
HAL Id: pastel-00570696
https://pastel.hal.science/pastel-00570696

Submitted on 1 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vers un système d’administration de la sécurité pour les
réseaux autonomes

Mohamad Aljnidi

To cite this version:
Mohamad Aljnidi. Vers un système d’administration de la sécurité pour les réseaux autonomes.
Réseaux et télécommunications [cs.NI]. Télécom ParisTech, 2009. Français. �NNT : �. �pastel-
00570696�

https://pastel.hal.science/pastel-00570696
https://hal.archives-ouvertes.fr

École Doctorale
d’Informatique,
Télécommunications
et Électronique de Paris

Thèse

présentée pour obtenir le grade de docteur de

TELECOM ParisTech

l’École Nationale Supérieure des Télécommunications

Spécialité : Informatique

Mohamad ALJNIDI

Vers un système d’administration de la
sécurité pour les réseaux autonomes

Soutenue le 14 décembre 2009 devant le jury composé de

Isabelle CHRISMENT Rapporteurs
Hatem BETTAHAR

Dominique GAÏTI Examinateurs
Christophe BIDAN
Pascal URIEN
Jean LENEUTRE Directeur de thèse

I

Résumé étendu

L’administration de la sécurité dans les réseaux sans infrastructures est assez complexe
pour être réalisée par des êtres-humains. Notre objectif est de la rendre autonome. Dans
ce cadre, cette thèse propose un système autonome de contrôle d’accès.

On fixe la définition d’un réseau autonome, et certaines bases de la sécurité autonome.
Ensuite, on définit un type de réseau autonome, organisationnel et sans infrastructure,
et on l’appelle IOrg-AutoNet. Les nœuds d’un IOrg-AutoNet sont catégorisés en terme
de fiabilité, disponibilité et capacités, ce qui leur permet d’acquérir différents rôles, dont
certains donnent droit à coopérer avec d’autres nœuds pour gérer le réseau.

On définit pour les IOrg-AutoNets un modèle de contrôle d’accès basé sur les relations
sécurisées, et on l’appelle SRBAC. Ses politiques sont à appliquer quand deux nœuds, déjà
reliés par une relation sécurisée leur spécifiant des rôles, se communiquent. Le modèle
SRBAC est une version adaptée du modèle RBAC. On propose aussi une extension du
profile RBAC du langage XACML v2.0 pour la spécification des politiques SRBAC.

On définit pour SRBAC le modèle administratif associé ASRBAC pour parvenir à notre
système autonome de contrôle d’accès. Le modèle ASRBAC est une extension du modèle
administratif distribué ARBAC02 qui est associé au modèle RBAC. Cette extension ra-
joute des aspects contextuels, cognitifs, adaptatifs, coopératifs et autonomes. ASRBAC
est basé sur SRBAC lui-même, ce qui représente la base du comportement autonome.

Un exemple d’un système SRBAC/ASRBAC d’un réseau domestique et une conception
préliminaire d’un système de réalisation valident et matérialisent nos contributions.

a) Motivation et objectifs

Avec les technologies de nos jours, il est rapide et facile de construire, implémenter et/ou
utiliser différents types de réseaux de télécommunications. Cette facilité d’utilisation con-
tinuera de s’améliorer, et encore plus de technologies de haut niveau apparaitraient. Ceci
amènera à plusieurs types d’applications entrainant des réseaux complexes, hétérogènes,
décentralisés et construits ou étendus par des utilisateurs non-experts. De tels réseaux ont
besoin d’être capables de se gérer, car l’intervention humaine pour l’administration d’un
réseau est prévue d’être de plus en plus indésirable, chère, inefficace et/ou une perte de
temps, selon le champ d’application.

Dans le contexte de la sécurité, les réseaux auto-gérables doivent être capables de
se protéger, et de protéger leurs ressources, contres des attaques possibles internes ou
externes. Dans le cas d’une attaque réussie, un tel réseau doit être capable de résoudre par

II

elle-même les problèmes résultants. Autrement dit, le système de la sécurité d’un réseau
auto-gérable doit être un système auto-gérable. En plus des propriétés de l’autoprotection
et l’autoréparation qu’un tel système fournit au réseau dans lequel il est implémenté, il
doit être capable de reconfigurer lui-même et de s’optimiser.

Pour réaliser les propriétés de l’autoprotection, l’autoréparation, l’auto-configuration
et l’auto-optimisation, un système informatique a besoin d’un ensemble de règles précisant
quand et comment réagir, en utilisant quels outils et sur quelles ressources. Autrement dit,
un système auto-gérable a besoin de politiques. Selon le champ d’application, il se peut
qu’un système auto-gérable ait besoin d’appliquer des politiques spécifiées directement par
des utilisateurs finaux en forme d’objectifs de haut niveau. Il doit être capable de réaliser
de tels politiques de haut niveau, et d’appliquer des opérations d’autogestion sur elles pour
les adapter aux changements dans son contexte.

Notre objectif général est de proposer des solutions de sécurité propres aux réseaux
autonomes. La nécessité des solutions d’autogestion avait été constaté par plusieurs
spécialistes dans différents domaines pertinents, et plusieurs initiatives correspondantes
ont été lancées, comme expliqué dans [55] et [41]. Notre travail est basé sur l’initiative
d’IBM [51] qui se porte sur l’informatique autonome (Autonomic Computing). Dans notre
recherche, nous étudions la réalisation de la vision de l’informatique autonome [56] pour
construire une plateforme d’un système de sécurité autonome pour des réseaux sans in-
frastructures. Nous croyons qu’une telle plateforme serait une étape Vers un système
d’administration de la sécurité pour les réseaux autonomes.

Plus précisément, on aimerait par cette thèse établir les bases pour un système au-
tonome de contrôle d’accès dans des réseaux sans infrastructures. Pourquoi le contrôle
d’accès ? Parce que c’est un domaine où on pourra étudier la plupart des concepts de
l’informatique autonome en termes de sécurité, et plus particulièrement, la capacité de
maintenir des politiques contextuelles cohérentes, ce qui est pointé tout au long de la thèse
et élaboré dans le Chapitre 5. Pourquoi les réseaux sans infrastructures ? Parce qu’ils
présentent plusieurs soucis de complexité, dont le manque d’infrastructure préétablie, la
possibilité d’évolution de la topologie et l’hétérogénéité des nœuds, ce qui favorise le be-
soin de l’autogestion et rend ces réseaux les meilleurs candidats pour être des réseaux
autonomes, comme expliqué dans le Chapitre 3.

b) Structure de la thèse

La thèse est divisée en trois parties. Elle parvient à ses objectifs à la fin de la deuxième
partie, après que la première partie ne met le lecteur dans le contexte exact de la recherche
présentée, et avant que la troisième partie n’essaye de lui convaincre de la faisabilité des
solutions proposées. Dans la première partie, une base théorique est fournie avant de
donner notre point de vue sur les réseaux autonomes et leur sécurité, et éventuellement
la définition de notre modèle réseau. La deuxième partie introduit d’abord un modèle de
contrôle d’accès pour les réseaux autonomes, et propose ensuite les bases d’un système
autonome associé pour l’administration du contrôle d’accès. Une étude de cas détaillée,
prenant un réseau domestique comme exemple, est fournie dans la troisième partie pour

III

clarifier les concepts de base de nos travaux, et pour les comparer avec des travaux concur-
rents. En plus, cette dernière partie donne une preuve de concept en forme d’un modèle
de réalisation d’un prototype d’un système autonome de contrôle d’accès.

Contexte : L’objectif de la première partie de la thèse est de préciser le contexte dans
lequel nous proposons nos solutions. Nous présentons nos visions du réseau autonome et de
la sécurité autonome à l’issue d’un état de l’art au début de cette partie. Nous introduisons
ensuite des bases d’une plateforme correspondante d’un système autonome de sécurité. A
la fin de cette première partie, nous aurons proposé une structure organisationnelle variable
pour les réseaux sans infrastructures. Cette structure permet à un réseau et à son système
d’administration de la sécurité d’être autonomes.

Solution : Le modèle de réseau autonome et la plateforme de sécurité autonome,
qui ont été introduits dans la première partie, présentent des bases pour plusieurs chal-
lenges de recherche. Afin de favoriser l’aspect important de gestion de politiques dans les
systèmes informatiques autonomes, ainsi que différents autres aspects intéressants, nous
avons choisis de travailler sur un système de contrôle d’accès pour les réseaux autonomes.
Nous détaillons notre solution dans la deuxième partie. Il s’agit d’un modèle de contrôle
d’accès et son modèle administratif. Ils sont proposés comme des fondations pour un
système de sécurité autonome pour les réseaux sans infrastructures.

Faisabilité : La solution de contrôle d’accès que nous proposons dans la deuxième
partie est décentralisée, contextuelle, dynamique et collaborative. Plusieurs solutions ex-
istantes ont ces propriétés aussi. Cependant, notre solution est plus dynamique et plus
flexible, et surtout, elle a l’avantage d’être auto-conscient, auto-gérable et auto-adaptable
à la fois. Ces caractéristiques nombreuses ont besoin d’être clarifiées et validées en termes
de réalisation. Dans la troisième partie, nous présentons un cas d’étude sur un réseau
domestique autonome, et ensuite nous introduisons un prototype en forme d’une archi-
tecture de réalisation, et des considérations d’implémentation, pour la mise en place du
modèle de politique défini dans la deuxième partie.

c) Contributions

Comme indiqué par le titre de la thèse “Vers un système d’administration de la
sécurité pour les réseaux autonomes”, nous visons des contributions dans deux do-
maines, étant “l’administration de la sécurité” et “les réseaux autonomes”. Plus partic-
ulièrement, il se trouve que nos contributions soient dans le domaine de “la sécurité au-
tonome”. Nous présentons un ensemble de concepts et de définitions dans cette discipline,
mais nous essayons essentiellement de contribuer dans le domaine du “contrôle d’accès”.
Cependant, il était important de commencer le titre de notre thèse par le mot “Vers”.
C’est parce que nous ne prétendons pas que nous proposons une solution complète pour
un système de sécurité autonome. Plus précisément, cette thèse propose des solutions de
base pour un tel système, que nous croyons indispensable pour les réseaux futurs.

IV

Community

Trust Level

Sub-community

Nodes of
Different

Capabilities

Figure 1: Modèle IOrg-AutoNet (Réseau autonome organisationnel sans infrastructure)

c.1) Réseaux autonomes

Une première contribution, petite mais essentielle, est la définition générique suivante des
réseaux autonomes :

Définition 1 Un réseau autonome est un réseau qui intègre un ensemble de systèmes au-
tonomes, pour lesquels les nœuds du réseau sont des agents qui coopèrent pour reconfigurer,
protéger, réparer et optimiser le réseau, et les systèmes autonomes eux-mêmes.

En nous basant sur la Définition 1, nous introduisons un ensemble de caractéristiques
définissant un Réseau autonome organisationnel sans infrastructure, que nous
appelons IOrg-AutoNet (Infrastructureless Organizational Autonomic Network), et
dont le modèle est illustré par la Figure 1 et décrit par la définition formelle suivante :

Définition 2 Le modèle IOrg-AutoNet est défini par un tuple (N , T , C,K,F , NC) :

• N est un ensemble de nœuds d’un réseau.

• T est un ensemble de niveaux de confiance totalement ordonné, ayant L et H comme
bornes inférieure et supérieure respectivement.

• C est un ensemble de communautés d’un réseau vérifiant les conditions suivantes :

– C ⊆ 2N \ {∅}
–

⋃
c∈C

c = N

– ∀c1, c2 ∈ C, (c1 ∩ c2 6= ∅)⇔ ((c1 ⊆ c2) ∨ (c2 ⊆ c1))

• K est un ensemble de classes de capacités totalement ordonné, ayant LD et HD
comme bornes inférieure et supérieure respectivement.

• F est l’ensemble des fonctions suivantes :

– tLevel : N −→ T renvoie le niveau de confiance d’un nœud.

– nComm : N −→ C, renvoie la communauté d’un nœud.

V

∗ ∀x ∈ N , nComm(x) =
⋂

{c∈C|x∈c}
c

– cClass : N −→ K renvoie la classe de capacité d’un nœud.

• NC est un ensemble de catégories de nœuds vérifiant les conditions suivantes :

– NC ⊆ (T ∪ {nilT })× (C ∪ {N})× (K ∪ {nilK})
– ((t, c, k) ∈ NC)⇔ (((t, c, k) = (nilT ,N , nilK))∨

((c = N) ∧ (k = nilK) ∧ (∃x ∈ N , tLevel(x) = t))∨
((k = nilK) ∧ (∃x ∈ N , tLevel(x) = t, nComm(x) = c))∨
(∃x ∈ N , tLevel(x) = t, nComm(x) = c, cClass(x) = k))

Notation 1 On utilise dans la Définition 2, ainsi que dans le reste de ce résumé :

• x, y et z, avec des indices éventuels, pour représenter un nœud (un élément de N).

• t, avec des indices éventuels, pour représenter un niveau de confiance (un élément
de T).

• c, avec des indices éventuels, pour représenter une communauté (un élément de C).

• k, avec des indices éventuels, pour représenter une classe de capacité (un élément
de K).

Remarque 1 Dans la Définition 2 :

• N , C, F et NC sont des ensembles variable qui s’adaptent à l’évolution du réseau.

• T et K sont des ensembles prédéfinis dans un IOrg-AutoNet donné.

• Il se peut que N soit un élément dans C. Dans un tel cas, le réseau est composé
d’une seule communauté, et de ses sous-communautés éventuelles.

• ∀x ∈ N , nComm(x) renvoie la sous-communauté la plus profonde (le sous-ensemble
de nœuds le plus petit) à laquelle x appartient.

• Les constantes nilT et nilK sont utilisées dans l’ensemble de catégories de nœuds
NC pour classifier un nœud en négligeant son niveau de confiance et sa classe de
capacité respectivement.

• L’ensemble NC est définie pour distribuer les nœuds d’un IOrg-AutoNet sur des
niveaux de confiances d’abord, ensuite sur les communautés du réseau et leurs sous-
communautés à toutes les profondeurs, et finalement sur des classes de capacités.

Le modèle IOrg-AutoNet est essentiellement caractérisé par une structure organisation-
nelle évolutive et son schéma d’évolution. Les définitions suivantes décrivent les différentes
transitions pouvant prendre lieu pendant l’évolution d’un IOrg-AutoNet :

VI

Définition 3 Un IOrg-AutoNet (N , T , C,K,F , NC) peut évoluer au niveau des nœuds,
et il devient (N ′, T , C′,K,F ′, NC), selon les transitions suivantes :

• nodeInsertion(x, c) : insertion ou réinsertion d’un nœud x dans une communauté
c ∈ C :

– N ′ = N ∪ {x}
– C′ = {c1 ∪ {x} | c1 ∈ C, c ⊆ c1} ∪ {c2 ∈ C | ¬(c ⊆ c2)}
– tLevel(x) = L

• nodeRemoval(x) : suppression ou bannissement d’un nœud x :

– N ′ = N \ {x}
– C′ = {c1 \ {x} | c1 ∈ C, x ∈ c1} ∪ {c2 ∈ C | x /∈ c2}

Remarque 2 Dans la Définition 3 :

• Le niveau de confiance initial d’un nouveau nœud est le niveau de confiance le plus
bas L, ce qui peut être modifié plus tard par un système de réputation que nous
supposons intégré dans un IOrg-AutoNet pour gérer la fiabilité des nœuds.

Définition 4 Un IOrg-AutoNet (N , T , C,K,F , NC) peut évoluer au niveau des commu-
nautés, et il devient (N ′, T , C′,K,F , NC ′), selon les transitions suivantes :

• communityIntegration(c) : intégration d’une communauté c :

– N ′ = N ∪ c
– C′ = C ∪ {c}
– NC ′ = (NC ∪ {(t, c, nilK) | ∃x ∈ c, tLevel(x) = t})
∪ {(t, c, k) | ∃x ∈ c, tLevel(x) = t, cClass(x) = k}

• communityRevocation(c) : révocation d’une communauté c :

– N ′ =
⋃

{ci∈C|¬(ci⊆c)}
ci

– C′ = C \ {c′ ∈ C | c′ ⊆ c}
– NC ′ = (NC \ {(t, c1, nilK) | t ∈ T , c1 ∈ C, c1 ⊆ c})
\ {(t, c2, k) | t ∈ T , c2 ∈ C, c2 ⊆ c, k ∈ K}

Remarque 3 Dans la Définition 4 :

• L’intégration d’une communauté implique la création d’un ensemble de catégories
de nœuds correspondant aux différents niveaux de confiance déjà utilisés, et pour
chacune de ces nouvelles catégories de nœuds, on en crée un ensemble correspondant
aux différentes classes de capacité déjà utilisées.

VII

• La révocation d’une communauté implique la suppression de tout élément dans NC
correspondant à celle-ci où à l’une de ses sous-communautés.

Définition 5 En utilisant les transitions de la Définition 4, on est capable de décrire la
fusion et la division des communautés dans un IOrg-AutoNet (N , T , C,K,F , NC), qui
pourrait par conséquent devenir (N ′, T , C′,K,F , NC ′), selon les transitions suivantes :

• communityMerging(c1, c2, c) : fusion des deux communautés c1 et c2 en une seule
communauté c :

– c = c1 ∪ c2
– communityIntegration(c)

– communityRevocation(c1)

– communityRevocation(c2)

• communitySplitting(c, c1, c2) : division de la communauté c en deux communautés
c1 et c2 :

– ∀c′ ∈ C, c′ ⊂ c, communityRevocation(c′)

– c1 ⊂ c, c2 ⊂ c, c2 = c \ c1
– communityIntegration(c1)

– communityIntegration(c2)

– C′ = C \ {c}
– NC ′ = (NC \ {(t, c, nilK) | t ∈ T }) \ {(t, c, k) | t ∈ T , k ∈ K}

Remarque 4 Dans la Définition 5 :

• En fusionnant deux communautés c1 et c2, toute les sous-communautés de c1 et
c2 seraient révoquées éventuellement. Le résultat est une communauté à laquelle
appartiennent tous les nœuds de c1 et c2 sans aucune sous-communauté.

• Avant de diviser une communauté, ses sous-communautés devraient être révoquées.
Le résultat est deux communautés différentes sans aucune sous-communauté.

