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Tell me where is fancy bred,
Or in the heart or in the head ?
How begot, how nourished ?
Reply, reply.
It is engender’d in the eyes,
With gazing fed ; and fancy dies
In the cradle, where it lies.
Let us all ring fancy’s knell;
I'll begin it - Ding, dong, bell.
Ding, dong, bell.

W. Shakespeare -The Merchant of Venice
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Abstract

New generations of Synthetic Aperture Radar (SAR) sensors, e.g. TerraSAR-X, pro-
vide high resolution images of the Earth. Differently from low resolution images the
images are reach of details, i.e. trains, vehicles, cars, etc. never seen before. Furthermore,
the speckle is not fully developed when the number of scatterers in the resolution cell
decreases and the properties of the system are strongly visible in case of single domi-
nant reflectors. New methods of analysis are required in order to extract the information
content in high resolution SARlimages.

The thesis is approaching this problematic by statistical modeling and Bayesian infe-
rence for complex[SARlimage analysis.

The Tikhonov regularization method is applied for image restoration because it allows
to reformulate the ill-posed image estimation problem into a well-posed problem by the
selection of a convex function. It allows to use the required image and prior models and
to find the Maximum A Posteriori (MAD) estimate solution, exploiting the connection to
the Bayesian framework.

Furthermore it allows the optimization to be performed on complex-valued data and to
include the system impulse response which has to be included to correctly model the
image.

The use of the Rate Distortion for model selection is possible because of the connec-
tion between the mutual information and the Occam factor which permits the model
selection in the first level of Bayesian inference.

The model selection is applied in order to optimize the parameters of the Model Based
Despeckling (MBD)) algorithm for image denoising and feature extraction : the optimal
average analyzing window and the optimal average model order. The method is a global
approach and suits in case of large data sets because of its simplicity and fastness.

The Rate Distortion based model selection is appropriate for the design of image infor-
mation mining systems.

The Tikhonov regularization shows to be a powerful method for the regularization of

complex-valued images. It is recommended in applications where the phase is required,
e.g. interferometry, target analysis, because it provides an estimation of the image reflec-
tivity while preserving the phase of the signal.
The use of parametric prior models, e.g. Gauss-Markov Random Field (GMRE), in the op-
timization function may enable the extraction of texture parameters. The application of
Tikhonov approach may lead to the generation of spatial and radiometrically enhanced
product, as well as to the specification of spatial descriptors for labeling and classification
of the image content.

The results are provided on simulated data and actual TerraSAR-X data.







Résumé (...en francais)

Le premier Radar a Synthése d’Ouverture (RSO) pour 1'Observation de la Terre (OT)
a été lancé par la NASA en 1978 a bord du satellite SEASAT. Il a cessé de fonctionner
quelques mois plus tard mais la technologie RSO et les développements ont continué de-
puis. Des satellites équipés de capteurs avec une meilleure résolution ont été lancés et
de nouvelles missions sont prévues. Le principal avantage du capteur d’imagerie RSO
est qu'il est indépendant des conditions météorologiques (par exemple les nuages) et
de la lumiere du jour parce que c’est un capteur actif. Une vue d’un satellite RSO est
montré Figure[Al Il s’agit du satellite allemand TerraSAR-X lancé en Juin 2007. D’autres
types de capteurs sont également consacrés a l'imagerie de la Terre depuis 'espace, par
exemple les capteurs optiques mais ils ont comme inconvénient majeur la limitation due
a la couverture nuageuse et la lumiére du soleil parce qu’ils sont des capteurs passifs.
Les satellites permettent de couvrir la Terre avec un temps de revisite qui dépend de
I'orbite. Cela permet d’acquérir des données sur les mémes régions et d’analyser les
séquences d’images. Les variations de la surface de la Terre, les déformations des struc-
tures de 'ordre de quelques millimétres peuvent étre ainsi détectées et des modeles 3D
de la surface de la Terre peuvent étre générés grace aux acquisitions RSO. De 1978 a
nos jours, beaucoup de missions et de nouveaux capteurs ont été développés pour I'OT,
voir Figure [B] comme TanDEM-X dont le lancement est prévu en 2010. Ceci augmente
considérablement la quantité de données RSO disponibles et utlisables dans de nom-
breuses applications différentes et rend la recherche et I'extraction d’informations des
archives ardue. En parallele, 'amélioration de la résolution décuple le contenu informa-
tif. Il rend l'interprétation automatique des images plus difficiles parce que le niveau de
détail augmente fortement. L'analyse des données RSO est compliquée parce que 'image
cohérente est corrompue par le bruit de speckle, voir Figure [Cl Afin de faire face a ce
speckle, est nécessaire de trouver un modele correct des données non corrompues et de
le supprimer. Une estimation précise est également requise pour le systéme d’imagerie
RSO qui doit étre correctement modélisé. La theése propose une nouvelle méthode pour
analyser les données RSO Haute Résolution (HR) afin de faciliter la compréhension, 1'in-
terprétation et 'indexation de ces images.

Progres en modélisation RSO et extraction d’informations

L'analyse d’images RSO en terme d’estimation, de restauration et de débruitage de
I'image a été appliquée dans le passé sur des données détectées. Les filtres adaptatifs
de Led (Il%ﬂ), [Frost et all (Il%d) et Kuan et al! (IJ.Q&H) ont été développés pour estimer la
réflectivité de 'image tout en préservant ses caractéristiques. Toutefois, 1'estimation de
la réflectivité et I'extraction de caractéristiques de 1'image (les contours) se sont avérés
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FIGURE A — Vue du satellite TerraSAR-X lancé en Juin 2007. Il fournit des données haute
résolution jusqu’a 1 m de résolution de la Terre.
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FIGURE B — Résolution spatiale du RSO grandissante avec le temps. Avec 'augmentation
de la résolution, la compréhension automatisée des images devient une tache difficile. Les
informations contenues augmentent énormément avec la résolution. La thése porte sur
I’élaboration de nouvelles méthodes pour exploiter pleinement les informations conte-
nues dans ces données haute résolution.
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FIGURE C - Exemple d’image RSO Haute Résolution. Des batiments, des structures
construites par 'homme, de la végétation et de I'eau sont présents dans 1'image mais
ne sont pas clairement différenciés. La compréhension de I'image vise a faciliter son in-
terprétation.

plus efficaces avec des données complexes (Fiortoft et alJ, |129§; Fiortoft & Léoeé, |20Q1|). A
I'exception de quelques contributions d,[akeman_&_P_us_e;zI, |12Zd; lSZﬁjanSki, ﬁ.ﬁzj)

?@; Tison et al., 2004), I'effort principal a été de trouver et d’ajuster les
modeéles statistiques sur les données détectées (amplitude ou intensité) en négligeant la
phase, apres la transformation non linéaire de la réflectivité complexe du systeme de
coordonnées cartésien au systéme de coordonnées polaires. Toutefois, la modélisation de
données complexes a plusieurs avantages :

Exploitation de toutes les informations disponibles a pleine résolution.

Simplicité du modele de données.

Comportement du modele qui représente la signature déterministique ou l'incerti-
tude dans la complexité de la scene.

C’est la seule fagon d’avoir une modélisation précise.

L’'inconvénient des données complexes est le faible rapport signal sur bruit. De nombreux
modeles statistiques, empiriques ou théoriques, ont été proposés pour traiter le bruit de
speckle. La distribution Gamma a été présentée comme un modele pour une fonction
de densité de probabilité de l'intensité RSO multilookée ott I'amplitude correspond a
une distribution de Nakagami. Ils sont une généralisation des exponentielles négatives
et des distributions de Rayleigh respectivement. La distribution K (Jakeman & Pusey,
|12Zd, |12Zd,‘ Dlileﬂ, |12&4|,‘ , |12&4|) est obtenue pour l'intensité du signal en supposant
que la population de diffuseurs dans la cellule de résolution peut étre controlée par
un processus de migration naissance-mort. Dans I'hypothese que le bruit et le signal
suivent une distribution Gamma dQlsteﬂ, |1291]; i R |20£)_4.d), le modele pro-
duit se ramene a une distribution K pour l'intensité. La distribution de Nakagami-Rice a
été proposée pour modéliser les statistiques RSO, en présence d'un réflecteur unique et
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fort dans le clutter homogene dDana_&_Kn.eppl 1986; Tison et al., 2004). Les distributions

Gaussiennes Inverses ont aussi été utilisées pour modéliser les statistiques d’amphtude
dans|Er£I;Le_t_al.| (1997), Muller & Pad (1999) et [Eltoft (2003). Dans

), un modele de Rayleigh heavy-tailed est présenté sous 'hypothese que les parties
réelles et imaginaires du signal rétrodiffusé sont des variables aléatoires conjointement
symétrique-a-stable. Des distributions gaussiennes généralisées sont supposées pour les
parties réelles et imaginaires dansMoser et al! (2006). La distribution G pour I'amplitude,
présentée dans [Frery et al! (1997), est le résultat d’un modele multiplicatif assumant une
distribution Nakagami pour le bruit de speckle et une distribution gaussienne inverse
géneralisée pour le signal. Dans Muller & Pad (1999), un cas particulier du modele G, ap-
pelée branche harmonique G", est proposé, tandis que la distribution G° est prouvée étre
équivalente a une pdf de Fisher dans Tison et all (2004).

En plus des modeles théoriques ou en partie théoriques mentionnés ci-dessus, plu-
sieurs modeles empiriques ont été utilisés pour caractériser les statistiques de 1'ampli-
tude (ou intensité) des données RSO, tels que le log-normal (lSza.]nmALsk] |lQZZ|) Weibull

,[1990) et Pearson d]lehgn.an_et_aﬂ, 1997).

La famille des champs aléatoires de Gauss-Markov (Chelappa et all, 1985) a été uti-
lisée avec succes dans la vision par ordinateur pour la génération de texture et la com-
press1on Dans|Walessa & Datcu dZOQd) ils ont été utilisés pour I'estimation du Maximum
ou A Postériori (MAP) comme prior dans le cadre de l'inférence bayésienne avec la dis-
tribution Gamma.

Le probléme direct du calcul de la réponse du systeme d’imagerie a partir d’une
image donnée est souvent supposé connu et bien posé. Le modele habituel est une convo-
lution par un noyau donné ou fonction d’étalement du point qui, dans la plupart des
cas, implique que le probléeme inverse du calcul de I'image réelle a partir des observa-
tions est mal posé. Un principe général pour faire face a I'instabilité du probléme inverse
est la régularisation, qui consiste principalement a restreindre I’ensemble des solutions
admissibles et a inclure des informations a priori (non négativité, la régularité, 1'exis-
tence de contours, etc) dans la formulation du probléme. Une modélisation précise du
systeme d’imagerie et un bon choix de la régularisation sont essentiels pour un proces-
sus de restauration d’images satisfaisant. Tikhonov (Tikhonov & Arsenin, 1977) a intro-
duit des méthodes de régularisation pour les problemes déterministiques en introdui-
sant des fonctions stabilisantes qui jouent un role analogue a la distribution log prior de
I'estimation du MAP. La régularisation des problemes mal posés a été 1'objet de nom-
breuses recherches par exemple Horn & Rhunck (1981) pour déterminer les flux op-
tiques, (L’LQ&]J) pour la reconstruction de la forme & partir de I'ombre,

i0 (1986) pour la détection des contours et |Maerq111n_e_t_a].J (1987) pour la
vision par ordinateur. Lorsque la fonction n’est pas convexe, il est nécessaire d’adopter
une méthode de recuit simulé pour la minimiser. La fonction que sous considérons est
convexe, ainsi les méthodes de descente de gradient peuvent étre appliquées.
En|Cetin & Karl (2001), 1a régularisation est utilisée afin de développer une méthode
de formatlon d’image améliorée pour SpotLight (SL) pour le RSO aéroporté. En exploi-
tant un mode d’imagerie similaire Cetin & Karl (2001) et Pan & Reeves (2006), nous in-
troduisons une vraisemblance complexe, qui permet de prendre en compte la nature
complexe de la fonction de transfert du systeme. Cette approche est différente de celle
suggérée dans Cetin & Karl (2001), o1 les auteurs proposent un modele pour la forma-
tion des images. Nous utilisons comme prior la fonction Huber-Markov qui se révele étre

un puissant modele pour la préservation des contours dans [Pan & Reeves (2006).
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FIGURE D - Les données non corrompues sont estimées en considérant le probleme
comme un probleme inverse par modélisation statistique du systéme RSO et le proces-
sus de formation d'image cohérente. Le taux de distorsion, dans le cadre de la théorie de
I'information, est utilisé pour la sélection du modele.

Image
Original and Tikhonov Despeckled
Image System Optimization Image
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FIGURE E - Schéma de la méthode d’optimisation de Tikhonov. Le modele de I'image
et du systeme sont choisis, et I'optimisation est effectuée. La sortie est I'image dont le
speckle a été filtré.

Le probleme mal posé de la restauration d'image devient un probléme bien posé en choi-
sissant un prior convexe qui garantit que la solution existe, qu’elle est unique et dépend
continiment des données. La derniere condition, appelée stabilité, garantit que les pe-
tites perturbations dans les données ne provoquent pas de changements dramatiques
dans la solution. Eventuellement une sélection de modeéles est effectuée afin d’estimer
la fenétre moyenne optimale d’analyse et 'ordre du processus autorégressif (AR) par
le biais du taux de distorsion. Auparavant, un travail similaire n’a été effectué que par

) pour le RSO basse résolution et par ) pour les données

optiques.

Contribution de la these

La these porte sur I'extraction d’informations et I'amélioration des données RSO de
un metre de résolution visant a fournir des meilleurs descripteurs de contenu pour la
compréhension des sceénes et la reconnaissance de cibles, pour des produits améliorés ra-
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diométriquement et spatialement. Pour atteindre cet objectif, la thése approche le proble-
me de la modélisation des images RSO et propose une nouvelle solution fondée sur I’es-
timation du probléeme inverse pour l'extraction d’information (Figure [D). Le probleme
de la sélection du modele est géré par le taux de distorsion, en raison de sa correspon-
dance avec le cadre de l'inférence bayésienne. Nous commencons 'analyse avec l'ex-
tension de la famille de champs aléatoires de Gauss-Markov linéaires a des données
a valeurs complexes, qui s’applique aux variables aléatoires a valeurs complexes : la
distribution normale a plusieurs variables complexes et le modele paramétriques des
champs aléatoires de Gauss-Markov en cas de variables aléatoires correctes et incor-
rectes. Le second modele est utilisé pour I'estimation des parametres dans le deuxieéme
niveau d’inférence bayésienne. Ainsi, nous étendons 'analyse a I'approche bayésienne
complete, y compris les premier et deuxiéme niveaux d’inférence bayésienne, c’est-a-
dire a la sélection du modele et a 1'estimation des parametres. Ce résultat est obtenu
par la méthode d’estimation du MAP qui a été appliquée pour supprimer le speckle et
extraire des caractéristiques par Walessa & Datcul (2000). La méthode d’estimation MAP
existe dans le domaine complexe principalement dans les applications en tomographie
(Pascazio & Ferraiuold, 2003). Cette approche permet de reconstruire les parties réelle et
imaginaire, mais traite avec du bruit additif et, par conséquent, elle ne supprime pas le
speckle dans le cas des images RSO.

La méthode proposée (Soccorsi et all, 2009) est une régularisation de Tikhonov dans
le domaine complexe, voir le diagramme Figure[E]l Le speckle est traité comme un proces-
sus aléatoire a valeurs réelles. L'approche dans le domaine complexe permet de gérer la
formation de I'image cohérente comme information ou comme incertitude dans le cas de
structures ou de textures de la scéne. La nouveauté repose dans 1'utilisation des données
complexes ce qui permet d’inclure la fonction de transfert du systeme. La méthode est
équivalente a 1’estimation bayésienne MAP. La méthode, qui fonctionne avec des données
a valeur complexe, est démontrée étre meilleure que les méthodes classiques de suppres-
sion du speckle (par exemple, le filtre de Lee, MBD) sur les données détectées. Selon le
prior adopté, elle permet de débruiter 'image et d’estimer les parametres de texture.

Dans le contexte de ’optimisation des parametres pour ’extraction de caractéristiques,
la fenétre d’analyse optimale (moyenne) (Pesaresi, E@) et l'ordre optimal (moyen) du

rocessus d’auto-régression sont estimés a I’aide du taux de distorsion i ,
@). Cela confirme que le taux de distorsion est une bonne méthode basée sur 1’entropie
pour la sélection de modeéle.

Les résultats peuvent étre utilisés dans les systémes d’exploration d’information
d’images pour la compréhension de I'image.

Dans le chapitre 1, les bases pertinantes du systeme d’imagerie RSO sont présentées.
Au début, le radar RSO est décrit ainsi que 1’acquisition des données et la formation des
images. Ensuite, la représentation de l'information et les statistiques des données sont
décrites. Le chapitre se termine par quelques considérations sur le speckle, sa simulation
et les modeles d’intensité pour sa réduction.

Le probléeme est de trouver un modéle pour la réponse impulsionnelle du systeme
et pour I'image. Ceci est adressé comme un probleme de 1’estimation et la sélection de
modeles qui est présenté dans le chapitre 2. Il contient les bases théoriques appliquées
par la suite a 'estimation de I'image. Il y a une introduction qui s’étend des processus
stochastiques aux MRF en passant par les chaines de Markov. Le chapitre 2 contient
un modele de champs aléatoires de Gauss-Markov, les méthodes d’estimation des pa-
rametres déterministiques et stochastiques, I'inférence bayésienne et il se termine par une
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nouvelle méthode théorique de sélection du modele réalisée par le taux de distorsion.

Ce chapitre présente les modeles d’estimation du MAP et régularisation de Tikhonov.
Il commence par un aper¢u du MBD, qui a été notre méthode de référence pour sup-
primer le speckle de I'image et pour extraire des caractéristiques. Il se poursuit par une
extension de l'estimation du MAP dans le domaine complexe qui fournit les cannaux
complexes reconstruits mais pas une image sans speckle.

Ensuite, la famille de modeles de champs aléatoires de Gauss-Markov étendue au do-
maine complexe est présentée. Le modeéle linéaire a valeurs complexes intégre la fonction
de transfert du systéme, ainsi il est possible de modéliser les parametres et de distinguer
les textures corrélées.

L'estimation MAP de Tikhonov a été développée et testée avec un modele linéaire
a valeurs complexes, en tant que modele de données, et le modele de Huber-Markov
comme fonction prior.

Ce chapitre présente les résultats expérimentaux obtenus avec les analyses et les
modeles présentés au chapitre 3. La sélection de modéle par le taux de distorsion ap-
pliqué a la taille de la fenétre d’analyse et a 1'ordre du modele est présentée en pre-
mier. Ensuite, les résultats pour la régularisation statistique d’images complexes et la
modélisation de données a valeur complexe de champs aléatoires de Gauss-Markov sont
fournis, suivis par la présentation des principaux résultats de 1’optimisation de type Ti-
khonov pour la suppression du speckle. La méthode proposée est comparée avec les
filtres adaptatifs les plus connus.

Résultats

Estimation de la taille moyenne optimale de la fenétre d’analyse

Lalgorithme MBD (Walessa & Datcu, 2000) a été exécuté pour six différentes tailles
de la fenétre d’analyse de 11x11 a 61x61 pixels avec un pas de dix pixels de chaque
coté. L'ordre du modele a été fixé a quatre dans cette expérience. L'ordre d’entrée des
modeles pour 'analyse est trois ce qui méne a un espace de cardinalité huit avec : six
parametres spatiaux, la norme des parameétres et la variance du modele. Ensuite, I'espace
des carctéristiques est mis en cluster de 2 a 128 classes, ce qui signifie 7 étapes pour la
version dyadique de k-means. Le nombre d’itérations a été fixé expérimentalement a 30.
La distorsion globale a été calculée a chaque itération. Les courbes de la distorsion en
fonction du nombre de clusters sont présentées dans la Figure [H: ils ont un comporte-
ment asymptotique et les courbes sont décalées vers le bas quand la taille de la fenétre
augmente.

Les valeurs de la distorsion sont indiquées dans le tableau[Alainsi que le nombre équiva-
lent de vues de I'image avec le speckle filtré qui est proportionnel a I'inverse du bruit. Les
courbes de distorsion montrent un minimum pour la fenétre d’analyse de taille 61x61
pixels. Par conséquent, comme les courbes se rapprochent a partir d'une taille de 41 x 41
pixels, ce choix de taille est un bon compromis entre la complexité et la distorsion globale.
Le nombre équivalent de vues de I'image avec le speckle filtré indiqué dans le tableau Al
confirme que la suppression optimale du speckle est atteinte pour une fenétre d’analyse
de taille 41x41. La méthode, appliquée sur les données RSO, montre un comportement
différent des courbes de distorsion dans la gamme des tailles de fenétre considérée dans
I'analyse, par rapport a Soccorsi et all (2006) ou elle a été appliquée avec succes pour
évaluer la taille moyenne optimale de la fenétre d’analyse sur des données optiques. Cette
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différence pourrait dépendre de plusieurs raisons : soit I’extraction de caractéristiques ne
code pas correctement la texture des données, soit le minimum de distorsion est atteint
pour une fenétre d’analyse de plus grande taille. Toutefois, le choix d"une fenétre plus
grande rend le temps de calcul beaucoup trop long, donc il ne peut pas étre considéré
comme une solution raisonnable. Une analyse plus approfondie est nécessaire afin de
comprendre le comportement asymptotique de la distorsion qui 8 un moment est censée
augmenter avec la taille de la fenétre d’analyse.

Estimation de I’ordre du modeéle moyen optimal

Pour 'expérience suivante, le MBD a été exécuté avec différents ordres du modele

et la distorsion a été calculée en tenant également compte de la distorsion introduite
par le codage source. Les courbes de distorsion sont montrées figure |GG et les valeurs de
distorsion dans le tableau Bl Le minimum de la courbe de distorsion est atteint pour les
modeles d’ordre 4, 5 et 6 et le modele d’ordre 4 est le meilleur compromis en terme de
complexité. En outre, le nombre équivalent de vues, montré dans le tableau[B] atteint son
maximum pour le modéle d’ordre 4, qui correspond a la meilleure élimination du bruit
dans I'image.
Ce résultat global est comparé avec la carte de 1'ordre du modele optimal obtenue par
sélection de modele par le biais I'information de Fisher. Bien que le moyennage de la carte
de I'ordre du modele n’ait pas de sens, il est permis mathématiquement et on peut ainsi
obtenir une estimation de la valeur attendue pour le modele a savoir 4,2. La valeur est
compatible avec I'analyse globale effectuée par le taux de distorsion et il est une nouvelle
confirmation de la validité de la méthode.
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FIGURE F — Courbes de distorsion pour les fenétres de tailles 11 x 11, 21 x 21, 31 x 31,
41 x 41, 51 x 51 and 61 x 61 respectivement, de haut en bas.

AW Number of clusters

size 2 4 8 16 32 64 128
11x11 | 13.06 | 8.77 | 6.30 | 4.65 | 3.49 | 2.62 | 2.00 | 67.94
21x21 | 11.16 | 7.57 | 5.31 | 394 | 293 | 2.24 | 1.71 | 97.90
31x31 | 10.38 | 6.97 | 4.73 | 355 | 2.61 | 2.01 | 1.52 | 101.2
41x41 | 10.03 | 6.68 | 4.45 | 3.22 | 2.46 | 1.87 | 1.40 | 104.7
51x51 | 991 | 6.53 | 4.27 | 3.04 | 2.33 | 1.76 | 1.30 | 99.53
61x61 | 995 | 648 | 4.18 | 2.88 | 2.18 | 1.63 | 1.21 | 92.78

ENL

TABLE A - Valeurs de distorsion (x1072) et nombre équivalent de vues de 1'image dont
le speckle a été filtré par des fenétres d’analyse de 6 tailles différentes. Le meilleur com-
promis entre la complexité et la distorsion est de choisir un fenétre de taille 41x41 pixels
(en rouge) qui a le maximum ENL.
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FIGURE G - Courbes de distorsion pour les modéles d’ordre 2, 3, 4, 5, 6 et 7. Les courbes
atteignent un minimum pour les modeles d’ordre 4, 5 et 6.

Model Number of clusters ENL
Order 2 4 8 16 32 64 | 128

2 272 1220|193 | 177 | 1.66 | 1.58 | 1.52 | 73.03
206 | 1.64 | 1.36 | 1.21 | 1.09 | 1.02 | 0.96 | 101.9
1.81 | 1.38 | 1.13 | 0.92 | 0.80 | 0.72 | 0.64 | 104.6
1.76 | 1.32 | 1.12 | 0.93 | 0.80 | 0.69 | 0.61 | 47.95
1.83 | 1.39 | 1.14 | 0.94 | 0.80 | 0.69 | 0.59 | 39.74
1.89 | 1.54 | 1.19 | 0.99 | 0.84 | 0.74 | 0.65 | 47.96

N OV G| | W

TABLE B — Valeurs de distorsion (x1072) et nombre équivalent de vues de 'image dont
le speckle a été filtré pour les différents ordres de modeéles. Les modeles d’ordre 4, 5 et 6
ont des valeurs de distorsion comparable. Le meilleur choix en terme de complexité est
le modele d’ordre 4 (en rouge).

Suppression du speckle basé sur la régularisation de Tikhonov

La méthode de régularisation de Tikhonov avec le prior des champs aléatoires de
Huber-Markov HMREF a été comparée aux filtres adaptatifs les plus connus : les filtres
améliorés de Lee, de Frost, Kuan, Gamma et le MBD. La premiere expérience a été réalisée
sur quatre textures synthétiques GMREF, la seconde sur quatre images de texture Brodatz,
la troisieme expérience a été réalisée avec une image optique Quick Bird QB et la derniere,
avec des données TerraSAR-X haute-résolution.

Les méthodes appliquées pour la comparaison des filtres sont d’ordre qualitatif et quan-
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titatif. Les mesures comparatives prises en compte sont les suivantes

- préservation de la valeur moyenne.

- erreur quadratique moyenne E{|x — x|*}

- indice de similarité structurelle (Zhou Wang & Simoncelli, in.d) SSIM(x, %).

- nombre équivalent de vues (ENL) de 'image avec les speckle filtré x.

- valeur moyenne de l'intensité du bruit E{y/x}.

- nombre équivalent de vues du rapport d’images y/x.

- comparaison visuelle du rapport d’images y/x%.
Toutes les méthodes ne sont pas applicables a toutes les expériences. Par exemple, la
définition du nombre équivalent de vues au cas des textures n’a pas de sens et certaines
méthodes ne sont pas utilisables sans image de référence. Ainsi, ellse ne sont pas adaptées
au cas des expériences sur les données RSO réelles.
Le filtre avec MSE le plus bas est préférable. D’autre part, le MSE montre de faibles per-
formances pour les images (Wang & Bovik, 2009), donc le SSIM est également utilisé. T1
s’agit d"une mesure de la qualité de I'image par rapport a une autre qui est censée avoir

une qualité parfaite. Il est calculé comme suit dwang_e_t_aﬂ, 2004; |£Lb.ann.app_aggLa_e_t_alJ,
2008)

(2xpiz + c1)(20xx + ¢2)

SSIM(x, %) =
%) = e 2 T a2 + o2+ )

1)

ol x est I'image de référence et x est I'image avec le speckle filtré, ;. et o sont respective-
ment la moyenne et la variance, ¢; et ¢z sont deux constantes introduites afin d’éviter les
probléemes numériques lorsque les valeurs de la moyenne et de la variance sont proches
de zéro. Le SSIM tend vers un lorsque 'image sélectionnée se rapproche de celle de
référence. Par conséquent, le filtre dont le SSIM est le plus proche de un est préféré.

La valeur moyenne de I'image doit étre préservée par le filtre, car 1'espérance du signal
ne doit pas étre modifiée par le traitement par le filtre.

Le nombre équivalent de vues de I'image avec le speckle filtré est calculé en utilisant

E{x}

ENL =
E(x — Ex)?

@)

ol x représente l'intensité du signal. C’est également une méthode classique pour la com-
paraison des filtres, mais elle ne peut étre appliquée que si une zone uniforme suffisam-
ment large est disponible dans les données.

L’espérance du rapport d'images doit étre un pour une intensité du bruit distribuée selon
une exponentielle négative avec une variance unitaire, donc le filtre qui se rapproche le
plus de cette valeur a de meilleures performances que les autres.

Le nombre équivalent de vues du rapport d’images doit étre égal a un dans le cas idéal.
Le rapport d’'images est montré pour une comparaison visuelle qualitative. Dans le cas o1
les contours ne sont pas bien conservés le rapport montre des motifs dus a la procédure
de filtrage non optimale.

La condition de convergence est choisie comme étant le minimum MSE atteint et la va-
leur initiale du parametre k est fixée a 0,9. Le seuil de 7 de la fonction de Huber a été fixé
comme mode de I'histogramme des données. Le nombre d’itérations est choisi comme
condition de convergence dans le cas de données RSO réelles, car I'image de référence
pour le calcul du MSE n’est pas disponible.

Le choix de traiter et de tester des images avec ENL = 1 est un point critique, car il met
a I'épreuve les performances des filtres, mais il permet de comparer le filtre développé
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qui travaille sur les données complexes avec les autres filtres qui fonctionnent sur des
données détectées. La différence sur les données repose sur la transformation non linéaire
des coordonnées cartésiennes aux polaires. Par la suite, les termes rapport d'images et
image speckle sont utilisés comme termes alternatifs. Par souci de concision, seuls les
résultats sur les textures Brodatz et sur les images RSO seront effectivement présentés.

Les textures Brodatz

La deuxieme expérience a été réalisée sur des images optiques appartenant a I’archive
des textures Brodatz (m, @). Les images sélectionnées, les originales et celles
qui sont corrompues par le speckle sont montrées figure [HIl Elles ont été choisies afin
d’avoir une sélection de différents types de textures. La texture 1 représente une struc-
ture linéaire, réalisée par des traits, la texture 2 est une structure réguliére de chevrons,
la troisieme est une structure ronde formée par des pierres et la derniére est une texture
de marbre. Les images Brodatz sont numérotées en partant d’en bas a gauche dans le
sens inverse des aiguilles d"'une montre. Chaque image a une taille de 256 x 256 pixels.
Les images avec le speckle filtré sont montrées dans la figure [Hl Les rapports d’images
pour une comparaison qualitative sont présentés figure[l alors que les mesures pour la
comparaison des filtres sont présentées dans le tableau[12]

En comparant les images avec le speckle filtré aux images originales, il semble que les
filtres améliorés de Lee et de Frost, le MBD et la méthode proposée donnent des résultats
similaires mais meilleurs que les filtres Kuan et Gamma. La méthode proposée est a la
deuxiéme place, apres le MBD, en comparant les motifs des rapport d’images, voir les
figures[[Set[[6l En se référant au tableau[I2] tous les filtres ont raisonnablement préservé
la valeur moyenne. La méthode proposée présente le meilleur MSE pour la quatriéme
image, alors qu’elle obtient des résultats similaires au filtre de Lee amélioré pour les
images deux et trois. Le filtre HMRF est en troisiéme position apres les filtres améliorés
de Lee et de Frost dans le cas de I'image un. Ils surpassent les autres filtres en terme de
SSIM pour la premiére image, tandis que le filtre Kuan montre le meilleur SSIM mesure
del’indice dans le cas des images deux et trois. Le filtre amélioré Frost donne de meilleurs
résultats en terme d’indice SSIM dans le cas de I'image quatre. La méthode proposée a
le deuxiéme meilleur indice SSIM dans le cas de I'image deux. Le filtre MBD a de bons
résultats pour la moyenne de I'image de speckle, qui est proche de un pour toutes les
images. Le filtre amélioré de Lee a des performances légerement meilleures seulement
dans le cas de l'image deux. La méthode proposée présente une valeur moyenne ac-
ceptable pour le rapport d'images mais elle tend a surestimer 1'espérance statistique du
speckle dans toutes les images. Le nombre équivalent de vues est meilleur pour le fil-
trage amélioré de Lee, sauf pour I'image quatre ot le filtre Gamma a des performances
légérement meilleures.

