chapitre 3,
à savoir les algorithmes d'échange de type Wynn�Fedorov, les algorithmes multiplicatifsà
la Titterington, et l'approche par optimisation semi-dé�nie.

Plusieurs types d'instances sont considérées. Dans un premier temps, nous étudions
des instances aléatoires, dans le but d'évaluer dans quelle mesure les di�érents paramètres
(nombre d'expériences, nombre d'inconnues, critère maximisé, nombre de fonctions linéaires
que l'on cherche à estimer,...) a�ectent le temps de calcul. Nous nous intéressons ensuite à
des problèmes de régressions polynomiales, qui ont été très étudiés dans la littérature sur les
plans d'expériences. Nous présentons en�n quelques résultats numériques sur des instances
provenant de l'application aux réseaux qui fait l'objet de la seconde partie de ce manuscrit.

Chapitre 7 : Problèmes combinatoires en conception optimale d'expériences Ce cha-
pitre présente les résultats de [Sag10]. Certains résultats avaient également été annoncés
dans [BGS08]. Nous nous intéressons aux aspects combinatoires dans les problèmes de plans
d'expériences optimaux. Dans de nombreuses applications, les variables contrôlant les plans
d'expériences sont discrètes, voire binaires. Ce chapitre fournit des résultat d'approximabi-
lité en temps polynomial pour le problème de conception optimale d'expériences en nombres
entiers, qui est NP-di�cile.

En particulier, nous établissons une inégalité matricielle qui montre que la fonction ob-
jectif du problème d'optimisation considéré estsous-modulaire. Nous en déduisons que l'ap-
proche gloutonne �qui a souvent été utilisée pour ce problème� fournit toujours un plan
d'expériences qui approche l'optimum par un facteur d'au moins1 � 1=e� 62%. Notre ré-
sultat d'approximabilité peut également s'étendre au cas où les expériences n'ont pas toutes
le même coût.

Nous étudions ensuite les algorithmes consistant à arrondir la solution du problème re-
lâché continu, une approche qui a été appliquée par de nombreux auteurs. Lorsque l'on
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souhaite choisir un sous-ensemble den parmi s expériences, nous montrons que le plan
D� optimal peut être arrondi aléatoirement, de façon à obtenir un plan d'expérienceentier,
pour lequel la dimension du sous-espace observable approche l'optimum par un facteurn

s
avec une grande probabilité. Si ce résultat peut sembler plus faible que le résultat d'ap-
proximation gloutonne précédent, nous montrons néanmoins que le facteurn

s est (presque)
optimal, car il y a des instances pour lesquelles le ratio d'approximabilité moyen est den

s� 1

Seconde Partie : Contrôle optimal des grands réseaux

Dans la seconde partie de ce manuscrit (page 145), nous étudions une application de
la théorie des plans d'expériences optimaux pour le contrôle optimal des grands réseaux
backbone. Les fournisseurs d'accès à Internet souhaitent surveiller le tra�c sur leur réseau
pour plusieurs raisons. Dans cette thèse, nous nous concentrons sur l'une d'entre elles
uniquement : le problème de l'estimation la plus précise possible de la matrice de tra�c.
Cette matrice donne le volume de tra�c pour chaque paire Origine-Destination du réseau,
et est nécessaire pour de nombreuses opérations contribuant à la bonne gestion du tra�c et
à la maintenance du réseau. Nous pensons que notre approche (optimisation des mesures
pour l'estimation de la matrice de tra�c) est bien fondée car elle indique comment choisir
les mesures a�n de capturer le plus d'information possible sur le tra�c dans le réseau.

Les deux premiers chapitres de la seconde partie présentent l'état de l'art sur l'esti-
mation des matrices de tra�c dans les réseaux IP (Chapitre 8), avec un accent particulier
sur les approches basées sur la théorie de l'information et les projections entropiques, ainsi
que leur rapport historique avec les problème dematrix balancing(Chapitre 9). Le cha-
pitre 10 contient les principaux résultats de cette partie, et des perspectives sont présentés
au Chapitre 11.

Chapitre 8 : Estimation des matrices de tra�c : État de l'art L'estimation des matrices de
tra�c dans les réseaux a fait l'objet de recherches intensives pendant la dernière décennie, de
la part des opérateurs Internet et de la communauté académique travaillant sur les réseaux.
Dans ce chapitre, nous passons en revue les di�érentes méthodes qui ont été proposées pour
faire cette estimation. On peut principalement les séparer en deux catégories : les méthodes
qui n'utilisent que les mesures sur les liens, et celles qui se fondent sur des mesures directes
des volumes de tra�c en origine-destination enregistrées par un logiciel de contrôle.

L'inférence de la matrice de tra�c à partir des mesures sur les liens est un problème
classique, très pur d'un point de vue mathématique : étant donné un réseau avec son
ensemble de liens, et un ensemble de paires origine-destination (OD) qui empruntent ces
liens (le chemin utilisé pour chaque OD est supposé connu), le problème est de trouver
comment se répartit le volume total de tra�c parmi les paires OD, cette répartition devant
être cohérente avec les volumes observés sur chaque lien. Ce problème est typiquement
sous-déterminé, puisque sur un réseau avecn n÷uds, le nombre de liens est de l'ordre den
tandis que le nombre d'inconnues (les volumes de tra�c sur chaque OD) est d'ordren2.
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Pour résoudre ce problème, des méthodes Bayesiennes ou basées sur la théorie de l'in-
formation ont été proposées. Dans l'approche Bayesienne, on suppose que la matrice de
tra�c suit une un loi paramétrique, et on maximise la vraisemblance des mesures sur les
liens pour choisir la valeur des paramètres. Cette maximisation peut se faire, par exemple,
avec l'algorithme Espérance-Maximisation. L'approche basée sur la théorie de l'information
se ramène à résoudre des problèmes de maximisation d'entropie, qui seront étudiés en détail
au Chapitre 9.

Les méthodes les plus évoluées se basent sur des mesures directes des volumes de tra�c
en OD, enregistrées par un logiciel comme Net�ow de Cisco Systems. Pour des raisons que
nous détaillerons dans ce chapitre, l'utilisation intensive de Net�ow n'est cependant pas
souhaitable. Là encore, on peut séparer les méthodes d'estimation de la matrice de tra�c en
deux catégories : il a été proposé d'une part d'utiliser Net�ow de façon intensive pendant
une certaine période seulement, pour construire un modèle précis des demandes de tra�c. Ce
modèle est ensuite utilisé pour estimer la matrice de tra�c à des temps ultérieurs où Net�ow
est désactivé. Le modèle doit être recalibré au bout d'un certain temps, car le tra�c n'est
pas stationnaire. Cette classe de méthodes utilisant Net�ow pour la calibration d'un modèle
du tra�c regroupe, entre autres, la technique du �ltre de Kalman, l'analyse en composantes
principales, et la méthode desfanouts. Leur inconvénient commun est la durée des périodes
de recalibration, qui est relativement longue (au moins 24 heures de mesures intensives
sont nécessaires). D'autre part, des méthodes récentes utilisent des mesures partielle de
Net�ow, enregistrées de façon régulières, mais au niveau d'un petit nombre de routeurs
seulement. Nous présentons brièvement l'ensemble de ces méthodes et nous les comparons
sous plusieurs critères.

Chapitre 9 : Théorie de l'information et projections entropiques Dans l'approche basée
sur la théorie de l'information, nous normalisons la matrice de tra�c de sorte qu'elle somme
à 1. La matrice ainsi obtenue peut s'interpréter comme la distribution de probabilité qu'un
paquet choisi au hasard appartienne à telle ou telle paire OD. En suivant le principe de
maximisation d'entropie, la distribution de probabilité qui représente le mieux l'état de notre
connaissance est, parmi l'ensemble des distributions qui véri�ent les équations de mesures
sur les liens, celle avec la plus grande entropie. Cette approche justi�e le modèlegravitaire
de la matrice de tra�c, qui est la matrice de tra�c avec l'entropie maximale lorsque les seules
mesures disponibles sur le réseau sont sur les liens externes (liens d'entrées et de sortie) �
c'est à dire lorsque le comportement interne du réseau est représenté par une boîte noire.

Le modèle gravitaire peut être utilisé comme une bonne estimationa priori de la matrice
de tra�c. Toujours en suivant la théorie de l'information, une approche naturelle consiste
à choisir la distribution des volumes de tra�c qui satisfait les équations de mesures, et est
la plus di�cile à distinguer de l'estimationa priori. Cette approche conduit à formuler des
problèmes deprojections entropiquesoù l'on minimise la divergence de Kullback-Leibler
entre les volumes de tra�c et l'estimation gravitaire, sous les contraintes imposées par les
mesures au niveau des liens.
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Nous présentons ensuite quelques résultats sur ce problème d'optimisation, dont une
partie a été obtenue au cours d'un stage de recherche précédent la présente thèse. Nous
montrons que les points stationnaires sont en correspondance avec les racines d'un système
d'équations polynomiales linéaires en chaque variable. Nous donnons des conditions simples
qui garantissent l'existence et l'unicité de la solution de ce système. En particulier, nous
analysons la similarité entre l'algorithme classique �Iterative proportional �tting� (IPF) �qui
a souvent été utilisé pour le problème d'inférence de la matrice de tra�c� et les algorithmes
classiques dematrix balancing. Nous montrons que la généralisation directe des algorithmes
dematrix balancingaux projections entropiques dans les réseaux ne fonctionne que si toutes
les paires OD sont de longueurs inférieures ou égales à2. Dans l'algorithme IPF, les variables
sont mises à jour une à une, de façon cyclique (au lieu d'être modi�ée simultanément comme
dans les problèmes debalancing). Cette di�érence fait de l'IPF un algorithme de projections
cycliques, et on sait en conséquence qu'il a un taux de convergence linéaire.

Chapitre 10 : Optimisation des mesures Net�ow Ce chapitre présente plus en détails les
résultats de [SBG10, SGB10]. Nous montrons que le problème consistant à trouver les loca-
lisations optimales de Net�ow, ainsi que celui de choisir les meilleurs taux d'échantillonnages,
peuvent se formuler sous la forme de problèmes standards de plans d'expériences optimaux.
Le problème principal est la taille des matrices impliquées dans ce problème, qui sont de
taille n2 � n2 pour un réseau avecn n÷uds. Quandn � 17, les approches semi-dé�nies
deviennent alors ine�caces.

Nous proposons une nouvelle procédure, que nous avons appelée �plansc� optimaux
successifs� (PCOS), dans lequel un plan d'expérience est construit en prenant la moyenne
de plusieurs plansc� optimaux. Cette approche a l'avantage detrès bien passer à l'échelle. Il
est à souligner que des éléments heuristiques laissent penser que lorsque les vecteursc sont
tirés selon une loi Gaussienne, la limite théorique du plan construit par l'approche PCOS est
proche du planA� optimal. Nous montrons des exemples où cette a�rmation est véri�ée
en pratique.

De nombreux réseaux ne sont pas (ou seulement partiellement) instrumentés avec Net-
�ow. Lorsqu'un opérateur décide d'équiper un nombre additionnel de routeurs avec Net�ow,
le problème est de choisir quels routeurs instrumenter en priorité. Nous comparons notre
approche (PCOS) avec l'algorithme glouton pour le problème de déploiement de Net�ow.
Toutes nos expériences sont basées sur des données réelles provenant des réseauxAbilene
et Opentransit(ce dernier est le backbone international de France Telecom).

Nous adaptons ensuite notre approche pour prendre en compte les mesures prises à des
instants antérieurs (dans un contexte dynamique, l'opérateur peut ne pas avoir intérêt à
activer Net�ow avec des hauts taux d'échantillonage sur la même interface pendant des
périodes successives ; si un point du réseau est bien mesuré à l'instantt, il semble intuitif
de concentrer l'e�ort de mesure à un autre endroit du réseau àt + 1). Pour ce faire, nous
utilisons un article récent de Singhal and Michailidis. Ces auteurs ont formulé un problème
de plan optimal dans lequel la matrice d'information comprend un terme supplémentaire
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pour les erreurs des mesures passées qui est mis à jour à chaque pas de temps grâce à un
�ltre de Kalman. En fait, nous montrons par un exemple sur Abilene qu'en raison de la
grande variabilité du tra�c, il est parfois préférable d'ignorer l'e�et des mesures passées.

Finalement, nous évaluons notre approche pour le problème d'échantillonage optimal
avec Net�ow, pour le cas de contraintespar routeur. Étant donné un nombre maximal de
paquets que Net�ow peut analyser au niveau de chaque routeur, le but est de trouver la
répartition optimale des mesures au niveau de chaque routeur, c'est à dire régler au mieux
les taux d'échantillonage sur chaque interface tout en maintenant le nombre de paquets
échantillonnés sous le seuil autorisé. Nous étudions par notre approche PCOS une instance
de ce problème sur le réseau Opentransit, qui comprend 13456 paires OD, 116 routeurs
et 436 interfaces. Nous ne connaissons pas d'autres approches qui pourraient traiter des
instances de cette taille.

Chapitre 11 : Perspetives pour la modélisation spatio-temporelle des matrices de tra�c
Nous présentons dans ce chapitre quelques perspectives pour l'estimation des matrices de
tra�c. Il s'agit d'un travail préliminaire, basé sur la théorie des matrices aléatoires et des
décompositions de petit rang des tenseurs.

Quand on la considère au cours du temps, la matrice de tra�c est en fait un objet
tridimensionnel (origines x destinations x temps), qui a presque toujours été traité comme
un objet à deux dimensions par les auteurs de la communauté réseaux. Pour se ramener
à des matrices, les matrices origine-destination sont vectorisées sous la forme d'un vecteur
colonne à chaque pas de temps. Cependant, cette vectorisation fait perdre une précieuse
information sur les corrélations qui existent entre les origines et les destinations.

Nous avons étudié la distribution empirique des valeurs singulières des matrices de tra�c
OD, à partir des données réelles dont nous disposons sur Abilene et Opentransit. Il est
intéressant de remarquer que mise à part quelques grandes valeurs singulières, la distribution
du bas du spectre correspond très bien à la distribution théorique que devrait avoir le
spectre d'une matrice aléatoire, dite deWishart. Cette remarque laisse penser que chaque
matrice origine-destination peut se décomposer comme la somme d'une matrice de petit
rang (qui supporte la partie déterministe du signal), plus une matrice de bruit aléatoire, dont
la distribution est reliée à la loi de Wishart. Cette étude préliminaire n'est pas encore une
méthode pour �ltrer le bruit et estimer les matrices de tra�c à partir de mesures incomplètes.
En revanche, il nous semble essentiel de modéliser la structure de petit rang des matrices de
tra�c Origine-Destination. C'est chose faite dans la dernière section de ce chapitre, consacrée
à l'étude de décompositions de petit rang du tenseur de tra�c tridimensionnel.

Si les approximations de petit rang de matrices sont des problèmes parfaitement compris
de nos jours (grâce aux troncations de la décomposition en valeur singulières), les approxi-
mations de petit rang des tenseurs font en revanche l'objet de recherches actives. Nous
passons en revue quelques résultats et algorithmes sur les décompositions de tenseurs, et
nous montrons le potentiel de ces méthodes en analysant les décompositions de tenseur
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de tra�c avec des données réelles (Abilene et Opentransit). Finalement, nous présentons
l'esquisse d'une méthode �basée sur les décompositions tensorielles� pour l'estimationen
lignedes matrices de tra�c à partir de mesures incomplètes. Nous montrons par un exemple
sur Opentransit que notre méthode conduit à une amélioration par rapport à la méthode
classiquetomogravitaire.

1.2.2 Contributions de cette thèse

Nous listons ci-dessous les contributions principales de cette thèse :

� Théorème 4.1.2, et son extension Théorème 4.2.2. Tout problème de la classe des
programmes de packing semi-dé�nisoù la matrice dans la fonction objectif est de
rang r a une solution de rang inférieur ou égal àr . Nous discutons les extensions et
conséquences de ce résultat. Ce théorème sera utilisé plusieurs fois au Chapitre 5.

� Théorème 5.1.1 : Extension du théorème d'Elfving au cadre multiréponses ( Nous avons
présenté ce résultat à la conférence [SBG09]. Il a été découvert de façon indépendante
par Dette et Holland-Letz [DHL09]).

� Théorème 5.2.1 : Formulation SOCP du problème de planc� optimal. Nous donnons
une interprétation géométrique de ce résultat.

� Extension du résultat précédent au critère deA� optimalité (Théorème 5.2.2), et
au cas où le plan d'expériences est soumis à plusieurs contraintes linéaires (Théo-
rème 5.2.3).

� Théorème 5.2.5 : Formulation SOCP du problème de planT� optimal pour un sous-
système de paramètresK T � .

� Théorème 5.3.1 : Formulation sous forme d'un programme géométrique du problème
robuste deS� � optimalité. Les conditions d'optimalité de ce problème généralisent un
résultat de Dette [Det93] au cadre multiréponses (Théorème 5.3.2).

� Un corollaire du résultat précédent est un SOCP pour le problème de planD� optimal
(cf. Equation 5.25).

� Tests numériques et comparaisons avec d'autres algorithmes (Chapitre 6), montrant
l'e�cacité de l'approche par SOCP lorsque le nombrer de fonctions linéaires des
paramètres à estimer est petit (en particulier pour les plansc� optimaux oùr = 1).

� Théorème 7.2.1 : Réduction du problème combinatoire deplans d'expériences de rang
maximalà MAXCOVERAGE. En conséquence, si l'on admetP 6= NP , il n'existe pas
d'algorithme polynomial qui approche leplan de rang maximalpar un facteur plus
grand que1 � e� 1.

� Proposition 7.2.4 : Sif 0 est operateur antitone surR�
+ , alors pour tout triplet

(X; Y; Z ) 2 S+
m

trace f (X + Y + Z) + trace f (Z ) � trace f (X + Z) + trace f (Y + Z):

� Corollaire 7.2.6 : Le critère� p de Kiefer (vu comme une fonction ensembliste) est
sous-modulaire croissantpour p 2 [0; 1].
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� Théorème 7.2.7 : En conséquence, l'algorithme glouton retourne toujours une solu-
tion approchant par un facteur d'au moins1 � e� 1 l'optimum du problème de plan
� p� optimal (pourp 2 [0; 1]). Des extensions possibles de ce théorème sont présen-
tées.

� Proposition 7.3.4 (cf. également Théorème 2.4.7) : Généralisation des bornes supé-
rieures pour les poidsD� optimaux au cadre multiréponses (découvert indépendem-
ment par Harman et Trnovská [HT09] pour le cas de l'estimation du vecteur complet
des paramètres� , i.e. quandK = I ).

� Théorème 7.3.7 : Si l'on doit choisirn expériences parmis, nous donnons deux al-
gorithmes d'arrondi randomisé qui retournent une solution approchant l'optimum du
problème deplan de rang maximalpar un facteurn=s (en moyenne).

� Nous montrons des instances pour lesquelles le ratio d'approximation des algorithmes
randomisés précédents estn=(s � 1) (cf. Remarque 7.3.2).

� Proposition 9.5.7 : Pour le problème de projection entropique avec contraintes linéaires
sur un réseau, l'algorithme de point �xe naturel est contractant si et seulement si toutes
les paires OD sont de longueurs inférieures ou égales à 2. (Résultat obtenu pendant
un stage antérieur à cette thèse.)

� Formulation de type plan d'expériences pour le problème du déploiement optimal de
Net�ow, et le problème de l'échantillonnage optimal de Net�ow (cf. Section 10.2).

� Proposition d'une nouvelle méthode (baptiséePlansc� Optimaux Successifs, PCOS)
basée sur le calcul de plusieurs plansc� optimaux pour traiter les problèmes de grande
taille en conception d'expériences (cf. Section 10.4.1). Ebauche d'une justi�cation
heuristique de notre approche (Sections 10.4.2 et 10.4.3).

� Validation de notre approche par des tests utilisant des données réelles (cf. Sec-
tion 10.5).

� Mise en évidence de la structure de petit rang des matrices de tra�c origine-destination.
Proposition d'un modèle signal+ bruit, et analyse préliminaire dubruit par des outils
de la théorie des matrices aléatoires (cf. Section 11.1).

� Mise en évidence de la structure de petit rang destenseurs de tra�ctridimensionels
(origines� destinations� temps). Esquisse d'une méthode reposant sur les tenseurs
pour estimer les matrices de tra�cen ligne(cf. Section 11.2.3).



Introduction (in English)

This chapter brie�y presents our motivation and the scienti�c path which has led to this
thesis. At the end of this chapter, we draw a detailed outline and list the contributions of
this thesis.

1.3 Optimal design of experiments and Network measurements

Internet Service Providers (ISP) wish to have a good knowledge about the tra�c which
transit through their networks, for many tra�c engineering and network planning tasks. An
essential part of the required information is thetra�c matrix , which contains the volumes of
tra�c for each origin-destination pair of the network during a given period of time, i.e. the
number of bytes that has travelled from any entry node to any exit node. The importance
of the networking operations relying on the tra�c matrix is increasing as the tra�c grows in
volume and becomes more complex, but in practice, obtaining accurate estimations of the
demands of tra�c is a challenging issue. Contrarily to what intuition may suggest, network
measurements are: (i) often not available everywhere; (ii) expensive; (iii) likely to a�ect the
quality of service. It is thus a crucial issue to decide where network measurements should
be performed, as well as their sampling rates.

We approach the problem of optimizing the network measurements by using the theory of
optimal experimental designs2. This theory studies indeed how to allocate the experimental
e�ort to a set of available experiments, in order to maximize the quality of estimation of an
unknown parameter. Thinking of each potential location of the measuring software as an
experiment, and the tra�c matrix as theunknown parameter, one obtains a niceoptimal
experimental designformulation of our telecommunications problem. However, the classic
optimal experimental design algorithms are intractable on large scale networks, because very
large matrices are involved.

This observation motivated us to search for scalable algorithms in optimal experimental
design. We developed an approach relying onSecond Order Cone Programming(SOCP), a
class of mathematical optimization problems which generalizes Linear Programs (LP), and
which can be solved by interior-point methods in a much shorter time than Semide�nite

2. or theory of optimal experiments
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Programs (SDP) of the same size. This approach turns out to be very e�cient for problems
in which a small number of linear functions of the unknown parameter must be inferred.

In fact, our approach can not be directly applied to the initial telecommunications prob-
lem. The reason is that the ISP usually wishes to estimate the whole tra�c matrix (while
our SOCP approach is best-suited for the estimation of a linear combination of the volumes
of tra�c). To overcome this problem, we have proposed a new method which rely on the
computation of severalc� optimal designs, and can be e�ciently implemented by solving a
sequence of SOCP.

Another issue arising from the industrial problem is the combinatorial aspect: when
an ISP wishes to upgrade a set of routers of the network, so that they can support the
measuring device, the natural formulation is aninteger optimal design problem. This problem
is mainly handled by heuristic approaches in the literature, which motivated our work on
the submodularity of the experimental design information criteria. This approach led to
polynomial-time approximability bounds for some NP-hard optimization problems.

1.4 Organization and contributions of this manuscript

This thesis is organized in two di�erent parts. The �rst part is devoted to theoretical and
algorithmic results in optimal experimental design, which rely on mathematical programming
and submodular optimization. These results have emerged from an industrial problem in
telecommunication networks, which we study in the second part of this manuscript. We
detail below the content of each chapter. Then, we shall list the contributions of this thesis.

1.4.1 Detailed outline

Part I: Optimal Design of Experiments

In a �rst part, we present theoretical results for the numerical computation of optimal
experimental designs. The focus is on linear regression models, when the number of available
experiments is �nite, with a special interest for the situation in which one single experiment
can produce several observations at the same time (multiresponseframework). The �rst
two chapters of this part essentially recall the necessary background on the theory of optimal
experimental designs. The following chapters (4�7) contain new results.

Chapter 2: An introduction to the theory of Optimal Experiments The theory ofoptimal
experimental designsis an important branch of statistics at the interface with Optimization,
which has a very wide spectrum of applications. It aims at �nding the optimal value that the
experimenter should give to the control variables of the experiments at his disposal,before
to perform them. These control variables (number of times that we perform a measurement,
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sampling rate of a device, time at which the measurement will be recorded, etc.) a�ect the
measured data, and so the inference of the quantities of interest depends on those variables.

In this chapter, we review classic results of the theory of optimal experimental design. We
focus on the linear regression models, in which the expected value of the measurements is
linear with respect to the unknown parameters. In addition, a single experiment is allowed to
produce a multidimensional observation: this is the natural setting for the optimal monitoring
problem which will be studied in Part II. We concentrate our attention toapproximate
designs, that is, the design variable is a continuous vectorw summing to 1 (

P s
i =1 wi =

1), which indicates the allocation of the experimental e�ort to the available experiments.
If in addition the set of potential experimentsX (the regression region) is in�nite, the
experimenter should also �nd the optimal measurement pointsx 1; : : : ; x s 2 X where to
perform the experiments.

This chapter starts with a historical review of the theory of optimal experimental design,
with a brief presentation of the contributions of Elfving, Kiefer, Fedorov and Pukelsheim
(among others). We next introduce the standard notation, and we shall see that the Gauss-
Markov theorem gives alower boundon the covariance matrix for an unbiased estimator of
the parameters, which is attained for the least-square estimator. This yields the de�nition
of the information matrixof a design (as the inverse of this best variance), and the general
formulation of the optimal design problem, i.e. themaximization of a scalar function of
the information matrix. We next review the popular information criteria from the optimal
experimental design literature, which de�ne the concepts ofc; A; E; D; T; � p, and robust
S� optimality.

The last part of this chapter is devoted to a review of some fundamental results in
optimal experimental design:

� The Elfving theorem (1952), which gives a simple geometric characterization of
c� optimality.

� The Kiefer-Wolfowitz theorem (1960), which shows that theD� optimal problem is
equivalent to a dual problem (calledG� optimal) and gives optimality conditions that
one may easily check.

� The general equivalence theorem, discovered by Kiefer (1974) and extended by
Pukelsheim (1980), which generalizes the latter result to a large class of informa-
tion criteria.

� Some consequences of the general equivalence theorem, like bounds on theD� optimal
weights or a close form formula of theA� optimal design on independent regression
vectors.

Chapter 3: Classic algorithms for computing optimal designs Many algorithms have been
proposed to compute optimal experimental designs. We review some of them in this chapter.
We restrict our study to the case in which the number of available experiments is �nite (or
the optimal measurement points are given). Thus, the optimization is carried over the vector
of weightsw only, and the optimization problem becomes convex. This is also the setting



16 CHAPTER 1. INTRODUCTION

of the optimal monitoring problem studied in Part II, where the monitoring devices may be
activated at a �nite number of given locations.

The �rst algorithm that we study is the one of Fedorov and Wynn for the computation of
D� optimal designs, which was inspired by the the Kiefer-Wolfowitz theorem. The idea is to
start from an arbitrary design and to move at each step in a direction which is given by the
evaluation theG� criterion. The Kiefer-Wolfowitz theorem ensures that this is a descent
direction. This algorithm is in fact a feasible descent method. We present the extension of
this algorithm to a wider class of information functions and discuss convergence issues.

We next review the class of multiplicative algorithms, introduced by Titterington. The
principle of this class of algorithms is to update simultaneously all the weights of a design, by
multiplying them by a factor which is proportional to the gradient of the objective function.
We present the original algorithm of Titterington and some of its variants, as well as recent
convergence results from Dette, Pepelyshev and Zhigljavsky (2008) and Yu (2010).

Finally, we review some semide�nite programming (SDP) formulations of optimal exper-
imental design problems. The interior point algorithms for semide�nite programming are
usually slower than the multiplicative update algorithms, but they o�er a lot of �exibility,
and the possibility to add �without e�ort� new constraints in the problem. We give several
examples of the advantages of the SDP approach.

Chapter 4: A Low rank reduction Theorem in Semide�nite Programming This chapter
contains the results of [Sag09a], and is of independent interest. The main result is that a
class of semide�nite programs � which encompass the semide�nite programs of Chapter 3 �
admits solutions of low rank. In fact, we got the intuition of this result from the extension
of Elfving's theorem to the multiresponse framework (Chapter 5). We have chosen to
insert this chapter at this point of the manuscript though, because our theorem will provide
alternative proofs of the results of Chapter 5, shedding more light on our Second order cone
programming approach.

The class of semide�nite programs considered aresemide�nite packing programs, which
are the SDP analogs to the packing problems in linear programming. Our main result states
that if the matrix de�ning the objective function of this SDP has rankr , then the semide�nite
packing program has a solution that is of rank at mostr . An interesting corollary is the case
in whichr = 1, because the optimal SDP variableX can be factorized asxx T , and we show
that �nding x reduces to a Second-Order Cone Program (SOCP), which is computationally
more tractable than the initial SDP.

The proof of this result actually carries over a wider class of programs, in which not all
variables are subject topackingconstraints. We next present this extended version of our
result.

Chapter 5: The Second Order Cone Programming approach This chapter contains the
results of [Sag09b]. We show that several optimal experimental design problems may be
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formulated as second order cone programs. In contrast to the SDP approach of Chapter 3,
the SOCP approach remains tractable and e�cient on very large instances, thus combin-
ing the performance of multiplicative update algorithms and the �exibility of semide�nite
programs.

We start by giving an extension of the Elfving theorem. The result is a geometric char-
acterization of thec� optimal designs for multiresponse experiments: the optimal weights
can be read at the intersection of a straight line and the boundary of the convex hull of
ellipsoids. We next point out that theA� optimal design problem can be formulated as a
c� optimal design problem with augmented observation matrices, such that our result also
yields a geometric characterization ofA� optimality.

It should be mentioned that an equivalent result was established independently by Dette
and Holland-Letz in 2009, but in a di�erent context. Dette and Holland-Letz considered a
heteroscedastic model (i.e. an experimental model where both the mean and the variance
of the observations depend on the parameter of interest), which led them to study the case
in which the observation matrices are of rankk � 2, just as in the model ofmultiresponse
experiments. The proof and the analysis of the consequences of the present result presented
in this chapter are di�erent than those of Dette and Holland-Letz.

A consequence of this extended Elfving theorem is that thec� (andA� ) optimal design
of multiresponse experiments can be formulated as a second order cone program. We give
an alternative proof of this result, relying on the rank reduction theorem of Chapter 4: the
c� optimality SDP presented in Chapter 3 has a rank-one solution and so it reduces to a
SOCP. More generally, we shall see that theA� optimal design problem with multiple linear
constraints can be formulated as a SOCP. Again, we give two proofs of this result, one
relying on a statistical argument and the other one on our rank reduction theorem.

We next investigate other optimality criteria. We shall see that theT� optimal design
problem for the estimation of a parameter subsystem can also be formulated as a SOCP.
Then, we consider the robustS� optimality criterion introduced by Läuter: the correspond-
ing optimal design problem reduces to the maximization of a geometric mean under SOCP
constraints. As a consequence, we obtain a SOCP forD� optimality, by following the
approach of Dette (1993). Moreover, we show that the optimality condition of our geomet-
ric program generalizes a theorem of Dette (1993) which geometrically characterizes the
S� optimality.

Chapter 6: Numerical comparison of the algorithms In this chapter, we evaluate the
bene�ts of our SOCP approach for the computation of optimal experimental designs. We
shall see that for several optimization criteria, the second order cone programs presented
in Chapter 5 are very e�cient when the numberr of linear functions of the parameter to
estimate is small (in particular forc� optimality).

We compare our approach to the algorithms presented in Chapter 3, namely semide�nite
programs, Wynn�Fedorov-type exchange algorithms, and Titterington-type multiplicative
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algorithms.

We consider several kind of instances. At �rst, we study random instances of optimal
design problems, in order to evaluate to which extent each parameter (number of exper-
iments, number of unknowns, number of linear functions to estimate, design criterion,...)
a�ects the computation time. Then, we consider classic polynomial regression models that
have been extensively studied in the experimental design literature. Finally we present some
computational results from the network application which will be developed in the second
part of this thesis.

Chapter 7: Combinatorial problems arising in optimal design of experiments This chapter
contains the results presented in [Sag10]. Some of them were already announced in [BGS08].
We investigate combinatorial aspects of the optimal experimental design problems. In a
number of real-world applications, the variables controlling the experimental design are
discrete, or binary. This chapter provides some polynomial-time approximability results for
the discrete optimal experimental design problem, which is NP-hard.

In particular, we establish a matrix inequality which shows that the objective function is
submodular, from which we deduce that the greedy approach, which has often been used
for this problem, always gives a design within1 � 1=e � 62% of the optimum. Our result
also extends to the budgeted case, in which experiments have di�erent costs.

We next study the design found by rounding the solution of the continuous relaxed
problem, an approach which has been applied by several authors: When the goal is to select
n out of s experiments, we show that theD� optimal design may be rounded to a random
subset ofn experiments for which the dimension of the observable subspace is withinn

s of
the optimum with a high probability. This result may look disappointing in the �rst place,
but we show that then

s � factor is (almost) optimal since there are some instances for which
the average ratio of approximation isns� 1 .

Part II: Optimal monitoring in large Networks

In the second part of this manuscript (page 145), we study an application of the theory
of optimal experimental designs to the monitoring of large backbone networks. Internet
providers want to monitor their networks for several di�erent objectives, but in this thesis
we concentrate on the problem of accurately inferring the tra�c matrix only: this matrix
gives the volume of tra�c for every origin-destination pair of the network, and is needed
for many networking applications. We believe that this approach is well funded, because
it indicates which part of the network captures the most valuable information about the
tra�c.

The �rst two chapters of part II present the background on the tra�c matrix estimation in
IP networks (Chapter 8), with a particular insight into the information theoretic approaches
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relying on entropic projections, and their historic relation with matrix balancing problems
(Chapter 9). Chapter 10 contains the main results of this part, and Chapter 11 presents
some perspectives.

Chapter 8: Inference of the tra�c matrix: a review The estimation of tra�c matrices in
networks has attracted much interest for the last decade, from both Internet providers and
the network research community. In this chapter, we review the di�erent methods that have
been proposed for this task; they can principally be classi�ed in two types: those relying
on the link counts only, and those which take advantage of direct network measurements
provided by a monitoring software.

The inference of the tra�c matrix from link counts is a classic problem, very pure on a
theoretical point of view: given a network with its set of links, and a set of Origin-Destination
(OD) pairs routed on these links (the path for each OD is assumed to be known), the goal
is to �nd the repartition of the total volume of tra�c between the di�erent OD pairs, such
that this allocation is consistent with the volumes observed on the links. This problem is
typically underdetermined, since on a network withn nodes, the number of links is in the
order ofn, while the number of unknown OD �ows is typically of ordern2.

To tackle this issue, Bayesian and information theoretic methods have been proposed. In
the Bayesian approach, a parametric law is assumed for the distribution of the �ow volumes
(i.e. the volumes of tra�c on the OD pairs), and we select the parameters of this law so
as to maximize the likelihood of the observation on the link counts. Typically, this can be
carried out by the Expectation-Maximization algorithm. The information theoretic approach
leads to entropic projections, which will be studied with more details in Chapter 9.

Some more evolved methods allow the use of direct measurements, which can be col-
lected by a network monitoring tool, like Net�ow from Cisco Systems. For technical reasons
which we detail in this chapter, the intensive use of Net�ow on the network is not suited.
Here again, we can separate the estimation methods in two types, depending on the mea-
suring scheme: on the one hand, some methods require an intensive use of Net�ow during a
certain period, in order to build an accurate model of the tra�c. This model is then used for
the inference of the tra�c on subsequent time periods, until the model becomes inaccurate
and needs to be updated. This class of methods, relying on Net�ow for the calibration of a
temporal model of the �ows, includes but is not limited to the Kalman �ltering technique,
the principal component analysis, and the method of fanouts. Their common inconvenient
is that the time period required for the calibration is long (at least 24 hours of measurements
are needed). On the other hand, most recent methods use partial measurements of Net�ow,
which are collected on a regular basis, but at a limited number of locations in the network.
We brie�y present these methods and draw a comparative summary.

Chapter 9: Information theory and entropic projections In the information theoretic ap-
proach, we scale the vector of �ow volumes so that it sums to one; the resulting vector thus
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represents the distribution of probability that a packet travelling on the network belongs to
a particular OD pair. Following the principle of maximum entropy, the probability distribu-
tion which best represents the current state of knowledge is, among all those distributions
satisfying the measurement equations, the one with largest entropy. This gives raise to the
gravity estimate of the tra�c matrix, which is the �ow distribution with maximum entropy
when all we know is the volume of tra�c on the external links (ingress and egress) of the
network � that is, when the internal behaviour of the network is a black box.

This gravity estimate can be used as a good prior for the tra�c matrix. According to
Information theory, a natural approach is to select the distribution of �ows which satis�es
all the measurement equations (internal link counts), and is as hard to discriminate from
the prior as possible (Principle of Minimum Discrimination Information). This leads to
optimization problems, in which the Kullback-Leibler divergence of the �ows (with respect
to the gravity prior) must be minimized, subject to the constraints imposed by the linear
measurements.

We next present some unpublished results on the latter optimization problem that the
author obtained during his master studies. We shall see that the stationarity condition of
this problem is equivalent to �nding the root of a system of polynomials that is linear in
every variable. We give simple conditions which ensure that a solution of this system exists
and is unique. Then, we review the existing algorithms to solve this optimization problem.
In particular, we analyze the similarity of the popular �Iterative proportional �tting�(IPF)
algorithm with classic algorithms for matrix balancing. We shall see that the direct gen-
eralization of the matrix balancing algorithm to the case of entropic projections works if
and only if all the OD pairs considered in the network are of length at most 2. In the IPF
algorithm, the coordinates of the variable are updated one at a time, in a cyclic manner
(instead of being updated simultaneously). This di�erence lets the IPF belong to the class
of cyclic projection algorithms, and thus it has a linear rate of convergence.