Définition 6 Un IOrg-AutoNet (N , T , C,K,F , NC) peut évoluer au niveau du réseau, et
il devient (N , T , C,K,F ′, NC ′), selon les transitions suivantes :

• trustChange(x, t) : affectation du niveau de confiance t au nœud x, ce qui peut être
une première utilisation de t :

– NC ′ = ((NC ∪ {(t,N , nilK) | ∀y ∈ N , tLevel(y) 6= t})
∪{(t, c, nilK) | c ∈ C, ∀y ∈ N , tLevel(y) 6= t})
∪{(t, c, k) | c ∈ C,∃x ∈ N , cClass(x) = k,∀y ∈ N , tLevel(y) 6= t}

– tLevel(x) = t

VIII

• capabilityChange(x, k) : affectation de la classe de capacité k au nœud x, ce qui
peut être une première utilisation de k :

– NC ′ = NC ∪ {(t, c, k) | ∃x ∈ N , tLevel(x) = t, c ∈ C,∀y ∈ N , cClass(y) 6= k}
– cClass(x) = k

Définition 7 On définit les transitions suivantes pour fusionner ou diviser un IOrg-
AutoNet (N , T , C,K,F , NC) :

• networkMerging(N ′, T ′, C′,K′,F ′, NC ′) : fusion du réseau avec un autre réseau
(N ′, T ′, C′,K′,F ′, NC ′) :

– Le réseau résultant est : (N ∪N ′, T ∪ T ′, C ∪ C′,K ∪ K′,F ∪ F ′, NC ∪NC ′)

• networkSplitting() : diviser le réseau en deux :

– Le réseau se divise en (N1, T , C1,K,F1, NC1) et (N2, T , C2,K,F2, NC2)

Remarque 5 Dans la Définition 7 :

• Après une transition de fusion de réseaux, une série de transitions de fusion de com-
munautés pourrait être lancée selon les nouvelles conditions de disponibilité. Cela
serait décidé par un système de gestion de ressources que nous supposons intégré
dans un IOrg-AutoNet pour gérer la disponibilité des nœuds.

• Avant une transition de division d’un réseau, une série de transitions de divisions
de communautés pourrait être décidé et lancé par le système de gestion de ressources
selon les besoins de la division.

Nous considérons que Le modèle IOrg-AutoNet est une contribution dans le domaine
des réseaux autonomes. Nous avons déjà présenté nos premiers essais pour définir les
réseaux autonomes et un modèle organisationnel évolutif correspondant dans des publica-
tions introductives [8, 9].

c.2) Sécurité autonome

Nous présentons une vision de la sécurité autonome, selon laquelle un système autonome de
sécurité fonctionne comme le système nerveux et le système d’immunité du corps humain,
pour des fins de protection contre des attaques et de réparation après des attaques réussies
respectivement. Selon cette même analogie, un système autonome de sécurité devient
plus protégé et plus immune en optimisant ses politiques avec le temps. Également, tout
comme le corps humain, il se peut qu’un expert externe intervienne pour réparer le système
autonome de sécurité et optimiser ses politiques s’il n’y parvient pas tout seul parfois.

Dans le contexte d’une plateforme d’un système autonome de sécurité, nous présentons
ensuite les bases pour deux contributions. Une première contribution est une proposition
d’une architecture intra-nœud de sécurité autonome, illustrée dans la Figure 2. Cette ar-
chitecture prendrait en compte l’hétérogénéité possible des nœuds dans un IOrg-AutoNet,

IX

Autonomic

Security

Manager

Security Agents

Security Management Kit

Security

User Interface

Lower layers

Application layer

Data / requests / responses

Security service agent calls

Management agent calls

Self-management calls

Administration callsData / requests / responses

Applications

Autonomic Security Layer

Security DB

Figure 2: Architecture intra-nœud de sécurité autonome

et elle serait transparente pour l’utilisateur final et indépendante des technologies sous-
jacentes de connexion. La deuxième contribution dans ce cadre est plus liée à la solution
que nous proposons dans cette thèse, qui est un système autonome d’administration de
contrôle d’accès. Il s’agit d’un ensemble de bases d’un système autonome de politiques
de sécurité, illustré dans la Figure 3, permettant l’analyse et l’optimisation des règles
de bas niveau de sécurité. Nous avons déjà motivé l’architecture intra-nœud de sécurité
autonome et le système autonome de politiques de sécurité dans des publications intro-
ductives [10, 11].

Comme indiqué dans la Figure 3, nous précisons trois sources de modification pour une
politique de sécurité dans un réseau autonome, étant les utilisateurs finaux, les adminis-
trateurs et les nœuds d’autorité. Les utilisateurs finaux pourraient changer leurs objectifs
de haut niveau de sécurité. Les administrateurs pourraient intervenir pour gérer les poli-
tiques dans des cas exceptionnels. Les nœuds d’autorité sont censés analyser, négocier et
reconstruire les politiques de sécurité, ou bien des parties de ces politiques, dans le cadre
des opérations autonomes. Cette dernière fonctionnalité serait essentielle dans un IOrg-
AutoNet, car l’intervention humaine dans la gestion des politiques doit être minimale dans
un système autonome.

La Figure 3 montre une piste humaine et une piste autonome pour reconfigurer des
politiques. La première pourrait être initiée par un utilisateur final ou un administrateur.
Un utilisateur final n’est pas forcément conscient qu’il serait en train de reconfigurer
des politiques. En effet, il utilise un langage de haut niveau pour préciser ses objectifs

X

Administrators

HSSI rules

SPML instances

SPLS instancesJava applications

Security module

End-users

Autonomic

Security

Services

Authority

nodes

Human specification

Logical analysis

Autonomic reconfiguration

HSSI : Interface Système de Sécurité / Homme. Exemple : P3P (w3.org/P3P).
SPML : Langage de Management de Politiques de Sécurité. Exemple : XACML [4].
SPLS : Spécification Logique de Politiques de Sécurité. Exemple : ASL [52].

Figure 3: Système autonome de politiques de sécurité

de sécurité. Nous utilisons le nom générique “Interface Système de Sécurité / Homme”
pour ce langage haut-niveau, ou encore “HSSI (Human / Security System Interface)”.
Quant aux administrateurs, ils utilisent un langage de management de politiques, qui
serait à la fois de haut niveau et interprétable par la machine. Le nom générique que nous
utilisons pour un tel langage est “Langage de Management de Politiques de Sécurité”, ou
encore “SPML (Security Policy Management Language)”. Dans notre proposition pour
l’administration autonome de contrôle d’accès, nous détaillons l’utilisation de la norme
OASIS XACML (Extensible Access Control Markup Language) [4] comme un SPML.

La piste autonome du système autonome de politiques de sécurité commence par une
opération d’analyse lancée par un nœud d’autorité pour négocier la modification de cer-
taines parties des politiques avec d’autres nœuds d’autorité. Les parties à négocier seraient
reformulées dans un langage logique facilitant l’analyse des règles de sécurité. L’utilisation
d’un tel langage est nécessaire pour représenter et analyser la logique des règles. En re-
vanche, on ne peut pas l’utiliser comme SPML, car cette dernière doit être, d’une part,
d’un niveau plus haut et, d’une autre part, plus facile à traduire en code Java. Le nom
générique que nous utilisons pour le langage logique employé dans les opérations autonomes
est “Spécification Logique de Politiques de Sécurité”, ou encore “SPLS (Security Policy
Logic-based Specification)”. Après la négociation et la modification des parties SPLS des
politiques, la piste autonome de reconfiguration est lancée par les nœuds d’autorité. Il
s’agit de reformater ces parties en SPML et de les réintégrer dans les politiques SPML
d’origine. Ensuite, d’une part, un interpréteur SPML applique les politiques modifiées.
D’une autre part, un traducteur SPML-à-HSSI met à jour la configuration du système de

XI

RRH

Nodes
NRA Regular

Roles

PRA

Permissions

NS-P

Object

Categories

NS-N

Node

Categories DSD

Context

Time

SSD

(trust, community, basic role,
administration scope)

(trust, community,
capabilities)

(trust, community,
basic role) of

potential subjects

Secure Relations

Communication Sessions

An Access Session

Constraints

RRH: Regular Role Hierarchy

NRA (PRA): Node- (Permission-) “regular” Role Assignments

NCA (PCA): Node- (Permission-) Category Associations

NS-N (NS-P): Network Structure for Nodes (Permissions)

SSD (DSD): Static (Dynamic) Separation of Duty

1-N Relationship

N-N Relationship

Apply to

PCANCA

Figure 4: Modèle SRBAC : Version adaptée du modèle RBAC

sécurité au niveau de l’utilisateur final.

c.3) Modèle de contrôle d’accès

En effet, les contributions essentielles de cette thèse sont précisément dans le domaine de
contrôle d’accès. Nous définissons un modèle de contrôle d’accès pour les IOrg-AutoNets.
Notre modèle est une variante du modèle basé sur les rôles RBAC (Role-Based Access
Control) [89]. Il est le résultat d’une adaptation de RBAC aux aspects organisationnels
et autonomes des IOrg-AutoNets. Notre modèle est basé sur des relations sécurisées déjà
établies entre les nœuds d’un IOrg-AutoNet, et il s’appelle SRBAC (Secure Relation Based
Access Control). La Figure 4 montre les différents composants du modèle SRBAC.

Nous avons déjà présenté nos premiers essais pour définir le modèle SRBAC dans
une publication introductive [12]. Le modèle SRBAC satisfait les exigences suivantes de
contrôle d’accès dans un IOrg-AutoNet :

1. Les privilèges d’accès se déterminent selon des rôles affectés aux nœuds.

2. Il est possible de définir des relations hiérarchiques entre les rôles des nœuds pour
organiser l’affectation des privilèges d’accès.

3. La structure organisationnelle du réseau est prise en compte.

XII

4. Le modèle est contextuel vis-à-vis de trois attributs de nœuds, qui sont l’autorité, la
disponibilité et la fiabilité.

5. Il est possible d’appliquer des politiques de sécurité d’une façon décentralisée.

6. Le modèle permet de définir des politiques distribuées d’administration.

7. Le modèle permet à son système d’administration d’être collaboratif.

8. Le modèle même peut être utilisé pour spécifier ses politiques d’administration.

9. Le modèle permet à son système d’administration d’être autonome.

10. Une correspondance entre les rôles administratifs et certains rôles réguliers.

Le modèle de contrôle d’usage UCON (Usage CONtrol) [105] pourrait être un modèle
de base intéressant pour SRBAC. On pourrait définir les rôles des nœuds et les catégories
des sujets et des objets en utilisant des attributs contextuels et mutables. D’une autre
part, l’application et la gestion des politiques ne sont pas forcément centralisées. En plus,
la possibilité de spécifier des obligations et des conditions, et l’aspect de continuité de
décision, rendent UCON un modèle générique, extensible, flexible et dynamique, ce qui
est exigé dans un système autonome. Néanmoins, les relations entre les attributs ne sont
pas prises en compte, ce qui rend difficile la définition des hiérarchies de rôles. D’une autre
part, il n’a pas un modèle administratif associé, contrairement au modèle RBAC.

Le modèle orienté organisation Or-BAC (Organization-Based Access Control) [5] est
basé sur les rôles et permet d’en définir des hiérarchies. Des catégorisations de sujets et
d’objets sont possibles. Il permet l’utilisation des informations contextuelles. L’application
des politiques peut être décentralisée, et le modèle administratif associé AdOr-BAC [32]
est distribué et collaboratif. Autrement dit, il suffirait de bien configurer les composants
du modèle Or-BAC, en prenant en compte la nature autonome des IOrg-AutoNets, pour
définir le modèle SRBAC. Néanmoins, il serait plus simple et efficace d’utiliser pour base
de SRBAC un modèle moins sophistiqué comme RBAC.

Une relation sécurisée dans un IOrg-AutoNet relie deux nœuds. Un nœud peut avoir
un différent rôle de base dans chacune de ses relations sécurisées. Voir la Définition 8 des
rôles de base, et la Définition 9 des relations sécurisées. Le rôle de base ayant le maximum
de permissions administratives est le rôle d’autorité A. Un nœud d’autorité peut utiliser les
privilèges d’administrateur quand il coopère avec d’autres nœuds d’autorité pour accomplir
des opérations autonomes. Il peut aussi utiliser certains autres privilèges administratifs
quand il gère l’ensemble des nœuds qui sont sous son contrôle. En revanche, il utilise
les privilèges du rôle de base non-administratif NA, qui est le rôle de base sans aucune
permission administrative, quand il communique tout simplement avec d’autres nœuds. Il
y’aurait éventuellement d’autres rôles de bases selon l’évolution du réseau.

Définition 8 On définit l’ensemble totalement ordonné des rôles de base B, avec NA et
A pour bornes inférieure et supérieure respectivement. On définit la fonction bAbility qui
renvoie la classe de capacité représentant le minimum des conditions pour acquérir un rôle
de base.

XIII

• bAbility : B −→ K

– ∀b1, b2 ∈ B, (b1 ≥ b2)⇔ (bAbility(b1) ≥ bAbility(b2))

– bAbility(NA) = LD

– bAbility(A) = HD

Notation 2 On utilise dans la Définition 8, ainsi que dans le reste de ce résumé :

• b, avec des indices éventuels, pour représenter un rôle de base (un élément de B).

Définition 9 On définit l’ensemble de toutes les relations sécurisées SR, et la fonction
sRels qui renvoie le sous-ensemble des relations sécurisées d’un nœud.

• SR ⊆ N 2 × B2

– ∀ρ ∈ SR, ρ = (x, y, bx, by), bx étant le rôle de base de x dans ρ
et by étant le rôle de base de y dans ρ

– ∀ρ1, ρ2 ∈ SR, ((ρ1 = (x, y, bx, by)) ∧ (ρ2 = (x, y, b′x, b
′
y)))

⇒ ((bx = b′x) ∧ ((by = b′y))

• sRels : N −→ 2SR

– ∀x ∈ N , sRels(x) = {ρ ∈ SR | (ρ = (x1, x2, b1, b2)) ∧ ((x = x1) ∨ (x = x2))}

Notation 3 On utilise dans la Définition 9, ainsi que dans le reste de ce résumé :

• ρ, avec des indices éventuels, pour représenter une relation sécurisée (un élément de
SR).

Etant basé sur le modèle RBAC, le modèle SRBAC définit d’ores et déjà les mécanismes
de contrôle d’accès suivants pour un IOrg-AutoNet :

1. Un nœud acquière des permissions en fonction de son rôle régulier. Voir la Définition
10 d’un rôle régulier, dans laquelle on définit également un champ d’administration.

Définition 10 On définit l’ensemble des rôles réguliers RR, la fonction bRole qui
renvoie le rôle de base d’un nœud dans une relation sécurisée, la fonction aComm
qui renvoie le sous-ensemble de communautés géré par un nœud en fonction d’un
rôle de base donné (champ d’administration), et la fonction rRole qui renvoie le
rôle régulier d’un nœud dans une relation sécurisée.

• RR ⊆ T × C × B × 2C

• bRole : N × SR −→ B
• aComm : N × B −→ 2C

• rRole : N × SR −→ RR

XIV

– ∀x ∈ N ,∀ρ ∈ sRels(x),∃b ∈ B, bRole(x, ρ) = b,
rRole(x, ρ) = (tLevel(x), nComm(x), b, aComm(x, b))

2. Une hiérarchie sert à structurer les rôles réguliers. Cette hiérarchie, qu’on appelle
RRH (Regular Role Hierarchy) dans SRBAC, définit une relation de domination qui
organise un héritage des privilèges entre les rôles réguliers; Un rôle régulier hérite
les privilèges des rôles réguliers qu’il domine. Voir d’abord la Définition 11 qui
décrit une relation de domination entre les champs d’administration, et ensuite la
Définition 12 qui décrit la relation de domination caractérisant l’héritage entre les
rôles réguliers.

Définition 11 Etant donné as1 et as2 deux champs d’administration représentés
par deux ensembles de communautés, on écrit as1 � as2 et on dit que as1 domine as2

si et seulement si les nœuds de n’importe quelle communauté dans as2 appartiennent
à une communauté dans as1.

• ∀as1, as2 ∈ 2C ,
(as1 � as2)⇔ (∀c2 ∈ as2, ∃c1 ∈ as1, c2 ⊆ c1)

Notation 4 On utilise dans la Définition 11, ainsi que dans le reste de ce résumé :

• as, avec des indices éventuels, pour représenter un champ d’administration (un
élément de 2C).

Définition 12 Etant donné r1 et r2 deux rôles réguliers, on écrit r1 �RR r2, et on
dit que r1 domine r2 dans RR, si et seulement si :

• ∀r1, r2 ∈ (RR ∪ {(L,N , NA, ∅), (H, ∅, A, C)}),
r1 = (t1, c1, b1, as1), r2 = (t2, c2, b2, as2),
(r1 �RR r2)⇔ ((t1 ≥ t2) ∧ (c1 ⊆ c2) ∧ (b1 ≥ b2) ∧ (as1 � as2))

Notation 5 On utilise dans la Définition 12, ainsi que dans le reste de ce résumé :

• (L,N , NA, ∅) pour borne inférieure de RRH. C’est un rôle abstrait qui ne donne
droit à aucune permission.

• (H, ∅, A, C) pour borne supérieure de RRH. C’est un rôle abstrait qui donne
droit à toutes les permissions spécifiées dans le système de contrôle d’accès.

• r, avec des indices éventuels, pour représenter un rôle régulier (un élément de
RR).

3. Un nœud peut avoir plusieurs rôles réguliers, et un rôle régulier peut être affecté à
plusieurs nœuds. Autrement dit, la relation “affectation nœud-rôle”, qu’on appelle
NRA (Node-Role Assignment), est une relation de type plusieurs-à-plusieurs. Voir
les Définitions 13, 14 et 15 qui décrivent l’ensemble NRA et les fonctions utilisées
pour parcourir ses éléments.

XV

Définition 13 On définit la fonction nRoles qui renvoie l’ensemble de tous les rôles
réguliers affectés à un nœud donné, et la fonction rNodes qui renvoie l’ensemble de
tous les nœuds ayant un rôle régulier donné :

• nRoles : N −→ 2RR,
∀x ∈ N ,∀ρ ∈ sRels(x), nRoles(x) = {r ∈ RR | rRole(x, ρ) = r}
• rNodes : RR −→ 2N ,
∀r ∈ RR, rNodes(r) = {x ∈ N | ∃ρ ∈ sRels(x), rRole(x, ρ) = r}

Définition 14 On définit l’ensemble des affectations directes nœuds-rôles NRA, et
la fonction dRoles qui renvoie l’ensemble des rôles réguliers affectés directement à
un nœud donné :

• NRA ⊆ N ×RR
– ∀x ∈ N ,∀r ∈ RR, ((x, r) ∈ NRA)⇔

((r ∈ nRoles(x)) ∧ (∀r′ ∈ RR, r′ 6= r, r′ �RR r, r′ /∈ nRoles(x)))

• dRoles : N −→ 2RR,∀x ∈ N , dRoles(x) = {r ∈ RR | (x, r) ∈ NRA}

Définition 15 On définit la fonction allnRoles qui renvoie les rôles réguliers directs
d’un nœud et tous leurs rôles réguliers hérités (dominés) :

• allnRoles : N −→ 2RR,∀x ∈ N ,
allnRoles(x) = {r ∈ RR | ∃r′ ∈ dRoles(x), r′ �RR r}

4. On peut appliquer des contraintes de séparation statique de tâches (SSD: Static Sep-
aration of Duty) sur l’ensemble des affectations nœuds-rôles. Selon une contrainte de
type SSD, l’affectation d’un rôle régulier à un nœud pourrait empêcher l’affectation
d’autres rôles réguliers à ce même nœud.

