. Fig, Coupe plane x × y = [?600, 600] × [?600, 600] de W s pour la plate-forme de Gough. Les boîtes grises sont IN et les blanches OU T . L'espace laissé vide correspond aux boîtes BORDER

. Fig, Coupe plane x × y = [?600, 600] × [?600, 600] de W s pour la plate-forme de Gough. Les boîtes grises sont IN et les blanches OU T . L'espace laissé vide correspond aux boîtes BORDER

M. Arsenault and R. Boudreau, The Synthesis of Three-Degree-of-Freedom Planar Parallel Mechanisms with Revolute Joints (3-RRR) for an Optimal Singularity-Free Workspace, Journal of Robotic Systems, vol.9, issue.5, pp.259-274, 2004.
DOI : 10.1002/rob.20013

F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, Revising Hull and Box Consistency, Proc. ICLP, pp.230-244, 1999.

S. Bhattacharya, H. Hatwal, and A. Ghosh, Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators. Mechanism and Machine Theory, pp.965-974, 1998.

I. Bonev and C. M. Gosselin, Singularity Loci of Spherical Parallel Mechanisms, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.2968-2973, 2005.
DOI : 10.1109/ROBOT.2005.1570563

I. A. Bonev and D. Zlatanov, The mystery of the singular SNU translational parallel robot. www.parallemic.org, 2001.

I. A. Bonev, D. Zlatanov, and C. Gosselin, Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory, Journal of Mechanical Design, vol.125, issue.3, pp.573-581, 2003.
DOI : 10.1115/1.1582878

E. Borel, Mémoire sur les déplacements à trajectoire sphériques Mémoire présentés par divers savants, pp.1-128, 1908.

R. Bricard, Mémoire sur la théorie de l'octaèdre articulé, Journal de Mathématiques pures et appliquées, vol.3, pp.113-148

A. Cauchy, Deuxième mémoire sur les polygones et les polyèdres Journal de l'École Polytechnique, pp.87-98, 1813.

R. Clave, Conception d'un robot parallèle rapide à 4 degrés de liberté, 1991.

A. Dandurand, The rigidity of compound spatial grid, Structural Topology, vol.10, pp.43-55, 1984.

P. Dietmaier, The Stewart-Gough Platform of General Geometry can have 40 Real Postures, ARK, pp.7-16, 1998.
DOI : 10.1007/978-94-015-9064-8_1

C. Gosselin and J. Angeles, Singularity analysis of closed-loop kinematic chains, IEEE Transactions on Robotics and Automation, vol.6, issue.3, pp.281-290, 1990.
DOI : 10.1109/70.56660

C. Gosselin, J. Sefrioui, and M. J. Richard, Solution polynomiale au problème de la cinématique directe des manipulateurs parallèles plans à 3 degrés de liberté. Mechanism and Machine Theory, pp.107-119, 1992.

C. Gosselin and E. St-pierre, Development and Experimentation of a Fast 3-DOF Camera-Orienting Device, The International Journal of Robotics Research, vol.16, issue.5, pp.619-630, 1980.
DOI : 10.1177/027836499701600503

V. E. Gough, Contribution to discussion of papers on research in automobile stability , control and tyre performance, 1956-1957, Proc. Auto Div. Inst. Mech. Eng

V. E. Gough and S. , Universal tire test machine, Proceedings 9th Int, pp.117-135, 1962.

M. Rueher, H. Collaviza, and F. , Comparing partial consistencies, Reliable Computing, vol.5, issue.3, pp.213-228

E. Hansen and G. W. Walster, Global Optimization using Interval Analysis, Second Edition, 2003.

E. R. Hansen, On solving systems of equations using interval arithmetic, Mathematics of Computation, vol.22, issue.102, pp.374-384, 1968.
DOI : 10.1090/S0025-5718-1968-0229411-4

T. Hladik and . Daney, An algorithm for addressing the real interval eigenvalue problem, Journal of Computational and Applied Mathematics, vol.235, issue.8, 2008.
DOI : 10.1016/j.cam.2010.11.022

URL : https://hal.archives-ouvertes.fr/hal-00907710

M. L. Husty, An algorithm for solving the direct kinematic of Stewart-Gough-type platforms. Mechanism and Machine Theory, pp.365-380, 1996.

M. L. Husty and A. Karger, Self-motions of Griffis-Duffy type parallel manipulators, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), pp.7-12, 2000.
DOI : 10.1109/ROBOT.2000.844032

C. Innocenti and V. Parenti-castelli, Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators, 22nd Biennial Mechanisms Conf, pp.553-560, 1992.
DOI : 10.1115/1.2826679

J. Rohn, Systems of interval linear equations and inequalities(rectangular case) Technical report, Institue of computer Science, Academy of Sciences of the Czech republic, 2002.