La méthode proposée converge apres deux itérations dans le cas de 'image une, deux et
trois et aprés quatre itérations pour la quatriéme image.
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FIGURE H — Expériences avec les textures Brodatz corrompues par le speckle avec ENL =
1. Images originales (1), images bruitées (2), avec speckle filtré par les filtres améliorés de
Lee (3), de Frost (4), Kuan (5), Gamma (6), MBD (7) et la méthode proposée (8).
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FIGURE I — Expériences avec les textures Brodatz corrompues par le bruit de speckle
avec ENL = 1. Rapports d’images : les filtres améliorés de Lee (1), de Frost (2), Kuan (3),
Gamma (4), MBD (5) et la méthode proposée (6).
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Blp=127.032 | E{X} | mse | SSMI | E{y/X} | ENL{y/X}
e. Lee 12531 | 1611.66 | 055 | 1.08 1.07
e. Frost 12635 | 1696.21 | 057 | 1.23 0.67
Kuan 128.08 | 270541 | 0.45 | 0.88 2.50
Gamma 128.45 | 2033.89 | 051 | 1.27 0.56
MBD 131.04 | 2057.95 | 030 | 1.04 1.32
HMRF 128.05 | 194059 | 033 | 1.18 0.82
B2 11 = 109.550
e. Lee 192.07 | 149840 | 027 | 1.03 1.03
e. Frost 107.47 | 1580.76 | 0.25 | 1.25 0.58
Kuan 109.02 | 1896.36 | 0.55 | 0.86 2.16
Gamma 109.64 | 1961.16 | 0.18 | 1.32 0.46
MBD 108.96 | 170358 | 0.31 | 1.05 1.27
HMRF 108.99 | 153228 | 0.38 | 1.11 0.65
B3 11 = 90.2339
e. Lee 8891 | 884361 | 039 | 1.11 1.03
e. Frost 89.20 | 923286 | 053 | 127 0.68
Kuan 89.65 | 1223.63 | 055 | 0.90 2.64
Gamma 89.82 | 103555 | 048 | 1.31 0.57
MBD 9123 | 106850 | 029 | 1.04 1.23
HMRF 89.61 | 895.82 | 035 | 1.14 0.84
B4 1 = 104.012
e. Lee 100.828 | 828234 | 0.63 | 1.20 1.13
e. Frost 100.905 | 816.941 | 0.65 | 1.26 0.95
Kuan 101.024 | 173890 | 045 | 0.94 3.32
Gamma 101.071 | 832.590 | 0.62 12 0.91
MBD 106331 | 1097.71 | 055 | 1.04 1.23
HMRF 10091 | 72026 | 023 | 1.24 0.86

TABLE C — Mesures pour la comparaison des textures Brodatz avec speckle filtré. En
partant d’en bas a gauche dans le sens contraire de celui des aigulles d’'une montre, en
référence a la Figure[HI]: B1, B2, B3, B4.

Images RSO

La derniere expérience a été effectuée sur des données réelles RSO. Concretement les
analyses ont été faites sur une acquisition TerraSAR-X mode HR SL, dont la résolution
est ~ 1.5 m en range et ~ 1,1 m en azimuth. La région traitée a une taille de 1024 x 1024
pixels et est montrée figure[]] Les images avec speckle filtré sont montrées figure Kl et les
raport d’images figure [l Les mesures pour la comparaison quantitative des filtres sont
présentées dans le tableau 14l Dans I'image réelle le speckle est corrélé, ce qui n’était pas
le cas dans I'image simulée.

Dans la figure [Kl on remarque que la performance des filtres améliorés de Lee, de
Frost et des filtres Gamma est similaire. Or le Kuan ne supprime pas suffisament le bruit.
Le résultats du MBD et de la méthode proposée montrent une meilleure élimination du
bruit.

En ce qui concerne les rapports d’images, toutes montrent des motifs, ceux-ci étant
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légérement inférieurs pour le MBD. Dans le cas des filtres améliorés de Lee et de Frost et
Gamma des performances similaires sont confirmées, ainsi que la mauvaise performance
du filtre de Kuan. Néanmoins le MBD montre des artefacts dans la zone uniforme et le
long des bords. La méthode proposée montre la région la plus uniforme, mais 'effet de
flou des contours est aussi visible.

Les seules mesures quantitatives comparatives possibles sont celles qui ne demandent
pas d’image de référence, puisque dans ce cas elle n’est pas disponible. En conséquence,
on ne peut comparer que la valeur moyenne de 1'image correspondante, de 'ENL du
speckle et de 'ENL de I'image avec speckle filtré.

La meilleure moyenne des raports d'image est obtenue parle le MBD, suivi par le
Kuan, les filtres améliorés de Lee et de Frost, le Gamma et, finalement, la méthode pro-
posée.

Le meilleur ENL du bruit de speckle est donnée par le filtre Gamma, le filtre de Frost
amélior, le HMREF, le Lee amélioré et, enfin, le MBD. Le filtre de Kuan a notablement
surestimé.

Le meilleur ENL sur I'image avec speckle filtré a été obtenu par la méthode proposée
aprés 5 itérations. Le MBD est a la deuxiéme place. Le Frost amélioré et Kuan ont une
performance similaire, suivis par le Lee amélioré. La pire performance est obtenue par le
filtre Gamma.

E{y/x} | ENL{y/x} | ENL{x}
e. Lee 1.17 1.26 7.91
e. Frost 1.21 1.08 8.07
Kuan 0.94 3.56 8.12
Gamma 1.22 0.99 2.60
MBD 1.02 1.52 17.16
HMRF 1.29 0.75 21.71

TABLE D — Mesures pour la comparaison quantitative des filtres sur 'image RSO réelle
présentée dans la figure [}
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FIGURE ] — Expérience avec une image RSO réelle TerraSAR-X HR SL. Polarisation HH,
orbite descendante, résolution au sol ~ 1.5 m, résolution azimut ~ 1.1 m. Maribor, en
Slovénie, le 29 Octobre 2008, 5 :01 :06 UTC.
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FIGURE K — Expérience avec une réelle RSO image. Image originale (1), avec speckle
filtré par les filtres améliorés de Lee (2), de Frost (3), Kuan (4), Gamma (5), le MBD (6) et
la méthode proposée (7).
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FIGURE L — Expérience avec une image RSO réelle. Rapports d’images : Lee amélioré (1),
Frost amélioré (2), Kuan (3), Gamma (4), MBD (5) et la méthode proposée (6).

Observations et discussion

Etant donné le lien avec le cadre de sélection de modele bayésien, 1’estimation op-
timale des parametres est effectuée avec succés par la courbe de taux de distorsion.
La méthode est une approche globale qui peut étre utile dans les applications d’ex-
ploration de données pour l'interprétation du contenu. L'optimisation de la taille de la
Fenétre d’Analyse et de 'Ordre du Modele sont utiles pour l'extraction optimale de ca-
ractéristiques visant au développement d’un Systeme d Exploration des Données sur des
Images.

La régularisation statistique permet de modéliser le signal complexe par I'estimation
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des parametres et de lisser les canaux réel et imaginaire. Il peut étre utile dans la recons-
truction 3D du signal, par example, dans des applications de tomographie. Le modéle
de données en nombres complexes GMRF peut ainsi modéliser le signal complexe par
I'estimation des parametres du modele complexe. Concretement, dii a sa capacité pour
modéliser les patrons de phase, il peut étre appliqué pour la reconnaissance des cibles
mais il ne s’applique pas directement aux zones de texture stationnaires.

La régularisation de Tikhonov montre une meilleure performance que les autres filtres
au niveau de la mesure du MSE. En outre, une inspection visuelle des images avec le
speckle filtré et des rapports d’images indique des résultats comparables entre eux. Ce-
pendant, un modeéle a priori qui s’adapte mieux a la texture synthétique générée pourrait
améliorer les résultats. Le modele GMREF est prévu pour étre utilisé comme modeéle prior
dans des expériences futures.

Dans le cas du test avec la texture Brodatz, la méthode proposée ne surpasse pas les
autres filtres. Toutefois elle se comporte de maniere satisfaisante avec la vraie texture.
Le test avec I'image RSO simulée avec la méthode proposée montre un bon filtrage du
speckle. De plus, toutes les mesures sont cohérentes. Finalement, les meilleurs résultats
en termes de ENL sur 'image avec speckle filtré sur les données réelles RSO sont obtenus
avec la méthode proposée.

La complexité des méthodes, qui on été programmeées en C++, a été mesurée a travers
le temps d’exécution sur une machine avec un processeur Intel core II 2.0 GHz. Pour tous
les filtres adaptatifs une fenétre de taille 5 x 5 pixels a été utilisée. Pour le MBD, une
fenétre de 41 x 41 pixels a été utilisée car il a été démontré que c’était la fenétre optimale
de moyennage. L'image RSO de la figure[]|de taille 1024 x 1024 pixels a été utilisée pour
cela. Les temps d’exécution sont les suivants : la méthode MBD 250 s, Lee amélioré 1,5 s,
Frost amélioré 1,8 s, Kuan 1,1 s, Gamma 1,3 s et la méthode proposée 18 s. La méthode
la plus demandante au niveau computationnel est le MBD, puisque les parametres du
GMRL doivent étre estimés.

Application sur la Classification

Les caractéristiques extraites ont été validées par classification non-supervisée K-
means des parametres du modele de Champs Aléatoires de Gauss-Markov (Gauss-Markov
Random Field, GMRF). L’algorithme de Lloyd généralisé (Generalized Lloyd Algorithm,
GLA), également connu en tant que K-means dans la littérature de clustering, est la généra-
lisation dans un espace multidimensionnel de I’algorithme de Lloyd (LA) pour la concep-

tion d’un quantificateur scalaire (Gersho & Gray, 1991).

L’algorithme est basé sur 'utilisation itérative de I'opération de modification du livre
de codes. Il est basé sur les étapes suivantes :

1. Commencer avec un livre de codes initial C,, = {y,;;i = 1,...,N}.

2. Etant donné le livre de codes C,,, = {y;;i = 1,..., N}, trouver la partition optimale
dans des cellules de quantification de sorte que 1’assignement soit faite au code le
plus proche. Autrement dit, former des cellules du plus proche voisin (condition
du voisin plus proche) :

Ry ={@ : d(z,y;) < d(x,y;); all j # i}, 3)

Si d(x,y;) = d(z,y;) pour un ou plusieurs j = i, attribuer « a I'ensemble R; pour
lequel j est le plus petit.
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3. Etant donné 'ensemble de cellules qui viennent d’étre calculées, trouver I'alphabet
de reproduction optimal, autrement dit, le livre de codes C,,,11 = {cent(R;);i =
1,...,N}, ou cent(-) est le centre de la cellule (condition de centroide, Centroid
Condition).

4. Calculer la distorsion moyenne pour C,41. Si le changement a été suffisamment
petit par rapport a l'itération préalable, arréter 1’algorithme. Sinon, mettre m + 1 =
m et passer a I'étape 2.

Chaque application des étapes deux et trois (itération de Lloyd) doit réduire ou ne pas
modifier la distorsion moyenne.

Généralement les criteres d’arrét sont les suivants :
- le nombre maximal d’itérations;
- la position des centres ne doit pas changer (ou la distorsion ne doit pas diminuer)
beaucoup d"une itération a la suivante;
- l'erreur de distorsion, € = |D;1 — D;|, est inférieure ou égale au seuil fixé.
IIs peuvent étre utilisés individuellement ou en combinaison afin d’obtenir le mode d’in-
terruption souhaité.

Une scéne ESAR-X aéroportée acquise sur la ville de Dresden a été analysée (voir
figure [M1] ). Les caractéristiques du modele ont été extraites et ensuite classifiées par
l'algorithme k-means non-supervisé.

Les résultats de la classification avec les algorithmes GMRF a valeurs complexes et
MBD sont indiqués dans les figures [M2 et [M3| respectivement.

Etant donné le contenu de I'image, cinq classes ont été choisies pour la classification :

- noir : I'’eau, les ombres et les zones sombres ;

- bleu : végétation;

- vert : zone résidentielle;

- orange : les batiments;

- jaune : diffuseurs tres forts.

Une comparaison visuelle des figures[M2] et[M3l montre que la résolution de la classi-
fication faite avec le GMREF a valeurs complexes est meilleure.

Les matrices de confusion pour la classification avec le GMRF et avec le MBD sont
indiquées dans les tableaux [E] et [l respectivement. Dans le cas du MBD, les classes ne
sont pas bien séparées : 'eau et les zones sombres sont classées comme végétation. En
méme temps celle-ci n’est pas séparée de la zone résidentielle. La performance pour les
batiments et les diffuseurs forts est mauvaise. La matrice de confusion pour le modele
GMRF montre de meilleurs résultats spécialement pour les batiments et les diffuseurs
forts. L'eau est aussi beaucoup mieux séparée, tandis que la végétation, contrairement au
MBD, est fusionnée a la zone résidentielle.

Conclusions

La taux de distorsion a été appliqué a l'algorithme déja existant du MBD pour I'opti-
misation des parametres d’extraction de caractéristiques. Puisque 1’algorithme est implé-
menté dans un systeme d’exploration des données sur des images, le probleme de 1'ex-
traction optimale de caractéristiques se pose.

L’analyse doit étre abordée en prenant en compte la grande quantité de données de-
vant étre traitées par le systeme. En conséquence une méthode globale, simple et rapide
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FIGURE M - K-means résultats de classification a cinq classes : noir (eau), bleu
(végétation), vert (quartier résidentiel), orange (batiment) et jaune (diffuseurs forte). (1)
Image d’amplitude, (2) classification GMRF a valeurs complexes et (3) classification MBD.
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% Eau | Végétation | Quartier résidentiel | Batiments | Diffuseurs forts
Eau 67 28 5 - -
Végétation 29 63 8 - -
Quartier résidentiel | 32 9 59 - -
Batiments 11 11 - 78 -
Diffuseurs forts - - 9 18 73

TABLE E — Matrice de confusion de classification non-supervisée K-means pour les

champs aléatoires de Gauss-Markov aux valeurs complexes.

% Eau | Végétation | Quartier résidentiel | Batiments | Diffuseurs forts
Eau 28 61 11 - -
Végétation 27 73 - - -
Quartier résidentiel | 18 41 41 - -
Batiments 24 29 12 35 -
Diffuseurs forts 16 11 11 17 44

TABLE F — Matrice de confusion de classification-non supervisée K-means pour MBD.

est nécessaire. La solution a été trouvée dans le cadre de la théorie de I'information et du
traitement, en mesurant I’erreur de codage d"une source de données.

La compression avec perte de données est appliquée par K-means dyadique sous
I'hypothése de distributions gaussiennes mélangées. La taille moyenne optimale de la
fenétre de 1’analyse permet une estimation robuste des parametres pour la description
des images avec des caractéristiques. La moyenne optimale de 1’ordre du modéle (Model
Order, MO) permet d’éviter la sélection d'un modele qui fasse du surapprentissage sur
les données.

En outre, le résultat dépend de la diversité des données et le nombre de classes codées
par les clusters. L'optimisation est effectuée sous I'hypothese de données stationnaires
dans la fenétre d’analyse. Cette hypothese n’est pas toujours respectée. Pour surmonter
ce probleme, une fenétre d’analyse adaptative peut étre utilisée.

Le résultat de la sélection de I'ordre de modeéle est comparé avec la carte locale d’ordre
dumodele choisie par I'information de Fisher. La carte montre comment 1’ordre u modele
est liée au contenu de I'image. Les zones uniformes ou celles qui présentent une faible
complexité sont mieux représentées par un ordre de modele bas, tandis que les zones tex-
turées et celles qui montrent de fortes variations sont mieux représentées par un modele
d’ordre élevé.

La Sélection de Modele globale effectuée par taux de distorsion semble étre une solu-
tion raisonnable parce que la sélection de MO adaptative locale est computationalement
cher.

L’analyse des données avec valeurs complexes commence par 'extension dans le do-
maine complexe de l'estimation par maximum a posteriori (MAP) pour la régularisation
statistique de la partie réelle et la partie imaginaire. Le modele d’image linéaire est régula-
risé sous la contrainte d’un terme de probabilité a priori. Celui-ci est donné par une dis-
tribution de Gibbs, qui est une distribution exponentielle dont I'exposant, connu comme
la fonction de I'énergie, caractérise les familles des champs aléatoires de Markov (MRF)
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différentes.

Les parametres de ce terme probabilistique (a priori) sont estimés a partir des données
incompletes par une procédure de maximisation de I'espérance (Expectation maximiza-
tion, EM). Les images des parametres estimés sont utilisées pour trouver la solution du
probleme mal posé de I'estimation de I'image a partir des données avec du bruit.

Les Champs Aléatoires de Gauss-Markov (Gauss Markov Random Field, GMREF), ca-
ractérisés par une fonction quadratique d’énergie, sont capables de décrire les caractéris-
tiques locales des images. Bien que les champs aléatoires de Gauss-Markov ne soient
pas le meilleur choix pour la reconstruction de profils avec des fortes discontinuités, ils
sont intéressants parce que le posteriori est convexe et gaussien. En fait, le gradient peux
étre calculé analytiquement et le fonctionnel minimisé sans tomber dans des minimaux
locaux.

L'image parametre estimée semble vraiment similaire, parce que les canaux réel et
imaginaire ne sont pas corrélés mais pas indépendants. Les parametres donnent une
mesure de la variation qui a lieu dans le signal. Donc elle pourrait étre utilisée pour
étiqueter/classifier le contenu de I'image. L'image d’amplitude est floue, mais aucun ar-
tefact est généré par le filtre.

Les famille élue des modeles de champs aléatoires de Gauss-Markov est isotrope.
D’autres modeles, caractérisés par un vecteur de parametres au lieu d’un scalaire, sont
en mesure d’estimer des parametres directionnels qui peuvent capturer des structures a
différentes échelles et orientation.

C’est le cas du modele a valeurs complexes de champs aléatoires de Gauss-Markov
développé par 'extension de la définition classique des champs aléatoires de Gauss-
Markov au domaine complexe. Les parametres estimés sont capables de modéliser des
patrons différents dans la phase complexe de I'image.

Dans une image RSO seule, ces modeles sont essentiellement visibles dans le voisi-
nage des diffuseurs forts en raison de la réponse impulsionnelle du systéme. On sup-
pose que c’est possible de caractériser la texture locale par la modélisation du patron des
phases, mais I’hypothése n’a pas été confirmée.

En réalité, ces motifs sont vraiment rares et pas évidents. En outre, les valeurs des
parametres sont similaires pour des textures différentes. Par la modélisation des données
avec les champs aléatoires de Gauss-Markov a valeurs complexes, la variance du modéle
pourrait distinguer des texture avec des intensités différentes.

Le modele d'image linéaire dans la méthode de Tikhonov permet d’inclure la réponse
impulsive du systeme et la contrainte du modéle a priori, permettent ainsi de traiter les
zones uniformes et de préserver les contours grace a la variation totale et la fonction
Huber-Markov respectivement. La fonction convexe assure que la solution existe et est
unique et elle a été minimiseé par la méthode itérative de Newton.

Les parametres de filtre permettent un réglage optimal de l'optimisation. Initiale-
ment, ils ont été choisis expérimentalement, en trouvant qu’ils contrélent le degré d’ef-
ficacité des modeles antérieurs, a savoir le degré de lissage par rapport au degré de
préservation des contours.

Le probléme a été résolu comme un probleme de sélection de modele avec un cadre
bayésien de sélection de modele. Le parametre norme définit la forme de la fonction de
pondération, par exemple une distribution de Gauss ou de Laplace. Il doit étre initialisé
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expérimentalement dans la premiere itération de I'algorithme et il est ensuite estimé. Le
pas numérique, qui contrdle la vitesse de convergence et la précision de la solution, doit
aussi étre choisi expérimentalement.

Quatre expériences ont été réalisées afin de donner des résultats aussi complets que
possible. Le filtre montre une performance supérieure pour le débruitage de textures
synthétiques et des données RSO réelles. Dans le cas de la texture Brodatz et des données
RSO simulées, la performance du filtre est similaire a celle du filtre de Lee amélioré et du
MBD.

Lanouveauté de la démarche repose sur la possibilité d’inclure la fonction de transfert
du systeme, le modele a priori et 'utilisation de la pleine résolution et des informations
contenues dans les données a valeurs complexes.

Finalement 'application des méthodes proposées est présentée pour la classification
non supervisée et supervisée des modeles. La classification K-means est comparée avec
le modele MBD.

Bien que les résultats soient loin d’étre optimaux, les méthodes proposées semblent
étre prometteuses. Une amélioration des résultats pourraient étre obtenue grace au prétrai-
tement des données afin d’en extraire I'information des bords pour une meilleure sépara-
tion des classes et/ou combiner différemment les parameétres. En outre, d’autres modeles
paramétriques peuvent étre envisageés.
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Introduction

The first Synthetic Aperture Radar (GAR)) sensor for Earth Observation (EQ) was laun-
ched by NASA in 1978 on board of the satellite SEASAT. It stopped working few months
later but the SAR technology and development has continued ever since. Satellites equip-
ped with sensors with better resolution have been launched and new missions are plan-
ned. The major advantage of the imaging sensor is that it is independent from wea-
ther conditions (e.g. clouds) and daylight because it is an active sensor. A view of a
satellite is shown in Figure[l] It is the German satellite TerraSAR-X launched in June 2007.
Other kinds of sensors also are devoted to Earth imaging from space, e.g. optical sensors,
but they have as major drawback the limitation due to the cloud coverage and the sun-
light because they are passive sensors. Satellites allow to have an Earth coverage with a
revisit time which depends on the orbit. It permits to acquire data on the same areas and
to analyse the image sequences. Changes in the Earth surfaces, structure deformations
of the order of millimeters may be detected and 3D models of the Earth surface may be
generated by [SARlacquisitions. From 1978 up to today, many missions and new sensors
have been developed for [EQ] see Figure 2 where the launch of TanDEM-X is planned
in the beginning of 2010. This enormously increases the availability of data to be
used in many different applications making the search and retrieval of information from
the archives arduous. In parallel, the improvement of resolution hugely increases the
information content. It makes the automatic interpretation of the images more difficult
because the level of detail highly grows. The analysis of data is made complicated
because the coherent image is corrupted by speckle noise, see Figure Bl In order to deal
with speckle we need to find a correct model of the uncorrupted data and to infer them.
An accurate estimation accounts also the imaging system which has to be correctly
modelled. The thesis provides a new methodology to analyze High Resolution (HR)
data to facilitate image understanding, interpretation and indexing.

Progresses in SAR Modeling and Information Extraction

The analysis of [SAR/images in term of image estimation, restoration and denoising
has been applied in the past on detected data. The well-known adaptive filter [Lee (@),
(1982) and [Kuan et all (1985) have been developed to estimate the image re-

flectivity while preserving image features. However the capability of estimating reflecti-
vity and extracting image features (e.g. edges) has been demonstrated to be more effec-
tive with complex valued data (Fjortoft et al), 1999; Fiortoft & Lépes, 2001). Except of few
contributions in the literature d,[akeman_&_P_us_e;zI, |12Zd, [SZﬁ.]D.OJALSJd, ; ,
|122d,‘ |Jﬁsm.et.aﬂ,|2QQ4|) the main effort has been to find and fit statistical models on detec-
ted data (amplitude or intensity) neglecting the phase, after non linear transformation of
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FIGURE 1 - View of TerraSAR-X satellite. It was launched in June 2007. It is providing [HR]
data of the Earth surface up to 1 m resolution.
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FIGURE 2 — Growing spaceborne SAR resolution with time. With increasing resolution,
automated image understanding becomes a hard task. The information content increases
enormously with the resolution. The thesis addresses the development of new methods
to fully exploit the information in HR data.
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FIGURE 3 — Example of HRISARlimage. Buildings, man made structures, vegetation and
water are present in the image but are not clearly distinguishable. Image understanding
aims to facilitate image interpretation.

the complex reflectivity from Cartesian to polar coordinate. However, modeling complex-
valued data has several advantages :

Exploiting the full available information at full resolution.

Simplicity of the data model.

Behavior of the model to represent deterministic signature or incertitude in the
complexity of the scene.

It is the only way to have accurate system modeling.

The drawback of comple-valued data is the low signal-to-noise-ratio. Many statistical
models, with empirical or theoretic basis, have been proposed to handle speckle. The
Gamma distribution has been introduced as a model for a multilook [SAR| intensity pro-
bability density function (pdf) where the correspondent amplitude has a Nakagami dis-
tribution. They are a generalization of negative exponential and Rayleigh distributions
respectively. The K distribution (Jakeman & Pusey, 1976, 1978; Oliver, 1984; Jad, [1984) is
obtained for the signal intensity assuming the population of scatterers in the resolution
cell to be controlled by a birth-death-migration process. In the hypothesis of Gamma dis-
tributed noise and Gamma distributed signal (IanLeﬂ 1991; |anLer_&_Q_uegaﬂ |20£)_4.d) the
product model results in a K dlstrlbutlon for the intensity. The Nakagami-Rice distribu-
tion has been proposed to model the [SARIstatistics in the presence of a single strong re-
flector in homogeneous clutter dDana_&_Kn.e_ppl, 1986; Tison et all, 2004). Inverse Gaussian
distributions have also been employed to model the amplitude statistics in

(1997), Muller & Pad (1999) and [Eltoft (2003). Inh&unmghl_&_Zenlbid (2004) a heavy-tailed
Rayleigh model is presented under the hypothesis that the real and imaginary parts of
the backscattered signal are jointly Symmetric-a-Stable (SaS) random variables. Gene-
ralized Gaussian distributions are assumed for real and imaginary parts in

(@). The G distribution for the amplitude, presented in|ELer;Le_t_al] (11292'), is the result
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of a multiplicative model assuming a Nakagami distribution for the speckle noise and a
generalized inverse Gaussian distribution for the signal. In Muller & Pad (1999), a parti-
cular case of the G model, called harmonic branch G", is proposed, while the G° distribution
is proved to be equivalent to a Fisher [pd] in Tison et al. (2004).

In addition to the above mentioned theoretical or partially theoretical models, several em-

pirical models have been used to characterize the statistics of SAR amplitude (or inten-

sity) data, such as log-normal (lSza.jnm&ski, |12Z2|), Weibull (lS_ekin.e_&_Mad, |122d) and Pear-
son (IDelign.Qn_Qt_alJ, [1997).
The Gauss-Markov Random Field (GMRF) family of models (Chelappa et al), 1985) has
been successfully used in computer vision for texture generation and compression. In
Walessa & Datcul (2000) it has been used in [MAD]estimation as prior in the framework of
Bayesian inference together with the Gamma distribution.
The direct problem of computing the imaging system response from a given image is
often assumed to be known and well-posed. The usual model for it is the convolution
by a given kernel or point spread function which, in most of the cases, implies that the
inverse problem of computing the true image from the observations is an ill-posed pro-
blem. A general principle for dealing with the instability of the inverse problem is that
of regularization, which mainly consists in restricting the set of admissible solutions and
including some a priori information (non negativity, smoothness, existence of edges, etc.)
in the formulation of the problem. Both the accurate modeling of the imaging system and
the choice of regularization will be essential for a satisfactory image restoration process.
Tikhonov (Tikhonov & Arsenin, 1977) has introduced methods for regularizing determi-
nistic problems by introducing stabilizing functionals which play a role analogous to the
log prior distribution of [MAD] estimation. The regularization of ill-posed problems has
been the subject of much research, e.g. Horn & Rhunck (1128]]) for optical flow determi-
nation, Ikeuchi & Hornl dl&&]]) for the shape reconstruction from shading, i

) for edge detection and Marmqmn_e_t_alj 41282') for computational vision. When the
functional is not convex it is necessary to adopt a simulated annealing method to mi-
nimize it. The functional we consider is convex, thus gradient descent methods can be
applied.
In Cetin & Karl (2001), the regularization is used in order to develop an enhanced image
formation method for Spot Light (SL) airborne[SAR| By exploiting a similar image mode,
starting from Cetin & Karl (2001) and [Pan & Reeves (2006), we introduce a complex-
valued likelihood which allows to take into account the complex-valued nature of the sys-
tem transfer function. This approach is different from the one suggested inm

) where the authors suggest a model for image formation. We use as prior the Huber-
Markov function which is shown to be a powerful model for the preservation of the edges
in|Pan & Reeves (2006).
The ill-posed image restoration problem becomes a well-posed problem by choosing a convex
prior, which ensures that the solution exists, is unique and depends continuously on the
data. The last condition, called stability, ensures that small perturbations in the data do
not cause dramatic change in the solution. Eventually, a model selection is performed
in order to estimate the optimal average analyzing window and the order of the Auto
Regressive %ss through Rate Distortion. Previously, a similar work has been
only done by (1996) for low resolution and and Soccorsi et all (2006) for
optical data.
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FIGURE 4 — The uncorrupted data are estimated considering the problem as an inverse
problem by statistical modeling of the [SAR| system and the coherent image formation
process. Rate Distortion, in the framework of Information Theory, is used for Model Se-
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FIGURE 5 - Diagram of the Tikhonov optimization method. The model of the image and
of the system are chosen, and the optimization is performed. The output is the despeckled

image.
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Contribution of the Thesis

The thesis deals with information extraction and enhancement of meter resolution
data aiming to provide better content descriptors for further scene understanding
and target recognition, as well as radiometrically and spatially enhanced products. To
achieve this goal the thesis approach the problem of modeling images and propose
novel solution based on estimation of inverse problem for information extraction (Fi-
gure [). The problem of model selection is managed by Rate Distortion, because of the
correspondence with the Bayesian evidence framework. We start the analysis with the ex-
tension of the linear Gauss-Markov Random Field (GMRE) family of models to complex-
valued data, which applies to complex-valued random variables : the multivariate com-
plex Normal distribution and the parametric model in case of proper and impro-
per random variables. The latter model is used for parameter estimation in the second
level of Bayesian inference. Thus, we extend the analysis to the full Bayesian approach,
including first and second level Bayesian inference, i.e. model selection and parameter es-
timation. This is achieved by the[MAP|estimation method which has been applied for des-
peckling and feature extraction by Walessa & Datcu (2000). The MAP] estimation method
exists in the complex domain mainly in tomography applications (Pascazio & Ferraiuolo,

). The approach allows the reconstruction of the real and imaginary part but deals
with additive noise and thus, it does not remove speckle in case of SAR|images.
The proposed method (BQQQQ]:&l_Qt_a]J 2009) is a Tikhonov regularization approach in the
complex domain, see diagram in Figure 5l Speckle is handled as a random process with
real-valued data. The complex-domain approach allows to handle the coherent image
formation as information or as incertitude in case of structures or textures in the scene.
The novelty relies in the use of complex-valued data which allows to include the system
transfer function. The method is equivalent to the Bayesian [MADP| estimate. The method,
which works with complex valued data, is demonstrated to be better than the classical
despeckling methods (e.g. Lee filter, [MBD) on detected data. Depending on the adopted
prior it allows to denoise the image and to estimate texture parameters.
In the context of parameter optimization for feature extraction, the optimal (average)
analyzing window EEE) and the optimal (average) order of the[ARl process are
estimated with the use of Rate Distortion (Soccorsi & Datcu, 2008). It confirms that Rate
Distortion is a successful entropy-based method for model selection.
The results can be used in Image Information Mining (IM)) systems for image understan-
ding facilities. The thesis is divided in four parts. Chapter one presents the system
and the image formation process. It describes the information contained in the acquired
data and different ways to represent them. Indeed, the information may be represented in
alternative ways with different statistical properties. Image transformations allow to use
multiplicative and additive noise models. The physical origin of speckle and the classical
methods to estimate the mean reflectivity are summarized. In chapter two, the theoreti-
cal basis of estimation theory is presented. The estimation problem is addressed in the
Bayesian framework and the outline of an estimator is presented. Furthermore, Rate Dis-
tortion theory is presented after introducing the basic concept of information theory. In
the chapter the correspondence between estimation theory and Bayesian frame is delinea-
ted. Furthermore, the Rate Distortion theory is linked with the evidence framework in the
context of Bayesian model selection. Chapter three presents the methodology adopted for
image and system modeling for the estimation of the uncorrupted data. The extension of
the model in complex-valued domain is presented as well as the complex-image
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regularization method. It is adopted for the regularization of the real and imaginary parts
of complex-valued data. Afterwards the Tikhonov optimization method is described. The
results are presented in Chapter four. The Tikhonov optimization is applied on simulated,
synthetic and actual SARlimages and the model selection is performed by Rate Distortion
for the optimal parameter estimation for feature extraction.
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Chapitre 1

SAR System : Data Acquisition and
Image Formation

In this chapter the relevant bases of the imaging system are presented.
In the beginning the [SAR| sensor is described together with the data acquisition
and the image formation. Then, the representation of the information and the data
statistics are delineated. The chapter ends with some consideration about speckle,
speckel simulation and the intensity models for speckle reduction.