5. Une permission peut être affectée à plusieurs rôles réguliers, et un rôle régulier
peut avoir plusieurs permissions. Autrement dit, la relation “affectation permission-
rôle”, qu’on appelle PRA (Permission-Role Assignment), est une relation de type
plusieurs-à-plusieurs. Voir les Définitions 16 et 17 qui décrivent l’ensemble PRA et
les fonctions utilisées pour parcourir ses éléments.

Définition 16 On définit l’ensemble des catégories d’objets OC, et la fonction
rObjects qui renvoie l’ensemble des catégories d’objets associées à un rôle régulier
par correspondance :

• OC ⊆ (T ∪ {nilT })× (C ∪ N)× (B ∪ {nilB})
• rObjects : RR −→ 2OC

– ∀r ∈ RR, (r = (t, c,NA, ∅))⇔ (rObjects(r) = {(t, c,NA)})
– ∀r ∈ RR, ((r = (t, c, b, as)) ∧ (b 6= NA))
⇔ (rObjects(r) = {(t, c′, b) ∈ OC | c′ ∈ as})

XVI

Remarque 6 Dans la Définition 16:

• nilB est utilisé à la place du rôle de base pour l’ignorer si nécessaire.

• L’ensemble des catégories d’objets OC est défini pour créer une hiérarchie qui
distribue les permissions sur des ensembles d’objets selon les attributs des nœuds
demandeurs d’accès potentiels. On prend en considération les niveaux de con-
fiance tout d’abord, ensuite les communautés puis leurs sous-communautés à
toutes les profondeurs, et finalement les rôles de base.

Définition 17 On définit l’ensemble des permissions P, la fonction pPool qui ren-
voie le sous-ensemble de P associées à une catégorie d’objets, l’ensemble PRA des
affectations directes permissions-rôles, la fonction rPerms qui renvoie l’ensemble des
permissions affectées à un rôle régulier, et la fonction pRoles qui renvoie l’ensemble
des rôles réguliers ayant une permission donnée :

• pPool : OC −→ 2P

• PRA ⊆ RR× P
– ∀r ∈ RR, ∀p ∈ P,

((r, p) ∈ PRA)⇔ (∃oc ∈ rObjects(r), p ∈ pPool(oc))
• rPerms : RR −→ 2P ,∀r ∈ RR,
rPerms(r) = {p ∈ P | ∃r′ ∈ RR, ((r′, p) ∈ PRA) ∧ (r �RR r′)}
• pRoles : P → 2RR, ∀p ∈ P,
pRoles(p) = {r ∈ RR | ∃r′ ∈ RR, ((r′, p) ∈ PRA) ∧ (r �RR r′)}

6. On peut appliquer des contraintes dynamiques sur les affectations permissions-rôles.
Une contrainte dynamique est souvent contextuelle basée sur la relation sécurisée
qui encapsule l’opération d’accès, ou bien une contrainte de temps.

7. Une session d’accès est lancée par un seul nœud.

En outre, le modèle SRBAC définit particulièrement les mécanismes de contrôle d’accès
suivants en termes d’adaptation du modèle RBAC aux aspects organisationnels et au-
tonomes des IOrg-AutoNets :

1. L’hétérogénéité des nœuds est prise en compte : la classe de capacité définit le rôle
de base (Définition 8).

2. L’évolution et les caractéristiques du contexte sont prises en compte : les attributs
définissant les rôles réguliers sont contextuels, et un rôle régulier dépend de la relation
sécurisée dans le cadre de laquelle se passe l’opération d’accès (Définition 10).

3. Autogestion des affectations des rôles réguliers aux nœuds : la spécification d’un rôle
régulier identifie les catégories des nœuds où le système d’administration du contrôle
d’accès devrait chercher des candidats pour l’acquérir.

XVII

4. Aspect organisationnel : les catégories de nœuds définissent une structure organi-
sationnelle (NS-N: Network Structure for Nodes), facilitant davantage l’autogestion
des affectations des rôles réguliers aux nœuds.

5. Auto-configuration des affectations des permissions aux rôles réguliers : la spécification
d’un rôle régulier identifie un ensemble de catégories d’objets associées, et par
conséquent les permissions associées à ces dernières.

6. Dérivation des politiques : les catégories d’objets définissent une structure organ-
isationnelle (NS-P: Network Structure for Permissions), qui permet au système
d’administration de contrôle d’accès de catégoriser les règles définies par les util-
isateurs finaux, et de les traduire en politiques de sécurité à bas-niveau.

7. Distribution : un seul rôle régulier peut être activé par un nœud dans une session
d’accès, et cela serait le rôle régulier caractérisé par la relation sécurisée qui encadre
l’opération d’accès, mais un nœud pourrait toujours activer plusieurs rôles réguliers
dans des sessions d’accès parallèles selon plusieurs relations sécurisées.

8. On peut appliquer des contraintes de séparation dynamique de tâches (DSD: Dy-
namic Separation of Duty) sur l’activation des rôles réguliers. Selon une contrainte de
type DSD, l’activation d’un rôle régulier par un nœud pourrait empêcher l’activation
d’autres rôles réguliers par le même nœud dans des sessions d’accès parallèles.

La définition formelle du modèle SRBAC : Après avoir défini ses différents
composants ci-haut, on peut décrire le modèle SRBAC formellement et en totalité par la
définition suivante (Définition 18) :

Définition 18 Le modèle SRBAC de contrôle d’accès (Secure Relation Based Access Con-
trol), qui est défini pour les réseaux IOrg-AutoNets (Figure 1 et Définition 2) et illustré
par la Figure 4, est composé des éléments suivants :

• N : l’ensemble des nœuds du réseau (cf. Définition 2).

• S: un ensemble de sessions d’accès.

• CS: un ensemble de sessions de communication.

• SR: l’ensemble des relations sécurisée (cf. Définition 9).

• RR: l’ensemble des rôles réguliers (cf. Définition 10).

• RRH: la relation d’ordre partiel définie sur RR qu’on appelle l’hiérarchie des rôles
réguliers (cf. Définition 12).

• NC: l’ensemble des catégories des nœuds (cf. Définition 2).

• NS − N : une relation d’ordre partiel définie sur NC, et on l’appelle la structure
réseau pour les nœuds (Network Structure for Nodes).

XVIII

• OC: l’ensemble des catégories des objets (cf. Définition 16).

• P: l’ensemble des permissions (cf. Définition 17).

• NS − P : une relation d’ordre partiel définie sur OC, et on l’appelle la structure
réseau pour les permissions (Network Structure for Permissions).

• NRA: l’ensemble des affectations directes nœuds-rôles réguliers (cf. Définition 14).

• PRA: l’ensemble des affectations directes permissions-rôles réguliers (cf. Définition
17).

• NCA: un ensemble d’associations entre les nœuds et les catégories des nœuds.

• PCA: un ensemble d’associations entre les permissions et les catégories des objets.

• node : S −→ N : une fonction qui relie une session d’accès si au nœud qui l’a lancée
node(si).

• activeRoles : S −→ 2RR: une fonction qui relie une session d’accès si à un ensemble
de rôles réguliers déjà activé, tel que activeRoles(si) ⊆ allnRoles(node(si)). Voir
la Définition 15 pour la spécification de la fonction allnRoles.

• canAccess : S × P −→ {true, false}: un prédicat spécifiant que (canAccess(s, p) =
true) ⇔ (∃r ∈ activeRoles(s), p ∈ rPerms(r)). Voir la Définition 17 pour la
spécification de la fonction rPerms.

Langage de spécification des politiques SRBAC : Nous proposons le langage
XACML (eXtensible Access Control Markup Language) [4] pour décrire les politiques
SRBAC. Il est un langage interprétable au niveau système, où des politiques bas-niveau
peuvent être dérivées, ou bien des spécifications logiques équivalentes peuvent être ex-
traites dans le cadre d’un processus autonome. Il peut également servir comme une in-
terface homme-machine à utiliser par des administrateurs. Autrement dit, XACML est
un bon candidat pour le langage de gestion du type SPML (Security Policy Management
Language) proposé dans notre modèle de système autonome de politiques de sécurité
(Figure 3). Une autre bonne raison pour choisir XACML est sa conformité avec la nature
hétérogène de l’environnement d’un IOrg-AutoNet, étant une norme ouverte et basée sur
le langage XML universellement utilisé.

Plus précisément, nous profitons du profil défini pour RBAC dans la version 2.0 du
langage XACML [15]. Ce profil est basé sur la norme ANSI INCITS 359-2004 [2] qui décrit
le modèle RBAC de référence [85] adopté par l’institut NIST [3]. En effet, nous étendons
le profil RBAC de XACML v2.0 pour pouvoir exprimer des composants spécifiques à
SRBAC. Comme illustré dans la Figure 5, nous définissons les nouvelles entités NCPS
(Node Category Policy Set) et OCPS (Object Category Policy Set) en XACML v2.0 pour
représenter les composants organisationnels de SRBAC, étant les catégories des nœuds, les
catégories des objets et les structures NS-N et NS-P associées (voir la définition formelle
du modèle SRBAC : Définition 18).

XIX

RPS

Role

Node

NCPS

PPS Permission

OCPS

RBAC/XACML Profile

1

*

*

1

1*
1*

1
*

*

*

*

Role = Regular Role in SRBAC

RPS: “regular” Role Policy Set

PPS: Permission Policy Set

NCPS: Node Category Policy Set

OCPS: Object Category Policy Set

1-1 Relationship1

N-N Relationship*

1-N Relationship*1

Figure 5: Le profile RBAC de XACML v2.0 étendu par des entités SRBAC

La différence principale entre le profil étendu SRBAC et le profil original RBAC se
manifeste dans la spécification des permissions. C’est l’entité PPS (Permission Policy
Set) qui décrit les permissions dans le profil RBAC. Quant au profil SRBAC, c’est l’entité
OCPS (Object Category Policy Set) qui joue ce rôle. Néanmoins, on utilise les entités PPS
pour exprimer les permissions d’administration de SRBAC. Les liaisons entre les entités
PPS et les entités OCPS permettent aux politiques d’administration du système SRBAC
de s’adapter aux changements du contexte de ce dernier.

c.4) Modèle d’administration

L’objectif principal de la thèse est de proposer une solution de sécurité autonome pour les
réseaux de type IOrg-AutoNet. Cela serait une solution d’administration de la sécurité.
Plus précisément, nous proposons une solution d’administration de contrôle d’accès. Notre
contribution dans ce cadre est une modèle d’administration associé à notre modèle de
contrôle d’accès SRBAC. Notre modèle d’administration s’appelle ASRBAC (Adminis-
trative SRBAC), et il est illustré dans la Figure 6. Ce dernier montre également que
le modèle ASRBAC est basé sur le modèle SRBAC lui-même, ce qui lui permet d’avoir
des propriétés d’un système autonome. Nous avons déjà détaillé une première version du
modèle ASRBAC dans une publication introductive [13].

En effet, ASRBAC est une extension du modèle d’administration ARBAC02 [73] as-
socié au modèle de contrôle d’accès RBAC [89] qu’on utilise comme base pour notre

XX

RRH: Regular Role Hierarchy

NRA (PRA): Node- (Permission-) “regular” Role Assignments

NCA (PCA): Node- (Permission-) Category Associations

ARH: Administrative Role Hierarchy

ANRA (APRA): Administrative Node- (Permission-) Role Assignments

NS-N (NS-P): Network Structure for Nodes (Permissions)

1-N Relationship

N-N Relationship

Define

RRH
NRA

PRA
Permissions

NS-N

Node

Categories
Nodes

Regular

Roles

Admin.

Roles

ARH
ANRA

APRA

Admin.

Permissions

(trust, administration scope)

NS-P

Object

Categories

PCA

NCA

Figure 6: ASRBAC : modèle d’administration basé sur SRBAC

modèle SRBAC. En utilisant ARBAC02 comme base pour ASRBAC, on satisfait déjà
certains besoins d’administration de la sécurité dans un IOrg-AutoNet ; l’administration
est distribuée, et les rôles administratifs sont organisés selon un ordre partiel dans une
hiérarchie qu’on appelle ARH (Administrative Role Hierarchy). Voir la Définition 19 des
rôles administratifs et de leurs relations avec l’ensemble des rôles réguliers. Voir ensuite
la Définition 20 de l’hiérarchie des rôles administratifs ARH.

Définition 19 On définit l’ensemble des rôles administratifs AR et la fonction aRoles
qui renvoie le sous-ensemble des rôles administratifs d’un nœud d’autorité :

• AR ⊆ T × 2C

• aRoles : N −→ 2AR

– ∀x ∈ N , aRoles(x) = {(t, as) | ∃r ∈ allnRoles(x),∃c ∈ C, r = (t, c, A, as)}

Remarque 7 Dans la Définition 19 :

• La fonction allnRoles renvoie l’ensemble de tous les rôles réguliers affectés à un
nœud directement ou par héritage (cf. Définition 15).

Définition 20 Etant donnés les deux rôles administratifs ar1 et ar2, on dit que ar1
domine ar2 dans AR et on écrit ar1 �AR ar2 selon la définition formelle suivante :

• ∀ar1, ar2 ∈ AR, ar1 = (t1, as1), ar2 = (t2, as2),
(ar1 �AR ar2)⇔ ((t1 ≥ t2) ∧ (as1 � as2))

XXI

Notation 6 On utilise dans la Définition 20, ainsi que dans le reste de ce résumé :

• ar, avec des indices éventuels, pour représenter un rôle administratif (un élément de
l’ensemble AR).

On précise dans la liste suivante des mécanismes d’administration autonome de la
sécurité spécifiques au modèle ASRBAC :

1. Auto-configuration des rôles administratifs : un rôle administratif est déduit automa-
tiquement d’un rôle régulier correspondant identifié par le rôle de base d’autorité A
(Voire Définition 19).

2. Auto-configuration des affectations nœuds-rôles administratifs : l’ensemble ANRA
(Administrative Node-Rola Assignments) dans ASRBAC est le sous-ensemble de
NRA (Node-Role Assignments) de SRBAC où les rôles réguliers sont caractérisés
par le rôle de base d’autorité A. Voir la Définition 21 de l’ensemble des affectations
nœuds-rôles administratifs.

Définition 21 L’ensemble des affectations nœuds-rôles administratifs ANRA (Ad-
ministrative Node-Role Assignments) est défini par :

• ANRA ⊆ N ×AR
– ∀x ∈ N ,∀ar ∈ AR, ((x, ar) ∈ ANRA)⇔

((ar ∈ aRoles(x)) ∧ (∀ar′ ∈ AR, ar′ 6= ar, ar′ �AR ar, ar′ /∈ aRoles(x)))

3. Auto-configuration des affectations permissions-rôles administratifs : la spécification
d’un rôle administratif est en effet une spécification des permissions administratives
du nœud d’autorité associé. Une telle spécification indique ce qu’on appelle le do-
maine d’administration du rôle administratif, qui est composée de :

(a) Une portée organisationnelle : où le nœud d’autorité pourrait modifier certaines
parties des composants organisationnels NS-N et NS-P du modèle SRBAC (voir
la définition formelle du modèle SRBAC : Définition 18), et employer ces mod-
ifications dans la gestion des affectations NRA (voir les Définition 13, 14 et 15)
et PRA (voir les Définitions 16 et 17).

(b) Une portée hiérarchique : où le nœud d’autorité pourrait modifier certaines
parties de l’hiérarchie des rôles réguliers RRH (voir les Définitions 11 et 12),
et employer ces modifications dans la gestion des affectations NRA (voir les
Définition 13, 14 et 15) et PRA (voir les Définitions 16 et 17).

La première ligne du tableau “Table 1” montre l’auto-configuration du domaine
d’administration d’un rôle administratif à partir de sa spécification. La portée or-
ganisationnelle est un ensemble de branches dans les structures d’arbres NS-N et
NS-P représentées par leurs racines, et la portée hiérarchique est représentée par un
ensemble d’intervalles délimitant des parties de l’hiérarchie RRH.

XXII

Table 1: APRA (Affectations Permissions-Rôles Administratifs) dans ASRBAC

Rôle Administratif Portée organisationnelle Portée hiérarchique
(t, as) ∈ AR {(t, c, nilK) | c ∈ as} ∪ {(t, c, nilB) | c ∈ as} {[(L, c, NA, ∅), (t, c, A, {c})[| c ∈ as}
AR {(nilT ,N , nilK), (nilT ,N , nilB)}](L,N , NA, ∅), (H, ∅, A, C)[

Variables Constantes
t: Niveau de confiance L: Niveau de confiance le plus bas

as: Champ d’administration H: Niveau de confiance le plus haut
c: Communauté NA: Rôle de base non-administratif

A: Rôle de base d’autorité
N : L’ensemble des nœuds du réseau
C: L’ensemble des communautés
T : L’ensemble des niveaux de confiance

nilT : On néglige les niveaux de confiance
nilK : On néglige les classes de capacités
nilB : On néglige les rôles de bases
AR: L’ensemble des rôles administratifs

4. Collaboration : les nœuds d’autorité pourrait coopérer pour modifier n’importe
quel composant SRBAC dans le cadre d’une opération administrative, si jamais
l’un d’entre eux ne peut pas le faire individuellement. La deuxième ligne du tableau
“Table 1” montre cette propriété de collaboration dans ASRBAC. Elle définit comme
domaine d’administration pour tous les rôles administratifs en mode de coopération
une portée hiérarchique étant l’hiérarchie complète des rôles réguliers RRH (voir
les Définitions 11 et 12), et une portée organisationnelle composée des totalités
des éléments organisationnels NS-N et NS-P du modèle SRBAC (voir la définition
formelle du modèle SRBAC : Définition 18).

Les politiques ASRBAC : Les cibles des actions administratives ASRBAC sont
les composants SRBAC. En effet, la spécification des politiques ASRBAC fait partie de la
spécification des politiques SRBAC associées, ce qui est l’une des critères d’autogestion du
modèle ASRBAC. Un exemple de spécification de politiques SRBAC et ASRBAC associées
est présenté dans l’annexe A.