Chapter 10: Optimization of Net�ow measurements This chapter presents in greater
details the results of [SBG10, SGB10]. We show that both the problem of selecting the
optimal locations of Net�ow and the problem of selecting the optimal sampling rates can
be formulated as (linear) optimal experimental design problems. The main issue is the size
of the matrices involved in this problem, which are of sizen2 � n2 for a network withn
nodes. In particular, SDP approaches become intractable as soon asn � 17.

We propose a new procedure, called Successivec� optimal designs (SCOD), in which
we take the average of severalc� optimal designs, where the vectorsc are drawn from a
Gaussian distribution. This method can be implemented on very large networks, by solving
a sequence of SOCP. Interestingly, there are some heuristic arguments which let us think
that the theoretical limit of the design returned by the SCOD procedure is closed to the
classicA� optimal design. We show by examples that this fact is veri�ed in practice.

We next compare our SCOD approach to the greedy algorithm for the Net�ow deploy-
ment problem: several networks are not (or only partially) instrumented with routers that
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support Net�ow. If an Internet provider wishes to equip a number of additional routers with
Net�ow, an interesting problem is thus to identify the most meaningful subset of locations
for the monitoring-tool. Our experiments rely on real data from theAbileneandOpentransit
networks (the latter is the international backbone of France Telecom).

Then, we adapt our approach so that it can take into account the past measurements (in
a dynamic context, the Internet provider may not want to apply high sampling rates at the
same location during successive periods of time; if a location is well measured at timet, it
seems intuitive to concentrate the experimental e�ort to some other locations att + 1.) To
do this, we use the ideas of a recent article of Singhal and Michailidis, in which an optimal
experimental problem is stated, with an additional term in the information matrix which
accounts for the errors on the past measurements, and which is computed via a Kalman
�lter. In fact, we shall see by an example on the Abilene network that due to the very high
variability of the tra�c, it is better to ignore the impact of past measurements.

Finally, we evaluate our approach for the problem of selecting the optimal sampling rates
of Net�ow, with per-router constraints. Given a maximal number of packets that may be
sampled at each router location, the goal is to allocate optimal sampling rates to every
incoming interface of each router, while keeping the number of sampled packets under the
threshold. We study an instance on the Opentransit network, which contains 13456 OD
pairs, 116 routers, and 436 interfaces. To the best of our knowledge, there is no other
algorithm which can handle problems of this size.

Chapter 11: Perspectives for a better spatio-temporal modelling of tra�c matrices We
present in this chapter some perspectives for the estimation of tra�c matrices. This is a
preliminary work, based on the theory of random matrices and low-rank tensor decomposi-
tions.

When observed over time, the tra�c matrix is a tridimensional object ( origin x desti-
nation x time), which has almost always been handled as a two-dimensional object by the
authors from the networking community. To this end, the Origin-Destination matrices of
each time period are stacked as a column vector. By performing this vectorization though,
important information on the spatial correlations between the origins and the destinations
in the tra�c matrix may be lost.

We have studied the empirical distribution of the singular values of the OD matrices,
with the real data at our disposal from the Abilene and Opentransit backbones. Inter-
estingly, apart from a few large singular values, the lower part of the spectrum of the OD
matrices has a very good �t with the theoretical distribution of the singular values of random
matrices from the so-calledWishart distribution. This remark lets us think that any Origin-
Destination matrix can be decomposed as the sum of a low-rank matrix (which carries the
energyof the signal), plus a noise matrix whose distribution is related to the Wishart's law.
This preliminary study does not give a method for the estimation of tra�c matrices from
partial measurements yet. However, it sheds light on the importance of modelling the low



22 CHAPTER 1. INTRODUCTION

rank structure of OD matrices. This is done in the �nal section of this chapter, where low
rank decompositions of the tridimensionaltra�c tensor are studied.

While low-rank approximations of matrices is a completely understood problem (through
the singular value decomposition), the low-rank approximation of tensors is an active research
topic. We review a few basic results and algorithms for tensor decompositions, and we
show the potential of these methods by analyzing decompositions of real tra�c tensors.
Finally, we present the sketch of a new method �based on tensor decompositions� for
the online estimation of tra�c matrices from incomplete measurements. We show by an
example on Opentransit that our method yields an improvement, by comparison to the
classictomogravity method.

1.4.2 Contributions of this thesis

We next list the main contributions of this thesis:

� Theorem 4.1.2, and its extension Theorem 4.2.2. Any problem from the class of
semide�nite packing programs, where the matrix in the objective function is of rank
r , has a solution of rank at mostr . Extensions and consequences of this result are
discussed. This theorem shall be used several times in Chapter 5.

� Theorem 5.1.1: Extension of Elfvinfg's theorem to the multiresponse case (We pre-
sented this result at the conference [SBG09]. It was discovered independently by Dette
and Holland-Letz [DHL09]).

� Theorem 5.2.1: SOCP formulation of thec� optimal design problem. A geometric
interpretation of this result is given.

� Extension of the latter result to the case ofA� optimality (Theorem 5.2.2), and to
the case of problems with several linear inequality constraints (Theorem 5.2.3).

� Theorem 5.2.5: SOCP formulation of theT� optimal design problem for a subsystem
of parameterK T � .

� Theorem 5.3.1: Geometric programming formulation of the model robustS� � optimal
design problem. The optimality conditions of this program generalize a theorem of
Dette [Det93] to the case of multiresponse experiments (Theorem 5.3.2).

� A corollary of the latter result is an SOCP formulation forD� optimality (cf. Equa-
tion 5.25).

� Numerical tests and comparisons to other algorithms (Chapter 6), showing the im-
portance of our SOCP approach when the number of quantities of interestr is small
(typically, forc� optimality wherer = 1).

� Theorem 7.2.1: Reduction of the combinatorialmaxrank design problemto MAX-
COVERAGE. As a consequence, ifP 6= NP , there is no polynomial-time algorithm
which approximates the maxrank design by a factor larger than1 � e� 1.

� Proposition 7.2.4: Iff 0 is operator antitone onR�
+ , then for all triple(X; Y; Z ) 2 S+

m

trace f (X + Y + Z) + trace f (Z ) � trace f (X + Z) + trace f (Y + Z):
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� Corollary 7.2.6: The Kiefer's� p� criterion (seen as a set function) isnondecreasing
submodularfor p 2 [0; 1].

� Theorem 7.2.7: A a consequence, the greedy algorithm always return a solution within
1� e� 1 of the optimum of the� p� optimal design problem (p 2 [0; 1]). Some possible
extensions of this theorem are presented.

� Proposition 7.3.4 (cf. also Theorem 2.4.7): Multiresponse generalization of the
upper bound forD� optimal weights (discovered independently by Harman and
Trnovská [HT09], for the case in which the full vector of parameters� is of inter-
est, i.e.K = I ).

� Theorem 7.3.7: Ifn experiments are to be selected out ofs, we present two randomized
rounding algorithms which return a solution withinn=s of the maxrank optimum (in
average).

� We show some cases in which the performance of the latter randomized algorithms is
n=(s � 1) (cf. Remark 7.3.2).

� Proposition 9.5.7: For the entropic projection problem with linear constraints on a
network, the natural �x-point algorithm is nonexpansive if and only if every OD pair
of the network is of length at most 2. (This result was obtained during the master
studies of the author.)

� Optimal experimental design formulation of the Net�ow deployment problem, and the
Net�ow optimal sampling problem (cf. Section 10.2).

� Proposition of a new method (calledSuccessivec� Optimal Designs, SCOD) funded
on the computation of severalc� optimal designs to handle a certain class of large
scale optimal experimental design problems (cf. Section 10.4.1). Sketch of a heuristic
justi�cation of our approach (Sections 10.4.2 and 10.4.3).

� Validation of our approach with experimental tests relying on real data (cf. Sec-
tion 10.5).

� Evidence of the low-rank structure of origin-destination tra�c matrices (at a given
point in time). Proposition of a signal+ noise model, preliminary analysis of the noise
relying on the theory of random matrices (cf. Section 11.1).

� Evidence of the low rank structure of the three-waytra�c tensor (origin � destination
� time). Sketch of a method relying on tensor to estimate tra�c matrices in real
time (cf. Section 11.2.3).
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Part I

Optimal Design of Experiments
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Chapter 2

An introduction to the theory of
Optimal Experiments

In this chapter, we introduce the theory of optimal experimental design, and we review
the fundamental results which will be useful for the rest of this thesis.

2.1 History

The theory of optimal experimental designs has been developed since the 1920's, after
some work of Gosset [Stu17] (known under the pseudonym �Student�) and Fisher, who
introduced several useful concepts for a theoretical approach to the design of experiments
in his book [Fis35]. We refer the reader to the article of Atkinson and Bailey [AB01] for a
review on the early development of the theory of optimal experiments.

One of the earliest theoretical results was obtained by Elfving in 1952 [Elf52], who
focused on the problem where the experimenter disposes ofs experiments, the outcome
of which are linear functions of an unknown parameter (up to a zero-mean noise on the
measurements). Elfving interested himself in the problem of optimally allocating a total
number ofn observations to the potential experiments, i.e. to select the numbersni of
times that a measurement will be performed with experimenti , with

P s
i =1 ni = n. An idea

of Elfving has been to replace the discrete design variablesni by the real numberswi = n i
n

which satisfy:

wi � 0;
sX

i =1

wi = 1; (2.1)

and then to drop the integer constraint onnwi . In other word, Elfving posed the problem of
�nding the optimal amount of experimental e�ortwi to spend on each experiment, where
w is any continuous vector on lengths satisfying Condition (2.1). A lot of results have
emerged from this smoothness, starting with Elfving's Theorem (Theorem 2.4.1, [Elf52])
which characterizes geometrically the optimal designw , when there is a single quantity of
interest (c� optimal design).

27
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This setting was then generalized, to allow the experiments to be selected in a compact
region X , and the the design variable has become a probability measure� on X . The
power of this generalization was revealed in the proof of the Kiefer-Wolfowitz Theorem
(Theorem 2.4.2, [KW60]), which establishes the equivalence between the two popularD�
andG� optimality criteria.

This theorem gave birth to a sequential algorithm for the computation ofD� optimal
designs, simultaneously discovered by Wynn [Wyn70] and Fedorov [Fed72] (see Section 3.1),
who further generalized the theory of optimal designs to the case ofmultiresponse experi-
ments, where a single experiment is allowed to produce several uncorrelated observations.

Many of the optimality criteria that have been introduced for the design of experiments
(including the aforementionedc� andD� criteria, as well as the popularE� ,A� , andT�
criteria which we will describe in Section 2.3.2) are convex functions of the design variable
w (or � ), and are encompassed in the class of� p� criteria introduced by Kiefer [Kie75].
The work of Silvey and Titterington [ST73] and Kiefer [Kie74] showed that the Kiefer-
Wolfowitz theorem could be seen as a consequence of the strong Lagrangian duality theory
for convex optimization problems. Later, this result was generalized by Pukelsheim [Puk80],
who established a duality theorem for a very wide class of criteria which includes the Kiefer's
� p� criteria.

For more details on the development of the theory of optimal experimental designs, the
reader is referred to the book of Pukelsheim [Puk93].

2.2 Notation and preliminaries

2.2.1 Some notation

Throughout this thesis, we denote vectors by boldface letters and matrices by capital
letters. We use the standard notation[n] := f 1; : : : ; ng. The elements of a vectorx 2 Rn

are x1; x2; : : : ; xn . The (i; j )-element of a matrixM is denotedM i;j . The Lp� norm of

the vectorx 2 Rn is kx kp :=
� P n

i =1 jx i jp
� 1=p

. We shall simply denote the Euclidean norm
k � k2 by k � k. The vector of all zeros is written0; similarly1 stands for the vector of all
ones. Vector inequalities should be understood elementwise, e.g.x � 0 indicates that every
component ofx is nonnegative. The symbolT denotes the transposition operation.

The identity matrix of sizen � n is denoted byI n , or simply I when there is no
ambiguity. We denote byDiag(x ) the diagonal matrix with the elements of the vectorx on
its diagonal, and bydiag (M ) the vector containing the diagonal entries ofM . The range
and nullspace of a matrixM are respectively denoted byIm M := f x : 9y : M y = x g
andKer M := f x : M x = 0g. We denote bySm the space of symmetricm � m matrices.
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This space is equipped with the inner product

hA; B i = trace(AT B) =
X

i;j

aij bij ;

which induces the Frobenius normkAkF =
q

hA; A i =
q P

i;j a2
ij : We also denote by

S+
m � Sm the cone ofm � m symmetric positive semide�nite matrices, and byS++

m its
interior, which consists of positive de�nite matrices. The space of symmetric matrices is
equipped with theLöwner ordering, which is de�ned by

8B; C 2 Sm ; B � C () B � C 2 S+
m : (2.2)

Similarly, the notationB � C indicates thatB � C is positive de�nite.

We denote byM y the Moore-Penrose pseudo-inverse ofM , and byM � a generalized
inverseof M , i.e. any matrixG verifyingMGM = M . The reader can verify that the matrix
K T

1 M � K 2 does not depend on the choice of the generalized inverse when the columns of
K 1 andK 2 are included in the range ofM .

The convex hull (resp. conic hull) of a setS is denoted byconv(S) (resp. cone(S)).
The orthogonal of a setS is S? := f x : 8v 2 S; x T v = 0g:

2.2.2 The linear model

The most common model in optimal experimental design assumes that each experiment
provides a measurement which is a linear combination of the parameters up to the accuracy
of the measurement. In this thesis, we deal with linear models only.1

Let X denote the set of available experiments. Every experimentx 2 X provides a
(multidimensional) observation

y (x ) = A(x )� + � (x ); E[� (x )] = 0 (2.3)

where� is them� dimensional vector of unknown parameters,

A(x ) is a (l(x ) � m) observation matrix, and� (x ) is a zero-mean noise on the mea-
surements with a known diagonal covariance matrix�( x ). The number of simultaneous
observations that are collected when a measurement is performed atx is l(x ) � l . To
alleviate the notation, we shall eventually write that all the observation matricesA(x ) are
of sizel � m. We may always reduce to this case by settingl � l (x ) rows ofA(x ) to 0T .
The mappingX 3 x 7! A(x ) 2 Rl � m is supposed to be continuous overX . Note that
this setting includes the common case whereX is �nite, of cardinalitys, equipped with the

1. We point out that there is a theory of optimal experiments for nonlinear models, in which the design criteria
depends on the unknown parameters. The basic idea is thus to search for alocally optimal design, which minimizes
a criterion from the linear theory, for a linearization of the model at a point which is the best guess of the unknown
parameters.
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discrete topology, in which case we associateX with [s] and the observation matrices are
simply denoted byA1; : : : ; As.

We will assume without loss of generality that the noises have unit variance:�( x ) =
E[� (x )� (x )T ] = I . We may always reduce to this case after a left diagonal scaling of the
observation equations (2.3). The errors on the measurements are assumed to be mutually
independent, i.e.

8x 1 6= x 2 2 X =) E[� (x 1) � (x 2)T ] = 0:

Uncorrelated experiments are chosen atx 1; : : : ; x s from the experimental regionX , and the
objective is to determine both the optimal choice of thex i , and the number of experiments
ni to be conducted atx i ; we call such a subset of experiments adesign. As mentioned
at the beginning of this chapter, it has been proposed to work withapproximate designs,
which is simply done by releasing the integer constraints on theni . In this setting, a mass
indicates the proportion from the total number of experiments to be conducted for each
available experiment. For example, if the weight for thei th experiment iswi , and that n
experiments are allowed,nwi are chosen atx i , which suggests that each quantitynwi is
integer. However, this continuous relaxation proved to be very useful and we shall only
consider approximate designs until Chapter 7, where we will focus on some combinatorial
problems arising in optimal experimental design.

The design where thepercentage of experimental e�ortat x k is wk is written as

� =

 
x 1 � � � x s

w1 � � � ws

!

;

or � = f x k ; wkg for short. The set of pointsf x i 2 X : wi > 0g is called the support of�
and is denoted bysupp(� ).

Whenni = nwi experiments are conducted atx i , we denote byy (x i ) the average of
these observations: we haveE[y (x i )] = A(x i )� , and Var(y (x i )) = 1

n i
I . For the design

� = f x k ; wkg, we denote byy (� ) the aggregate vector of observations:

E[y (� )] = A(� ) � ; (2.4)

where y (� ) =

0

B
B
@

y (x 1)
...
y (x s)

1

C
C
A ; and A(� ) =

2

6
6
4

A(x 1)
...
A(x s)

3

7
7
5 :

In addition, the variance of this aggregate observation vector satis�esVar(y (� )) = 1
n �( w ),

where

�( w ) =

0

B
B
@

1=w1I
. . .

1=wsI

1

C
C
A ; (2.5)

with (l(x i ) � l (x i )) � identity blocks on the diagonal. Ifwi = 0 for somei 2 [s], we simply
remove the measurement pointx i from � . For ease of presentation, we get rid of the
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multiplication factor1=n, since it does not a�ect the results on optimal designs.

2.2.3 Gauss-Markov Theorem and Information matrices

The linear theory assumes that the experimenter is interested in estimating the vector

� = K T � ;

whereK is of sizem � r and has full column rank. In other words, the experimenter wants
to estimate a collection(� 1; : : : ; � r ) of linear combinations of the parameters. We denote
the columns ofK by c1; : : : ; cr , so that the quantities of interest are:

8i 2 [r ]; � i = ci
T � :

This setting includes the casesK = I , in which the experimenter wants to estimate each
individual parameter� i , and the caser = 1 (known asc� optimality in the literature) in
which there is a single quantity of interest� = cT � .

It can easily be seen that a linear estimator�̂ = H T y (� ) is unbiased if and only if
A(� )T H = K . Thus, linear unbiased estimators for� exist as long as the columns ofK
are in the range ofA(� )T . In the sequel, we will say that the vector� = K T � is estimable
if there exists a design� such that the latter condition is satis�ed. Notice that a su�cient
condition which ensures thatK T � is estimable for anym � r matrix K is that the matrices�
A(x )

�

x 2X
contain m linearly independent vectors among their rows. For an estimable

quantity K T � , we de�ne the feasibility cone�( K ) as the set of designs� such thatA(� )T

span the columns ofK , and a design� will be saidfeasibleif it lies in the feasibility cone.

We are interested in �nding thebest unbiased estimator for� , in the sense that its
variance should be minimal. The variance of a vector is in fact a positive semide�nite
matrix, and so the comparison between two covariance matrices should be in terms of
Löwner ordering (cf. Page 29). TheGauss-Markovtheorem, which is a classical result in
the �eld of statistics, gives the form of this best estimator. We give below a proof of this
theorem relying on the Schur complement lemma.

Theorem 2.2.1 (Gauss-Markov Theorem). Let K T � be estimable and� = f x k ; wkg 2
�( K ) be a feasible design. For any matrixH such thatA(� )T H = K , �̂ = H T y (� ) is an
unbiased estimator for� , and its covariance matrix satis�es

Var(�̂ ) = H T Var(y (� ))H = H T �( w )H � K T
�
A(� )T �( w )� 1A(� )

� �
K:

Moreover, this latter bound is attained for the estimator^� � = H � T y (� ), where

H � = �( w )� 1A(� )(A(� )T �( w )� 1A(� ))yK: (2.6)
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Proof. The fact that the lower bound is attained for̂� � = H � T y (� ) is clear by substituting
H � to H in the expression of the variance of�̂ , and by using the fact that for any matrix
M , we haveM yMM y = M y.

Hence, the only thing to prove is the matrix inequality. The matrix
 

A(� )T �( w )� 1A(� ) K
K T H T �( w )H

!

is positive semide�nite, because it can be written as the following product:
 

A(� )T �( w )� 1=2

H T �( w )1=2

!
�
�( w )� 1=2A(� ) �( w )1=2H

�
:

The Schur complement lemma indicates that sinceH T �( w )H � 0, the matrix

H T �( w )H � K T
�
A(� )T �( w )� 1A(� )

� �
K

must be positive semide�nite. This completes the proof.

Remark2.2.1. An alternative formulation of the Gauss-Markov Theorem states that if� is
nonsingular and the columns ofK are in the range of the matrixAT , then the optimization
problem

min
H

� H T � H

s: t : AT H = K;

where the minimum is taken with respect to the Löwner ordering, attains its solution for
H = � � 1A(AT � � 1A)yK , and the value of theminimumis K T (AT � � 1A)� K .

Gauss Markov theorem gives the form of thebest unbiased linear estimator, and shows
that its variance is

Var( ^� � ) = K T (A(� )T �( w )� 1A(� )) � K = K T M (� )� K; (2.7)

whereM (� )� is a generalized inverseof M (� ) := A(� )T �( w )� 1A(� ) and the reader can
verify that the latter expression does not depend on the choice of the generalized inverse.
The positive semide�nite matrixM (� ) is called theinformation matrixof the design. We
also de�ne the partial information matrices of each experimentM (x ) := A(x )T A(x ), so
that M (� ) can be decomposed as a weighted sum of the information matrices of the selected
experiments:

M (� ) =
sX

i =1

wi A(x i )T A(x i ) =
sX

i =1

wi M (x i ) (2.8)

Remark2.2.2. If we further assume that the noise follows a normal distributionN (0; I ),
then the estimator^� � described in (2.6) is also the maximum likelihood estimator of� , and
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the bound given by the Cramer-Rao inequality is attained, i.e. its covariance matrix equals
the inverse of the Fisher information matrix.

We next de�ne theK � information matrixQK (� ) = ( K T M (� )� K )� 1 as the inverse of
the covariance matrix2. Note that the inverse is well de�ned when� 2 �( K ). Otherwise, it
is still possible to extend the de�nition ofQK (� ) per continuity; in fact, the correct de�nition
of the K � information matrix is given in Chapter 3 of [Puk93]:

QK (� ) := min
L

� LT M (� )L (2.9)

s: t : K T L = I r ;

where the minimum is taken with respect to Löwner ordering. Pukelsheim shows that
the minimum exists indeed (which is not obvious since the Löwner ordering is a partial
ordering), as a consequence of the Gauss-Markov Theorem (cf. Theorem 1.21 in [Puk93]).
In the sequel, the reader needs only remind the simple expressionQK (� ) = ( K T M (� )� K )� 1,
which is valid in the regular case� 2 �( K ), and that the matrixQK (� ) exists and is singular
when the range ofM (� ) does not include the range ofK (that is, when� =2 �( K )).

The reader may wonder why we reduce ourselves to the case of designs with a �nite
�or even countable� number of support points. It was proposed indeed to work in a more
general framework, by allowing the design to take the form of a probability measure! over
the regression regionX , so that the information matrix becomes

M (! ) =
Z

X
A(x )T A(x )d! (x ):

However, this continuous form of the information matrix is still a symmetric matrix from
the closed convex hull off A(x )T A(x ); x 2 X g. WhenX is compact, andx 7! A(x ) is
continuous, the set of all information matricesf A(x )T A(x ); x 2 X g is closed, and we know
from Caratheodory's theorem thatM (! ) can be written as barycenter ofm(m + 1) =2 + 1
information matrices (see Fedorov [Fed72]). Therefore, the optimal design can always be
expressed with a discrete measures! = w1� (x � x 1) + ::: + ws� (x � x s), wheres �
m(m +1) =2+1, and we will consider only such designs in this work. Moreover, the study of
designs with a discrete support is appropriate for the framework of the industrial application
of the second part of this thesis.

2.3 Optimality criteria

2.3.1 c-optimality

The experimental design approach consists in choosing the design� in order to make
the variance of the estimator (2.7)as small as possible. The problem is well posed when

2. Note that If K = I (i.e. when the experimenter wants to estimate the whole parameter� ), then the
K � information matrix QK (� ) coincides with the information matrixM (� ).
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r = 1, since in this case the variance is a scalar. This is the framework for thec� optimal
design problem, in whichK has a single columnc, and the problem is now to �nd the design
� = f x k ; wkg minimizing the variance (2.7):

min
� = f x k ;wk g2 �( c)

cT M (� )� c (2.10)

s.t. M (� ) =
sX

i =1

wi A(x i )T A(x i )

sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :

This problem was �rst studied by Elfving, in the case ofsingle response experiments,
i.e. when each experiment yields only one observation (8x 2 X ; l(x ) = 1 and A(x) is
a row vector.) In his pioneer work, Elfving discovered a geometrical characterization of
c� optimality [Elf52] which we will detail in Section 2.4.1.

2.3.2 The class of Kiefer's � p criteria

Whenr > 1, the natural problem is to minimize the covariance matrix of the best linear
unbiased estimator (2.7) with respect to the Löwner ordering. A geometrical interpreta-
tion of this problem is the following: with the assumption that the noise� (x ) is normally
distributed for allx 2 X , for every probability level� , the best estimator^� � lies in the
con�dence ellipsoid centered at� and de�ned by the following inequality:

(� � ^� � )T QK (� )( � � ^� � ) � � � ; (2.11)

where� � depends on the speci�ed probability level. We would like to make these con�dence
ellipsoidsas small as possible, in order to reduce the uncertainty on the estimation of� . To
this end, we can express the inclusion of ellipsoids in terms of matrix inequalities. One can
readily check that for any value of the probability level� , the con�dence ellipsoid (2.11)
corresponding toQK (� ) is included in the con�dence ellipsoid corresponding toQK (� 0) if and
only if QK (� ) � QK (� 0). Hence, we will prefer design� to design� 0 if the latter inequality
is satis�ed, and we want to select a design which maximizesQK (� ) (or equivalently which
minimizes its inverseK T M (� )� K ) for the Löwner ordering.

Since Löwner ordering is only a partial ordering onSm (and the inclusion relation is a
partial ordering on the ellipsoids ofRm ), the problem consisting in maximizingQK (� ) is ill-
posed. Hence, we will rather maximize a scalarinformation functionof the K � information
matrix, i.e. a function mappingS+

m onto the real line, and which satis�es natural proper-
ties, as positive homogeneity, monotonicity with respect to Löwner ordering, and concavity.
Kiefer [Kie75] proposed to make use of the class of matrix means� p. These functions are
de�ned like theLp-norm of the vector of eigenvalues of the information matrix, but for
p 2 [�1 ; 1]. For positive de�nite matrices,M 2 S++

m with eigenvaluesf � 1; : : : ; � mg, the
matrix mean� p is de�ned by
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� p(M ) =

8
>><

>>:

� min (M ) for p = �1 ;

( 1
m trace M p)

1
p for p 2 ] � 1 ; 1]; p 6= 0;

(det(M ))
1
m for p = 0,

(2.12)

where we have used the extended de�nition of powers of matricesM p for arbitrary real
parametersp: trace M p =

P m
j =1 � p

j : For singular positive semide�nite matrices,� p is
de�ned by continuity:

� p(M ) =

(
0 for p 2 [�1 ; 0] ;

( 1
m trace M p)

1
p for p 2 ]0; 1].

(2.13)

The reader is referred to Pukelsheim [Puk93] for a complete analysis of these information
functions. For a realp 2 [�1 ; 1]; the problem of� p� optimality is

max
� = f x k ;wk g2 �( K )

� p

�

QK (� )
�

(2.14)

s.t.
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :

This class of problems was introduced by Kiefer in 1975, and it interpolates several
popular criteria which were used long before. We next review these criteria, which are
obtained for special value ofp. A remarkable property of these optimization problems
is that, if K T � is estimable, and except for the pathological casep = 1, the constraint
� 2 �( K ) can be removed without changing the optimum. The extended feasible space

f � = f x k ; wkg; 8 i 2 [s]; x i 2 X wi � 0;
sX

i =1

wi = 1g (2.15)

is compact, which guarantees the existence of an optimal solution� � (because the objective
function is continuous). This fundamental existence result is presented in a uni�ed way
for Kiefer's� p� criteria (p < 1) in [Puk93]. Following Pukelsheim's terminology, we call a
designformally� � optimal if it maximizes�( QK (� )) in the set (2.15). The estimability of
K T � implies that there is a design� such thatQK (� ) is nonsingular. Now, for allp � 0,
the � p� criterion vanishes for singular matrices. It follows that any formally� p� optimal
design� is such that� p(QK (� )) > 0. Recall that the de�nition ofQK (� ) can be extended
to the designs that are not feasible, and for whichK T M (� )K fails to be invertible (see
the discussion following Equation (2.9)). The key point is thatQK (� ) becomes singular
when� =2 �( K ). Hence, the optimal design� 2 �( K ) and solves Problem (2.14). For all
p 2]0; 1[, a similar argument holds, by considering the Fenchel conjugate functionm� q of
� p (here,q is the real number such that1

p + 1
q = 0, see Section 7.13 in Pukelsheim [Puk93]).



36 CHAPTER 2. AN INTRODUCTION TO THE THEORY OF OPTIMAL EXPERIMENTS

D-Optimality

The D� criterion is obtained forp = 0, and consists in maximizing the determinant of
the K � information matrix:

max
� = f x k ;wk g

det
�

QK (� )
�

(2.16)

s.t.
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :

We have seen above that the maximization ofQK (� ) with respect to the Löwner ordering
was equivalent to the minimization of any ellipsoid of the form (2.11) for the inclusion
relation. In fact, such ellipsoids have their axis aligned with the eigenvectors ofQK (� ),
and the semi-axis in the direction of the eigenvector associated with the eigenvalue� i is of
length proportional to 1p

� i
. This allows a nice geometrical interpretation of this criterion:

The volume of the ellipsoid (2.11) is given byCm � m=2
� det(QK (� )) � 1=2 whereCm > 0 is

a constant depending only on the dimension. Therefore, theD� optimal design minimizes
the volume of the ellipsoids (2.11), which coincide with the con�dence ellipsoids of^� � in
the Gaussian case (cf. Figure 2.1(a) ).

E-Optimality

The E� criterion is obtained forp = �1 . It consists in maximizing the smallest eigen-

value of
�

QK (� )
�

.

max
� = f x k ;wk g

� min

�

QK (� )
�

(2.17)

s.t.
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :

As for the D� criterion, we can give a geometrical interpretation to this criterion: the
E� optimal design minimizes the length of the largest semi-axis of the ellipsoids (2.11), as
plotted on Figure 2.1(b) .
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A-Optimality

The A� criterion is obtained forp = � 1, and aims at maximizing the harmonic average
of the eigenvalues of theK � information matrix, or equivalently at minimizing its inverse:

min
� = f x k ;wk g

1
m

trace QK (� )� 1 (2.18)

s.t.
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :

If we denote the eigenvalues ofQK (� )� 1 = K T M (� )� K by � 1; : : : ; � m , this harmonic
average can also be written as

� A (� ) = m
mX

i =1

1
� i

= m
mX

i =1

 
1

p
� i

! 2

:

From this expression, we see that theA� optimal design minimizes the diagonal of the
bounding box of the ellipsoids (2.11), as shown on Figure 2.1(c) .

T-Optimality

The T� criterion is obtained forp = 1, and aims at maximizing the trace of the
K � information matrix.

sup
� = f x k ;wk g 2 �( K )

trace QK (� ) (2.19)

s.t.
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :

This criterion is not much used in practice, because of its pathological behavior. Since
M 7! � 1(M ) is not strictly concave (it is linear), a formally� 1� optimal design� can fail
to be feasible for problem (2.19), i.e.� =2 �( K ). Moreover, we will see in Section 2.4.3 that
everyT� optimal design for the full parameter� is concentrated on the pointsx such that
kA(x )kF is maximal, which is not a good recommendation in practice. We give below an
example where Problem (2.19) has no solution, i.e. where the supremum over� 2 �( K ) is
not attained. Consider a simple regression model with only two experiments (X = f 1; 2g),
and row observation matricesA1 = [1; 0]; A2 = [0; 2]. The information matrix for this
model is

M (� ) =

 
w1

4w2

!

:

When the full parameter is of interest (K = I ), the designw is feasible if and only ifM (� )
is invertible, i.e.w > 0. We haveQI (� ) = ( M (� )� 1)� 1 = M (� ), which remains true even
for the nonfeasible designs wherew1 = 0 or w2 = 0 by continuity of� 7! QI (� ). The trace
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of the information matrix is maximized over the setf w : w1 + w2 = 1; w � 0g for the
non-feasible designw = [0; 1]T . Furthermore, the optimal value of Problem (2.19) can be
approached from below with arbitrary precision by the feasible designsw � = [ "; 1 � " ]T ;
where� ! 0+ .

2.3.3 S-optimality: a model robust criterion

The S-criterion was introduced by Läuter [Läu74] in order to tackle the uncertainty of
the experimenter on thetrue model, by considering a class ofr plausible models with means

E[y (x )] = A (i );x � i 2 [r ];

in which the quantity to estimate is� i = ci
T � .

In other words, the measurementy (x ) at x is modeled as a linear function of the
parameter� , which depends on the model, and must be used to estimate a linear function
� of the parameter in each model. In practice, the parameters of each of these models
may be di�erent. This can be handled by setting thej th column ofA (i );x to 0 whenever
the i th model atx does not depend on� j . Note that we write the index of the model in
parenthesis, in order to avoid ambiguities with the index of the experiment.

Given a nonnegative vector� of sizer with sum1, where� i indicates the importance
that the experimenter attaches to the modeli , or the importance of the linear combination
ci

T � , the S� � criterion is:

S� (� ) =
rX

i =1

� i log(ci
T M (i )(� )� ci );

where

M (i )(� ) =
sX

k=1

wkAT
(i );x k

A (i );x k

is the information matrix in thei th model. A design minimizing this criterion is called
S� � optimal. An interesting case occurs when thes models are identical. This is an alter-
native approach to theA� optimality forK T � , with weightings on each linear combination
ci

T � to be estimated. Dette studied the di�erence between these two approaches in Sec-
tion 4 of [Det93].
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Figure 2.1: Geometrical interpretation ofD � , E � and A� optimality criteria. The ellip-
soids (2.11) are plotted in two dimensions, for� � = 1 and when theK � information matrix
has a singular value decomposition of the formQK (� ) = � 1u 1u 1

T + � 2u 2u 2
T . The D � criterion

(a) corresponds to the volume, theE � criterion (b) to the largest semi-axis and theA� criterion
(c) to the diagonal of the bounding box of the ellipsoids.
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2.4 Fundamental results

2.4.1 Elfving's Theorem for c-optimality

Elfving's result [Elf52] describes the geometry ofc� optimal designs. This is one of the
earliest theoretical result in the theory of optimal design of experiments, and its importance
was illustrated in many works [Che99, Det93, DS93, HHS95, Stu71, Stu05]. Elfving studied
the c-optimal design problem in the case ofsingle response experiments3, i.e. when each
experiment yields only one observation (8x 2 X ; l(x ) = 1 and A(x ) is a row vector
which we denote byax

T ; beware of the transposition, we use a di�erent convention for
the observation matrix in the single response case because we prefer seeing the regression
vectors as column vectors). We will show that a generalization of Elfving's theorem to the
case of multiresponse experiments is possible in Chapter 5.

We �rst de�ne the Elfving setas the convex hull of the vectors� ax :

E = conv
�
f� ax ; x 2 X g

�
; (2.20)

and we denote its boundary by@E.

Theorem 2.4.1 (Elfving [Elf52]). A design� = f x i ; wi g is c� optimal if and only if there
exists scalars� i = � 1 and a positive realt such that

tc =
sX

i =1

wi � i ax i 2 @E:

Moreover,t � 2 = cT M (� )� c is the minimal variance.

The generalization to multiresponse experiments that we give in Section 5.1 has a proof
relying on original ideas of Elfving, and so we will only prove this generalization (Theo-
rem 5.1.1)). Elfving's theorem shows that thec� optimal design is characterized by the
intersection between the vectorial straight line directed byc and the boundary of the Elfv-
ing setE. We also point out that when the vectorc is not spanned by the regression vectors
(ax )x 2X , in other words whencT � is not estimable (i.e.�( c) = ; ), then the only scalart
such thattc lies inE is 0, and so ac� optimal design does not exist, in accordance with
the discussion in the second paragraph of Section 2.2.3.

We show on Figure 2.2 a representation of Elfving's theorem in dimension2. Here,
X = f 1; 2; 3; 4g is �nite, so that the Elfving set is a polyhedron, and we writea i for ax i .
The vectorc is along the� 1� axis, which means that the experimenter wants to estimate
� = � 1. The intersection between this axis and the Elfving set indicates the optimal weights
of the c� optimal design:w3 = 3

4 and w4 = 1
4 . Note that sincea2 is in the interior of the

Elfving set, the experiment2 is never selected, whatever is the vectorc. This example also
shows that the optimal designw � can be computed by linear programming whenX is �nite
(intersection of a straight line and a polyhedron). We will study this feature in Chapter 3.

3. The more general setting ofmultiresponse experimentswas introduced by Fedorov in 1972 [Fed72]
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c
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t � c = 3
4a3 + 1

4(� a4)

a3
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Figure 2.2: Geometrical representation of Elfving's theorem in dimension two. The grey area
represents the Elfving set, which is a polyhedron becauseX is �nite (here, X = f 1; 2; 3; 4g). The
intersectiont � c determines the weights of thec� optimal design:w � = [0 ; 0; 3

4 ; 1
4 ]T .

2.4.2 The Kiefer-Wolfowitz Theorem for D-optimality

The Kiefer-Wolfowitz theorem [KW60] was established for single-response experiments
in 1960, and then extended to the multiresponse framework by Fedorov [Fed72]. We give
below both versions of this theorem.