1.1 SAR System

The Radar is an instrument which allows exploiting radio wave propagation to sense
the presence of an object and its distance. The ancestor of the Radar device was inven-
ted by Christian Hiilsmeyer in 1904. The word, now entered in the common language,
is actually the acronym of Radio Detection and Ranging. The basic functionalities of the
instruments are localization and distance measure. With the World War Il it had a strong
development which let to the modern Radar. Simplifying, it is constituted by an antenna
which is used in transmission and reception in case of monostatic configuration. The
sensor is fixed to a mobile platform and sends pulses which illuminate the scene. The
electromagnetic wave, diffracted with an angle equal to the incident ray, goes back to the
transmitting antenna, is received and collected. The microwave frequency bands used are
listed in Table[I]: the Radar nomenclature dlEEE;AESQ, 2003) is consistent with the Inter-
national Telecommunication Union (ITU) nomenclature (|§IILA|, M) The metric wave-
length includes P-band radars and the frequencies of the order of THz are not considered
in the nomenclature in Table[Il The wavelengths used in[EQlapplications are limited due
to the atmospheric attenuation. The major attenuation contributions are given by the wa-
ter vapour (22.2 GHz and 183.3 GHz) and oxygen (61.2 GHz and 118.8 GHz).

In addition to the basic functionalities, new applications have been found for Radar sen-
sors in the last decades. In particular, its characteristics of active sensor independent from
day light makes it interesting for Earth Observation and remote sensing applications.

A spaceborne or a airborne SAR is equipped with the sensor in Side Looking Aperture
Radar (SLAR) configuration : Real Aperture Radar (RAR) and [SARl The first is a classical
Radar while the second allows to overcome the limit of resolution of the standard Radar
exploiting the prolonged illumination time of a point in the flight direction.
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Radar nomenclature ITU nomenclature
Radar Frequency Wavelength Adjectival | Corresponding
letter range range band wave
designation designation | designation
HF 3-30 MHz | 100-10 m HF Dekametric
VHF 30-300 MHz 10-1 m VHF Metric
UHF 300-1000 MHz 1-0.3 m
L 1-2 GHz 30-15 cm UHF Decimetric
S 2-4 GHz 15-7.5 cm
C 4-8 GHz | 75-375 cm
X 8-12 GHz | 3.75-25 cm SHF Centimetric
K. 12-18 GHz | 25-1.67 cm
K 18-27 GHz | 1.67-1.11 cm
K, 27-40 GHz | 11.1-75 mm
\Y 40-75 GHz 75-4.0 mm . .
W 75110 GHz | 4027 mm| COF Millimetric
mm 110-300 GHz 2.7-1.0 mm

TABLE 1 — Radar frequency nomenclature (IIEEE;AESS, |2QQd) and [TUl nomenclature
(NTIA, 2008). The [TU defines no specific service for radar, and the frequency assign-
ments listed are derived from those radio services that use radiolocation. The world is
divided into regions and a different band, in the frequency range, is assigned to each one

according to the standard TEEE-AESS (2003).

1.1.1 SAR Geometry and Resolution

The sidelooking acquisition geometry is shown in Figure[Il The satellite flights
along its orbit at height h from the Earth which is approximated as flat. The sensor looks
at right or left side with a variable incidence angle 6. The footprint corresponds with the
-3 dB antenna main lobe which illuminates the ground. The width in the range direction
is called swath. The width of the swath can be of the order of 1 up to 100 Km. The geo-
metry is a simplification because the curvature of the orbit and the curvature of the Earth
should be considered. Resolution includes the two directions range (or across-track) and
azimuth (or along-track). In a [RAR the resolution in azimuth is given by the antenna
beamwidth (footprint) at -3 dB, while the discrimination of two different targets in dis-
tance is given by the time length of the impulse, before correlating with the chirp. In the
configuration the discrimination in distance corresponds to the resolution in range.
The pulse has to satisfy two requirements :

1. it has to be short to better discriminate close targets;
2. it has to be powerful in order to ensure that the echos have enough energy.

The two requirements stated above are difficult to realize from a technical point of view.
TerraSAR-X, for example, has a chirp of duration 30.7us (lS_tang]_e_t_alJ, |2Q0ﬂ), which yields
to a resolution of 4.6 Km. The obtained range resolution is not acceptable for the required
application and it is much lower than the real resolution obtained with the sensor, which
is of the order of meter m, M).

The footprint in azimuth depends on the width 6, of the main lobe of the antenna in
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Footprint

Swath

FIGURE 1 - SAR acquisition geometry.

azimuth. For a generic antenna it can be approximated by the formula

A
0, ~ 65— [degrees] (1.1)

Lq
where ) is the wavelength and L, is the dimension of the antenna in the azimuth direc-
tion.
In the case of TerraSAR-X, which has a centre frequency of 9.65 GHz and an antenna of
4.8 m in azimuth direction, the angle is of about 0.42° using Equation [Tl Considering
that the satellite flies with an orbit altitude of 514 Km, the equivalent footprint is about
5.3 Km for a side-looking incident angle of 45°. Again the resolution is not acceptable for
the application and it is far from the operational resolution value.
The dimension of the swath depends on the beamwidth in elevation : for TerraSAR-X,

depending on the operation mode, it is up to 500 Km (Stang] et al}, 2006).

1.1.1.1 Range resolution

The geometry of the in range is showed in Figure 2l The resolution depends on
the pulse duration and is given by

Osr = — (12)

where c is the velocity of the light and 7 is the pulse duration. The factor 2 accounts for
the two-ways, forward and backward, wave propagation.
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ground range —

(597); dsr/ sin 6

FIGURE 2 — Geometry for thel[SAR|resolution in range.
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FIGURE 3 - Linear chirp (time in [us]). Example of a chirp of duration 8 ys.

Equation expresses the resolution in slant range direction. The equivalent resolution
in ground range is given by the projection

cT
Ogr = .
9" 2¢inf

(1.3)

Thus, the ground range resolution depends on the incidence angle : for high incidence
angle 64, ~ 04, for low incident angle d 4, >> d,.

Since for electronic reasons it is not possible to design a transmitter with a short pulse, a
quadratic phase modulation, a so-called linear chirp (Figure[3), is considered in order to
reach the desired resolution. The equation of a generic chirp with a carrier of frequency
fo has the following form

g(t) = Re{rectp(t) - ej[2”f°t+7rkt2]} = rectp(t) - cos(2m fot + wkt?) (1.4)

The term linear comes from the fact that the equivalent frequency modulation is linear,
Figureﬂl The instantaneous chirp frequency in MHz is shown in Figureﬂl as a function of
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41

FIGURE 4 - Chirp frequency (the instantaneous frequency [MHz| is shown as function of
time [us]). The duration time is 8 s while the bandwidth is 8 MHz.
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FIGURE 5 — Chirp window. The signal, shown in Figure 3] is obtained by the multiplica-
tion of the infinitive chirp with a rect7(t) function of duration 7' = 8 ps.
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sing(f)
1.0

FIGURE 6 — The normalized sinc(f) = sin (7 f)/nf function corresponds to the Fourier
transform of the rectr(t) shown in Figure Bl The first zero is at f = 1/8 [us]™! = 0.125
MHz.
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FIGURE 7 - The spectrum G( f) of the chirp, shown in Figure[3 is given by the convolution
of the sinc(f) of Figurel@land the Fourier transform of the chirp function which results in
a constant function. The spectrum G(f) is approximately a rectg(f) where B ~ 8 M Hz
and the height is ~ /T/B = 10~ 5s. The approximation with a rectp(f) is better when
the product 7' - B, which is called compression factor, is high because the Gibbs oscillation
effect decreases.
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R(1)

-60[-

FIGURE 8 — Chirp correlation function corresponding to the chirp shown in Figure
The time is in [us] and the dependent variable is in logarithmic scale. The energy is
concentrated in the centre, this results in a better resolution. The main lobe has a du-
ration 7 ~ 1/B = 0.125 ps. The side lobes are lower than —13 dB.

time, measured in ps : the duration and the bandwidth are the main characteristics of the
chirp signal which define the slope of the line k = B/T.

The spectrum G(f) of the chirp signal can be computed with the help of the stationary
phase (Hein, )- Intuitively it is composed by an ensemble of frequencies, thus the
spectrum has a constant amplitude in the bandwidth. On the other hand, the constant is
convolved with the sinc(f) function, shown in Figure [ obtained by the Fourier trans-
form of the rectp(t). It results in the spectrum shown in Figure [/] which corresponds
approximately to a rectg(f).

The autocorrelation function R(7), shown in Figure 8 corresponds to the output of the
matched filter and gives the resolution, which is equal to

: &
chirp __
5sr -

o7 (1.5)

where B is the bandwidth of the chirp. The example in Figure[8|shows that the energy is
concentrated in a time of ~ 0.125 us, thus, considering the chirp in Figure Bl of duration
8 us and bandwidth 8 MHz, the resolution increases from ~ 1 Km, for a non-modulated
pulse, to less than 20 m, when the linear chirp is employed.

In case of TerraSAR-X, the chirp has a duration of 30.7 iis and an available bandwidth up
to 300 MHz (Stangl et all, 2006), thus, according to Equation [LH the resolution is up to 1
m.

1.1.1.2 Azimuth resolution

The motion of the platform is used in order to improve the resolution in the along
track direction by generating a synthetic aperture more extended than the physical one.
The synthetic aperture is obtained by observing that a generic point P is illuminated
by the antenna beam at different orbit positions, thus several pulses are collected and
coherently summed. The geometry of the in azimuth is shown in Figure
The azimuthal extension of the illuminated area is
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t1 to t3

FIGURE 9 — Geometry for[SAR|resolution in azimuth or cross-range direction.

Li.=R-0, (1.6)
thus the resulting azimuth resolution is

A A A Lq
= ~ =— 1.7
2 Lgq R2-R-9a 2.LA 2 (1.7)

0oz = R

where in the first equality the factor 1/2 takes into account the two-way path, the second
equality is obtained by replacing Equation [L.6lin Equation[l.7]1and the approximation is
obtained using Equation [T} The resolution results approximately equal to half of the
size of the physical antenna.

The phase of the signal is

47 4
ot —to;ro) = _TR(t —to;T0) = Y r3 4+ v2(t — to)? (1.8)

47 v2
-5 <r0 - 2—r0(t — t0)2> (1.9)

where 1 is the slant range distance and the target is considered to be at location of mi-
nimum distance at azimuth time t = to. The last equation is obtained by considering a
parabolic approximation for the distance function R(t — to; ro). The signal results modu-
lated with a frequency

1 d 2d
fp(t —tosro) = o--d(t —toiro) = — T R(t —to;0)
2 V2 2V2
= <57 Uttt —5—(t-t 1.10
)‘R(t_toﬂ“o)( 0) )\ro( 0) ( )

which is a function of the slant range distance ry and of the azimuth time position (t — to).
fp is also known as Doppler frequency.

In other words, the Doppler effect modulates the signal in azimuth with a chirp exploi-
ting the fact that the distance between the sensor and the target changes in time. Accor-
ding to Equation [L.10] the time t = t¢, i.e. when the distance between the target and the
sensor is minimum, is called zero Doppler frequency. In case of TerraSAR-X (stripmap
mode), which has an antenna of size L, = 4.8 m the resolution in azimuth is up to 2.4 m,
according to Equation[.7]
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1.1.2 Radar equation

The radar equation has the following form

A2 Jay(0)

Pr(t) =Pr(r —2R/c) -0 m . |Q9a(9a)|2

(1.17)
where Py is the received power, P is the transmitted power, ) is the wavelength, o is
the Radar Cross Section (RCS), |04(6)|? is the two-way antenna gain in range, |g, (6,)] is
the two-way antenna gain in azimuth and R is the distance of the illuminated target.

In order to have an idea of the order of magnitude of the transmitted /received powers :
the transmitted power is of the order of KW, while the received power is of the order of
mW because of the term R4, for real aperture radar.

1.1.3 SAR Impulse Response

The[SAR|system impulse response can be approximated by the following expression

t 2R(t;r .
ha (7, t;510) = C(x0) - 00, <:—0> g (7’ — %) -exp{jmfpt?} (1.12)
where t is respect to the time of closest approach tg,
C(ro) = A+ 09(0) - Orec/(R* - (4m)*/?) (1.13)

includes the gain of the receiving chain g,.. and the one-way terms in the radar equa-
tion[[.1T] The term gy, (vt/ro) takes into account the time dependency antenna pattern in
azimuth direction, because the same point (target) is seen with different antenna gain in
time. The delayed sent pulse is g(7 — 2R(t;10)/c) and exp{jnfpt?} is the azimuth phase
modulation term of Equation [L.8 The latter term is normalized to respect the distance of
closest approach ro by multiplication by exp{j4nro/A} and it is obtained by the approxi-
mation of parabolic distance in Equation[1.9

1.2 SAR radiometry and geometry

Several basic backscattering mechanisms depend on micro- and macroscopic proper-
ties of the scatterers. The reflection mechanisms (Woodhouse, 2006) are shown in Figure
and are listed below :

Reflection from smooth surfaces, i.e. mirror effect, Figure[10al;

Double bouncing, Figure [10bl;

Reflection from rough surfaces (diffraction), Figure [10d;

Volume scattering, Figure [1od

The effect shown in Figures [I0al and [[0d depends on the roughness of the surface. The
roughness of a surface, in electromagnetism, depends on the wavelength and on the in-
cident angle. A surface can be considered to be rough, fulfilling the following expression

op > (1.14)

8sin 1)

where oy, is the Root Mean Square (RMS) value of the surface elevation, A is the wa-
velength and v is the grazing angle (complementary to the incident angle). It is worth
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FIGURE 10 — Backscattering mechanisms : reflection (a) ; double bouncing (b) ; diffraction
(c) ; volume scattering (d).
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noting that by decreasing the grazing angle ¢ the same surfaces can go from rough to
smooth. In radar systems the aim of the measurement is to estimate the normalized
oo. The operation to be done in order to go from the sensor measurement to the desired
physical parameter is called calibration.

The factors which affect the calibration are the following : atmosphere, antenna, electro-
nic, SAR|processor, platform and downlink. Each of the previous factors plays a different
role in the calibration which can be distinguished in internal and external calibration.

The internal calibration monitors the transmitted power and the antenna gain in order to
keep their product constant. The external calibration is used to estimate the gain of the
antenna by the use of extended distributed scatterers with known[RCS

The radiometric representation which allows parameter retrieval independent of the pro-
jection geometry is the normalized backscatter 0. Thus, the radar brightness 3 (beta
nought), which is a sensor dependent measure and is represented by the Digital Number
l%l values DN, denoting the amplitude, has to be converted into o as follow (m,

)
00 = (ks(|[DN|*) = NEBN) -sin(6;) (1.15)

where 6; is the local incident angle, k; is the calibration and processor scaling factor for
signals annotated in each products and NEBN is the noise equivalent 3, which
is only to be used for uncorrected products and derived from the noise profiles. For flat
terrain or see surfaces, the annotated incidence angles are sufficiently accurate for this
conversion - otherwise the local slopes from a terrain model have to be taken into account.

1.2.1 Geometric distortion effects

The images are affected by distortion effects due to the topography of the ground,

which is not flat, the radar system, which is basically an instruments to measure dis-
tances, and the acquisition geometry, which depends on the incidence angle.
The topography of the terrain induces some geometric distortions. The effects are shown
in Figure[IT] The geocoding (m, @) is a procedure to minimize geometrical dis-
tortions and resampling the image to a homogeneous, predefined map grid, e.g. to the
Universal Tranversal Mercator (UTM) grid.

1.3 SAR Data Acquisition and Image Formation

ThelSARldata acquisition and image formation system is shown in FigureﬂZl, together
with the end-to-end [SARIsystem. The raw data are obtained by

+oo
d(r,t) = // A, t) - ha(r — 2r/c, t — t/;r)drdt’

—00

+oo

= / AO(r,t) #¢ ha(r — 2r/c, t;1)dr (1.16)
—00

where the symbol *; denotes the convolution in the azimuth direction. In the hypothe-

sis of a narrow swath, the approximation of a range invariant impulse response can be

done, thus h, (7 — 2r/c,t;r) = h,(7 — 2r/c, t;19) and the integral in Equation [L.16] can be

approximated as

d(r,t) = %’YO(TC/Q,t) sr kDo (7, t510) (1.17)
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/ slant range 12 4 3 56 78

F=Fortshortening
L=Layover
S=Shadowing

1§ F 2§ 33 L 43 s 5§ E 63 s 73 FS ground range

FIGURE 11 — Image geometric distortions due to the ground topography and the incident
angle of the radar observation system. There are three distortion effects : fortshortening
(F), layover (L) and shadowing (S), which affect the slant range projection.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 12 — End-to-end system (Bamler & Schittler, 1993). 4o(r, t) is the complex
reflectivity function, h, (7, t;1) is the data acquisition system impulse response, d(7, t) re-
presents the raw data, h,(7, t; r) is the image formation system impulse response, u(r, t) is
the complex image and s(r, t) is the equivalent end-to-end [SAR|system impulse response.
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which Corresponds to a range invariant convolution.
According to Figure[12] the complex image is obtained by

u(r,t) = //_+OO d(r,t') - hy(r — 2r/c,t — t';1)drdt’. (1.18)

Equation[L.I8represents the focusing process. Although, it looks simple, it has some
peculiarities which can make it arduous to solve

- The support of h,(-) can be as large as a hundred range samples (due to range
migration) and several thousand azimuth samples, which doesn’t allow the direct
(time domain) implementation of Equation [I.18in most cases.

- Equation [1.18] is range-variant, i.e. an implementation via a two-dimensional Fast
Fourier Transform (FEFT) and a single spectral filter multiplication is only possible
within a narrow range segment.

- Due to range migration h,(-) is inherently two-dimensional and non-separable.
Hence, the range-variance cannot be accounted for by simply using range dependent
one-dimensional azimuth correlation kernels.

Thus, SARlimage formation requires a range-variant two-dimensional linear filter opera-
tion. The common approaches to data focusing are three (Carrara et al),[1995) :

1. Chirp scaling (|Ran.e¥|, 1992; |Ran.e;Le_t_aL|, |1224|).
2. Polar reformatting M, @).

3. Range Migration Algorithm (RMA]) (Cafforio et all, 1991).
Each method has advantages and disadvantages. The first method is implemented for
TerraSAR-X.

A commonly adopted inversion strategy is correlation or matched filtering, for which
an inverted and delayed replica of the signal is used

hy(7,t;1) o< hi (=7, —t;71) (1.19)

where the notation -* denotes the complex conjugate. Thus, Equation[I.18/becomes

+o0
u(r,t) // d(r,t') - hi(2r/c — 1,t' — t;1)d7dt’
o0
= / d(7,t) ®¢ ha(2r/c — 7, t;r)d7 (1.20)

where the symbol ®; denotes the correlation operation between d(r, t) and h,(2r/c — 7,t;r)
in the azimuth direction. In the hypothesis of narrow swath, the approximation of range
invariance is valid, thus[I.20 can be rewritten as follow

H(TC/27 t) ~ d(T7 t) *r *thr (T7 t; rO)
x  d(7,t) ®; @¢hy (7, t510). (1.21)

Considering the dashed block in Figurdl2] the[SARlend-to-end impulse response s(r, t) is
defined as

2 2B ;
s(r,t) o spline <%t> - sinc <—r> e2ripct (1.22)

C
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where fp is the frequency where the spectrum in azimuth has the maximum, i.e. Doppler
centroid, and the spline(-) is defined as

2/3 — 22 + |z[3/2 for lz] <1
spline(z) = ¢ 4/3 —2|z|+ 22— |z2/6 for 1<|z[<2
0 else.

and it has been obtained by considering the antenna pattern gy, o sinc(-)2. The end-to-
end impulse response s(r, t) is range invariant.

1.4 Representation of the Information

The data are stored in the I and Q channels for real and imaginary part respecti-
vely : an example is shown in Figures[I3aland [I3bl Evidently this way of visualization is
not really easy to interpret and the content of the image is not easily understandable. Al-
ternative ways of image representation are shown in Figures[I3d, [[3eland [I3f] The phase
of the image is shown in Figure [13d] for completeness. Different statistics of the data
correspond to each representation as shown in Section[L.L5l An alternative, but equivalent
representation is in frequency domain. The range and azimuth profile of the 2D-spectrum
are shown in Figures[4aland [14bl

1.4.1 Image Transformations

The image can be transformed in different ways in order to obtain the information in
the desired form. Some transformation methods are listed below.

- Cartesian to polar;
Linear transformation;

- Logarithm;

- Wavelet;

- etc.
The methods are shortly presented and described in the following paragraphs.

1.4.1.1 Transformation from Cartesian to polar coordinates

The transformation from Cartesian to polar coordinates in a 2-dimensional space is
given by the following equations

A = y/x}+x3 0>A<o0 (1.23)
9 —= arctan 2 —m>0<7 (1.24)
X1

The inverse transformation is

x3 = Acosf (1.25)
X9 = Asinf. (1.26)

The Jacobian is needed for transforming the [pdf]

O(x1,x2) | cosf —Asing | 5 o,
detm_ sinf  Acosf = Acos”f + Asin®f = A. (1.27)
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FIGURE 13 - Possible representation of data image : (a) real part, (b) imaginary part,
(c) amplitude, (d) phase, (e) intensity and (f) log-intensity.
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FIGURE 14 — Normalized amplitude spectrum in azimuth (a) and range (b). The frequency
range respects the real bandwidth of a[SL] TerraSAR-X image. In this case is 8.3 KHz the
azimuth bandwidth and 164.8 MHz the range bandwidth.
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Given the[pdf|of the random variables in Cartesian coordinates p(x1,x2) one finds the[pdf]
in polar coordinates

p(A,0) = A-p(x1,x2) = A-p(Acosf, Asinf) (1.28)

with
A>0 0>6>2n (1.29)

Further we consider an important case : x; and x; are independent random variables
with normal [pdf| of zero mean and the same variance ¢

p(x1,x2) = p(x1)p(x2) (1.30)
1 X7 + x3
= 53X (— = > (1.31)

The real and imaginary parts of alSARlimage together with their@ are shown in Figures

[3al13bland Figures[16al [16b] respectively.
In polar coordinates the[pdf has the following form

A A?
p(A,0) = 552 OXP (—@> (1.32)
where ) e
p(A) = 3 OXP <_ﬁ> (1.33)
is a Rayleigh distribution and
1
p(0) = Py (1.34)
s

is a uniform distribution. An example of A-image and #-image, are the amplitude and
phase image shown in Figures[I3dand [13d] with the respective density functions shown

in Figures[I6dand [16d]

1.4.1.2 Linear Transformation

We consider the vectors of random variables X = [x;,Xg,...,X,]and Y = [y1,y2,...,¥n]-
Without loss of generality we consider the random variables to have zero mean. A linear
transformation is given by

Y =AX (1.35)

where A with n x n elements is the matrix characterizing the transformation. With simple
computation we can obtain

E{Y} = AE{X} (1.36)
Cy = E{YYT}=AB{XXT}AT = ACxAT (1.37)
Cxy = E{XYT}=E{XXT}AT = CxA” (1.38)
Cyx = C%y (1.39)

An important transformation is the Karhunen-Loéve transform. We can write

Cx = MAMT (1.40)
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where A is the diagonal matrix of eigenvalues of Cx, and M is the othogonal matrix
having the eigenvectors of Cx as columns. It follows

A =MTCxM. (1.41)
The Karhunen-Loéve transform has the matrix
A=M" (1.42)

and transforms X in Y having a diagonal matrix Cy = A. The Karhunen-Loeve transform
uncorrelates the components of the random variable vector X.

1.4.1.3 Logarithm Transformation

The Logarithm transforms multiplicative noise x - n in additive noise log(x) + log(n).

After the transformation, a linear estimator can be applied in order to retrieve the quan-
tity log(x)
An example can be given for speckle which is successfully modelled as multiplicative
noise. In the following, the statistics of speckle are investigated after logarithmic trans-
formation. By applying the square function to transform a Rayleigh distributed random
variable, an exponential distribution is obtained

p(ylx) = iexp{—i} y >0 (1.43)
plylx) = 0 y<O0 (1.44)

The [pdf] p(y|x) is the likelihood expressing the incertitude introduced by the noise : the
speckle process. The latter can be successfully modeled as multiplicative noise

y=x-1 (1.45)
Thus the speckle noise is described by
p(n) = exp{—n} n >0 (1.46)
pn) = 0 n<0
Using the transformation
f() =log(") (1.47)
we obtain the [pdf|of the process
n = logn (1.48)
p(n') = exp(n’ — en/) (1.49)

where the last equation is obtained by applying the Jacobian of the transformation
to equation[I.46land corresponds to the Fisher-Tippet distribution.

Another method to obtain an additive signal dependent noise from the product model
[.45lis the following (Gleich & Datcu, 20074)

y=x+x(n—1)=x+n (1.50)

where equation[L.50]is obtained by summing and subtracting the signal x.
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1.5 SAR statistics

The[SARlimages are dominated by the speckle effect, which is recognizable as the oc-
currence of bright and dark pixels in uniform backscattering areas.
The phenomenon has a physical origin and belongs to coherent imaging systems, e.g.
laser, etc. It is a deterministic phenomenon, thus if all the conditions were repro-
ducible, two images would have the same appearance in term of speckle. This event is
exceptional because it would require the same orbit for the satellite, the same look angle
of the sensor, no changes on the scene and so on. Thus, the speckle effect is success-
fully modelled as a stochastic process because of the actual non reproducibility of the
same event. Thus, the pixel values are random variables, affected by multiplicative noise,
which allow the estimation of the RCS

1.5.1 Physical origin of speckle

The physical origin of the speckle is due to the coherent summation of complex va-
lued components. The process is described in Figure 15l In Figure [[5al the model of a re-
solution cell characterized by some scatterers is shown. The difference on the path length
depends on the relative distance of the scatterers on the ground and the sensor incidence
angle. Thus, § = [ - sinf, where [ is the distance in the ground of the two scatterers of
Figure [[5aland 6 is the incidence angle (see Figure[2)). The phase difference corresponds
to

Ap— 47”5 (1.51)

where 27 /) is the wave number and the factor 2 comes from the two-way path. The
reflected components are summed up according to

u=Ael? =" Ayl (1.52)
k=1

where u = u, + ju;, A = |u] and ¢ = arctan(u,/u;). An example is shown in Figure
[I5b] for n = 8 components. The process corresponds to a random walk in the complex
plane. A constructive or destructive interference, which causes high reflectivity or low
reflectivity respectively, can occur because of the coherent summation.

The speckle is said to be fully developed if

1. The number of scatterers n per resolution cell is high;

2. The amplitude and the phase of scatterer k£ are independent of those of the n — 1
other scatterers;

3. The amplitude and phase of each scatterer are independent;
4. The amplitudes are identically distributed for all scatterers;
5. The phases of the scatterers are uniformly distributed.

Under the above assumptions the single look distributions can easily be derived.

1.5.2 Data statistics

The estimated distributions corresponding to the images shown in Figure[I3]are shown
in figure The real and imaginary part, shown in Figures [[6al and [16D] follow both a
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FIGURE 15 — Speckle physical genesis. (a) the model of a resolution cell with scatterers.
(b) an example of a coherent vector summation in the complex plane.

zero mean Gaussian distribution N (0, 0?) according to the central limit theorem, assu-
ming the number of scatterers n to be large. We observe that 202 is equivalent to the radar
reflectivity, which, neglecting the sensor noise, is proportional to the According to
the Quadratic Amplitude Modulation (QAM), the real and imaginary channels are un-
correlated and are realizations of a proper complex random process ,

). The non-linear tranformation from Cartesian to polar coordinates yields to the fol-
lowing [pdf for amplitude

A A2
which is a Rayleigh distribution and phase
1
= — < .
p(0) - 0<6<2r (1.54)

which is a uniform distribution. The distribution of the intensity I = A? is the exponential
distribution

1 I
p(I) = —5 exp (—ﬁ> I>0 (1.55)

which can be obtained from [L53] applying the transformation A = /T. The estimated
Rayleigh and uniform distribution for amplitude and phase are shown in Figures [I6d
and [16d] respectively. The estimated intensity is shown in Figure [[6€). The logarithmic
transformation of the intensity yields to a Fisher-Tippet distribution (Figure [16f).

1.5.3 Scatterers data statistics

In presence of a strong scatter, locally, the mean of the Gaussian distributions is not
zero anymore. Thus the observed amplitude can be modelled by a Rice distribution
which has the following form

A A2+ A2\ [ ArA




1.5. SAR STATISTICS 45

where A7 > 0 is the amplitude of the target and Iy(-) is the modified Bessel function of
first kind of order 0

2T
Io(x) ! j/ ecosfdp (1.57)
0

T or

Considering the number of scatterers n in the resolution cell as a random variable, the

resulting signal intensity has a K distribution (Jakeman & Pusey, [1976,1978; Oliver, 1984;
,Ej)

of the form
2 I\" I

where a is the scale parameter and v > 0 is the shape parameter, I'(-) is the Gamma
function

I'(x) = / t*le7tdt (1.59)
0
and K, (-) is the modified Bessel function of second kind of order n
(2x)" 1 /OO cost
K = T — - .
n(x) NG n+3 . dt (1.60)

The K distribution can also be used to model the observed amplitude. This can be verified
by performing the transformation I = A? in Equation [[L58 which leads again to a K dis-
tribution. An alternative method to obtain the K distribution is to consider o modelled by
a x distribution in the Rayleigh distribution of Equation[.53] Thus, the marginalization
with respect to ¢ leads again to a K-distribution for the observed intensity. This method
is successfully applied to model see clutter (Watts et all, 2006). In[Lee et al! (1994) the in-
tensity and phase statistics of multilook polarimetric and interferometric SAR imagery
are shown and investigated. More complicated statistical models, than the ones presen-
ted above, with empirical or theoretic basis, have been proposed to handle speckle, e.g.
log-normal, Weibull, Fisher, Gamma, K, Rice, Nakagami, generalized Gaussian, inverse
Gaussian distributions, heavy-tailed Rayleigh.
For example, the Nakagami-Rice distribution has been proposed to model the[SARIstatis-
tics in the presence of a single strong reflector in homogeneous clutter (Tison et al), 2004;
Dana & Knepp, 1986). The Gamma distribution has been introduced as a model for a
multilook SAR|intensity [pdf| where the correspondent amplitude has a Nakagami distri-
bution. They are a generalization of negative exponential and Rayleigh distributions res-
pectively. In i (|20_Qf) a heavy-tailed Rayleigh model is presented under
the hypothesis that the real and imaginary parts of the backscattered signal are jointly
random variables. The K distribution (Jakeman & Pusey, 1976, 1978; [Qliver, 1984;
Jad,[1984) is obtained for the signal intensity assuming the population of scatterers in the
resolution cell to be controlled by a birth-death-migration process. In the hypothesis of
Gamma distributed noise and Gamma distributed signal (IQlisLeﬂ, hﬁﬂﬂ;@h&r_&ﬂyﬁgaﬂ,
), the product model results in a K distribution for the intensity. Generalized Gaus-
sian distributions are assumed for real and imaginary parts in Moser et al. (2006), while
inverse Gaussian distributions have also been employed to model the amplitude statis-
tics in|Er£I;Le1_al.| (|_'I_992|), Muller & Pad 41299) and [Eltoft (120_03). The G distribution for the
amplitude, presented in [Frery et all (1997), is the result of a multiplicative model assu-
ming a Nakagami distribution for the speckle noise and a generalized inverse Gaussian
distribution for the signal. In [Tison et al! (2004), the G° distribution is proved to be equi-
valent to a Fisher pdf, while, in Muller & Pad (L'LQQQ), a further particular case of the G
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FIGURE 16 — image data statistics, normalized estimated histograms : (a) real part
(Gaussian), (b) imaginary part (Gaussian), (c) amplitude (Rayleigh), (d) phase (Uniform),
(e) intensity (Exponential) and (f) log-intensity (Fisher-Tippet).
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model, called harmonic branch G", is proposed.