Les cinq prédicats ASRBAC suivants permet de réaliser les actions XACML qui seraient
définies dans les spécifications des politiques ASRBAC:

1. canAssign(ar,@nc, [r1, r2[): le rôle administratif ar permet de sélectionner un nœud
de la catégorie nc, ou bien l’une des catégories qu’elle domines, pour lui affecter un
rôle régulier de l’intervalle [r1, r2[.

2. canAssignP (ar,@oc, [r1, r2[): le rôle administratif ar permet de sélectionner une
permission associée à la catégorie d’objets oc, ou bien l’une des catégories qui la

XXIII

dominent, pour l’affecter à un rôle régulier de l’intervalle [r1, r2[.

3. canModify(ar, [r1, r2[): le rôle administratif ar permet de révoquer des nœuds et des
permissions affectés à un rôle régulier de l’intervalle [r1, r2[, et il permet également
d’ajouter ou annuler des rôles régulier ou des relations d’héritage entre rôles dans
l’intervalle [r1, r2[.

4. canModifyNC(ar, nc): le rôle administratif ar permet d’ajouter ou annuler des
catégories de nœuds dans la branche de NS-N définie par la racine nc.

5. canModifyOC(ar, oc): le rôle administratif ar permet de reconfigurer et redistribuer
les permissions associées aux catégories d’objets dans la branche de NS-P définie par
la racine oc, et il permet également d’ajouter ou annuler des catégories d’objets dans
cette branche.

En utilisant les prédicats ASRBAC précédents, on définit l’ensemble des permissions
administratives AP sous forme d’actions dérivées des affectations APRA (Table 1). Ces
actions sont élaborées dans les deux Définitions 22 et 23 :

Définition 22 On définit pour le rôle administratif (t, as) ∈ AR les cinq ensembles suiv-
ants d’actions administratives :

1. {canAssign((t, as),@(t, c, nilK), [(L, c,NA, ∅), (t, c, A, {c})[) | c ∈ as}

2. {canAssignP ((t, as),@(t, c, nilB), [(L, c,NA, ∅), (t, c, A, {c})[) | c ∈ as}

3. {canModify((t, as), [(L, c,NA, ∅), (t, c, A, {c})[) | c ∈ as}

4. {canModifyNC((t, as), (t, c, nilK)) | c ∈ as}

5. {canModifyOC((t, as), (t, c, nilB)) | c ∈ as}

Définition 23 On définit pour l’ensemble de tous les rôles administratifs AR les cinq
actions administratives collaboratives suivantes :

1. canAssign(AR,@(nilT ,N , nilK),](L,N , NA, ∅), (H, ∅, A, C)[)

2. canAssignP (AR,@(nilT ,N , nilB),](L,N , NA, ∅), (H, ∅, A, C)[)

3. canModify(AR,](L,N , NA, ∅), (H, ∅, A, C)[)

4. canModifyNC(AR, (nilT ,N , nilK))

5. canModifyOC(AR, (nilT ,N , nilB))

Les nœuds d’autorité peuvent reconfigurer les affectations APRA (Table 1), les poli-
tiques ASRBAC et les actions administratives (permissions) associées (Définitions 22 et 23)
sans aucune intervention humaine. En effet, la réalisation et la reconfiguration du système
d’administration ASRBAC sont complètement auto-gérables, ce qui est une contribution
importante de cette thèse.

XXIV

La définition formelle du modèle ASRBAC : Après avoir défini ses différents
composants ci-haut, on peut décrire le modèle administratif ASRBAC formellement et en
totalité par la définition suivante (Définition 24) :

Définition 24 Le modèle ASRBAC d’administration de contrôle d’accès (Administrative
Secure Relation Based Access Control), qui est défini en association avec le modèle de
contrôle d’accès SRBAC (Figure 4 et Définition 18) pour les réseaux IOrg-AutoNets (Fig-
ure 1 et Définition 2), et illustré par la Figure 6, est composé des éléments suivants :

• Tous les composants du modèle SRBAC décrits dans la Définition 18.

• AR: l’ensemble des rôles administratifs, où RR⇒ AR (cf. Définition 19).

• ARH: la relation d’ordre partiel définie sur AR et appelée hiérarchie des rôles ad-
ministratifs (cf. Définition 20).

• ANRA: l’ensemble des affectations nœuds-rôles administratifs, où NRA⇒ ANRA
(cf. Définition 21).

• APRA: l’ensemble des affectations permissions-rôles administratifs (cf. Table 1).

• AP : l’ensemble des permissions administratives (cf. Définitions 22 et 23), qui sont
des actions administratives ayant pour cibles les différents composants du modèle
SRBAC décrits dans la Définition 18.

Les propriétés d’informatique autonome dans ASRBAC : L’architecture d’un
système autonome basé sur le modèle ASRBAC est présentée par la Figure 7, qui montre
les propriétés suivantes de l’informatique autonome (Autonomic Computing [56, 50]) :

• Boucle de contrôle autonome (Autonomic Control Loop) :

– Ce mécanisme donne au modèle ASRBAC la propriété d’auto-adaptation.

– Les variables d’environnement “Trust (Confiance), Availability (Disponibilité)
et Authority (Autorité)”, qui caractérisent le contexte des nœuds d’un réseau
IOrg-AutoNet, peuvent changer. Les nœuds d’autorité détectent ces change-
ments et utilisent leurs permissions administratives respectives pour appliquer
des changements critiques sur le composant organisationnel NS-N (Network
Structure for Nodes) du modèle SRBAC (Définition 18), ce qui veut dire des
changements dans des catégories de nœuds, voire dans l’hiérarchie reliant les
catégories de nœuds.

– Les nœuds d’autorité utilisent leurs permissions administratives respectives
pour adapter les composants suivants du modèle SRBAC (Définition 18) aux
changements de NS-N:

∗ Le composant organisationnel NS-P (Network Structure for Permissions),
ce qui veut dire des changements dans des catégories d’objets, voire dans
l’hiérarchie reliant les catégories d’objets.

XXV

Administration Process

Context-Aware Changes

Self-Aware Changes

Modify

Define

Collaborate to execute

NS-N: Network Structure for Nodes

NS-P: Network Structure for Permissions

RRH: Regular Role Hierarchy

NRA: Node “regular” Role Assignments

PRA: Permission “regular” Role Assignments

ARH: Administrative Role Hierarchy

ANRA: Administrative Node Role Assignments

APRA: Administrative Permission Role Assignments

Context-Aware Systems

NS-N NS-P

RRH PRANRA

ARHANRA

Authority

Nodes

APRA

Network

Level

SRBAC Level

ASRBAC Level

Trustworthiness,

Membership and

Mission

Trust, Availability and Authority

Specification

Figure 7: Les propriétés d’informatique autonome dans ASRBAC

XXVI

∗ Les spécifications des rôles réguliers (Définition 10) et leur hiérarchie RRH
(Définition 12), ce qui mène les nœuds d’autorité à adapter également
les affectations permissions-rôles réguliers PRA (Définitions 16 et 17) aux
changements de RRH.
∗ Les affectations nœuds-rôles réguliers NRA (Définitions 13, 14 et 15).

– Les composants du modèle ASRBAC (Définition 24) s’adaptent alors automa-
tiquement, ce qui définit le nouvel ensemble des nœuds d’autorité, ainsi que
de nouveaux rôles et permissions administratifs. On obtient alors de nouvelles
politiques d’administration reconfigurées par le système lui-même (boucle de
contrôle autonome) :

∗ Les affectations nœuds-rôles administratifs ANRA (Définition 21) s’adaptent
par définition aux changements des affectations nœuds-rôles réguliers NRA.
∗ Les rôles administratifs (Définition 19) et leur hiérarchie ARH (Définition

20) s’adaptent par définition aux changements des rôles réguliers et de leur
hiérarchie RRH respectivement.
∗ Les nouvelles permissions administratives se reconfigurent éventuellement,

étant donné que les affectations permissions-rôles administratifs APRA
(Table 1) s’adaptent par définition aux changements des rôles adminis-
tratifs et de leur hiérarchie ARH.

• Autogestion prédéfinie (Predefined Self-Management) :

– Un système ASRBAC peut également s’adapter à des changements non-critiques
selon des politiques d’administration prédéfinies. Dans ce cas là, les rôles admin-
istratifs (Définition 19), leur hiérarchie ARH (Définition 20) et éventuellement
les affectations permissions-rôles administratifs APRA (Table 1) restent intacts
(les politiques d’administration ne changent pas), ceci étant la différence prin-
cipale entre autogestion prédéfinie et boucle de contrôle autonome.

– Les variables d’environnement “Trustworthiness (Fiabilité), Membership (Ap-
partenance) et Mission”, qui caractérisent les nœuds individuellement dans
un réseau IOrg-AutoNet, peuvent changer. Les nœuds d’autorité détectent
ces changements et utilisent leurs permissions administratives respectives pour
adapter les affectations nœuds-rôles réguliers NRA (Définitions 13, 14 et 15).

– Les affectations nœuds-rôles administratifs ANRA (Définition 21) s’adaptent
par définition aux changements des affectations nœuds-rôles réguliers NRA.

– La variable d’environnement “Specification (Spécification)”, qui caractérise les
objectifs de sécurité du haut-niveau, peut changer. Les nœuds d’autorité détectent
ces changements et utilisent leurs permissions administratives respectives pour
adapter le composant organisationnel NS-P (Network Structure for Permis-
sions) du modèle SRBAC (Définition 18), ce qui veut dire la reconfiguration
et la redistribution des permissions et la modification des associations entre
permissions et catégories d’objets.

• Coopération entre nœuds d’autorité :

– Quand une action administrative est hors de la porté d’un nœud, le travail peut
quand-même être effectué selon une distribution de tâches et une politique de
collaboration entre nœuds d’autorité, ce qui est illustré par la deuxième ligne de
“Table 1” qui spécifie les affectations permissions-rôles administratifs APRA,
ainsi que par la Définition 23 des actions administratives collaboratives.

– Particulièrement, les nœuds d’autorité coopèrent dans les cas suivants :

∗ La validation des changements critiques à effectuer sur le composant or-
ganisationnel NS-N (Network Structure for Nodes) du modèle SRBAC
(Définition 18) dans le contexte d’une boucle de contrôle autonome.
∗ L’élection de nœuds pendant la gestion de nouvelles affectations nœuds-

rôles réguliers NRA (Définitions 13, 14 et 15), que ce soit en réponse à des
changements de NS-N dans le contexte d’une boucle de contrôle autonome
ou en réponse à des changements de certaines variables d’environnement
dans le contexte d’une autogestion prédéfinie.
∗ La négociation de politiques de sécurité pendant le changement du com-

posant organisationnel NS-P (Network Structure for Permissions) du modèle
SRBAC (Définition 18) en réponse à des changements dans les objectifs de
sécurité du haut-niveau dans le contexte d’une autogestion prédéfinie.

d) Conclusion

L’objectif de cette thèse est d’établir une base pour l’administration de la sécurité dans
les réseaux autonomes. On a commencé par construire le contexte de la recherche en
définissant un modèle de réseau autonome qu’on appelle IOrg-AutoNet (Infrastructureless
Organizational Autonomic Network), ainsi que des composants d’une plateforme pour le
système d’administration de la sécurité associé.

Pour parvenir à l’objectif, il était nécessaire de définir un modèle de sécurité propre
aux réseaux IOrg-AutoNet. On a donc introduit le modèle SRBAC (Secure Relation Based
Access Control). SRBAC est un modèle de contrôle d’accès basé sur les rôles qui prend
en compte le contexte d’un réseau IOrg-AutoNet et sa structure variable.

La contribution principale de la thèse a été alors présentée sous forme d’un modèle
d’administration associé au modèle de contrôle d’accès proposé. On a appelé ce modèle
d’administration ASRBAC (Administrative SRBAC). Il est un modèle d’administration
collaborative basé sur son modèle de sécurité associé SRBAC. ASRBAC définit des réactions
autonomes aux changements contextuels dans un réseau IOrg-AutoNet.

L’introduction du modèle SRBAC et de son modèle d’administration ASRBAC im-
plique plusieurs pistes de recherche future. On en précise notamment la négociation de
politiques de sécurité et la réalisation de systèmes basés sur ces deux modèles. Cette thèse
présente les bases d’un algorithme de négociation de politiques (Section 5.6/Chapitre 5),
et une conception préliminaire d’un système basé sur SRBAC/ASRBAC (Chapitre 7).

XXVIII

École Doctorale
d’Informatique,
Télécommunications
et Électronique de Paris

Dissertation

Submitted in fulfillment of the requirements for the

Ph.D. degree in Computer Science of

TELECOM ParisTech

l’École Nationale Supérieure des Télécommunications

By

Mohamad ALJNIDI

Toward a Security Administration System for
Autonomic Networks

Defended on December 14, 2009

Dissertation Committee:

Isabelle Chrisment Reviewers
Hatem Bettahar
Dominique Gäıti Examiners
Christophe Bidan
Pascal Urien
Jean Leneutre Thesis Advisor

Preface

It is complex enough for humans to efficiently manage security in infrastructureless net-
works. Our goal is to make this security management autonomic. In this context, our
PhD thesis proposes an autonomic access control system.

We provide a definition of autonomic networks, and a set of bases of autonomic se-
curity. Afterwards, we define a type of autonomic networks that we call IOrg-AutoNet
(Infrastructureless Organizational Autonomic Network). The nodes of an IOrg-AutoNet
are classified according to three attributes: trustworthiness, availability and capabilities.
This classification allows nodes to acquire different roles, and certain roles make certain
nodes able to cooperate for managing the network.

We define an access control model for IOrg-AutoNets and we call it SRBAC (Secure
Relation Based Access Control). Its policies are applied during communications between
any couple of nodes already bound by a secure relation assigning certain roles to them.
SRBAC is an enhanced, adapted version of RBAC. We eventually propose an extension of
the RBAC profile of the specification language XACML v2.0 for writing SRBAC policies.

We define for SRBAC the administrative counterpart model ASRBAC to achieve our
autonomic access control system. ASRBAC is an extension of the distributed adminis-
trative model ARBAC02, which is associated to RBAC. This extension adds aspects of
collaboration, context-awareness, self-awareness, adaptability and autonomic computing.
ASRBAC is based on SRBAC itself, which constitutes the basis of the autonomic behavior
in our solution.

An example of an SRBAC/ASRBAC system of a home network, and an enforcement
model point out and validate our contributions.

2

Abstract

By the beginning of the twenty-first century, academia and industry decided to work more
on better solutions for computer system administration, in response to the increasing
complexity and heterogeneity in modern applications [51]. The need for self-managing
systems arose, and the IBM’s perspective of Autonomic Computing [56] has become one
of the well-known solutions in this field. A considerable number of research challenges
were identified by time [55], and recent specific studies focused on such challenges in the
communication domain [41]. Our work concerns security in autonomic networks.

Infrastructureless networks present several complexity issues in terms of network ad-
ministration. The lack of a preestablished infrastructure, the possibility of evolution of
the topology and the heterogeneity of nodes are the main reasons. Besides, administrators
may not be available in certain application fields of infrastructureless networking. There-
fore, we opted for working in the context of infrastructureless networks, where autonomic
administration is more likely to be needed. Our work aims at establishing the bases of
an autonomic access control system for infrastructureless networks, as a step toward a
security administration system for autonomic networks.

In a first part presenting the research context, and after discussing the theoretical
background and certain interesting related work, we point out our research objectives
through a certain vision of autonomic networks and certain autonomic security bases. Af-
terward, we introduce a definition and an organizational structure for infrastructureless
autonomic networks. We call an autonomic network having this structure IOrg-AutoNet
(Infrastructureless Organizational Autonomic Network). The IOrg-AutoNet structure
classifies the network nodes with respect to certain attributes based on the network con-
text. These attributes are trustworthiness, availability and heterogeneity. Such a classi-
fication helps assigning different roles to certain nodes, which allows them to collaborate
to manage the network instead of humans.

The second part of the thesis describes the autonomic access control system that we
propose for IOrg-AutoNets. A first chapter defines a collaborative access control model.
It concerns a communicating couple of nodes aiming to share certain resources, in the
context of a secure relation binding them. We call it Secure Relation Based Access Control
(SRBAC). The contribution of SRBAC model is the adaptation of the well-recognized
Role Based Access Control (RBAC) model [89] to the requirements of evolution and self-
management in an IOrg-AutoNet. Besides, in terms of policy specification, we make
another contribution by extending the OASIS RBAC profile of XACML v2.0 [15] with
SRBAC-specific entities.

We define the Administrative counterpart of SRBAC (ASRBAC) in the second chapter
of the access control system part. The ASRBAC model extends the distributed ARBAC02
model [73] with a support for autonomic computing. ASRBAC is expressed using SRBAC
itself, which essentially provides the basis for the autonomic administration. We may
summarize the contributions of ASRBAC as an extension of ARBAC02 by the following:

1. The network nodes that have administration privileges collaborate to accomplish
administration tasks related to the whole network while managing their respective
administration domains.

3

2. The network context is monitored in order to detect and analyze systematic and
critical changes while the network evolves ([50] describes those two types of changes).

3. The access control system is self-aware, which allows its components to adapt to
each other.

4. The access control components representing the network structure adapt to context-
aware changes.

5. The roles and the role hierarchy adapt to changes in the network structure compo-
nents.

6. The node-role assignments adapt to context-aware changes and/or changes in the
network structure components.

7. The access control system optimizes the low-level permission specifications to adapt
to changes in the high-level security rules and/or changes in the network structure
components.

8. The permission-role assignments adapt to changes in the node roles.

9. The access control system employs policy negotiation mechanisms to allow nodes to
collaborate to perform the previous self-management operations.

10. Roles, role hierarchy and node-role assignments in ASRBAC are self-configured, with
respect to changes in roles, role hierarchy and node-role assignments in SRBAC
respectively (autonomic control loop [41]).

11. Permission-role assignments in ASRBAC are self-configured, with respect to changes
in ASRBAC roles.

In a last part, a chapter is dedicated to a detailed case study about the specification,
enforcement and administration of access control policies based on SRBAC and ASR-
BAC in a Home Network. Besides, in terms of a proof of concepts, a second chapter
introduces a prototype that is based on the layered Policy-Enforcement-Implementation
(PEI) framework [87]. We try in this third part of the thesis to point out a maximum of
our contributions. We particularly focus on the autonomic functionality of the ASRBAC
administration mechanisms.