A special case ofc� optimality is when the experimenter wants to estimate a quantity
� = ax

T � which can be observed by a single experiment (here, the experiment atx with
regression vectorax ). In this case, the variance of the best estimator isax

T M (� )� ax . This
case is highly trivial since the experimenter's interest is to a�ect all the experimental e�ort
to x . However, an interesting case occurs when the experimenter is not interested in the
observation of a single experimentax

T � , but in the wholeregression surfacef ax
T � ; x 2

X g. A global criterion is needed to measure the performance of a design in this case. The
global criterion(known asG� criterion) is

� G(� ) = max
x 2X

ax
T M (� )� ax

and theG� optimal design guards one against the worst case, by minimizing the variance
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of every observation in the regression surface:

min
�

max
x 2X

ax
T M (� )� ax (2.21)

s.t. M (� ) =
sX

i =1

wi A(x i )T A(x i )

sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :

The Kiefer-Wolfowitz theorem establishes the equivalence between theD� optimal de-
sign and theG� optimal design:

Theorem 2.4.2 (Kiefer-Wolfowitz [KW60]). Assume that the regression range(ax )x2X

containsm linearly independent vectors. Then the following statements are equivalent:

(i) The design� is G� optimal;

(ii) The design� is D� optimal for the full parameter� (i.e. with K = I );

(iii) For all x in X , ax
T M (� )� ax � m.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of
the optimal design:

x i 2 supp(� ) =) ax i
T M (� )� ax i = m:

Proof. We �rst show that for all design� = f x k ; wkg, we have� G(� ) � m. If M (� ) is
singular, then by assumption there is a regression vectorax which is not in the range of
M (� ), and so� G(� ) = 1 � m. If M (� ) is nonsingular, we write:

m = trace I = trace M (� )M (� )� 1 = trace(
sX

i =1

wi ax i ax i
T M (� )� 1)

�
sX

i =1

wi max
x 2X

(ax
T M (� )� 1ax )

= � G(� ):

This proves the part(iii ) =) (i ).

Now, we consider aD� optimal design� D , and we show thatax
T M (� D )� ax � m for

every pointx 2 X , with equality whenx is in the support of� D . Note that aD� optimal
design exists indeed, since we are maximizing a continuous function over a compact set.
Moreover the optimal information matrixM (� D ) is nonsingular, since there arem linearly
independent vectors in the regression range (the matrixM (� D ) must contain the columns
of I in its range because we are interested in the whole parameter� ). Let x 2 X , and
consider the design� � = (1 � � )� D + �� (x ), where � (x ) is the design where all the
experimental e�ort is concentrated atx . The applicationf : � ! log det(M � ), where
M � = (1 � � )M (� D ) + � ax ax

T is the information matrix corresponding to the design� � ,
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is well de�ned on[0; 1], and its derivative at� = 0 exists and coincides with the directional
derivative oflog det at M (� D ) in the direction ofax ax

T � M (� D ) :

df
d�

�
�
�
�
�
� =0

= trace M (� D )� 1(ax ax
T � M (� D )) = ax

T M (� D )� ax � m:

The concavity of thelog det criterion and the optimality of the design� D imply that f is
nonincreasing on[0; 1], and so the latter derivative must be nonpositive. Hence,

8x 2 X ; ax
T M (� D )� ax � m;

and we have proved the part(ii ) =) (iii ). We further show that the latter inequality
becomes an equality ifx is a support point of� D . We denote by(x i ) i 2 [s] the support points
of � D and byw the vector of the associated weights, and we write:

m = trace I = trace M (� D )M (� D )� 1 = trace(
sX

i =1

wi ax i ax i
T M (� D )� 1)

=
X

i jwi > 0

wi ax i
T M (� D )� ax i :

The latter expression is a weighted average of terms all smaller thanm and takes the
valuem. Hence,wi > 0 ) ax i

T M (� D )� ax i = m.

Assume conversely that� is notD� optimal. IfM (� ) is singular, then there is a regression
vectorax which is not in the range ofM (� ), and so(iii ) does not hold. IfM (� ) has full
rank, then in view of the strict concavity of thelog det function overS+

m , and similarly
to the previous discussion, there exists a design� 0 such thatlog det(M (� )) has a positive
derivative in the direction ofM (� 0) � M (� ):

traceM (� )� 1(M (� 0) � M (� )) = trace M (� )� 1M (� 0) � m > 0:

Denoting the support points and the weights of� 0 by x i
0 andw0

i respectively, we obtain:

traceM (� )� 1M (� 0) =
X

i jw0
i > 0

w0
i ax 0

i

T M (� )� ax 0
i

> m:

This expression is a weighted average strictly larger thanm, which implies the existence of
a support pointx 0 of � 0 such thatax 0

i

T M (� )� ax 0
i

> m . Hence,(iii ) does not hold and we
have proved the part(iii ) =) (ii ).

The existence of aD� optimal design, for which the� G� criterion takes the valuem,
in conjunction with the fact that� G(� ) � m for all design� shows that a design� is
G� optimal if and only if� G(� ) = m. This proves the parts(i ) =) (iii ) and the proof is
complete.

The previous result was extended to the case of multiresponse experiments by Fe-
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dorov [Fed72]. TheG� criterion for multiresponse experiments becomes

� G(� ) = max
x 2X

traceA(x )M (� )� A(x )T :

We omit the proof of this extended result, which is analogous to the previous one.

Theorem 2.4.3 (Fedorov [Fed72]). Assume that the regression range(A(x )T z)x2X ; z2 Rl ( x )

contains at leastm linearly independent vectors. Then the following statements are equiv-
alent:

(i) The design� is G� optimal;

(ii) The design� is D� optimal for the full parameter� (i.e. with K = I );

(iii) For all x in X , traceA(x )M (� )� A(x )T � m.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of
the optimal design:

x i 2 supp(� ) =) traceA(x )M (� )� A(x )T = m:

This result was used by Fedorov to construct a sequential algorithm to buildD� optimal
designs: at each step, the pointx which maximizestraceA(x )M (� )� A(x )T is sought,
and the design� is replaced by a convex combination of� and the design� (x ) which
concentrates all the experimental e�ort atx (cf. Section 3.1).

2.4.3 General Equivalence Theorem

In fact, the Kiefer-Wolfowitz theorem appears as a particular case of the General Equiva-
lence Theorem proved by Kiefer in 1974 for some di�erentiable information criteria [Kie74],
and extended by Pukelsheim in 1980 [Puk80] to any information criterion� that is non-
negative, positively homogeneous and concave. The proof of Pukelsheim emphasizes on the
convex duality �avour of the general equivalence theorem (his proof relies on Fenchel duality,
and he proposed another approach based on subgradients with Titterington [PT83]). We
give below a version of this theorem for the class of Kiefer's� p criteria. For a proof, the
reader is referred to Pukelsheim [Puk93].

Theorem 2.4.4 (General Equivalence Theorem [Kie74, Puk80]). Consider a real number
p 2] � 1 ; 1] (p �nite). The design � is � p� optimal for K T � if and only if there is a
generalized inverseG of M (� ) such that

8x 2 X ; trace A(x )GKQ K (� )p+1 K T GA(x )T � trace QK (� )p:

In case of optimality, the latter inequality becomes an equality for any support pointx i of � .

Speci�cally,� is � p� optimal for the whole parameter� if and only if

8x 2 X ; trace A(x )M (� )p� 1A(x )T � trace M (� )p:
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We point out that there is a simpler version of this theorem when the information
matrix M (� ) is assumed to be nonsingular at the optimum. The proof of this simpli�ed
version of the theorem is very close to that of the Kiefer-Wolfowitz equivalence theorem
for D� optimality (Theorem 2.4.2). It relies on the directional derivative of� p(QK (� )) in
the direction of the design� (x ) completely atomized atx , which is well de�ned ifM (� ) is
invertible:

� 0
p;K (�; x ) = lim

� ! 0+

� p

h
QK

�
(1 � � )� + �� (x )

�i
� � p[QK (� )]

�
(2.22)

= trace A(x )M (� )� 1KQ K (� )p+1 K T M (� )� 1A(x )T � trace QK (� )p:

In the nonsingular case, we can formulate a general equivalence theorem that is very close
to the original formulation of Kiefer and Wolfowitz forD� optimality:

Theorem 2.4.5 (General Equivalence theorem: Nonsigular case [Atw80]). Let p 2] �1 ; 1]
(p �nite), and K an r � m matrix such thatK T � is estimable. Then, the following three
statements are equivalent:

(i) The design� � is � p� optimal forK T � ;

(ii) � 0
p;K (� � ; x ) � 0 for all x 2 X ;

(iii) � � minimizemaxx 2X � 0
p;K (� � ; x ) over�( K ).

In addition, we have� 0
p;K (� � ; x ) = 0 for all x 2 supp � � .

This fundamental theorem, which gives an e�cient method to check whether a given
design is optimal, has several interesting consequences, which we next present.

Bound on D-optimal weights

We give below an interesting result of Pukelsheim [Puk80], which states that for single-
response experiments, the weights of theD� optimal design forK T � are bounded from
above by1

r (recall that r is the number of quantities that the experimenter wishes to
estimate, i.e.r is the number of columns ofK ).

Theorem 2.4.6 (Bounds onD� optimal weights [Puk80]). EveryD� optimal design for
K T � has all its weights bounded from above by1

r . As a consequence, if the regression
range(ax )x2X consists in exactlyr independent vectors which span the columns ofK , then
the D� optimal design forK T � is unique and is de�ned bywi = 1

r for all i 2 [r ].

Proof. Let � be aD� optimal design forK T � , and let x i and wi denote respectively the
support points of� and their weights. By the generalized equivalence theorem 2.4.4 for
p = 0 (D� optimality), there exists a generalized inverseG of M (� ) such that:

8i 2 [s]; r = trace QK (� )0 = ax i
T GKQ K (� )K T Gax i = ax i

T Zax i ; (2.23)
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where we have setZ = GKQ K (� )K T G. In the latter expression, we can replaceQK (� ) by
QK (� )K T M (� )� KQ K (� ), since the optimalK � information matrix must be invertible and
QK (� )� 1 = K T M (� )� K . Besides, notice that sinceG is a generalized inverse ofM (� ), so
is GM (� )G, and we can take this particular choice forM (� )� :

r = ax i
T GKQ K (� )K T GM (� )GKQ K (� )K T Gax i :

We developM (� ) as
P

k2 [s] wkax k ax k
T in order to obtain:

r =
X

k2 [s]

wk(ax i
T Zax k )2 � wi (ax i

T Zax i )
2 = wi r 2;

where we have used the expression ofr that is given in (2.23). We �nally obtain the desired
upper bound:

wi �
r
r 2

=
1
r

:

The second part of this theorem is a simple consequence of this upper bound. IfX = [ r ]
and the regression vectors are linearly independent and span the columns ofK , then K T �
is estimable and theD� optimal design forK T � a�ects a weightwi no larger than1

r to
each of theser regression vectors. We can conclude thatwi = 1

r from the constraint
P r

i =1 wi = 1.

An extension of this result to the framework of multiresponse experiments is possible.
We made an announcement of the present result to the conference ISCO 2010 [BGS10]
and it was discovered independently for the caseK = I by Harman and Trnovská [HT09].
The proof mimics that of Theorem 2.4.6, and relies on an additional argument showing
that whenX is a positive semide�nite matrix, the ratio betweentrace X and trace X 2 is
bounded from below by a constant that depends on the rank ofX . We will give a proof of
this extension under a slightly di�erent form in Chapter 7.

Theorem 2.4.7. Let � = f x k ; wkg be aD� optimal design forK T � . Then, the weightwk

of the experiment atx k is bounded from above:

wk �
rank A(x k )

r
:

As a consequence, if(i ) the regression regionX is �nite (of sizes), (ii )
P

k2 [s] rank Ak = r ,
and(iii ) the quantityK T � is estimable, then theD� optimal design forK T � is unique and
is de�ned by

wk =
rank A(x k )

r
; 8k 2 [s]:

A-Optimal weights on linearly independent regression vectors

Another interesting consequence of the general equivalence theorem was given by
Pukelsheim and Torsney [PT91]. They showed that we can give theA� optimal design
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for K T � in close form when the regression rangeX is �nite and the vectors(ax )x 2X are
linearly independent. In this section, we associateX with [s], so that the regression vectors
are denoted bya1; : : : ; as. We denote byA the aggregate of all row observation matrices:

A = [ a1; : : : ; as]T :

Note that this independence condition implies that the numbers of vectors inX satis�es

r � s � m;

where the �st inequality is necessary because� bust be in the feasibility cone�( K ), and
the second inequality is enforced by the independence of the vectorsa i . Besides, the design
� is completely de�ned by the weight vectorw 2 Rs sinceX is �nite, so that we simply
substitutew to � in the subsequent discussion.

The theorem of Pukelsheim and Torsney is actually proved in a more general context
in [PT91], valid for any information criterion� that is nonnegative, positively homogeneous
and concave, and establishes a nonlinear equation that the weights of the� � optimal design
must satisfy. A powerful corollary from their result is that this nonlinear equation can be
solved in close form for the Kiefer's criterion� � 1 (A� optimality). We give below an
elementary proof of this powerful result.

Theorem 2.4.8 (A� optimal weights on independent regression vectors [PT91]). If the
regression vectorsa1; : : : ; as are linearly independent and span the columns ofK , then the
the A� optimal design forK T � is given in close form by

8i 2 [s]; wi =

p
bii

P s
j =1

q
bjj

;

whereb11; : : : ; bss are the diagonal elements of the matrix

B = ( AA T )� 1AKK T A T (AA T )� 1;

which reduces toB = ( AA T )� 1 when the full parameter� is of interest (K = I ).

Proof. Let w be anA� optimal design forK T � . We �rst show that the statement of the
theorem is true for all experiments which are in the support of the designw , i.e. for all i
such thatwi > 0. Let i denote the index of such an experiment. By the General equivalence
theorem 2.4.4 forp = � 1 (A� optimality), there exists a generalized inverseG of M (� )
such that:

trace QK (w )� 1 = a i
T GKK T Ga i : (2.24)

The columns ofK are in the range ofM (w) becausew must be in the feasibility cone�( K ).
Besides,a i is in the range ofM (w) =

P
i 2 [s] wi a i a i

T becausewi > 0. Therefore, the vector
K T Ga i is invariant to the choice of the generalized inverseG of M (w). Notice thatM (w)
can be decomposed asA T Diag(w )A . The linear independence of the vectorsa1; : : : ; as
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implies that the matrixAA T is invertible, and so a particular choice for a generalized inverse
of M (w) is G0 = A T (AA T )� 1 Diag(w )y(AA T )� 1A. We use this particular choice forG
in (2.24), and we use thata i = A T ei , whereei is the i th vector of the canonical basis
of Rs:

trace QK (w )� 1 = ei
T Diag(w )yB Diag(w )yei :

In fact, the matrixDiag(w )y is the diagonal matrix where thekth diagonal entry is either
1

wk
or 0 according aswk > 0 or wk = 0, so that the right hand side of the latter expression

is equal tobii w� 2
i . We have thus shown thatwi is proportional to

p
bii .

It remains to show that the formula holds whenwj = 0, i.e. the j th diagonal term of
B is zero ifwj = 0. To see this, we assume without loss of generality thatw1; : : : ws0 > 0
and ws0+1 = : : : = ws = 0 for an indexs0 � s. Then, a1; : : : ; as0 span the range
of M (w) =

P s0
i =1 wi a i a i

T . Moreover, the columns ofK are in the range ofM (w) by
feasibility of the optimal vectorw , from which we deduce that there is as0 � r matrix H
such that

K = A T

 
H
0

!

:

Finally, for an indexj > s 0 (i.e. such thatwj = 0), we obtain:

bjj = ej
T Bej = ej

T (AA T )� 1AKK T A T (AA T )� 1ej = ej
T

 
HH T 0

0 0

!

ej = 0:

The latter result admits a straightforward generalization to the multiresponse case, which
we do not think has been published elsewhere. The matrixA now stands for the aggregate
observation matrix[AT

1 ; : : : ; AT
s ]T :

Theorem 2.4.9 (A� optimal weights on indepedent observation matrices). If the rows of
the observation matricesA1; : : : ; As are linearly independent and span the columns ofK ,
then the theA� optimal design forK T � is given in close form by

8i 2 [s]; wi =
p

traceB i
P s

j =1

q
traceB j

;

whereB1; : : : ; Bs are the diagonal blocks of sizel1 � l1; : : : ; ls � ls of the matrix

B = ( AA T )� 1AKK T A T (AA T )� 1:

c-Optimal weights on linearly independent regression vectors

As a corollary from the latter result, we obtain a simple closed-form formula for the
weights of thec� optimal design over independent regression vectors:
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Corollary 2.4.10 (c� optimal weights on independent regression vectors). If the regression
vectorsa1; : : : ; as are linearly independent and span the vectorc, then the thec� optimal
design is given in close form by

w =
j(AA T )� 1Acj

k(AA T )� 1Ack1
:

(In the latter formula, the absolute value of the vector in the numerator is element-wise.) If
in addition the number of regression vectors iss = m, then the matrixA is invertible and
the latter formula simpli�es to:

w =
j(A T )� 1cj

k(A T )� 1ck1
:

Proof. We know from Theorem 2.4.8 that thec� optimal designw is proportional to the
square root of the diagonal of

B =
�
(AA T )� 1Ac

��
(AA T )� 1Ac

� T
;

that is, w / j (AA T )� 1Acj:

T-Optimal design for the full parameter �

The next propositions show that theT� optimal design problem for the full parameter
� is trivial. We start with the single-response case:

Proposition 2.4.11 (T� optimality for� , single-response). A design isformallyT� optimal
if and only if all its support points correspond to regression vectors of maximal length, i.e.

8i 2 [s]; wi > 0 )
�
kax i k = max

x 2X
kax k

�
:

The extension to the multiresponse case is straightforward:

Proposition 2.4.12 (T� optimality for � , multiresponse). A design isformallyT� optimal
if and only if all its support points correspond to observation matrices of maximal Frobenius
norm, i.e.

8i 2 [s]; wi > 0 )
�
kA(x i )kF = max

x 2X
kA(x )kF

�
:

Proof. The (formal)T� optimal design problem for� can be formulated as:

max
� = f x k ;wk g

trace
sX

i =1

wi A(x i )A(x i )T (2.25)

s.t.
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0; x i 2 X :
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We have the following bound on the objective function:

trace
sX

i =1

wi A(x i )A(x i )T =
sX

i =1

wi kA(x i )k2
F �

sX

i =1

wi

| {z }
1

max
x 2X

kA(x )kF ;

and it is clear that this bound is attained if and only ifw assigns all its weight to pointsx
where the observation matrixA(x ) is of maximal Frobenius norm.



Chapter 3

Classic algorithms for computing
optimal designs

When the regression regionX is �nite, or when the support pointsx 1; : : : ; x s are given,
the optimal experimental design problem reduces to �nd the vector of weightsw . This
arises in many practical situations, and in particular for the problem of optimal monitoring
in networks that we present in the second part of this thesis. In the more general case
whereX is a compact region, many authors have proposed to solve a discretized version
of the problem, by selecting a large (but �nite) number of sample points in the regression
region. A good motivation for this discretization is that the optimization problem is usually
convex with respect tow . Hence, if we ignore the optimization step over the support points,
any local optimum is in fact a global optimum. This remarkable property is at the origin
of several algorithms which converge to the optimal design vectorw . In this chapter, we
study the Fedorov-Wynn exchange algorithm, a class of multiplicative algorithms, and the
semide�nite programming (SDP) formulations forE� ; A� ; D� andT� optimality.

In this chapter and the following ones, we associate the regression regionX with [s].
Hence, every variable that was indexed byx 2 X will now be indexed byi 2 [s]. Similarly,
every variable depending on the design� will now be denoted as a function ofw . For
example, the observation from thei th experiment is

y i = A i � + " i ;

and the information matrix reads

M (w) =
sX

i =1

wi AT
i A i :

3.1 Federov-Wynn �rst order algorithm

Federov [Fed72] and Wynn [Wyn70] have described independently a method to compute
D� optimal designs, inspired from the Kiefer-Wolfowitz theorem 2.4.2. The idea of this

51
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algorithm is to start from an arbitrary designw (0) and to move at each step in the direction of
the design that is concentrated on thei th experiment, wherei is the index which maximizes
traceA i M (w)� AT

i . More precisely, the following operation is performed at thekth step of
the algorithm:

w ( k ) = (1 � � k)w ( k � 1) + � kei ; where i 2 argmax
i 2 [s]

traceA i M (w)� AT
i :

In the latter expressionei is the i th standard unit vector ofRs, and � k is an appropriate
sequence of step sizes. This algorithm was then generalized to a wider class of information
functions� that are su�ciently regular by Atwood [Atw76, Atw80]. This includes the class
of � p� criteria forK T � , when the optimal design is such thatM (w) is non singular, and
we restrict our discussion to this case.

This algorithm is in fact a feasible descent method: At each step, the designw is moved
in the directionw 0 � w , wherew 0 is a feasible design for which the directional derivative
� 0

p;K (w ; w 0) is maximal (� 0
p;K (w ; w 0) denotes the directional derivative of� p[QK (w )] at

w , in the direction ofw 0 � w ). By linearity of the derivative, we have:

� 0
p;K (w ; w 0) =

X

i

w0
i �

0
p;K (w ; ei );

where� 0
p;K is the directional derivative in the direction of an atomic design, as de�ned

in (2.22). Hence, a simple choice forw 0 is:

w 0 = arg max
vj

P
i

vi =1

X

i

vi � 0
p;K (w ; ei ) = ej ; where j = argmax

i 2 [s]
� 0

p;K (w ; ei ):

The general Fedorov-Wynn algorithm follows. Its stopping criterion directly comes from the
general equivalence theorem 2.4.5.

Algorithm 3.1.1 Fedorov-Wynn �rst order algorithm
Set a precision� > 0
Let w (0) be a design such thatM (w (0) ) is nonsingular.
k  0
repeat

k  k + 1
Find i k = argmax i 2 [s] � 0

p;K (w ( k ) ; ei ):
Choose� k 2 [0; 1] and constructw ( k ) = (1 � � k )w ( k � 1) + � kei k .

until � 0
p;K (w ( k ) ; ei ) � �

Classical stepsizes from literature on the the feasible direction methods can be used.
Fedorov [Fed72] proposed the following rules:

(i ) lim k!1 � k = 0;
P 1

k=1 � k = 1 ;

(ii ) � k = argmin �> 0 � p(QK (w ( k )
� )) ; where w ( k )

� = (1 � � )w ( k � 1) + � ei k ;

(iii ) � k =

(
� k� 1; if � p[QK (w ( k )

� k � 1
)] � � p[QK (w ( k � 1) )]

� k� 1=;  > 1 otherwise.
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The convergence of this algorithm is proved in [WW78] for the rules(i ) and(ii ). Another
proof for the rule(ii ) is presented in [Atw80]. Cook and Fedorov claim [CF95] that the
convergence of the algorithm for the three above rules on the step sizes is standard, without
giving a proof. We also indicate that Richtarik [Ric08] recently proposed a Fedorov-Wynn�
type algorithm with speci�ed steplengths� k , for which it is guaranteed that a� � approximate
solution is returned afterO(1=� ) iterations.

An important property of the Fedorov-Wynn�type algorithms is the following. By rewrit-
ing the update rule ofw as:

w ( k ) = (1 � � k)
�
w ( k � 1) +

� k

1 � � k
ei k

�
;

we see that the information matrixM (w ( k ) ) can be written as:

M (w ( k ) ) = (1 � � k)
�
M (w ( k � 1) ) +

� k

1 � � k
A i k AT

i k

�
:

We usually havel i << m , and so the latter formula is alow-rankupdate of the information
matrix. Therefore, much computational saving can be obtained by using the Sherman-
Morrison formula to update the inverse ofM (w), which is often required to evaluate the
� 0

p;K (w ( k ) ; ei ). In some situations, it can be su�cient to compute low rank updates of the
LU decomposition ofM (w).

We point out that for the sequence of step sizes� k = (1 + k)� 1 (which satis�es
the rule (i )), the algorithm can be interpreted as a sequential algorithm for constructing
non-normalizeddesigns: At each step of the algorithm, a new measurement is added on
the experiment which maximizes the directional derivative� 0

p;K (w ( k ) ; ei ). The step sizes
� k = (1 + k)� 1 mimics this sequential procedure while keeping the designs normalized (i.e.
P

i w ( k ) = 1). This was proposed by Fedorov [Fed72] for the construction ofD� optimal
designs. A re�nement of this sequential procedure is possible: at each step, the experimenter
has both the possibility to add a �good� measurement point (corresponding to the largest
value of the derivative) and to remove a �bad� one (corresponding to the small value of the
derivative). This procedure is known as theFedorov Exchange algorithm. One can further
de�ne forward and backward excursions, wheren+ new measurement points are added and
n� are deleted, as in Mitchell [Mit74].

3.2 Multiplicative weight updates

Multiplicative algorithms were proposed in 1976 by Titterigton to compute the weights
of the D� optimal design [Tit76] (for the full vector� ). The idea is to multiply, at each
step, every coordinatewi of the current designw ( t ) by a factor which is proportional to the
derivative

@log detM (w)
wi

�
�
�
�
�
w= w ( t )

= trace A i M (w ( t ) )� 1AT
i :
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At each step, the normalization factor is simply

sX

i =1

w(t )
i traceA i M (w ( t ) )� 1AT

i = trace
�
M (w ( t ) )� M (w ( t ) )

�
= trace I = m;

such that the iterations are:

8i 2 [s]; w(t+1)
i = w(t )

i
traceA i M (w ( t ) )� 1AT

i

m
: (3.1)

Titterington proved in [Tit76] that the sequence of determinantsdetM (w ( t ) ) generated
by this sequence is nondecreasing, and converges to the optimal value of theD� criterion.
He also proposed [Tit78] a variant of the form:

8i 2 [s]; w(t+1)
i = w(t )

i
traceA i M (w ( t ) )� 1AT

i � �
m � �

; (3.2)

which is faster than the iterations (3.1) in practice, and conjectured the monotonic behaviour
of the sequence of determinants for� = 1. Under a slightly di�erent setting, Dette,
Pepelyshev and Zhigljavsky [DPZ08] proved the monotonicity ofdetM (w ( t ) ), for iterations
of the form (3.2), with a dynamic parameter� (t ) instead of� . The conjecture was �nally
resolved in 2010 by Yu [Yu10b].

A general class of multiplicative algorithms was proposed in 1978 by Silvey, Titterington
and Torsney [STT78], for the� � optimal design problem:

8i 2 [s]; w(t+1)
i = w(t )

i
di (w ( t ) )�

P
j 2 [s] w(t )

j dj (w ( t ) )�
; (3.3)

where di (w ( t ) ) = @�[ M (w)]
wi

�
�
�
w= w ( t )

and � is a power parameter in]0; 1]. For the

A� optimal design problem, the monotonicity of the sequence� A [M (w ( t ) )] was proved
by Torsney [Tor83] for the power parameter� = 1=2. Yu proved recently [Yu10a] the con-
vergence of this general class of multiplicative algorithms for the design criteria�[ M (w)]
such thatM 7! � �( M � 1) is concave (with respect to Löwner ordering). This includes as
a special case the� p� optimal design problem forK T � , whenp 2 [� 1; 0] (in particular, for
A� andD� optimality).

The di�erent versions of the multiplicative weight updates are presented in a uni�ed way
in Algorithm 3.2.1, for the� p-optimal design problem forK T � . The stopping criterion is
based on the general equivalence theorem 2.4.4, and we have used the fact that for every
designw ; we have

P
i 2 [s] w(t )

i di (w ( t ) ) = trace QK (w ( t ) )p.

We also point out that forp = � 1 (A� optimality), the derivative of the criterion
� A [QK

�
M (w)

�
] takes the simple form

di (w ( t ) ) = kA i M (w ( t ) )� K k2
F :
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In particular, forc� optimality, we obtain:

di (w ( t ) ) = kA i M (w ( t ) )� ck2:

For the case ofE� optimality, the criterion is not di�erentiable in general, but a subgradient
is given by

di (w ( t ) ) = kA i M (w ( t ) )� K vk2;

wherev is an eigenvector associated to the largest eigenvalue ofK T M (w ( t ) )� K .

Algorithm 3.2.1 Titterington-type multiplicative algorithm
Set a precision� > 0
Choose a power parameter�
Let w (0) be a design such thatM (w (0) ) is nonsingular.
t  0
repeat

t  t + 1
for i 2 [s] do

d(t )
i  trace A i M (w ( t ) ) � 1KQ K (w ( t ) )p+1 K T M (w ( t ) ) � 1AT

i
end for
for i 2 [s] do

Choose an acceleration parameter� (t ) .

w(t+1)
i = w(t )

i

�
d( t )

i

� �
� � ( t )

P
j 2 [s]

w( t )
j

�
d( t )

j

� �
� � ( t )

end for
until maxi 2 [s] d(t )

i � (1 + � )
P

i 2 [s] w(t )
i d(t )

i

3.3 Mathematical programming approaches

In this section, we review the linear programming (LP), semide�nite programming (SDP),
and determinant maximization (MAXDET) formulations that have been proposed to solve
some optimal experimental design problems.

When Pukelsheim have proved the general equivalence theorem 2.4.4 for any infor-
mation function that is nonnegative, positively homogeneous and concave, he incidentally
gave a dual formulation of theE� optimal design which is nothing but a semide�nite pro-
gram [Puk80]. However, this feature does not seem to have been noticed at this period,
probably because the semide�nite programming theory and algorithms were still at a very
early stage of their development. The SDP approach to optimal experimental design was
then �rediscovered� by Vandenberghe, Boyd and Wu in 1999 [VBW98], who were able
to formulate semide�nite programs for theE� and A� optimal design problems, and a
MAXDET problem for theD� optimal design (for the full parameter� ). A review of these
formulations is presented by Fedorov and Lee [FL00]; another one is available in Chapter 7.5
of Boyd and Vandenberghe [BV04].
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Recently, Harman and Jurík [HJ08] showed that the Elfving theorem 2.4.1 yields a linear
programming formulation of thec� optimal design. On the other hand, thec� optimal
design problem also admits a semide�nite programming formulation which was studied by
Qi [Qi09]. In the analysis of his multiplicative-low rank update algorithm, Richtarik [Ric08]
pointed out the equivalence between the latter LP and SDP approaches, and noticed that a
rank 1 solution of the SDP always exist. We will extend this result of existence of low rank
solutions to a wider class of semide�nite programs in Chapter 4.

3.3.1 E-optimality

The E� optimal design for the full parameter� aims at maximizing the smallest eigen-
value of the information matrixM (w). We will make use of the characterization of the
smallest eigenvalue of a symmetric matrix by Rayleigh-Ritz quotients:M 2 Sm :

� min (M ) = min
v2 Rm ; v6= 0

vT M v
vT v

:

The latter expression implies that for every scalart � � min (M ) and for all vectorv 2 Rm ;

vT M v � t vT v:

This can be rewritten as8v; vT (M � tI )v � 0, or equivalently:M � tI : Similarly, if
t > � min (M ), there must exist a vectorv0 such thatv0

T (M � tI )v0 < 0, and M � tI .
This proves:

8M 2 Sm ; � min (M ) = max
t2 R

t (3.4)

s.t. M � tI :

Thanks to this SDP formulation of the smallest eigenvalue of a symmetric matrix, and by
associativity of themax operator, we can formulate theE� optimal design problem (2.17)
as:

max
t;w

t (3.5)

s.t. M (w) � tI
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0:

In fact, the more generalE � optimal design problem for the estimation ofK T � can also
be expressed as a semide�nite program, by substitutingKK T to I in the right hand side of
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the linear matrix inequality of Problem (3.5):

max
t;w

t (3.6)

s.t. M (w) � tKK T

sX

i =1

wi = 1; 8 i 2 [s]; wi � 0:

We recall that the optimal designw must lie in the feasibility cone�( K ), which means that
the range ofK must be included in that ofM (w). This, of course, is automatically implied
by the linear matrix inequalityM (w) � tKK T of Problem (3.6), in accordance with our
discussion following Equation (2.15).

We show below that the Lagrangian dual of theE� optimality SDP (3.6) already ap-
peared in Pukelsheim [Puk80], as a special case of his duality theorem. For an information
function� that is nonnegative onS+

m , positive onS++
m , positively homogeneous and concave,

its polar function is de�ned as:

� � (X ) = inf
Z � 0

hZ; X i
�( Z )

:

We give below a version of Pukelsheim's duality theorem for the case in whichX is �nite:

Theorem 3.3.1 (Duality theorem [Puk80]).

sup �( QK (w )) = inf
X � 0

1=� � (K T XK )

s: t : w 2 �( K ) s: t : hAT
i A i ; X i � 1 (8i 2 [s]):

Now, for� = � E = � min (�), it is easy to see that� �
E (X ) = trace X , and the expression

at the right hand side of the equality sign in Theorem 3.3.1 is the inverse of

max
X � 0

hKK T ; X i (3.7)

s: t : hAT
i A i ; X i � 1 (8i 2 [s]);

which is a semide�nite program. Its dual is:

min
� � 0

sX

i =1

� i (3.8)

s.t.
sX

i =1

� i AT
i A i � KK T :

The Slater condition holds for the pair of problems (3.7) and (3.8), because they are both
strictly feasible (under the assumption thatK T � is estimable). This means that strong
duality holds, and these programs share the same optimal value. Finally, we can see that the
inverse of the optimal value of Problem (3.8) coincides with the optimum of Problem (3.6),
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thanks to the normalizationt = 1P
i

� i
, w = t� .

3.3.2 D-optimality

A D� optimal design for the full parameter� maximizes the determinant of the infor-
mation matrixM (w). The problem of maximizing a determinant under some linear matrix
inequality (LMI) constraints has been studied by Vandenberghe, Boyd and Wu [VBW98].
They showed that this class of problems can be considered as a generalization of semidef-
inite programs and give an interior point algorithm for their resolution. The MAXDET
formulation of theD� optimal design ( for the full parameter� ) is:

max
w

log detM (w) (3.9)
sX

i =1

wi = 1; 8 i 2 [s]; wi � 0;

where the logarithm in the objective function ensures the convexity of the criterion. The
dual of this problem is of particular interest:

max
W � 0

log detW (3.10)

hAT
i A i ; Wi � m; 8 i 2 [s]; wi � 0:

Under the generic assumption that the full vector� is estimable, i.e. that there is a design
w such thatM (w) has full rank, strong duality holds between Problems (3.9) and (3.10)
(Slater's condition is ful�lled), and the complementary slackness relation yields:

wi (hAT
i A i ; Wi � m) = 0 :

In the single-response case (A i = a i
T ), the dual problem (3.10) can be interpreted as �nding

the minimal-volume ellipsoid centered at the origin which contains the pointsa1; : : : ; as.
The complementary slackness relation further indicates that the support of theD� optimal
design consists in experiments whose regression vector lies on the surface of this minimal
ellipsoid (cf. Figure 3.1).

3.3.3 A-optimality

An A� optimal design problem forK T � minimizes

c1
T M (w)� c1 + : : : + cr

T M (w)� cr ;
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Figure 3.1: This �gure is extracted from [BV04]. It shows the geometric interpretation of the
D � optimal design for single-response experiments. The origin is marked with a cross and the
regression vectorsa1 ; : : : ; as are indicated with circles. TheD � optimal design uses the two
measurement vectors indicated with solid circles. Since the corresponding regression vectors are
linearly independent, it follows from Theorem 2.4.6 that theD � optimal design puts equal weights
w1 = w2 = 0 :5 on each of them. The ellipse corresponds to the minimal-volume ellipsoid centered
at the origin and that contains all the measurement points.

wherec1; : : : ; cr denote the columns ofK . Each term of this sum can be bounded from
above thanks to a linear matrix inequality, by using the Schur complement lemma:

t i � c1
T M (w)� c1 ()

 
M (w) ci

ci
T t i

!

� 0:

This property allows one to formulate theA� optimal design problem (2.18) as a semide�nite
program:

min
w;t

rX

j =1

t j (3.11)

s: t :

 
M (w) cj

cj
T t j

!

� 0; j 2 [r ];

sX

i =1

wi = 1; 8 i 2 [s]; wi � 0:

This was �rst noticed by the authors of [VBW98] in the case where the full parameter�
is of interest, i.e.K = I , r = m, and ci = ei (the i th standard unit vector ofRm ).
An alternative formulation involving an auxiliary matrix variableY, but only one LMI was
proposed by Fedorov and Lee [FL00]. We extend their formulation to the case in which
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K T � is of interest:

min
w; Y 2 Sr

trace Y (3.12)

s: t :

 
M (w) K

K T Y

!

� 0;

sX

i =1

wi = 1; 8 i 2 [s]; wi � 0:

We point out that the formulation proposed by the authors of [AS08] turns out to be
valid only if every information matrixM i = AT

i A i is diagonal: their SDP is analogous
to Problem (3.12), butY is forced to be a diagonal matrix (Y = Diag( y )). Contrarily
to what they claim, this does not yieldA� optimal designs: the positivity of the Schur
complementDiag(y ) � K T M (w)� K impliestrace(Diag(y )) � traceK T M (w)� K , but
there are simple examples where this inequality is strict at the optimum.

3.3.4 c-optimality

Single-response case: LP approaches

In presence of scalar observations (A i = a i
T ), Elfving's geometric characterization of

c� optimality (Theorem 2.4.1) yields a linear program. Finding the optimum indeed reduces
to computing the intersection of the vectorial straight line directed byc and the boundary
of the polyhedron with vertices� a i (see Figure 2.2):

max
� ;t

t (3.13)

s: t : tc =
X

k

a i � i

X

k

j� k j
| {z}
wk

� 1:

Elfving's Theorem further indicates that the optimal value of the criterioncT M (w)� c
is t � 2. After the change of variable� = 1

t , � = � � , the dual of this problem is:

max
x 2 Rm

cT x (3.14)

s: t : ja i
T x j � 1; i 2 [s]:

General case: SDP approaches

A c-optimal design is a particular case of aE� (or A� ) optimal design, forr = 1.
Hence, we obtain the following formulations for thec� optimal design problem: from the
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E� optimality SDP (3.6) we get

max
t;w

t (3.15)

s.t. M (w) � tccT

sX

i =1

wi = 1; 8 i 2 [s]; wi � 0:

We also obtain its dual in the form of Problem (3.7):

max
X � 0

cT X c (3.16)

s: t : hAT
i A i ; X i � 1 (8i 2 [s]):

The A� optimality SDP (3.11) yields an alternative formulation:

min
w; � 2 R

� (3.17)

s: t :

 
M (w) c

c �

!