In addition to the above mentioned theoretical or partially theoretical models, several em-
pirical models have been used to characterize the statistics of SAR amplitude (or inten-
sity) data, such as Wﬁ;;jll (Sekine & Mad,1990), log-normal (lﬁa.jnms]d,[lﬁﬂ') and Pear-
son d]lelign.on_e_t_alj, ).

1.5.4 Multilooking

The method of multilooking is a way to reduce speckle at the cost of resolution. In
practice it consists of band-pass filtering the spectrum of the complex data in order to
obtain L independent looks (realizations) of the image scene which are later summed
incoherently. The procedure is basically the following :

1. Discrete Fourier Transform (DFT) of the complex image ;
2. Band pass filtering in order to obtain L parts of the spectrum;
3. Inverse Discrete Fourier Transform (IDET) of each look ;
4. Square law detection and incoherent summation of the looks.

The speckle is reduced by a factor of L. The statistics of the multi-look intensity data
results in a Gamma distributed signal

LErt-1 LI
p(I) = W exp <_ﬁ> (1.61)
where I'(+) is the Gamma function defined in Many areas of natural clutter are
successfully modeled by a Gamma distributed radar reflectivity o2 (Oliver & Quegan,
). Considering a multiplicative model, see section [[.Z]] with the speckle noise and
the signal both modelled by a Gamma distribution, the observed intensity is K -distributed.
The principle of the multi-look is exploited by the so called azimuth splitting analysis.
The method consists in splitting the azimuth spectra. If we refer to Figure Bit means to
split the antenna and to watch the target with different look angles with respect to the
nadir. Referring to the illumination time : the first half time the target is illuminated with
positive angles respect to the nadir, while for the second half of the time it is illuminated
with negative angles. The angles in time correspond to the Doppler history, thus, in term
of spectral analysis it means to discriminate variation in the Doppler frequency (e.g. tar-
get motion).
Depending on the value of L, the resolution can be drastically reduced. In order to pre-
serve resolution the looks can be partially overlapped by appropriate weighting of the
filters which maintain low the dependency of each look. In this case the actual intensity
statistics will be a Goodman distribution (Bruniquel & Lopes, 1998) which, anyway, can
be well approximated by the Gamma distribution by properly tuning the parameter L. In
Figure[I[7]a possible configuration of the band-pass filter-bank is shown. Three Gaussian
filters partially overlapped are shown together with the antenna weight. The spectrum
(I4a) has to be unweighted before filtering ; in azimuth the antenna pattern and the exis-
ting window have to be balanced in order to allow each look to have the same energy.
The windowing method (Oppenheim & Schafer, [1975) is often used to reduce the side
lobe effect. Common used windows are Rectangular, Hamming, Hanning, Blackman,
Bartlett, to which different heights of the side-lobes correspond : —13, —25, —31, —41,
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FIGURE 17 — Multi-look band pass filtering example. Three Gaussian filter bank partially
overlapped. The curve above corresponds to the antenna weight.

—57 dB, respectively. On the other hand, the reduction of the side-lobes is paid in term of
a larger main lobe which causes a blurring of the transitions. In time domain the multi-
look may be done through spatial averaging of the observed intensity.

1.6 Speckle Reduction

The state-of-the-art of the despeckling of detected vs. complex data starts with the
diagram shown in Figure[I8] For each despeckling approach the main reference is provi-
ded. It is worth noticing the lack of investigation for complex-valued data in comparison
with the real-valued image.

In Section[1.6.2] it is shown how the Aritmetic Mean Intensity (AMI) estimator is only

a particular case of the Spatial Whitening Filter (SWE). Thus, the complex data has the
full available information where the phase information is lost on detected data. Another
interesting work on edge detection and localization on complex imagery is presen-
ted by [Fjortoft et al| (1999).
For texture modeling, it is interesting to notice that in [Lopes et al! (1990a) the authors
justify the use of detected images by saying that by taking a Gaussian distribution as
underlying texture @ model, one allows implicitly o to be negative with no physi-
cal significance. Thus, the authors introduce a [MAD| estimator for Gamma distributed
scenes.
The use of the complex data is restricted to particular applications e.g. interferometry,
Moving Target Detector I%), but not in despeckling applications or texture exploita-
tions dQliSLeL&_Q_u.egaﬂ, ). An automated approach in order to exploit the statistical
simplicity of the complex data and the advantages introduced by the use of positive non-
symmetric @ which is the case of transformed data, would be nice, but no algorithm
has currently reached this level of sophistication.

1.6.1 Spatial averaging

Multilooking can be obtained in time domain by spatial averaging. We can consider a
set of N complex samples, corresponding to IV adjacent pixels in a complex radar image,
where Z is a signal vector containing th complex amplitudes Z;, Zs, ..., Z,. If the spe-
ckle is fully developed, the probability density function of the signal vector is a circulant
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FIGURE 18 — Despeckling state-of-the-art.

complex Gaussian distribution

Z) = ——— exp(-Z" C,'Z 1.62
p( ) 7TN|CZ| exp( Z ) ( )
where Cz is the N x N complex covariance matrix corresponding to signal vector Z.
If furthermore, we suppose that the underlying reflectivity R is constant, Z = /RS,

where S is the speckle vector, the covariance matrix of the signal vector Z is given by

(Lopes et al}, 1993)

Cz =R Cs (1.63)

where Cg represents the covariance matrix of the speckle vector S. The elements of Cg
are the spatial correlation coefficients ps(Ax, Ay) of the speckle. The spatial correlation
only depends on sensor and processor parameters. In Oliver & Quegan (2004d) a study
on correlated texture is presented in case of approximated Gaussian autocorrelation func-
tion.

1.6.2 Estimators of the Mean Reflectivity

The Maximum Likelihood (ML) estimator of the radar reflectivity is the given
by
N 1 -
R= NzHcslz (1.64)

which, in case of Cg = I, i.e. uncorrelated speckle, becomes the[AMIl estimator

1 1 &
=797 - —_N"T 1.65
RS PN (1.65
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If Cg is correctly computed or perfectly estimated, R is unbiased (Lopes & Séry, 1997).
The variance of R computed on N samples is N times lower than that of the observed
intensity, and R is Gamma distributed.

1.7 Despeckling Filters

The speckle is actually a deterministic process belonging to the coherent image
formation system. On the other hand, it is successfully modelled as a stochastic model
due to the impossibility to repeat the acquisition conditions. Changes in the illumina-
ted scene as well as in the satellite orbit make each scene appearing different even if all
the other acquisition parameters (e.g. sensor mode, acquisition angle, etc.) remain the
same. Neglecting the thermal noise, as in Figure[I2] we can consider the signal a(r,t) =
Yo(r,t) - u(r, t) where the fully developed speckle is modeled as a white zero-mean com-
plex Gaussian process u that modulates the scene complex reflectivity v(r, t), at the 2-D
spatial position (r, t), to form the input signal to the linear system. This leads to the follo-
wing expression for the detected power

I(r,t) = |(0(r, t) - u(r, t)) *s(r, t)|” (1.66)

where s(r, t) is the system impulse response with reference to Figure[12]

1.7.1 Multiplicative Model

The main objective of speckle filtering is to retrieve the unspeckled scene radar backs-
catter from the observed image. This requires the use of a model that relates the two en-
tities, at each pixel, as a function of speckle noise. The most commonly used model is the
multiplicative speckle noise model that expresses the observed intensity as the product
of the scene signal intensity and speckle noise intensity

y=Xx-1 (1.67)

where y = I(1,t) is the observed intensity of the pixel located at (r,t), x = |yo(r,t)|? is
the terrain reflectivity, and n is the intensity of fully developed speckle noise, which is
modeled as a unit mean Gamma distribution (see Equation[.46). The approximate inten-
sity expression[[.67lmight be deduced from the exact intensity expression[.66in various
ways, leading to different expressions for the named multiplicative speckle model.

The most well known speckle models are

1. Saleh and Goldfinger’s model with correlated speckle noise and uncorrelated scene
signal (Goldfinger, 1982; Saleh & Rabbani, 1980). The approximate intensity y is gi-
ven by

Ln(r,t) = [70(r, t)[*Rs(0,0) - v'(r, t) (1.68)
where m denotes the multiplicative model, R(-) is the auto-correlation function and
' = |u(r,t) * s(r,t)|?/Rs(0,0) is the speckle-noise correlated process distributed
along a unit mean gamma, and s(r, t) is the system impulse response 12

2. Ulaby’s model with correlated speckle noise and uncorrelated scene signal (MJ,
[1986)

Im(r,t) _ ’70(r7t)’2

2 2 9
= W[E{I%(r,t)! } s, 6] - Ju(r, £) # s(r, t)] (1.69)
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3. Kuan et al.’s model with correlated speckle noise and correlated scene signal (Kuan et all,
1983)
L (r,£) = [0 (r, £)* = [s(x, t) 2] - w'(x, 1) (1.70)

4. Frost et al.’s model with white speckle noise (Frost et all, 1982). This model might be
better adapted to systems using the following expression

Ly(r,t) = [|70(r,t)|2 . n] * |s(r,t)|2 (1.71)

where n = [u(r,t)[?/E{|u(r, t)|?} is the unit mean gamma distributed white process.

5. Lee’s model with uncorrelated speckle noise uncorrelated scene signal (@, @)
Ln(r,t) = [yo(r, t)[* -0 (1.72)

In Section[[.7Z.3]some common filters based on the presented model are described.

1.7.2 Product Model

Under the assumption that the multiplicative speckle model of [[.67lis satisfied at each
pixel position, the product model defines the expression of the unconditional [pdf| of the
observed intensity as dlakemaﬂ, 1980; ILewinski, El&&d)

+o00
b(y) = /0 Dy 1) P (x)lx (1.73)

where the fully developed speckle of x? [pdi]is assumed to be non-stationary in intensity
mean, with an intensity mean E{n} that varies spatially from one pixel to another accor-
ding to the distribution pyx. The product model implicitly assigns scene mean variation
to speckle intensity mean variations, and as a result the radar reflectivity |yo(r, t)|? is ta-
ken as the ensemble average of speckle intensity at the position (r,t) : E{n} = |yo(r,t)|*.
The spatial averaging of the conditional speckle distribution leads to the unconditional
distribution of the stationary mean x = (E{y|x}): = (x):. This supposes that the limit %
exists and that the speckle mean variation process x is ergodic and stationary such that
its spatial average converges to its ensemble average E{x} = (x); = .

The extension of the multiplicative model to multi-dimensional random variables is
possible. The method enables, by the use of Bayes rules, the[MAP|estimator which is the
most complete model-based estimator. It will be presented together with other estimation
methods in the next chapter.

1.7.3 Overview of Existing Approaches

The estimator of the mean reflectivity presented in Section is a simple method
for speckle reduction. Many other methods exists, some of them based on the models
described in Section[.7} Other simple methods which do not rely on any specisfic know-
ledge about the statistics of the noise are the median filter (Rees & Satchell,[1997) and the
geometric filter (k:_rimminﬁ, h.%d). The Kuan dKuan_ej:_alJ, 1985, |l%2|) and Lee (Eé, @)

adaptive filters belong to the family of the statistical filters as well as, the Edge Preservinf

Optimized Speckle (EPQOS) filter (Hage & Stied, [1994). The Frost filter (Frost et all, )

and the homomorphic Wiener (Franceschetti et all, 1995b) belong to the class of Wiener
filters. Filters based on wavelet transforms (|Glej_ch_&_DatQJ|, 2007H, 2006; |Achim et al,
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2003) adopt a multi-scale approach, while other methods of interest are the ones based on
Partial Differential Equatio%and calculus of variation in the context of scale space
theory (IXJJ_&_A_(‘_tQﬂ, |2Q0d; , M) The Bayesian filters are another class of im-
portant filters. We can mentlon the Gamma-Gamma MAP (GGMAD) filter

19904, 1993, UQQQbID the [MBD filter (Walessa & Datcu, 2000), the texture preserving f11—
ter proposed in ). A homomorphic transformation in the Bayesian frame is

adopted in|Achim et all ZO_OH)

The rest of this chapter presents the most known filters.

1.7.3.1 Simple filters

Median filter The median filter is window- or neighborhood-based. A considered pixel
is replaced by the median of all gray-values within the estimation window. As a result,
the median filter does not introduce any new gray-value in the image, differently to the
mean filter, but preserving the edges much better dRees_&_Sa_tgb.elﬂ, |1222|). However, fine
details, e.g. isolated point-scatterers, are filtered out. The median filter is a non-linear
filter and does not use any explicit data or noise model.

Geometric filter The morphological filters have a completely different approach than
the mean or median filters. The original value of a center pixel is replaced by a non-linear
combination of pixels from a neighborhood system. The filter introduced by

) belongs to this class. It is an iterative filter based on the concept of dilatation and
erosion where the first is used to smooth small dark regions and the second to smooth
small light regions. As for the mean and median filters, no assumptions about the noise
are made. However, the one by Crimmins (1985) has a better chances to preserve edges
and fine details. The smoothness of the filtered image and the loss of information is de-
termined by the applied number of iterations.

1.7.3.2 Statistical filters

Statistical filters are window-based filters driven by the local statistics, mean and va-
riance, of the data.This kind of filters can be interpreted as a locally varying convolution
kernel applied to the image. The basic properties of the noise are captured by mean and
variance. Furthermore, they can take into account the features of the image, i.e. reduced
smoothing or no smoothing is applied in areas where the locally estimated coefficient of
variation does not correspond to the known noise statistics. The additional roughness is
recognized to be caused by image structures instead of noise. Hence, the assumption of
stationary mean and variance is relaxed. Improved versions of most statistical filters exist
which take into account additional structural information to allow a better filtering along
edges.

Kuan filter The Kuan filter (IKu.an_e_t_alJ, hﬁ&d, |1282|) belongs to the class of Minimum
Mean-Square Error (MMSE) filters, i.e. E{(x — x)?} has to be minimized, where % is the
estimate of X. The filter has been deduced by transforming the observed signal y = x +
(n— 1)x into x and an additive signal dependent noise term. It can be considered optimal
if both x and y are Gaussian distributed. With E{N} = 1 for intensity image, the filter
equation is given by

X=ky+ (1 —Fk)uy (1.74)
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where

0.2

R RN Ry 7
The variance of the radar reflectivity is derived by o2 = (Lag - ,ug) /(L + 1) where L
denotes the equivalent number of looks of the speckle noise.
The Kuan filter is an adaptive filter based on a test of the local coefficient of varia-
tion. Compared to the filter presented before, this one represents an important impro-
vement, which is directly visible in the filtering results. However, the filter only com-
putes a weighted sum of noisy and mean-filtered pixels. It does neither exploit the full
knowledge of the noise distribution, nor does it include additional assumptions about
the noise-free data.

Lee filter The well-known Lee filter (Led, [1980) is a special case of the Kuan filter. It
differs from the latter only in the weighting factor k because of a linear approximation
made for the multiplicative noise model. For the Lee filter k can be found to be

0,2

k= —"2—— 1.76

o2+ pu2/L (1.76)
Due to its more accurate modelling of the multiplicative noise behavior, the Kuan filter is
to be preferred. However, the visual appearance of images filtered with Lee’s is identical.

[EPOSlfilter The[EPOS filter (Hagg & Sties, [1994) also relies on the analysis of mean and
variance. The estimation window is divided into eight triangular areas to guarantee im-
proved edge-preserving capabilities. The mean of the most homogeneous areas is taken
as estimate of x. Borders are extremely well preserved and the filter smooths right up to
the edges, unlike the Kuan filter However the filter does not allow smoothly va-
rying cross-sections. The filtering results are composed of areas of almost constant cross-
section separated by sharp edges. Texture is absolutely not preserved by this kind of
approach.

1.7.3.3 Wiener filter

The Wiener filter (IErQs_t_e_t_alJ, |128d; |E]:an.(‘_es_ch.ei’d_e_t_al.|, |1295b|) is the optimal linear fil-

ter in the sense of [MMSE]for stationary signal corrupted by additive noise. It requires the
knowledge of the power spectra of the noise and of the noise free scene, or equivalently,
of their auto-correlation functions. Hence, the full Wiener filter is able to directly deal
with correlated additive noise. In order to obtain optimal results with a Wiener filter both
the noise and the noise-free signal must be Gaussian distributed, which is not the case for
signal.

Frost filter The Frost filter (Frost et all, 1982) is an adaptive Wiener filter resulting in
a locally changing convolution kernel for the noisy image depending on scene homo-
geneity. It was derived directly for multiplicative noise under the assumption of locally
stationary image data. After a good number of simplifications the impulse response is
given by

2
h(r) = Kj exp {—KU—ZM} (1.77)
Hy
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where K is the filter parameter, which determines the strength of the filtering, K is a nor-
malization constant and |r| is the radial distance from the center pixel to be filtered. The
convolution kernel () is valid under the assumption of a scene reflectivity X obeying an
auto-regressive process with an exponentially decreasing isotropic auto-correlation func-
tion.

However, these approximations only result in a performance comparable to most other
statistical filters. Unlike a full Wiener filter, the Frost filter does not rely on the computa-
tion of covariances or power-spectra to profit for a better image description.

Homomorphic Wiener filter This approach is based on a homomorphic processing of
theGARlimage in combination with full Wiener filtering (Franceschetti et all,1995b). The
homomorphic logarithmic transformation is used to convert the multiplicative speckle
into additive noise. The required power spectra can be calculated analytically for the
noise and by an iterative procedure for the noise-free image signal. However, conver-
gence of the latter estimate to the correct power spectrum of the cross-section is not en-
sured. In contrast to the Frost filter, the local estimation of the power spectrum allows a
much better restoration especially of linear structures. On the other hand, artifacts may be
introduced if the power spectrum is not correctly estimated or if the estimation window
lies over highly non-stationary areas. Since rather large windows are required, typically
between 8x8 and 16x16 pixels, this filter is not well suited for images with high varia-
tions in scene content.

Because of the information contained in the estimated power spectra, the results are of a
satisfactorily quality for stationary textured areas. Note that the filtering and the estima-
tion in the Fourier domain make this approach several magnitude slower than statistical
filters.

1.7.3.4 Multi-scale and scale-space approaches for despeckling

Multi-scale approaches rely on the analysis of the image at different resolutions. The

image is presented by a pyramidal decomposition in order to profit from inter-scale de-
pendencies. It allows to separately analyze lower and higher details and to exploit corre-
lations at lower scale.
The scale-space representation aims to embed the original signal into a one-parameter fa-
mily of derived signals where fine scale structures are successively suppressed. A crucial
requirement is that structures at coarse scales in the multi-scale representation should
constitute simplifications of corresponding structures at finer scales. They should not be
accidental phenomena created by the method for suppressing fine-scale structures.

Filters based on wavelet transform Wavelet-based filters work on the wavelet transfor-
med image. Since these approaches are applied under the assumption of additive Gaus-
sian noise, the image is subject to a homomorphic transform (in case of SARthe logarith-
mic transform) before the wavelet decomposition is computed. The wavelet coefficients
are then shrunk according to various methods in order to reduce the noise energy in dif-
ferent sub-bands. The inverse-transformed image still exhibits a lot of details, while the
noise has been reduced. However, strong noise reduction is accompanied by the intro-
duction of wavelet artifacts, which can be as disturbing as the speckle noise itself. Better
wavelet shrinkage methods might solve this problem but the main drawback remains
the additive Gaussian noise approximation, which is not valid for low values of L. In
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addition, a model for the noise-free image is not included, and the number of possible
wavelets to apply is another free parameter. Examples of wavelet filters are available in

),|Gleich & Datcu (2006) and [Achim et all (2003).

Anisotropic Diffusion The filter proposed in [Perona & Malik (1990) is based on the
computation of the[PDE] It is based on the following equation

0

Fri div(c(]|Vx||) Vx) (1.78)
where ¢(]|Vx]|) is a non-linear function of the gradient. Equation[l.79is interpreted as an
evolution in time which results in the following iterative update scheme

= xt 4+ Ae(|[Vx]]), V) (1.79)

where (-, ) is the scalar product and ) is a constant.

In|Perona & Malik (199() are proposed two alternative expressions for the ¢(-) function :
c(||Vx|]) = exp{—(||Vx||/K)?} and ¢(||Vx||) = 1/(]|Vx]||/K)?. The filter is controlled
by the diffusion coefficient ¢(||Vx||) which is close to one inside the regions enabling the
smoothing, and which is close to zero when the gradient is high, disabling the smoothing.
The filter based on anisotropic diffusion is really effective and preserves edges but, on
the other hand, the smoothness is controlled by the number of iterations. Moreover the
method is demonstrated to be equivalent to the Lee and Frost filters Xml_&_A_cth, |2.QQj).

1.7.3.5 Bayesian filters

The Bayesian approach is the only one that correctly models the speckle noise sta-

tistics in form of prior function. The quality of the estimate strongly depends on the
prior assumptions about the noise-free data. Thus, we can expect an improved quality
of the filtered image. The Bayesian filters refers to the MAD| estimate. The filter
dL&pés_eLalJ, 19904, 1993,11990b) uses a Gamma distribution for both prior and likelihood
functions. A more complex parametric model is introduced in [Walessa & Datcu (2000)
where a Gauss-Markov prior is used in order to describe spatial structures. The model,
described in Section 3] improves the quality of the despeckled image and allows the
estimation of textural parameters.
The method proposed in this thesis, based on Tikhonov regularization, is also classified as
a Bayesian filter due to their equivalence. The model is described in detail in Section 3.4
It should be emphasized that the approach can be equivalent to the anisotropic diffusion
method.

1.8 Speckle simulation

According to Raney & Wessels (1988), the simulation of GARl imagery from a sensor

with a specified bandwidth and coherence properties goes through the following steps :

1. Image file
a. From a source of ideal imagery, the reflectivity map, create one unspeckled image
by convolving the source against the (desired) two-dimensional impulse res-
ponse function.
b. Sum additive noise to the image in case it has to be included.
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FIGURE 19 — Block diagram of the speckle simulation process (Raney & Wessels, 1988).

2. Speckle file

a. Prepare N files each of which is a complex Gaussian pseudo-random field, essen-
tially a white noise source. Adjacent samples should be statistically independent.

b. Bandpass filter each file with the two-dimensional frequency spectra correspon-
ding to the radar and processor to be simulated. Each filter should be weighted
and overlapped as per the described system.

c. Square law detect the filter outputs, and sum, again using any weighting repre-
sentative of the system. Normalize.

d. Store the resulting real variates as a speckle file. This is of course also in two di-
mensions.

3. Simulation

a. Subsample the image file and the speckle file to match the desired pixel spacing.
b. Pixel by pixel, multiply the two files together to create the final speckled image
file.

The block diagram of the simulation procedure is presented in Figure [[9 An example
is provide in Figure 20l where a noise 3-looks image has been simulated from the
original Quick Bird optical image input. While, for the detected image, we use the
term of speckle to describe the salt and pepper effect visible in the image and modelled
as multiplicative noise ; we use the generic term noise in case of complex-valued signals.
The simulation of complex-valued image noise goes through the definition of the Signal
to Noise Ratio (SNR) and has to be dimensioned according to the desired value of SNRI
It is defined as follows

SNR = —10log ¢ (1.80)
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. (b)

FIGURE 20 - Optical image with simulated 3-look speckle noise : original (a) and noisy
image (b).

where ¢ is an error measure. Common error measures are, for example, the Normalized
Mean-Square Error (NMSE), defined as

>

|F(j, k) = F(5,k)]”

Mw

Enmse = 2 k:; = (1.81)
2D IFG
Jj=1k=1
or the Peak Mean-Square Error (PMSE), which has the following form
J K A
YD IFGER) = F( k)P
7=1 k=1
EPMSE = max{FG. R (1.82)

where F(-,-) is a reference image and F'(-, -) is a second image. The sum is over the whole
image of size (J, K') and max{-} represents the maximum value assumed by the function.

1.9 Summary of the chapter

In this chapter, the basic radar concepts have been presented from the [SARI sensor
geometry of acquisition to the image formation. Furthermore, the statistics of the data
and the methods for speckle reduction, with the models and the most known filters, have
been presented. The problem is to find a model for the system impulse response and the
image. It is addressed as an estimation and model selection problem, thus in the next
chapter the theoretical bases of Bayesian inference and estimation theory together with
basic concepts of information and distortion theories are presented.
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Chapitre 2

Statistical Modelling and Estimation

The Chapter contains the theoretical bases later applied for image estima-
tion. There is an introduction which spans from stochastic processes to Markov
Random Field through Markov chain. The[GMRE model is presented. The
Chapter includes the estimation methods for deterministic and stochastic parame-
ters. Then, the two levels of Bayesian inference are described and the information
theory concepts are introduced in order to link the information content with the
parameter estimation. The Chapter ends with the model selection carried out via
rate distortion, which is a novel approach.

2.1 Stocastic modeling

A collection of random variables indexed by a parameter such as time or space is
known as stochastic process.
In applied statistics, after the collection of empirical data, a theoretical probability dis-
tribution is fitted in order to extract more information from the data. If the fit is good,
the properties of the set of data can be approximated by the properties of the theoretical
distribution.
Statistic is an applied science which allows to develop methods to extract information
from the observed data in order to understand the phenomena which generates the data
and to take decisions. Figure [Il shows the process spanning from the data to the infor-
mation through the statistical modeling, whereas the decision process is not shown. A
statistical model is a family of probability distributions defined on the space of observa-
tions.
Considering a random variable X, we denote a realization of the random variable with
the notation X = x, which represents a value in the space of observations X'. The proba-

Data E}ﬁﬁgg?l Information

FIGURE 1 — The diagram shows the flow from the data to the information through the
statistical modeling. In the scheme the decision problem is not shown.
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bility density function is a transformation given by

p(X): X —[0,1] e R} (2.1)
x — px(X = x)

/pX(X =x)dx =1

where we use the short notation px (X = x) = p(x).

A family of distributions is characterized by an ensemble of parameters 0, e.g. the Gaus-
sian is a two-parameter exponential family distribution : the variance ¢ and the mean .
Fitting the model means to choose an estimator for the parameters. The dependency of
a distribution to a parameter vector € is denoted by p(x|@) and it is called conditioning
in statistical language. A basic rule for statistical conditioning is given by the following
formula

p(x,0)

p(0)
Equation 2.2 means that the conditional distribution p(x|@) equals the ratio between the
joint probability distribution p(x, #) and the marginal parameter distribution p(8). In
case of statistical independence, the product rule allows to write the joint distribution
as p(x,0) = p(x)p(@) and, thus, Equation 2.2 becomes p(x|@) = p(x). It means that the
realization of the random process X is independent from the occurrence of the event 6.
We can refer to € as a random variable or as a parameter vector. In the latter case, it
defines a parametric model. If the structure of the model is not specified explicitly by a
parameter, but it is determined from the data, the model is non-parametric. However, non-
parametric is not meant to imply that such models completely lack parameters but that
the number and the nature of the parameters are flexible and not fixed in advance, e.g. a
histogram is a simple non-parametric estimate of a probability distribution.

p(x|6) =

(2.2)

2.2 Stochastic processes

If we consider a collection of realizations x assumed by a random process X in the
observation space X, a stochastic process is defined as

X={X,:teT} (2.3)

where t is a time variable. If the process in 2.3] assumes values continuously in 7, it is
a continuous-time process, whereas a discrete-time process assumes values only for dis-
crete value in 7.

The discrete-time process can be represented by the following notation

X={X,:1<i<n} (2.4)

which describes a process of cardinality n. We are interested on independent identically
distributed (iid) processes and Markovian processes in the hypothesis of stationarity and
ergodicity. The statistical independence of random variables belonging to the process X
can be mathematically formalized as follows

p(X) =p({X;: t e T}) = [[ p(X0) (2.5)
teT
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which means that the joint probability density function equals the product of the margi-
nal distributions.

The process is said identically distributed when the random variables which belong to
the process have the same distribution, thus

ViueT  p(Xe) = p(Xy) 2.6)

which asserts the identity of any pair of distribution of the realizations.

2.3 Markovian Process

We suppose the measurements to be a function of time ¢, X,, = X(¢,,) with ¢, > ¢,,_.
The data ordered with respect to time correspond to a time series. If the measurement
depends on the preceding ones the process is called Markovian, where the length of the
backwards linkage is the order of the chain. A Markov chain of order m-th is expressed

by
Pt X1y oo, Xiitn—1y -+, t1) = (X tn| X—1s -+ s X tne1s -« o s tnem)  (2.7)
with m < n, where we adopt the following equivalent notation
(X tn| X1y ooy X3 tn—1, -y t1) = (X tn | Xpm1, -+, X1) (2.8)
The statistical independence is denoted by the chain of order zero
P(Xp|Xp—1,...,X1) = p(Xy). (2.9)

The term Markov chain is most frequently used to denote a first order Brownian motion-
like process

p(Xn|Xn71> s aXI) = p(Xn|Xn71) (210)

where the dependency is restricted only to the previous sample.
The joint[pdfof a first order Markov chain can be written, applying recursively Equation
2.2 as follows

p(X1, ., Xn) = p(Xa) [[ P(XXs1) (2.11)
k=2

where, in case of n = 2, the process is characterized by a 2-dimensional joint [pdf]

2.4 Gibbs-Markov Random Fields

A random field is an ensemble of random variables belonging to a multi-dimensional
space. Thus, the concept allows the extension of the Markov process from the one-dimensional
to multidimensional case through the definition of the concepts of neighborhood and
cliques. It finds application in image processing (2-D signals), where the pixels of an
image are the nodes of a regular lattice £. The neighborhood system N is defined as
follows

N =N, :Vre L} (2.12)
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N] NQ N3

FIGURE 2 — Example of neighborhood system for increasing model order.

where N, is a set of neighbor sites. Three examples of neighborhood system are shown
in Figure
Thus a Markov Random Field is defined as follows

p(X|X, i e Nyr #£ 5) = p(Xs| X, 7 € N) (2.13)

where p(X) > 0 and 7 and s are two sites in £. The local relationship has the following
properties
1. A site is not neighboring to itself : i ¢ N;

2. The neighboring relationship is mutual : r € Ny & s € N,

The Markovianity is a local characterization of the random fields. The pair (£, ') defines
a graph, where £ contains the nodes and N specifies the link.
The vicinity interaction can be also represented by a set of cliques C = {c;} which belong
to V. The concept of clique allows to link an energy function to a realization x of a random
field, as follows

U(x0) = > Ve(x[0) (2.14)

ceC

where the energy function U(x|f) is given by the sum of the potential function V,(x|0)
defined on each clique. Thus, a Gibbs Random Field (GRE) follows a distribution of the
form

p(X) = 27" - exp{-U(X|0)/T} (2.15)
where
Z =Y exp{-U(x0)/T} (2.16)
rzeX

is the partition function which has a normalization purpose.

The Hammersley-Clifford theorem M, 1971) establishes the equivalence of the re-
presentation of a random field by a Gibbs distribution or a Markov process. The local cha-
racterization of a Gibbs Random Fields can be formalized, according to the Hammersley-
Clifford theorem, as follows

1
P 7 € Nor £ 5,0) = —SPUT 2een Velx.0)} 2.17)

B Z{xr‘r#s} exp{—T‘l ZCGN ‘/C(Xr7 9)}
where the denominator corresponds to the partition function and the numerator depends
only on the neighborhood. Gibbs distributions and Markov Random Fields have been
aﬁgied for the first time to image processing and computer vision by

).
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2.4.1 Gauss-Markov Random Field

An example of random field is given by the Gaussian family, called Gauss-Markov

Random Field (GMRF) and introduced by Chelappa & Kashyap (1983). It is characterized

by the following potential function

s 3 07“ str T Xs—p 2
U(xs|xy : 7€ Ng,0) = — s =5 ZTGNS2U§X +r & X)) (2.18)
where A is characterized by an odd symmetry 6, = 6_,.. Thus, the conditional [pdf] takes

the form

p(xs|xr,r €N, 8) = (2.19)

202

Y O O |
Voro?