4

Lists of Terminology

Acronyms

IOrg-AutoNet Infrastructureless Organizational Autonomic Network
SRBAC Secure Relation Based Access Control
RRH Regular Role Hierarchy
NS-N Network Structure for Nodes
NS-P Network Structure for Permissions
SSD Static Separation of Duty
DSD Dynamic Separation of Duty
SoD Separation of Duty
RPS Role Policy Set
PPS Permission Policy Set
NCPS Node Category Policy Set
OCPS Object Category Policy Set
ASRBAC Administrative Secure Relation Based Access Control
ARH Administrative Role Hierarchy
SC Similarity Computation
LD Local Decision
SC Similarity Computation
RE Representative Election
HM High-trust oriented Multicasting
LM Low-trust oriented Multicasting

Notations

c community (element of C)
x, y, z node (element of N)
t trust level (element of T)
k capability class (element of K)
b basic role (element of B)
ρ secure relation (element of SR)
as administration scope (element of 2C)
r regular role (element of RR)
p permission (element of P)
nc node category (element of NC)
oc object category (element of OC)
s access session (element of S)
ar administrative role (element of AR)

5

Sets

N Network nodes
T Trust levels
C Communities and their subdivisions
K Capability classes
NC Node categories
F Classification functions
SR Secure relations
B Basic roles
RR Regular roles
OC Object categories
Atto Access scopes associated with an object o
Attp Access scopes associated with a permission p
P Permissions
S Access sessions
CS Communication sessions
NRA Direct node-role assignments
PRA Direct permission-role assignments
NCA Associations between nodes and node categories
PCA Associations between permissions and object categories
AR Administrative roles
ANRA Direct administrative node-role assignments
APRA Administrative permission-role assignments
AP Administrative permissions

Constants and Variables

L Low-trust: the lower bound of T
H High-trust: the upper bound of T
LD Light-Duty: the lower bound of K
HD Heavy-Duty: the upper bound of K
nilT Used instead of a trust level to ignore trust classification
nilK Used instead of a capability class to ignore capability classification
NA Non-Administrative: the lower bound of B
A Authority: the upper bound of B
DA Delegated Authority: an example element of B
αT ,t Access scope based on the trust level t
αC,c Access scope based on the community c
αB,b Access scope based on the basic role b
nilB Used instead of a basic role to ignore basic role assignment

6

Functions and Predicates

tLevel Returns the trust level of a node

nComm Returns the (innermost sub-)community of a node

cClass Returns the capability class of a node

nodeInsertion(x, c) Insertion of node x in community c

nodeRemoval(x) Removal of node x from the network

communityIntegration(c) Integration of community c in the network

communityRevocation(c) Revocation of community c from the network

communityMerging(c1, c2, c) Merging of two communities c1 and c2 into one community c

communitySplitting(c, c1, c2) Splitting of community c into two communities c1 and c2

trustChange(x, t) Changing the trust level of the node x to t

capabilityChange(x, k) Changing the capability class of the node x to k

networkMerging(net) Merging the network with another network net

networkSplitting() Splitting the network into two networks

bAbility Returns the capability class corresponding to a basic role

sRels Returns the secure relations of a node

aComm Returns the subset of C under the control of a basic role

bRole Returns the basic role of a node in a secure relation

rRole Returns the regular role of a node in a secure relation

nPool Returns the nodes of a node category

pPool Returns the permissions of an object category

nRoles Returns the regular roles assigned to a node

rNodes Returns the nodes assigned to a regular role

dRoles Returns the direct regular roles of a node

allnRoles Returns the direct regular roles of a node and their junior roles

rObjects Returns the object categories mapped to a regular role

rPerms Returns the permissions assigned to a regular role

pRoles Returns the regular roles assigned to a permission

node Maps an access session to a single node

activeRoles Maps an access session to a set of active regular roles

canAccess(s, p) Permission p can be granted in access session s

aRoles Returns the administrative roles assigned to an authority node

canAssign(ar, @nc, [r1, r2[) ar can assign regular roles from [r1, r2[to nodes in nc

canAssignP (ar, @oc, [r1, r2[) ar can assign permissions from oc to regular roles in [r1, r2[

canModify(ar, [r1, r2[) ar can manage regular roles and hierarchy in [r1, r2[

canModifyNC(ar, nc) ar can manage node categories and NS-N starting by nc

canModifyOC(ar, oc) ar can manage object categories and NS-P starting by oc

7

List of Figures

1 Modèle IOrg-AutoNet (Réseau autonome organisationnel sans infrastructure) IV
2 Architecture intra-nœud de sécurité autonome IX
3 Système autonome de politiques de sécurité X
4 Modèle SRBAC : Version adaptée du modèle RBAC XI
5 Le profile RBAC de XACML v2.0 étendu par des entités SRBAC XIX
6 ASRBAC : modèle d’administration basé sur SRBAC XX
7 Les propriétés d’informatique autonome dans ASRBAC XXV

2.1 Groundwork for an Intra-Node Autonomic Security Architecture 32
2.2 Groundwork for an Autonomic Security Policy System 33

3.1 Infrastructureless Organizational Autonomic Network (IOrg-AutoNet) Model 37
3.2 Administrative Life Cycle of a Node in an IOrg-AutoNet 46

4.1 Examples of Secure Relation Types in an IOrg-AutoNet 61
4.2 Example of a Regular Role Hierarchy (RRH) 64
4.3 Example of a Network Structure for Nodes (NS-N) 68
4.4 Example of a Network Structure for Permissions (NS-P) 69
4.5 SRBAC Model as an Adaptation of RBAC 70
4.6 RBAC Profile of XACML V2.0 Extended with SRBAC Entities 77

5.1 ASRBAC as a Model Based on SRBAC . 88
5.2 Example of an Administrative Role Hierarchy (ARH) 90
5.3 Support of Autonomic Computing in ASRBAC 96
5.4 Policy Negotiation Algorithm for ASRBAC 104
5.5 Rule Similarity Types (Extracted from [66]) 105

6.1 Initial RRH of a Home Network . 115
6.2 Initial ARH of a Home Network . 120

7.1 The PEI Models Framework (Extracted from [87]) 132
7.2 Enforcement Architecture for SRBAC Policies 134

8 LIST OF FIGURES

9

List of Tables

1 APRA (Affectations Permissions-Rôles Administratifs) dans ASRBAC . . . XXII

5.1 APRA in ASRBAC . 91
5.2 Environment Variables . 96

6.1 High-Level Configuration of a Home Network 113
6.2 Initial Node Categories in a Home Network 113
6.3 Initial NRA in a Home Network . 114
6.4 Initial Object Categories in a Home Network 116
6.5 Initial PRA in a Home Network . 117
6.6 Initial Low-Level SRBAC Policies in a Home Network 117
6.7 Initial NS-N in a Home Network . 118
6.8 Initial NS-P in a Home Network . 119
6.9 Initial ANRA in a Home Network . 119
6.10 Initial APRA in a Home Network . 120
6.11 Modified NS-N in a Home Network after Evolution Scenario 1 121
6.12 Modified NRA in a Home Network after Evolution Scenario 1 122
6.13 Modified NS-P in a Home Network after Evolution Scenario 1 123
6.14 Modified PRA in a Home Network after Evolution Scenario 1 123
6.15 Low-Level SRBAC Policies in a Home Network after Evolution Scenario 1 . 124
6.16 Modified NRA in a Home Network after Evolution Scenario 2 126
6.17 Low-Level SRBAC Policies in a Home Network after Evolution Scenario 2 . 126
6.18 Modified ANRA in a Home Network after Evolution Scenario 2 126
6.19 Initial OrBAC’s NRA in a Home Network 127
6.20 Initial OrBAC’s PRA in a Home Network 128
6.21 Initial OrBAC’s Node-Permission Assignments in a Home Network 128

10 LIST OF TABLES

11

Contents

1 Introduction 15
1.1 Motivation and Goals . 15
1.2 Thesis Structure . 16
1.3 Summary of Contributions . 17

1.3.1 Access Control Model . 17
1.3.2 Administration Model . 18

I Research Context 21

2 Background and Objectives 23
2.1 Background and Related Work . 23

2.1.1 Autonomic Computing . 23
2.1.2 Autonomic Networks . 25
2.1.3 Autonomic Security . 27
2.1.4 Access Control Solutions . 27

2.2 Our Vision and Objectives . 30
2.2.1 Definition of Autonomic Network . 30
2.2.2 Vision of Autonomic Security . 30
2.2.3 Sketch of an Autonomic Security Architecture 31
2.2.4 Sketch of a Security Policy System 32

3 Infrastructureless Organizational Autonomic Networks 35
3.1 IOrg-AutoNet Model . 35

3.1.1 Trust Levels . 36
3.1.2 Community Membership . 37
3.1.3 Capability Classes . 38
3.1.4 Node Categories . 38
3.1.5 Network Model Definition . 39

3.2 Evolution Scheme . 40
3.2.1 Initial Structure . 41
3.2.2 Node-Level Transitions . 41
3.2.3 Community-Level Transitions . 42
3.2.4 Network-Level Transitions . 44

12 CONTENTS

3.2.5 Life Cycle of a Node . 45
3.3 Conclusion . 46

II Access Control Solution 49

4 SRBAC: The Access Control Model 51
4.1 Access Control Requirements . 52

4.1.1 Organizational Structure . 52
4.1.2 Context-Awareness . 53
4.1.3 Decentralization . 54
4.1.4 Collaboration . 54
4.1.5 Self-Management . 55
4.1.6 Self-Adaptation . 55

4.2 Related Work . 56
4.3 Contributions . 57
4.4 Secure Relations . 58

4.4.1 Basic Roles . 59
4.4.2 Secure Relation Definition . 60
4.4.3 Secure Relation Types . 60

4.5 Node Roles . 62
4.5.1 Regular Roles . 62
4.5.2 RRH: Regular Role Hierarchy . 63

4.6 Object Attributes . 64
4.6.1 Access Scopes . 65
4.6.2 Object Categories . 66

4.7 Organizational Structures . 67
4.7.1 NS-N: Network Structure for Nodes 67
4.7.2 NS-P: Network Structure for Permissions 68

4.8 SRBAC Definition . 70
4.8.1 NRA: Node-Role Assignment . 71
4.8.2 PRA: Permission-Role Assignment 72
4.8.3 Access Sessions . 73
4.8.4 Constraints . 74
4.8.5 Formal Definition of the SRBAC Model 75

4.9 Policy Specification . 76
4.9.1 The XACML Standard . 76
4.9.2 Using Standard Entities . 78
4.9.3 Extending the Standard . 78

4.10 Conclusion . 79

13

5 ASRBAC: The Administration Model 81
5.1 Administration Requirements . 82

5.1.1 Context-Aware Updates . 83
5.1.2 Self-Aware Mappings . 83
5.1.3 Policy Negotiation . 84

5.2 Related Work . 84
5.3 Contributions . 86
5.4 ASRBAC Definition . 87

5.4.1 Administrative Roles . 89
5.4.2 Administrative Role Hierarchy . 89
5.4.3 ANRA: Administrative Node-Role Assignments 90
5.4.4 APRA: Administrative Permission-Role Assignments 91
5.4.5 ASRBAC Policies . 92
5.4.6 Formal Definition of the ASRBAC Model 94

5.5 Autonomic Computing Support in ASRBAC 95
5.5.1 Context-Aware Information . 95
5.5.2 Predefined Self-Management . 97
5.5.3 Autonomic Control Loop . 98
5.5.4 Mapping-Based Self-Adaptation . 99
5.5.5 Autonomous Evolution . 100
5.5.6 Node Cooperation . 101

5.6 Policy Negotiation Mechanisms . 102
5.7 Conclusion . 106

III Feasibility and Realization 109

6 Case Study: Home Network 111
6.1 SRBAC in a Home Network . 111

6.1.1 Regular Roles and Node-Role Assignment 112
6.1.2 Permissions and Permission-Role Assignment 114

6.2 ASRBAC in a Home Network . 118
6.2.1 Network Structure Components . 118
6.2.2 Administrative Roles and their Assignments 118
6.2.3 Evolution Scenario 1: Visitor . 120
6.2.4 Evolution Scenario 2: Mission . 124

6.3 SRBAC vs. Or-BAC . 126
6.4 Conclusion . 129

7 Prototype: Enforcement Model 131
7.1 PEI Framework . 131
7.2 Enforcement Model . 132
7.3 Conclusion . 135

14 CONTENTS

8 Conclusion 137
8.1 Thesis Summary . 137

8.1.1 Building the Context . 137
8.1.2 Achieving the Objective . 137
8.1.3 Proving the Feasibility . 138

8.2 Future Work . 139

A XACML Sample Instances in a Home Network 141
A.1 RPS of a Regular Role . 141
A.2 PPS of an Authority Regular Role . 142
A.3 Inherited PPS Instances . 144
A.4 Associated OCPS Instances . 144

15

Chapter 1

Introduction

1.1 Motivation and Goals

Nowadays technologies make it quick and easy to build and deploy different types of com-
puter networks, or to join existing ones. This ease of use will continue to improve, and
more user-friendly communication technologies are likely to emerge. This will result in
different kinds of complex, heterogeneous, decentralized networks, built or extended by
non-expert users. Such networks need to be able to manage themselves, because human
intervention for network administration is expected to be more and more undesired, ex-
pensive, inefficient, or at least time-consuming, according to the application field.

In the security context, self-managing networks should be able to protect themselves
and their resources against both internal and external potential attacks. In case of a
successful attack, a network should be able to heal over the damage by itself. In other
words, the security system of a self-managing network must be a self-managing system. In
addition to providing self-protection and self-healing properties to the network in which it
is implemented, such a security system should be able to reconfigure and optimize itself.

In order to achieve self-protection, self-healing, self-configuration and self-optimization,
a computing system needs rules telling when and how to react, using what tools and
on which assets. In other words, a self-managing system needs policies. According to
the application field, a self-managing system might need to depend on policies specified
directly by end users in the form of high-level objectives. It should be able to enforce such
high-level policies, and to apply self-management operations on them to adapt them to
changes in its context.

Our general objective is to propose security solutions specific to autonomic networks.
The need for self-management solutions had been recognized by several specialists in dif-
ferent relevant domains, and many corresponding initiatives were launched, as elaborated
in [55] and [41]. Our work is based on the initiative of IBM [51] about Autonomic Com-
puting. In our research, we study the realization of the Autonomic Computing vision
[56], to build a platform for an autonomic security system for infrastructureless networks.
We believe that such a platform would be a step Toward a Security Administration
System for Autonomic Networks.

16 1. Introduction

In this thesis, we specifically aim at establishing the bases for an autonomic access con-
trol system in infrastructureless networks. Why access control? Because this is a domain
where we will be able to study most of the Autonomic Computing concepts in terms
of security, particularly the ability to maintain coherent context-aware policies, which is
emphasized throughout the thesis and elaborated in Chapter 5. Why infrastructureless
networks? Because they present several complexity issues, such as the lack of a preestab-
lished infrastructure, the possibility of evolution in the topology and the heterogeneity
of nodes, which raises the need for self-management and makes of them the most likely
candidates to be Autonomic Networks as explained in Chapter 3.

1.2 Thesis Structure

The thesis is divided into three parts. It achieves its goal at the end of the second part,
while the first one puts the reader in the exact context of the presented research, and the
third part tries to convince her/him of the feasibility of the proposed solutions. In the first
part, a theoretical background is provided before giving our view of autonomic networks
and their security, and eventually the definition of our network model. The second part
first introduces an access control model for autonomic networks, and eventually proposes
the bases of an autonomic system for access control administration. A detailed case study
focusing on home networks is provided in the third part pointing out the main concepts
of our work and comparing it with certain competing works, as well as the specifications
and design of a prototype serving as a proof of concepts.

Context: The goal of the first part of the thesis is to draw the context in which
we propose our solutions. At the end of the first part, we will have proposed a variable
organizational structure for infrastructureless networks that allows them to be autonomic,
after presenting the elements of a corresponding platform for an autonomic security system.
Those bases will be eventually introduced after presenting some related work and our views
of autonomic networks and autonomic security.

Solution: The autonomic network model and the autonomic security platform, which
are introduced in the first part, constitute bases for many research challenges. In order to
emphasize the important aspect of policy management in autonomic computing systems, in
addition to several other interesting concepts, we opted for working on an access control
system for autonomic networks. In the second part, we detail our solution, which is
an access control model and its administrative model, proposed as foundations of an
autonomic security system for infrastructureless networks.

Feasibility: The access control solution that we propose in the second part is de-
centralized, context-aware, dynamic and collaborative. Several existing solutions have
those features as well. However, our solution is more dynamic and flexible, and above
all, it has the advantage of being self-aware, self-managing and self-adaptable altogether.
These numerous characteristics need to be clarified and validated in terms of realization.

17

In the third part, we present a case study about an autonomic home network, and then
we introduce a prototype in the form of enforcement architecture and implementation
considerations for the realization of the policy model defined in the second part.

1.3 Summary of Contributions

As the title of the thesis, “Toward a Security Administration System for Au-
tonomic Networks”, indicates, we intend to make contributions in two fields, namely
“Security Administration” and “Autonomic Networks”. Because the security administra-
tion solution that we will propose is dedicated to autonomic networks, it turns to be a
contribution in the field of “Autonomic Security”. We present a set of concepts and defi-
nitions in this area, but we mainly try to contribute to the domain of “Access Control”.
It was however important to begin the title of our thesis with “Toward”. This is because
we do not claim that we propose a complete solution for an autonomic security system.
More specifically, this thesis proposes a groundwork for such a system, which we believe
to be indispensable in future networks.

Autonomic Networks: A first minor but basic contribution is a generic definition
of autonomic networks (Definition 2.1). Based on this definition, we introduce a set of
features defining an Infrastructureless Organizational Autonomic Network (IOrg-
AutoNet) (cf. Definition 3.2). The IOrg-AutoNet model is mainly characterized by an
evolving organizational structure and its evolution scheme (cf. Section 3.2). The IOrg-
AutoNet model is our another contribution in the domain of autonomic networks. We
already presented our first trials for defining autonomic networks and a corresponding
evolving organizational model in early publications [8, 9].

Autonomic Security: In the context of a platform for an autonomic security sys-
tem, we introduce a set of research challenges. Afterward, we present the groundworks
for two contributions to such a platform. A first one is a suggestion of an intra-node
security architecture (Figure 2.1). The second one, which is more related to the solution
we propose in this thesis, is a set of bases for a security policy system that supports au-
tonomic analysis and respecification of low-level security rules (Figure 2.2). Our bases for
an autonomic security architecture and an autonomic security policy systems were already
introduced and elaborated in early publications [10, 11].