� 0;

sX

i =1

wi = 1; 8 i 2 [s]; wi � 0;

which reduces to Problem (3.15) after the change of variablet = 1
� and the reformulation

of the LMI by the Schur complement lemma.

Richtarik [Ric08] and Qi [Qi09] noticed independently that the Elfving theorem (in the
single-response setting) implies that a solution of rank one of Problem (3.16) always ex-
ists. The search for a solution of the formX = xx T indeed reduces to Problem (3.14)
(up to a square in the objective function which can be removed, since, ifx is a solution
of Problem (3.14), so is� x ). We will see in Chapter 5 that this property is also valid
in the generalmultiresponsecase. An important consequence is that the semide�nite pro-
gram (3.16) reduces to a Second order cone program (SOCP), which we study in Chapter 5.
This contradicts Qi's claim [Qi09], according to which computing the best rank-one solution
of Problem (3.16) is a nonconvex problem which is extremely di�cult to solve.

3.3.5 Flexibility of mathematical programming approaches

In general, the mathematical programming approaches studied in this section are slower
than the specialized algorithms of Section 3.2 (a comparative study of the algorithms is done
in Chapter 6). However, we point out that the SOCP approaches, which will be studied in
Chapter 5, are competitive with the specialized algorithms in many situations. But the great
advantage of mathematical programming formulations resides mostly in their �exibility, and
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the possibility to add �without e�ort� new constraints in the problem. We now give a few
examples of these possibilities.

Multiple resource constraints

Elfving studied the case in which the available experiments have di�erent costs [Elf52].
If the cost of thei th experiment ispi , and the experimenter disposes of a budgetb, the
constraint becomes:

sX

i =1

wi pi � b:

Now,wi can not be interpreted as thepercentage of experimental e�ort to spend on thei th

experimentanymore. Instead, the quantitywi
pi
b should be seen as the percentage of budget

to allocate to the experimenti . Elfving noticed that the change of variablew0
i = wi

pi
b brings

the problem back to the previous situation, and is equivalent to a scaling of the observation
equations (2.3).

Consider now the more general case in whichw is a control variable for the experiments,
such that the information matrix takes the standard formM (w) =

P s
i =1 wi AT

i A i for some
observation matricesA i . We assume thatw is constrained by several linear inequalities

Rw � b; (3.18)

whereb 2 Rn ; R is a n � s matrix and the inequality is elementwise. Contrarily to the
previous situation with a singlebudget constraint, there is no simple change of variable which
brings the problem back to the standard case (

P
i wi = 1), because we do not know which

inequalities will be saturated in (3.18) at optimality. This constrained problem has been
studied by Cook and Fedorov [CF95], who proposed an extension of the Fedorov exchange
algorithm (cf. Section 3.1). However, this algorithm exhibits a very slow convergence in
practice.

This constrained framework arises in the problem of optimally setting the sampling rates
of a measuring device on a network (see Part II): here,w is the vector of the sampling rates
of the monitoring tool at di�erent locations of the network, and the constraintRw � b
re�ects the fact that only a certain number of packets should be sampled at each router.
This multiple resource constraintcan be added in any of the previous SDPs without any
reformulation e�ort. For example, Singhal and Michailidis [SM08] considered the following
resource constrained SDP forA� optimality:

min
w;t

rX

j =1

t j (3.19)

s: t :

 
M (w) cj

cj
T t j

!

� 0; j 2 [r ];

Rw � b; 8 i 2 [s]; wi � 0:
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Bounding the eigenvalues

Harman, Jurík and Trnovská [HJT07] have proposed to add a lower bound on the
minimum eigenvalue of the information matrix (� min (QK (w )) � � 0). Geometrically, this is
equivalent to impose an upper bound on the diameter of the con�dence ellipsoids (2.11),
or to guarantee that theE� criterion is at least� 0. This constraint guards us against the
case in which one of the quantities� i = ci

T is badly estimated. It is of particular interest
for the D� optimal design problem, where the con�dence ellipsoids are of minimal volume
at the optimum, but can theoretically have an arbitrarily large diameter. In practice, a way
to introduce this constraint is to impose the LMI

M (w) � � 0KK T

on the design (see Section 3.3.1).

Avoiding �concentrated designs�

Vandenberghe, Boyd and Wu [VBW98] have described another useful constraint that can
be imposed on the model: The goal is to avoid a large fraction of the experimental e�ort,
say90%, of being concentrated on a small number of experiments, say10%of the possible
observations. This �90-10� constraint has the e�ect to spread out the measurements over
the possible experiments:

bs=10cX

i =1

w[i ] � 0:9;

wherew[i ] is the i th largest component ofw . The authors of [VBW98] show that this
constraint is satis�ed if and only if there exists a vectorx 2 Rs and a scalart such that:

� s
10

�

t +
sX

i =1

x i � 0:9;

t + x i � wi ; i 2 [s];

x � 0:

This constraint can be added in theE� ,A� ,D � or c� optimal design problem formulations
studied in this section .
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Chapter 4

A Low rank reduction Theorem in
Semide�nite Programming

In this chapter �which essentially recalls the work of [Sag09a]� we study the class of
semide�nite packing problems, which encompasses as special cases some SDPs encountered
in Section 3.3. The main result of this chapter is that these semide�nite packing problems
admit a solution which is of low rank. A a consequence, we will see in Chapter 5 that thec�
andA� optimal design problems reduce to a Second Order Cone Program (SOCP) which is
computationally more tractable than the initial SDP; that theE� optimal design problem
for K T � can be solved e�ciently by a low-rank SDP solver whenr is small (r is the number
of columns ofK , i.e. the number of linear functions of� to be estimated); and that the
D� optimal design problem for the full parameter� (K = I ) reduces to the maximization
of a geometric mean subject to SOCP constraints, which is computationally more tractable
than the initial MAXDET problem.

Semide�nite packing problems were introduced by Iyengar, Phillips and Stein [IPS05].
They showed that these arise in many applications such as relaxations of combinatorial
optimization problems or maximum variance unfolding, and gave an algorithm to compute
approximate solutions, which is faster than the commonly used interior point methods.
The problems of this class, which are the SDP analogs to the packing problems in linear
programming, can be written as:

max hC; X i (PPCK )

s.t. hM i ; X i � bi ; i 2 [s];

X 2 S+
m ;

whereC � 0, andM i � 0; i 2 [s]. Our result states that when the matrixC is of rankr ,
Problem (PPCK ) has a solution that is of rank at mostr (Theorem 4.1.2). In particular, when
r = 1, the optimal SDP variableX can be factorized asxx T , and we show that �nding
x reduces to a Second-Order Cone Program (SOCP). In this chapter, we will discuss the
signi�cance of our rank reduction theorem for the relaxations of combinatorial optimization

65
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problems that are presented in [IPS05] (the hypothesis on the rank of the matrixC appears
to be very restrictive). The consequences for the computation of optimal experimental
design are the object of Chapter 5. In Section 4.2, we will extend our result to a wider class
of semide�nite programs (Theorem 4.2.2), in which not all the constraints are ofpacking
type. The proofs of the theorems of this chapter are given in Section 4.3.

Related work Solutions of small rank of semide�nite programs have been extensively stud-
ied over the past years. Barvinok [Bar95] and Pataki [Pat98] discovered independently that
any SDP withs constraints has a solutionX � whose rank is at most

r � =

$ p
8s + 1 � 1

2

%

;

whereb�c denotes the integer part. This was one of the motivations of Burer and Monteiro
for developing the SDPLR solver [BM03], which searches a solution of the SDP in the form
X = RRT , whereR is a n � r � matrix. The resulting problem is non-convex, and so the
augmented Lagrangian algorithm proposed in [BM03] is not guaranteed to converge to a
global optimum. However, it performs remarkably well in practice, and some conditions
which ensure that the returned solution is an optimum of the SDP are provided in [BM05].
Our result shows that for a semide�nite packing problem in which the matrixC has rank
r , one can force the matrixR to be of sizen � r (rather thann � r � ), which can lead to
considerable gains in computation time whenr is small.

We point out that the ratio between the optimal value of Problem (PPCK ) and the value
of its best solution of rank one has been studied by Nemirovski, Roos, and Terlaky [NRT99].
They show that the valuev� of the SDP and the valuev�

1 of its best rank-one solution satisfy:

v� � v�
1 �

1
2 ln(2s� )

v� ; where� = min( s;max
i 2 [s]

rank M i ): (4.1)

This ratio can be considerably reduced in particular con�gurations, but to the best of our
knowledge, the fact that the gap in (4.1) vanishes when the matrixC in the objective
function is of rank1 is new, except in the particular case in which everyM i is of rank1,
too [Ric08].

4.1 A rank reduction theorem

4.1.1 Main result

We start with an algebraic characterization of the semide�nite packing problems that
are feasible and bounded.
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Theorem 4.1.1. Problem(PPCK ) is feasible if and only if everybi is nonnegative. Moreover
if Problem(PPCK ) is feasible, then this problem is bounded if and only if the range ofC is
included in the range of

P
i M i .

The reader should note that the range inclusion condition in Theorem 4.1.1 is in fact
equivalent to the feasibility of the Lagrangian dual of Problem (PPCK ):

min
� � 0

� T b (DPCK )

s.t.
X

i

� i M i � C:

The main result of this chapter follows:

Theorem 4.1.2. We assume that the conditions of Theorem 4.1.1 are ful�lled, so that
Problem(PPCK ) is feasible and bounded. Ifrank C = r , then the semide�nite packing
problem(PPCK ) has a solution which is a matrix of rank at mostr .

Under a few additional conditions, we can also bound the rank of every solution. For a
proof of the next statement, we refer to the last page of this chapter (proof of the second
part of Theorem 4.2.2, for the caseRi = 0 and h i = 0 (i 2 f 0; : : : ; sg); note that in this
case the condition

P s
i =1 M i � 0 is equivalent to the strict dual feasibility).

Theorem 4.1.3. We assume that Problem(PPCK ) is feasible,C 6= 0 and
P s

i =1 M i � 0.
Then, every solutionX of Problem(PPCK ) must be of rank at mostn � r + r , where
r := min

i 2 [s]
rank M i .

A consequence of Theorem 4.1.2 is that when the matrix in the objective function is
of rank 1 (C = ccT ), the computation of a solutionX of Problem (PPCK ) reduces to the
computation of a vectorx such thatX = xx T . The next result shows that this can be
done very e�ciently by a Second Order Cone Program (SOCP).

Corollary 4.1.4. We assume that the conditions of Theorem 4.1.1 are ful�lled, and that
C = ccT for a vectorc 2 Rm (i.e. rank C = 1). Then, Problem(PPCK ) reduces to the
SOCP:

max
x 2 Rm

cT x (4.2)

s.t. kA i x k2 �
q

bi ; i = 1 2 [s];

where the matricesA i are such thatM i = AT
i A i . Moreover, ifx is any optimal solution of

Problem(4.2), then X = xx T is an optimal solution of Problem(PPCK ), and the optimal
value of (PPCK ) is (cT x )2.

Proof. The SOCP (4.2) is simply obtained from (PPCK ) by substitutingxx T from X and
AT

i A i from M i . The objective functionhC; X i becomes(cT x )2, and we can remove the
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square by noticing thatcT x � 0 without loss of generality, since ifx is optimal, so is
� x :

In fact, the proof of Theorem 4.1.2 relies on the projection of Problem (PPCK ) on an ap-
propriate subspace, which lets the reduced semide�nite packing problem be strictly feasible,
as well as its dual. This reduction is not only of theoretical interest, since in some cases it
may yield some important computational savings. Therefore, we next state this result as a
proposition.

Let I 0 := f i 2 [s] : bi = 0g andI := [ s] n I 0. Let the columns of them � m0 matrix U
form an orthonormal basis ofIm(

P
i 2 [s] M i ), and the columns of them0 � m0 matrix V form

an orthonormal basis ofKer(UT P
i 2I 0

M i U): We further de�neC0 := ( UV)T C(UV) 2 S+
m0

andM 0
i := ( UV)T M i (UV) 2 S+

m0 (for i 2 I ), and we consider the reduced problem

max
Z 2 S+

m 0

hC0; Z i (P0
PCK )

s.t. hM 0
i ; Z i � bi ; i 2 I :

Proposition 4.1.5. We assume that the conditions of Theorem 4.1.1 are ful�lled, so that
Problem(PPCK ) is feasible and bounded. Then, the following properties hold:

(i) Problem(P0
PCK ) is strictly feasible, i.e.9Z � 0 : 8i 2 I ; hM 0

i ; Z i < bi ;

(ii) The Lagrangian dual of(P0
PCK ) is strictly feasible, i.e.9� > 0 :

P
i 2I � i M

0
i � C0;

(iii) If Z is a solution of Problem(P0
PCK ), thenX := ( UV)Z(UV)T is an optimal solution of

Problem(PPCK ) (which of course satis�esrank X � rank Z andhC; X i = hC0; Z i ).

4.1.2 Relation with combinatorial optimization

SDP relaxations of combinatorial optimization problems have motivated the authors
of [IPS05] to study semide�nite packing problems. Hence, we discuss the signi�cance of
our result for this class of problems in this section.

Semide�nite programs have been used extensively to formulate relaxations of NP-hard
combinatorial optimization problems after the work of Goemans and Williamson on the
approximability of MAXCUT [GW95]. These SDP relaxations often lead to optimal solutions
of the related combinatorial optimization problems whenever the solution of the SDP is of
small rank. As shown by Iyengar et. al. [IPS05], SDP relaxations of many combinatorial
optimization problems can be cast as semide�nite packing programs. Our result therefore
identi�es a subclass of combinatorial optimization problems which are solvable in polynomial
time. Unfortunately, this promising statement only helped us to identify trivial instances
so far. For example, the MAXCUT semide�nite packing problem [IPS05] yields an exact
solution of the combinatorial problem whenever it has a rank1 solution. The matrixC in
the objective function of this SDP is the Laplacian of the graph, and so it is known that

rank C = N � �;
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whereN is the number of vertices and� is the number of connected components in the
graph. Our result therefore states that if a graph ofN vertices hasN � 1 connected
components, then it de�nes a MAXCUT instance that is solvable in polynomial time. Such
graphs actually consist in a pair of connected vertices, plusN � 2 isolated vertices, and the
related MAXCUT instance is trivial.

Another limitation for the application of our theorem in this �eld is that most semide�-
nite packing problems arising in combinatorial optimization (including but not limited to the
Lovász# function SDP [Lov79] and the related Szegedy number SDP [Sze94], the vector
colouring SDP [KMS98], the sparsest cut SDP [ARV09] and the sparse principal compo-
nents analysis SDP [dAEJL07]) can be written in the form of (PPCK ), with an additional
trace equality constrainttrace(X ) = 1 . In fact, we can show that if such an �equality
constrained semide�nite packing problem� is strictly feasible, then it is equivalent to the
following �classical� semide�nite packing problem:

max hC + � I ; X i � � (4.3)

s.t. hM i ; X i � bi ; i 2 [s];

traceX � 1;

X � 0;

where� is any scalar larger thanj� � j, where� � is the optimal Lagrange multiplier associated
to the constrainttrace(X ) = 1 (we omit the proof of this statement which is of secondary
importance). SinceC + � I is a full rank matrix, our result does not seem to yield any
valuable information for this class of problems.

4.2 Extension to �combined� problems

The proof of our main result also applies to a wider class of semide�nite programs, which
can be written as:

sup
X;Y; �

hC; X i + hR0; Y i + h 0
T � (PCMB )

s.t. hM i ; X i � bi + hRi ; Y i + h i
T � ; i 2 [s];

X 2 S+
m ; Y 2 S+

p ; � 2 Rq;

whereevery matrix M i and C are positive semide�nite, while the Ri are arbitrary
symmetric matrices. The vectorsh i are inRq. We denote byH the q� s matrix formed
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by the columnsh 1; : : : ; h s. The Lagrangian dual of Problem (PCMB ) is:

inf
� � 0

bT � (DCMB )

s.t.
sX

i =1

� i M i � C;

R0 +
sX

i =1

� i Ri � 0:

h 0 + H � = 0:

We have seen in Section 4.1.1 that the feasibility of both the primal (PPCK ) and the
dual (DPCK ) is su�cient to guarantee that Problem (PPCK ) has a solution of rank at
most r := rank C. For combinedproblems however, the feasibility of the couple of pro-
grams (PCMB )�( DCMB ) is not su�cient to guarantee the existence of a solution(X; Y; � ) of
Problem (PCMB ) in whichrank X � r . We give indeed an example (Example 4.2.3) where
the optimum in Problem (PCMB ) is not even attained. However, we show in the next theorem
that an asymptotic result subsists. Moreover, we shall see in Theorem 4.2.2 that a solution
in whichX is of rank at mostr exists as soon as an additional condition holds (strict dual
feasibility). The proof of Theorem 4.2.2 essentially mimics that of Theorem 4.1.2 and is
presented in Section 4.3.2. Theorem 4.2.1 turns out to be a consequence of Theorem 4.2.2
and is proved in Section 4.3.3.

Theorem 4.2.1. We assume that Problems(PCMB ) and(DCMB ) are feasible. Ifrank C = r ,
then there exists a sequence of feasible primal variables(X k ; Yk ; � k)k2 N such thatrank X k �
r for all k 2 N andhC; X k i + hR0; Yk i + h 0

T � k converges to the optimum of Problem(PCMB )
ask ! 1 .

Theorem 4.2.2. We assume that Problem(PCMB ) is feasible, and a re�ned Slater condition
holds for Problem(DCMB ), i.e. there is a feasible dual variable which strictly satis�es the
non-a�ne constraints:

9� � 0 :
X

i

� i M i � C; R0 +
X

i

� i Ri � 0; h 0 + H � = 0:

If rank C = r , then Problem(PCMB ) has a solution(X; Y; � ) in which rank X � r .
Moreover, ifC 6= 0, then every solution(X; Y; � ) of Problem(PCMB ) is such thatrank X �
n � r + r , wherer := min

i 2 [s]
rank M i .



4.2. EXTENSION TO �COMBINED� PROBLEMS 71

As in the previous section, we have a result of reduction to a SOCP, which holds when
C is of rank1, everyRi = 0 andh 0 = 0. Recall thatH denotes the matrix formed by the
columnsh 1; : : : ; h s.

Corollary 4.2.4. Consider the following �combined� semide�nite packing problem:

sup
X 2 Sm ; � 2 Rq

hC; X i (4.5)

s.t. hM i ; X i � h i
T � + bi ; i 2 [s];

X � 0:

Assume thatC = ccT has rank1. If Problem(4.5) and its Lagrangian dual are feasible,
i.e.

(i) 9� 2 Rq : H T � + b � 0;

(ii) 9� � 0 :
P

i � i M i � C; h 0 + H � = 0,

then, Problem(4.5) is bounded, and its optimal value is the square of the optimal value of
the following SOCP:

sup
x 2 Rm ; � 2 Rq

cT x (4.6)

s.t.







"
2A i x

h i
T � + bi � 1

#





2

� h i
T � + bi + 1; i 2 [s];

where the matricesA i are such thatM i = AT
i A i . Moreover, if(x ; � ) is a solution of

Problem(4.6), then(xx T ; � ) is a solution of Problem(4.5), and the optimal value of(4.5)
is (cT x )2.

Proof. Theorem 4.2.1 guarantees the existence of a sequence of feasible variables
(X k ; � k)k2 N in whichX k has rank1, i.e. X k = x k x k

T , andhC; X k i = ( cT x k)2 converges
to the optimum of Problem (4.5). This optimal value is therefore equal to the supremum

Example 4.2.3. Consider the followingcombined semide�nite packing problem:

sup
X 2 S+

2 ; � 2 R2

3
100

��
81 9
9 1

�
; X

�
� � 1 � 3� 2 (4.4)

s.t. 0 � 1 + � 1

X 1;1 � 1 + � 2

X 2;2 � 1 + 3 � 1 + � 2 :

This problem is in the form of (PCMB ) indeed, with C = ccT , c =
p

3
10 [ 9 1]T , h 0 = [ �1 �3] T ;

M 1 = 0 ; M 2 =

�
1 0
0 0

�
; M 3 =

�
0 0
0 1

�
and H =

�
1 0 3
0 1 1

�
:

Problem (4.4) is clearly feasible (e.g. forX = 0 , � = 0), and the reader can verify that� = 1
10 [ 1 27 3]T is

dual feasible (in fact, this is the only dual feasible vector, and hence the dual problem does not satisfy the Slater
constraints quali�cation). The value of the optimum is 31

10 , and can be approached arbitrarily closely for the
sequence of feasible variables(x k x T

k ; � k )k 2 N, where for allk � 0, x k = [
p

3 + k
p

k]T , � k = [ �1 k +2] T ,
while this optimum is not attained by any couple(X; � ) of (bounded) feasible variables.
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of (cT x )2, over all the pairs of vectors(x ; � ) 2 Rm � Rq such that(xx T ; � ) is feasible
for Problem (4.5). As in the proof of Corollary 4.1.4, we notice that if(xx T ; � ) is feasible
for Problem (4.5), so is(( � x )( � x )T ; � ), hence we can remove the square in the objective
function.

The SOCP (4.6) is simply obtained from (4.5) by substitutingxx T from X and AT
i A i

from M i . We also used the fact that for any vectorz and for any scalar� , the hyperbolic
constraint

kzk2
2 � �

is equivalent to the second order cone constraint






"
2z

� � 1

#





2

� � + 1:

4.3 Proofs of the theorems

4.3.1 Results of Section 4.1.1

Proof of Theorem 4.1.1.The fact that Problem (PPCK ) is feasible if and only if everybi is
nonnegative is clear, sinceX = 0 is always feasible in this case andM i � 0; X � 0, implies
hM i ; X i � 0.

Now, we assume that eachbi is nonnegative, and we show that Problem (PPCK ) is
bounded if and only ifIm C � Im

P
i M i . The positive semide�niteness of the ma-

trices M i implies that there exists matricesA i (i 2 [s]) such that AT
i A i = M i , and

[AT
1 ; � � � ; AT

s ][AT
1 ; � � � ; AT

s ]T =
P

i M i . We also consider a decompositionC =
P r

k=1 ck ck
T .

For any factorizationM = AT A of a positive semide�nite matrixM , it is known that
Im M = Im A, and so the following equivalence relations hold:

Im C � Im
X

i

M i () 8 k 2 [r ]; ck 2 Im(
X

i

M i ) = Im([ AT
1 ; � � � ; AT

s ])

() 8 k 2 [r ]; ck 2

 s\

i =1

Ker(A i )

! ?

: (4.7)

We �rst assume that the range inclusion condition does not hold. Relation (4.7) shows
that

9k 2 [r ]; 9h 2 Rm : 8i 2 [s]; A i h = 0; ck
T h 6= 0:

Now, notice thatX = � hh T is feasible for all� > 0, since� hAT
i A i ; hh T i = 0 � bi . This

contradicts the fact that Problem (PPCK ) is bounded, becausehC; X i � � (ck
T h)2; and �

can be chosen arbitrarily large.
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Conversely, if the range inclusion holds, we consider the Lagrangian dual (DPCK ) of
Problem (PPCK ): The range inclusion condition indicates that this problem is feasible, be-
cause it implies the existence of a scalar� > 0 such that �

P
i M i � C (we point out

that a convenient value for� is
P r

k=1 ck
T (

P
i M i )yck ; this can be seen with the help of the

Schur complement lemma). This means that Problem (DPCK ) has a �nite optimal value
OPT � �

P
i bi , and by weak duality, Problem (PPCK ) is bounded (its optimal value cannot

exceedOPT).

Before proving Theorem 4.1.2, we need to show that we can project Problem (PPCK )
on a subspace such that the projected problem (P0

PCK ) and its Lagrangian dual are strictly
feasible (Proposition 4.1.5).

Proof of Proposition 4.1.5.Let I 0; I ; U andV be de�ned as in the paragraph preceding the
statement of the proposition (page 68). Note that every matrixM i can be decomposed as
M i = U ~M i UT for a given matrix~M i , because its range is included in the range of

P
i M i (we

have ~M i = UT M i U). The same observation holds forC, which can be decomposed asC =
U ~CUT (we have assumed the range inclusionIm C � Im

P
i M i ). Hence, Problem (PPCK )

is equivalent to:

max
X � 0

h~C; UT XU i

s.t. h ~M i ; UT XU i � bi ; i 2 [s]:

After the change of variableZ0 = UT XU (Z0 is a positive semide�nite matrix ifX is), we
obtain a reduced semide�nite packing problem

max
Z0 � 0

h~C; Z0i (4.8)

s.t. h ~M i ; Z0i � bi ; i 2 [s]:

By construction, ifZ0 is a solution of (4.8), thenX := UZ0UT is a solution of (PPCK ).
Note that the projected matrices in the constraints now satisfy

P
i

~M i = UT (
P

i M i )U � 0.

We shall now consider a second projection, in order to get rid of the constraints in
whichbi = 0. Note that each constraint indexed byi 2 I 0 is equivalent to imposing that
Z0 belongs to the nullspace of the matrix~M i . Since the columns ofV form a basis of
\ i 2I 0 Ker ~M i , any semide�nite matrixZ0 which is feasible for Problem (4.8) must be of the
form V ZVT for some positive semide�nite matrixZ . Hence, Problem (4.8) reduces to:

max
Z � 0

hV T ~CV; Zi (4.9)

s.t. hV T ~M i V; Zi � bi ; i 2 I :

which is nothing but Problem (P0
PCK ), becauseV T ~M i V = V T UT M i UV = M 0

i and
V T ~CV = C0. By construction, IfZ is a solution of (4.9)� (P0

PCK ), then V ZVT is a
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solution of (4.8), and(UV)Z(UV)T is a solution of the original problem (PPCK ). This
proves the point(iii ) of the proposition.

We have pointed out above that
P

i
~M i � 0. Therefore, there exists a real� > 0

such that �
P

i
~M i � ~C, and �

P
i M 0

i = V T
�
�

P
i

~M i

�
V � V T ~CV = C0. This proves

the strict dual feasibility of Problem (P0
PCK ) (point (ii ) of the proposition). Finally, since

everybi is positive fori 2 I , it is clear that the matrixZ = "I � 0 is strictly feasible for
Problem (P0

PCK ) as soon as" > 0 is su�ciently small. This establishes the point(i ), and
the proposition is proved.

We can now prove the main result of this chapter. In fact, Theorem 4.1.2 can be derived
from the extension to combined problems (Theorem 4.2.2), but this would somehow hide
the fact that the proof is much simpler in the �non-combined case�. Therefore we provide
the proofs of these two similar results separately.

We will �rst show that the result holds when everyM i is positive de�nite, thanks to the
complementary slackness relation. Then, the general result is obtained by continuity. We
point out at the end of this section the sketch of an alternative proof of Theorem 4.1.2 for
the case in whichr = 1, based on the bidual of Problem (PPCK ) and Schur complements,
that shows directly that Problem (PPCK ) reduces to the SOCP (4.2).

Proof of Theorem 4.1.2.We will show that the result of the theorem holds for any semidef-
inite packing problem which is strictly feasible, and whose dual is strictly feasible. Then,
by Proposition 4.1.5, we can say that Problem (P0

PCK ) has a solutionZ of rank at most
r 0 := rank C0, and X := ( UV)T Z(UV) is a solution of the original problem which is of
rank at mostr 0 � r .

So let us assume without loss of generality that (PPCK ) and (DPCK ) are strictly feasible:

8i 2 [s]; bi > 0 and 9� > 0 : �
X

i

M i � C:

The Slater condition is ful�lled for this pair of programs, and so strong duality holds (the
optimal value of (PPCK ) equals the optimal value of (DPCK )), and the dual problem attains
its optimum. In addition, the strict dual feasibility implies that (PPCK ) also attains its
optimum. The pairs of primal and dual solutions(X � ; � � ) are characterized by the Karush-
Kuhn-Tucker (KKT) conditions:

Primal Feasibility: 8i 2 [s]; hM i ; X � i � bi ;

X � � 0;

Dual Feasibility: � � � 0;
sX

i =1

� �
i M i � C;

Complementary Slackness: (
sX

i =1

� �
i M i � C) X � = 0;

8i 2 [s]; � �
i (bi � h M i ; X � i ) = 0 :
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Now, we consider the case in whichM i � 0 for all i , and we choose an arbitrary pair
of primal and dual optimal solutions(X � ; � � ). The dual feasibility relation implies� � 6= 0,
and so

P
i � �

i M i is a positive de�nite matrix (we exclude the trivial caseC = 0). SinceC
is of rankr , we deduce that

rank(
X

i

� �
i M i � C) � n � r:

Finally, the complementary slackness relation indicates that the columns ofX � belong to the
nullspace of(

P
i � �

i M i � C), which is a vector space of dimension at mostn � (n � r ) = r ,
and so we conclude thatrank X � � r:

We now turn to the study of the general case in whichM i � 0. To this end, we consider
the perturbed problems

max hC; X i

s.t. hM i + "I ; X i � bi (P" )

X � 0;

and

min
� � 0

sX

i =1

� i bi ; (D " )

s.t.
sX

i =1

� i (M i + "I ) � C:

where" � 0. Note that the strict feasibility of the unperturbed problems (PPCK ) and (DPCK )
implies that of (P" ) and (D " ) on a neighborhood" 2 [0; "0], "0 > 0. We denote by(X " ; � " )
a pair of primal and dual solutions of (P" )�( D " ).

If " > 0, M i + "I � 0 and it follows from the previous discussion thatX " is of rank at
most r . We show below that we can choose the optimal variables(X " ; � " )"2 ]0;" 0 ] within a
bounded region, so that we can construct a converging subsequence(X " k ; � " k )k2 N; "k ! 0
from these variables. To conclude, we will see that the limit(X 0; � 0) satis�es the KKT
conditions for Problems (PPCK )�( DPCK ), and that X 0 is of rank at mostr .

Let us denote the optimal value of Problems (P" )�( D " ) by OPT("): Since the constraints
of the primal problem becomes tighter when" grows, it is clear thatOPT(") is nonincreasing
with respect to" , so that

8" 2 [0; "0]; OPT("0) � OPT(") � OPT(0):

We have:
� (

X

i

M i + "I ) � C � � (
X

i

M i ) � C;
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and so we can write

h�
X

i

M i � C; X "
E

� h �
X

i

(M i + "I ) � C; X "
E

= � h
X

i

(M i + "I ); X "
E

� OPT(")

� �
X

i

bi � OPT("0)

where the equality comes from the expression ofOPT(") and the latter inequality follows
from the constraints of the Problem (P" ). The matrix �

P
i M i � C is positive de�nite by

assumption and its smallest eigenvalue� 0 is therefore positive. Hence,

� 0 trace X " � h �
X

i

M i � C; X "
E

� � T b � OPT(") � �
X

i

bi � OPT("0):

This shows that the positive semide�nite matrixX " has its trace bounded, and therefore all
its entries are bounded.

It remains to show that the dual optimal variable� " � 0 is bounded. This is simply
done by writing:

8i 2 [s]; bi � "
i � bT � " = OPT(") � OPT(0):

By assumption,bi > 0, and the entries of the vector� " � 0 are bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(X " ; � " k )k2 N that converges, with" k �!

k!1
0, " k > 0. The limit X 0 of this sequence is of

rank at mostr , because the rank is a lower semicontinuous function andrank X " k � r for
all k 2 N. It remains to show thatX 0 is a solution of Problem (PPCK ). The "� perturbed
KKT conditions must hold for allk 2 N, and so they hold for the pair(X 0; � 0) by taking the
limit (the limit of any sequence of positive semide�nite matrices is a positive semide�nite
matrix becauseS+

m is closed). This concludes the proof.

Sketch of an alternative proof of Theorem 4.1.2 when r = 1

Proof. By Proposition 4.1.5, we only need to show that the result holds for the reduced
problem (P0

PCK ), and so we assume without loss of generality that strong duality holds for
all the optimization problems considered below.

Whenr = 1, there is a vectorc such thatC = ccT and the dual problem of (PPCK )
takes the form:

min
� � 0

� T b (4.10)

s.t. ccT �
X

i

� i M i :
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Now, settingt = � T b, and w = �
t , so that the new variablew satis�es w T b = 1,

the constraint of the previous problem becomescct

t �
P

i wi M i . This matrix inequality,
together with the fact that the optimalt is positive, can be reformulated thanks to the
Schur complement lemma, and (4.10) is equivalent to:

min
t2 R;w � 0

t (4.11)

s.t.

 P
i wi M i c
cT t

!

� 0:

w T b = 1:

We dualize this SDP once again to obtain the bidual of Program (PPCK ) (strong duality
holds):

max
� 2 R;Z 2 S+

m +1

� � � 2vT c (4.12)

s.t. hW; M i i � �b i ; i 2 [s]

Z =

 
W v
v T 1

!

� 0:

We notice that the last matrix inequality is equivalent toW � vv T , using a Schur comple-
ment. SinceM i � 0, we can assume thatW = vv T without loss of generality, and (4.12)
becomes:

max
� 2 R;v2 Rm

� � � 2vT c (4.13)

s.t. kA i vk2 � �b i ; i 2 [s];

whereA i is a matrix such thatAT
i A i = M i .

We now de�ne the new variables� =
p

� , andx = v
� , so that (4.13) becomes:

max
x 2 Rm

�

max
�

� � 2 � 2� x T c
�

(4.14)

s.t. kA i x k �
q

bi ; i = 1 2 [s]:

The reader can �nally verify that the value of the max within parenthesis is(cT x )2, and we
have proved that the SDP (PPCK ) reduces to the SOCP (4.2). By the way, this guarantees
that the SDP (PPCK ) has a rank-one solution.

4.3.2 Proof of Theorem 4.2.2

Before we give the proof of Theorem 4.2.2, we need one additional technical lemma,
which shows that one can assume without loss of generality that the primal problem is
strictly feasible, and that the vector space spanned by the vectorsh 0; h 1; : : : ; h s coincides
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with the cone generated by the same vectors. One can consider this lemma as the analog
of Proposition 4.1.5 for combined problems.

Lemma 4.3.1. We assume that the conditions of Theorem 4.2.2 are ful�lled. Then, there
exists a subsetI � [s], as well as matricesC0 � 0 andM 0

i � 0 (i 2 I ), so that the reduced
�combined� semide�nite packing problem

max
Z � 0; Y � 0; �

hC0; Z i + hR0; Y i + h 0
T � s.t. 8i 2 I ; hM 0

i ; Z i � bi + hRi ; Y i + h i
T �

has the same optimal value as(PCMB ) and satis�es the following properties:

(i ) 9(Z 0 � 0; Y 0 � 0; � 0) : 8i 2 I ; hM i ; Z 0i < bi + hRi ; Y 0i + h i
T � 0;

(ii ) The coneK generated by the vectors(h i ) i 2f 0g[I is a vector space.

(iii ) rank C0 � rank C;

(iv ) There is a matrixU with orthonormal columns such that if(Z; Y; � ) is a solution
of the reduced problem, then(X := UZUT ; Y;� ) is a solution of Problem(PCMB )
(which of course satis�esrank X � rank Z).

Proof. In this lemma,(i ) and (ii ) are the properties that we will need to prove Theo-
rem 4.2.2. Properties(iii ) and (iv ) ensure that if the theorem holds for the reduced
problem, then the result also holds for the initial problem (PCMB ). We handle separately the
cases in which the initial problem does not satisfy the property(i ) or (ii ). If both cases arise
simultaneously, we obtain the result of this lemma by applying successively the following
two reductions.

Let (X � ; Y � ; � � ) be an optimal solution of Problem (PCMB ) ; the existence of a solution
is guaranteed by the (re�ned) Slater condition satis�ed by the dual problem indeed (see e.g.
[Roc70, Ber95]). We denote byI 0 � [s] the subset of indices for whichbi + hRi ; Y � i +
h i

T � � = 0 (note that we havebi + hRi ; Y � i + h i
T � � � 0 for all i becauseM i � 0 implies

hM i ; X � i � 0). We de�ne I := [ s] n I 0. In Problem (PCMB ), we can replace the constraint
hM i ; X i � bi + hRi ; Y i + h i

T � by hM i ; X i = 0 for all i 2 I 0 , since(X � ; Y � ; � � ) satis�es
this stronger set of constraints. For a feasible positive semide�nite matrixX , this implies
h
P

i 2I 0
M i ; X i = 0, and even

P
i 2I 0

M i X = 0. Therefore,X is of the formUZUT for
some positive semide�nite matrixZ , where the columns ofU form an orthonormal basis of
the nullspace ofM 0 :=

P
i 2I 0

M i (U is obtained by taking the eigenvectors corresponding
to the vanishing eigenvalues ofM 0). Hence, Problem (PCMB ) is equivalent to:

max hUT CU; Zi + hR0; Y i + h 0
T � (4.15)

s.t. hUT M i U; Zi � bi + hRi ; Y i + h i
T � ; i 2 I ;

Z � 0; Y � 0:

We have thus reduced the problem to one for whichbi + hRi ; Y � i + h i
T � � > 0 for all

i , and strict feasibility follows (i.e. property(i ) holds, consider� 0 = � � ; Y 0 = Y � + � 1I ,
and Z 0 = � 2I for su�ciently small reals� 1 > 0 and � 2 > 0). Moreover, the projected
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matrix C0 := UT CU in the objective function has a smaller rank thanC (i.e. (iii ) holds).
Finally, (iv ) holds for the reduced problem by construction: if(Z; Y; � ) is a solution of
Problem (4.15), then(X := UZUT ; Y;� ) is a solution of Problem (PCMB ), both problems
have the same optimal value, and of courserank X � rank Z .

