. Bibliographie, Ondelettes,analyses de multirésolutions et traitements numériques de signal PhD thesis, 1989.

P. Vial, A. Cohen, and I. Daubechies, Wavelets on the interval and fast wavelets transforms, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01311753

A. Cohen and A. Ezzine, Quadratures singulières et fonctions d'échelles, GRAS, 1996.

{. , C. A. Michelli, W. Cavaretta, and . Dahmen, Stationnary subdivision. Memoirs Amer, Math. Soc, issue.453, p.93, 1991.

B. Alpert, Rapidely-convergent quadratures for integral operators with singular kernels, 1993.

A. Cohen, Ondelettes, Analyses de multirésolutions et traitements numériques de signal, Rech, en Math. Appl. Masson, 1992.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure, Applied Math XLl, issue.41, pp.909-996, 1988.

I. Daubechies, Ten lectures in Wavelets CBMS-NFS Regional conference series in applied mathematics 61, 1992.

¡. S. Durand, Etude de la vitesse de convergence del 'algorithme en cascade, 1993.

N. Dyn, Subdivision schemes in computer-aided geometric design Advances in Numerical Analysis II, Wavelets, Subdivision algorithms , and Radial Basis Functions, pp.36-104, 1992.

W. Dahmen and C. A. Michelli, Using the Refinement Equation for Evaluating Integrals of Wavelets, SIAM Journal on Numerical Analysis, vol.30, issue.2, pp.507-537, 1993.
DOI : 10.1137/0730024

R. Coifrnan, G. Beylkin, and V. Rocklin, Wavelet transform and numerical algorithms 1, Comm. Pure, Applied Math, 1991.

J. Jourrié and G. David, A boundedness criterion for generalized calderónzygmund operators, Ann. of Math, vol.120, pp.371-397, 1984.

M. Hamdi, Une formulation variationnelle par équations pour la résolution de l'équation de helmotz avec des conditions aux limites, CRAS, II, issue.292, pp.17-20, 1981.

A. Kunoth, Computing refinable integrals -documentation of the urogram version 1.1, 1995.

A. De-la-bourdonnaye, A preconditioner for integral equations modeling helmotz equation. Cermics(ENPC-INRIA)

P. G. Lemarié, Fonctions a support compact dans les analyses multirésolution, Rev. Iberoamericana, issue.7, pp.157-182, 1991.

S. G. Mallat, Multifrequency channel decomposition: The wavelet models, IEEE Trans. Acoust. Speech Signal Process, vol.12, issue.37, pp.2091-2110, 1989.

Y. Meyer, Ondelettes et opérateurs 1, 1990.

J. C. Nedelec, Integral equations with non integrable kernel. Integral equations and Operator Theory, 1982.

V. Rokhlin, End-point corrected trapezoidal quadrature rules for singular functions, Computers & Mathematics with Applications, vol.20, issue.7, 1990.
DOI : 10.1016/0898-1221(90)90348-N

I. Stein, Harmonic Analysis, 1994.

J. Strain, Quadrature rules for singular functions, 1995.

G. Strang, Wavelets and dilatation equation: A brief introduction, SIAM Rev, vol.28, issue.2, pp.288-305, 1989.

W. Sweldens, The construction and application of wavelets in numerical analysis, 1995.

W. Sweldens and R. Piessens, Quadrature for wavelet decomposition Wavelets: an elementary Treatemeni of theory and Applications, Series in Approximation and decompositions, World Scientific, 1993.

C. R. Acad and . Sei, Paris, t. 323, Série I, pp.829-834, 1996.

C. Albert and E. A. Abdelhak, Laboratoire d'Analyse Numérique

. Résumé, Nous présentons une méthode de quadrature, pour le calcul du produit scalaire / = / f(t)é(t)dt, lorsque /(r) présente une singularité de type homogène, la fonction <p(t) étant définie par une équation d'échelle. Singular quadratures and scaling junctions

. Abstract, A quadrature method is presented for the computation of the inner product. I = J f{t)<p{t)dt, where f(t) has a singularity of homogeneous type

<. >_-/ and A. , 3 . ? k) is the generator of the underlying multiresolution approximation Vj. The difficulties in computing these quantities arise from the fact the / and K might be singular and <j> is only known implicitely as a solution of a refinement equation 4>(x) = 2 Ylk=o hk<f>(2% -£)? As a prototype example, we consider the computation oí I = J f(t)<f>{t)dt. In the case where the function / is C', quadrature rules have been introduced in [1], [9] using the fact that the moments Mk = J x k d>(x)dx can easily be computed from the refinement equation. A first approximation of I is then obtained by replacing / by a polynomial interpolation of degree 1-1 on the support of </>. In order to improve the precision, one can use a subdivision method: iterating the refinement equation, Abridged English Version Wavelet bases have proved to be a powerful tool for the discretization of singular integral equations, since they usually lead to sparse matrices. However one obtains <p(x) ? J3 fc Sj i k 2 i <j>(2^x ? fc), and the initial quadrature rule can be replaced by a combination of similar rules at scale 2 _J . An analysis of the coefficients SJ_ k and of the local error, shows that the numerical precision is of order 2~-> l, pp.2-4

A. Cohen, Ezzine Note remise et acceptée le 11 mai 1996

R. Coifman, G. Beylkin, and V. Et-rocklin, Wavelet transform and numerical algorithms 1, Comm. Pure, Appl. Math, XLV, 1991.

W. Dahmen and C. A. Et-michelli, Using the Refinement Equation for Evaluating Integrals of Wavelets, SIAM Journal on Numerical Analysis, vol.30, issue.2, pp.507-537, 1993.
DOI : 10.1137/0730024

I. Daubechies, Ten lectures in Waveleis, 1992.

N. Dyn, Subdivision schemes in computer-aided geometric design, dans Advances in Numerical Analysis !!, Wavelets, Subdivision algorithms, and Radial Basis Functions, Light W. A. éd, pp.36-104, 1992.

A. Ezzine and . Septembre, Étude et réalisation des algorithmes de quadratures pour la résolution des équations intégrales dans une base d'ondelettes, 1996.

A. Kunoth, Computing «finable integrals. Documentation of the program. Version S.l, 1995.

P. G. Lemarié, Fonctions à support compact dans les analyses multirésolution, Rev, Iberoamericana, vol.7, pp.57-182, 1991.

J. C. Nedelec, Integral equation with non integrable kernel. Integral Equations Operator Theory, pp.562-572, 1982.

W. Sweldens and R. Et-piessens, Quadrature Formulae and Asymptotic Error Expansions for Wavelet Approximations of Smooth Functions, SIAM Journal on Numerical Analysis, vol.31, issue.4, pp.31-1240, 1994.
DOI : 10.1137/0731065