1.3.1 Access Control Model

Actually, the essential contributions in this thesis are specifically in the field of access
control. Hence, we define an access control model for IOrg-AutoNets. A complete chapter
is dedicated to this model (Chapter 4). We do not claim however that we propose a
completely new access control model. Our model is a variant of RBAC [89] adapted to the
requirements of the organizational and autonomic computing aspects in IOrg-AutoNets
(see Figure 4.5). Nevertheless, this adaptation implied a set of enhancements to the RBAC

18 1. Introduction

model and to a related policy specification language. We consider those enhancements as
contributions to the access control field. An exhaustive list of those contributions is given
in Section 4.3. Here we give a quick list of the essential ones:

1. Use of context-aware information in role specification (Definition 4.4).

2. Integration of context-aware components representing the evolving organizational
structure of the network (Definitions 4.10 and 4.11).

3. Extending the RBAC Profile of XACML V2.0 [15] to express the components that
represent the organizational structure of the network in our model (Figure 4.6).

We already introduced our access control model in a publication about our security
solutions for autonomic networks in general [12]. Yet, our model of access control is
not our main contribution. We actually defined it in order to present our concepts of
an autonomic access control administration system. We presented those concepts in the
context of a definition of an administrative counterpart of our access control model.

1.3.2 Administration Model

We also define our access control administration model using an existing administrative
model, which is ARBAC02 [73], as a basis. By extending ARBAC02, we already can
specify organizational, distributed, access control administration policies as parts of the
policies of the access control system itself. We still need to fulfill the requirements of a
support for Autonomic Computing, which we consider as the main extension of ARBAC02.
A complete list of the details of this extension is provided in Section 5.3. Section 5.5 and
Figure 5.3 give a more elaborated description of the autonomic computing support in our
solution. Here, we may summarize this support by the following:

1. Certain nodes collaborate to accomplish administration tasks related to the whole
network, in parallel with performing other administration actions specific to their
respective administration scopes.

2. Those nodes are able to monitor the output of context-aware systems while the
network evolves in order to detect any changes concerning access control.

3. They are also able to detect changes in the access control components themselves.

4. They adapt the access control components in response to changes detected by ana-
lyzing the context-aware and/or self-aware information.

5. They optimize the low-level access control policies in response to changes in the
end-user, high-level security specifications.

6. They negotiate the modifications they may perform on the access control components
and policies, in order to maintain a consistent low-level security configuration.

7. The access control administration system is self-configured with respect to its own
effects on access control components.

19

In a recent publication [13], we described in details our access control model and its
administrative counterpart. However, their description in this thesis is more rigorous and
much more enhanced. Particularly, we recently refined the definition of our network model,
and thoroughly revised its formal representation, which allowed us to better point out the
advantages and contributions of our solution.

20 1. Introduction

21

Part I

Research Context

23

Chapter 2

Background and Objectives

In this chapter, we present a theoretical background in the fields related to our work, and
eventually specify our objectives. The first section of the chapter discuss some related
work, and existing concepts and solutions, in the fields of autonomic computing, auto-
nomic networks, autonomic security administration, and access control models and their
administrative models. The second section presents our own views and concepts, and by
the end of this section, we will have eventually specified our research goals. The access
control domain particularly interests us, because our specific contribution concerns the
administration of access control in certain autonomic networks. Chapter 3 elaborates the
specific model of autonomic networks on which we work, and Chapters 4 and 5 present
our access control solution dedicated to those networks, in the form of a security model
and its administrative counterpart respectively.

2.1 Background and Related Work

Our general objective in this thesis, as its title indicates, is to study the bases of security
administration in autonomic networks. In other words, we want to define the basic compo-
nents and concepts of an autonomic computing system that enforces and manages security
in autonomic networks. We will specifically discuss autonomic networks and autonomic
security later in this section. Let us first see what an autonomic computing system is.

2.1.1 Autonomic Computing

In 2001, IBM launched the Autonomic Computing initiative [51], which is the basis of our
work. Since then, many studies elaborated the IBM initiative and the related concepts
[56, 20, 55, 82, 40, 16, 39, 83]. According to the IBM vision, we can figure out eight
characteristics of an autonomic computing system:

1. It knows itself, and its components possess a system identity as well.

2. It configures and reconfigures itself under varying and unpredictable conditions.

3. It always looks for ways to optimize its workings.

24 2. Background and Objectives

4. It is able to recover from routine and extraordinary events that might cause some of
its parts to malfunction.

5. It is an expert in self-protection.

6. It knows its environment and the context surrounding its activity, and acts accord-
ingly.

7. It functions in a heterogeneous world and implements open standards.

8. It anticipates the optimized resources needed while keeping its complexity hidden
from users.

Certain other related works point out the required functionality of the autonomous
agents of the future autonomic systems [75, 42, 78, 63, 53, 81]. Particularly, the authors
of [81] present many advantages and types of autonomous agent functionality in a multi-
agent context. Their Collaborative Object Notification Framework for Insider Defense
using Autonomous Network Transactions (CONFIDANT) framework aims at fail-safe and
trusted detection of unauthorized modifications to executable, data, and configuration
files. CONFIDANT proposes interesting models of agent interaction between four types
of autonomous agents. Sensor agents report file digest data, beacon agents verify file
integrity based on the information reported by the sensor agents, and watchdog behavior
agents dispatch probe agents to implement alarm signaling.

According to an interesting vision of agent-based autonomic computing in the field of
distributed applications [97], crowds of microscopic robots will cooperate in the context
of decentralized federations composed of autonomic agents, which will give new meanings
to the terms “distributed systems” and “peer-to-peer”. This study is based on the follow-
ing vision: Computers will evolve from flexible and universal machines, but complicated
and not reliable enough, to specialized and inflexible computing devices, but simple and
reliable. Those specialized devices will be the autonomic agents of the future. Decentral-
ization is an important aspect of autonomic computing in a communication context.

A relatively recent study [50], which is based on the initiative of IBM described above,
gives more conceptual details and clarifies basic concepts, through a mapping between an
autonomic computing system and the human autonomic nervous system. This study of the
Autonomic Computing Paradigm elaborates the main features adopted by our solution,
which will be detailed in Chapters 4 and 5. In brief, the Autonomic Computing Paradigm
presented in [50] is characterized by the following:

1. Autonomic computing uses alternative programming paradigms and management
techniques based on strategies used by biological systems to deal with complexity,
dynamism, heterogeneity and uncertainty.

2. The environment and the organism always exist in a state of stable equilibrium and
any activity of the organism is triggered to maintain this equilibrium.

3. Sensing, analyzing, planning, wisdom and execute are the keywords used to identify
an autonomic system.

25

4. Properties of an autonomic computing system are: Self-Aware, Self-Protecting, Self-
Optimizing, Self-Healing, Self-Configuring, Contextually Aware, Open and Antici-
patory.

5. The environment represents the factors that can impact the desired performance of
a computing system: either internal characterizing the runtime state, or external
characterizing the state of the execution environment.

6. Local control loop: adding self-managing capabilities to conventional components.
This loop handles known environment states.

7. The global control loop, which is triggered when one of the essential environment
variables exceeds its limits, manages the behavior of the overall application, and
defines the knowledge driving the local control loops. This loop can handle unknown
environment states.

8. The global loop uses alternate behavior patterns from a pool of patterns (online
predictive models).

9. The controller unit manages, in an integrated manner, performance, fault, secu-
rity and configuration of computing systems and their applications. The integrated
approach is an important feature of autonomic systems.

10. The local control loop is responsible of one autonomic component, while the global
control loop is responsible of an entire application.

11. At runtime, components might be added or deleted. Application workflow dynam-
ically changes its structure at runtime. Autonomic components should have the
capability of coupling and interacting.

In a vision more specific to the communication field, authors of [41] define autonomic
techniques by: deploying technology to manage and optimize the functioning of other
technology on an ongoing basis. They claim that autonomic computing is seen as a way of
reducing the total cost of ownership of complex IT systems by allowing reconfiguration and
optimization to proceed on an ongoing basis driven by feedback on the system’s ongoing
behavior. Authors explain that while autonomic communication is more oriented towards
distributed systems and services and to the management of network resources at both the
infrastructure and the user levels, autonomic computing is more directly oriented towards
application software and management of computing resources.

2.1.2 Autonomic Networks

The field of autonomic communications acquires a growing interest since the midst of the
current decade [41, 96, 90, 45, 38, 80, 102, 46]. According to [41], which we use so often
in our work as a comprehensive Survey of Autonomic Communications, the mathemat-
ical, economic, and technical bases of networking must be changed radically to address

26 2. Background and Objectives

the implied challenges in this field. Specifically, the next-generation network must be dis-
tributed and decentralized, self-describing, self-organizing, self-managing, self-configuring,
and self-optimizing, providing a seamless communications infrastructure composed of mul-
tiple technologies and able to leverage local information and decisions without sacrificing
global performance, robustness, and trustworthiness. Authors claim that the ultimate vi-
sion of autonomic communication research is that of a networked world in which networks
and associated devices and services will be able to work in a totally unsupervised manner.
Authors distinguish the following as important challenges for future networks:

1. Next-generation networks, which are likely to be infrastructureless, wireless, mobile
and/or ad-hoc, will need to manage the trust and privacy of users and services
end-to-end, without any a priori knowledge of the parties involved.

2. Information reflection and collection.

3. Lack of centralized goals and control.

4. Meaningful adaptation.

5. Cooperative behavior in the face of competition.

6. Heterogeneous services and semantics.

The ANA Project (Autonomic Network Architecture) [1] is a very interesting and
promising project in the field of autonomic communications. It aims at designing and
developing a novel autonomic network architecture that enables flexible, dynamic, and
fully autonomous formation of network nodes as well as whole networks. The resulting
autonomic network architecture will allow dynamic adaptation and re-organization of the
network according to user needs. This is expected to be especially challenging in a mobile
context. The ANA Project identifies fundamental autonomic network principles. The
network can extend both horizontally (more functionality) as well as vertically (different
ways of integrating abundant functionality).

We specifically work on networks that do not have preexisting infrastructures. Chap-
ter 3 describes in details our network model. Many existing studies emphasize the need
for self-management in infrastructureless networks [43, 67, 54, 92, 25]. For instance, the
authors of [43] discuss certain self-management requirements in a wireless mobile ad hoc
network which is spontaneously created for a business meeting. The main reason is the lack
of an administration infrastructure. The configuration services should consider continu-
ous modifications in addressing, naming and security management. In another instance,
the authors of [67] consider that self-organizing ad hoc wireless networks can overcome
the limitations of conventional networks encountered in certain applications. Those are
limitations in energy consumption, implementation cost and availability of expert network
administrators. The concerned applications could be for example industrial monitoring
and control, intelligent agriculture or home automation.

27

2.1.3 Autonomic Security

It is often difficult for an end-user to acquire and use a security system [95]. Instead
of working on the user-friendliness of the existing security technologies, it would rather
be better to rebuild them taking into consideration the user-friendliness since the very
start. One of the methods proposed by the authors of [95] is building applications with
implicit security, where a user transparently performs security tasks when he or she uses
the application. Deriving and adapting security configurations with respect to high-level
enduser objectives and context changes is a characteristic of an autonomic security system.
Such mechanisms are motivated in many existing research efforts [101, 79, 23, 62].

More dedicated studies discuss solutions of autonomic security administration [60, 108,
14, 70, 57]. For instance, the article [60] proposes a solution for introducing reconfigurabil-
ity in the security architecture. The authors define an autonomic security loop depending
on a security context provider, a decision making component and adaptable security mech-
anisms. In another instance, the authors of [108] introduce a collaborative approach for
the autonomic building of security protocols. Nodes negotiate security protocols according
to their requirements, and build them on the fly with the help of other nodes if necessary.
The authors claim that such protocols are self-configurable and self-healing.

In the specific context of networking and communication, several dynamic security ap-
proaches are proposed in the literature for networks that need to be autonomic, especially
infrastructureless ones [6, 65, 67, 24, 91]. For example, according to the authors of [65],
there is no difference between a client and a server in terms of certification. The service
is installed in every node, and a certain number of nodes, above a given threshold, can
collaborate to work together as a virtual certification server.

Other studies of security solutions are more specific to the world of autonomic com-
munications [41, 27, 58, 59, 81]. Particularly, the comprehensive survey of autonomic
communications presented in [41] discusses security requirements and challenges in such
environments. The authors state that while in a static scenario digital identity manage-
ment does not present much of a problem, it emerges as an important issue when autonomic
nodes dynamically join different alliances. In another perspective, authors claim that trust
negotiation is particularly suitable for autonomic communication systems. They finally
point out the necessity of designing a new generation of self-adaptive security solutions
based on multi-agent systems and intelligent agent technology. The authors motivate the
use of biological models of resilience, which provide an analogy with nervous and immune
systems in biological organisms.

2.1.4 Access Control Solutions

The main objective of this thesis is the definition of an autonomic access control admin-
istration model for infrastructureless organizational autonomic networks. It is eventually
introduced, and thoroughly elaborated in Chapter 5. In other words, we opted for working
on the bases of an autonomic access control system as a step Toward a Security Ad-
ministration System for Autonomic Networks. Therefore, we present in this section
certain related work about access control models and their administrative counterparts in

28 2. Background and Objectives

general, and emphasize those which are relevant to the world of autonomic communica-
tions, before proposing a groundwork of a security policy system for autonomic networks
later in this chapter, in order to introduce our vision of access control administration in
such environments.

Access Control Models. A set of traditional access control models, called lattice-
based, are used as authorization platforms in many legacy systems. They perform well
and proved their conformity with the traditional requirements of security systems. How-
ever, they also presented several shortcomings, especially in terms of administration. An
interesting survey of this family of models is provided by [88].

The Role-Based Access Control (RBAC) model [89] appeared as a complete solution in
1996 as a generic policy-neutral flexible model. Eventually, it has become the most well-
recognized solution or basis of a solution for access control, especially in organizational
applications. Several studies appeared later to prove its advantages with respect to other
solutions [74]. Other research efforts proved its ability to be a basis for open distributed
environments [17]. Several studies emphasized its flexibility as a basis for models dedicated
to applications constrained by time and/or context considerations [22, 19]. Other research
efforts made use of its powerful notion of user abstraction using roles, and extended it to
support organizational requirements [5, 69]. The importance of RBAC motivated stan-
dardization efforts [85], and it became the ANSI INCITS 359-2004 NIST standard [3].

A very promising model was recently introduced in cooperation with the inventors
of RBAC. It is the Usage CONtrol (UCON) model, that was completed and formalized
on 2005 [105]. It is a model for access control, but also for a wide range of techniques
for controlling resource usage, such as the Digital Rights Management (DRM) and the
Trust Management (TM) approaches [76]. It even extends all existing approaches by
providing sensitive information protection on the client side, and privacy protection on
both the server side and the client side. Studies are being done currently to improve
and continue this model, especially in terms of administration. Recent studies already
proved its advantages in building a Usage-Based Security Framework for Collaborative
Computing Systems [104].

Access Control Administration Models. Administration issues should be considered
when studying access control models. Usually, in addition to an access control model, an
administrative counterpart is also defined. In this context, many administrative models
were proposed as counterparts for the RBAC model. The most known are proposed
by the inventors of RBAC. They first defined the ARBAC97 model [84] as a variant of
RBAC itself. A slight modification was done to resolve certain problems in permission-role
assignments, and the ARBAC99 was defined later [86]. Finally, the very interesting model
ARBAC02 [73] was defined taking organizational aspects into account, which allowed
it to solve nearly all the problems of the previous models and its predecessors [71, 72].
The very important aspects of the ARBAC family is the distributed administration and
the use of RBAC itself as a basis, which are essential requirements in our solution as
will be explained in Chapters 4 and 5. A very recent interesting administration model,

29

which can be considered as an extension of the ARBAC family, is the AROBAC07 model
[107]. It is proposed in a multi-organizational context, and supports a dynamic scalable
functionality suitable for autonomic communications. Chapters 4 and 5 include more
detailed comparative discussions about the previous models and other related work.

Other interesting administrative models were proposed as counterparts for RBAC or
RBAC-based models [29, 30, 47, 37, 32, 31]. Particularly, the authors of [29] propose
the administrative scope model that chooses a topological approach to solve the problem
of indirect illegal role-role assignment of old ARBAC models [84, 86]. Nevertheless, in
ARBAC02 [73], the integrity rules, which impose the inclusion of a user/permission pool
of an administrative role in the user/permission pools of the higher administrative roles,
would resolve the problem and guarantee authorized permission flows.

In terms of motivations for autonomic administration, several research efforts empha-
size the concerns that imply dynamic management of security policies [26, 101, 18, 59]. For
instance, according to the authors of [26], there are limitations in the classic approaches
of security policy management: The static configuration approach gives security policies
which become vulnerable by time, the online dynamic negotiation approach requires a con-
tinuous connectivity, the centralized configuration approach does not support end-to-end
agreement and the trusted third party approach does not support adaptation to changes
and it is not scalable. The authors propose a dynamic approach which uses for each in-
teroperation an Interoperability Contract Document (ICD) as an end-to-end agreement
on security policies. In another instance, the authors of [101] shows that by integrating
situation-aware techniques in security policy enforcement, a system can evaluate the dy-
namic trust relations between its parts. The article defines situation-awareness by the
ability of a system to adapt its behavior to situation changes.

Access Control Policies. Policy specification techniques present a critical issue in
autonomic systems. Actually, such systems raise several challenges in this context. An
autonomic system should be able to derive low-level instructions from high-level policy
specifications on one hand, and, on the other hand, it should allow experts to use other
machine-interpretable policy specification techniques to be able to manage the system in
exceptional situations. Moreover, it may need to use another internal representation of
policies to accomplish autonomic administration operations. The authors of [34] elaborate
the different approaches of policy specification. Other existing works propose different
relevant techniques with respect to certain access control solutions [48, 35, 49, 33, 52].

Policy negotiation should be a major concern in future autonomic security systems.
Those systems will attain their objectives depending on autonomous agents which are
supposed to negotiate any adaptation of the system policies. Many existing work already
emphasizes the need for policy negotiation in certain applications [75, 66]. The authors
of [75], for example, propose the use of a mobile agent to execute group security policy
negotiations in IPSec-based communications, which allows for 1-to-N negotiations. A host
launches a mobile agent on a group using a security policy server. The mobile agent travels
from a group to another, passes by a dedicated system in each group, and gathers security
policy negotiation information to take them back to the launching host, always through
its security policy server.

30 2. Background and Objectives

2.2 Our Vision and Objectives

In this section we will eventually specify our objectives by presenting our vision of au-
tonomic security in autonomic networks, with a focus on security policy management as
an introduction to our solution of an autonomic access control system presented later in
the second part of the thesis. Hence, we will present our basic ideas about sketches of an
autonomic security architecture and an autonomic security policy system.