We now handle the second case, in which Property(ii ) does not hold for Problem (PCMB ).
The setK = f [h 0; H ]v; v 2 Rs+1 ; v � 0g is a closed convex cone. Hence, it is known
that it can be decomposed asK = L + Q, whereL is a vector space andQ � L? is a
closed convex pointed cone (L = K \ (� K ) is the lineality spaceof K ). The interior of
the dual coneQ� is therefore nonempty, i.e.9� : 8q 2 Q n f 0g; � T q > 0: Let � 0 be the
orthogonal projection of� on L? , so that � 0

T q = � T q > 0 for all q 2 Q n f 0g, and
� 0

T x = 0 for all x 2 L. Now, we de�ne the set of indicesI = f i 2 [s] : h i 2 Lg, and its
complementI 0 = [ s] n I . For all i 2 I 0, h i = x i + qi for a vectorx i 2 L and a vector
qi 2 Q n f 0g, so that � 0

T h i = � 0
T x i + � 0

T qi = � 0
T qi > 0. For the indicesi 2 I , it is

clear that� 0
T h i = 0. Finally, sinceh 0 + H � = 0, we have� h 0 2 K , so thath 0 2 L and

h 0
T � = 0: To sum up, we have proved the existence of a vector� 0 for which

8i 2 f 0g [ I ; � 0
T h i = 0 and 8i 2 I 0; � 0

T h i > 0:

Let (X � ; Y � ; � � ) be an optimal solution of Problem (PCMB ). For all positive realt,
(X � ; Y � ; � � + t� 0) is also a solution, because it is feasible and has the same objective
value. Lettingt ! 1 , we see that the constraints of the problem that are indexed by
i 2 I 0 may be removed without changing the optimum. We have thus reduced the problem
to one for which(ii ) holds.

We can now prove Theorem 4.2.2. The proof mimics that of Theorem 4.1.2, i.e. we
�rst show that the result holds when eachM i is positive de�nite, and the general result is
obtained by continuity. The only di�erence is how we show that we can choose optimal
variables(X " ; Y " ; � " ; � " )"2 ]0;" 0 ] for a perturbed problem within a bounded region.

Proof of Theorem 4.2.2.By Lemma 4.3.1, we may assume without loss of generality that
K = conef h 0; : : : ; h sg � � K and that the primal problem is strictly feasible. The strict
feasibility of the primal problem ensures that strong duality holds, i.e. the optimal value
of (PCMB ) equals the optimal value of (DCMB ), and the optimum is attained in the dual
problem. Moreover, the (re�ned) Slater constraints quali�cation for the dual problem guar-
antees the existence of primal optimal variables as well (see e.g. Theorem 28.2 in [Roc70]).
The pairs of primal and dual solutions

�
(X � ; Y � ; � � ); � �

�
are characterized by the Karush-
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Kuhn-Tucker (KKT) conditions:

Primal Feasibility: 8i 2 [s]; hM i ; X � i � bi + hRi ; Y � i + h i
T � � ;

X � � 0; Y � � 0;

Dual Feasibility: � � � 0;
sX

i =1

� �
i M i � C;

R0 +
sX

i =1

� �
i Ri � 0; h 0 + H � � = 0;

Complementary Slackness: (
sX

i =1

� �
i M i � C) X � = 0; (R0 +

sX

i =1

� �
i Ri ) Y � = 0;

8i 2 [s]; � �
i (bi + hRi ; Y � i + h i

T � � � h M i ; X � i ) = 0 :

Now, we consider the case in whichM i � 0 for all i , and we choose an arbitrary pair of
primal and dual optimal solutions

�
(X � ; Y � ; � � ); � �

�
. The dual feasibility relation implies

� � 6= 0, and so
P

i � �
i M i is a positive de�nite matrix (we exclude the trivial caseC = 0).

SinceC is of rankr , we deduce that

rank(
X

i

� �
i M i � C) � n � r:

Finally, the complementary slackness relation indicates that the columns ofX � belong to the
nullspace of(

P
i � �

i M i � C), which is a vector space of dimension at mostn � (n � r ) = r ,
and so we conclude thatrank X � � r:

We now turn to the study of the general case in whichM i � 0. To this end, we consider
the perturbed problems

max hC; X i + hR0; Y i + h 0
T �

s.t. hM i + "I ; X i � bi + hRi ; Y i + h i
T � i 2 [s]; (P "

CMB )

X � 0; Y � 0;

and

min
� � 0

sX

i =1

� i bi ;

s.t.
sX

i =1

� i (M i + "I ) � C; (D "
CMB )

R0 +
sX

i =1

� i Ri � 0;

h 0 + H � = 0:

where" � 0. Note that the re�ned Slater constraints quali�cation for the unperturbed
problems (PCMB ) and (DCMB ) (i.e. simultaneous feasibility (resp. strict feasibility) of all
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the a�ne constraints (resp. non-a�ne constraints)) implies the quali�cation of the con-
straints for (P "

CMB ) and (D "
CMB ) on a neighborhood" 2 [0; "0], "0 > 0. We denote by�

(X " ; Y " ; � " ); � "
�

a pair of primal and dual solutions of (P "
CMB )�( D "

CMB ). If " > 0, M i +
"I � 0 and it follows from the previous discussion thatX " is of rank at mostr . We show
below that we can choose the optimal variables(X " ; Y " ; � " ; � " )"2 ]0;" 0 ] within a bounded
region, so that we can construct a converging subsequence(X " k ; Y " k ; � " k ; � " k )k2 N; "k ! 0
from these variables. To conclude, we will see that the limit(X 0; Y 0; � 0; � 0) satis�es the
KKT conditions for Problems (PCMB )�( DCMB ), and that X 0 is of rank at mostr .

Let us denote the optimal value of Problems (P "
CMB )�( D "

CMB ) by OPT("): Since the
constraints of the primal problem becomes tighter when" grows, it is clear thatOPT(") is
nonincreasing with respect to" , so that

8" 2 [0; "0]; OPT("0) � OPT(") � OPT(0):

Now let " 2]0; "0]. By assumption, there exists a vector� � 0 such that

X

i

� i (M i + "I ) �
X

i

� i M i � C; and R0 +
X

i

� i R0 � 0: (4.16)

Therefore, we have

OPT(") = hC; X " i + hR0; Y " i + h 0
T � "

�
DX

i

� i (M i + "I ); X "
E

+ hR0; Y " i + h 0
T � "

�
X

i

� i

�
bi + hRi ; Y " i + h i

T � "
�

+ hR0; Y " i + h 0
T � "

= � T b + h
X

i

� i Ri + R0; Y " i + ( h 0 + H �
| {z }

= 0

)T � " ;

where the �rst inequality follows from (4.16), and the second one from the feasibility con-
dition hM i + "I ; X " i � bi + hRi ; Y " i + h i

T � " . The assumption (4.16) moreover implies
that � (

P
i � i Ri + R0) is positive de�nite, so that its smallest eigenvalue� 0 is positive, and

� 0 trace Y " �
D

� (
X

i

� i Ri + R0); Y "
E

� � T b � OPT(") � � T b � OPT("0):

This shows that the trace ofY " is bounded, and soY " � 0 is bounded.
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Similarly, to boundX " , we write:

h
X

i

� i M i � C; X "
E

� h
X

i

� i (M i + "I ) � C; X "
E

= h
X

i

� i (M i + "I ); X "
E

� OPT(") + hR0; Y " i + h 0
T � "

�
X

i

� i

�
bi + hRi ; Y " i + h i

T � "
�

� OPT(") + hR0; Y " i + h 0
T � "

= � T b � OPT(") + h
X

i

� i Ri + R0; Y " i
| {z }

� 0

+( h 0 + H �
| {z }

= 0

)T � " ;

where the �rst equality comes from the expression ofOPT("). The matrix
P

i � i M i � C is
positive de�nite and its smallest eigenvalue� 00is therefore positive. Hence,

� 00 trace X " � � T b � OPT(") � � T b � OPT("0);

and this shows that the matrixX " � 0 is bounded.

Now, note that the feasibility of� " implies that the quantitybi + hRi ; Y " i + h i
T � " is

nonnegative for alli 2 [s]. SinceY " is bounded, we deduce the existence of a lower bound
mi 2 R such thath i

T � " � mi (8i 2 [s]). Similarly, sinceh 0
T � " � OPT("0) � h C; X " i �

hR0; Y " i , there is a scalarm0 such thath 0
T � " � m0. We now use the fact that every

vector (� h i ) may be written as a positive combination of theh k ; (k 2 f 0g [ [s]), and we
obtain that the quantitiesh i

T � " are also bounded from above. Let us denote byH0 the
matrix [h 0; H ]; we have just proved that the vectorH T

0 � " is bounded:

9m 2 R : kH T
0 � " k2 � m

(the latter bound does not depend on"). Note that one may assume without loss of
generality that� " 2 Im H0 (otherwise we consider the projection� "

P of � " on Im H0

which is also a solution sinceH T
0 � " = H T

0 � "
P : We know from the Courant-Fisher theorem

that the smallest positive eigenvalue ofH0H T
0 satis�es:

� >
min (H0H T

0 ) = min
v2 Im H 0nf 0g

vT H0H T
0 v

vT v
:

Therefore, since we have assumed� " 2 Im H0:

k� " k2 �
kH T

0 � " k2

� >
min (H0H T

0 )
�

m2

� >
min (H0H T

0 )
:

It remains to show that the dual optimal variable� " is bounded. Our strict primal
feasibility assumption (which does not entail generality thanks to Lemma 4.3.1) ensures the
existence of a matrixY � 0 and a vector� such that

8i 2 [s]; hRi ; Y i + bi + h i
T � = � i > 0:
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By dual feasibility,R0 +
P

i � "
i Ri is a negative semide�nite matrix, and we have:

0 � h R0; Y i +
sX

i =1

� "
i hRi ; Y i = hR0; Y i +

sX

i =1

� "
i (� i � bi � h i

T � ):

Hence, we have the following inequalities:

8k 2 [s]; � k � "
k �

sX

i =1

� i � "
i � bT � " + �

T
H � " � h R0; Y i

= OPT(") � �
T
h 0 � h R0; Y i

� OPT(0) � �
T
h 0 � h R0; Y i ;

and we have shown that� " � 0 is bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(X " k ; Y " k ; � " k ; � " k )k2 N that converges, with" k �!

k!1
0, " k > 0. In this sequence, the

limit X 0 of X " k is of rank at mostr , because the rank is a lower semicontinuous function
and rank X " k � r for all k 2 N. It remains to show that(X 0; Y 0; � 0) is a solution of
Problem (PCMB ). The "� perturbed KKT conditions must hold for allk 2 N, and so they
hold for the pair

�
(X 0; Y 0; � 0); � 0

�
by taking the limit (this works becauseS+

m is closed).
This concludes the proof of the existence of a solution in whichrank X � r .

It remains to show the second statement of this theorem, namely that ifC 6= 0 and
r := min

i 2 [s]
rank M i , then the rank ofX is bounded byn � r + r for any solution(X; Y; � )

of (PCMB ).

Let (X � ; Y � ; � � ) be a solution of Problem (PCMB ). If the primal problem is strictly
feasible, then there exists a Lagrange multiplier� � � 0 such that the KKT conditions
described at the beginning of this proof are satis�ed. SinceC 6= 0, we have� � 6= 0, and
we can write:

rank (
X

i 2 [s]

� �
i M i � C) � r � r:

Hence, since by complementary slackness,X � belongs to the nullspace of(
P

i 2 [s] � �
i M i � C),

we �nd rank X � � n � r + r .

If the primal problem is not strictly feasible, there must be an indexi 2 [s] such that
hM i ; X � i = 0 (otherwise,(� 1I ; Y � + � 2I ; � � ) would be strictly feasible for su�ciently small
positive reals� 1 and � 2). Therefore,X � is in the nullspace of a matrix of rank larger than
r , andrank X � � n � r � n � r + r .
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4.3.3 Proof of Theorem 4.2.1

We assume that Problems (PCMB ) and (DCMB ) are feasible, and for� � 0 we consider
the following pair of primal and dual perturbed problems.

sup hC; X i + hR0; Y i + h 0
T �

s.t. hM i ; X i � bi + hRi ; Y i + h i
T � i 2 [s]; (P� )

� (trace X + trace Y) � 1;

X � 0; Y � 0;

and

inf
� � 0; � � 0

sX

i =1

� i bi + �;

s.t.
sX

i =1

� i M i + �� I � C; (D � )

R0 +
sX

i =1

� i Ri � �� I � 0;

h 0 + H � = 0:

It is clear that the feasibility of Problem (PCMB ) implies that of (P� ) if � > 0 is su�ciently
small. Let� be a dual feasible variable for Problem (DCMB ), and � > 0 be su�ciently
large so that

P s
i =1 � i M i + �� I � C and R0 +

P s
i =1 � i Ri � �� I � 0: the re�ned Slater

condition holds for the perturbed problem (D � ). Hence, by Theorem 4.2.2, there exists
a solution(X � ; Y � ; � � ) of Problem (P� ) in which rank X � � r . We next show that
hC; X � i + hR0; Y � i + h 0

T � � converges to the value of the supremum in Problem (PCMB )
as � ! 0+ , which will complete this proof.

Let � k be a positive sequence decreasing to0, and de�ne k := hC; X � k i + hR0; Y � k i +
h 0

T � � k . It is clear that k is a nondecreasing sequence, because the constraints in Prob-
lem (P� ) become looser as� gets smaller, and k is bounded from above by the value of the
supremum � in Problem (PCMB ). Therefore,( k)k2 N converges. Assume (ad absurdum)
that the limit of this sequence is 1 <  � . Then, there are some variables(X 0; Y0; � 0)
that are feasible for (PCMB ), and such thathC; X 0i + hR0; Y0i + h 0

T � 0 >  1 . But then,
(X 0; Y0; � 0) is also feasible for Problem (P� ), when � � � 0 := (trace X 0 + trace Y0)� 1.
For anyk 2 N such that � k � � 0, this contradicts the optimality of(X � k ; Y � k ; � � k ) for
Problem (P� k ). Hence, 1 =  � and the proof is complete.



Chapter 5

The Second Order Cone Programming
approach

This chapter essentially recalls the results of [Sag09b]. We shall see that many optimal
experimental design problems can be formulated asSecond order cone programs(SOCP).
Unlike the SDP formulations of Chapter 3, the SOCP arising in optimal experimental design
remain tractable on very large instances. In addition, the second order cone programming
is a convenient framework which o�ers both modelling �exibility and theoretical safeguards.

The proposed second order cone programming approach arises naturally from a geo-
metrical characterization ofc� optimality for multiresponse experiments. However, this
geometric point of view leaves unexplained the equivalence between the formerly known
SDPs (cf. Section 3.3) and the new SOCPs. In fact, most results from this chapter admit
an alternative proof relying on the rank reduction theorem of Chapter 4.

5.1 An Elfving Theorem for multiresponse experiments

In this section, we extend the result of Elfving (Theorem 2.4.1) to the case of multidi-
mensional observations. For the sake of generality, we turn temporarily back to the general
case in which the regression regionX is a (possibly in�nite) compact set. Throughout this
section, we will also make the assumption that every observation is of dimensionl (i.e.
l(x ) = l for all x 2 X ). We point out that this assumption is made with the only goal to
simplify the notation, and does not entail the generality (we handle the case in which the
experiment atx only givesk < l measurements by settingl � k rows of the matrixA(x )
to zero).

Some results of this chapter, including Theorem 5.1.1, were presented at the confer-
ence [SBG09], and the technical result justifying the reduction to a SOCP was posted on
arXiv [Sag09a]. Shortly before the time of submission, Dette and Holland-Letz published
an article inAnnals of Statistics, in which Theorem 5.1.1 was established independently

85
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(Theorem3:3 in [DHL09]). They considered a heteroscedastic model (i.e. an experimental
model where both the mean and the variance of the observations depend on the parameter
of interest), which led them to study the case in which the observation matrices are of rank
k � 2, just as in the model ofmultiresponse experiments. They used their geometrical
characterization of thec� optimal design for heteroscedastic models in an application to
toxicokinetics and pharmacokinetics. It should also be mentioned that the proof of Dette
and Holland-Letz relies on an equivalence theorem (Theorem3:1 in [DHL09]), while ours is
closer to Elfving's original approach, as done previously by Studden [Stu05] for other results
in optimal design of experiments. The main result of our article (reduction to a SOCP, The-
orem 5.2.1), provides a new insight on the relations between these two approaches : they are
actually dual from each other (in the Lagrangian sense). Indeed, the approach of Dette and
Holland-Letz corresponds to the optimality conditions of the primal SOCP (5.3), while our
direct geometrical characterization corresponds to the dual SOCP (5.4), and strong duality
holds between these two optimization problems.

5.1.1 c-optimality

To state our result, we will need the following generalization of the Elfving set 2.20 for
multiresponse experiments:

E = conv
�
f A(x )T � ; x 2 X ; � 2 Rl ; k� k2 � 1g

�
:

Note thatE is a generalization of the classical Elfving set (the factor� 1 has been substituted
by a vector� in the unit ball ofRl ).

Theorem 5.1.1 (Extension of Elfving's theorem to the case of multiresponse experiments).
A design� = f x i ; wi g is c� optimal if and only if there exists a positive scalart and vectors
� i in the unit ball ofRl (i.e. k� i k2 � 1), such that

tc =
X

i

wi A(x i )T � i 2 @E:

Moreover,t � 2 = cT M (� )� c is the minimal variance.

Proof. We consider an unbiased linear estimator for� = cT � :

�̂ = hT y (� ); with h = [ h 1
T ; :::; h s

T ]T 2 Rsl ; h i 2 Rl :

The unbiasedness property forces the following equality to hold :

A(� )T h =
sX

i =1

A(x i )T h i = c:
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Now, the Cauchy-Schwarz inequality gives the following lower bound for the variance of�̂ :

Var( �̂ ) = hT �( w )h =
sX

k=1

kh k k2

wk
�

� sX

k=1

kh k k
� 2

; (5.1)

wherek � k denotes theL2 norm and�( w ) was de�ned in Equation (2.5). We recall that
we assumew > 0 without loss of generality, since an experiment with a zero weight can be
removed from the design� .

We show that cP
k

khk k 2 E, by writing:

c
P

k kh k k
=

A(� )T h
P

k kh k k
=

X

i

A(x i )T h i
P

k kh k k
=

X

f i :kh i k> 0g

� i A(x i )T � i ;

where� i = kh i kP
k

khk k and � i = h i
kh i k , so that k� i k = 1, � i � 0 and

P
i � i = 1.

Let t be a positive scalar such thattc 2 @E. The fact that cP
k

khk k 2 E implies

1
P

k kh k k
� t =)

� sX

k=1

kh k k
� 2

� t � 2: (5.2)

Combining (5.1) and (5.2) leads to the lower boundt � 2 for the variance of any linear
unbiased estimator of� .

We will show that this lower bound is attained if and only if the design� satis�es the
condition of the theorem. To do this, notice that for a design� and an estimatorhT y (� ) to
be optimal, it is necessary and su�cient that the inequalities (5.1) and (5.2) are equalities.
The Cauchy-Schwarz inequality (5.1) is an equality if and only ifw is proportional to the
vector[kh 1k; :::; kh sk]T ; i.e.

wi =
kh i k

P
k kh k k

:

The second inequality (5.2) is an equality whenevercP
k

khk k 2 @E, i.e. 1P
k

khk k = t; where

t is the largest real such thattc 2 E. We can write

@E 3 tc = t
X

i

A(x i )T h i =
X

f i :kh i k> 0g

� i A(x i )T � i ;

with � i = tkh i k and� i = h i
kh i k . We havek� i k = 1, and the equality conditions are satis�ed

if and only if� i = wi .

As a consequence of this theorem, we will see In Section 5.2.1 that thec� optimal
design of �nitely many multiresponse experiments can be formulated as a second order cone
program (SOCP).
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5.1.2 The case of A-optimality

When there are several quantities of interest, i.e. when� consists in a collection ofr
linear combinations of the parameters (� = K T � ; whereK = [ c1; : : : ; cr ] is m � r ), the
A� optimal problem is to �nd the design� that minimizestrace (K T (M (� )) � K ). We recall
that an interesting case occurs whenK = I , i.e. when the experimenter wants to estimate
the whole vector of parameters (cf. Section 2.3.2).

We show in this section that computing theA� optimal design forK T � can be written
as ac� optimal design problem with multidimensional observations. Up to the factor1

m ,
the objective function of (2.18) can indeed be written as

trace (K T M (� )� K ) =
rX

k=1

ck
T M (� )� ck :

We now de�ne the vector~c as the vertical concatenation of the columnsci , i.e. ~c =
[c1

T ; :::; cr
T ]T . Now , we have:trace(K T M (� )� K ) = ~cT ~M (� )� ~c; where:

~M (� ) =

0

B
B
@

M (� )
. . .

M (� )

1

C
C
A =

sX

i =1

wi

0

B
B
@

A(x i )T A(x i )
. . .

A(x i )T A(x i )

1

C
C
A

=
sX

i =1

wi

0

B
B
@

A(x i )
. . .

A(x i )

1

C
C
A

T

~A(x i )
z }| {0

B
B
@

A(x i )
. . .

A(x i )

1

C
C
A

=
sX

i =1

wi
~A(x i )T ~A(x i ):

In the latter equation,~A(x i ) containsr blocks and is of dimensionrl � rm . We can
now rewrite Problem (2.18) in the following form:

min
�

trace (~cT ~M (� )� ~c)

s: t :
sX

i =1

wi = 1

~M (� ) =
sX

i =1

wi
~A(x i )T ~A(x i )

8 i 2 [s]; wi � 0; x i 2 X :

We have thus shown that the problem of �nding theA� optimal design is nothing but a
~c� optimal design problem, with augmented observation matrices~A(x i ). As a consequence,
our result of reduction of thec� optimal design problem (Section 5.2.1) also applies for the
more general class ofA� optimal design problem for a subsystemK T � of the parameters
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(cf. Section 5.2.2).

We now show that the geometrical characterization in Theorem 5.1.1 generalizes the
result of Studden [Stu71], who established an Elfving type result for the characterization
of A� optimal designs in the case of scalar observations (l = 1 and A(x ) = ax

T is a row
vector). This characterization is based on the following extension of the Elfving set when
the matrixK is m � r :

ES = conv
�
f ax � T jx 2 X ; � 2 Rr ; k� k � 1g

�
� Rm� r

Theorem 5.1.2 (Studden,1971). A design� = f x i ; wi g is A� optimal forK T � if and only
if there exists a scalart > 0 and vectors� i in the unit ball ofRr such that

tK =
X

i

wi ax i � i
T 2 @ES:

Moreover,t � 2 = trace(K T M (� )� K ) is the optimal value of theA� criterion.

One can easily verify that this theorem is a particular case of Theorem 5.1.1. Using the
previously introduced notation indeed, Theorem 5.1.1 says that� = f x i ; wi g is A� optimal
for K T � if and only if there exists a scalart > 0 and vectors� i in the unit ball ofRrl such
that

t~c =
X

i

wi
~A(x i )T � i 2 @E;

and we notice that~c is the vectorized version ofK , and whenl = 1, E is the vectorized
version ofES and ~A(x i )T � i = [ � i 1ax i

T ; : : : ; � is ax i
T ]T is the vectorized version ofax i � i

T .

5.2 The Second order cone programming approach

In this section, we will see that many optimal design problems can be formulated as
Second Order Cone Programs when the regression region is �nite, i.e.X = [ s]. We come
back to the initial notation, wherel i denotes the �rst dimension of the observation matrix
A i (we do not assumel i = l for all i anymore).

5.2.1 c-optimality

We show in this section that thec� optimal design problem reduces to a Second Order
Cone Program (SOCP). We will give two proofs of this result : the �rst one is a conse-
quence of our generalization of the Elfving theorem to the case of multiresponse experiments
(Theorem 5.1.1). The second proof uses the rank reduction theorem of Chapter 4.

Theorem 5.2.1 (Computation of thec� optimal design by SOCP). Let u � ; (� � ; h �
i ) be a

pair of primal and dual solutions of the second order cone programs:
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(P-SOCP) : max
u2 Rm

cT u (5.3)

8i 2 [s]; kA i uk � 1

(D-SOCP) : min
� 2 Rs ; h i 2 Rl i

X

i

� i (5.4)

c =
X

i

AT
i h i

8i 2 [s]; kh i k � � i :

We de�ne

w := t� � ; where t = (
sX

k=1

� �
k)� 1:

Thenw is ac� optimal design. Moreover,̂� =
P

h �
i

T y i is the best linear estimator ofcT � ,
and the optimal variance isvar(�̂ ) = t � 2 = (

P
i � �

i )2 = ( cT u � )2.

Proof relying on the extended Elfving theorem

Proof. This result is actually a corollary of Theorem 5.1.1. As in the proof of the latter
theorem, de�net as the largest scalar such thattc 2 E, i.e. such that there existswi

summing to1 and vectors� i in the unit ball ofRl satisfying

tc =
sX

i =1

wi AT
i � i :

This decomposition gives the optimal weightswi and the best estimator of� :

�̂ =
sX

i =1

h i
T y i ; (5.5)

whereh i = wi
t � i . According to the proof of Theorem 5.1.1 indeed, an unbiased estimator

of the form (5.5) is optimal if and only if everyh i is proportional to� i and has normwi
t .

Settingz i = wi � i , one obtainst as the value of the following SOCP:

max
t; z;w

t (5.6)

s:t: tc =
sX

i =1

AT
i z i ;

8i 2 [s]; kz i k � wi ;
X

i

wi = 1; w � 0:

In order to get an SOCP in the standard form, we writewi = t� i , wheret = 1P
i

� i
is an

arbitrary nonnegative scalar. Then, we seth i = t � 1z i , and we obtain a problem in the form
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of (5.4). Finally, the value of(P � SOCP) and (D � SOCP) are equal, since the Slater
condition holds for this pair of programs (the dual(D � SOCP) is strictly feasible and the
primal (P � SOCP) is feasible). A proof of the strong duality theorem for SOCP can be
found e.g. in [NN94], Section 4.2. See [LVBL98] for more background on SOCP duality
theory.

Remark5.2.1. This SOCP has a simple geometric interpretation. In the scalar case, we
have seen that thec� optimal design could be found at the intersection of a polyhedron
and a straight line directed byc (see Figure 2.2). In the multiresponse case, the generalized
Elfving set is no longer a polyhedron: instead, we compute the intersection between the
straight line directed byc and the set

E = conv
�
f AT

i � i ; i 2 [s]; � i 2 Rl i ; k� i k2 � 1g
�
;

= conv
n
Ei ; i 2 [s]

o
;

whereEi is the ellipsoid with semi-axis
q

� (i )
k u ( i )

k (k 2 [m]), where f � (i )
1 ; : : : ; � (i )

m g are
the eigenvalues ofAT

i A i and f u ( i )
1 ; : : : ; u ( i )

m g are the corresponding eigenvectors. In the
common case, we havel i < m , such that some eigenvalues ofAT

i A i vanish and the ellipsoid
Ei is not full-dimensional (i.e. its volume is zero). We illustrate this geometric interpretation
in Figure 5.1.

We next present another proof of this result, based on the rank reduction theorem of
Chapter 4.

A rank reduction argument

Proof. We have seen in Chapter 3 that thec� optimal design problem can be formulated as
a SDP. The dual SDP (3.16) is in fact a semide�nitepackingproblem, in which the matrix
de�ning the objective function isC = ccT and has rank one. Under the generic assumption
that cT � is estimable, c is in the range of

P s
i =1 AT

i A i and the conditions of Corollary 4.1.4
are ful�lled: the SDP (3.16) reduces to the SOCP (5.3).

We have seen that strong duality holds between Problems (5.3) and (5.4). This implies
that any pair of primal and dual solutions

�
u � ; (� � ; z �

i )
�

must satisfy the complementary
slackness relation

8i 2 [s]; � �
i A i u � = z �

i :

Now, the dual feasibility implies that

X

i

A i z �
i =

X

i

� i AT
i A i u � = c:

Settingw = t� � wheret � 1 =
P

i � �
i = cT u � , we �nd that t � 1M (w)u � = c; and we have

the equality
cT M (w)yc = t � 1cT u � = ( cT u � )2:
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a11

a12

a21

a31

a22
a32

a33

a41

E3

E2

E1

E4

t � c
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x 1x 3

Figure 5.1: In the multiresponse case, the generalized Elfving setE is the convex hull of the
ellipsoidsEi . On this picture, we have plotted the rows of the observation matrices:aT

ij is the j th

row of A i . In the (common) case wherel i � m, the vectors(a ij ) j 2 [l i ] are on the boundary of
the ellipsoidEi (here, this is the case forE1; E2; and E4, but not for E3 sincel3 = 3 > 2). Note
that when l i < m , the ellipsoidEi is not full dimensional (on the picture, we havel4 = 1 < 2, so
that E4 is a segment). The intersection of the line directed byc and the generalized Elfving set
(denoted by a brown circle on the �gure) indicates the weights of thec� optimal design. Here,
t � c is at equal distance of the two extremal pointx 1 2 E1 and x 3 2 E3, such that thec� optimal
design isw = [0 :5; 0; 0:5; 0]T .

By Corollary (4.1.4), the latter expression is the optimal value of the SDP (3.16), which
means thatw is ac� optimal design.

Theorem 5.2.1 shows that one can compute thec� optimal design on a �nite regression
range by solving a SOCP. This can be done very e�ciently with the help of interior points
codes such as SeDuMi [Stu99]. Solving the SOCP (5.3) is a much easier task than solving the
SDP (3.16), because the number of variables is in the order ofm (instead ofm2); because
we have get rid o� the positive semide�niteness constraint of the SDP; and because the
SOCP solver is able to exploit the sparse structure of the observation matricesA i (while
the partial information matricesM i = AT

i A i are not very sparsein general. Moreover,
we will see in Section 5.2.3 that the SOCP approach adapts to the case of multiple linear
constraints. A numerical comparison of the di�erent algorithms that can be used to compute
optimal experimental designs will be carried out in Chapter 6.
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5.2.2 A-optimality

We have seen in Section 5.1.2 that anyA� optimal design problem could be expressed as
a c� optimal design problem with augmented observation matrices. Thus, by Theorem 5.2.1,
the A� optimal design problem forK T � has a SOCP formulation:

Theorem 5.2.2 (Computation of the A� optimal design by SOCP). Let�
U� ; (� � ; (Z �

i ) i 2 [s])
�

be a pair of primal and dual solutions of the second order cone
programs:

max
U2 Rm � r

trace K T U (5.7)

8i 2 [s]; kA i UkF � 1

min
� 2 Rs ; Z i 2 Rl i � r

X

i

� i (5.8)

K =
X

i

AT
i Z i

8i 2 [s]; kZ i kF � � i :

We de�ne

w := t� � ; where t = (
sX

k=1

� �
k)� 1:

Then w is A� optimal forK T � . Moreover,�̂ =
P

i (Z �
i )T y i is the best linear estimator of

K T � , and the optimalA� criterion is

� A (w ) =
rX

i =1

ci
T M (w � )� ci = t � 2 = (

X

i

� �
i )2

Proof. We combine the result of Section 5.1.2 and Theorem 5.2.1.

5.2.3 c- (and A-) optimality with multiple resource constraints

In this section, we consider the generalized version of thec� optimal design problem
with multiple resource constraints, that we already studied in Section 3.3.5:

min cT M (w)� c (5.9)

s: t : M (w) = AT
0 A0 +

sX

i =1

wi AT
i A i ;

Rw � d; w � 0:
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Note that we have added a constantAT
0 A0 in the information matrixM (w). This

can be useful to model afree-of-chargeexperiment, that the experimenter will conduct in
any case, or to model an intrinsic relationship between the parameters, such as Kirchho�'s
circuit law. The constantAT

0 A0 appears inM (w) when we assume that the observation
matrix A0 has been normalized, in such a way that the additional observation vectory0 has
a unit variance:

y0 = A 0 � + " 0; E[" 0] = 0; E[" 0" 0
T ] = I: (5.10)

Another case where it can be useful to introduce a constant termAT
0 A0 in the information

matrix is when a prior distribution for the parameter is given:

E(� ) = � ; and Var(� ) = R: (5.11)

It is known (see e.g. [Puk93]) that when the prior covariance matrixR is positive de�nite,
the expected covariance matrix is minimized (with respect to Löwner ordering) among all
unbiased a�ne estimators, conditionally to the prior distribution of� for:

�̂ jR; � =
�
R� 1 +

sX

i =1

wi AT
i A i

� � 1�
R� 1� +

sX

i =1

AT
i y i

�
:

This Bayesian estimator has a variance which does not depend on the prior expected value
of � :

Var( �̂ jR;� ) =
�
R� 1 + A(w)T A(w)

� � 1
: (5.12)

In fact, the above discussion shows that prior information can be equivalently handled as
an additional observation equation� = � + " ; E[" ] = 0; E["" T ] = R; which we
normalize by settingy0 = R� 1=2� , A0 = R� 1=2, � 0 = R� 1=2" , so that (5.10) holds. In
conclusion, prior information (5.11) can be handled by adding the constantR� 1 = AT

0 A0

in the information matrix.

The main result of this section is that Problem (5.9) can be formulated as a SOCP.
As in Section 5.2.1, we shall give two proofs of this result. Each proof yields a di�erent
SOCP, formulated respectively in Theorem 5.2.3 and Theorem 5.2.4. Both SOCPs are
of course equivalent. We point out that a related result was obtained by Ben-Tal and
Nemirovskii [BTN92], for an application to truss topology design (see also [NN94, LVBL98]).
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A Statistical argument

Theorem 5.2.3. The following SOCP is feasible if and only ifcT � is estimable for a feasible
design (9w � 0 : Rw � d andc 2 Im M (w)):

min
w; � ; (h i ) i =0 ;:::;s

sX

i =0

� i (5.13)

AT
0 h 0 +

sX

i =1

AT
i h i = c

Rw � d; w � 0






"
2h 0

1 � � 0

#





� 1 + � 0







"
2h i

wi � � i

#





� wi + � i ; (i = 1; : : : ; s):

If moreover(w ; � ; (h i ) i =0 ;:::;s) is a solution of Problem(5.13), then w is c� optimal (in
the sense of the general problem(5.9)), the best unbiased linear estimator of� = cT � is
�̂ =

P
i h i

T y i , and the optimal variance isvar(�̂ ) = cT M (w)� c =
P s

i =0 � i .

Proof. The Gauss Markov Theorem 2.2.1 allows us to rewrite the objective criterion of
Problem (5.9) as:

cT M (w)� c = min
h2 R

P
i

l i

hT �( w )h (5.14)

s: t : [AT
0 ; AT

1 ; : : : ; AT
s ]h = c; (5.15)

where�( w ) is de�ned as in Equation (2.5), with an additional block corresponding to the
prior observation (w0 = 1):

�( w ) =

0

B
B
B
B
B
@

I
w� 1

1 I
. . .

w� 1
s I

1

C
C
C
C
C
A

:

Decomposingh as[h 0
T ; h 1

T ; : : : ; h s
T ]T ; h i 2 Rl i , the expressionhT �( w )h can be rewrit-

ten as

kh 0k2 +
sX

i =1

w� 1
i kh i k2: (5.16)

Recall that when an experiment is unobserved (wi = 0), it could simply be removed from
the support of the experimental design. In other words, the sum (5.16) is taken on the
indices such thatwi > 0 only. We can now rewrite Problem (5.9) in a form that involves
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the vector of coe�cientsh of the estimator�̂ :

min
w; (h i 2 Rl i ) i =0 ;:::;s

kh 0k2 +
X

f i :wi > 0g

kh i k2

wi
(5.17)

s: t :
sX

i =0

AT
i h i = c;

Rw � d; w � 0:

Clearly, this is equivalent to:

min
w; � ; (h i 2 Rl i ) i =0 ;:::;s

� 0 +
sX

i =1

� i (5.18)

s: t :
sX

i =0

AT
i h i = c;

Rw � d; w � 0;

kh 0k2 � � 0

kh i k2 � � i wi ;

since we can assume without loss of generality thatwi = 0 ) k hi k = � i = 0. Finally, the
SOCP (5.13) is obtained by reformulating the hyperbolic constraintskzk2 � �� as







"
2z

� � �

#





� � + �:

A rank reduction argument

We provide another proof of the reduction of thec� optimal design problem to a SOCP,
which relies on the rank reduction theorem for �combined� semide�nite packing prob-
lems 4.2.2. Interestingly, we obtain a SOCP which is equivalent to (5.13) but has a di�erent
form.

Theorem 5.2.4. The following pair of primal and dual SOCP is feasible if and only if
cT � is estimable for a feasible design (9w � 0 : Rw � d and c 2 Im M (w)):
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max
x ; �

cT x






"
2A0x
dT �

#





2

� 2 � dT � ;

8i 2 [s];







"
2A i x

r i
T � � 1

#





2

� r i
T � + 1

� � 0:

min
� � 0;t � 0;(h i ) i =0 ;:::;s

� � 0;� � 0

sX

i =1

� i + t + �

AT
0 h 0 +

sX

i =1

AT
i h i = c;

R� � td;

8i 2 [s];







"
h i

� i � � i

#





2

� � i + � i ;






"
h 0

� � t

#





2

� � + t:

If moreover(� ; t; (h i ) i 2f 0;:::;sg; � ; � ) is a solution of the dual problem, then the optimal
design variable isw = t � 1� , the best unbiased linear estimator of� = cT � is �̂ =

P
i h i

T y i ,
and the optimal variance isvar(�̂ ) = cT M (w)� c = ( cT x )2 = (

P s
i =1 � i + t + � )2.

Proof. We assume that the optimal design problem (5.9) is feasible, i.e. there exists a
vectorŵ � 0 such thatRŵ � d andc is in the range ofM (ŵ ). Note that we can assume
without loss of generality that̂w > 0. Otherwise, this would mean that the constraints
Rw � d; w � 0 force the equalitywi = 0 to hold for some coordinatei 2 [s], and in this
case we could simply remove the experimenti from the set of available experiments.

We can now express Problem (5.9) as an SDP thanks to the Schur complement lemma:

min
t2 R; w � 0

t (5.19)

s.t.

 
M (w) c

cT t

!