A. Karger and M. Husty, Classification of all self-motions of the original Stewart-Gough platform, Computer-Aided Design, vol.30, issue.3, pp.205-215, 1998.
DOI : 10.1016/S0010-4485(97)00059-6

R. Kearfott, Empirical Evaluation of Innovations in Interval Branch and Bound Algorithms for Nonlinear Systems, SIAM Journal on Scientific Computing, vol.18, issue.2, pp.574-594, 1997.
DOI : 10.1137/S1064827594266131

K. H. Hunt, Kinematic geometry of mechanisms, 1978.

X. Kong and C. M. Gosselin, Forward displacement analysis of third-class analytic 3-RPR planar parallel manipulators. Mechanism and Machine Theory, pp.1009-1018, 2001.

V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity and feasibility of data processing and interval computations, Kluwer, vol.10, 1997.
DOI : 10.1007/978-1-4757-2793-7

O. Lhomme, Consistency Techniques for Numeric CSPs, ?CAI, pp.232-238, 1993.

D. Daney, M. Gouttefarde, and J. Merlet, Wrench-feasible workspace of parallel cabledriven mechanisms, Proc. of the IEEE Int. Conf. Robotics and Automation (ICRA 07), pp.1492-1497, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00199377

B. , M. St-onge, and C. M. Gosselin, Singularity analysis and representation of the general Gough-Stewart platform, Int. J. of Robotics Research, vol.19, issue.3, pp.271-288, 2000.

J. Merlet, ALIAS : An Algorithms Library for Interval Analysis for Equation Systems, 2000.

J. Merlet, Parallel Robots, 2006.
DOI : 10.1007/978-94-010-9587-7

URL : https://hal.archives-ouvertes.fr/lirmm-00127856

J. Merlet, Jacobian, manipulability, condition number and accuracy of parallel robots, ISRR, 2005.

J. Merlet, Singular Configurations of Parallel Manipulators and Grassmann Geometry, The International Journal of Robotics Research, vol.8, issue.5, pp.45-56, 1989.
DOI : 10.1177/027836498900800504

J. Merlet, Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots, Journal of Mechanical Design, vol.128, issue.1, pp.199-206, 2006.
DOI : 10.1115/1.2121740

J. Merlet, A Formal-Numerical Approach for Robust In-Workspace Singularity Detection, IEEE Transactions on Robotics, vol.23, issue.3, pp.393-402, 2007.
DOI : 10.1109/TRO.2007.898981

A. P. Murray and F. Pierrot, N-Position Synthesis of Parallel Planar RPR Platforms, ARK, pp.69-78, 1998.
DOI : 10.1007/978-94-015-9064-8_7

N. Revol and . Sophia, Introduction à l'arithmétique par intervalles, 2001.

D. N. Nenchev and M. Uchiyama, Singularity-consistent path planning and control of parallel robot motion through instantaneous-self-motion type singularities, Proceedings of IEEE International Conference on Robotics and Automation, pp.1864-1870, 1996.
DOI : 10.1109/ROBOT.1996.506983

A. Neumaier, Interval Methods for Systems of Equations, 1990.
DOI : 10.1017/CBO9780511526473

O. Veblen and J. W. Young, Projective Geometry. The athenaeum press, 1910.

J. F. O-'brien and J. T. Wen, Kinematic control of parallel robots in the presence of unstable singularities, IEEE Int. Conf. on Robotics and Automation, pp.3154-3159, 2001.

M. K. Park and J. W. Kim, Kinematic manipulability of closed chains, ARK, pp.99-108, 1996.

H. Pottmann, M. Peternell, and B. Ravani, Approximation in line space Applications in robot kinematics, ARK, pp.403-412, 1998.

S. M. Rump, Algorithms for Verified Inclusions: Theory and Practice, pp.109-126, 1988.
DOI : 10.1016/B978-0-12-505630-4.50012-2

S. Sen, B. Dasgupta, and A. K. Mallik, Variational approach for singularity-path planning of parallel manipulators. Mechanism and Machine Theory, pp.1165-1183, 2003.

D. Stewart, A platform with 6 degrees of freedom, Proc. of the Institution of mechanical engineers, pp.371-386, 1965.

L. Tsai, Kinematics of A Three-Dof Platform with Three Extensible Limbs, ARK, pp.401-410, 1996.
DOI : 10.1007/978-94-009-1718-7_40

P. A. Voglewede and I. Ebert-uphoff, Measuring "closeness" to singularities for parallel manipulators, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.4539-4544, 2004.
DOI : 10.1109/ROBOT.2004.1302433

M. Zein, P. Wenger, and D. Chablat, Singular curves in the joint space and cusp points of 3-RP R parallel manipulators, Robotica, vol.25, issue.6, pp.712-724, 2007.

D. Zlatanov, I. A. Bonev, and C. M. Gosselin, Constraint singularities of parallel mechanisms, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp.496-502, 2002.
DOI : 10.1109/ROBOT.2002.1013408

D. Zlatanov, R. G. Fenton, and B. Benhabib, Identification and classification of the singular configurations of mechanisms. Mechanism and Machine Theory, pp.743-760, 1998.