2.2.1 Definition of Autonomic Network

For the purposes of our research, we propose a specific definition of autonomic networks.
Roughly speaking, an autonomic network is a network that is managed by its own nodes.
We consider that this may be achieved through a set of incorporated autonomic systems, of
which the network nodes are the autonomous agents. On behalf of each autonomic system,
the nodes monitor the network environment. They are able to detect ordinary changes
that imply predefined reactions. They are also able to detect critical changes that imply
changes to certain elements in the network, and to the elements of the autonomic system
itself. The nodes, as autonomic system components, are able to analyze the detected
information and negotiate the decisions to be taken.

Definition 2.1 An Autonomic Network is a network that incorporates a set of autonomic
systems, of which the network nodes are autonomous agents that collaborate to reconfigure,
protect, heal and optimize the network, in addition to the autonomic systems themselves.

2.2.2 Vision of Autonomic Security

Here we present our own vision of an autonomic security system. It functions like the
nervous system of the human body. For instance, the blink reflex is a neurological reflex
towards an offending object (dust, bright light, iron sparks ...etc). It works as follows:
First, visualizing the object by the eye’s retinal layer. Second, sending the signal through
specific nerves. And third, a signal of motor action is sent to the eye. A similar func-
tionality in an autonomic security system could be to protect an object from malicious
alterations using an adaptable context-aware security policy.

The autonomic security system tries to handle the results of a successful attack. This
can be compared to the function of the immunity system in the human body. The purpose
here is to mitigate the damage on one hand, and to treat the damaged object on the other
hand. For instance, a fever happens when an offending organism tells the brain thermostat
to raise the baseline body temperature. The white blood cells are the army by which
the body attacks any strange structure that does not have the body’s specific signature.
A similar functionality in an autonomic security system could be to broadcast an alert
signaling the loss of a node in a network for example, in order to reduce the possibility
of damage if ever it would be controlled by an adversary, and to banish the lost node to
certainly prevent any future communication with it.

The reactions of the nervous and immunity systems may not be satisfactory sometimes,
but this will make them more efficient later. For instance, an adult is basically more able

31

to avoid harm than a kid. Acquired immunity happens when the body gets attacked and
starts a war as explained herebefore. When the battle is won, the white cells who fought
the war will remember the attacking organism. Similarly, the autonomic security system
is supposed to perform any needed enhancements to its policies after healing over damage.

A human may need in some cases to learn explicitly how to react in certain cases,
but this knowledge becomes later a part of the functionality of its nervous system. For
instance, we learn during a driving course how to react in certain situations to avoid
accidents, but later we do this autonomously. This is called learned reflexes. On the other
hand, a human body may not be able in some cases to heal by itself because the sickness is
stronger than its immunity system. The solution is obviously to ask the suitable medical
staff for the needed treatment. Such as a human may need instructors and medical staff
sometimes, which would basically be for minor periods in his/her life, we should expect a
minimum of human expert intervention in an autonomic security system.

2.2.3 Sketch of an Autonomic Security Architecture

For the purposes of our research, which specifically concerns autonomic security in infras-
tructureless networks, we believe that a security architecture designed on basis of auto-
nomic computing must be embedded in a network node. We propose here an Autonomic
Security Architecture, which is designed to be compatible with the heterogeneity of nodes,
transparent to the end-user and irrespective of the underlying networking technologies. Its
main components, as illustrated in figure 2.1, are the following:

1. Security Agents: a set of software agents providing security services, such as data
confidentiality and integrity, and self-management support, such as a security policy
negotiation module.

2. Security Management Kit: a set of management modules that can be used either
by a human administrator to perform ordinary planned management tasks, or in an
autonomic context to perform self-management tasks.

3. Autonomic Security Manager: the autonomic security engine, which is responsible of
self-management tasks on the node level, and on the network level in certain nodes
having special roles. It is also responsible of the secure data exchange between
applications of communicating nodes. Moreover, it manages the security database
of the node, which provides its device capability parameters, such as storage capacity,
and saves security materials, such as key information. In certain special nodes, this
database stores also network security management data, such as network evolution
management policies.

4. Autonomic Security Layer: an application-support layer encapsulating the previous
three components.

5. Security User Interface: a set of user-friendly configuration and specification lan-
guages, to be used by security expert administrators, and to a certain extent, by
non-expert end-users in the form of high-level tools.

32 2. Background and Objectives

Autonomic

Security

Manager

Security Agents

Security Management Kit

Security

User Interface

Lower layers

Application layer

Data / requests / responses

Security service agent calls

Management agent calls

Self-management calls

Administration callsData / requests / responses

Applications

Autonomic Security Layer

Security DB

Figure 2.1: Groundwork for an Intra-Node Autonomic Security Architecture

Actually, the intra-node security architecture that we describe in this section needs
more study. We only suggest some brief details about what it could incorporate. We just
aim at pointing out quickly this part of the solution. In a future work, this architecture
would be more elaborated and enhanced. An interesting aspect to consider will be the
security of the architecture itself. Another important point, is to develop this architecture
using existing standards, such as TLS (Transport Layer Security)1.

2.2.4 Sketch of a Security Policy System

A policy system is a main component of an autonomic system. It translates high-level ob-
jectives, usually through intermediary rule specifications, into low-level elementary rules,
upon which autonomic decision are based. We introduce in this section our design of a
security policy system for autonomic networks, which is illustrated by Figure 2.2.

An autonomic system necessarily has initial policies, which might be provided by
default. Default policies would be already enforced at low level, but also they will have
corresponding specifications at the administrator level and the enduser level. This is to
provide a current view of the autonomic system functionality to the both types of users.
Usually, default policies are modified later by the encapsulating autonomic system.

As illustrated in Figure 2.2, We identify three sources of modification for a security
policy in an autonomic network: endusers, administrators and authority nodes. Endusers

1http://tools.ietf.org/html/rfc5246

33

Administrators

HSSI rules

SPML instances

SPLS instancesJava applications

Security module

End-users

Autonomic

Security

Services

Authority

nodes

Human specification

Logical analysis

Autonomic reconfiguration

HSSI: Human/Security System Interface. Example: P3P (w3.org/P3P).
SPML: Security Policy Management Language. Example: XACML [4].
SPLS: Security Policy Logic-based Specification. Example: ASL [52].

Figure 2.2: Groundwork for an Autonomic Security Policy System

may want to make changes to their high-level security objectives. Administrators may
need to intervene in policy management in exceptional cases. Authority nodes may need
to analyze, negotiate and recompose a security policy, or a certain part of it, in the context
of an autonomic operation. The latter functionality is the one we expect to take place so
often. In an autonomic system, human intervention is expected to be a minimum. Just
as the autonomic systems of the human body, where the owner of the body (enduser) is
not supposed to intervene in their functionality, while doctors (administrators) may be
called in some cases. Moreover, autonomic systems learn from their experience after an
administrator intervention. More details about the correspondence between autonomic
computing systems and the human body systems were already provided in Section 2.2.2.

Refining goals into implementation specification could be useful for refinement of high-
level policies into low-level enforceable rules [36]. Figure 2.2 illustrates human and auto-
nomic tracks for policy reconfiguration. The human track may be launched by an enduser
or an administrator. The enduser is not necessarily aware of the fact that security policies
are being changed. All he knows is that he is acting on his security objectives. He does so
by means of a high-level language, through a user-friendly interface, which is used for the
configuration of the security environment as a whole. We use a generic name for the high-
level language of the enduser interface, which is HSSI (Human/Security System Interface).
The Platform for Privacy Preferences (P3P) Project2 may provide such a language.

A common component of commercial tools is a graphical user interface which typically

2http://www.w3.org/P3P/

34 2. Background and Objectives

allows the administrator to visually select a network device or other managed element from
a hierarchically arranged tree-view of policy targets, and specify the policies in the form of
“if <condition> then <action>” rules for the selected targets [34]. Administrators are
completely aware of what they are changing. This is why they use a machine-readable yet
user-friendly language for managing policies. The generic name we use for this language
is SPML (Security Policy Management Language). It should be suitable for the collabora-
tive distributed environment of autonomic networks, where the operating systems of the
different nodes may not be the same. We think that a language based on the Extensible
Markup Language (XML)3 fulfills SPML requirements. Actually, in our contribution, we
use the XML-based standard specification language XACML (Extensible Access Control
Markup Language) of OASIS [4]. More details are provided in Chapter 4.

In a human specification track, policies are modified through HSSI or SPML. A built-
in interpreter transforms then the SPML instances into Java applications, which will be
compiled into security agents. Those latter are distributed on the nodes where the low-
level policies should be enforced. An HSSI-to-SPML translator is needed when the human
specification is driven by an enduser. On the other hand, the system state should be
always available to the enduser in the form of high-level configurations. So an SPML-to-
HSSI translator is needed in a human specification driven by an administrator.

The autonomic analysis track is launched by an authority node to negotiate and re-
configure policies with other authority nodes in the context of an autonomic operation.
An authority node can access SPML instances, search for specific information needed in
the negotiation process, and reformat the extracted data in a logic language specific to
autonomic mechanisms. The use of such a language is necessary for representing and an-
alyzing the logic of the policy rules. On the other hand, SPML can not be replaced by a
logic language, because SPML is supposed to be more user-friendly and easier to interpret
into Java code. We use the generic name SPLS (Security Policy Logic-based Specification)
for the logic language. For instance, ASL (Authorization Specification Language), which
is a stratified first-order logic language [52], can be used as SPLS.

After negotiating and reconfiguring the SPLS-formatted policy parts, an autonomic
reconfiguration track is launched by the involved authority nodes. It aims at reformatting
those logic-based policy instructions in SPML and reintegrating them in the original SPML
instances to apply the related policy modifications. On one hand, the built-in SPML
interpreter is called to enforce the modified policies. On the other hand, the SPML-to-
HSSI translator is called to update the state of the security system configuration at the
enduser high level.

Actually, we do not handle every detail of the previous security policy system in this
thesis. The overall high-level design illustrated by Figure 2.2 is provided here as an
introduction to our main contribution of autonomic access control administration (cf.
Chapters 4 and 5). In the context of the autonomic reconfiguration track of the above
security policy system, for the specific purposes of our main work, we will elaborate the
use of XACML [4] as SPML to specify access control policies in Chapter 4, and only the
negotiation mechanism of such policies in Chapter 5.

3http://www.w3.org/TR/xml/

35

Chapter 3

Infrastructureless Organizational
Autonomic Networks

In this chapter, we define a network model that we call the Infrastructureless Organiza-
tional Autonomic Network (IOrg-AutoNet) model. This is a particular type of autonomic
networks for which we propose specific security administration solutions in the following
chapters of the thesis. In this chapter, we describe the variable structure and the evolution
scheme of IOrg-AutoNets.

Section 3.1 motivates and describes IOrg-AutoNets. It positions an IOrg-AutoNet with
respect to autonomic networks in general. It models the variable structure of an IOrg-
AutoNet. Because this structure is based on certain variable node attributes, a subsection
is dedicated to describing each of them. The section ends by a formal definition of the
IOrg-AutoNet model.

Section 3.2 describes the evolution scheme of an IOrg-AutoNet. Different kinds of
evolution events are presented at the node, community and network levels. The section
provides formal descriptions of the different transactions of the network with respect to
different kinds of evolution events. An example of a node life cycle is elaborated focusing
on the changes in the administrative roles that a node can acquire while the network
evolves.

Section 3.3 concludes the chapter by a summary of the basic ideas, concepts and
elements of the IOrg-AutoNet model. It also briefs some related future work.

3.1 IOrg-AutoNet Model

In infrastructureless networks, certain components may need continuous adaptation to
context-aware changes. Such networks may evolve in terms of topology, population and/or
high-level configuration. It is nearly impossible for human administrators to manage such
networks efficiently. We think that such networks need to be autonomic (cf. Definition
2.1). We also think that by defining a dynamic organizational structure for the network,
certain nodes can act as autonomous agents collaborating to manage the network according
to their respective administration scopes.

36 3. Infrastructureless Organizational Autonomic Networks

Definition 3.1 We call Infrastructureless Organizational Autonomic Network (IOrg-
AutoNet) an autonomic network (cf. Definition 2.1) that has the following characteristics:

1. The network does not have a pre-established infrastructure.

2. The network may be configured by non-expert users using high-level specifications.

3. Nodes have evolving trustworthiness, with an initial trust-based classification.

4. Nodes can be categorized according to their availability for each other, and this cat-
egorization may evolve.

5. Nodes may have different capabilities in terms of computing and/or data storage.

6. The network has an evolving organizational structure based on the previous three
node attributes.

An IOrg-AutoNet can be a network of a home, a SOHO (Small Office/Home Office),
a spontaneous business meeting, a rescue operation or a military mission. In all these
application fields, a network infrastructure is not likely to be available, the network should
be able to manage itself and the nodes need to cooperate in an organizational context.

For instance, in a home network, we may have nodes of different capabilities with
respect to security administration. A resident’s laptop may be able to perform asymmetric
cryptography and to store public-key certificates, while her/his digital audio player may
not. So we can expect that the laptop participates in security administration, but not the
digital audio player. Besides, we can consider that the set of home devices belonging to
a resident, and eventually his visitors or friends, are more available for each other with
respect to the other devices in the network. So the network nodes related to a resident
can be assigned to one category. Moreover, the network is likely to evolve in terms of
population and/or the trust and capability attributes of its nodes. Furthermore, home
network users are usually non-expert in terms of network and/or security administration.

In contrast with the IOrg-AutoNet model, certain autonomic networks may be de-
ployed using a preexisting infrastructure, such as an autonomic enterprise intranet, and
others may be infrastructureless but they do not need a node categorization in an or-
ganizational structure, such as a network of independent autonomic sensors. We opted
for infrastructureless organizational environments because we think that most of next-
generation networks will be dynamic and collaborative.

Figure 3.1 illustrates the IOrg-AutoNet model. It shows that the IOrg-AutoNet struc-
ture is characterized by the trust levels (trustworthiness-based classification), the commu-
nities and sub-communities (availability-based classification), and the capability classifi-
cation of the network nodes.

3.1.1 Trust Levels

The nodes of an infrastructureless network are not supposed to trust each other in general.
However, initial trust considerations may allow non-expert users to simply classify the
network nodes as trusted or not. Such a high-level configuration should eventually classify

37

Community

Trust Level

Sub-community

Nodes of
Different

Capabilities

Figure 3.1: Infrastructureless Organizational Autonomic Network (IOrg-AutoNet) Model

a node in one of the two initial trust levels: Low (L) and High (H). For instance, the
device of a friend of a family is not initially trusted when it integrates their home network,
which assigns it to the trust level L. Later on, such a node may gain the trust of other
nodes and may be autonomously assigned to some trust level between L and H.

An IOrg-AutoNet node may gain or lose a certain amount of its trustworthiness while
it uses the network. This kind of dynamic measure of trustworthiness is usually based on
the evolving reliability and reputation attributes of the network nodes [77, 68, 44]. We
do not propose a solution for evaluating the trustworthiness of nodes. We assume that a
reputation system is already implemented in the network to manage node trustworthiness
and its evolution (cf. Assumption 3.1). Ideally, the trustworthiness of a node should be
evaluated differently by each of the other nodes. However, we assume that the reputation
system assigns each node to a trust level that has a global scope in the network (cf.
Assumption 3.2).

Assumption 3.1 We assume that an IOrg-AutoNet has a reputation system that manages
node trustworthiness.

Assumption 3.2 We assume that the trust level of a node is the same for all the other
nodes.

3.1.2 Community Membership

An IOrg-AutoNet is divided into communities with respect to certain availability con-
straints. According to certain metrics related to the application field, the nodes of a com-
munity are considered relatively available for each other with regard to the other nodes
of the network. For example, the set of devices of the same user may form a community
in a home network. Further availability-based categorization may apply to the nodes of a
community. An example is subnetworking, whereby each community may have a subdivi-
sion belonging to a subnet. For instance, a subnet can be created in a home network to
be used during a holiday time in another residence. Similarly, a sub-community may be
subdivided for the same or other availability reasons, and so on and so forth.

Any node in the network belongs to a community, or possibly to a subdivision of a
community at a certain depth. The communities of the network do not intersect, nor do

38 3. Infrastructureless Organizational Autonomic Networks

sub-communities. Actually, when we talk about the community of a node, we mean the
smallest subset of nodes it belongs to. This means that if a node should belong to another
subset of nodes, this latter should be an encapsulating community or sub-community. In
the rest of the thesis, we use the term “community” to designate either a community or
a sub-community at any depth.

3.1.3 Capability Classes

According to certain capabilities in terms of computing and data storage, a node may be
able to carry out certain administrative operations. Actually, for each community in an
IOrg-AutoNet, there should be a node having enough capabilities to play the role of admin-
istrator. We call such a node the authority node of the community. While the use of the
authority role is mandatory, other optional administrative roles requiring less capabilities
may be used in an IOrg-AutoNet for purposes of administration distribution. A high-
level configuration may help designating the required number of authority nodes if they
have enough capabilities. Other types of administrative roles are utilized autonomously
if needed, and if certain nodes of certain capabilities are still left without assignment of
administration tasks.

Because the authority role requires certain advanced capabilities, which might not
be found in any node in some communities, many communities may share one authority
node. However, in order to have a maximum support for flexibility and decentralization,
whenever possible, each community should have its authority node among its own nodes
in the ideal situation. As for other types of administrative roles, they are simply not used
when there are not nodes having the required capabilities, because such roles are optional.
In Chapter 5, we propose an autonomic administration solution that seeks to realize an
optimal node-role assignment.

According to an initial high-level configuration of node capabilities, the nodes can
be simply categorized as Light-Duty (LD) or Heavy-Duty (HD). The autonomic access
control system of the IOrg-AutoNet will then designate certain HD nodes as the authority
nodes of the different communities (cf. Chapters 4 and 5). Later on, it may autonomously
decide to assign other optional administrative roles to other nodes having capability classes
between LD and HD. The authority nodes, supported by other administrative nodes of
less responsibilities if any, are then supposed to collaborate to manage the network.

3.1.4 Node Categories

We define a dynamic node categorization based on the IOrg-AutoNet organizational struc-
ture. All the network nodes belong to a root node category. Then, a node category
represents each one of the used trust levels. For each used trust level, a node category
represents each one of the current communities. And finally, for each used trust level and
current community, a node category represents each one of the used capability classes.

Node categories allow the autonomic systems of the IOrg-AutoNet to manage the net-
work evolution in an efficient and scalable manner, because they are based on the actual
classifications of nodes. Particularly, node categories allow the access control administra-

39

tion system to have interesting autonomic computing properties as will be explained in
Chapter 5.

3.1.5 Network Model Definition

Here is a formal definition of the components of the IOrg-AutoNet model, which is illus-
trated in Figure 3.1, eventually including a definition of node categories:

Definition 3.2 The IOrg-AutoNet model is defined by a tuple (N , T , C,K,F , NC), with:

• N is a set of network nodes.