� 0:

Rw � d:

Since the optimalt is positive (we exclude the trivial casec = 0), the latter matrix inequality
may be rewritten as

M (w) �
ccT

t
;

by using the Schur complement lemma again. Finally, we make the change of variables
� = tw and Problem (5.19) is equivalent to

min
� � 0;t � 0

t (5.20)

s.t. tA T
0 A0 +

sX

i =1

� i AT
i A i � ccT

R� � td:

This problem belongs to the class of �combined� semide�nite packing problems studied in
Section 4.2. We can see indeed that Problem (5.20) has the same form as Problem (DCMB )
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(cf. page 70), by settingC = ccT , � s+1 = t; b = [0; : : : ; 0; 1]T 2 Rs+1 ; M s+1 =
AT

0 A0; h 0 = 0; H = [ R; � d], and for all i 2 0; : : : ; s + 1; Ri = 0 (we also need to
introduce a nonnegative slack variable to handle the inequalities as equalities).

Let � := cT (
P s

i =0 M i )ycT , so that � (
P s

i =0 M i ) � ccT . We sett = max i 2 [s](�= ŵi ; � )
(t is well de�ned becausêw > 0). We de�ne � := tŵ , and we see that Problem (5.20)
is feasible, becauseR� � td; and tM 0 +

P s
i =1 � i M i �

P s
i =0 �M i � ccT . In addition, the

corresponding primal problem is clearly feasible (for� = 0, sinceb � 0), and thus we can
use Corollary 4.2.4: thec� optimal design problem with resource constraints (5.9) reduces
to the SOCP (4.6). With the parametersb; M s+1 ; H and the slacks de�ned as above, this
corresponds exactly to the primal SOCP in Theorem 5.2.4.

By construction, the optimal design variablew is related to the dual optimal variables�
andt by the relationw = t � 1� (according to the previous change of variable). Moreover, the
dual problem satis�es the (re�ned) Slater condition, becausec 2 Im(

P
i M i ) =

P
i Im(AT

i ),
so that 9h 0; : : : ; h s :

P s
i =0 AT

i h i = c, P� � td and for � > 0; � > 0 large enough,
the non-a�ne cone constraints are satis�ed with a strict inequality. Hence, strong duality
holds and the values of these two problems are equal. Finally, Corollary 4.2.4 shows that
the optimal value of Problem (5.9) is the square of the optimal value of these SOCPs.

5.2.4 T-optimality for K T �

We show in this section that it is possible to compute aformally T� optimal design
for K T � with a SOCP. We recall that contrarily to the other criteria of the class� p ,
p < 1, a designw that maximizes� 1(w ) = trace QK (w ) can fail to be feasible, i.e.
Im K * Im M (w) (see Section 2.3.2). Aformally T� optimal designw is T� optimal if
and only if the latter range inclusion holds.

We have seen in Section 2.4.3 that theT� optimal design problem for the full parameter
� is trivial: A design is formallyT� optimal for� if and only if it allocates all the weight to the
experimentsi such thatkA i kF is maximal (Theorem 2.4.12). However, when the quantity
of interest is a parameter subsystem� = K T � , the problem becomes computationally
challenging. The present reduction gives another argument for saying that second order
cone programming is a natural framework for optimal experimental design problems.

Theorem 5.2.5 (T-optimality SOCP). Let
�
(t; U); (Z i ; w ;  )

�
be a pair of primal and dual
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solutions of the second order cone programs:

min
t2 R; U 2 Rm � r

t (5.21)

K T U = I

8i 2 [s]; kA i Uk2
F � t

max
Z02 Rr � r ;Z i 2 Rl i � r ;w � 0; � 0

� (trace Z0 +
sX

i =1

 i ) (5.22)

KZ 0 =
sX

i =1

AT
i Z i ;

sX

i =1

wi = 1;

8i 2 [s]; kZ i k2
F � 4wi  i :

Note that these are Second order cone programs indeed (we have let the hyperbolic con-
straints to simplify the notation; otherwise, the matricesA i U and Z i need be vectorized).
Then,w is formallyT� optimal forK T � , and the value of the supremum in Problem(2.19)
is t = � (trace(M ) +

P
i  i ). If moreoverw 2 �( K ), then w is T� optimal.

Proof. We use the general de�nition (2.9) ofQK (w ), which remains valid whenw =2 �( K ):

QK (w ) := min
U

� UT M (w)U

s: t : K T U = I r ;

where the minimum is taken with respect to the Löwner ordering. Since the trace of a matrix
preserves the Löwner ordering, we can express the (formal)T� optimal design problem as:

max
w� 0;

P
i

wi =1
min

U: K T U= I r

traceUT M (w)U

= max
w� 0;

P
i

wi =1
min

U: K T U= I r

sX

i =1

wi kA i Uk2
F

= min
U: K T U= I r

 

max
i 2 [s]

kA i Uk2
F

!

:

The exchange of the max and the min above is a consequence of Sion's minimax theorem
((w ; U) 7!

P s
i =1 wi kA i Uk2

F is continuous, concave inw and convex inU). We next
introduce a variablet which must be larger than all the quantitieskA i Uk2

F , and we have
shown that the (formal)T� optimal design problem forK T � is equivalent to Problem (5.21).
The (formal) T-optimal designw is the optimal dual variable corresponding to the hyperbolic
constraints in Problem (5.21). It follows thatw can be computed by solving the dual
optimization problem (5.22). Finally, the value of these optimization problems is the same
by Strong duality (Slater condition holds), and is equal to the optimum of theT� optimal
problem (2.19).
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5.2.5 A low rank SDP for E-optimality

Our rank reduction approach does not yield a SOCP for the computation ofE� optimal
designs. However, note that theE� optimality SDP (3.6) takes exactly the form of Prob-
lem (DPCK ) (cf. page 67), withbi = 1 for all i 2 [s], and C = KK T . Here, the matrixC
has rankr , and so Theorem 4.1.2 indicates that theE� optimal design SDP has a solution
which is a matrix of rank at mostr . This suggests the use of specialized low rank solvers
for this SDP whenr is small (cf. the paragraph �Related work�, page 66), which can lead
to a considerable improvement in terms of computation time.

5.3 A model robust criterion

In this section, we consider theS� optimality criterion presented in Section 2.3.3. We
are next going to show that theS� � optimal design of multiresponse experiments reduces
to the problem of maximizing a weighted geometric mean under norm constraints. This
is of great interest for the computation ofS� � optimal designs. Indeed, this optimization
problem is ageometric program, and so it can be reformulated in a form for which a self-
concordant barrier function is known, and it can be solved e�ciently to the desired precision
by interior point techniques (see e.g. [BV04]).

Dette extended Elfving's result to the case ofS� optimality for single-response experi-
ments [Det93] . We will see that our result yields a generalization of the Dette's theorem
for S� optimality to the case of multiresponse experiments. In particular, we obtain a SOCP
for D� optimality.

5.3.1 S-optimality

We recall that theS� � optimal design problem for the quantitiesc1
T � ; : : : ; cr

T � is:

min S� (w ) :=
rX

k=1

� k log(ck
T M (k)(w )� ck ) (5.23)

s: t : 8k 2 [r ]; M (k)(w ) =
sX

i =1

wi AT
(k);i A

T
(k);i

w � 0;
sX

i =1

wi � 1:

The next theorem gives ageometric programming(GP) formulation of theS� optimal
design problem.

Theorem 5.3.1. Let (t ; (v ik ); w ) be a solution of the following optimization problem.
Then, w also minimizes theS� � criterion. Moreover, the value of this program coincides
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with the value of its dual, which we give below.

min
w� 0;

P
i

wi =1
S� (w ) = 2 min

t ;(v ik );w

rX

k=1

� � k log(tk)

tkck =
sX

i =1

AT
(k);i v ik ; 8k 2 [r ]; (P� )










p
� 1v i 1

...p
� r v ir










� wi 8i 2 [s];

sX

i =1

wi � 1:

= 2 max
h1 ;:::;h r

rX

k=1

� k log
ck

T h k

� k
(D � )










A (1) ;i h 1=
p

� 1
...

A (r );i h r =
p

� r










� 1 8i 2 [s]:

The variables of the primal optimization problem arew 2 Rm (the design),t 2 Rr and the
vectorsv ik 2 Rlk , for i 2 [s] andk 2 [r ]. The variables of the dual problem are the vectors
h 1; : : : ; h r 2 Rm .

The proof of this theorem relies on a series of reformulations of Problem (5.23) thanks to
Lagrange duality techniques and Theorem 4.1.2. We will prove this result in Section 5.3.3.
Then, we will show that the optimality conditions of our convex optimization problem can
be interpreted as geometrical conditions, which yields a generalization of the theorem of
Dette [Det93] forS� optimality to the case of multiresponse experiments. This geometrical
characterization relies on the following generalization of the Elfving set:

D� = conv

0

B
B
@

�
0

B
B
@

� 1
T A (1) ;x

...
� r

T A (r );x

1

C
C
A ; x 2 X ; � k 2 Rl ;

rX

k=1

� kk� k k2 � 1
�

1

C
C
A � Rr � m : (5.24)

Theorem 5.3.2 (Geometrical characterization of multiresponseS� � optimality). The de-
signw is S� � optimal (and solution of Program(P� )) if and only if there exists a vector
t 2 Rr and vectors� ik 2 Rl i (i 2 [s]; k 2 [r ]), such that

(i) 8i 2 [s];
P r

k=1 � kk� ik k2 � 1

(ii) Diag(t )C =

0

B
B
@

t1c1
T

...
t r cr

T

1

C
C
A =

P s
i =1 wi

0

B
B
@

� i 1
T A (1) ;i

...
� ir

T A (r );i

1

C
C
A
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(iii) Diag(t )C lies on the boundary ofD� , with a supporting hyperplane whosenormal
directionis given by the matrixH = [ h 1; : : : ; h r ]T ; with h k 2 Rm . In other words,

D 2 D � =) h H; D i � 1

(iv) H satis�es the equalities

tkh k
T ck = � k ; 8k 2 [r ]:

In this case, the optimal variables of Problems(D � ) and(P� ) aret ; v ik := wi � ik (8i 2
[s]; 8k 2 [r ]), and(h k )k2 [r ], so that the optimalS� � criterion is� 2

P r
k=1 � k log(tk).

Theorem 5.3.2 is established in the next section.

Remark5.3.1. As in the case of single response experiments [Det93], the geometrical char-
acterization remains true when the regression rangeX is in�nite. It can also be shown
with semi-in�nite programming techniques that the following convex semi-in�nite program
is valid for the generalS� � optimal design Problem:

min
wi � 0;

P s
i =1

wi =1 ;

x 2X

S� (� ) = 2 max
h1 ;:::;h r

rX

k=1

� k log
ck

T h k

� k

8x 2 X ;










A (1) ;x h 1=
p

� 1
...

A (r );x h r =
p

� r










� 1:

5.3.2 D-optimality

Dette showed in [Det93] thatD� optimality for the full parameter� is a particular case
of S� optimality. As a consequence, we can formulate theD� optimal design problem as a
convex optimization problem in the form of(P� ). To see this, Dette considered the virtual
nested models, where the parameter of interest in thekth model is� k , and the observations
only depend on the �rstk parameters:A (k);i is the matrixA i restricted to its �rstk columns,
so thatM (k)(w ) is the upper leftk � k submatrix ofM (w), andck = [0; :::; 0; 1] is a vector
of lengthk. Using the relation

ck
T M (k)(w )� ck =

�
M (k)(w )� 1

�

kk
=

detM (k� 1)(w )
detM (k)(w )

;

it can be seen that
S[1=m;:::; 1=m](w ) = �

1
m

log detM (w);
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which is exactly theD� optimality criterion.
Theorem 5.3.1 can now be used to formulate theD� optimal design problem as:

max
w� 0

1
m

log detM (w) = 2 max
t ;v ik ;w

log
� � Y

t i

� 1=m
�

tkck =
X

i

AT
(k);i v ik ; 8k 2 [m];










v i 1
...

v im










�
p

m wi 8i 2 [s];

sX

i =1

wi � 1:

(5.25)

5.3.3 Proof of Theorems 5.3.1 and 5.3.2

We start with the following lemma, where we show that theS� � optimal design problem
can be formulated as a convex optimization problem with SDP constraints:

Lemma 5.3.3. The optimal variablew � of the following convex optimization problem also
minimizes theS� � criterion. The value of this program coincides with the value of its dual,
which we give below:

min
w� 0;

P
i

wi =1
S� (w ) = min

� 2 Rr ; w � 0
�

rX

k=1

� k log� k (P� � SDP)

M (k)(w ) � � kck ck
T ; 8k 2 [r ];

sX

i =1

wi = 1:

= max
Z1 ;:::;Z r � 0

rX

k=1

� k log
ck

T Zkck

� k
(D � � SDP)

rX

k=1

trace(A (k);i Zk AT
(k);i ) � 1; 8i 2 [s]:

Proof. As in the derivation of the SDP forA� optimality (cf. page 59), we reexpress the
variance of thekth quantity of interestck

T M (k)(w )� ck with the help of a generalized Schur
complement (for an arbitrary designw):

�
ck

T M (k)(w )� ck

� � 1
= max � k = max � k 

M (k)(w ) ck

ck
T 1=�k

!

� 0: M (k)(w ) � � kck ck
T :
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Since the optimal� k is positive, the latter expression is well de�ned. Now, by monotonicity
of the log function, we can write:

min
w� 0;

P
i

wi =1
S� (w ) = � max

w� 0;
P

i
wi =1

rX

k=1

� k log
�
ck

T M (k)(w )� ck

� � 1

= � max
w� 0;

P
i

wi =1 ; � 2 Rr

rX

k=1

� k log� k

M (k)(w ) � � kck ck
T ; 8k 2 [r ];

which is exactly Problem(P� � SDP). It is clear that Problem(D � � SDP) is convex and
strictly feasible, so that the Slater condition is ful�lled, and strong duality holds. It remains
to show that Problem(D � � SDP) is indeed the dual of(P� � SDP). To this end, let us
form the Lagrangian of Problem(P� � SDP):

L
�
(� ; w ); (Z; � )

�
= �

rX

k=1

� k log� k +
rX

k=1

hZk ; � kck ck
T � M (k)(w )i + � (

sX

i =1

wi � 1):

The Lagrange dual function is given by

g(Z; � ) := min
� > 0; w � 0

L
�
(� ; w ); (Z; � )

�

= � � +
X

k

min
� k > 0

(� kck
T Zkck � � k log� k) +

X

i

min
w� 0

wi (� �
X

k

hAT
(k);i A (k);i ; Zk i ):

=

8
>><

>>:

� � +
P

k � k(1 � log � k
ck

T Zk ck
) if

(
8i 2 [s];

P r
k=1 hAT

(k);i A (k);i ; Zk i � �
8k 2 [r ]; ck

T Zkck > 0
�1 otherwise:

Note that in the above expression, the minimum over� k is attained for� k = � k
ck

T Zk ck
, and

this equation must be satis�ed by the optimal variables� �
k andZ �

k . Since we observed that
strong duality holds, the value of the dual optimization problem must be equal to the value
of the primal, and so the optimal variables (denoted with stars in superscript) satisfy:

�
rX

k=1

� k log� �
k = � � � +

X

k

� k(1 � log
� k

ck
T Z �

k ck
) =) � � =

rX

k=1

� k = 1:

We can now make the dual problem explicit:

max
Z;�

g(Z; � ) = max
Z1 ;:::;Z r � 0

g(Z; 1) = max
Z1 ;:::Z s � 0

rX

k=1

� k log
ck

T Zkck

� k

rX

k=1

trace(A (k);i Zk AT
(k);i ) � 1; 8i 2 [s]:

This completes the proof of the lemma.

Now, we show that there is a solution of Problem(D � � SDP) for which everyZk has
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rank one, thanks to the theoretical result of Chapter 4

Proof of Theorem 5.3.1.We �rst write the program(D � � SDP) in the form of a sepa-
rable optimization problem, by introducing some vectors� i (i 2 [s]) of sizer , satisfying
P r

k=1 � ik � 1:

min
w� 0;

P
i

wi =1
S� (w ) = max

� 1 ;:::� s 2 Rr

 rX

k=1

f k(� 1k ; : : : ; � sk)

!

8i 2 [s];
rX

k=1

� ik � 1;

where we have set

8k 2 [r ]; f k(y ) = max
Zk � 0

� k log
ck

T Zkck

� k

trace(A (k);i Zk AT
(k);i ) � yi ; 8i 2 [s]:

By use of Theorem (4.1.2) (and monotonicity of the log function), the minimization
problem overZk in f k(�) has a rank-one solution (Zk = h k h k

T ), and we obtain:

f k(� 1k ; : : : ; � sk) = max
hk 2 Rm

� k log
(ck

T h k )2

� k

kA (k);i h k k �
p

� ik ; 8i 2 [s]:

Now, we use the associativity of the maximum to reformulate theS� � optimum design
problem:

min
w� 0;

P
i

wi =1
S� (w ) = max

h1 ;:::;hs

rX

k=1

� k log
(ck

T h k )2

� k

rX

k=1

kA (k);i h k k2 � 1; 8i 2 [s]:

Finally, we make the change of variableh k
0 = h k

p
� k in order to obtain the desired

optimization problem, that is(D � ). It remains to show that Problem(P� ) is the dual
of (D � ). The convex problem(P� ) is strictly feasible, so that Slater condition is ful�lled,
and strong duality holds.
We will now dualize Problem(P� ). This part of the proof is very similar to the dualization
of Problem(D � � SDP) of the previous lemma. We include it here, though, for the
reader's convenience. In the sequel, we denote byv i the concatenation of the vectors
v ik : v i = [ v i 1

T ; : : : ; v ir
T ]T 2 Rrl ; and by ~� the vector containing� k entries arranged in

blocks of lengthl: ~� = [ � 1; : : : ; � 1; : : : ; : : : ; � r ; : : : ; � r ]T 2 Rrl : We also use the symbol�
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to denote the Hadamard product (elementwise product). With this notation, we can write:

0

B
B
@

p
� 1v i 1

...p
� r v ir

1

C
C
A = ~�

1=2
� v i :

We denote byV the family of vectors(v ik ) i 2 [s]; k2 [r ] and byH the family of vectors(h k ) i 2 [s].
Now, let us form the Lagrangian

L
�
(t ; V;w ); (H; � ; � )

�
=

rX

k=1

� � k logtk +
rX

k=1

h k
T (tkck �

sX

i =1

AT
(k);i v ik ) (5.26)

+
sX

i =1

� i (k ~�
1=2

� v i k � wi ) + � (
sX

i =1

wi � 1)

The Lagrange dual function is given by

g(H; � ; � ) := min
t ;V; w

L
�
(t ; V;w ); (H; � ; � )

�

= � � +
rX

k=1

min
tk

(tkh k
T ck � � k logtk) +

sX

i =1

min
wi

wi (� � � i )

+
sX

i =1

min
v i

(� i k ~�
1=2

� v i k � z i
T v i );

where we have de�ned the vectorsz i
T := [ h 1

T AT
(1) ;i ; :::; h r

T AT
(r );i ] 2 Rrl . In the latter

equation, the minimum overtk is �nite if and only if ck
T h k > 0, and is attained for

tk = � k
ck

T hk
; the expression inwi is bounded from below (by0) if and only if � i = � .

The reader can also verify that the minimization with respect tov i is unbounded whenever
k ~�

� 1=2
� z i k > � i , and takes the value0 otherwise. The Cauchy Schwarz inequality

between the vectors~�
� 1=2

� z i and ~�
1=2

� v i shows indeed that the minimum is attained
for a vector such thatv i is proportional to~�

� 1
� z i if k ~�

� 1=2
� z i k = � i , and forv i = 0

if k ~�
� 1=2

� z i k < � i . To summarize,

g(H; � ; � ) =

8
<

:
� � +

P r
k=1 � k(1 � log � k

ck
T hk

) if 8i 2 [s]; � i = � and k ~�
� 1=2

� z i k � � i ;
�1 otherwise.

Now, since the primal and the dual share the same optimal value (we observed that strong
duality holds), it follows that the optimal variables (denoted with stars in superscript) satisfy

g(H � ; � � ; � � ) = � � � +
rX

k=1

� k(1 � log
� k

ck
T h k

� ) =
rX

k=1

� � k logt �
k :
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Combining this equality with the stationarity equationst �
k = � k

ck
T hk

� and� �
i = � � , we obtain:

� � = � �
i =

rX

k=1

� k = 1; 8i 2 [s]:

We can now make the dual of(P� ) explicit:

min
w� 0;

P
wi =1

S� (w ) = 2 max
H

rX

k=1

� k log
ck

T h k

� k

z i =

0

B
B
@

A (1) ;i h 1
...

A (r );i h r

1

C
C
A ; 8i 2 [s];

k ~�
� 1=2

� z i k � 1; 8i 2 [s]:

This program is the same as(D � ), and it completes the proof of Theorem 5.3.1.

Now, we can write that a design is optimal if and only if Karush Kuhn Tucker (KKT)
optimality conditions hold for problem(P� ). In fact, we show in Theorem 5.3.2 that these
KKT conditions are equivalent to a geometrical characterization ofS� � optimality, which
generalizes the theorem of Dette [Det93] to the case of multiresponse experiments.

Proof of Theorem 5.3.2.Since strong duality holds between Problems(P� ) and (D � ), the
Karush Kuhn Tucker (KKT) conditions characterize the optimal variables. We sum up the
KKT conditions here, which stem from the dualization step of the proof of Theorem 5.3.1:

(Feasibility) tkck =
sX

i =1

AT
(k);i v ik (5.27)

sX

i =1

wi = 1 (5.28)

(Comp. Slackness) � i (k ~�
1=2

� v i k � wi ) = 0
(since � i =1)

=) wi = k ~�
1=2

� v i k (5.29)

(Stationarity) � k = tkh k
T ck (5.30)

8
<

:
k ~�

� 1=2
� z i k � 1 and v i = 0 if wi = 0

k ~�
� 1=2

� z i k = 1 and v i = wi
~�

� 1
� z i otherwise.

(5.31)

In the above equations, the vectorz i is used to denote the vector
[h 1

T AT
(1) ;i ; :::; h r

T AT
(r );i ]

T 2 Rrl . Now, let (t ; V;w ) and H = [ h 1; :::; h r ]T be a
pair of primal and dual solutions of Problem(P� )� (D � ): they satisfy KKT equations(5.27)-
(5.31). We set� i = 1

wi
v i wheneverwi 6= 0 and � i = 0 2 Rrl otherwise, so that (5.29)

implies

8i 2 [s];
rX

k=1

� kk� ik k2 = wi � 1
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and (5.27) implies

8k 2 [r ]; tkck =
sX

i =1

AT
(k);i v ik =

sX

i =1

wi AT
(k);i � ik :

These relations are nothing but conditions(i ) and (ii ) of Theorem (5.3.2). Clearly, the
stationarity equation (5.30) is the same as condition(iv ) of Theorem (5.3.2). It remains
to show that (iii ) holds. LetD be an arbitrary matrix from the generalized Elfving set
D� (cf. Equation (5.24)). When the regression region isX = [ s], there exists a vector�
in the unit simplex ofRs as well as vectors(� i := [ � i 1

T ; : : : ; � ir
T ]T 2 Rrl ) i 2 [s] satisfying

k ~�
1=2

� � i k � 1 such that

D =
sX

i =1

� i

0

B
B
@

� i 1
T A (1) ;i

...
� ir

T A (r );i

1

C
C
A :

We now prove thatH = [ h 1; :::; h r ]T is thedirectionof the supporting hyperplane ofD� :

hD; H i =
X

i;k

� i � ik
T A (k);i h k

=
sX

i =1

� i � i
T z i

=
sX

i =1

� i ( ~�
1=2

� � i )T ( ~�
� 1=2

� z i )

�
sX

i =1

� i � 1;

where the inequality is Cauchy-Schwarz, and we have used the stationarity condition (5.31).
Finally,(iii ) holds sinceDiag(t )C lies on the boundary ofD� :

hDiag(t )C; H i =
rX

k=1

tkck
T h k =

X

k

� k = 1:

Conversely, assume that conditions(i ) � (iv ) hold. We setv i = wi � i , and we show that
(t ; V;w ) andH satisfy the KKT equations(5.27)-(5.31). As in the direct part of this proof,
it is straightforward to show that the stationarity equation (5.30) holds, as well as the
feasibility condition (5.27).
Let us now de�ne the vectorz i as in(D � ):

z i =

0

B
B
@

A (1) ;i h 1
...

A (r );i h r

1

C
C
A :

Condition(iii ) states that for all vector� in the unit simplex ofRs, and for all vectors
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(� i 2 Rsl ) i 2 [s] satisfyingk ~�
1=2

� � i k � 1, we have

X

ik

� i � ik
T A (k);i h k � 1:

In particular, if� = ei is thei th unit vector of the canonical basis ofRs, and� i =
~�

� 1
� z i

k ~�
� 1=2

� z i k
,

we obtain:

X

ik

� i � ik
T A (k);i h k = � i

T z i =
1

k ~�
� 1=2

� z i k
( ~�

� 1=2
� z i )T ( ~�

� 1=2
� z i ) = k ~�

� 1=2
� z i k � 1;

and we have shown the inequality of (5.31).
The fact that v i = 0 when wi = 0 is clear from the way we have de�nedv i , and the
complementarity slackness equation (5.29) also holds in this case.
It remains to show thatw is feasible (5.28) and that (5.31) holds forwi > 0. Note
that (5.31) in turn implies the complementarity slackness equation (5.29).

To this end, we write:

1 =
rX

k=1

� k =
rX

k=1

tkck
T h k =

X

ik

wi � ik
T A (k);i h k

=
sX

i =1

wi � i
T z i

=
sX

i =1

wi ( ~�
1=2

� � i )T ( ~�
� 1=2

� z i )

�
sX

i =1

wi k ~�
1=2

� � i k k ~�
� 1=2

� z i k:

The latter inequality is Cauchy-Schwarz, and it provides an upper bound which is the
(weighted) mean of terms all smaller than1. We can therefore write

sX

i =1

wi k ~�
1=2

� � i k k ~�
� 1=2

� z i k = 1; (5.32)

and the Cauchy-Schwarz inequality must be an equality wheneverwi 6= 0, which occurs if
and only if ~�

1=2
� � i is proportional to~�

� 1=2
� z i . Finally, we must have

P
i wi = 1, so

that w is feasible (5.28), and each positively weighted term in the sum (5.32) must be1:

wi 6= 0 =) k ~�
1=2

� � i k k ~�
� 1=2

� z i k = 1 =)

8
<

:
k ~�

1=2
� � i k = 1

k ~�
� 1=2

� z i k = 1
:

These two norm constraints further force the coe�cient of proportionality between~�
1=2

� � i

and ~�
� 1=2

� z i to be 1, so that � i = ~�
� 1

� z i , andv i = wi
~�

� 1
� z i , which completes the

proof.
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Chapter 6

Numerical comparison of the
algorithms

In this chapter, we compare the numerical performance of the di�erent algorithms dis-
cussed in the previous chapters. We will see that the second order cone programs presented
in this chapter are very e�cient when the numberr of quantities to estimate is small (in
particular forc� optimality).

We will compare our approach to the classic algorithms presented in Chapter 3. In
particular, we concentrate on the semide�nite programming/MAXDET approach [VBW98],
Wynn�Fedorov-type exchange algorithms [Wyn70, Fed72], and Titterington-type multiplica-
tive algorithms [Tit76]. Several versions and re�nements of these procedures were proposed.
For the class of exchange algorithms, we will use theIncDecprocedure of Richtarik [Ric08],
which speci�es step lengths for which the precision� is achieved inO(1=� ) iterations; for
the multiplicative algorithms, we will use the general class of iterations introduced by Silvey,
Titterington and Torsney [STT78], which is de�ned by a power parameter� (cf. Equa-
tion (3.3)) and is known to converge to an optimal design under certain conditions [Yu10a].
We will also consider a variant of the latter algorithm which uses an acceleration parameter
 , for which Dette, Pepelyshev and Zhigljavsky [DPZ08] have established a convergence
result in the case ofD� optimality, and conjectured the convergence for other criteria. We
found that the values� = 0:9 and  = 0:9 gave the best results forA� optimality in our
experiments, and so those values will be used throughout this chapter. ForD� optimality,
we have used the acceleration parameter = 0:5.

We will �rst consider random instances of optimal design problems, in order to evaluate
to which extent each parameter a�ects the computation time. Then, we will consider a
simple polynomial regression model, for which we shall see that our approach is well-suited
when the number of support points is large. Finally we will present some results from the
network application which we be detailed in Chapter 10, where the sampling rates of a
monitoring tool should be optimized subject to multiple constraints.

111
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m
SOCP (5.7) SDP IncDec Accelerated Mult. algo Mult. algo with Exponent
[this paper] [VBW98] Exchange [Ric08] ( = 0 :9) [DPZ08] � = 0 :9 [Yu10a]

2 0:082 2:897 10:039 3:026 2:979
22 0:120 3:017 99:510 9:598 9:240
23 0:166 4:798 13:112 5:883 6:040
24 0:175 6:828 24:431 12:574 12:204
25 0:352 15:820 29:454 11:258 11:123
26 0:816 66:281 54:379 13:407 13:419
27 2:636 338:669 92:537 37:935 36:679
28 10:496 failed 202:509 96:594 99:751
29 44:689 failed 412:890 585:619 597:442
210 154:187 failed 498:616 551:634 539:130

Table 6.1: CPU time (s) of the di�erent algorithms, for typical random instances of theA� optimal
design problem withs = 2 10, l = 1 , r = 3 , and di�erent values ofm.

Figure 6.1: Comparison of two algorithms (SOCP vs. multiplicative algorithm with the acceleration
parameter = 0 :9 [DPZ08]) on random instances (A� optimality) with m = 120, l = 30, r = 1 ,
and varyings. The box plots represent the distribution of the computing times for10 random
instances.

6.1 Random instances

In this section, we consider random instances of optimal experimental design problems,
in which the entries of thel � m matrices(A i ) i 2 [s] are independently and identically dis-
tributed (iid) with a normal distribution, as well as the entries of them � r matrix K . For
every considered instance, we use SeDuMi to solve the SOCP (5.7) and theA� optimality
SDP (3.11); we have implemented the other procedures in Matlab. In all our experiments,
the stopping criterion is based on the general equivalence theorem of Kiefer [Kie74]: the
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Figure 6.2: Comparison of four algorithms on
typical random instances (A� optimality) with
m = 75, s = 150, l = 1 and varyingr .

Figure 6.3: Comparison of four algorithms on
typical random instances of the minimum cov-
ering ellipsoid (D � optimality for � , m = 3 )
and varyings.

computation stops as soon as the ratio between the largest entry of the gradient and the
value of the criterion is below 1.001 (as in [DPZ08]).

We start by evaluating the e�ect ofr , which turns out to be the determining factor for
the performance of our SOCP approach. To this end, we setm = 75, s = 150, l = 1
(single-response experiments), and we letr vary between1 and75. The computing time of
the di�erent algorithms is plotted againstr in Figure 6.2. We notice that our algorithm is the
fastest for small values(r � 7), but performs badly whenr is large, while the multiplicative
update algorithms are insensitive to the value ofr . For this reason, we will chose small values
of r in further experiments, since our algorithm might not be well adapted for larger .

We next study the e�ect ofs (the number of available experiments) for the case of
c� optimality (r = 1). For these experiments, we setm = 120, l = 30, and we takes in the
set f 2k ; k = 2; : : : ; 11g. The performance (in terms of CPU time) of the SOCP is compared
to that of the multiplicative algorithm with an acceleration parameter = 0:9 [DPZ08] on
the log-log plot of Figure 6.1. The boxes represent the distribution of the CPU time, on10
randomly generated instances. We see here that our approach is in average ten times faster
as soon ass � 32.

To evaluate the e�ect ofm, we sets = 2 10, l = 1, r = 3, and choosem in the set
f 2k ; k = 1; : : : ; 10g. (Note that sinceK and theA i have random iid Gaussian entries,
the instance is almost surely feasible ifs � m; otherwise, the instance is almost surely
infeasible.) The results of each algorithm are displayed in Table 6.1. It is striking that the
SOCP approach is the best one, while the SDP is the worst whenm becomes large, which
demonstrates the importance of the rank reduction discussed in Chapter 4. Form � 29, the
SOCP is 10 times faster than all other algorithms. In the last row of the table however, this
ratio is lower. This might be becauses = m = 210 in this case, such that all experiments
are support points of the optimal design, and classic algorithms certainly take advantage of
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this situation (while it does not make a di�erence for interior point codes).

Pronzato [Pro03] has shown that we can improve the multiplicative algorithms thanks
to a simple test which allows to removeon the �y experiments which do not belong to
the support of theD� optimal design (i.e. experiments with a zero weight), and which was
re�ned by Harman and Pronzato [HP07]. This can considerably improve the performance
of the multiplicative algorithms when there are a lot of points with a zero weight. As
in [HP07], we have studied random instances of the minimum covering ellipse, but inR3:
m = 3, K = I 3, and we draws independent random regression vectors (l = 1) from a
normal distributiona i � N (0; I 3), with s increasing from50 to 500. The D� optimal
design problem is equivalent to �nding the minimum volume ellipsoid which contains the
s vectorsa i , and theD� optimal design is supported by points lying on the boundary of
this minimal ellipsoid (Figure 3.1). In accordance with intuition, the number of support
points of theD� optimal design is small, and therefore the test of Pronzato and Harman
improves dramatically the computing time (cf. Figure 6.3). Note however that our SOCP
for D� optimality (5.25) remains competitive with the latter approach.

6.2 Polynomial Regression

We have computed theA� and D-optimal designs (for the full parameter� ), for a
polynomial regression model of degree5:

A(x ) = [1 ; x ; x 2; x 3; x 4; x 5]

on the regression regionX = [0; 3]. The optimal designs are represented on Figure 6.4. In
this problem, we haver = m = 6, which issmall. Therefore, we can hope that our SOCP
approach will perform well. The computation times are plotted on Figures 6.5 and 6.6,
as a function of the number of points considered for the discretization of the regression
intervalX = [0; 3]. For theA� optimal design, the experimental setting was the same that
the one of previous section. For theD� optimal design problem, we solved the geometric
program (5.4) with SeDuMi. We have also implemented the classic multiplicative algorithm,
the accelerated algorithm with = 0:5, and the MAXDET program (3.9). Contrarily to the
multiplicative algorithms, the SOCP and the MAXDET approaches seem to be insensitive to
the size of the discretization grid. For these instances, our SOCP is roughly two times faster
than the MAXDET program. Also note that the e�ect of the acceleration parameter is
clearly visible (red curve vs. green curve). We point out that for these polynomial regression
problems, the tests of Pronzato and Harman [Pro03, HP07] to remove points that do not
belong to the support of theD� optimal design did not yield any improvement.
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Figure 6.4: A- and D-optimal designs for the polynomial regression model of degree5 onX = [0 ; 3].

Figure 6.5: A-optimal design for the polyno-
mial regression model: evolution of the com-
putation time with the number of points for
the discretization of[0; 3].

Figure 6.6: D-optimal design for the poly-
nomial regression model: evolution of the
computation time with the number of
points for the discretization of[0; 3].

6.3 Optimal Sampling in IP networks

We �nally show some results for an application to the optimal monitoring of large IP
networks. Assume that an Internet provider wants to estimate the tra�c matrix of her
network, that is, the volume of tra�c between each pair of origin and destination during a
given time period. To this end, she disposes of a monitoring tool, which can be activated
at di�erent sampling rates in di�erent location of the network, and is able to �nd the
destination of the sampled packets. For networking issues, the intensive use of this tool is
not suitable, because it creates an overload both in terms of CPU utilization of the router
and bandwidth consumption. The sampling rates should therefore be tuned cautiously on
each interface, in such a way that the number of sampled packets remains under a target
threshold.
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This situation can be represented by an optimal design model with multiresponse experi-
ments: the set of available experimentsX coincides with the interfaces of the network where
the monitoring-tool can be activated: when the software is installed on a given interface,
we obtain an estimation of the sum of the �ows that traverse this interface, and that have
destinationD, for every destinationD reachable from this interface. In Chapter 10, we shall
see that if the sampling rates are small, then the Fisher information matrix of the sampling
design has the standard form (2.8) (after an appropriate normalization of the observation
matrices relying on a prior estimate of the unknown OD tra�c matrix). The optimal mon-
itoring problem can thus be formulated as an optimal experimental design problem with
multiple resource constraints.

We �rst study somec� optimal sampling problem with the simple constraint
P s

i =1 wi =
1, such that we can compare our approach to classic algorithms. Table 6.2 summarizes
the results (in terms of CPU time) for several problems: each instance is de�ned by a
network and the type of interfaces considered. We used the topology of three networks:
Abilene, which consists in11 nodes,m = 121 OD pairs and50 links; the Opentransit
backbone of France Telecom, with116 nodes,m = 13456 OD pairs and436 links; and a
clustered version of the latter network, thus reduced to31 nodes,m = 961 OD pairs and
133 links. The natural problem is to activate the monitoring tool independently on each
link (interfaces=�links�). We also considered the problem of imposing the same sampling
rates on all incoming links of each router, which is equivalent to consider each router as
a big interface(interfaces=�Nodes�). This setting is consistent with older versions of the
monitoring software Net�ow, still present on many routers in practice, and which do not
allow to set di�erent sampling rates on di�erent incoming interfaces. For all these instances
the vectorc was drawn from a normal distribution. The threshold for the stopping criterion
was lowered to1:01 for this network application, since this value su�ces to obtain good
designs in practice.