The Gaussian process is a special case of whose Gibbs energy consists only of
single site clique potentials. It has no contextual interaction.
Thus, the realization takes the form of a multivariate Gaussian distribution

1 1
0)= ————7> ——xTcy! 2.20
p(X’ ) (QW)N/Q‘CXP/Q eXp{ 2X X X} ( )
where the notation is lower case bold symbols for vectors and the upper case bold sym-
bols for matrices, | - | is the determinant operator, N is the cardinality of the lattice £ and
Cx = C(0) is the definite positive covariance matrix.
In case that the covariance matrix Cx is factorisable, i.e. Cx = AT A, the model corres-
ponds to a simultaneous Auto Regressive (AR) process

1
Xs = 5 Z er(Xerr + Xsfr) + e (2.21)
reN

where e; = N(0, 02) is a zero-mean Gaussian process and has an autocorrelation function
given by

—0,0% if reN
E{esesir} =1 o2 if r=0 (2.22)
0 otherwise

The model has been applied for texture synthesis and texture parameter estimation
(Chelappa et al), [1985). We extend the [GMRE model to the complex domain and used
it for analysis and synthesis, i.e. retrieval and forward modeling, of complex-valued
images.

2.5 Parameter estimation

Estimation theory is a branch of statistics and signal processing that deals with esti-
mating the values of parameters based on measured/empirical data. An estimator 0 =
f(x1,...,%x,) = f(x) is a function of the observations x = {xi,...,x,} of a random va-
riable X. The parameter can be either a scalar 6 or a vector 8 = {6,,...,6,} and for the
estimation the likelihood function is used

n

p(x0) = p(x1,....x|0) = [ [ p(x0l0) (2.23)

i=1

which is the conditional @ for independent observations given the parameter.
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FIGURE 3 — Example of quadratic and uniform cost functions.

2.5.1 Bayes Risk and Bayesian estimators

A Bayesian estimator considers the parameter to be estimated as a random parameter.
Through the definition of a cost function c¢(eyp) which depends on the estimation error
€9 = 0 — 0 it is possible to define the Bayes risk given by the expectation of the cost
function

R =E{c(e)} = // c(eg)p(x,0) dxdé (2.24)

where, here and in the following, the integrals are evaluated on the whole domain of defi-
nition for the variable, if not specified explicitly. Thus, the parameter estimation problem
will be stated as a minimization of the Bayes risk. Common used cost functions are the

quadratic defined as X
cqleg) = (0 — 0)? (2.25)

and the uniform cost function

[0 if |00 <6/2
cul€o) _{ 1 if 10— 6] >6/2 (2.26)

The plots of the cost functions are shown in Figure 3l

2.51.1 Minimum Mean Square Error (MMSE) Estimator

The use of the quadratic cost function 2.25] leads to the MMSE|l Thus, by replacing
2.20in [2.24] and applying the rule for conditional probability the Bayes risk can be
rewritten as

R, - / p(x) / (0 — 0)2p(8]x) dfdx. 227)

The minimization of the Bayes risk [2.27] with respect to 6, is equivalent to the minimiza-
tion of the integrand

A~

1(0,%) = / (0 — 6)2p(0]x) db (2.28)

because the term [ p(x) dx does not depend on § and both integrals in 227 are positive.
Thus

0 _ ~ A
£I(9,x) = 29/p(9[x) d@—?/@p(&\x) dé (2.29)
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which equaling to zero and remembering that [ p(f|x)df = 1 leads to the equation of the
[MMSE estimator given by

buns(x) = [ 0p(01) @0 (2:30)

which corresponds to the conditional mean. As shown in 2.30] the estimator is a
function of the observation vector x.

2.5.1.2 Maximum A Posteriori (MAP) Estimator

The[MAP]|estimator is obtained by using the uniform cost functionZ.26 The resulting
risk function to minimize has the following form

R, = /p(x)/cu(ﬁ—é)p(ﬁlx) dfdx. (2.31)

= [ [1 - /+ p(O]x) de] dx.

where the minimization of the risk R, requires the maximization of the integral

e
1(6,%) = /9 (o) ao. (2.32)

2

We observe that in the limit case for § — 0 the integral I(#,x) becomes equal to dp(d|x).
Thus, the maximization of I is obtained by the maximization of the posterior density
p(0]x), which in formula can be written as follows

Oriap = arg max p(0]x). (2.33)

As a first comparison, if the mode of the posterior distribution is equal to the mean, i.e.
the posterior is symmetric, the [MAD] estimator equals the MMSE] estimator.

2.5.2 Maximum Likelihood (ML) Estimator

If the parameter is not a random variable but is deterministic, the prior distribution
becomes a Dirac distribution, thus the risk of Bayes has no more sense. In this case the
likelihood function2.23/helps and leads to the [MT] estimator. It is defined as follows

Onir, = arg meaxp(x|9). (2.34)

The [MI estimates the mode of the likelihood [pdf} Often the log-likelihood is used when
the distribution belongs to an exponential family.

We notice that the [ML] estimator is equal to the [MAD estimator in case of a uniform a
priori distribution. For this reason, even if the [ML] estimator is not based on the Bayes
risk we will still consider it as a Bayes estimator.
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FIGURE 4 — Example of MinMax criterion. The minimum value in the set of maxima
max{R(#)} of the risk functions is chosen as estimate of 6.

2.5.3 MinMax Criterion

The minmax criterion consists of another method to minimize the risk function. It can
be formalized as described in the following. Throughwe can rewrite the Bayes risk as
follows

R = E{c(eg)} = / p(6) / cleo)p(x9) dxdo (2.35)
and separate the quantity
R(9) = / cleo)p(x]0) dx (2.36)
the minmax criterion can be written as

min max R(0) (2.37)
0

Differently from the Bayes risk[2.24]that chooses the parameter which minimizes the ave-
rage risk, the minmax criterion chooses the parameter which minimizes the maxi-
mum of the risk function R(f) in the parameter space. An example is shown in Figure [
Thus, the criterion assumes that the worse case, corresponding to the maximum of the
risk function, occurs for each estimation strategy. On the other hand, when different risk
functions are compared, the minmax criterion can lead to not choosing the best strategy,
because it does not consider the probability of occurrence of the state, which depends on
the observation space.

2.5.4 Bound of an Estimator

An estimator is said to be unbiased if its expected value is equal to the parameter, i.e.
E{6} = 6. If an estimator is unbiased, it is possible to establish an inferior limit for its
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variance, called Cramér-Rao lower bound.
Given a random variable X characterized by the [pdfj px (X = x|) = p(x|0) dependent on
the parameter 6 the information on 6 contained in X is

2
I1(0) =E { [% 1np(x|9)] } (2.38)

which is called Fisher information. If we consider n fiidlrandom variables X;, ..., X, the
process is described by the likelihood function 2.23] In[2.38 appears the logarithm of the
[pdi] thus we rewrite Z.23]as log-likelihood as follows

n

Inp(x[0) = lnH (x;]0) = Zlnp x;|0) (2.39)

i=1

Thus, the information contained in the samples is

(2.41)

] . )
I,(0) = E{ %lnﬂp(xﬂ@)] } (2.40)

_ E{Zn: {ae 1np(xz|9)r} (2.42)
_ iE{[a In px XZ|9)]2} (2.43)
1

= nI(0) (2.44)

where for the step from to[2.41l has been used for the step from 2.411to 2.42] has
been applied the property of the orthogonal scalar product, and eventually for the step
from to [2.43] the linear property of the integrals has been applied. Consequently the
Fisher information of n [iidlrandom samples is n times the individual Fisher information.
The Cramér-Rao inequality states that the mean squared error of any unbiased estimator
0 = f(x1,...,xn) = f(x) of the parameter 6 is lower bounded by the reciprocal of the
Fisher information .

) T
In case that a parameter vector has to be estimated, 2.45] can be generalized and becomes
the following matrix inequality

(2.45)

Co >1,%(0) (2.46)

where 8 = {01,...,0,,} and the Fisher information matrix I,,(8) is calculated on n fidl
samples. The inequality in[2.46has to be interpreted in the sense that the difference Cy —
I,1(0) results in a non-negative definite matrix.

An element of the fisher information matrix has the following form

0 0
I,:(0) :/a—eilnp(xw)%lnp(x\e)p(xw)dx. (2.47)
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As already observed, the Fisher information is a measure of the amount of information
about 6 that is present in the data. It is worth to point out the relationship between the Fi-
sher information and the entropy. Here we only say that the Fisher information is related
to the surface area of the space of observations while the entropy is related to the volume
of the space of observations. Their relationship is formalized by the de Bruijn identity

de&L&_Tthaé,hﬁﬁld).

2.6 Bayesian Inference

The cases previously presented are useful when the family of the parametric model
is known and fixed. Now we consider the case when we have an ensemble of families of
parametric models to model a stochastic process X. We refer to this set of models with
the notation {M,,..., M, }. A parameter vector ©; is associated with each model M.
Two levels of inference can often be distinguished in the process of data modelling. At
tirst level of inference, we assume that a particular model M; is true, and we fit that
model to the data, i.e. we estimate the model parameter vector ©;. The results of this
inference are the most probable parameter vector values. This analysis is repeated for
each model.

The Bayes' rule can be obtained by applying[2.2land considering that p(x, 8) = p(0, x)

p(x|6) - p(6)

(o) = P

(2.48)

Equation describes the relation between the marginal and the conditional distribu-
tions.

The second level of inference is the task of model comparison. In this case we wish to
compare the models and assign a preference or rank to them.
Bayesian inference is distinct from classical decision theory. The goal of inference is, gi-
ven a defined hypothesis space and a particular data set, to assign probabilities to the
hypotheses. Decision theory typically chooses between alternative actions on the basis of
these probabilities so as to minimize the expectation of a cost function. Thus, ideal Baye-
sian predictions do not involve a choice between models ; rather, predictions are made by
summing over all the alternative models, weighted by their probabilities.
The first level of Bayesian methods differs from the classical statistics by the inclusion of
subjective priors. On the other hand, depending on the prior, a Bayesian result will often
differ little from the outcome of a classical approach. What makes Bayesian methods at-
tractive is the second level of inference which involves model comparison.
Model comparison is a difficult task because it is not possible simply to choose the model
that fits the data best : more complex models can always fit the data better, so the maxi-
mum likelihood model choice would lead us inevitably to implausible, over-parametrized
models, which generalize poorly. In this context the Occam razor principle comes in our
help. In essence the principle, attributed to 14th-century English logician and Franciscan
friar, William of Ockham, states that : when competing hypotheses are equal, the prin-
ciple recommends selection of the hypothesis that introduces the fewest assumptions and
postulates the fewest entities while still sufficiently answering the question. The second
level of Bayesian inference embeds the Occam factor enabling model comparison.
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2.6.1 Level I: Model Fitting

The first level of inference assumes that a model M; is true. The task consists in fitting
the model to the data in order to infer the most probable parameter ©;. The posterior
probability distribution of the model parameter vector ©; = 6 given the data X and the
chosen model M; is given by

(X[, M;)p(8|M;)

p(01X, M; (2.49)
(61X, M:) PXIM;)

Posterior — leehho.od x Prior (2.50)
Evidence

where p(6|M,) is the prior of the parameter and p(X|#, M;) is the likelihood of the data
given the parameter and the model. The probability p(X|M;) is the evidence of the model
M,. Through the first level of Bayesian inference, we obtain the [MAP] estimator 0 of the
vector parameter 6, defined as

~

0 = arg max{p(X|8, M;)p(6|M;)}. (2.51)

In equation [2.51] the evidence term does not appear because it does not depend on the
parameter vector, thus the first derivative of p(X|M;) with respect to 8, which has to be
computed in 2.51] to maximize is zero. Thus, at this level of inference, the evidence
is a constant factor and can be neglected.

2.6.2 Level II: Model Selection

The task of the second level of Bayesian inference is to find the most plausible model
explaining the data. The posterior probability of a model M, is

p(X|M;)p(M;)
p(X)

where p(X|M;) is the model evidence, which is the probability of the data, given the
model M;, and p(M;) is the prior probability of the model.

Assuming that we choose to assign equal priors p(M;) to the alternative models, models
M, are ranked by evaluating the evidence.

It can be obtained by marginalization

P(Mi\x) -

o< p(X|M;)p(M;) (2.52)

P(X|M;) = / p(X18, M;)p(6]M;)d6 (2.53)

where the integral is evaluated on the parameter space, p(X|0, M;) is the likelihood and
p(0|M,) is the prior (see2.49).

We compute the evidence in order to assess the quality of the model because it is a mea-
sure of the degree of belief of the model fitting the data. The marginalization over the
parameter space turns into a measure independent from the robustness of the estimation
of the parameter, thus it depends only on the data and the model itself.
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2.6.3 Evidence Evaluation and Occam Razor

The evidence integral 253 sometimes can be calculated in a closed form, but other

times it has a complicate form which cannot be solved analytically, but has to be approxi-
mated or numerically solved.
A common way to approximate it is to use the Laplace method (or saddle point approxi-
mation (@)) which exploits the Taylor expansion of the integrand around the
peak (Gaussian approximation) 6. Equation 2.51] ensures that the integrand has a maxi-
mum around 6, thus the evidence can be approximated as

p(X|M;) = p(X|0nap, M;) p(6a4p| M;) det (H/27r)’%l (2.54)

~
Occam factor

where H = —V21np(0|X, M,) is proportional to the Hessian matrix. Reminding the de-
finition of the Fisher information the similarity between H and I(€) can be noted :
the Fisher information is the expectation of the Hessian matrix.

The logarithm of the Occam factor can be written as

k n
log p(Oarap|M;) — 5 log 5 — logdet (1(6)) (2.55)

where n is the number of samples and £ is the degree of freedom of the process.
In summary the evidence is obtained by multiplying the best fit likelihood by the Occam
factor.
In case of linear model
x=G60O +e (2.56)

where G is a linear transformation and e is the realization of afiidl Gaussian process, the

evidence is found to be dRu.an.aisih_&_Ej.tzgﬂmld, 1996)
T (R (552 det (GTG) 2
ARsR, (0" 0)1/25n~a

p(x|G,e) ~ (2.57)
where n is the cardinality of the vector x, ¢ is the cardinality of the vector 8, I'(:) is the
Gamma function, Rs; and R, are normalization constants, 8 is the Least Squares Error
(LSE) of the parameter vector 6 and 52 is the estimated model variance

6 = (GGT)'GTx (2.58)
52 = x'x— (GO)T(GO) (2.59)

where (GGT)~! is the pseudo-inverse matrix.

The Bayes theorem has been applied for model fitting and model comparison, the Occam
factor is included in the second level of inference and it is also possible to link it to the
mutual information in the context of information theory as we will see in the following
section.

2.7 Elements of Information Theory

In this section some basic concept of the information theory are introduced span-
ning from Shannon Entropy to Rate Distortion and giving the definition of the Kullback-
Leibler distance and the mutual information. The distortion measure will be used for
model selection, thus the connection with the Bayesian estimation will be provided.
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2.71 Measure of Information and Entropy

The entropy, introduced by Shannon (1948), is a measure of the average information
of the realization of a random variable X. If the random variable is defined in a discrete
observation space X the entropy is defined as follows

Z p(x) log p(x (2.60)

xeX

which represents the expectation of the random variable — log p(x). When the incertitude
is high the entropy is also high, while the entropy of a certain event is zero. The quantity
—log p(x) represent the information contained in the random variable x and in case the
logarithm is base 2, then the information is measured in bit. If for example the logarithm
has natural base the information is measured in nat. From the definition of the entropy
Shannon derived the source coding theorem. If at each realization x a code ¢ of length
L(cx) is assigned in order to ensure a unique decoding, the following inequality, for the
average length, is respected

> p(x)L(ex) > H(X) (2.61)

xeX

where the equality is verified when L(cc) = —log p(x). A way to ensure that the code has
a unique decoding is to avoid that a codeword is a prefix of a longer one. A binary code
which satisfies the prefix rule exists if and only if the following inequality is respected

D 2mHe) < (2.62)

XEX

which is called Kraft inequality (m ). In the case that E(cx) = [—logp(x)], the
average length >, p(x)L(cy) is inferior to H(X) + 1 (Huffman, 1952). The Shannon
theorem says that it is possible to approach the 11m1t established for the entropy. On the
other hand, we have to point out that the theorem is valid for sources whose realizations
are an infinite series of symbols and it is strongly dependent on the source distribution.

2.7.2 Kullback-Leibler Divergence and Mutual Information
The Kullback-Leibler divergence was introduced by|Kullba.ck_&_L£ibleﬂ (1951) in the

framework of the statistical problem of discrimination. The divergence is a measure of
the inefficiency of assuming that the distribution of a random variables is ¢(X) when
the true distribution is p(X). It can be interpreted as a version of the maximum entropy
principle m, @) The Kullback-Leibler divergence is defined as

Dicatile) = 3 ) log 23 2.63)
xeX

From the point of view of coding theory it means that if we have a random source X with
a probability p(X) we build a code using ¢(X) as distribution, i.e. we need H (p) + D(p||q)
bits on the average to describe the random variable. The divergence is zero when ¢(x) =
p(x). It is worth to notice that it is not symmetric.

The extension of the divergence measure to couples of random variable can be done




72 2. STATISTICAL MODELLING AND ESTIMATION

H(X,Y)

e
H(X) -

FIGURE 5 — Venn diagram illustrates the relationships among Shannon’s basic measures
of information : entropy, joint entropy, conditional entropy and mutual information.

considering two random variables X and Y with joint probability density p(X,Y), thus
the mutual information is defined as

I(X,Y) = D(p(X, )| [p(X)p(Y)) = ;%mx, ¥)log ]% (2.64

It measures the mutual dependence of two random variables or, in other words, it re-
presents the reduction in the uncertainty of X due to the knowledge of Y. Alternative
definitions for the mutual information are the following

I(X,Y) = H(X)+H(Y)-H(X,Y) (2.65)
= H(X) - HX|Y) (2.66)
= H(Y) - H(Y|X) (2.67)

where the mutual entropy H(X,Y) and the conditional entropies H(X|Y) and H(Y|X)
are defined as follows

HX,Y) = => > pxy)logp(x,y) (2.68)
xeX yey

HX[Y) = =Y > p(xy)logp(xly) (2.69)
xeEX yey

HY[X) = => > pxy)logp(ylx) (2.70)
x€EX yeY

information measures exist , but we use the one described above because it
allows us to define the theory for lossy compression.

The quantities in[Z.65are shown graphically in the Venn diagram in Figure[5l Many other
(ﬁé& m)

2.7.3 Rate Distortion Theory

The rate distortion theory gives a quantitative answer to the goodness of representing
the information of a given source, formalizing the number of bits necessary for coding
the realizations of a random process X given the fact that losses are allowed during co-
ding. We suppose that a distortion measure d(x, %) defined between the realization x and
its reconstructed version x is given. Moreover we have R bits available to represent the
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n—={12 . 2nR R
X Encoder Fe={1.2,.., ! Decoder X

FIGURE 6 — Rate distortion encoder and decoder.

information. The functions of coding and decoding of n consecutive realizations are as
follows

fo 1 X" {1,2,...,2"%) (2.71)
gn ¢ {1,2,...,2"F) o (2.72)

A scheme of a rate distortion encoder-decoder is shown in Figure [6l The distortion bet-
ween sequences X" and X" is defined by

n

D = B{d(X",X")} = - 3" d(Xi, 0a(f (X)) @73)
i=1

So the distortion for a sequence is the average of the per symbol distortion of the element
of the sequence.

(L'LQSQ) defined the achievable coding region as the ensemble of the pair (R,D)
obtainable by a set of coding-decoding functions when n tends to infinitive. The bound
of the region is given by the distortion rate function R(D), see Figure[f] for which the
inequality R > R(D) is verified. On the other hand, the rate distortion function as inferior
lower bound can be reformulated as a minimization problem

I(X,X) (2.74)

R(D) = min

P(x[R):B x5 {d(x%)}<D
where the minimization is over the conditional [pdf] p(x|%) which represents the probabi-
lity of having the output x given as input the symbol x. The distortion rate function is a
concave decreasing function, see Figure[7] and represents the rate vs. the distortion : for
low rate the losses are high.

2.8 Rate Distortion and Model Selection

The rate distortion problem, presented in the previous section, is addressed as a mini-
mization problem. This can be exploited in order to perform model selection by choosing
the model with the minimum distortion.

In order to explain model selection by rate distortion, we present the mutual information
of a Gaussian channel and we show that it is the inverse of the Occam factor, thus the
minimization of the mutual information (rate distortion) means the maximization of the
Occam factor.

On the other hand, the example provided by the Gaussian source is general, because a
distribution can be approximated as a Gaussian close to the maximum exploiting the La-
place method , m).
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Achievable Region

FIGURE 7 — Example of Rate distortion curve.

The mutual information of a Gaussian source A (0, 02) is deLeL&_Ih.omaS], |1291b|)

I(X,X) = H(X)-HXX) (2.75)
= %10g(27re)02 — H(X — X|X) (2.76)
> %10g(271'e)a2 _H(X-X) 2.77)
> %10g(27re)02 ~ HW(0,E{(X — X)2})) (2.78)
> %log(%'e)az - %10g(27re)E{(X -X)2 (2.79)
> %10g(27re)02 - %log(Qwe)D (2.80)
_ %log% (2.81)

where to write E{(X—X)?} = D we considered a squared-error distortion measure. Thus,
referring to[2.54 we can write for the one dimensional case

Occam factor = p(Oaap|Mi)ogx (2.82)

which, considering a non-informative prior Jeffreys distribution p(674p|M;) = 1/0p can

be rewritten
0-9|x
Occam factor = —=
o

(2.83)

which correspond to the ratio of the posterior accessible volume of M; parameter space
to the prior accessible volume. Thus, by 2.75] and 2.83] the mutual information can be
written as

Volume of the Prior
=log ———MM .
Volume of the Posterior & Occam factor

I(X,X) = log \/ (2.84)
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Selecting the model which minimizes the mutual information (X, X)is equivalent to se-
lecting the model which maximizes the Occam factor. This states the equivalence of using
rate distortion and Bayesian model selection. We are going to apply the rate distortion for
model selection in order to estimate optimal model for feature extraction.

2.9 Summary of the chapter

In this chapter the theoretical background of the statistical framework has been pre-
sented. The definition of stochastic process and Markovian process has been provided.
The equality of Markovian processes and Gibbs distributions has been presented and the
family has been described.

Furthermore, the bases of parameter estimation have been delineated with emphasis on
the Bayesian framework. The concept of entropy from information theory has been lin-
ked with parameter estimation through the Cramér-Rao inequality. Last but not least, the
rate distortion has been presented at the end of the chapter focusing the attention to its
link with the Bayesian model selection.

The basic theory presented will be used in the next chapter in order to design the Tikho-
nov like restoration filter, in the frame of Bayesian [MAP] estimate. The Rate Distortion
will be used to provide results for model selection.
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Chapitre 3

Image Restoration

This chapter presents the models for Maximum A Posteriori esti-
mation and Tikhonov reqularization. It starts with an overview of Model Based
Despeckling which has been our reference method for image despeckling
and feature extraction. It follows with an extension of the estimate in the
complex domain which provides the reconstructed complex channels but not a
despeckled image.

Then, the Gauss-Markov Random Field family of models extended to the
complex-valued domain is presented. The complex-valued linear model embeds the
system transfer function, thus the parameters are able to model and separate cor-
related textures.

The Tikhonov estimate has been developed and tested with the complex-
valued linear model, as data model, and the Huber-Markov model as prior func-
tion. Then, the prior has been replaced with the family of models in order
to enable parameter estimation.

The methods have been compared with classical estimation filters and with [MBDI
for feature comparison.

3.1 Model Based Despekling and Feature Extraction
The[MBDJhas been developed by Walessa & Datcu (2000). The radar cross section |2

is the noiseless image we want to estimate from an observed intensity SAR image y = I,,,,
see Section[.Z] The microwave propagation and the SAR processing (focusing) are mo-
deled as a linear system. The noisy intensity image y is approximated as the reflectivity
|70|? convolved with the incoherent system point spread function |s|?, where s is the point
spread function of the coherent system.

The speckle effect is modeled as a multiplicative Gamma distributed noise n, correlated
by the SAR end-to-end system (Equation [12)). Hence, the degraded image multiplicative
model may be written as :

y=[lol* sl n=x-n (3.1)

The problem to be solved is the reconstruction of the original radar cross section from
y (inverse problem). Unlike conventional techniques that only remove speckle noise by
estimating x, an inverse approach takes into account the SAR]image formation for image
reconstruction. The problem is formulated as a Bayesian model fitting and solved by
using a scene-understanding paradigm. The algorithm performs a model selection based
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on evidence calculation and considers the approximation x = |yo|?. It induces over the
class of[GMREFk a partition in a family of models centered on fixed values of the parameter
vector 6. The algorithm is used for the estimation of parameters from textured images in
the presence of noise. The model is locally chosen according to the evidence (second level
of Bayesian inference).

The likelihood function of the observed square root intensity, presented in Section [[.5.2]
is a Gamma distribution, given by

y\2L-1 L ¥\ 2
plyl) =2 <£> ) P\ E <£) (32)
where L denotes the Equivalent Number of Look (ENL). The prior function is a
model
1 (X =D ren 0,:%,)°
p(x|x,,r € N,0) = o exp {— 52 (3.3)

where 0 and o are model parameters describing textural information and the prediction
uncertainty of the model, respectively. The prior B.3lis equivalent to ie. for
a symmetric neighborhood system.

The first derivative of the log-posterior approximated by the product of the likelihood
and the prior[3.3/1leads to the estimation of the noise free image x, given by

2L 2Ly? x— ,.cnOrxy
X T e T 2 :
X ag

9 g plxly, .7 € N, 8) = (3.4)

ox

Equation B4l yields a fourth order polynomial where the solution depends on the model
parameter vector 6.

In the general case, an arbitrary number of models p;(x|0;) characterized by their poten-
tial functions and having a different number of parameters are considered. However, for
simplicity, we denote the used models by p(x|0). To select the best model and take into
account the noise, the algorithm has to maximize the evidence

p(516) = [ plrlx O)p(xi6)dx (35)
(2m) %
Hp(yi|XMAP,i)p(XMAP7i|XMAP,T‘5 reN;,0) (3.6)

VIH]

as a function of 8. The evidence integral is approximated with the Laplace method. By
further approximation of the Hessian matrix with the elements of its main diagonal, the
determinant takes the form [H| = [\ 21 hi;. The latter approximation is consistent with
the hypothesis of statistical independence which is done in general in order to write the
likelihood as the product of the densities. Thus, the log-evidence can be written as

N2
1
log p(yw) = § 5(10g 21 —log hy;) +log p(Yi’Xi,MAP) +log p(Xl\lAP7i’XI\1AP7r7 re N, 0) (3.7)
i=1
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FIGURE 1 — Flowchart of the MBD method.

where h;; are the elements of the main diagonal of the Hessian matrix

2
92 |
hii = —@ Zlogp(ij’jaxﬁr € N]ae) (38)
il =1
6Ly? 2L 1
_ 4y2_2_+_2 1+ 02, (3.9)
Xi,MAP Xi,MAP o reN;

Being able to approximately compute the evidence, the final step for parameter estima-
tion consists in finding the maximizing parameter vector. To achieve this, the evidence is
maximized according to the following iterative algorithm

1. Choose an initial guess for 6.

2. Calculate the[MAP estimate [3.4] of x using the current parameter values of 6.
3. Compute the evidence B.Awith 6 and xap.
4

. Keeping x\isp fixed, a new 8 is iteratively chosen, in a new loop, to maximize the
evidence and perform model selection.

5. This procedure is repeated from step one with the new 6 until convergence is rea-
ched.

Thus, the procedure allows not only to estimate the best parameter explaining the model
(model fitting or first level of Bayesian inference) but also to compare the evidence of
different models and to chose the one with the highest evidence exploiting the model
selection capability of the second level of Bayesian inference.

3.2 MAP Estimation and Feature Extraction in Complex Domain

The model works fine on detected data, thus we want to extend the MAP| me-
thod to the complex domain investigating models which fit with complex-valued images.
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One model proposed by [Pascazio & Ferraiuold (2003) for statistical regularization of to-

mographic images has the following energy function

ZTENS (Xl,s - XI,T)Z
20?

>oren.(XRs — XRry)?
2012%

_lly — Ax|P

Ulx) 202

+ + (3.10)

where the first term represents the likelihood function and the second and third term
represent the prior[GMRE model applied to the real and imaginary part respectively.
The notation refers to stationary random fields. It can be extended to non-stationary data
exploiting the local Markov property which leads to the sum of the energy functions.
In term of computation, the non-stationarity is faced by fixing boundary conditions of
continuity.

Even if the prior models separately real and imaginary part, the posterior jointly depend
on them because of the likelihood term. In[3.I0lan isotropic[GMRH prior is considered to
model the real and the imaginary part. The advantage of using the likelihood presented
in[B.10lis that it refers to the linear model

y=Ax+n (3.11)

where the matrix A can embed the system transfer function as well as the image forma-
tion model (IQ_e_tin_&_Kaﬂ, |ZOD_]J). Nevertheless, the posterior combines the two channels
through the likelihood, the prior smooths the real and imaginary parts because the isotro-
pic[GMREmodel is equivalent to the Total Variation (T'V) ’ ). As a consequence,
the speckle, modeled as multiplicative noise in the detect the image, is not removed.
Differently from the approach, the parameters are estimated in advance from the
incomplete data by an[EM]algorithm. The complex image is thus regularized through a
estimate.

3.2.1 Expectation-Maximization parameter estimation

The steps of the[EMalgorithm (Dempster et al., 1977) are :

1. Expectation. It consists of the evaluation of the quantity

M(o =0o(t)) = E{ln fx(X,0)} (3.12)

where fx(X, o) is the referred likelihood function and the expectation allows the
estimation of the log-likelihood from the current available data.

2. Maximization. It consists on the evaluation of
o(t+1) =argmax M(o = o(t)) (3.13)

The updated parameters are iteratively replaced in the Expectation step until conver-
gence is reached.

In our case, the likelihood fx (X, o) used for the estimation of the parameters involves
the prior model which is the second and the third term on the right hand side of
Thus it takes the form from the product of the Gibbs distributions

N2

fx(x,0) = [ 5 exp (-Ulena)} 5 exp {~Ulr.)} (3.14)
s=1
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where

ZTENS (XR,s - XRW)Q

U(xps) = 552 (3.15)
R
Zr (XI,s - XI,T)2
Ulxrs) = ENs 53 (3.16)
I

and Zp = z Rag “and Z 1=z IU}V * are the partition functions with zr and z; constant

factors not depending on o.

The Maximization step of the log-likelihood[3.14]leads to the following expressions (m.‘,
) for the estimators

oR(t+1) = N2E { > (xrs - XR,T)z} (3.17)
reNs

O-%(t + 1) = N2E { Z (XI,s - XI,T)Q} (3.18)
reNs

The Expectation step can be evaluated exploiting the ergodicity of the process approxi-
mating the ensemble expected-value by time averaging. The latter has to be performed
on the realization of the a posteriori distribution which has the form of a Gibbs distribution
with[3.I0as energy function. It can be obtained by the use of a Gibbs sampler considering
the local a posteriori distribution to be Gaussian

PXp e (XREXRF T ENGY =y) = ;exp _M (3.19)
) ) ) /27T0—R k 20-R7k:
where the mean (1, and the variance 012%7 .. are (Pascazio & Eerral'qud,bQQd)
Yh—2 12k ChiX]—JOnkXI,
XR.r N2 ’ahkPRe{ h =21k ah}sz hk Ik}
D 5t :
20% ;. 4o
reNg RT h=1
HRE = 2 (3.20)
1 ]ahk]
2 ga ot
TENk R =1
-1
2 ahk
Ohe = | D Z lans (3.21)

T'eNk RkT‘ —

where a;; are the elements of the matrix A, which causes a mutual coupling of the I
and Q channels. Thus, Equation B.19is used to generate samples for the real part which
depends on the imaginary part and on the whole data set. The imaginary part has the
same expression as B.J9where the sub-index - is replaced with -;.