Network
Abilene Abilene OTClusters OTClusters Opentransit Opentransit

(m = 121) (m = 121) (m = 961) (m = 961) (m = 13456) (m = 13456)

Interfaces
Nodes Links Nodes Links Nodes Links

(s = 11) (s = 50) (s = 31) (s = 133) (s = 116) (s = 436)
SOCP 0:021 0:036 0:078 0:094 5:52 33:03
SDP 1:095 1:178 692:37 734:25 failed failed

IncDec Exchange 0:518 0:823 4:57 19:69 failed failed
Mult. algo ( = 0 :9) 0:009 0:043 0:018 1:893 failed failed
Mult. algo (� = 0 :9) 0:008 0:038 0:018 1:468 failed failed

Table 6.2: CPU time (s) for di�erent instances ofc� optimal design arising from an optimal
monitoring problem in IP networks (with the standard constraint

P
i wi = 1 )

We can see in the table that the multiplicative algorithms perform better than the
SOCP approach on the instances wheres is small (1st and 3rd columns in Table 6.2). On
the other instances however, the SOCP performs well, and it is the only method which
returned a solution for the Opentransit network. The SDP and the multiplicative methods
failed because of memory issues (in the multiplicative algorithm, a full rank update of the
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13456� 13456information matrix should be carried out at each time step). The IncDec
Exchange algorithm did not crash, but it had not converged after 2 hours of computation.

We next turn to the case of general constraints of the formRw � d. Since we do not
know any other algorithm which can handle optimal design problems with multiple resource
constraints, we compare the SOCP and the semi-de�nite programming approaches only.
Table 6.3 summarize the results (in terms of CPU time) for several problems, speci�ed as
previously by the network and the type of interfaces considered, and also by the type of the
constraint matrixR. In the optimal sampling problem, the matrixR usually depends on
the volume of tra�c observed at each router (cf. [SGB10]). We simulated this data from a
uniform distribution, a lognormal distribution, or we used real tra�c loads. To see the e�ect
of the number of constraints, we also generated arbitrary constraints matrices of di�erent
sizes.

In comparison to the SDP, the computation time can be reduced by a factor in the order
of 1000on the instances from the clustered network. Moreover, the SOCP approach is able
to handle huge instances arising from the Opentransit network (in whichm = 13456).

Network
Abilene Abilene Abilene Abilene Abilene

(m = 121) (m = 121) (m = 121) (m = 121) (m = 121)
Interfaces Links (s = 50) Links (s = 50) Links (s = 50) Nodes (s = 11) Nodes (s = 11)

Constraints
R: 11� 50 R: 11� 50 R: 11� 50 R: 4 � 11 R: 10� 11

(uniform tra�c) (lognormal tra�c) (real tra�c) (arbitrary) (arbitrary)
SOCP 0:043 0:056 0:061 0:051 0:053
SDP 0:714 0:842 0:944 0:827 0:876

Network
OTClusters OTClusters OTClusters Opentransit Opentransit
(m = 961) (m = 961) (m = 961) (m = 13456) (m = 13456)

Interfaces Nodes (s = 31) Links (s = 133) Links (s = 133) Links (s = 436) Links (s = 436)

Constraints
R: 4 � 31 R: 31� 133 R: 130� 133 R: 12� 436 R: 116� 436
(arbitrary) (uniform tra�c) (arbitrary) (arbitrary) (real tra�c)

SOCP 0:141 0:462 1:135 23:32 187:59
SDP 350:63 451:69 430:71 failed failed

Table 6.3: Computation time (s) for di�erent instances ofc� optimal design arising from an
optimal monitoring problem in IP networks (with multiple constraintsRw � b).
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Chapter 7

Combinatorial problems arising in
optimal design of experiments

In this chapter, we study some combinatorial aspects of optimal experimental design
problems. The results of this chapter are presented in [Sag10]. Some of them were already
announced in [BGS08].

In a number of real-world applications, the design variables are discrete, since the ex-
perimenter can only choose the experiments to conduce from a �nite set, and perhaps how
many times to perform them. An exhaustive list of these applications is not possible, but
we wish to give the reader a few examples from these problems:

Uci«ski and Patan [UP07] interested themselves in the estimation of parameters of
systems governed by partial di�erential equations. They propose to solve a D-optimal
problem in order to �nd an optimal subset of spatial locations of sensors on a �nite grid.
Their approach is based on a Branch and Bound algorithm, where a multiplicative algorithm
is used to solve a continuous relaxation of the problem and provides some upper bounds.

Song, Qiu and Zhang [SQZ06] proposed an application of the optimal experimental
design for the estimation of performance in a large scale network. In their approach, a
discrete A- (or D-)optimal design is approximated by a greedy algorithm in order to select
some measurements of the network performance. This greedy algorithm entails smart rank-
one matrix updates, as �rst suggested by Fedorov [Fed72].

Branderhorst, Walmsley, Kosut and Rabitz [BWKR08] used the optimal design framework
to maximize the accuracy of the estimation of quantum states, by selecting the number
of experiments to be performed in each particular system con�guration. A continuous
relaxation of the problem is solved, and they rounded to obtain an integer solution.

Finally, the present developments were motivated by a joint work with Bouhtou and
Gaubert [BGS08, SGB10] (see also Chapter 10) on the application of optimal experiment
design methods to the identi�cation of the tra�c on an Internet backbone. The approach
developed there consists in solving the continuous relaxation of an optimal experimental

119
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design problem, which is rounded with a simple heuristic in order to obtain a discrete design.

The rest of this chapter is organized as follows: in Section 7.1 we introduce the notation
and we state the combinatorial optimization problem which we shall study; particular care will
be given to the under-instrumented situation, where no discrete design lets the information
matrix be of full rank, and which may occur in monitoring problems on large size networks.
To the best of our knowledge, this combinatorial optimization problem has always been
handled by heuristic approaches. This chapter provides approximability bounds for this
NP-hard problem.

In Section 7.2, we show that this combinatorial optimization problem is NP-hard indeed,
and we establish a matrix inequality (Proposition 7.2.4) which shows that a class of spec-
tral functions is submodular (Corollary 7.2.5). As a particular case of the latter result, the
objective function of the experimental design problem is submodular. Due to a celebrated
result of Nemhauser, Wolsey and Fisher [NWF78], this implies that the greedy approach,
which has often been used for this problem, always gives a design within1 � e� 1 of the
optimum (Theorem 7.2.7). We point out that the submodularity of theD-criterion was
noticed earlier: Robertazzi and Schwartz used it to write an accelerated Wynn-Fedorov�
type algorithm for the construction of approximate designs [RS89] (i.e. with the constraint
P

i wi = 1; 0 � w � 1), which is based on the accelerated greedy algorithm of Mi-
noux [Min78]. The originality of this chapter is to show that a whole class of criteria satis�es
the submodularity property, and to study the consequences in terms of approximability of a
combinatorial optimization problem.

In Section 7.3, we study some rounding algorithms for the optimal experimental design.
Rounding a continuous solution to obtain a discrete one is a natural option [BWKR08,
BGS08] since we dispose of a continuous relaxation of the problem, which is convex and
has been extensively studied. Moreover, we may exploit the work of Calinescu, Chekuri,
Pál and Vondrák [CCPa07, Von08], who showed how to use the pipage rounding algorithm
of Ageev and Sviridenko [AS04] to approximate the maximization of submodular functions.
Thanks to their ideas indeed, we show in Theorem 7.3.7 that when the goal is to select
n out of s experiments, theD� optimal design may be rounded to a design for which the
dimension of the observable subspace is withinn

s of the optimum. While this result might
look weaker than the greedy(1 � e� 1)� approximation factor, we show that one can not
hope for a better result with rounding algorithms. The proof is based on a generalization of a
result from Atwood [Atw73], who showed that the coordinates of theD� optimal design for
experiments with scalar response are bounded by1

m ; wherem is the number of parameters
to estimate. For multiresponse experiments, we generalized his result in Proposition 7.3.4,
with inequalities involving the ranks of the observation matrices.
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7.1 Notation and statement of the problem

7.1.1 A combinatorial optimization problem

We consider the same model as the one described in Chapter 2 (Each experiment provides
linear multidimensional observations of the parameter (cf. Equation with a unit, centered
noise (2.3).) In addition, we dispose of a prior observation

y0 = A0� + � 0:

We use the index0 to denote this prior information. This can be useful to model afree-of-
chargeexperiment, that the experimenter will conduct in any case, or to model an intrinsic
relationship between the parameters, such as Kirchho�'s circuit law (cf. Section 5.2.3).

In this chapter, we assume that the experimenter wants to choose a well suited subset
I � [s] of experiments that she will conduct in order to estimate the parameters. We
therefore de�ne thedesignvariablew as the 0=1 vector of sizes, wherewk takes the
value1 if and only ifk 2 I . We denote byI = f i 1; : : : ; ing the subset of the selected
experiments, such that the vector of observation reads :

y = A(w) � + � ; (7.1)

wherey =

2

6
6
6
6
6
4

y0

y i 1
...

y i n

3

7
7
7
7
7
5

; A(w ) =

2

6
6
6
6
6
4

A0

A i 1

...
A i n

3

7
7
7
7
7
5

; and E[� ] = 0; E(�� T ) = I:

If we have enough measurements, such thatA(w ) is of full rank, thenM (w) =
A(w)T A(w) =

P s
i =1 wi AT

i A i is the inverse of the covariance matrix for the best linear
unbiased estimator of� (cf. Chapter 2). We can thus formulate the� p� optimization prob-
lem in the same form as the one presented in Section 2.3.2, except that the design variable
w is now integer, and subject to a cardinality constraint:

max
w 2f 0;1gs

� p

�

M (w)
�

(7.2)

s:t:
sX

i =1

wi � n

Assume more generally that the cost of experimenti is r i . If the experimenter has a
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limited budgetb, the (combinatorial)� p-optimal designproblem is:

max
w 2f 0;1gs

� p

�

M (w)
�

(7.3)

s:t:
sX

i =1

wi r i � b

Problem (7.2) is a particular case of Problem (7.3), when all the experiments have the
same costr , and n = bb

r c. Therefore, we refer to the constraints of Problem (7.2) as the
unit-cost case.

7.1.2 The under-instrumented situation

We note that the problem of maximizingM (w) with respect to the Löwner ordering
remains meaningful even whenM (w) is not of full rank. This case does arise in under-
instrumented situations, in which some constraints may not allow one to conduct a number
of experiments which is su�cient to infer all the parameters. In this case however, the
natural interpretation ofM (w) as the inverse of the covariance matrix of the best linear
unbiased estimatorvanishes, because an unbiased estimator for the vector of parameters
does not exist. In a number of applications though, the parameters can still be estimated,
using a small number of measurements and prior information on� . Therefore, a measure
of the quality of the under-instrumented designs is required.

An interesting and natural idea to �nd an optimal under-instrumented design is to choose
the design which maximizes the rank of the observation matrixA(w ), or equivalently of
M (w) = A(w)T A(w). The rank maximizationis a nice combinatorial problem, where we
are looking for a subset of matrices whose sum is of maximal rank:

max
w2f 0;1gs

rank
�

AT
0 A0 +

X

i

wi AT
i A i

�

� rank(AT
0 A0) (P0)

s:t:
X

i

wi r i � b:

In the above optimization problem, the termrank(AT
0 A0) has been subtracted so that the

objective criterion takes the value0 for w = 0. In combinatorics, approximation factors are
generally given with respect to objective functions which satisfy the latter property.

More generally, we show below that the problem of maximizingM (w) with respect to
the Löwner ordering still has some statistical interest in the under-instrumented situation.
Moreover, we will see that the� p� maximization ofM (w) may be thought as a regular-
ization of therank optimizationproblem (P0), and � p can be seen as a deformation of
the rank criterion forp 2]0; 1]. First, we show thatM (w) still has a statistical meaning,
since its Moore-Penrose generalized inverse is the variance of the estimator�̂ LS given by
least square theory. More precisely, a linear estimator�̂ = LT y for � is unbiased if and
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only if LT is a left inverse ofA(w ) (i.e. LT A(w) = I ). In the under-observed case, no
such left inverse exists, but we know from least square theory that the trace of the co-
variance matrix Var(�̂ ) = LT L is minimized in the class of the least biased estimators for
L � = ( A(w)T )y, whereM y denotes the Moore-Penrose generalized inverse ofM (i.e. L �

minimizeskLkF := trace LT L in the class of matricesL such thatk(LT A(w) � I )kF is
minimized). The resulting least square estimator�̂ LS = A(w)yy has variance

Var( �̂ LS ) = A(w)y(A(w )y)T =
�
A(w)T A(w)

� y
= M (w)y:

Similarly to the full rank case (cf. Equation 2.11), we can see that for all� 2 [0; 1], �̂ LS

lies in a cylinder of the form

(� � �̂ LS )T M (w)(� � �̂ LS ) � � �

with probability � , and these cylinders are minimized (for the inclusion relation) when
M (w) is maximized (for the Löwner ordering).

Another argument for the use of this criterion is given by Bayesian optimal design, where
a prior distribution for the parameter is given:

E(� ) = � ; and Var(� ) = R:

It is known (see e.g. [Puk93]) that when the prior covariance matrixR is positive de�nite, the
expected covariance matrix is minimized among all unbiased a�ne estimators, conditionally
to the prior distribution of� for:

�̂ jR; � =
�
R� 1 + A(w)T A(w)

� � 1�
R� 1� + A(w )T y

�
:

This Bayesian estimator has a variance which does not depend on the prior expected value
of � :

Var( �̂ jR;� ) =
�
R� 1 + A(w)T A(w)

� � 1
: (7.4)

In practice, prior information on the variance of the parameter is rarely known, and
the prior can be modeled instead by settingR� 1 = �I for an arbitrarily small� (see
e.g. [SQZ06]). The regularization parameter� lets the inverse in (7.4) exist, and we recover
the Moore-Penrose inverse ofM (w) by letting � ! 0.

When every feasible information matrix is singular, Equation (2.13) indicates that the
maximization of� p(M (w)) can be considered only for nonnegative values ofp. The next
proposition shows that� p can be seen as a deformation of the rank criterion forp 2]0; 1].
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First notice that whenp > 0, the maximization of� p(M (w)) is equivalent to:

max
w2f 0;1gs

' p(w ) := trace
�

AT
0 A0 +

X

k

wkAT
k Ak

� p

� trace
�

AT
0 A0

� p

(Pp)

s:t:
X

k

wkck � b;

where we have subtracted the termtrace(AT
0 A0)p from the objective function, as in Prob-

lem (P0), in order to have the property' p(0) = 0 .

Proposition 7.1.1. For all positive semide�nite matrixM 2 S+
m ;

lim
p! 0+

trace M p = rank M: (7.5)

Proof. Let � 1; : : : ; � r denote the positive eigenvalues ofM , counted with multiplicities,
such thatr is the rank ofM . We have the �rst order expansion asp ! 0+ :

trace M p =
rX

k=1

� p
k = r + p log(

rY

k=1

� k) + O(p2) (7.6)

Consequently,trace M 0 will stand forrank(M ) in the sequel and the rank maximization
problem (P0) is the limit of problem (Pp) as p ! 0+ .

Corollary 7.1.2. If p > 0 is small enough, then every designw � which is a solution of
Problem(Pp) maximizes the rank ofM (w). Moreover, among the designs which maximize
this rank,w � maximizes the product of nonzero eigenvalues ofM (w).

Proof. Since there is only a �nite number of designs, it follows from (7.6) that forp > 0
small enough, every design which maximizes' p must maximize in the lexicographical order
�rst the rank of M (w), and then the product

Q
� k > 0 � k .

7.2 Submodularity and Greedy approach

In this section, we study the greedy algorithm for solving Problem (Pp) through the
submodularity of' p. We will �rst prove that therank optimizationproblem is NP-hard by
reduction of MAX-k-Coverage. Next, we show that the objective function of Problem (Pp)
is nondecreasing submodular. The maximization of submodular functions over a matroid
has been extensively studied [NWF78, CCPa07, Von08, KST09], and we shall use known
approximability results.

In combinatorics, approximability results are usually given for optimization problems
whose objective function takes the value0 for the empty set. For this reason, all results will
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be given with respect to the maximization of the function' p (Problem (Pp)). This problem
is equivalent to the� p� optimal problem (7.3) for positive values ofp, and to the rank
optimizationproblem (P0) for p = 0. In addition, note that there is no point to consider
multiplicative approximation factors for the� p� optimal problem whenp � 0, since the
criterion is identically0 as long as the the information matrix is singular. Forp � 0 indeed,
the instances of the� p-optimal problem where no feasible design letsM (w) be of full rank
have an optimal value of0. For all the other instances, any polynomial-time algorithm with
a positive approximation factor would necessarily return a design of full rank. Provided
that P 6= NP , this would contradict the NP-hardness of the rank optimization problem
(Theorem 7.2.1). So, we investigate approximation algorithms only in the casep � 0.

7.2.1 Hardness of Rank optimization

Theorem 7.2.1. Problem(P0) is NP-Hard. For all positive", there is no polynomial-time
algorithm which approximates(P0) by a factor of1 � 1

e + " unlessP = NP .

Proof. We will show that the problem MAX-k-coverage, for which the statement of the
theorem is true [Fei98], reduces to therank optimization(P0) in polynomial time.

The problem MAX-k-Coverage is de�ned as follows : We are given a collection of subsets
S = f S1; S2; : : : ; Ssg of [m], as well as an integerk, and the goal is to pick at mostk
sets ofS such that the size of their union is maximized. Letei be the i th vector of the
canonical basis ofRm . If the setSi contains the elementsf i 1; i2; : : : ; i l ( i )g, we de�ne thei th

observation matrix as:A i = [ ei 1 ; : : : ; ei l ( i )
]T ; such thatAT

i A i is the diagonal matrix whose
indexes of nonzero entries are the elements ofSi . Finally, letA0 be the all-zero row vector
of sizem. Since all the matricesAT

i A i have only diagonal entries, it is straightforward to
see that the rank ofAT

0 A0 +
P

k wkAT
k Ak is equal to the number of nonzero elements on

its diagonal, i.e. the cardinal of[ f i jwi =1 gSi , which is exactly the objective function of the
MAX-k-Coverage problem.

This is a negative result on the approximability of Problem (Pp). Nevertheless, we show
that the bound provided by Theorem 7.2.1 is the worst possible ever, and that the greedy
algorithm always attains it in the unit-cost case.

7.2.2 A class of submodular spectral functions

We recall that a real valued functionF : 2E ! R, de�ned on every subset ofE is called
nondecreasing if for all subsetsI and J of E, I � J impliesF (I ) � F (J ). We also give
the de�nition of asubmodularfunction:

De�nition 7.2.2 (Submodularity). A real valued set functionF : 2E �! R is submodular
if it satis�es the following conditions :
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(i) F (; ) = 0 ;

(ii) F (I ) + F (J ) � F (I [ J ) + F (I \ J ) for all I; J � E .

We next recall the de�nition of operator monotone functions. The latter are real valued
functions applied to Hermitian matrices: ifA = U Diag(� 1; : : : ; � m )U� is am� m Hermitian
matrix (whereU is unitary andU� is the conjugate ofU), the matrix f (A) is de�ned as
U Diag(f (� 1); : : : ; f (� m ))U� .

De�nition 7.2.3 (Operator monotonicity). A real valued functionf is operator monotone
on R+ (resp.R�

+ ) if for every pair of positive semide�nite (resp. positive de�nite) matrices
A andB

A � B =) f (A) � f (B ):

We say thatf is operator antitoneif � f is operator monotone.

The next proposition is a matrix inequality of independent interest; it will be useful to
show that' p is submodular. Interestingly, it can be seen as an extension of the Ando-Zhan
Theorem [AZ99], which reads as follows:Let A, B be positive semide�nite matrices. For
any unitarily invariant normjjj � jjj , and for every nonnegative operator monotone functionf
on [0; 1 ),

jjj f (A + B)jjj � jjj f (A) + f (B )jjj :

Kosem [Kos06] asked whether it is possible to extend this inequality as follows:

jjj f (A + B + C)jjj � jjj f (A + B) + f (B + C) � f (C)jjj ;

and gave a counter example involving the trace norm and the functionf (x) = x
x+1 . However,

we show in next proposition that the previous inequality holds for the trace norm and every
primitive f of an operator antitone function (in particular, forf (x) = xp; p 2]0; 1]). Note
that the previous inequality is not true for any unitarily invariant norm andf (x) = xp

neither. It is easy to �nd counter examples with the spectral radius norm.

Proposition 7.2.4. Let f be a real function de�ned onR+ and di�erentiable onR�
+ . If

f 0 is operator antitone onR�
+ , then for all triple(X; Y; Z ) of m � m positive semide�nite

matrices,

trace f (X + Y + Z) + trace f (Z ) � trace f (X + Z) + trace f (Y + Z): (7.7)

Proof. Since the eigenvalues of a matrix are continuous functions of its entries, and since
S++

m is dense inS+
m , it su�ces to establish the inequality whenX ,Y, and Z are positive

de�nite. Let X be an arbitrary positive de�nite. We consider the map:

 : S+
m �! R

T 7�! trace f (X + T) � trace f (T):
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The inequality to be proved can be rewritten as

 (Y + Z) �  (Z ):

We will prove this by showing that is nonincreasing with respect to the Löwner ordering
in the direction generated by any positive semide�nite matrix. To this end, we compute the
Frechet derivative of at T 2 S++

m in the direction of an arbitrary matrixH 2 S+
m . By

de�nition,

D (T)[H ] = lim
� ! 0

1
�

�
 (T + �H ) �  (T)

�
:

Whenf is an analytic function,X 7�! trace f (X ) is Frechet-di�erentiable, and an explicit
form of the derivative is known (see [HP95, JB06]):D

�
trace f (A)

�
[B ] = trace

�
f 0(A)B

�
.

Sincef 0 is operator antitone onR�
+ , a famous result of Löwner [Löw34] tells us (in particular)

that f 0 is analytic at all point of the positive real axis, and the same holds forf . Provided
that the matrixT is positive de�nite (and henceX + T � 0), we have

D (T)[H ] = trace
� �

f 0(X + T) � f 0(T)
�
H

�

:

By antitonicity off 0 we know that the matrixW = f 0(X + T) � f 0(T) is negative semidef-
inite. For a matrixH � 0, we have therefore:

D (T)[H ] = trace (WH ) � 0:

Consider nowh(s) :=  (sY + Z). For all s 2 [0; 1], we have

h0(s) = D (sY + Z)[Y] � 0;

and so,h(1) =  (Y + Z) � h(0) =  (Z ), from which the desired inequality follows.

Corollary 7.2.5. Let M 0; M1; : : : ; Ms bem� m positive semide�nite matrices. Iff satis�es
the assumptions of Proposition 7.2.4, then the set functionF : 2[s] ! R de�ned by

8I � [s]; F (I ) = trace f (M 0 +
X

i 2 I

M i ) � trace f (M 0);

is submodular

Proof. The relationF (; ) = 0 follows from the de�nition ofF .

Let I; J � 2[s]. We de�ne

X =
X

i 2 I nJ

M i ; Y =
X

i 2 J nI

M i ; Z = AT
0 A0 +

X

i 2 I \ J

M i :
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It is easy to check that

F (I ) = trace f (X + Z) � trace f (M 0);

F (J ) = trace f (Y + Z) � trace f (M 0);

F (I \ J ) = trace f (Z ) � trace f (M 0);

F (I [ J ) = trace f (X + Y + Z) � trace f (M 0):

Hence, Proposition 7.2.4 proves the submodularity ofF .

We next point out some submodular set functions which can be found thanks to Corol-
lary 7.2.5.

Corollary 7.2.6. Let M 0; M1; :::; Ms be m � m positive semide�nite matrices.

(i) 8p 2]0; 1]; I 7! trace(M 0 +
P

i 2 I M i )p � trace M p
0 is submodular.

(ii) I 7! rank(M 0 +
P

i 2 I M i ) � rank M 0 is submodular.

If moreoverM 0 is positive de�nite, or if everyM i is positive de�nite, then:

(iii) I 7! log det(M 0 +
P

i 2 I M i ) � log det M 0 is submodular.

Proof. It is known thatx 7! xq is operator antitone onR�
+ for all q 2 [� 1; 0[. Therefore,

the derivative of the functionx 7! xp (which ispxp� 1), is operator antitone onR�
+ for all

p 2]0; 1[. This proves the point(i ) for p 6= 1. The casep = 1 is trivial, by linearity of the
trace.

The submodularity of the rank(ii ) and of log det (iii ) are classic. Interestingly, they
are obtained as the limit case of(i ) asp ! 0+ . (For log det, we must consider the second
term in the asymptotic development ofX 7! trace X p asp tends to0+ (7.6)).

7.2.3 Greedy approximation

The next results show that for allp 2 [0; 1], Problem (Pp) is 1 � 1
e� approximable in

polynomial time. This can be attained with the help of the greedy algorithm, whose principle
is to start fromG0 = ; and to construct sequentially the sets

Gk+1 := Gk [ argmaxi 2 [s]
' p(Gk [ f ig)

r i
;

until the budget constraint is violated.

Theorem 7.2.7 (Approximability of' p� Optimal Design: Unit-cost case). Let p 2 [0; 1].
The greedy algorithm for problem(Pp) yields a1 � 1

e approximation factor in the unit-cost
case.
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Proof. We know from Corollary 7.2.6 that for allp 2 [0; 1], ' p is submodular (p = 0 corre-
sponding to the rank maximization problem). In addition, the function' p is nondecreasing,
becauseX �! X p is a matrix monotone function forp 2 [0; 1] (see e.g. [Zha02]).

Nemhauser, Wolsey and Fisher [NWF78] proved the result of this theorem for any non-
decreasing submodular function over a uniform matroid. Moreover when the maximal num-
ber of interfaces which can be selected isn, this approximation ratio can be improved to
1 �

�
1 � 1=n

� n
:

Remark7.2.1. As mentionned in the introduction of this chapter, the submodularity of the
D� criterion was already used by Robertazzi and Schwartz [RS89]. The problem studied
in the latter article is of a di�erent nature, since the authors used a greedy algorithm to
solve Problem (7.2) (forp = 0) whenn ! 1 , and they normalize the result to obtain an
optimal approximate design. The submodularity of� 0 allowed them to use the accelerated
greedy algorithm of Minoux [Min78]. This yields great computational savings, because at
each stage, the increment of the objective function need only be computed for a subset of
[s]. Note that this accelerated greedy algorithm can also be used in our case, in order to
construct a1 � 1=e� approximation of the' p� optimum.

One can obtain a better bound by considering thetotal curvatureof a given instance,
which is de�ned by:

c = max
i 2 [s]

1 �
' p

�
[s]

�
� ' p

�
[s] n f ig

�

' p

�
f ig

� 2 [0; 1]:

Corollary 7.2.8 (Approximability of' p� Optimal Design in function of the curvature). Let
p 2 [0; 1], and c be the total curvature of a given instance of the Problem(Pp) in the
unit-cost case, where the maximum number of experiments to be selected isn. The greedy
algorithm for problem(Pp) yields a1

c

�
1 � (1 � c

n )n
�

approximation factor.

Proof. This result follows from Conforti and Cornuejols [CC84], who proved it for the max-
imization of an arbitrary nondecreasing submodular function with total curvaturec.

For the valuep = 1, ' p is additive and it follows that the total curvature isc = 0,
yielding an approximation factor of1, since

lim
c! 0+

1
c

�
1 � (1 �

c
n

)n
�

= 1:

As a consequence, the greedy algorithm always give the optimal solution of the problem.
Note that Problem(P1) is nothing but aknapsackproblem, for which it is well known that
the greedy algorithm is optimal in the unit-cost case. However, it is not possible to give a
lower bound on the total curvaturec for other values ofp 2 [0; 1[, andc has to be computed
for each instance. We now give a result for the budgeted problem:
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Corollary 7.2.9 (Approximability of ' p� Optimal Design). Problem (Pp) is still 1 �
1
e� approximable in polynomial time in the budgeted case, but the greedy algorithm for
problem(Pp) yields a constant approximation factor of only1

2

�
1 � 1

e

�
:

Proof. This was proved for an arbitrary nondecreasing submodular function in [Svi04]. In
order to attain the1� 1=e� approximation guarantee, one can associate the greedy algorithm
with the partial enumeration of all triples of experiments.

Remark7.2.2. The results of this section hold in particular forp = 0, and hence for the
rank maximizationproblem (P0).

7.3 Approximation by randomized rounding algorithms

The optimal design problem has a natural continuous convex relaxation which is simply
obtained by removing the0=1� constraint on the design variablew , and has been extensively
studied (cf. Chapter 3). As mentioned in the introduction of this chapter, several authors
proposed to solve this convex relaxation and to round the solution to obtain a near-optimal
discrete design. We next investigate the legitimacy of this technique. We show in Theo-
rem 7.3.7 that theD-optimal design may be rounded to a random discrete design which
approximates the optimum of the rank optimization problem (P0) by an average factor of
n
s . While this result may look rather worse than the greedy approximation factor presented
in Section 7.2, it is (almost) optimal since there are some instances for which the average
ratio of approximation isn

s� 1 (cf. Remark 7.3.2).

Another motivation for this section arises from the recent results from Calinescu, Chekuri,
Pál and Vondrák [CCPa07, Von08], who showed that the problem of maximizing a nonde-
creasing submodular function over an arbitrary matroid is(1 � e� 1)-approximable, by �rst
approaching the maximumof a continuous extension of the submodular function, and then
using the pipage rounding of Ageev and Sviridenko [AS04] to return a discrete solution
which achieves the(1 � e� 1)� approximation factor. For our problem, the greedy algorithm
of Section 7.2 is preferable to obtain a(1 � e� 1)-approximation factor, but the ideas of
Calinescu and his coauthors are useful to establish the approximability factor of the rank
optimization problem (P0) by rounding algorithms.

We also want to underline that the greedy algorithm may rise some computational issue
when the number of parameters to estimatem is large. Fedorov [Fed72] suggested to make
use of the Sherman-Morrison formula to speed up the computation. Forp = � 1 (resp.
p = 0) indeed, i.e. for the A- (resp. D-) optimal design problem, one has to compute
� p(Gk [ f ig) for each experimenti which is not yet inGk at the kth stage of the greedy
process. This requires the computation of the inverse (resp. the determinant) of am � m�
matrix, which is a very time-consuming task. Instead, the Sherman-Morrison formula allows
one to compute the value of the increment thanks to a small-rank update. However, when
working with arbitrary values ofp, we cannot use these smart updates anymore. So at
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the kth stage of the greedy algorithm, one has to compute them eigenvalues of(s � k)
information matrices, which is not practicable whenm (the dimension of the parameter� )
is large (typically larger than 10000 in network applications).

In the sequel, we focus on the case in whichp = 0, and we consider the unit-cost case,
where the number of experiments to select isn. We further assume without loss of generality
that there is no prior measurement on the parameter (A0 = 0). Note that we may always
reduce to this case by de�ning the augmented observation matrices~A i := [ AT

0 =
p

n; AT
i ]T ,

so that we have
sX

i =1

wi
~A i

T ~A i = AT
0 A0 +

sX

i =1

wi AT
i A i :

7.3.1 A continuous relaxation

The continuous relaxation of theD� optimal problem is obtained by removing the integer
constraintw 2 f 0; 1gs :

max
w � 0P
k

wk � n

det
� X

k

wkAT
k Ak

�

: (7.8)

We assume without loss of generality that the matrixM (1) =
P s

k=1 AT
k Ak is of full rank

(where1 denotes the vector of all ones), such that the optimal value of Problem (7.8) is
positive. If this is not the case (r � := rank( M (1)) < m ), we de�ne instead a projected
version of Problem (7.8): LetU� UT be a singular value decomposition ofM (1). We
denote byUr � the matrix formed with ther � leading singular vectors ofM (1), i.e. the r �

�rst columns ofU. The D� optimal design problem is projected onto the observable space
by mean of the projected observation matrices�Ak := AkUr � (see Paragraph7:3 in [Puk93]):

max
w � 0P
k

wk � n

det
� sX

k=1

wk
�Ak

T �Ak

�

: (7.8')

The functionlog(det(�)) is strictly concave on the interior ofS+
m , and Problem (7.8) can

be solved by interior point techniques or multiplicative algorithms [Atw73, DPZ08, Yu10a,
Sag09b]. The strict concavity of the logdet function indicates in addition that Problem (7.8)
admits a unique solution if and only if

w1M 1 + w2M 2 + : : : + wsM s = y1M 1 + y2M 2 + : : : + ysM s ) (w1; : : : ; ws) = ( y1; : : : ; ys);

that is to say whenever the matricesM i = AT
i A i are linearly independent. In this chapter,

we focus on the rounding techniques only, and we assume that an optimal solutionw � of the
D-optimal design problem (7.8) is readily known. In the sequel, we also denote a discrete
solution of Problem (P0) by S� . SinceM (w � ) is of maximal rankr � , we have:

r � := rank( M (1)) = rank( M (w � )) = ' 0(w � ) � ' 0(S� ): (7.9)
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The aim of this section is to propose some randomized rounding techniques which as-
certain some approximation bounds. We clarify this statement in the following de�nition:

De�nition 7.3.1. We say that an algorithm approximates the optimal solution of the rank
optimization problem (P0) by a factor � if for all possible instances, it returns a feasible
random subset̂S such that:

E(' 0(Ŝ)) � �' 0(S� ):

Notice that, due to inequality (7.9), it is su�cient to show thatE(' 0(Ŝ)) � �' 0(w � ) =
�r � to prove that some rounding approximates the optimal solution by a factor� .

7.3.2 Roundings of the optimal solution

We now present two ingredients which will be useful in the sequel : the pipage rounding
algorithm of Ageev and Sviridenko [AS04] and its relation with the extension by expectation
of a submodular function, brought to light by Calinescu et. al. [CCPa07].

Extension by expectation and Pipage Rounding

We will make use of the extension by expectation [CCPa07] of a submodular set function
' , which is de�ned by

F' (y ) = E[' (Ŝ)]; (7.10)

whereŜ is a random set of[s] which containsf ig independently with probabilityyi . In
other words,

F' (y ) =
X

S�f 1;::;sg

' (S)
Y

i 2 S

yi

Y

i=2 S

(1 � yi ): (7.11)

In our setting, we will denote byF0 the extension by expectation of the rank function
' 0. Note that this extension can be de�ned only if all coordinates ofy are smaller than
1. If yi > 1 for some experimenti , we have to use another rounding technique, like the
proportional roundingwhich we next present. Also note that ify is the0=1-vector associated
to S, we haveF' (y ) = ' (S), which tells us thatF' is an extension of' indeed.

The idea of Calinescu et. al. (as reduced to the simple case of uniform matroids) is to
�nd a vector y � such thatF' (y � ) � (1 � 1=e) OPT; whereOPT is the optimal value of
the problemmaxjSj� n ' (S). Then, they roundy � to a feasible discrete solutionS with
the pipage roundingalgorithm of Ageev and Sviridenko [AS04], which satis�es with a high
probability' (S) � F' (y � ). Similarly, we will ask ourselves whether one can guarantee that
F0(w � ) � �' 0(S� ) for some� , in which case we could apply the pipage rounding technique
to return a feasible subsetS satisfying (with a high probability)

' 0(S) = F0(S) � F0(w � ) � �' 0(S� ):
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For the reader's convenience, we now present the randomized version of the pipage
rounding algorithm for the simple case of uniform matroids, and the ideas of the proof
of Calinescu and his coauthors on the e�ciency of this rounding (E[' (S)] � F' (w � )).
Assume that we are given a nonnegative vectory 2 [0; 1]s such that

P
i yi = n, and two

indexesi and j for whichy is fractional. The idea of this rounding technique is based on
the fact that, for any submodular function' , the functionF y

ij : t 7! F'

�
y + t(ei � ej )

�
is

convex [CCPa07], such thatF' is increasing when we move in one of the directions(ei � ej )
or (ej � ei ). Therefore, we can increase one of the two variables (yi or yj ) and decrease the
other one untilyi or yj becomes a0 or a 1. Moreover, the sum of the vector is preserved
along this transformation, which guarantees that the set obtained with this rounding will
satisfy the desired property (jSj = n). In the randomized version (Algorithm 7.3.1), we
choose between the two admissible directions with probabilities which ensure that we do not
loose in expectation. This avoids costly evaluations ofF' (y ).

Lemma 7.3.2 (Calinescu et al [CCPa07]). Given a vectory 2 [0; 1]s such that
P

i yi = n,
PipageRound(y ) returns ins iterations a random setS of cardinalityn, of expected value
E[' (S)] � F' (y ).

Proportional Rounding

We now present another rounding scheme, which can be used even if some coordinates
of y are larger than1. The principle of this rounding is to start withS0 = ; , and, for
k = 1; :::; n, we constructSk from Sk� 1 by adding in it exactly one new element, namely
i 2 [s] n Sk� 1 with probability yiP

j =2 Sk � 1
yj

. If at some point, all the remaining coordinates

(yj ) j =2 Sk � 1 are equal to0, uniform probabilities are used. An alternative way to de�ne
this rounding is to generate a random vectorX , the i th coordinate of which is following
an independent exponential distribution of expected value1=yi : X i � exp(1=yi ). As a
consequence of the memoryless property of the exponential distribution, the setSn can be

Algorithm 7.3.1 PipageRound (y )
Input: y 2 [0; 1]s such that

P
i yi = n

while y is not integraldo
Pick i; j such thatyi and yj are not in f 0; 1g.
"  f yj ; � yi ; 1 � yi ; yj � 1g
"+  minf " i j" i > 0g
" �  maxf " i j" i < 0g
p  � +

� + � � �

with probability p
yi  yi + � � ; yj  yj � � �

else
yi  yi + � + ; yj  yj � � +

end while
Output: y .
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generated by selecting the indexes of then smallest elements in the vectorX (we use the
convention1=0 = 1 , and if y has no more thann positive components we choose with
uniform probabilities between the indices ofX such thatX i = 1 ).

We denote bySn (y ) the random set of cardinalityn obtained by this procedure, which
we callproportional roundingof vectory .

7.3.3 Characterization of D � optimality

We now give a characterization of theD� optimal design. This proposition is known
as the General Equivalence Theoremin the full rank case, and was �rst stated by Fe-
dorov [Fed72] for multiresponse experiments (cf. Chapter 2). We show here that it can
also be stated in the degenerate case (whererank(M (1) = r � < m )) with the help of
generalized Moore-Penrose inverses.