The convergence criteria can be the desired number of iterations or a measure distance
d(o(t+1)—o(t)) < d that equals oris less than a desired value § > 0 : a common distance
measure is the squared error ||o(t + 1) — o (t))||*.

The pseudo code of the[EMlalgorithm is shown in Algorithm/[]
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2

Input: Data y, Data size N x N, Noise variance o},

Output: Parameter ¢

Onew — ParameterEstimation (yv)
Botd < 0
X<y
while |0g — Onew| > 107¢ do
fori < 1to N do
forj — 1to N do
u «— MeanValueEstimation  (x, 0pew, 02)
o? « VarianceEstimation (Onew, 02)
x[i, j] — N (1, 0%)
end
end
Ootd < Onew
Onew — ParameterEstimation (x)
end

0 — Onew

Algorithm 1: [EM| algorithm for parameter estimation. The function
ParameterEstimation() refers to the differential parameter of the
prior model. The MeanValueEstimation() and VarianceEstimation()
functions refer to Equations and B.21] respectively. For the sake of simplicity
the code refers to parameter estimation of the real or imaginary part.

3.2.2 MAP image regularization

Equation[3.10/defines a quadratic functional which can be minimized by using a stee-
pest descent technique (Shewchuk,1994) to find the[MAPlsolution. The complex gradient
is given by

Yoren, (¥R —XRr) o Yoren, (K15 — X1r)
20 g 207

Equation 3.22]is the gradient of the functional [B.I0 On the other hand, the likelihood is
the />-norm of a complex-valued linear model and the prior can be rewritten in a compact
form using the notation of the complex Gaussian distribution.

The iterative algorithm is given by

VU(x) = —2A1 (y — Ax) + 2 (3.22)

Xi+1 = X — OéVU(XZ‘). (323)

where alpha is chosen experimentally, with the compromise that a low value increases
the time of convergence, while a high value reduces the precision of the estimation. Me-
thods of optimization of B.23]exist, e.g. the orthogonality principle adopted in conjugate
gradient techniques. It allows to select the optimal parameter o and the optimal mini-
mum search direction for the gradient VU (x). The described techniques work only in
case of regular functions which means quadratic functionals with global minima. In or-
der to minimize a functional with local minima, other techniques have to be adopted, e.g.
simulated annealing.

The pseudo code of the steepest descent algorithm used for the[MAP estimation is shown
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Input: Noisy Data y, Parameter ¢
Output: Regularized image x

Xold <Y
a—107°
k <« Desired number of iterations

while £ # 0 do
VU « GradientCalculation (X014, 0)

Xpew < Xold + - VU

Xold < Xnew
k—k—1
end

X < Xnew

Algorithm 2: Steepest descent algorithm for MAP estimation. The function
GradientCalculation() computes the gradient according to Equation[3.22] The
convergence condition is fixed by the desired number of iterations. The value of «
has to be chosen according to the values of the input data.

\ /

Expectation 0 MAP

" Maximization "] Estimation

—®» Xyap

<
4
4

FIGURE 2 — Flowchart of the MAP estimate with Expectation Maximization algorithm.

in Algorithm [l The described MAP method for statistical regularization adopts a dif-
ferent strategy than The latter exploits the two levels of Bayesian inference and
performs the model selection by evidence maximization at each step of [MAPI minimiza-
tion (model fitting). The former method first estimates the parameters from incomplete
data by the[EMland then performs the[MAP]estimation without updating the parameters
which are fixed.

3.3 Complex Gauss-Markov Random Field

The complex-valued Gauss-Markov Random Field (GMRE) is an extension of the real
one. In the next section we shortly present some considerations on complex random va-

riables and the normal distribution in the general case of improper complex random va-
riables. Thus the complex-valued IGMRE|is presented.

3.3.1 Normal Distribution of Improper Complex Random Variables

A complex random process X whose realization is the complex-valued random va-
riable x = xp + jx; can always be represented through a pair of real vectors. In most
cases, the theory of complex random variables is supposed to be similar to the real one,
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as long as the transpose operator is replaced with the Hermitian operator in the defini-
tion of the covariance matrix. Most of the time this is justified, but it can happen that x
and its conjugate x* are correlated. Then, the covariance matrix Cx no longer completely
describes the second-order behavior of x and another quantity, which is known as the
complementary covariance or relation function Rx has to be taken into account. Cx and
Rx are defined as

Cx = BE{xxf} (3.24)
Rx = BE{xx'} (3.25)

Vectors that have a vanishing relation function Rx are called proper dNeﬁs_er_&_Mass_e;zI,
). Proper complex random variables behave very similarly to real random variables

and the Gaussian@ takes the familiar form.

Letx; = xp; + jx7,;, withi = 1,..., N be the realizations of a complex stochastic process

x with xg ;,x7,; € R and normally distributed. The joint Gaussian@ is

1 H~-1
= —x"C . 2
Considering the real vector v € R?"
VvV = [X£7X?]T = [XR71, <o 3 XR N, X[ 15 ,X[7N]T (327)

it allows the representation equivalent to B.26] by a real Gaussian [pdf] with covariance
matrix Cy

1 1
p(v) = @) det(Cy) 172 exp {—ivTCvlv} . (3.28)
Both[B.26land include only the information embedded in the covariance matrix
but not the information in the[3.25: they are valid only in case of proper complex random
processes (Picinbono, 1996).

In contrast to proper random variables, the theory of improper random variables is quite
different from what we are used to and requires special attention.

We want to find a way to exploit the information of both and and to include
them in the [pdfl Thus, we consider the following linear transformation M,

11995; [Picinbongd, 1996)

w = Myv (3.29)
where M has the following form
J1ogr
M = [ 1 I } . (3.30)

Equation[3.29 transforms the vector B.27in
w = [xT,xM7T = [x1,...,xn,x}, ..., xN]. (3.31)
The [pdf] of the random variable w is

1 1

_ L HeA-1
p(w) = TV dot(Cy) 12 exp{ 5 W Cyw w} . (3.32)
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where the matrix Cyy has the following structure

Cx RX]

Cw = [ RI Ci (3.33)

Thus, [3.32] can be rewritten as

. 1 L w 1| Cx Rx T x
P = N et (C) det (P T2 eXp{_z[x x] [ RI Cy ] [x* H (334)

where Px = C% — RgC;(lRX. Thus, considering p(x,x*) = p'(xr, x1),[8.34 embeds the
information of the covariance matrix and of the relation function and it is the
general [pdf] of an improper normal distributed complex random process. If the relation
function .25 vanishes, i.e. Rx = 0, Equation[3.34/becomes equivalent to Equation [3.26]

3.3.2 Complex GMRF model

The complex-valued model is defined as an extension of the classical real-
valued [GMRF presented in 24 (Chelappa et all, 1985). The potential function is written

as

Xs_l O (Xsr + Xs—rr 2
U(xs|x,: 7€ N§, 0) = —’ 3 Lrel, 02( ha ) (3.35)
where o € R, x,6 € C, with x = xg + jx; and 6 = 0 + j6;. The conditional distribution
associated to the model is

p(xs|xp,m €N,0) = —5 XD —

1 {_ ‘Xs — % ZTENS Qr(Xs—I—r + Xs—r)’2 } (336)

The associated complex[AR| process has the following form [Picinbono & Bouvet (1984)

1
Xs = B} %\:{ Hr(xs—H" + Xs—r) + e (3.37)

where input of the complex [AR filter is a complex white generative process e; and also
the coefficients 6, are complex. Because of the isomorphism between C and R?, Equation
3.37]can be rewritten in the following vectorial form

XR,s — 1 Z HR,T‘ _al,r XR,s+r T XR,s—r + €R,s (338)
XJI,s 2 HI,T HR,T‘ X, s4r T XI,s—r €I,s
reN

The structure of the parameter matrix is given by the real representation of complex ran-
dom variables. If it is not respected, the output is not an [ARl complex signal. Moreover,
the equivalence between Equations[3.37]and B.38is ensured only if the noise e, has a cir-
cular complex normal Gaussian distribution, therefore it is a proper random process.
The conditions for the noise are

—20:0% if re N

E{esel .} =14 202 it r=0 (3.39)
0 otherwise
where E{es sepsir} = —E{ersersir} = 01,0 which ensures the structure of the para-

meter matrix in [3.38]
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3.3.3 Proper and Improper White Complex Gaussian Noise

The hypothesis on the noise e, in B.37]is not necessary to be so restrictive and it can
be also an improper random process with white spectrum, i.e. unitary covariance matrix,
but with a non-zero relation function. In the latter case, the model B.37] cannot be written
as and the noise in does not correspond to the noise in In case that the
noise in[3.37)is an improper random process, we can simulate it by prefiltering a circular
Gaussian white noise.

In case that the noise is not completely white, i.e. improper random process, it can be
still predicted, which means that e, is not the completely unpredictable part of x5. As a
consequence of this fact we can conclude that the parameter vector  is not the best linear
predictor of x, because the prediction error can still be reduced by using another filter.

A generalization of the[ARlmodelB.37)in case of improper Gaussian noise takes the form
of a widely linear model (Picinbono & Bondon, 1997)

1 1 .
Xy = 3 Z Or (Xsr + Xs—r) + 3 Z Kr(Xstr + Xs—r) (3.40)
reNs reNs

which in general is non-linear

fa+x2) = f(x1) + flx2) f(Ax) # Af(x)

where the first expression is respected, but the second, which is a necessary property
of classical linear filters, is in general not respected for A € C. Actually, for a complex
function f(x) = x*, which returns the conjugate of the complex variable, and a complex
number A € C, itis Ax* # (Ax)*, which demonstrates the validity of the second statement
in[B.41land thus the non-linearity.

On the other hand, the widely linear system[3.40lis demonstrated to be more effective for

rocessing complex-valued signals than the results of a classical approach (Picinbono & Chevalier,
@,ﬁ. A Widely Linear Mean Square Estimation (WLMSE) results in an error which
%erior than a classical Linear Mean Square Estimation (CMSE) (Picinbono & Chevalier,
).

The fully developed speckle is a proper complex Gaussian process.

3.3.4 Synthesis and Analysis

Similarly to the real case discussed in Chelappa et al! (1985), we follow the same ap-

proach for parameter retrieval and forward modeling.

EquationB.37 corresponds to an Infinitive Impulse Response ([IR) filter which can be im-
plemented in the frequency domain exploiting the fact that the # parameters characterize
the autocorrelation function. The Wiener-Khintchine theorem allows to compute the po-
wer spectrum from the autocorrelation function by the Fourier transfom, which can be
approximated by the and computed with the [FFTlalgorithm.

The autocorrelation function of Equation 3.37 has the following form

R (k) = % S 0, Bx(r + k) + 025(k) (3.41)
reNs
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[ 1 Re[Rx] Im[Rx|

(P

v {

FIGURE 3 — Example of auto-correlation function for model order 1. The real and the
imaginary part are even and odd functions respectively.

the Fourier transform of 3.41]is the power spectrum, which has the form

0.2

1 2 2
1-— 3 Z 0, exp {j <M7T7“1w1 + §T2w2> }]

reNs

Px (w1,w2) =

(3.42)
Re

where w; and w; are the frequencies in the 2-D lattice. The Re[-] fixes the relationship of
the power spectrum with the [ARl function. The auto-correlation B.41]is a complex-
valued function and it has to respect the Hermitian condition Rx(k)* = Rx(—k), which
is fulfilled when the real part is even (symmetric) and the imaginary part is odd (anti-
symmetric). An example of an auto-correlation function, for model order 1, is shown in
Figure[3l Considering a generic Hermitian function x(n) = x*(—n), the Fourier transform
is X(e) = X*(e), but the Fourier transform can only be equal if and only if the ima-
ginary part is zero. Thus, the Fourier transform of an Hermitian signal is a real-valued
signal. Furthermore the condition for the power spectrum Equation Px(w) > 0is
guaranteed by the values of the parameter vector. The sum of the parameters has to res-
pect the condition given by the property of the Markov chains : the sum of each line of
the transition matrix has to be equal to one (Lakshmanan & Derirl,1993). In Figure[d] the
block diagram for the synthesis of realization, for a given driven circular complex
Gaussian noise e and auto-correlation function 3.41] is shown.

An alternative implementation in time domain can be obtained through the Gibbs
sampler (Walsh,2004), introduced in the context of image processing by Geman & Geman
@), which is a special case of Metropolis-Hastings sampling. The latter generates a
Markov chain from the conditional distribution p(x|y) whose equilibrium density is the
candidate joint distribution p(x, y). A pseudo code of the Gibbs sampler for the synthesis
of complex valued is shown in Algorithm[B The number of iterations has to be
enough to reach the equilibrium density and the support M x M has to be large enough,
with respect to the neighborhood, in order to avoid an undesired border effect : the pixels
at the boundary do not belong to a complete neighborhood.

An example of a stationary zero mean complex-value GMRF is shown in Figure 5] where
realizations with different parameter values for model order one and two are visible.

The estimation of the parameters is computed considering the linear model[3.37lasso-
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-

DFT >

IDFT |+ Xaumrre

Rx DFT > \/'

FIGURE 4 - Synthesis of GMRF : Rx autocorrelation function B.4T] e driven noise with

power 2.

Input: Parameter neighborhood h, Power a2, Image size N x N
Output: Complex valued GM RF

t0 « Complex Array of N x N elements
tm «— t0
k «— 10000

while £ # 0 do

1 «— 2D-Convolution

fori— 1to M do
forj — 1to M do

| tmli,j] — Complex (N (0,1), N (0,1))+puli, j]

end

end

t0 — tm

k—k—-1

end

GMRF + o -tm

Algorithm 3: Gibbs sampler for complex [GMRE generation.

(t0, h)

Model (1,0) ©,1) i) D)
Texture Order 091 él 92 ég 093 ég 094 é4
T1 1 0.1850.0  0.25j0.0 | 028504 0.3540.05 B -
T2 1 024400  0360.1 | 0.0§0.25 0.0150.37 B E
T3 1 0.080.34  0.10-j0.42 0.0-0.08 0.0-0.10 - -
T4 2 00500  0.0140.03 | 0.07§0.08 0.0840.1 | 0.0400  -0.0150.02 | 0.2550.1 0.2840.12
T5 2 00400 004001 | 0.00.07 0.040.12 | 03840.05 0.4850.07 | 0.040.0  0.040.0

TABLE 1 — Parameters 6 corresponding to textures shown in Fig. bl and estimated para-
meters . The textures T1... T5 correspond to row 1... 5 in Fig B respectively. The notation
(-, -) refers to the coordinate of the parameter with respect to the central pixel.




3.3. COMPLEX GAUSS-MARKOV RANDOM FIELD

89

0.28

-70.04
0.18 0.18
+50.0 -70.0

0.28

+0.04

(a)

0.0
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0.24 0.24
+50.0 -70.0

0.0

+70.25

(e)

0.0

-70.08
0.08 0.08
+50.34 -70.34

0.0

+70.08

(i)
0.25 | 0.07 | 0.0
+50.1 |-70.08 |-50.0
0.0 0.0
+50.0 -70.0
0.0 0.07 0.25
+50.0 [+50.08| -50.1

(m)
0.0 0.0 0.38
+50.0 |-70.07 |-70.05
0.0 0.0
+50.0 -70.0
0.38 0.0 0.0
+50.05 [+50.07 | -50.0

@

(b)

()

(s)

0.35
-j0.05
0.25 0.25
+50.0 -50.0
0.35
+50.05
(d)
0.01
-j0.37
0.36 0.36
+50.01 -j0.01
0.01
+50.37
(h)
0.0
-j0.10
0.10 0.10
+50.42 -j0.42
0.0
+70.10
@
0.28 | 0.08 | -0.01
+7.12 [-j0.1 [-j0.02
0.01 0.01
+70.03 -50.03
-0.01 | 0.08 | 0.28
+50.02|+50.1 | -50.12
(p)
0.0 0.0 0.48
+50.0 [-j0.12 |-50.07
0.0 0.0
+50.01 -j0.01
0.48 | 0.0 0.0
+50.07 [+70.12 | -50.0
®)

FIGURE 5 - Simulation of stationary zero mean complex-valued [GMRE processes : model
order and parameters (first column), amplitude (second column), phase (third column)
and estimated parameters (fourth column).
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G matrix
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FIGURE 6 — Example of G matrix for model order 3.

G

»
A\ 4

MAP |+ » @

Clique matrix

A\ 4

FIGURE 7 — Parameter estimation block diagram.

ciated to the joint@which, exploiting the matrix formalism, can be written as follows
x=GO +e (3.43)

where G is the matrix of the cliques, € is the parameter vector, x is the original image and
e is the circular complex Gaussian noise with variance 2.
We perform local computation in an analyzing window of N x N pixels. On the other
hand, we take into account only the pixels belonging to a complete Neighborhood, thus,
the model samples are P < N? because of the border effect. If @ is the cardinality of the
arameter vector 6, G is a P x () matrix. The task is to build the G matrix (m,
@) which is a function of the image pixels : G = G(x). An example on how to build
the G matrix is shown in Figure The [MAD estimation of the model parameters is
equivalent to the [LSE| estimator because the Gaussian [pdf]is symmetric and the prior is
uniform and equation3.43]results in an over-determined linear problem. The parameters
are estimated by

0155 = (GHG)1GHx (3.44)
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where 015 represents the estimated parameter vector and (G G)~! is the pseudo-
inverse matrix.
The variance of the model is computed as follows

1 P

2 N2
ol =5 Z; xs — G40 (3.45)

where the quantity Go represents the best fit of the data. In addition the evidence of

the model can be computed according to 257 (Ruanaidh & Fitzgerald, 1996), in order to

compute model selection.

3.4 Tikhonov regularization for complex image restoration

Tikhonov regularization is a powerful method to restore images affected by degrada-
tion processes. In particular, while computing the imaging system response, e.g. blurring,
from a given image is a direct and well-posed problem, the inverse problem of compu-
ting the true image from the observations is an ill-posed problem. A general principle
for dealing with the instability of the inverse problem is that of regularization, which
mainly consists in restricting the set of admissible solutions including some a priori in-
formation (e.g. non negativity, smoothness, existence of edges, etc.) in the formulation of
the problem. In this framework we focus on Tikhonov regularization which is a direct
regularization method. The formulation of the problem in its unconstrained form is the

following (Chan & Mulet, 1995)

min f(x) = 58x ~ yI3 + aR(x) (3.46)

where « controls the trade off between a good fit to the data and an irregular solution. The
term R(x) is the regularization functional. It is often in the quadratic form R(x) = || Tx||3
where T = I or T =V, the identity matrix or the differential operator, respectively. The
latter regularization functional proposed by Rudin et al! (L'LQQd) is the Total Variation (TV)),

which is defined as
['V(u ——/ Vu ——/ \Juz +u? dzdy (3.47)
( ) Q| | Q 4

and adapts better to discontinuities. Intuitively Equation 3.47] gives a global measure of
the variation of the function with respect to its derivative. The Tikhonov regularization
with a [TV] term is equivalent to the Anisotropic Diffusion (AD) (Chan & Mulet, 1995;
|Rerm1a_&_Mali]s|, |122d, Snvder et alJ, |1295). The is demonstrated to be equivalent to
the [Led (@) and [Frost et al/ (IIM) adaptive filters in 'Yu & Acton dZQQj), where a me-
thod for speckle reduction using AD is proposed.

On the other hand, Tikhonov regularization can be expressed in the Bayesian framework

p(x]y) < p(yx)p(x) (3.48)

where the likelihood .
plvbe) xexp {5~} (349

and the prior
p(x) o< exp{—aR(x)} (3.50)
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are proportional to the first and the second term of Thus, the optimization of the
functional as the MADP]estimate of the posterior is equivalent to the Bayesian approach.
With these premises the Tikhonov regularization has the advantages of the Bayesian me-
thod, e.g. different prior models can be compared (Bouman & Sauer, 1993).

3.4.1 Image Restoration with Huber-Markov prior

The Bayesian frame opens the possibility to use a combination of prior models as
done in |£;_e_t1n_&_KarJ| (|2QQ1|) where two functionals are adopted with the identity matrix
and with the differential operator giving a Tikhonov regularization of the form

J(x) = |ly — Sx|* + A[[x][* + A3V |x]|[* (3.51)

where y is the noisy data vector, x is the true image, S is the SAR system transformation
matrix, A, \g are regularization parameters, |x| is the magnitude of the complex vector

x, V is a discrete approximation to the gradient and || - ||* denotes the /*-norm.
The second term ||x|| is proposed for the enhancement of the point-based feature, while
the third term ||V|x||| is for the enhancement of the region-based feature ,

). They both represent a prior information of the image model. The parameter % re-
presents the shape parameter of Generalized Gaussian pdf. If £ = 2 the Gaussian prior is
considered, if k£ = 1 the Laplacian prior is considered.

I extend the model proposed by (Cetin & Karl (2001) replacing the first term with the fol-
lowing model

P = e { =13 prai) } (652

ceC

called Huber-Markov and belonging to the Markov Random Field family, where p(-) is
the Huber function, d.(x) is a coefficient vector for the clique ¢, 7 is the temperature, and
the partition function Z is a normalization constant. The superscript notation (-)* in (3.52)
represents the transpose operator. The Huber function pr is given by

x2 x| <T
pr(x) = { T2 1 oT(x| - T) |x|>T (3:53)
where T is a threshold which defines the quadratic or linear behavior of the function. The

Huber function is shown in Figure
Thus, the Huber-Markov Random Field (HMRE) kernel in (3.52) becomes

1 N N 3
QxT)=—->_> > pr(dijm) (3.54)

i j m=0

The coefficient d; ; ,, belongs to the vector d, which is an approximate rotationally sym-
metric operator within a 3 x 3 grid as defined in Brady & Horn (1983). The vector x cor-
responds to the image pixels that are inside a window with a size of N x N pixels. The
image roughness, measured at pixel x; ;, is defined using second order derivatives, which
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A Huber function

= X
-T T
FIGURE 8 — Huber function.
are given by

dijo = Xij41— 2Xi5+Xij-1

1
diji = 5141 = 2% +Xiv1,5-1)
dija = Xi-1j = 2Xij + Xit1,

1
dijs = §(Xz‘—1,j—1 — 2% 5 + Xit1,5+1) (3.55)

The functions in (3.55) define a kernel proportional to the Laplacian but they are squared
and summed at each pixel location according to (3.54).

3.4.2 Restoration algorithm

The cost function using non-quadratic regularization and HMRF is given by

J(x) = |ly - Sx|?

NN 3 k)2
+)\%; >N (‘ > pT(di,j,m)‘ + e)
i 7 N m=0
NxN ’

A5 ) ((VIxDl* + )/ (3.56)

i

where ¢ > 0 is a small constant. The variable ¢ is introduced in order to avoid numerical
problems (e.g. division by 0). The minimization of expression (3.56) is given by

X = argminJ(x) (3.57)

which gives the solution for the noise free image.
Many different solutions for the cost function, as defined in (3.56)), are proposed in
) and |Q_e_tm_&_Karj (1201)_]]) The Hessian update scheme is the most
appropriate solution, because it operates using the complex-valued data, as proposed
in k;_e_tm_&_]&arj (1201)_]]) The solution of (3.57) can be computed iteratively using Hessian
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approximation E(x)

VJ(x) = —28"y+28fsx
BN AL, T))As () ()
+EkA3®H (x) VAL (x) VP (x)x (3.58)
where
, 1
A(Qx,T)) = dlag{ﬂﬂi(X,Tﬂ +E)1k/2}
, 1
Aax) = dlag{<|<V|x|>i|2+e>1k/2}
A3(di(x)) = diag {Qdm‘p + di7j71 + Qdm‘g + dm‘?g} (3.59)
®(x) = diag{exp(—jo(xi))} (3.60)

E(x) = 287S-— kA%lT—OAl(Q(x,T))
+EkA3®H (x) V! A (x) VP (x) (3.61)

where Q(x,T) represents the Huber-Markov Random Field, (-)¥ the Hermitian of the
matrix, (-)! the transpose operator, ¢(x;) denotes the phase of the complex number x;,
and diag(-) denotes the diagonal matrix, where the i-th element is given by the expression
inside the brackets.

The iterative procedure using Hessian approximation E(x) and the gradient V.J(x) is
given by

gt — () _ V[E (&(”))} 71V J()A((”)) (3.62)

where n denotes the current iteration, v is the step size, and V.J(%(™)) is the gradient.
The convergence constrain is ||x(™+1) — x()|]2/||x(")||? < § where § > 0 is a constant.

3.4.3 Parameter Estimation

Parameters \;, A2 and k can be estimated using the evidence framework as first pro-
posed in . (@) and recently used in Liet 3!] ). The posterior for \; is given

by

P(A]y, A2, k) o< p(y| A1, A2, k)p(Aq) (3.63)

where p(y|A1, A2, k) is called evidence and p();) is the prior. The evidence is given by
marginalization

p(y|A1, A2, k) = /p(y]x, A1, A2, k)p(x| A1, Ao, k)dx (3.64)

On the other hand, using the Laplace method, the integral can be approximated around
its maximum exploiting the Taylor expansion

(2m)N*

3.65

P(YI|AL, A2, k) >~ p(y[x, At, Ao, K)p(x| A1, Ao, k)
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where

p(¥]x, A1, A2, k)p(x| A1, Aoy k) = m exp <—%M(X,y[)\1, Ag)) (3.66)
where
M(x,y|A, 00, k) = |ly = Sx||* + A 1Q1 4+ A3Qs (3.67)
k/2
Q1 = . ZZ <‘ Z pT(dij,m)‘ + 6)
i i m=0
Q2 = Y (Vx> + &)/
Z() = (@r/a)N?
Z(N\s) = (2r/x)N/2

Thus, considering [3.66] and [3.65] we can approximate the log-evidence from [3.64] as fol-
lows

1
Inp(yld, A2 k) = —5lly - ST
——>\ 1Q1 — A%Qz
N 1
+—In27r — —In |E| (3.68)
2 2
Considering the Jeffrey’s prior for the parameter A\, A2 and k, respectively

p(A) o 1/ (3.69)
p()\g) XX 1/)\2
p(k) o« 1/k

the posterior is obtained by multiplying [3.68/and each of the priors in[3.691 The maximi-
zation of the posterior leads to

0 0 1
8Tlnp Aly) = =M@ — 28)\ In[E| - N (3.70)
0 10 1
B Inp(Aaly) =~ —Xo@Q2 — 290 In[E| - " (3.71)
19} 1 ~ 1 ~
B Inp(kly) = ——)\1Q1 InQq — Z>\2Q2 InQ2 + (3.72)
1 0 1
“o0r MEI-

where the derivative of the Hessian with respect to the each parameter is

0 —k‘)\l Al(Q(X,T))
o\ In [E| = E(x)

(3.73)
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) 2k X @ (x)VEAL (x) VP (x)
— In|E| = 74
) 1 ,10
—k:)\%EA’l(Q(x, T)) +
T
+ M2 (x) VI A (x) VP (x) +
+kr3pH (X)VtAlz(x)V‘I’(x)>
where
. ) 1 -
A% T)) = 5 A (Q(x,T)) = —5 A In A, (3.76)
AL) = L As(x) = — LA, mA (3.77)
2\X) = ok 2(X) = 9 2111 /A9 .
AQ(x,T)) = dia { ! } (3.78)
1 X, = .
LT + o)
As(x) = dia { = } (3.79)
2(x) = T — .
SN+ o)
From Equation[3.Z0lwe obtain for A
20k
N —Q1A
T
2 40k H 2 Hxt
—|—)\1 —A1 —40Q1S”S — 2](5)\2@1@ VA VP
T
—4SHS — 2kN3BIVIAL VD =0 (3.80)
Whereas, from Equation[38.7T] we obtain for Ao
MEQa®IVIA VP
+)2 <2k:<I>H VIAV® +4Q,SHS — @A§Q2A1>
T
+281s — @AfAl =0 (3.81)
T

where the two Equations[3.80land B.8T]can be solved as quadratic equations after a simple
variable replacement. The expression for the parameter k is more complicated and has to
be solved numerically.
The Huber-Markov threshold, introduced in B.53is set experimentally. In [Pan & Reeves
) it was set as 10% of the maximal value, therefore we propose to set I" as the mode of
the amplitude histogram. The computation of parameter k requires an initial parameter
k in order to compute the @); and Q2. We set it to & = 0.5. The parameters ¢, § and v were
set experimentally to e = le — 3, § = le — 3 and v = 1, respectively. The Equations[3.70]
B.7Tand B.72allows to estimate the parameters which maximize the evidence.
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3.5 Summary of the chapter

In this chapter the models for image restoration are presented. The Gamma{GMRF
model for despeckling and feature extraction, and the [MAP] functional with isotropic
for the real and imaginary parts are described, as well as, the algorithm for the
optimization of convex functionals and the [EM]algorithm for parameter estimation. The
model is extended in complex-valued domain in case of proper and in the less
simple case of improper random variables. Thus, the Tikhonov functional with Huber-
Markov prior is presented and because of its correspondence with Bayesian inference it
is solved as a[MAD] estimation problem. The optimization is done by a gradient descent
algorithm. The filter parameters are estimated through the evidence framework. The me-
thod allows restoration of the image while preserving the image features. The choice of
different priors can lead to the preservation of other features or, in the case of to
the estimation of texture parameters.
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Chapitre 4

Experimental Results

This chapter presents the experimental results obtained with the analyses
and the models presented in Chapter 3. The model selection by Rate Distortion
applied to Analyzing Window size and Model Order is presented first. Then, the
results on complex image statistical reqularization and complex-valued
data modelling are provided, followed by the presentation of the main results on
Tikhonov-like optimization for image despeckling. The proposed method is compa-
red with the most known adaptive filters.

4.1 Rate Distortion-based Model Selection

In data mining applications, the image analysis for feature extraction is an important
issue. The image characterization for compression and/or content labeling is based on
algorithms which are able to extract information from the image. Such information is
further embedded in information mining systems which provide the interface between
the data and the users. Most of the data analysis is made on analyzing window basis.
Therefore, the following problem arises : which is the optimal size of the[AW]? In order to
give an answer to this question we verify the method proposed in/Soccorsi et al! (2006) on
SAR images in order to find the optimal average size of the analyzing window for image
parameter estimation. The [AW] has to be large enough to ensure a reliable estimation
and small enough to adapt the data variability which in statistical sense means non-
stationarity. The basic steps of the procedure are the following, see flowchart in Figure

:

1. Extraction of the primitive features.

2. Feature clustering by vector quantization.
3. Computation of Euclidean distances in the clustered feature space.

Each point has an equivalent step under the point of view of information theory :

>

0 Vector
y —»  MBD /

4
4

Distortion ——» D(R)

Quantization

FIGURE 1 - Flowchart for Rate Distortion Model Selection.
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1. lossless source coding.
2. lossy data coding compression.
3. global distortion measure evaluation.

In order to extract primitive features, we filtered the image with the algorithm by
(2000). The analysis of the image is on window basis which is one of the
algorithm input parameters. A large[AW]makes the estimation more robust in stationary
areas but introduces an error when different areas are included. On the other hand, a
small [AW] adapts better to image diversity but does not ensure a sufficient number of
samples for a robust estimate. Thus, the optimal average[AW]has to be found.
The vector quantization was performed with a dyadic k-means which splits locally any
cluster in two new clusters and is faster than the classical generalized Lloyd algorithm :
at iteration [ the current number of clusters is 2'. The drawback of the dyadic k-means
algorithm is that only a power of two number of clusters is allowed at each iteration.
Eventually, the global distortion is computed in the clustered feature space

1< R
D== 0, — 0, 4.1
n;| | (41)

where a squared error distortion measure has been adopted. Further the same method
has been applied in order to estimate the optimal model order of the prior In
order to do this, we have to introduce the distortion of the source, because the hypothesis
of lossless data coding drops.

We want to find the optimal fitting but avoiding over-parametrization. In other words, by
increasing the number of parameters, the model fits better the data but, on the other hand,
we pay in terms of model complexity because the feature space cardinality increases.
Thus, the variance of the GMRF model is considered as source distortion term, and added
to the global distortion of the lossy compression.

The distortion curves are compared with the theoretical lower bound for a mixture of
Gaussian sources, which is the lower distortion curve. It was computed according to

,[1991b; S0 & Paliwal, 2003) :

D=> - Di(b) (4.2)
=1
with b
and .
Mz(HMOnfmi:Lnﬂn (4.4)
j=1

where ; is the weight dependent on the number of pixels belonging to the cluster, b;
is the number of bits assigned to i-th cluster, m is the number of clusters, n the space
dimension, \;; the j-th variance of cluster ¢ and K a constant which is approximately

%g for Gaussian sources.

We assume to represent the number of clusters for each curve with the same number
of bits : one bit for two classes, two bits for four classes, ..., seven bits for one hundred
twenty eight classes. The lower bound may not be reached because the Gaussian model is
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an approximation. The parameter optimization method is validated on the image shown
in Figure 2al of size 4096x 4096 pixels. The image has been previously subsampled by a
factor of two, thus the processed data size is 2048 x 2048 pixels. The image is a TerraSAR-
X Multi-Look Ground-range Detected (MGD) mode. Polarization HH, descending
orbit, ground range resolution ~1.35 m, azimuth resolution ~1.40 m. Cairo, Egypt 6th of
September 2007, 7 :16 :03 UTC.

Estimation of the optimal average size of the Analyzing Window The[MBDlalgorithm
,2000) has been executed for six different sizes of the analyzing window
from 11 x 11 up to 61 x 61 pixels with a step of ten pixels per side. The model order was
fixed to fourth order in this experiment. The input model order for the analysis is three
which leads to a feature space of cardinality eight, with : six spatial parameters, the norm
of the parameters and the variance of the model.
Then, the feature space was clustered from 2 up to 128 classes, which means 7 steps for
the dyadic version of k-means. The number of iterations was fixed experimentally to 30
iterations. The global distortion was computed at each iteration according to Equation
A1
The distortion curves versus the number of clusters are shown in Figure[3: they have an
asymptotic behavior and the curve slides down by increasing the window size.
The values of the distortion are shown in Table[2together with the[ENTlof the despeckled
image which is proportional to the inverse of the noise.
The distortion curves show a minimum for the analyzing window of size 61 x 61 pixels.
Therefore, because of the curves becoming closer starting from a size of 41 x 41 pixels
this choice of size is a good compromise between complexity and global distortion. The
of the despeckled image shown in Table 2] confirms that the optimal despeckling
is reached for an analyzing window of size 41 x 41. The method, applied on SAR data,
shows a different behavior of the distortion curves in the range of the considered [AW]
sizes, differently from [Soccorsi et all (2006) where it was successfully applied to assess
the optimal average [AW] size on optical data. This difference could depend on several
reasons ; either the feature extraction is not correctly coding the texture of the data, or
the minimum of distortion is reached for a larger [AW] size. However, the choice of a
larger analyzing window makes the computation time unacceptable, thus it may not be
considered as a reasonable solution. Further analysis is needed in order to understand the
asymptotic behavior of the distortion which at some point is expected to increase with
increasing size of the[AW]

Analyzing Window | Model Order | Computation time
11x 11 4 4h13’
21x21 4 6h39’
31x31 4 10h50’
41x41 4 13h45’
51x51 4 19h30’
61x61 4 23h14’

TABLE 1 — MBD computation time for Model Order 4 and different AW sizes. The algo-
rithm has been executed on a Sun machine with two CPU of 1.6 GHz.
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(b)

FIGURE 2 - (a) Data processed for the Rate Distortion-based estimation of the optimal
average[AWIsize and the optimal average model order. (b) The Fisher information-based
map of the local optimal model orders is provided. The grey scale corresponds to model
order 2 (black) up to model order 7 (white).
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Estimation of the optimal average Model Order For the following experiment, MBD|
has been executed with different model orders and the distortion has been computed
taking into acount also the distortion introduced by the source coding. The distortion
curves are shown in Figure d and the distortion values in Table Bl The minimum of the
distortion curve is reached for model orders 4, 5 and 6 and model order 4 is the best
compromise in term of complexity. Moreover, the [ENT] shown in Table [ reaches the
maximum for model order 4, which corresponds to the best removal of the noise in the
image.

This global result is compared with the map of the model order shown in Figure 2ol
The map of the local optimal model order has been obtained by model selection through
Fisher information. Although the averaging of the model order map is meaningless, ma-
thematically it is permitted and by this operation an expected value for the model order
of 4.2 is obtained. The value is consistent with the global analysis performed by Rate
Distortion and it is a further confirmation of the validity of the method.

0.15 T T T T T T T T T T T T T T T T T T T T T T T T T T T

Distortion

0.05

0.00 |

0 20 40 60 80 100 120 140
Number of clusters

FIGURE 3 — Curves of distortion for windows of sizes 11 x 11, 21 x 21, 31 x 31, 41 x 41,
51 x 51 and 61 x 61 are shown respectively from top to bottom.
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AW Number of clusters

size 2 4 8 16 32 64 | 128 ENL
11x11 | 13.06 | 8.77 | 6.30 | 4.65 | 3.49 | 2.62 | 2.00 | 67.94
21x21 | 11.16 | 7.57 | 5.31 | 3.94 | 293 | 2.24 | 1.71 | 97.90
31x31 | 10.38 | 6.97 | 4.73 | 3.55 | 2.61 | 2.01 | 1.52 | 101.2
41x41 | 10.03 | 6.68 | 4.45 | 3.22 | 246 | 1.87 | 1.40 | 104.7
51x51 | 991 | 6.53 | 427 | 3.04 | 2.33 | 1.76 | 1.30 | 99.53
61x61 | 995 | 6.48 | 418 | 2.88 | 2.18 | 1.63 | 1.21 | 92.78

TABLE 2 — Distortion values (x1072) and of the despeckled image for [AW] of 6 dif-
ferent sizes. The best compromise between complexity and distortion is to chose an [AW]
of size 41 x 41 pixel (highlighted in red) which has the maximum of ENL.
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OOBOV T T T T T T T T T T T T T T T T T T T T T T T T T T T

0.025

0.020

0.015

Distortion

0.010

0.005

0.000 L P R Bt U R T S S RS
0 20 40 60 80 100 120 140
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FIGURE 4 — Curves of distortion for model orders 2, 3,4, 5, 6 and 7. The curve reaches the
minimum for model orders 4, 5 and 6.

Model Number of clusters ENL
Order 2 4 8 16 32 64 | 128

2 2721220 (193|177 | 1.66 | 1.58 | 1.52 | 73.03
206 | 1.64 | 1.36 | 1.21 | 1.09 | 1.02 | 0.96 | 101.9
1.81 | 1.38 | 1.13 | 0.92 | 0.80 | 0.72 | 0.64 | 104.6
1.76 | 1.32 | 1.12 | 0.93 | 0.80 | 0.69 | 0.61 | 47.95
1.83 | 1.39 | 1.14 | 0.94 | 0.80 | 0.69 | 0.59 | 39.74
1.89 | 1.54 | 1.19 | 099 | 0.84 | 0.74 | 0.65 | 47.96

N| O\ G = | W

TABLE 3 - Distortion values (x10~2?) and [ENI of the despeckled image for different Mo-
del Orders. Model orders 4, 5 and 6 have comparable distortion values. The best choice
in term of complexity is model order 4 (highlighted in red).
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Image model Equation[3.11]
Prior model Equations[3.16land [3.16]
Optimization/Estimation | Steepest descent/[EM

TABLE 4 — Summary of the model equations and optimization/estimation method.

4.2 Preliminary results

The first results presented are based on a complex-valued [MADP|statistical regulariza-
tion and a Complex-valued [GMRE linear model. The two methods for parameter estima-
tion are going to be presented with an example of their application.

421 Complex-valued MAP Statistical Regularization

The complex statistical [MAD] regularization is based on the smoothing of the two
I and Q channels. It copes with additive noise. The equation involved are resumed in
Table @ The methods follow the flowchart shown in Figure 2l Before, the parameters
are estimated according to the [EM] algorithm [Il These parameters are used in the
estimate to smooth the real and the imaginary channels. Because of the A matrix in the
energy function of Equation[3.J0/the real and imaginary channels are coupled. Assuming,
for the test, that the real and imaginary parts have the same profile, only the real part is
shown in Figure Bal The image of 128x 128 pixels is partitioned in a mosaic of 32 x
32 pixels. For each tile the parameters are estimated. The parameter o and o estimated
from the original dataBalare presented in Table[5aland the correspondent image is shown
in Figure The boundary condition is managed giving to the parameters the mean
value of the parameters of the confining regions.
Thus, an additive noise with SNR=10 dB is summed to the image giving the data shown
in Figure Bbl The parameters estimated from incomplete data are presented in Table Bb]
and the respective parameter image is shown in Figure[6bl
The iterations for the estimated [MAP] are performed according to Equation B.23with the
parameter v = 10~°. The result after 30 iterations is shown in Figure[5d
The value of the parameter « is chosen experimentally as well as the number of iterations.
A higher value of a ensures a faster convergence but a less precise minimization of the
functional.
The results are shown on a synthetic complex image profile corrupted by additive noise
with SNR=10 dB and setting the value of the a = 107°.
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(©

FIGURE 5 — Example of regularization from synthetic real part data. Original profile (a).
Noisy profile with SNR=10 dB additive noise (b). Regularized profile after 30 iterations

().
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475|582 | 582 | 475
582|231 | 231 | 5.82
582|231 | 231 | 5.82
475|582 | 582 | 475

(@)

| Wl N =

1 2 3 4
3.51 | 4.32 | 440 | 3.59
432 | 1.87 | 1.90 | 4.37
437 | 1.64 | 1.66 | 4.34
3.59 | 437 | 432 | 3.57

(b)

| G| N -

TABLE 5 — Estimated parameter o from complete data (a) and incomplete data (b). The
values are multiplied by a factor 1073, The numbers in the first line and column refer to
the partition of the image.

() (b)

FIGURE 6 — Images of estimated parameters from original data (a) and noisy data (b).
They are used in the estimate. In the boundary the mean value of the parameters is
computed.
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Example on actual SAR data The method has been applied also on real data, shown in
Figure @ The noise variance has been estimated in a dark area of the data, where low
signal is supposed to be, characterized by SNR=78 dB. The parameter is set to o = 103
and the results are after 10 iterations. The estimated parameters are shown for real and
imaginary part in Tables [6al and [6bl The parameter images are shown in Figures[8aland
The 3D profiles of real part and imaginary part before and after denoising are shown
in Figure [Zl The correspondent images are shown in Figures [8d and I8d| for the original
and in Figures[8eland [8f after denoising. The resulting amplitude is shown in Figure
As expected the speckle is not removed, because the speckle noise model is multiplica-
tive and not additive. On the other hand, the appearance of the outputis a blurred image
where some small details appear lost.

The effect of the filter on the signal is plotted in Figure@where the normalized real part of
one line of the original Bdand of the output signal Belis shown. The signal appears smoo-
thed, but the strong variations are preserved, depending on the number of iterations.
The method allows to estimate the signal parameters and from them to regularize the
noisy signal. The approach permits to smooth real part and imaginary part, taking into
account their coupling, but it does not allow to cope with multiplicative noise. Thus, if a
despeckled version of the original data is needed other approaches have to be used.

1 2 3 4
0.127 | 0.116 | 0.234 | 0.111
0.141 | 0.314 | 0.264 | 0.123
0.149 | 0.214 | 0.236 | 0.143
0.161 | 0.138 | 0.136 | 0.152

(@)

| QN =

1 2 3 4
0.125 | 0.122 | 0.224 | 0.119
0.144 | 0.285 | 0.247 | 0.113
0.155 | 0.216 | 0.218 | 0.144
0.164 | 0.139 | 0.136 | 0.159

(b)

= QN =

TABLE 6 — Estimated parameters from real part (a) and imaginary part (b). The numbers
in the first line and column refer to the image partition.
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FIGURE 7 - 3D plot of real part and imaginary part. Original profiles (a) and (b) and
reconstructed profiles (b) and (c). The profiles appear smoothed.
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() (b)

(© (d)

(®) (h)

FIGURE 8 — Example of regularization of actual data. Estimated parameter
images from real part (a) and imaginary part (b). Original real part (c) and imaginary part
(d). Real part and imaginary part after regularization (e) and (f), respectively. Original
amplitude image (g) and amplitude image after regularization (h).
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FIGURE 9 - Signal profiles before and after regularization, thin line and thick line respec-
tively. The signal appears smoothed but the peaks are preserved.
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Image model

Equation[3.38]

Estimation

MAP

TABLE 7 — Summary of the model equation and estimation method.

4.2.2 Complex-valued [GMRE model

The analysis and the synthesis of the Complex-valued has been presented in
Section 3.3
It is applied to textures. Three textures have been selected and a mosaic has been
build with a residential area from a city, vegetation from a forest and grass from an agri-
cultural field, see Figure[I0al
The mosaic has been analyzed according to the flowchart shown in Figure [7l The para-
meters have been estimated using Equation[3.44land the variance Equation [3.45
The estimated model parameters are presented in Table [8l Except the variances, the va-
lues of the parameter vector 6 are really similar. However, the unsupervised k-means
classification, performed only on the parameter vector 6 is able to separate the textures
in three different classes, Figure 10bl
After retrieval the forward modeling has been performed according to the block diagram
shown in Figure[d The result is shown in Figure[I0d Even if the Complex-Valued
is able to distinguish the analyzed textures, the forward modeling does not lead to a re-
sult very similar to the original texture. This is because the high dynamic of the signal is
not well modeled by the Gaussian. Visually the distinction is mainly due to the o values.
Other models, e.g. auto-binomial, have chances to fit better the data ngbar_et_a]J, IZQQQ).

(1,1)

(1,0) (0,1) (—-1,1)

Class i, G, s i &
City | 0.20+j0.20 | 0.21+20 0.19+j19 0.17+18 | 102.0

Forest | 0.20+j0.20 | 0.21+j0.21 | 0.20+j0.20 | 0.17+j0.18 | 40.9

Grass | 0.20+j0.21 | 0.20+j0.19 | 0.20+j0.20 | 0.16+j0.16 | 45.6

TABLE 8 — Estimated parameter vector 0 and & from mosaic shown in Figure [10al
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(a) Stationary complex textures.

(b) Classified texture based on[GMRE| parameter vector shown in
Table[8l

(c) Simulated complex textures.

FIGURE 10 — Complex-valued [GMRE experiment. Original magnitude texture image (a).
Parameter vector 8 based k-means unsupervised classification (b). Forward modeling
based on the estimated parameters (c).
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Image model Equation[3.11]
Prior model Equation3.54]
Optimization/Estimation | Steepest descent/Evidence maximization

TABLE 9 — Summary of the model equations and optimization/estimation method.

4.3 Tikhonov Regularization

The proposed Tikhonov regularization method with Huber-Markov Random Field
(HMRE) prior has been compared with the most well-known adaptive filters : enhanced
Lee, enhanced Frost, Kuan, Gamma and MBD. The first experiment has been performed
on four synthetic textures, the second on four Brodatz texture images. The third
experiment was carried out with an optical[QBJimage and the last on actual[HR| TerraSAR-
X data.

The methods applied for the comparison of the filter are qualitative and quantitative. The
comparative measures taken into account are the following

- Preservation of the mean value.

Mean-Squared Error (MSE) E{|x — x|}

Structural SIMilarity (GSIM) index (Zhou Wang & Simoncelli, in.d)) SSIM(x, X).
Equivalent Number of Look (ENL) of the despeckled image x.

Mean value of the noise intensity E{y/x}.

- [ENTJ of the ratio image y /x.

- Visual comparison of the ratio image y/x.

Not all methods are applicable to all the experiments. For instance the definition of [ENTJ
in case of texture has no meaning and some methods are not practical without the refe-
rence image. Thus, they are not suitable in case of actual GAR|data experiments.

The filter with the lower [MSEH is preferred. On the other hand, the [MSE exhibits weak
performance for images (Wang & Bovik, 2009), thus the SSIMlis also used. It is a quality
measure of an image which is compared to another image which is supposed to have a
perfect quality. It is computed as follows (Wang et al, 2004;IChannappayya et al), 2008)

(2uxpix + c1)(20xx + ¢2)
(u% + 13 +c1)(0F + 0% + c2)

SSIM(x,%X) = (4.5)

where x is the reference image and x is the despeckled image, 1+ and o are the mean and
the variance, respectively, and c¢; and ¢, are two constants introduced to avoid numeri-
cal problems when the values of mean and variance are close to zero. The index
approaches one when the selected image approaches the referenced one. Therefore, the
filter whose[SSIMlindex is closer to one is preferred.

The mean value of the image has to be preserved by the filter because the signal expecta-
tion doesn’t have to be modified by the filter processing.

The[ENL] of the despeckled image is computed by

E{x}
ENL=—"+"—"— 4.
E(x — Ex)? (4.6)
where x represents the signal intensity. It is also a classical method for filter comparison

but it may be applied only if a sufficiently large uniform area is available in the data.
The expectation of the ratio image has to be one for negative exponential distributed
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noise intensity with unitary noise variance, thus the filter which approaches more this
value has better performance than the others.

The[ENT]of the ratio image has to be equal to one in the ideal case.

The ratio image is shown for qualitative visual comparison. In case the edges are not well
preserved the ratio shows patterns due to the not optimal filtering procedure.

The condition of convergence is chosen as the minimum reached and the intial va-
lue for the parameter £ is set to 0.9. The threshold 7 of the Huber function has been fixed
as the mode of the histogram of the data. The number of iterations is chosen as condition
of convergence in case of actual SAR|data because the reference image for computing the
is not available.

The choice to process and test images with [ENT}1 is a critical point because it puts on
probation the filters performance but it allows to compare the developed filter which
works on complex-valued data with the other filters which work on detected data. The
difference on the data relies on the non linear transformation from Cartesian to polar
coordinates. In the following, the terms ratio image and speckle image are used as alter-
native terms.

4.3.1 Simulated texture

The first experiment has been performed on synthetic textural images synthesized by
the model. The images, shown in Figure [[Ta] have been generated with the pa-
rameters shown in Table Each image has a size of 256 x256 pixels. The noisy images,
corrupted with ENL = 1 speckle noise generated according to Section [L.8] are shown in
Figure[11bl The despeckled images are shown in Figure[[2 together with the original and
the noisy images for comparison. The ratio images are shown in Figure[I13] The measures
for the filter comparison are available in Table [I1]

From inspection of the despeckled image in Figure[I2lit is visible that the Lee, Frost, MBD
and the proposed method have similar results, while the Kuan and Gamma filters do not
remove the noise as well as the others. On the other hand, all the images ratio show
patterns especially visible in the second, third and fourth texture, where the numbering
starts bottom left counterclockwise. The MBD filter shows an improvement in case of tex-
ture three because no pattern is visible in the image ratio in Figure [13¢l

The measures in Table [T show that the mean value is well preserved by all the filters
except MBD which is overestimating it. The best MSE is obtained with the proposed me-
thod except in case of texture four where the best MSE is reached with MBD and the
HMRF with Tikhonov regularization has performance similar to the enhanced Lee filter.
In case of SSIM index all the filters do not exhibit excellent performance. A possible expla-
nation is because none of the filters is able to handle with texture except MBD. However
the latter does not outperform the others filters in term of SSIM index. In case of texture
one the best value is reached by Frost and Gamma filters followed by the enhanced Lee
filter. For texture two, three and four the best index is obtained with Kuan filter while the
others exhibit poor performance. This is probably due to the fact that a low speckle remo-
val, see Figure[I3d corresponds to a preservation of the texture. If the image is smoothed
not only the noise but also the texture is removed. In term of expectation of the ratio
images the MBD filter shows always good performances; for all textures the mean value
of the speckle intensity is close to one. The Kuan filter is again at second position. The
equivalent number of look of the ratio is good for all the textures in case of enhanced Lee
filters, followed by the proposed method and MBD. The Gamma filter and the enhanced
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Frost have a good result in case of texture one, but a really poor result in the other cases.
The Kuan filter exhibits the worse results because it strongly overestimates the ENL of
the ratio images in all cases. The proposed method converges to the minimum MSE after
six iterations in case of texture one, after three iterations in case of texture three and after
two iterations for texture two and four. This low number of iterations is due to the fact
that the removal of speckle in textured images is a compromise between noise reduction
and texture preservation which are two opposite requirements.

(1,0) | (0,1) | (1,1) | (—=1,1)
01 02 03 04
T1 | 0.125 | 0.125 | 0.125 | 0.125
T2 | 0.21 0.15 0.30 -0.12
T3 | 0.33 032 | -0.21 0.06
T4 0.3 0.5 -0.15 -0.15

TABLE 10 — Textural parameters of synthetically generated textures shown in Figure[ITal
From bottom left counterclockwise : T1, T2, T3 and T4. The coordinate of the parameter
is given with respect to the central pixel and considering a symmetric odd neighborhood

function.
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FIGURE 11 - Experiment with synthetic texture generated with the parameters shown in
Table From bottom left counterclockwise : T1, T2, T3 and T4. Original texture images
(a) and corrupted by ENL=1 speckle noise (b).
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FIGURE 12 — Experiment with [GMRE texture corrupted by speckle noise with ENL=1.
Original images (a), noisy images (b), despeckled with enhanced Lee (c), enhanced Frost

(d), Kuan (e), Gamma (f), (g) and [HMRH (h).




120 4. EXPERIMENTAL RESULTS

(a) (b)

(© (d)

(e) ()
FIGURE 13 — Experiment with texture corrupted by speckle noise with ENL=1.

Ratio images : enhanced Lee (a), enhanced Frost (b), Kuan (c), Gamma (d), M (e) and

[HMRH (f).
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Tl = 150253 | E{%X} | MSE | SSMI | E{y/%} | ENL{y/%}
e. Lee 15047 | 1292.92 | 056 | 121 1.16
e. Frost 15051 | 127496 | 058 | 1.25 1.02
Kuan 15053 | 2727.37 | 032 | 0.94 3.66
Gamma 150.54 | 1280.25 | 0.58 | 1.26 1.00
MBD 159.67 | 1803.56 | 0.31 | 1.06 1.13
HMRF 15043 | 1136.25 | 0.36 | 1.25 0.95
T2 1 = 157.833
e. Lee 157.64 | 277462 | 024 | 1.177 0.98
e. Frost 157.62 | 3051.52 | 0.20 | 1.36 0.66
Kuan 157.72 | 341499 | 041 | 092 2.57
Gamma 157.74 | 3183.07 | 0.15 | 1.41 0.59
MBD 169.87 | 3677.60 | 0.09 | 1.07 0.82
HMRF 157.71 | 2673.12 | 0.16 | 1.17 0.88
T3 1t = 159.017
e. Lee 159.30 | 1927.62 | 024 | 1.22 1.06
e. Frost 159.31 | 1957.28 | 024 | 1.30 0.85
Kuan 159.36 | 310093 | 0.36 | 0.94 3.39
Gamma 159.32 | 1982.22 | 023 | 1.31 0.81
MBD 170.93 | 2651.50 | 0.12 | 1.08 0.95
HMRF 159.310 | 1798.09 | 020 | 1.25 0.91
T4 11 = 156.524
e. Lee 15529 | 241220 | 0.38 | 1.14 1.00
e. Frost 155.99 | 2582.23 | 0.44 | 1.30 0.69
Kuan 156.55 | 3301.46 | 0.48 | 0.90 2.60
Gamma 156.58 | 2837.16 | 0.32 | 1.35 0.61
MBD 163.90 | 2275.76 | 0.40 | 1.037 1.27
HMRF 156.548 | 2449.55 | 0.29 | 1.14 0.88

TABLE 11 — Measures for the comparison of despeckled [GMRE textures. From bottom left
counterclockwise, with reference to Figureﬂj] : T1, T2, T3, T4.

4.3.2 Brodatz textures

The second experiment has been performed on optical images belonging to the Bro-
datz texture archive (m, @). The selected images, the originals and the ones cor-
rupted by speckle noise are shown in Figure[I4l They have been chosen in order to have
a selection of different type of textures. The texture number one represents a linear struc-
ture made by strokes; the second texture is a herringbone regular structure, the third
is a round structure made by rubbed stones and the last is a marble texture. The Bro-
datz images are numbered from bottom left counterclockwise. Each image has a size of
256 <256 pixels. The noisy images have been generated according to the procedure des-
cribed in Section[[.8 with ENL=1.

The despeckled images are shown in Figure The ratio images for qualitative compa-
rison are shown in Figure [16] while the measures for the comparison of the filters are
presented in Table

The histograms of the amplitude of the noisy image and of the despeckled image with the
enhanced Lee filter and with the proposed method are shown in Figure [[7al In Figures




122 4. EXPERIMENTAL RESULTS

[17b]l and [I7q] the histograms of real and imaginary before and after despeckling with the
proposed method are shown. The histograms, shown in Figure[17] exhibit interesting be-
haviors. Referring to Figure [I7al the shape of the enhanced Lee amplitude histogram is
similar to one of the noisy image, while the amplitude histogram with the proposed me-
thod has a Gaussian-like shape. This is consistent with the histogram of multilook data
whose pdf is a Gamma distribution. The real and imaginary part histograms, shown in
Figures[I7bland [I7c] show a symmetric Gamma shape with two modes. This is due to the
fact that close to the origin is the speckle noise which is removed.

Comparing the despeckled images with the original images it appears that the enhanced
Lee, enhanced Frost, MBD and the proposed method perform similarly and better than
the Kuan and the Gamma filters. The proposed method is in the second place, after the
MBD, by comparing the ratio image patterns, see Figures[I6eland [16f] Referring to Table
[12] all the filters preserved reasonably the mean value. The proposed method exhibits the
best MSE for the fourth image while it performs similarly to the enhanced Lee filter for
images two and three. The HMREF filter is in the third position after the enhanced Lee
and the enhanced Frost in case of image one. They outperform the other filters in term of
SSIM index for the first image, while the Kuan filter exhibits the best index measure in
case of image two and three. The enhanced Frost performs better in term of SSIM index
in case of image four. The proposed method has the second best SSIM index in case of
image two. The MBD filter performs really good in the expectation of the speckle image,
which is close to one for all the images. The enhanced Lee performs slightly better only in
case of image two. The proposed method exhibits an acceptable mean value for the ratio
image but it tends to overestimated the expectation of the speckle noise in all the images.
The equivalent number of look is better for the enhanced Lee filter except for image four
where the Gamma filter performs slightly better.

The proposed method converges after two iterations in case of image one, two and three
and after four iterations for the fourth image.
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From bottom left counterclockwise B1,

B2, B3, B4. Original images (a) and corrupted by speckle noise (b).

Experiment with Brodatz textures.

FIGURE 14
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FIGURE 15 — Experiment with Brodatz texture corrupted by speckle noise with ENL=1
shown in Figure [[4bl Original images (a), noisy images (b), despeckled with enhanced
Lee (c), enhanced Frost (d), Kuan (e), Gamma (f), (g) and the proposed method (h).
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(b)

(d)

(e) (f)

FIGURE 16 — Experiment with Brodatz texture corrupted by speckle noise with ENL=1.
Ratio image : enhanced Lee (a), enhanced Frost (b), Kuan (c), Gamma (d), (e) and
the proposed method (f).
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Bl =127.032 | E{X} | mse |SSMI | E{y/X} | ENL{y/X}
e. Lee 12531 | 1611.66 | 055 | 1.08 1.07
e. Frost 12635 | 1696.21 | 057 | 1.23 0.67
Kuan 128.08 | 270541 | 0.45 | 0.88 2.50
Gamma 128.45 | 2033.89 | 051 | 1.27 0.56
MBD 131.04 | 2057.95 | 0.30 | 1.04 1.32
HMRF 128.05 | 1940.59 | 0.33 | 1.18 0.82
B2 1 = 109.550
e. Lee 192.07 | 149840 | 027 | 1.03 1.03
e. Frost 107.47 | 1580.76 | 0.25 | 1.25 0.58
Kuan 109.02 | 1896.36 | 0.55 | 0.86 2.16
Gamma 109.64 | 1961.16 | 0.18 | 1.32 0.46
MBD 108.96 | 1703.58 | 0.31 | 1.05 1.27
HMRF 108.99 | 1532.28 | 0.38 | 1.11 0.65
B3 12 = 90.2339
e. Lee 8891 | 884361 | 039 | 1.11 1.03
e. Frost 89.20 | 923286 | 053 | 127 0.68
Kuan 89.65 | 1223.63 | 0.55 | 0.90 2.64
Gamma 89.82 | 103555 | 048 | 1.31 0.57
MBD 91.23 | 106850 | 029 | 1.04 1.23
HMRF 89.61 | 895.82 | 035 | 1.14 0.84
B4 11 = 104.012
e. Lee 100.828 | 828234 | 0.63 | 1.20 1.13
e. Frost 100.905 | 816.941 | 0.65 | 1.26 0.95
Kuan 101.024 | 173890 | 0.45 | 0.94 3.32
Gamma 101.071 | 832.590 | 0.62 12 0.91
MBD 106331 | 1097.71 | 055 | 1.04 1.23
HMRF 10091 | 72026 | 0.23 | 1.24 0.86

TABLE 12 — Measures for the comparison of despeckled Brodatz textures. From bottom
left counterclockwise, with reference to Figure@: B1, B2, B3, B4.
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FIGURE 17 - Histograms of amplitude images (a) : noisy data (continuous line), enhan-
ced Lee filtered data (dotted line) and HMREF filtered data (dot-dashed line). Histograms
of real part (b) and histograms of imaginary part (c) : noisy data (continuous line) and
HMREF filtered data (dot-dashed line)




128 4. EXPERIMENTAL RESULTS

4.3.3 Optical image

The third experiment has been performed on simulated data. The simulated
image has been obtained by an optical image acquired over Maribor city, Slovenia,
on 2nd of August 2007, 16 :21 :39 Coordinated Universal Time (UTC). The panchromatic
band with a resolution of 0.61 m has been processed. The tile has been sub-sampled by
a factor of 2 in order to obtain the desired resolution, ~1.2 m. The final size of the image
is 1024 1024 pixels. It has been corrupted with uncorrelated speckle noise simulated ac-
cording to Section [L.8| and ENL=1. The original image and the noisy one are shown in
Figure [18] (a) and (b) respectively. The despeckled images are shown in Figures[19 The
ratio images for visual comparison are shown in Figure The measures for the quanti-
tative filter comparison are presented in Table[13
Comparing the despeckled image it is visible that the filters perform similarly. The enhan-
ced Lee, enhanced Frost and the Gamma filter results are really similar. The Kuan filter
does not remove the speckle as well as the others. The image despeckled with the MBD
method appears really similar to the original while the image denoised by the proposed
tilter appears slightly blurred. On the other hand the blurring effect can be handled re-
ducing the number of iterations. The ratio images confirm the results. The MBD exhibits
reduced pattern compared with the other filters which perform similarly. The measure-
ments show that the mean value is well preserved for the enhanced Lee, Kuan, Gamma
and HMREF filters, while it is underestimated by the enhanced Frost and overestimated
by the MBD filter. The proposed method has the second best MSE after the enhanced Lee
filter, followed by the enhanced Frost, Gamma, MBD and Kuan which exhibits the worst
value. The MBD shows the best SSIM index followed by the enhanced Lee, the enhan-
ced Frost, Gamma, Kuan and HMREFE. The mean value of the speckle image is better in
case of MBD filter and Kuan filter. The enhanced Lee is in the third position followed by
the proposed method, the enhanced Frost and the Gamma which perform similarly. The
equivalent number of looks of the ratio image is better for the enhanced Lee, while the
MBD is in the second position. The enhanced Frost, Gamma and HMREF filters underes-
timate the speckle noise since the number is lower than one. The Kuan filter performs
worse compared with the others. The simulated image has uniform areas where it is
possible to estimate the equivalent number of looks of the despeckled image as a further
measure of comparison. The higher ENL is obtained with the MBD and the proposed
method while the Gamma, the enhanced Frost and enhanced Lee perform similarly. The
lower ENL is obtained with the Kuan filter. The proposed method reaches the minimum
MSE after five iterations.

i =542.645 | E{X} | MSE | SSMI | E{y/X} | ENL{y/X} | ENL{x}
e.Lee | 541.03 | 300195 | 0.879 | 1.18 1.10403 19.01
e.Frost |537.83 |32212.1 | 0.875 | 127 | 0.850382 | 20.09

Kuan 542.75 | 50653.6 | 0.855 0.93 3.34667 3.09
Gamma 543.43 | 32945.3 | 0.872 1.28 0.771241 20.13
MBD 572.58 | 41241.5 | 0.892 1.04 1.18 45.74
HMRF 543.58 | 30564.1 | 0.848 1.27 0.66 45.62

TABLE 13 — Measures for the filter comparisons for the simulated [SARlimage.
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()

FIGURE 18 — Experiment with a syntheticSARlimage, simulated from[QB|data. The size of
the image is 1024 <1024 pixels. Panchromatic band, resolution 0.61 m, Maribor, Slovenia,
2nd of August 2007, 16 :21 :39[UTC Original image (a) and corrupted with speckle noise

(b).
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FIGURE 19 - Experiment with a synthetic image, simulated from [QB|data. Original
image (a), noisy image (b), despeckled with enhanced Lee (c), enhanced Frost (d), Kuan
(e), Gamma (f), (g) and the proposed method (h).
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(a) (b)

(© (d)
(e) (f)
FIGURE 20 - Experiment with a synthetic image, simulated from [QB] data. Ratio

image : enhanced Lee (a), enhanced Frost (b), Kuan (c), Gamma (d), (e) and the
proposed method (f).
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4.3.4 SAR image

The last experiment is performed on actual data. It has been performed on a

TerraSAR-X [HRISL] mode image. It has a resolution of ~1.5 m in range and ~1.1 m in
azimuth. The processed tile has a size of 1024x 1024 pixels and is shown in Figure 211
The same area of the optical image shown in Figure [18a] has been selected. The despe-
ckled images are shown in Figure 22] The ratio images are shown in Figure 23 and the
measures for quantitative filter comparison are presented in Table [[4 Differently from
the simulated image the actual SARlimage has correlated speckle. A zoomed area of the
despeckled and ratio images is shown in Figures 24land 25l for better visual comparison.
In Figure 22]it is visible that the enhanced Lee, enhanced Frost and the Gamma filters
perform similarly with exception of the Kuan which does not remove satisfactorily the
noise. The MBD and the proposed method show a better removal of the noise. All the
ratio images show patterns with a slightly inferior level for the MBD. The zoomed area
shows better in detail the results compared with the original image. While in case of en-
hanced Lee, enhanced Frost and Gamma similar performances are confirmed as well as
the poor performance of the Kuan filter, the MBD exhibits artifacts in the uniform area
and along the edges. The proposed method shows the smoothest area but the blurred
effect of the edges is also visible.
The comparative measurements are reduced to the ones that do not need the reference
image which in this case is not available. Thus, it is possible to compare only the mean
value of the ratio image, the ENL of the speckle noise and the ENL of the despeckled
image. The best expectation of the ratio image is obtained by the MBD followed by the
Kuan, the enhanced Lee, the enhanced Frost, the Gamma and the proposed method. The
best equivalent number of looks of the speckle noise is given by the Gamma filter, the
enhanced Frost, the HMRF, the enhanced Lee and the MBD. The Kuan filter highly ove-
restimated it. The better ENL on the despeckled image was obtained with the proposed
method after 5 iterations. The MBD is at second place. The enhanced Frost and Kuan
perform similarly followed by the enhanced Lee. The Gamma filter is ranked in the last
position.