Proposition 7.3.3 (General Equivalence Theorem). The designw � is D-optimal (i.e.w �

is a solution of Problem(7.8'), which reduces to(7.8) in the full rank caser � = m) if and
only if for all i 2 [s], we have either:

� w�
i = 0

� or w�
i > 0, and trace A i M (w � )yAT

i = ' 0 (w � )
n = r �

n :

Proof. This proposition is known as theGeneral Equivalence Theoremin the full rank case
(where r � = m, and the Moore-Penrose inverse is a regular inverse). For a proof, see
Fedorov [Fed72], who deals with the normalized constraint (n = 1). The generalization to
an arbitrary value ofn is straightforward.

We now study the degenerate case, wherer � < m , and theD� optimal design is the
solution of Problem (7.8'). The projected observation matrices�Ak satisfy the full rank
property by de�nition (M (1) :=

P
k

�Ak
T �Ak is of sizer � � r � and has rankr � ). This

allows us to apply the full rank general equivalence theorem to characterizew � : the design
w � is D� optimal if and only if for alli 2 [s], we have eitherw�

i = 0, or

trace �A i M (w � )
� 1

�A i
T

=
r �

n
; (7.12)

whereM (w � ) :=
P

k wk
�Ak

T �Ak = UT
r � M (w � )Ur � . Since the range ofM (w � ) is included

in the one ofM (1), we have:

M (w � ) = U

 
M (w � ) 0

0 0

!

UT ;

where the diagonal blocks are of sizer � � r � and(m � r � ) � (m � r � ) respectively. We
can now express the Moore-Penrose inverse ofM (w � ):

M (w � )y = U

0

@ M (w � )
� 1

0
0 0

1

A UT = Ur � M (w � )
� 1

UT
r � :
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Finally, we re-express the left hand side of (7.12), which will conclude the proof:

trace �A i M (w � )
� 1

�A i
T

= trace A i Ur � M (w � )
� 1

UT
r � AT

i = trace A i M (w � )yAT
i :

We next give a proposition which shows how we can bound the componentsw�
i of the

D� optimal design. This was proved in a simpler case by Atwood [Atw73], who obtained
w �

i
n � 1

m when the observations are scalar (single response experiments), i.e. when the
observation matrices are row vectors. The �rst part of the next result was discovered
independently (in the regular caser � = m) by Harman and Trnovská [HT09] (the latter
article was published shortly after we had submitted an announcement of the present results
to the conference ISCO 2010 [BGS10]). The proof of our result also adapts to the case
in which the experimenter wants to estimate a subsystemK T � of the parameters (cf.
Theorem 2.4.7).

Proposition 7.3.4. Let w � be aD� optimal design. For alli 2 [s], we have the following
bound on the optimal coordinatew�

i :

w�
i

n
�

rankM i

rank(
P n

i =1 M i )
; (7.13)

whereM i := AT
i A i . More generally, for an arbitrary subsetS of [s],

P
i 2 S w�

i

n
�

rank(
P

i 2 S M i )
rank(

P n
i =1 M i )

=
' 0(S)

' 0(w � )
: (7.14)

Proof. The �rst inequality is trivial whenw�
i = 0. For any other value ofw�

i > 0, we make
use of the characterization of optimality from the general equivalence theorem:

trace A i M (w � )yAT
i =

r �

n
:

Now, we replaceM (w � )y by M (w � )yM (w � )M (w � )y in the right hand side of this expres-
sion, and we obtain:

r �

n
= trace A i M (w � )y

� X

k

w�
kAT

k Ak

�

M (w � )yAT
i

=
X

k

w�
k traceA i M (w � )yAT

k| {z }
X (i;k )

AkM (w � )yAT
i

=
X

k

w�
k traceX (i; k )X (i; k )T

� w�
i traceX (i; i )X (i; i )T ; (7.15)

where the inequality follows from the fact that the trace of any semide�nite matrix is
nonnegative.
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Let r i denote the the rank ofM i , such that there exists ar i � m matrix H i such that
M i = H T

i H i . We have:

traceX (i; i )X (i; i )T = trace A i M (w � )yAT
i A i M (w � )yAT

i

= trace H i M (w � )yH T
i| {z }

~X i

H i M (w � )yH T
i :

Now, notice that ~X i is ar i � r i symmetric matrix which has tracer � . This allows us to
write:

trace( ~X i
~X i

T
) =

X

j;k

~X 2
i ( j;k )

�
r iX

j =1

~X 2
i ( j;j )

:

This latter expression is the sum of squares of elements which sum tor � , and is minimized
when all these elements are equal, i.e. whenever~X i ( j;j )

= r � =ri . Finally,

trace( ~X i
~X i

T
) �

r iX

j =1

� r �

r i

� 2

=
r � 2

r i
:

Inserting this lower bound in (7.15), we �nally obtainr � � w�
i

r � 2

r i
, or equivalently

w�
i �

r i

r �
=

r i

' 0(w � )
;

and the �rst inequality is proved. In order to generalize this result, letS be a subset of
[s]. We exclude the trivial case

P
i 2 S w�

i = 0, and we de�neMS =
P

i 2 S
w �

iP
j 2 S

w �
j
M i . We

consider the problem

max
vS ;(vk )k =2 S

det
�

vSMS +
X

k =2 S

vkM k

�

(7.16)

s:t: vS +
X

k =2 S

vk � n

vS � 0; 8k =2 S; vk � 0:

(Eventually, we may instead consider the projected problem with�M i = UT
r � M i Ur � if we are

in the degenerate caser � < m ). It is clear that this problem has solutionv�
k = w�

k for
k =2 S, and v�

S =
P

j 2 S w�
j , since any better value would contradict theD� optimality of

w � . Applying the �rst inequality, we �nd:
P

j 2 S w�
j

n
=

v�
S

n
�

rank MS

r �
�

rank (
P

i 2 S M i )
r �

:
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7.3.4 Rounding approximation factor for rank-optimality

Before we give the approximation factor that one can guarantee by using our rounding
procedures, we need the two following technical lemmas.

Lemma 7.3.5. Let � � s denote the simplexf x 2 (R+ )s j
P

i x i = � g. We de�ne the
random variableWn (w ) =

P
i 2 Sn (w ) wi , whereSn (w ) is the random subset of[s] obtained

by proportional rounding. Then, we have

8w 2 � � s; E[Wn (w )] � E[Wn (
�
s

; :::;
�
s

)] = n
�
s

:

Proof. First notice that we can give the expression ofE[Wn (w )] in close form by summing
over all permutation ofn elements in[s]:

E[Wn (w )] =
X

� 2 � (n;s)

w� 1P
i wi

�
w� 2P
i 6= � 1

wi
� � �

w� nP
i=2f � 1 ;:::;� n � 1g wi

� (w� 1 + : : : + w� n ):

Although this expression looks particularly awful, the reader can verify that it can be obtained
by the following induction procedure:

8
><

>:

E[W1(w )] =
P

i
w2

iP
i

wi

E[Wk+1 (w )] = 1P
j

wj

P s
i =1 wi (wi + E[Wk(wnf i g)])

;

wherewnf i g is the vector of lengths � 1 with entries(w1; : : : ; wi � 1; wi +1 ; : : : ; ws). The
latter formula is easily obtained by considering the expansion of a probability tree, and will
allow us to make a proof by induction. We are going to show that8k � s, E[Wk(w )] attains
its minimum valuek �

s on � � s for the uniform vector. Fork = 1, E[W1(w )] = 1
�

P
i w2

i

on the � � simplex, which is a convex and symmetric function, the minimum of which is
attained for the uniform vector:

E[W1(
�
s

; : : : ;
�
s

)] =
s

�
�
s

� 2

s
�

�
s

� =
�
s

:

Now, we assume that the statement is true for a givenk 2 f 1; : : : ; s � 1g :

8w 2 � � s; ; E[Wk(w )] � E[Wk(
�
s

; : : : ;
�
s

)] = k
�
s

:

Let w 2 � � s. For all i 2 [s], the vectorwnf i g is in the simplex(� � wi )� s� 1. So, using
our induction hypothesis, we �nd :

E[Wk(wnf i g)] � k
� � wi

s � 1
;
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and using the inductive construction ofE[Wk+1 (w )],

E[Wk+1 (w )] �
1
�

sX

i =1

wi (wi + k
� � wi

s � 1
)

| {z }
gk (w )

:

It is clear thatgk is symmetric. Moreover, we can see thatgk is convex since it is a separable
function and fork < s ,

@2g(w)
@w2i

=
2
�

(1 �
k

s � 1
) � 0:

This shows that, fork < s the minimum ofgk is attained on the� � simplex for the uniform
vector( �

s ; : : : ; �
s ). This gives the following lower bound onE[Wk+1 (w )]:

8w 2 � � s; E[Wk+1 (w )] � g(
�
s

; : : : ;
�
s

) = ( k + 1)
�
s

:

Moreover, this bound is attained for the uniform vector, since it leads to consider an expected
value on a uniform probability tree with(k + 1) �

s on each extremal leaf.
By induction, we conclude that our induction hypothesis holds for allk � s, and in particular
for k = n.

Lemma 7.3.6. For all vectorw 2 [0; 1]s, the following equality holds:

X

S�f 1;::;sg

 
X

i 2 S

wi

!
Y

i 2 S

wi

Y

i=2 S

(1 � wi ) =
sX

i =1

w2
i

Proof. We proceed by induction ons: for s = 1, the equality is trivial, since the summation
reduces toS = ; andS = f 1g, and has only one nonzero term:w2

1.
Now, we assume that the equality from this lemma is true for a givens, and we write (by
separating between the sets which containsf s + 1g and those which do not).

X

S�f 1;::;s+1 g

 
X

i 2 S

wi

!
Y

i 2 S

wi

Y

i=2 S

(1 � wi )

= ws+1

0

@ws+1 +
X

S�f 1;::;sg

 
X

i 2 S

wi

!
Y

i 2 S

wi

Y

i=2 S

(1 � wi )

1

A

+ (1 � ws+1 )

0

@
X

S�f 1;::;sg

 
X

i 2 S

wi

!
Y

i 2 S

wi

Y

i=2 S

(1 � wi )

1

A

=
sX

i =1

w2
i ((1 � ws+1 ) + ws+1 ) + w2

s+1

=
s+1X

i =1

w2
i ;

where the induction hypothesis has been used to replace the summation overS � [s] by
P s

i =1 w2
i .
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We can now formulate the main result of this section:

Theorem 7.3.7 (Rounding Approximability Factor). Let w � be aD� optimal design. The
proportional rounding of the vectorw � approximates the optimal solution of the rank max-
imization problem(P0) by n

s . Moreover, if all coordinates ofw � are smaller than1, then
the pipage rounding algorithm gives the same approximation factor ofn

s .

Proof. We �rst point out that if w � has no more thann positive entries,Sn (w � ) always
contains the indices of these entries, such that the rounded designSn (w � ) is of maximal
rank: ' 0(Sn (w � )) = r � , and the approximation ratio is1. Otherwise, we bound the
approximation ratioE[' 0 (Sn (w � ))]

' 0 (w � ) thanks to the result of Proposition 7.3.4 :

E[' 0(Sn (w � ))]
' 0(w � )

=
X

� 2 � (n;s)

w�
� 1P

i w�
i

�
w�

� 2P
i 6= � 1

w�
i

� � �
w�

� nP
i=2f � 1 ;:::;� n � 1g w�

i
�

' 0(� )
' 0(w � )

:

�
X

� 2 � (n;s)

w�
� 1P

i w�
i

�
w�

� 2P
i 6= � 1

w�
i

� � �
w�

� nP
i=2f � 1 ;:::;� n � 1g w�

i
�

(w�
� 1

+ : : : + w�
� n

)
n

=
1
n

E[Wn (w � )]:

In the above, the summation is taken over thes!
(s� n)! permutations� of n elements in[s],

and Wn (w � ) is the random variable which has been de�ned in Lemma 7.3.5. Sincew � is
in the n� simplex, we obtain the desired approximation factor from Lemma 7.3.5:

E[' 0(Sn (w � ))]
' 0(w � )

�
1
n

n2

s
=

n
s

:

Similarly, if all coordinates ofw � are smaller than1, then the extension by expectationF0

is well de�ned atw � , and by Lemma 7.3.6:

F0(w � )
' 0(w � )

=
X

S�f 1;::;sg

' 0(S)
' 0(w � )

Y

i 2 S

w�
i

Y

i=2 S

(1 � w�
i )

�
X

S�f 1;::;sg

P
i 2 S w�

i

n

Y

i 2 S

w�
i

Y

i=2 S

(1 � w�
i )

=
1
n

sX

i =1

w� 2
i

�
s
n

� n
s

� 2
=

n
s

;

where the latter inequality is once again the minimality ofx 7!
P s

i =1 x2
i over n� s for

w = ( n
s ; :::; n

s ): Hence, the pipage rounding approximates the optimal solution within a
factor of n

s , thanks to Lemma 7.3.2.

Remark7.3.1. The inequalitiesE[' 0(Sn (w � ))] � n
s ' 0(w � ) and F0(w � ) � n

s ' 0(w � ) are
optimal. The reader can verify indeed that they are attained for the followings � s�
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observation matrices:

M 1 =

0

B
B
B
@

1
0

. . .

0

1

C
C
C
A

; M 2 =

0

B
B
B
@

0
1

. . .

0

1

C
C
C
A

; : : : ; M s =

0

B
B
B
@

0
0

. . .

1

1

C
C
C
A

:

In the last theorem we give an approximation factor by comparing the expected value of
' 0 for the rounded set to' 0(w � ). The reader may ask himself if these bounds are accurate,
since the approximation factor of a rounding algorithm is actually de�ned with respect to
the discrete optimal value' 0(S� ). We answer partially with these two remarks:
Remark 7.3.2. For s > n + 1, we can �nd observation matrices for which the ratios
E[' 0 (Sn (w � ))]

' 0 (S� ) and F (w � )
' 0 (S� ) take the value n

s� 1 . This indicates that the optimal approxima-
tion factor is somewhere betweenn

s and n
s� 1 . Consider the following(s � 1) � (s � 1)�

observation matrices indeed:

M 1 =

�
0 0
0 " I

�
; M 2 =

0

B
B
B
@

1
0

. . .

0

1

C
C
C
A

; M 3 =

0

B
B
B
@

0
1

. . .

0

1

C
C
C
A

; : : : ; M s =

0

B
B
B
@

0
0

. . .

1

1

C
C
C
A

;

where the nonzero block inM 1 is of size(s � n) � (s � n). The reader can easily verify
that for " < 1

s� n , w�
1 = 0, and w�

2 = : : : = w�
s = n

s� 1 , while the discrete solutionS� of
Problem (7.8) is clearlyf 1; : : : ; ng, which is the only subset ofn matrices that sums to a full
rank matrix. Hence, this example yields an approximation factor of n

rank( M 1+ :::+ M n ) = n
s� 1

for both the proportional and the pipage rounding.

Remark7.3.3. for n = 1 and s > 2, we can show that n
s� 1 is the optimal approximation

factor for the proportional rounding algorithm. Sincen = 1, the discrete optimumS� of
Problem (7.8) is a singleton, which we can consider to bef 1g without loss of generality.
Now, we bound the the approximation ratio:

E[' 0(S1(w � ))]
' 0(f 1g)

=
sX

i =1

w�
i

' 0(f ig)
' 0(f 1g)

� w�
1 +

sX

i =2

w�
i
' 0(f ig)
' 0(w � )

� w�
1 +

sX

i =2

(w�
i )2;

where the �rst inequality follows from' 0(f 1g) � ' 0(w � ), and the second one from Propo-
sition 7.3.4. Now, using the fact that

P s
i =2 (w�

i )2 is minimized on the(1 � w�
1)� simplex for

the uniform vector (w�
2 = : : : = w�

s = 1� w �
1

s� 1 ), we have:

E[' 0(S1(w � ))]
' 0(f 1g)

� w�
1 +

(1 � w�
1)2

s � 1
:
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The left hand side of this equation is an increasing function ofw � on [0; 1], such that we
obtain the lower bound forw�

1 = 0:

E[' 0(S1(w � ))]
' 0(f 1g)

�
1

s � 1
:

In the above discussion, we characterized the rounding approximation factor for Prob-
lem (Pp) whenp ! 0. Our proof does not seem to adapt for other values ofp 2]0; 1], but
we think that Proposition 7.3.4 might adapt to other values ofp in the following way:
Let p 2 [0; 1] and let w � be optimal for the continuous relaxation of Problem(Pp). Is it
true that for an arbitrary subsetS of [s],

P
i 2 S w� (1� p)

i

n
�

' p(S)
' p(w � )

?

We leave it here as an open question, but we underline that, following the same reasoning as
above, this would provide an approximation factor of

�
n
s

� 1� p
for Problem(Pp); p 2 [0; 1].

Interestingly, this bound is attained for diagonal observation matrices with disjoint support.
Note that this formula would show that there is a continuously increasing di�culty from the
easy case (p = 1) to the most degenerate problem (p = 0).

7.4 Conclusion

This chapter gives bounds on the behavior of some classical heuristics used for combi-
natorial problems arising in optimal experimental design. Our results can either justify or
discard the use of such heuristics, depending on the settings of the instances considered.
Moreover, our results con�rm some facts that had been observed in the literature, namely
that rounding algorithms perform better if the density of measurements is high, and that
the greedy algorithm always gives a quite good solution. We illustrate these observations
with two examples:

In a sensor location problem, Uci«ski and Patan [UP07] noticed that the trimming of a
Branch and Bound algorithm was better if they activated more sensors, although this led to
a much larger research space. The authors claims that this surprising result can be explained
by the fact that a higher density of sensors leads to a better continuous relaxation. This
is con�rmed by our result of approximability, which shows that the larger is the number of
selected experiments, the better is the quality of the rounding.

It is also known that the greedy algorithm generally gives very good results for the
optimal design of experiments (see e.g. [SQZ06], where the authors explicitly chose not to
implement a local search from the design greedily chosen, since the greedy algorithm already
performs very well). Our(1 � 1=e)� approximability result guarantees that this algorithm
always well behaves indeed.



142 CHAPTER 7. COMBINATORIAL PROBLEMS IN OPT. DES. OF EXP.



Part II

Optimal monitoring in large Networks
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Chapter 8

Inference of the tra�c matrix: a
review

The tra�c matrix (TM) of a network gives the volume of tra�c between all pairs of origin
and destination nodes of a network. This matrix is a crucial input for many network planning
operations, and its estimation is therefore an essential problem. For example, the routing
table, which speci�es the path between every pair of origin and destination, should clearly
be decided with an accurate prevision of the demand in order to avoid congestion. Similarly,
the tra�c matrix is a deciding piece of information when an Internet Service Provider (ISP)
decides to upgrade the capacity of a link on its network. Other important applications of
the tra�c matrix include anomaly detection, billing and development of failover strategies.

However, the inference of tra�c matrices turns out to be a di�cult problem. The
estimation of tra�c matrices in networks has therefore attracted much interest for the
last decade, from both Internet providers and the network research community. In this
chapter, we shall review the di�erent methods that have been proposed for this task; they
can principally be classi�ed in two types: those relying on the link counts only, and those
which take advantage of direct network measurements provided by a monitoring software.
We also indicate the reviews of Benameur and Roberts [BR04], and Vaton, Bedo and
Gravey [VBG05], which cover some of the techniques presented in this chapter.

8.1 Notation and de�nitions

We refer astra�c matrix the set of volumes of tra�c on each Origin-Destination (OD)
pair of a network, during a given time interval whose typical length varies from �ve minutes
to one hour. On a network withn nodes (routers), this data can indeed be represented by
a n � n matrix, the(o; d)� entry of which corresponds to the volume of tra�c from Nodeo
to Noded (during the given time interval). In the practice, we often rearrange this matrix
as a vectorx of lengthm = n2 to facilitate the notation, but we still refer this vector as the
tra�c matrix , and we shall sometimes continue to use the double indexing notationxo;d.
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This vector notation also allows one to handle the case in whichm < n 2 OD pairs are of
interest (and we use a vectorx of lengthm).

The tra�c matrix is a dynamic object, since tra�c volumes are evolving over time. When
working over a global observation period which is divided inT time intervals, the unknown
thus consists in them � T� matrix X , the columns of which are the vectorsx 1; : : : ; x T ,
wherex t represents the tra�c matrix during thet th time interval (x t is asnapshotof the
tra�c matrix at time t). We shall still refer toX as thetra�c matrix , or sometimes as the
dynamic tra�c matrix. The elements ofx t are denoted byx(t )

o;d and will be referred as the
�ow volumes(at time t) � these, however, should not be confused with the classic5� tupple
�ows from the networking literature, which refer to packets sharing the same source address,
destination address, source port, destination port, and IP protocol.

8.2 Tra�c matrix estimation from link counts

In the classic problem, we consider a network withn nodes andl links. Link measure-
ments are provided by the Simple Network Management Protocol (SNMP), which gives
some statistics on the links (for instance, the number of bytes seen on each link in a time
window). An analogy with road tra�c can be useful: in this case the link counts corre-
spond to the number of vehicles seen on each road segment (during a time interval), and
can be gathered thanks to pneumatic tubes or magnetic loops. We will denote the vec-
tor of SNMP link counts byy SNMP = ( y1; : : : ; yl )T . Again, when the observation period
is divided inT time intervals, we concatenate the measurements into al � T� matrix:
Y SNMP = [ y SNMP

1 ; : : : ; y SNMP
T ]; wherey SNMP

t is the vector of link counts at timet (i.e.
during thet th time interval).

We are also given the set ofm OD pairs of interest (usually,m = n2), and for each
pair, the set of links that a byte need traverse to go from Origino to Destinationd. The
information about the routing is assumed to be known, and is classically gathered in the
l � m incidence matrixA: this is a0=1� matrix whose(i; r )-entry takes the value1 if and
only if the OD pairr traverses linki . More generally, the Internet provider routing policies
may lead us to consider matrices in whichA i;r is a real number representing the fraction of
the tra�c from OD pair r that traverses linki .

8.2.1 An ill-posed problem

The problem of estimating the tra�c matrixx from the link countsy SNMP (or, in a
dynamic framework, estimatingX from Y SNMP ), has been studied since the late 1970's in
the framework of road tra�c (see e.g. Van Zuylan and Willumsen [ZW80]) or telephone
networks (e.g. Krupp [Kru79]). This work was a valuable source of inspiration for the
information theoretic approach which we present below.
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If we assume that the measurements are perfect, the following relation is easily seen to
hold:

y SNMP = Ax : (8.1)

In typical networks,l is in the order ofn, whilem is in the order ofn2, such that the routing
matrix A has more columns than rows, and the estimation of the tra�c matrixx is an
ill-posed problem (cf. Example 8.2.1). For the dynamic problem, the relationY SNMP = AX
is true if the routing matrixA remains the same during the whole observation period. If
this is not the case, we have insteady SNMP

t = A tx t for all t 2 [T], whereA t is the routing
matrix during thet th time interval.

8.2.2 The information theoretic approach

After an appropriate normalization, the vector of OD �owsx can be handled as a
probability distribution de�ned on the OD pairs. This suggests to use the principle of
minimum entropy to complete the partial information onx which is given by Equation (8.1).
This approach is detailed in Chapter 9: in absence of any other information, thetra�c matrix
of minimal entropywhich respects the ingress/egress measurements is known as the gravity
modelx G , in which the tra�c from o to d is proportional to the product of the incoming

Example 8.2.1. Here is a small toy example, to illustrate how we obtain the measurement equations:

The incidence table between the ODs and the links of this network is:

OD 1 ! 2 OD 2 ! 3 OD 1 ! 3
link a 1 0 1
link b 0 1 1

and one can easily verify that the vector of link countsy = [ ya ; yb]T must satisfy

y =

�
1 0 1
0 1 1

�

| {z }
A

x ; where x =

"
x1;2

x2;3

x1;3

#

:

In absence of any additional information on the vector of OD �ows, we can only say thatx belongs to the
space of the nonnegative solutions of the latter equation:

x =

"
ya � u
yb � u

u

#

for a scalar u 2 [0; min( ya ; yb)]:
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tra�c in o and the outgoing tra�c at d:

xG
o;d =

x In (o)xOut (d)
P n

i =1 x In (i )
;

wherex In (i ) (resp. xOut (i )) denotes the total tra�c entering the network (resp. exiting
the network) at nodei . Thinking aboutxo;d as the joint probability that a packet has the
origin o and the destinationd, it means that the source of a packet and its destination are
independent. In practice, this model happens to be a good prior estimate for the real tra�c
matrix x .

Zhang, Roughan, Lund and Donoho [ZRLD05] further proposed an extension of the
gravity model, in which the ingress and egress links are separated in two classes: the class
C of links servingcustomers, and the classP of those linked topeers. If we know for each
ingress/egress link to which class it belongs, Zhang and his coauthors proposed a model
in which the source and the destination of a packet are independent,conditionally to the
class of the source and the class of the destination. Using the fact that there is no tra�c
transiting the network from one peer to another, they obtained the generalized gravity prior
x GG :

xGG
o;d =

8
>>>>>>><

>>>>>>>:

0 if o 2 P ; d 2 P ;
x In (o)xOut (d) 1P

c2C
xOut (c) if o 2 P ; d 2 C;

x In (o)xOut (d) 1P
c2C

x In (c) if o 2 C; d 2 P ;

x In (o)xOut (d)
P

c2C
x In (c)�

P
p2P

xOut (p)
P

c2C x In ( c)

P
c2C x Out ( c)

if o 2 C; d 2 C:

(8.2)

In a dynamic context, if we assume that the time intervals are short enough so that no
big change occurs between two successive time steps, a natural prior forx t is given by the
estimation of the tra�c at time t � 1. This prior can then be projected (in the sense of
entropy) on the feasible subspacey SNMP

t = Ax t , see Chapter 9. The resulting estimate
is usually referred as thetomogravity estimate of the tra�c matrix. We summarize this
scheme of estimation of the tra�c matrix in Algorithm 8.2.1, in which a parameter� is
used to make a convex combination of the gravity prior and the previous estimate.

Algorithm 8.2.1 Dynamic estimation of the tra�c matrix via entropic projections
Input: parameter� 2 [0; 1]
for t = 1 ; : : : ; T do

Build the gravity estimatex G (or generalized gravityx GG ), with the SNMP data of timet;
if t=1 then

x prior  x G (or x GG );
else

x prior  � x̂ t � 1 + (1 � � )x G (or � x̂ t � 1 + (1 � � )x GG );
end if
Compute the estimation of the tra�c x̂ t by projectingx prior onto the space
f x : y SNMP

t = Ax g (in the sense of entropy, see Chapter 9 for algorithms).
end for
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8.2.3 The Bayesian approach

In the Bayesian approach, a simple parametric model for the �ows is assumed, and we
search the parameters which maximize the likelihood of the observations. Two class of
models have been proposed: the Poisson model of Vardi [Var96], and the Gaussian model
with a mean-variance relation of Cao et. al. [CDVY00]. Since both methods are similar,
and Poisson distribution are approximated by Gaussian distribution in [Var96], we will only
review the latter one.

Cao and his coauthors proposed a moving iid model on a sliding window of widthh: for
the estimation at timet, we assume that the vectorsx t � h ; : : : ; x t ; : : : ; x t + h are independent
and identically distributed (iid) with a normal distributionN (� t ; � t Diag(� t )c), where the
exponentc is supposed to be known (the authors of [CDVY00] claim that a typical value
for c is 2). Under these assumptions, the observationsy t � h ; : : : ; y t ; : : : ; y t + h are iid with
distribution N (A� t ; A� tAT ), where� t := � t Diag(� t )c, and the log-likelihood of these
measurements is:

`
�
(� t ; � t )jy

�
= �

2h + 1
2

log det(A� tAT )

�
1
2

t+ hX

� = t � h

(y � � A� t )T (A� tAT )� 1(y � � A� t ):

The maximization of the latter expression with respect to� t and � t has no analytic
solution and is a complicated problem. Instead, Cao et. al. [CDVY00] suggested to use the
Expectation-Maximization (EM) algorithm [DLR77], for which convergence results toward a
local maximum are known [Wu83]. The principle of this algorithm is to iteratively conduce
an Expectation (E) step, in which the expectation of the log-likelihood`

�
(� t ; � t )jx

�
is

computed, conditionally to the observationsy t � h ; : : : ; y t + h and the current estimate of the
parameters(� (k)

t ; � ( k )
t ):

Q
�
(� t ; � t )j(�

(k)
t ; � ( k )

t )
�

= Ex

h
`
�
(� t ; � t )jx

�
jy ; � (k)

t ; � ( k )
t

i
:

Then, a Maximization (M) step is applied in order to update the value of the current
parameter:

(� (k+1)
t ; � ( k+1)

t )  argmax
� t ;� t

Q
�
(� t ; � t )j(�

(k)
t ; � ( k )

t )
�
:

In fact, Cao et. al. showed that the E-step is analytic. The log-likelihood with respect tox
takes indeed the form

`
�
(� t ; � t )jx

�
= �

2h + 1
2

log det(� t ) �
1
2

t+ hX

� = t � h

(x � � � t )T � � 1
t (x � � � t );

and for all� 2 f t � h; : : : ; t + hg; the conditional distribution ofx � with respect to the
observationy � and the current estimate of the parameters(� (k)

t ; � ( k )
t ) is Gaussian, with
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mean and variance

m ( k )
t;� = � ( k )

t + � (k)
t AT (A� (k)

t AT )� 1(y � � A� ( k )
t );

R(k)
t = � (k)

t � � (k)
t AT (A� (k)

t AT )� 1A� (k)
t :

Hence, we can give the functionQ in close form:

Q
�
(� t ; � t )j(�

(k)
t ; � ( k )

t )
�

= �
2h + 1

2
log det(� t )

�
1
2

t+ hX

� = t � h

Ex �

h
(x � � � t )T � � 1

t (x � � � t )jy � ; � (k)
t ; � ( k )

t

i

= �
2h + 1

2
log det(� t )

�
1
2

t+ hX

� = t � h

trace
�

� � 1
t E[x � x �

T jy � ; � (k)
t ; � ( k )

t ]
| {z }

R ( k )
t + m ( k )

t;� m ( k )
t;�

T

�

�
1
2

t+ hX

� = t � h

�

� 2� t
T � � 1

t E[x � jy � ; � (k)
t ; � ( k )

t ]
| {z }

m ( k )
t;�

+ � t
T � � 1

t � t

�

= �
2h + 1

2

�
log det(� t ) + trace � � 1

t R(k)
t

�

�
1
2

t+ hX

� = t � h

(m ( k )
t;� � � t )T � � 1

t (m ( k )
t;� � � t )

The M-step is equivalent to solving a system ofm+1 non-linear equations, which can be
done numerically thanks to the Newton-Raphson algorithm. However, the convergence of
the EM algorithm is slow in practice, so Cao et. al. use the EM iterations until the increase
of the likelihood functioǹ

�
(� (k)

t ; � ( k )
t )jy

�
becomes small, and apply a second order method

to achieve convergence [CDVY00]. This method is very heavy though, since a complicated
maximization must be carried out on each time window.

8.2.4 The method of routing changes

Consider the problem of estimating the meanx 0 of the sequence of tra�c matrices
x 1; : : : ; x T . We �rst assume that the routing matrix isA during the whole period of
observation. When the link countsy1; : : : ; yT are given, a natural approach is to take the
least square estimate

argmin
x

TX

t=1

ky t � Ax k2 = argmin
x
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Intuitively, when the number of observationsT becomes large, this problem should provide
more and more accurate estimations of the meanx 0 of the time series of tra�c matrices.
However, the matrix[AT ; : : : ; AT ]T involved in the latter problem is rank de�cient, because

rank[AT ; : : : ; AT ]T = rank A = rank AT A � l << m;

and the problem has an in�nity of solutions, which coincide with the solutions of

AT Ax = AT

 P T
t=1 y t

T

!

:

Hence, the problem of estimating the meanx 0 is as ill-posedas the problem of estimating
the whole tra�c matrix X = [ x 1; : : : ; x t ].

If however the routing matrix is di�erent during each observation period, it is likely that
the matrix

A =

2

6
6
6
6
6
4

A1

A2
...

AT

3

7
7
7
7
7
5

becomes of full column rank (i.e.rank A = m). In fact, Soule et. al. [SNC+ 07] have
demonstrated that if the topology of the network isbidirectional biconnected, then there
always exists an integerT and routing matricesA1; : : : ; AT such thatA has full column
rank and each routing matrixA t corresponds to the shortest paths for a set of weights
on the links of the network. Soule and his coauthors therefore assumed that the network
provider could change the link weightson purpose, so that the aggregated routing matrix
A on the global observation period becomes of full rank, and the least square estimation
of x 0 becomes possible. They further propose a scheme for estimating the varianceS of
y = [ y1

T ; : : : ; y t
T ]T from the sample covariance of the link counts, and suggest to use the

Gauss Markov estimator̂x of x 0 (cf. Section 2.2.3):

x̂ 0 = ( A T S� 1A)� 1A T S� 1y :

In fact, the number of routing changes required to letA be of full rank can be very high.
Instead, based on the observation that a small number of �ows supports most of the tra�c
(elephant and micebehaviour, 30% of the �ows carry 95% of the tra�c), and thatelephant
�ows have the largest variance, Soule et. al. [SNC+ 07] have proposed to simply ignore the
�ows corresponding to the small diagonal terms in the estimated covariance matrixS (by
setting them to0). The number of �ows to be estimated is now approximately ofm=3,
and the aggregated routing matrixA is restricted to the corresponding columns, which can
dramatically lower the number of required routing changes.

The same method can be used to estimate a smooth approximation of the tra�c: Based
on the fact that the tra�c is cyclo-stationary with a period of 24 hours, a natural model
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for the tra�c is:
x t = x 0(t) + w t

wherex 0(t) is a deterministic, smooth periodic function (of period 24 hours), andw t is a
centered, stationary random noise process. The authors of [SNC+ 07] show that the same
approach as before can be used to estimate the �rst Fourier coe�cients ofx 0(t). To this
end, let us approximatex 0(t) by the Fourier expansion

x 0(t) = � 0(t)� 0 + : : : + � 2k(t)� 2k ;

where the� i are the basis cos and sine functions

� 0(t) = 1

8i 2 [k]; � i (t) = cos
�

2�i
t

24

�

� k+ i (t) = sin
�

2�i
t

24

�

;

where the timet is indicatedin hours.

The problem is now to estimate the vector of(2k+1) m coe�cients � = [ � 0
T ; : : : ; � 2k

T ]T

from the observations

y t = A tx t = [ � 0(t)A t ; : : : ; � 2k(t)A t ]| {z }
A 0

t

� + v t ;

wherev t = A tw t is a zero-mean stationary random process, whose covariance matrix is
A t � AT

t , where� can be estimated from the link counts [SNC+ 07]. So we can use the
Gauss-Markov estimator

�̂ = ( A 0T � 0� 1A 0)� 1A 0T � 0� 1y ;

where

A 0 =

2

6
6
4

A0
1

...
A0

T

3

7
7
5 and � 0 =

0

B
B
@

A1� AT
1

. . .
AT � AT

T

1

C
C
A :

8.2.5 Spline-based maximum-likelihood estimation

In the previous approach, the number of unknowns (mT) was reduced by considering a
temporal basis for the OD �ows, which let the vector of parameters of the model(� ) be
identi�able. Instead, Casas, Vaton, Fillatre and Chonavel have propose a model [CVFC09]
in which a spatial basis is assumed: they empirically noticed that when the number of OD
�ows is large, the sorted components of the vectorx t form a smooth, nondecreasing curve,
and that the order of a �ow (with respect to the sorted vector of �ow volumes) remains
stable during long period of times.
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Casas et. al. [CVFC09] thus proposed to use a basiss0
1; : : : ; s0

q of cubic spline functions
(discretized as vectors withm coordinates) to approximate the smooth curve of the sorted
�ows, the number of splinesq being several order of magnitudes smaller thanm. This
basis is then rearranged with respect to the order of the �ow volumes within a tomogravity
estimatex G of the tra�c matrix: the new basisS = [ s1; : : : ; sq] is such that ifi is the
index of thekth largest component ofx G , then thei th coordinates ofs1; : : : ; sq are set to
the kth coordinate ofs0

1; : : : ; s0
q, respectively.

Now, since the order of the �ows is stable over time, a natural model is

x t = S� t + w t ;

wherew t is a white Gaussian noise of covariance� , and� t is a vector ofq coe�cients which
indicates the importance of each spline basis function at timet. Casas and his coauthors
suggest to estimate� by using the SNMP data over a short training period and evaluating
the sample variances of the tomogravity estimates. The measurement equations can thus
be modelled as:

y t = Ax t = AS� t + v t ;

wherev t � N (0; A� AT ). Sinceq is small (typically between 5 and 10), the matrixAS is
very likely to have the full column rank property, and the Gauss-Markov estimator of� t is:

�̂ t =
�
ST AT (A� AT )� 1AS

� � 1
AS(A� AT )� 1y t ;

from which we deduce the spline-based estimatorx̂ t = S�̂ t . Casas et. al. call this estimator
the Spline-based Maximum Likelihood (SML) estimator ofx t , because under the Gaus-
sian assumption, the Gauss-Markov estimator above coincides with the maximum-likelihood
estimator.

8.3 Estimation based on a few direct measurements

The approaches presented in the previous section (which rely only on the link counts)
typically yield an average error of estimation in the order of 20%. Moreover, the error is
often huge on certain OD pairs. To overcome this problem, Feldmann et. al. [FGL+ 01] have
proposed a method relying on the network-monitoring tool Net�ow which allows to perform
direct measurements on the OD �ows.

8.3.1 Net�ow

Net�ow is a network-monitoring tool developed by Cisco [CISb], which collects infor-
mation for each packet it analyzes. In practice, Net�ow aggregates the data to the level
of a �ow , where a �ow is de�ned as a sequence of packets sharing the same source and
destination IP address, source and destination port number, IP protocol, interface index
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