E{y/x} | ENL{y/x} | ENL{x}
e. Lee 1.17 1.26 7.91
e. Frost 1.21 1.08 8.07
Kuan 0.94 3.56 8.12
Gamma 1.22 0.99 2.60
MBD 1.02 1.52 17.16
HMRF 1.29 0.75 21.71

TABLE 14 — Measures for the filters comparison of the actual SARlimage.




4.3. TIKHONOV REGULARIZATION 133

FIGURE 21 — Experiment with an actual [SAR image. TerraSAR-X[HRISLl mode. Polariza-
tion HH, descending orbit, ground range resolution ~1.5 m, azimuth resolution ~1.1 m.
Maribor, Slovenia, 29th of October 2008, 5 :01 :06 UTC.
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FIGURE 22 — Experiment with an actual image. Original image (a), despeckled with
enhanced Lee (b), enhanced Frost (c), Kuan (d), Gamma (e), (f) and the proposed
method (g).
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(@) (b)

() (d)

(e) ®
FIGURE 23 — Experiment with an actual image. Ratio image : enhanced Lee (a), en-
hanced Frost (b), Kuan (c), Gamma (d), [MBDI(e) and the proposed method (f).
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FIGURE 24 — Experiment with an actual image. Zoom images. Original image (a),
despeckled with enhanced Lee (b), enhanced Frost (c), Kuan (d), Gamma (e), MBD (f)
and the proposed method (g).
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(b)

(d)

(e (®)

FIGURE 25 - Experiment with actual an[SARlimage. Zoom of the ratio images : enhanced
Lee (a), enhanced Frost (b), Kuan (c), Gamma (d), [MBDI (e) and the proposed method (f).
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4.4 QObservations and Discussion

The optimal parameter estimation is successfully performed by the Rate Distortion
curve because of the connection with the Bayesian frame model selection. The method is
a global approach that may be useful in data mining applications for content interpreta-
tion. The optimization of the Analyzing Window size and the Model Order are useful for
optimal feature extraction in order to develop Image Information Mining System.

The statistical regularization allows to model the complex signal by parameter estimation
and to smooth the real and imaginary channels. It may be useful in 3D signal reconstruc-
tion, e.g. in tomographic applications.

The complex-valued data model may model the complex signal by estimating the
complex model parameters. It may be applied for target recognition because of its ability
to model phase patterns, but it does not directly apply to stationary textured areas.

The Tikhonov regularization outperforms the other filters in case of MSE measure and
has comparable results with the other measures and by visual inspection of the despe-
ckled image and ratio image. On the other hand, a prior model which fits better the
synthetic generated texture might improve the results. The GMRF model is planned to
be used as a prior in future experiments.

In case of the experiment with Brodatz texture, the proposed method does not outper-
form the other filters but behaves satisfactorily with the actual texture.

The simulated image is well despeckled by the proposed method and all the mea-
sures are consistent.

The best results on the actual SAR|data are reached with the proposed method in term of
ENL.

The complexity of the methods, which are all programmed in C++, have been measured
with the execution time on a machine with an Intel core II 2.0 GHz processor. For all
adaptive filters a window a size of 5 x 5 pixels was used. For[MBDla window of 41 x 41
pixels was adopted because it was demonstrated to be the optimal average [AWlsize. The
[SARlimage, shown in Figure .34 with 1024 x 1024 pixels was used for this purpose. The
[MBDI method runs for 250 s, enhanced Lee for 1.5 s, enhanced Frost 1.8 s, Kuan for 1.1 s,
Gamma for 1.3 s and the proposed method for 18 s. The most computationally deman-
ding method is the[MBD) because it estimates parameters of the GMRE.

4.5 Application : Classification

The extracted features have been validated with different methods and tools. An un-
supervised classification of the GMRF model parameters is compared with MBD para-
meters classification. The image despeckled with the proposed method is classified using
a Support Vector Machine (SVYM) where the training data was selected using a Semantic
Search Engine (SSE) tool.

4.5.1 Unsupervised K-means Classification

The Generalized Lloyd Algorithm (GLA), also known as K-means in clustering litera-
ture, is the generalization in a multidimensional space of the Lloyd Algorithm (LA) for
designing a scalar quantizer dG_etsh.(L&_GJ:a;ZI, 1991).

The algorithm is based on the iterative use of the code book modification operation and
it is based on the following steps :
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1. Begin with an initial code book C,,, = {y;;i =1,...,N}.

2. Find for code book C,,, = {y;;7 = 1,..., N} the optimal partition into quantization
cells to form the nearest neighbor cells (Nearest Neighbor Condition) :

R; = {a: d(z,y;) < d(@,y,); all j # i} (47)

if d(x,y;) = d(z,y,) for one or more j = i, then assign x to the set 1?; for which j is
smallest.

3. Find Cy, 41 = {cent(R;);i = 1,...,N}, the optimal reproduction alphabet (code
book) for the cells just found. Where cent(-) is the center of the cell (Centroid Condi-
tion).

4. Compute the average distortion for C,,41. If it has changed by a small enough
amount since the last iteration, stop. Otherwise set m + 1 = m and go to Step 2.

Each application of the steps two and three (Lloyd Iteration) must reduce or leave un-
changed the average distortion.
The stopping criteria usually are :

- the maximum number of iterations;

- the center positions do not change (or the distortion does not decrease) significantly

from the current iteration to the next one;

- the distortion error, ¢ = |D; 1 — D;, is less or equal to the fixed threshold.
They can be used singularly or in combination in order to obtain the desired interruption
mode.
The ESAR-X airborne scene acquired over the city of Dresden, shown in Figure has
been analyzed with the model in Section The model features have been extracted
and then they have been classified by the k-means unsupervised classifier.
The amplitude and the phase of the scene are shown in Figure[26] while the classification
results, with the complex-valued GMRF and the algorithm, are shown in Figures
and 27b) respectively.
According to the content of the image five classes have been chosen for the classification :

- black : water, shadows and dark areas;

- blue : vegetation;

- green : residential area;

- orange : buildings;

- yellow : very strong scatterers.
The first comparison of Figures and 27b] shows that the resolution of the classifica-
tion done with the complex-valued GMREF is improved. The confusion matrices for the
classification with GMRF and with MBD are shown in Tables[15]and [16] respectively. The
classes for MBD case are not well separated : the water and the dark areas are classified
as vegetation. The latter is not separated from the residential area. The performance for
buildings and strong scatterers are poor. The confusion matrix for the GMRF model gives
better results especially for buildings and strong scatterers. Water is also much better se-
parated while vegetation, differently from the MBD case, is merged with the residential
area.

4.5.2 Supervised Support Vector Machine (S§VM) Classification

The despeckled image with the Tikhonov regularization algorithm has been inclu-

ded in a Semantic Search Engine (SSE) (Costache & Datcu, 2006; ICostache et all, 2006;
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(b)
FIGURE 26 — ESAR-X scene acquired on the city of Dresden : (a) amplitude and (b) phase.
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(b)

FIGURE 27 — K-means classification results for five classes : black (water), blue (vegeta-
tion), green (residential area), orange (building) and yellow (strong scatterers).
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Yo Water | Vegetation | Residential area | Buildings | Strong scatterers
Water 67 28 5 - -
Vegetation 29 63 8 - -
Residential area 32 9 59 - -
Buildings 11 11 - 78 -
Strong scatterers - - 9 18 73

TABLE 15 — K-means unsupervised classification confusion matrix for complex-valued

GMRE
% Water | Vegetation | Residential area | Buildings | Strong scatterers
Water 28 61 11 - -
Vegetation 27 73 - - -
Residential area 18 41 41 - -
Buildings 24 29 12 35 -
Strong scatterers 16 11 11 17 44

TABLE 16 — K-means unsupervised classification confusion matrix for MBD.

Costache & Datcu, |ZOD_Z|) The used image belongs to a SLC TerraSAR-X scene acquired
over the Chinese region of Sichuan affected by the earthquake in May 2008, resolution
1.6m in azimuth and range.

In order to validate the algorithm, both the original and the despeckled image have been
separately ingested and classified by a It is an interactive training/classification tool
which can be used for supervised classifications using a Support Vector Machine (SVYM).
The diagram of the classification is shown in Figure The tool has a Graphic User
Interface (GUI) interface shown in Figures and 28bl

The results of the classification of buildings, fields and roads are shown in Figures [29)
for the original and despeckled image. The precision of the classifications is presented in
Table [I7for each class.

The classification of the building, shown in Figures29dand 29d] is improved after despe-
ckling, as shown in Table [I7bl and [I7d It goes from 27% to 31% while the false negative
are decreasing from 5% to 1%.

The improvement of the results for the class fields is similar to the one of the class buil-
dings. It goes from 34% to 49% and the false negative are decreasing from 26% to 11%, as
shown in Figures and 291, and in Tables [17d]and [[7¢l

The classification of the roads is better after despeckling but the false positive percentage
is worse. The class roads is merged with fields and buildings as visible in Figure29hland
differently from Figure 29g] This depends on the fact that after despeckling the shadow
is much more similar to the streets. On the other hand, in order to extract roads some
dedicated software or line detectors are recommended.

The classification with the tool is globally improved after denoising, a significant
amelioration depends on the despeckling algorithm but also on the parameters included
in the classification. In the specific case the tool uses mean, variance and total variation,
but a variable combination of the parameters might be used in order to adapt to the se-
lected class.
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FIGURE 28 —[SSH tool : [GUIl (a) and (b) (c) classification diagram.
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(® ' W

FIGURE 29 - Original image (a), despeckled image (b). Classification results for buildings,
tields and roads, second, third and fourth row, respectively, for the original image and for
the despeckled image left column and right column respectively.
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Confusion matrix
True Positive | False Positive
False Negative | True Negative

(@)

Building Building
original image despeckled image
27 1 31 1
5 67 1 67
(b) (©)
Fields Fields
original image despeckled image
34 1 49 2
26 39 11 38
(d) (e)

Roads Roads
original image despeckled image
7 21 9 52
3 69 1 38

(®) (®)

TABLE 17 — Confusion matrices in % for the SSE classification for the original image (left
column) and the despeckled image (right column). First line : building classification (b)
and (c); second line : fields classification (d) and (e); third line : roads classification (f)

and (g) .
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4.6 Conclusions

The Rate Distortion has been applied on the existing[MBDlalgorithm for despeckling
and feature extraction. Since the algorithm is implemented in an [IM] system the pro-
blem of optimal feature extraction arises. It has to be approached taking into account the
large amount of data to be handled by the system, thus a global, simple and fast method
is needed. The solution was found in the context of information theory and processing
measuring the error in coding a source of data.

The lossy data compression is applied by dyadic k-means in the hypothesis of a mixture
of Gaussian source distributions. The optimal average size of the Analyzig Window (AW)
allows to have a robust parameter estimation for image feature characterization. The op-
timal average Model Order (MQO) permits to avoid the selection of a model which over
parametrized the data.

On the other hand, the result depends on the data diversity and the number of classes
coded by the clusters. The optimization is performed in the hypothesis of stationary data
inside the analyzing window. This hypothesis is not always respected and to overcome
this problem an adaptive Analyzing Window might be used.

The result on[MO]selection is compared to the local map of model order selected by the
Fisher information. The map shows how the[MQlis related to the image content. Uniform
areas or areas which show low complexity are better represented by a low model order,
while textured areas and areas which show high variations are better represented by a
high model order. The global Model Selection performed by Rate Distortion appears to
be a feasible solution because the local adaptive selection is computationally deman-
ding.

In Section 4.2} the analysis of complex-valued data starts with the extension in the com-
plex domain of the [MADP| estimate for the statistical regularization of the real part and
imaginary part. The linear image model is regularized under the constrain of the a priori
probability term. The latter is given by a Gibbs distribution, which is an exponential dis-
tribution whose exponent, the so-called energy function, characterizes the different MRF
families. The parameter of the prior are estimated from the incomplete data by an
procedure, thus the parameter images are used to find the solution of the ill-posed pro-
blem of estimating the image from the noisy data.

ThelGMRE| characterized by a quadratic energy function, is able to describe the local cha-
racteristics of the images. Although the[GMRE are not the best choice as far as it concerns
the reconstruction of profiles with sharp discontinuities, they exhibit appealing proper-
ties because the posterior is convex and Gaussian. Actually, it is possible to analytically
compute the gradient and to minimize the functional without falling in local minima.
The estimated parameter image appears really similar because the real and imaginary
channels are uncorrelated but not independent. The parameters give a measure of the
variation occurred in the signal, thus they might be used to label the image content. The
amplitude image appears blurred, but no artifact is generated by the filter. The chosen
[GMRE model family is isotropic, others models, characterized not by a scalar but a para-
meter vector are able to estimate directional parameters which can capture structures at
different scale and orientation.

This is the case of the complex-valued model developed by extending the classi-
cal definition of [GMRH to complex domain. The estimated parameters are able to model
different patterns in the complex image phase. In single image, these patterns are
mainly visible in the vicinity of strong scatterers due to the system impulse response.
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We suppose to be able to characterize the local texture by modelling the phases pattern
but the hypothesis was not confirmed. Actually, the pattern are really seldom and not
evident and the values of parameters result to be similar in case of different texture. By
modelling the data with the complex-valued [GMRE| the model variance may distinguish
texture with different intensities.

In Section 4.3 describes the Tikhonov-like method for image restoration and feature en-
hancement. The linear image model allows to include the system impulse response and
the prior constrain allow to deal with uniform areas and preservation of edges by the To-
tal Variation and the Huber-Markov function respectively. The convex functional ensures
that the solution exists and is unique and it has been minimized by the iterative Newton’s
method.

The filter parameters allow an optimal tuning of the optimization. In the beginning they
have been chosen experimentally finding out that they control the degree of efficiency of
the prior models, i.e. the degree of smoothness vs. the degree of edges preservation. The
problem has been solved as a problem of model selection by the Bayesian evidence fra-
mework. The norm parameter controls the shape of the weighting function, e.g. Gaussian
or Laplacian distribution. It has to be initialized experimentally in the first iteration and
then it is estimated. The numerical step, which controls the speed of convergence and the
precision of the solution, has also to be selected experimentally.

Four experiments have been performed in order to give as much as possible complete
results. The filter shows superior performance for denoising synthetic texture and the
actual data. In case of the Brodatz texture and the simulated image the filter
performance are similar to the enhanced Lee and which also show good perfor-
mances.

The novelty of the approach relies on the possibility to include the system transfer func-
tion, the prior information model and the use of the full resolution/information contai-
ned in the complex valued data.

Finally, in Section4.5]the application of the proposed methods is presented by unsuper-
vised and supervised classification of the models. The k-means classification is compared
with the model. The supervised classification is performed to quantify the impact
of despeckling in a tool.

Although the results are far to be optimal the proposed methods appear to be promi-
sing. An improvement of the results might be obtained by data preprocessing in order to
extract edges information for better classes separation and/or combining differently the
parameters. Furthermore, other parametric models might be considered.

4.7 Summary of the chapter

In this chapter the experimental results are shown and discussed. The Rate Distortion-
based model selection is demonstrated to be a successful method to estimate the opti-
mal average analyzing window and the optimal average model order in the frame of
MBD feature extraction. The modeling of the complex images started with the results on
complex-valued statistical regularization and the complex-valued GMRF for data mode-
ling. The first method allows to estimate parameters for the restoration of the real and
imaginary part but it does not allow to remove speckle. The second method permits to
model the image with the complex linear parametric model but it is not inserted in a
full MAD] estimator for the despeckled image model inversion. The Tikhonov-like regu-
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larization with the Huber-Markov prior allows the estimation of the uncorrupted image.
The approach is compared with the most known adaptive filters but in contrast to them
it works on complex-valued data. The method embeds the system and if needed it
may include also the image formation model. Thus, it allows different application and
the modeling of a variety of information with the use of different priors. An application
of the models is presented by the use of supervised and unsupervised classifications.
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Conclusion

The thesis presents a novel model selection framework and complex-valued image
analysis with application on remote sensing[SAR| data.
The model selection method is based on Rate Distortion theory. In order to describe the
method an introduction on information theory and Bayesian model selection is presen-
ted. The first allows to introduce basic concepts, e.g. entropy, mutual information, distor-
tion measure necessary for presenting the Rate Distortion theory. The Bayesian inference,
presented in the framework of estimation theory, allows model selection by the Occam
factor. It is embedded in the Bayes formula and quantifies how well the model fits the
data. Comparing Occam factors of different models the best model may be selected ac-
cording with the principle that the simplest explanation or strategy, i.e. model, tends to
be the best one. The entropy is inversely proportional to the Occam factor. Since the Rate
Disotrion is defined as the lower bound of the mutual information, choosing the model
which minimizes the distortion means choosing the model which maximizes the Occam
factor. These concepts are presented in Chapter[2] and in particular in Section 2.8} where
the connection between the Occam factor and the mutual information is drawn.
The Rate Distortion theory is the theory which deals with the goodness of a data source
distribution representation. The basic problem in Rate Distortion theory can then be sta-
ted as follows : given a source distribution and a distortion measure, what is the mini-
mum expected distortion achievable at a particular rate. Equivalently, the problem can
be reformulated as follow : what is the minimum rate description required to achieve a
particular distortion. The Rate Distortion provides the theoretical fundamentals for pro-
viding an answer to the previous question. It finds applications on several fields which
span from multimedia and streaming up to vector quantization, clustering and more in
general image processing. The feature extraction estimation problem has been recast as
a coding problem in the point of view of information theory. The estimation of the op-
timal average Analyzig Window (AW) size and the optimal average Model Order (MQ)
has been introduced and gathered as a model selection problem. The results of the esti-
mation are presented in Section ]l The advantage of the method relies in its simplicity
since it is a global approach and that it can be successfully applied to information mi-
ning problems where we have to deal with large amounts of data. The disadvantage is
that it cannot be applied in case of adaptive[AW]or local problems, e.g. local model order
selection, where an alternative method has to be used, e.g. evidence framework, Fisher
information.
The complex-valued image analysis starts with an overview of the statistical models of
data, presented in Section[L.5l The data transformation from Cartesian to polar coor-
dinates is presented as well as the logarithm transformation which is useful to transform
the multiplicative noise in additive noise and the linear transformation which can be use-
ful to model the image formation process. In the thesis the linear model is chosen because
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of its capability to include the SAR end-to-end-system. Furthermore the statistics of the
complex-valued data and the amplitude and phase, also the statistics in case of strong
scatterers, low fluctuation of the o and multilook data have been presented. Beside the
multilook method, the spatial averaging technique is described in order to estimate the
mean reflectivity. The approximated multiplicative models for speckle reduction are pre-
sented together with the most known families of despeckling filters. They are compared
to the developed method for image noise reduction in complex-valued domain, although
the filters work on detected images, i.e. real-valued domain.

Advanced statistical modeling is presented in Section 3.3 where the GMRF model is ex-
tended to the complex-valued domain. The synthesis and the analysis of the complex-
valued GMREF is accompanied by the retrieval and forward modeling from actual SAR
data. The complex-valued GMREF is used as data model and also as prior model in a full
Bayesian estimate to denoise the real channel and the imaginary of the complex-valued
image. In the latter case the adopted image model is the linear model. The approach deals
with additive noise and allows to estimated isotropic parameters proportional to the gra-
dient and then to use them to regularize the signal. The optimization is implemented
with a steepest descent iterative algorithm which is appropriate because the function to
be optimized has a regular shape, i.e. it is convex.

The regularization of the real channel and the imaginary channel did not lead to a charac-
terization of the image content through the model parameter because of the randomness
of the phase and neither to a removal of the speckle because it is modeled as multipli-
cative noise. Thus, another approach is required in order to denoise the image and to
extract feature parameters. The proposed method is the Tikhonov regularization which
is widely used in literature for image restoration and it can be related to the Bayesian
framework in its unconstrained form. The connection to the Bayesian inference allows
to select prior models and to solve the problem by a MAP estimate. The chosen prior is
the Huber-Markov function which belongs to the Markov Random Field family. It has
been selected because of its property to preserve non-linearity in the restoration of op-
tical images. The function to optimize has a regular shape and can be iteratively solved
through the same method adopted for the complex-valued GMRF MAP, i.e. steepest des-
cent algorithms. The function is characterized by several parameters which have to be
tuned. In the beginning the tuning has been done experimentally but then the estimate
of the optimal parameters by the evidence framework has been adopted. The theoretical
models and the Tikhonov optimization are presented in detail in Section [3.4] while the
accurate comparison of the filters is presented in Section[d.3] The results are presented on
actual TerraSAR-X data and on simulated images for a more complete description of the
filter performances.

Perspective and Future work

The Rate Distortion model selection is demonstrated to be a powerful method which
can be applied in cases where the estimation problem can be recast as a model selection
problem. The method may be compared to classical model selection methods, i.e. Mi-
nimum Description Length (MDI), Bayesian Information Criterion (BIC). On the other
hand, its usage has to be preferred in case of a global approach where we have to deal
with large databases, e.g. image information mining applications.
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Moreover, the theoretical statements linking the model selection methods need further
analysis, because they are not always consistent.

Since the speckle is dominating the image content, its removal allows a better definition
of the image content at the price of losing detail. The future investigation is focused on
the application of the presented Tikhonov regularization in interferometric applications
and in the inclusion of parametric models, e.g. GMREF, to enable texture feature extrac-
tion.

Although the model of the complex-valued data is simple, the characterization of the
information content of the image remains a difficult task. Apart from a signal based ap-
proach, the analysis of the topology and the structures has to be included in order to
introduce geometric and spatial models. An alternative method is also a multi-scale ana-
lysis. The combination of different layers can be used to create a space to characterize the
information content of the image.

The analyses of the complex-valued data is usually used in image pairs, i.e. interferome-
tric applications, target analysis, multi-looking, speed retrieval etc. The extension of the
analysis of the complex signal to a single image is important to analyze the behavior of
the non-stationary signal for modeling and for further application in the previous men-
tioned fields.
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Appendix

Proof of the Cramér-Rao inequality

The proof of[2.45/can be demonstrated by the Cauchy-Schwartz inequality

[E{ <—lnp x|6) — {—mp x|) }) 6 — B{Y) }] < (4.8)
E{[% lnp(x|9)—E{%lnp(x|9)}]2} B{10 - B}

the expectation of % In p(x|0) which appears in the first and in the second term of the
inequality is

{%hlp()d@)} = g’elnmxw) (x[6)dx (4.9)
/ %Z(jj)a)p(x\ﬁ)dx (4.10)

- / —p(x|0)dx (411)

- = / (x]0)dx (4.12)

_ %1 4.13)

. (4.14)

It allows to rewrite the first term in4.8 as follows

D>

E{ (% In p(x|§) — E{% 1np(x\9)})(é - E{é})} - {% In p(x]6) } (4.15)

Thus, with the use of £.15 and 2.40] can be rewritten

E {a% In p(x‘@)é}r < nI(6)02. (4.16)
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It remains to demonstrate that the first term of the inequality is equal to 1, and this can
be done as follows

B{ T mp0)0} = [ 1 p(xl0)p(xl0)ax (4.17)
/ %ﬂ?) p(x|0)dx (4.18)

= / %P(X!Q)édx (4.19)

= 59 / (x6)fdx (4.20)

= @E{é} (4.21)

B 599 (4.22)

=1 (4.23)

where the step from £22] to E23)is obtained reminding that 6 is an unbiased estimator. In
Equations4.13]and the operators derivative and integral have been exchanged in the
hypothesis that the function respects the Laplace bounded convergence theorem. Thus,
the Cramér-Rao inequality is demonstrated.

Equivalence of Fisher Information Expressions

The reason why the elements of the Fisher information matrix have the form presen-
ted in can be better understood by writing the Fisher information as follows

82
1(0) = {892 lnp(x|9)} (4.24)
The two expressionsi.24]and 2.38 are equivalent. The demonstration follows
0 0
(55 mP(x10)) - p(x10) = 5p(xI0). (4.25)

By calculating the derivative with respect to 6 of £.25]it is obtained

2 2
%MX!@) = ( 592 lnp(XW)) ~p(x[0) + (%lnp(x\9)> 689 (x]6) (4.26)

Replacing in itis

2
T ovsl0) = (s mp(x10)) - plo) + (e mpsl0) plt) @20

Integrating [4£.27] with respect to x

;—;p(XW)dX - {;92 Inp(x|0) } + {(%mp(xw)f}. (4.28)
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The integral on the left side of £.28is equal to zero because [ p(x|¢)dx = 1, thus

E{ (% lnp(xle))z} = {8892 lnp(xle)} (4.29)

which demonstrates that the Fisher information can be denoted by the two equivalent

expressions and [2.38

Exact Gaussian speckle statistics : Marginal Distribution of Am-
plitude and Phase

Stating from the bivariate Gaussian distribution

_ 1 (=N (v
p(x.y) = 2moyoy P 20 + 20y (4.30)

we can obtain the marginal distribution of the intensity and the phase by integrating ??
with respect to ¢ and I respectively after transformation of 4.30 from Cartesian to polar
coordinates.

In order to obtain the marginal distribution of the intensity, we execute the following

rotational transformatlonuakeman_&_WelfQ_rd (|12Z2|) Uozomi & Asakura (1128]])

u=xco8d + ysind (4.31)
v =ycosd —xsind (4.32)
with a rotational angle
2pox
tan 26 = 220y (4.33)
o3 — 03

After the transformation [£.30|becomes

1 U — Hu 2 V= [y 2
p(u,v) = 27TO'UO'V €XpP — <W> + <W> (434)

where
fu = [ixCOSO + iy sind
Hy = [xCOSO — [LySind
02 = (02cos’d — ay sin? 0) / cos 26
o2 = (03 cos?§ — 02 sin?§)/ cos 26

By expressingin polar coordinates and in function of the intensity, after some mani-
pulations and since I = x? + y% = u? + v2 we obtain

p(l,9) = ! exp {_ [<00822¢ n sin? ¢> I+

2M OOy 20 202

2
<'Zu cos ¢ + sm (b) VI —|— — + 'U—VQ} } (4.35)

u 2UV
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At this point we have to marginalize with respect to the phase solving the following

integral Ohtsubo & Asakura (1977)

1 2 cos?¢ sin®¢
I) = - I
p() QWUuJV/O exp{ [( 202 * 202 > *

2 2
Hu Hv Lt iuu iuv
_<§COS¢+0'_\2,MH¢>\/?+E+@:|}C1¢ (4.36)

u

in order to get the marginal distribution of the intensity /. The solution of the integral

takes the following form [Jakeman & Welford (1977)

p(I) = 20{11% {Io(f2)fo(f3) +2 " In(f2)Ton(f3) cos (Qna)} (4.37)

n=1

where I, is a modified Bessel function of the first kind and where Jakeman & Welford
(1977)

1/1 1 1?2 p?
- B el eI N AT L I 4
h eXp{ [4<aa+ae> +2<aa+az
1. /1 1
= —J|=-=
h= <aa as>
2 2\ 1/2
_ Hu | Hy
I = ﬁ<aﬁ+aé>

and
tana = 021y /02 iy

Thus, the marginal probability density function of the intensity has a complicated
form.

The probability density function of the phase ¢ can be obtained directly by integrating
with respect to the amplitude. After polar transformation and some manipulation
we can write as follows

p(A, ¢) = dAexp{—b(A — ¢)*} (4.38)

where

2 (i2 2 a2 :

0% sin” ¢ 4 o3 cos® ¢ — poxoy sin 2

b= P+ 9y 0059 — poxTySin 29 (4.39)
20X0-y(1_p)

02 (1yos — pxepoy) sin g + o2 (1x0y — 1y pos) cos ¢

= 4.40

¢ o2sin? ¢ + 02 cos? ¢ — poyoy sin 2¢ (4.40)

J = 1 expd - (115 Sin @ — f1y cos ¢)? (4.41)
2moxoyy/1 — p? 2(02sin? ¢ + 02 cos? ¢ — poyoy sin 2¢) )

where we change the notation for the sake of clarity. It is worth to note that b, c and d are
independent from A.
Thus, the result of the integral

p(o) =d /0 h Aexp{—b(A —c)’}dA (4.42)
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takes the following form

p(d) = % {exp (=bc?) — /TVbe(1 — Erf[\/@])} (4.43)

where Erf[] is the integral of the Gaussian distribution defined as
Fxf[] = — /n 24 (4.44)
tffk] = —= [ e .
VT Jo

and b, ¢ and d come from the notation introduced in 438 Equation.43is the pdf of the
phase.
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