• T is a totally-ordered set of trust levels, having L and H as lower and upper bounds
respectively.

• C is a set of network communities satisfying the following conditions:

– C ⊆ 2N \ {∅}
–

⋃
c∈C

c = N

– ∀c1, c2 ∈ C, (c1 ∩ c2 6= ∅)⇔ ((c1 ⊆ c2) ∨ (c2 ⊆ c1))

• K is a totally-ordered set of capability classes, having LD and HD as lower and
upper bounds respectively.

• F is the following set of functions:

– tLevel : N −→ T returns the trust level of a node.

– nComm : N −→ C, returns the community of a node.

∗ ∀x ∈ N , nComm(x) =
⋂

{c∈C|x∈c}
c

– cClass : N −→ K returns the capability class of a node.

• NC is a set of node categories satisfying the following conditions:

– NC ⊆ (T ∪ {nilT })× (C ∪ {N})× (K ∪ {nilK})
– ((t, c, k) ∈ NC)⇔ (((t, c, k) = (nilT ,N , nilK))∨

((c = N) ∧ (k = nilK) ∧ (∃x ∈ N , tLevel(x) = t))∨
((k = nilK) ∧ (∃x ∈ N , tLevel(x) = t, nComm(x) = c))∨
(∃x ∈ N , tLevel(x) = t, nComm(x) = c, cClass(x) = k))

Notation 3.1 Starting by Definition 3.2, and for the rest of the thesis:

• We use c, with eventual superscript or subscript indices to denote a community (an
element of C).

• We use x, y and z, with eventual superscript or subscript indices to denote a node
(an element of N).

40 3. Infrastructureless Organizational Autonomic Networks

• We use t, with eventual superscript or subscript indices to denote a trust level (an
element of T).

• We use k, with eventual superscript or subscript indices to denote a capability class
(an element of K).

Remark 3.1 In Definition 3.2:

• N , C, F and NC are variable sets that adapt to the network evolution.

• T and K are predefined sets in a given IOrg-AutoNet.

• The set of communities C may include the element N in certain cases, whereby
the network is composed of one community which is the network itself, and it may
eventually have sub-communities. In other words, in certain scenarios, a number of
nodes should belong to the same community according to their availability attributes,
but they cannot belong to a subdivision of the network. For example, because any
community is subject to revocation (cf. Section 3.2), in certain application fields
where certain nodes should always stay in the network as long as it is not totally
discarded, such nodes cannot belong to a subdivision of the network.

• ∀x ∈ N , nComm(x) returns the deepest (smallest) subset of network nodes to which
x belongs.

• The constants nilT and nilK are used in the set of node categories NC to classify a
node regardless of its trust level and capability class respectively.

• The set of node categories NC is defined to distribute the network nodes on trust
levels first, then on communities, then on sub-communities at all depths, and finally
on capability classes.

3.2 Evolution Scheme

The evolution of the network may modify the cardinality of the set of nodes, and/or their
availability attributes. Such modifications may imply changes in the set of communities
and sub-communities. Besides, the trustworthiness attributes of certain nodes may change
by time, which may eventually modify the associations between nodes and trust levels.
Moreover, there could be a need at some moment for a more fine-grained capability clas-
sification of nodes in order to use more types of administrative roles. Consequently, the
IOrg-AutoNet structure may evolve in response to evolution events in the network.

We assume that a reputation system (cf. Assumption 3.1) and a resource management
system are implemented in an IOrg-AutoNet to decide the changes in trust levels and
communities respectively while the network evolves. The set of network nodes that have
administrative responsibilities are supposed to enforce the decisions of those two systems
by changing the network structure. The authority nodes of the network communities are
particularly responsible of such administration tasks, especially in the security context.
Chapter 5 describes in details such functionality in the context of access control.

41

Assumption 3.3 We assume that an IOrg-AutoNet has a resource management system
that manages node availability.

3.2.1 Initial Structure

We assume that an initial structure is already created in an IOrg-AutoNet (cf. Assumption
3.4). We do not handle the issues of the network deployment and initialization phase.
However, we may propose the following steps for the deployment phase of a home network
based on the IOrg-AutoNet model. A complete study of this phase in IOrg-AutoNets in
general is left to a future work. Nonetheless, Chapter 6 presents a detailed case study of the
implementation of our autonomic access control solution, which is proposed in Chapters
4 and 5, in a home network. The initial IOrg-AutoNet structure of a home network may
be transparently created by non-expert end-users as follows:

• The autonomic security architecture is installed in the different nodes before inserting
them in the network.

• The initial trust levels and communities are derived from the high-level configuration
of the network structure. In this high-level configuration, an end-user only has to
classify each device as trusted or not (L or H; cf. Section 3.1.1), and to define a
community for the set of devices of each user.

• The initial low-level security policies are derived from the high-level specification of
the security objectives. In this high-level specification, an end-user just has to enter
his security rules in the way he understands and expresses them, using the Human-
Security System Interface (HSSI) of the Security Policy System (SPS; cf. Section
2.2.4). Chapter 6 gives a detailed example of such high-level specifications and their
translation into low-level security policies.

• The nodes can classify each other in terms of capabilities, which helps designating
the first authority nodes (see Chapter 6 for a detailed example).

Assumption 3.4 We assume that the initial structure of the network is already created.

3.2.2 Node-Level Transitions

We mean by a transition at the node level a change in the cardinality of the set of network
nodes N . It is also a change in the cardinality of a certain community, or eventually a set
of nested communities, as long as each node belongs to a community. An IOrg-AutoNet
may evolve at the node level as a result of one of the following possible events:

1. Node Insertion: triggered when a new node joins the network.

2. Node Removal: triggered when a node leaves the network by its choice.

3. Node Banishment: triggered when a node should not continue to use the network,
and it does not know or accept that it has to leave. Node banishment is supposed

42 3. Infrastructureless Organizational Autonomic Networks

to be a decision taken collaboratively by the authority nodes in the context of self-
healing. For example, a node may be banished if it is not available for a period
greater than an allowed maximum, which might mean in certain scenarios that it
is lost, and in case it is assigned to a certain administrative role, some other node
should be elected to replace it.

4. Node Reinsertion: triggered when a banished node is authorized to rejoin the
network. Node banishment and reinsertion will be handled in details in a future
work concerning self-healing in IOrg-AutoNets.

Definition 3.3 An IOrg-AutoNet (N , T , C,K,F , NC) may evolve at the node level and
become (N ′, T , C′,K,F ′, NC) according to the following transitions:

• nodeInsertion(x, c): Insertion or reinsertion of the node x in a community c ∈ C.

– N ′ = N ∪ {x}
– C′ = {c1 ∪ {x} | c1 ∈ C, c ⊆ c1} ∪ {c2 ∈ C | ¬(c ⊆ c2)}
– tLevel(x) = L

• nodeRemoval(x): Removal or banishment of the node x:

– N ′ = N \ {x}
– C′ = {c1 \ {x} | c1 ∈ C, x ∈ c1} ∪ {c2 ∈ C | x /∈ c2}

Remark 3.2 In Definition 3.3:

• The initial trust level of a new node is the lowest trust level L, which can be modified
later by the reputation system (cf. Assumption 3.1).

3.2.3 Community-Level Transitions

We mean by an evolution at the community level a change in the cardinality of the set
of network communities C. In some cases, it is also a change in the cardinality of the
set of network nodes N . In all cases, it is a change in the set of node categories NC.
An IOrg-AutoNet may evolve at the community level as a result of one of the following
possible events:

1. Community Integration: triggered when a new community is created to insert
new nodes, when a precreated community integrates the network, or when a com-
munity subdivision is defined.

2. Community Revocation: triggered when a community is deleted because all its
nodes are removed or banished, when a community should leave the network, or
when a community subdivision is canceled.

3. Community Merging: triggered when the resource management system (cf. As-
sumption 3.3) decides that new availability attributes of the nodes of two communi-
ties imply that they should belong to the same community.

43

4. Community Splitting: triggered when the resource management system (cf. As-
sumption 3.3) decides that new availability attributes of the nodes of a community
imply that it should be split into two communities.

Definition 3.4 An IOrg-AutoNet (N , T , C,K,F , NC) may evolve at the community level
and become (N ′, T , C′,K,F , NC ′) according to the following transitions:

• communityIntegration(c): Integration of a community c:

– N ′ = N ∪ c
– C′ = C ∪ {c}
– NC ′ = (NC ∪ {(t, c, nilK) | ∃x ∈ c, tLevel(x) = t})
∪ {(t, c, k) | ∃x ∈ c, tLevel(x) = t, cClass(x) = k}

• communityRevocation(c): Revocation of a community c:

– N ′ =
⋃

{ci∈C|¬(ci⊆c)}
ci

– C′ = C \ {c′ ∈ C | c′ ⊆ c}
– NC ′ = (NC \ {(t, c1, nilK) | t ∈ T , c1 ∈ C, c1 ⊆ c})
\ {(t, c2, k) | t ∈ T , c2 ∈ C, c2 ⊆ c, k ∈ K}

Remark 3.3 In Definition 3.4:

• Integration of a community c implies the creation of a corresponding node category
for each trust level already used in node categorization, and then the creation of a
node category corresponding to each capability class already used in node categoriza-
tion for each node category created for c.

• Revocation of a community c implies the deletion of each element in NC correspond-
ing to c or any of its sub-communities, if any.

Definition 3.5 By using the transitions of Definition 3.4, we are able to describe com-
munity merging and splitting in an IOrg-AutoNet (N , T , C,K,F , NC), which may make
it evolve and become (N ′, T , C′,K,F , NC ′), using intermediate steps of community inte-
gration and revocation as follows:

• communityMerging(c1, c2, c): Merging of two communities c1 and c2 into a com-
munity c:

– c = c1 ∪ c2
– communityIntegration(c)

– communityRevocation(c1)

– communityRevocation(c2)

44 3. Infrastructureless Organizational Autonomic Networks

• communitySplitting(c, c1, c2): Splitting of a community c into two communities c1
and c2:

– ∀c′ ∈ C, c′ ⊂ c, communityRevocation(c′)

– c1 ⊂ c, c2 ⊂ c, c2 = c \ c1
– communityIntegration(c1)

– communityIntegration(c2)

– C′ = C \ {c}
– NC ′ = (NC \ {(t, c, nilK) | t ∈ T }) \ {(t, c, k) | t ∈ T , k ∈ K}

Remark 3.4 In Definition 3.5:

• After merging two communities c1 and c2, all the sub-communities of c1 and c2, if
any, will be revoked by revoking c1 and c2. The result is a community including all
the nodes of c1 and c2 without sub-communities.

• Before splitting a community, all its sub-communities must be revoked. The result is
two distinct communities having no sub-communities.

3.2.4 Network-Level Transitions

As already explained in Section 3.1.4, the set of node categories is based on the actual
classification. This means that only the used trust levels and capability classes and the
current communities are used in the definition of this set (cf. Definition 3.2). The reputa-
tion system of an IOrg-AutoNet (cf. Assumption 3.1) may decide to change the trust level
of one or more nodes. It may then use a certain trust level for the first time. Similarly, the
resource management system (cf. Assumption 3.3) may decide to change the evaluation
of the capabilities of one or more nodes, which may imply the use of a capability class for
the first time. So a change in trust levels or capability classes of certain nodes may cause
the evolution of the set of node categories in certain cases. Such changes are considered
as network-level evolution events.

On the other hand, because IOrg-AutoNets are infrastructureless by definition (cf.
Definition 3.1), it is possible that two networks merge into one network, or a network
splits into two networks. In both cases, N , C and NC should be modified. In the case of
merging two networks, even the sets of predefined trust levels T and the set of predefined
capability classes K may change, as long as it is possible that each network has its own
versions of such sets. Merging and splitting complete networks are considered as network-
level evolution events.

Definition 3.6 An IOrg-AutoNet (N , T , C,K,F , NC) may evolve at the network level
and become (N , T , C,K,F ′, NC ′) according to the following transitions:

• trustChange(x, t): Changing the trust level of the node x to t, which may imply a
first use of t:

45

– NC ′ = ((NC ∪ {(t,N , nilK) | ∀y ∈ N , tLevel(y) 6= t})
∪{(t, c, nilK) | c ∈ C,∀y ∈ N , tLevel(y) 6= t})
∪{(t, c, k) | c ∈ C, ∃x ∈ N , cClass(x) = k, ∀y ∈ N , tLevel(y) 6= t}

– tLevel(x) = t

• capabilityChange(x, k): Changing the capability class of the node x to k, which may
imply a first use of k:

– NC ′ = NC ∪ {(t, c, k) | ∃x ∈ N , tLevel(x) = t, c ∈ C, ∀y ∈ N , cClass(y) 6= k}
– cClass(x) = k

Definition 3.7 We define the following transitions for merging and splitting an IOrg-
AutoNet (N , T , C,K,F , NC):

• networkMerging(N ′, T ′, C′,K′,F ′, NC ′): Merging the network with another net-
work (N ′, T ′, C′,K′,F ′, NC ′):

– The resulting network is: (N ∪N ′, T ∪ T ′, C ∪ C′,K ∪ K′,F ∪ F ′, NC ∪NC ′)

• networkSplitting(): Splitting the network into two networks:

– The network splits into (N1, T , C1,K,F1, NC1) and (N2, T , C2,K,F2, NC2)

Remark 3.5 In Definition 3.7:

• After a network merging transition, a series of community merging transitions may
be decided by the resource management system (cf. Assumption 3.3) according to
the new availability conditions.

• Before a network splitting transition, a series of community splitting transitions may
be decided by the resource management system (cf. Assumption 3.3) according to the
network splitting requirements.

3.2.5 Life Cycle of a Node

Figure 3.2 illustrates an example of the life cycle of an IOrg-AutoNet node in terms of its
role in network management, and with regard to the different evolution events mentioned
above. We consider subnet exportation and reintegration in this figure to show how a third
node role other than the initial ones, which is the delegated authority, can make part of
a node lifetime. In terms of the evolution of the network structure, a subnet exportation
is equivalent to the revocation of a set of sub-communities, and a subnet reintegration
is equivalent to the integration of the same set of sub-communities as new communities,
because they might have evolved during exportation time.

The life cycle is represented by an automaton, whereby a state is a role of the node at
a certain moment, and a transition could be the result of a certain evolution event. For
example, in the context of a community merging, a node can be non-administrative in one
of the two communities and then it becomes the authority node of the new community

46 3. Infrastructureless Organizational Autonomic Networks

Node insertion: A or C.
Node removal: B or D.
Node banishment: L.
Node reinsertion: M.
Community integration: A, C, G or K.
Community revocation: B, D, G or K.
Community merging/splitting: E, F, G or K.
Network merging: A, C, E, F, G or K.
Network splitting: B, D, E, F, G or K.
Trust level changes: G, J or K.
Capability class changes: E, F, G, H, I, J or K.
Subnet exportation: E, F, G, H, J or K.
Subnet reintegration: E, F, G, I, J or K.

0: out of network
1: non-administrative
2: authority node
3: delegated authority
4: blocked node

0

3

412

A

E

C
B

I

J

D

F
G

H K

L

M

Figure 3.2: Administrative Life Cycle of a Node in an IOrg-AutoNet

(Transition E), or it can be the authority node of one of the two communities and then
it becomes non-administrative (Transition F) or stays the authority node in the new
community (Transition G).

We should note here that a change in the trust level may have effects on the scope of
administrative privileges of a node, even if its basic administrative responsibilities do not
change as illustrated in Figure 3.2. Such types of effects are considered by the autonomic
access control system, which handles administrative rights. The integration of all node
attributes in the process of granting administrative rights and other types of permissions is
discussed and elaborated in Chapters 4 and 5 which present our solution for access control
in IOrg-AutoNets.

3.3 Conclusion

There is a specific model of autonomic networks that we use as a basis in our work. In this
chapter, we motivated and described this model. Our model is called IOrg-AutoNet (In-
frastructureless Organizational Autonomic Network). As the name of the model indicates,
we are interested in networks that do not have a predefined infrastructure, and we build an
evolving organizational structure for them. We justified this choice and defined the model.
The different concepts and elements of the organizational structure were elaborated.

The assignment of administrative roles to nodes is an essential functionality in auto-
nomic networks. The different evolution transitions were studied, considering their effects
on the variable elements of the network structure on one hand, and on node roles on the
other hand. Formal definitions of structure transitions were provided in the first case, and
an automaton illustrating the administrative life cycle of a node in the second case.

A lot of aspects and elements of the IOrg-AutoNet model still need to be studied. Each
definition of evolution transition should be more formalized and studied in more details.

47

However, we focus in this thesis on access control administration, which has a basic mission
of adapting the security configuration to the evolutions described in this chapter. Chapter
4 describes our access control model, and Chapter 5 describes its autonomic administrative
counterpart.

48 3. Infrastructureless Organizational Autonomic Networks

49

Part II

Access Control Solution

51

Chapter 4

SRBAC: The Access Control
Model

In this chapter, we define a collaborative decentralized access control model for IOrg-
AutoNets, and we call it Secure Relation Based Access Control (SRBAC). We show
throughout different sections of this chapter why our model is based on the secure re-
lations that bind the nodes in an IOrg-AutoNet (see Section 4.4 for a description of secure
relations). We also explain how SRBAC allows its administration system to have auto-
nomic computing capabilities.

Section 4.1 specifies the access control requirements in an IOrg-AutoNet. It explains
the need for assigning roles to nodes, defining organizational structures, integrating context
information, decentralizing policy enforcement and supporting distribution, collaboration,
self-management and self-adaptation in access control administration.

Section 4.2 discusses existing access control models with regard to SRBAC require-
ments. It first explains why traditional models are not suitable. Afterward, it addresses
more advanced models fulfilling each a subset of the sought requirements. The section
focuses on the Role-Based Access Control (RBAC) model [89] and its variants, but it also
considers the recent Usage CONtrol (UCON) generic model [105].

Section 4.3 first justifies the choice of RBAC as a basis for SRBAC. It then presents our
contribution, which consists in defining SRBAC components as an adaptation of RBAC
components to the infrastructureless context with a support for autonomic computing,
and enhancing the standard XACML policy specification language with SRBAC entities.

Section 4.4 defines a secure relation in an IOrg-AutoNet. It describes the different
types of secure relations with respect to the attributes of the bound nodes. Therefore, it
begins by defining the “Basic Role” attribute of a node. This section justifies in brief why
our access control model is called “Secure Relation Based”.

Section 4.5 shows how the trust level, community membership and basic role of a node
define its actual role in a secure relation. This actual role is called “Regular Role”. This
section gives a formal specification of regular roles, and defines a regular role hierarchy
that allows access control to be efficient and scalable.

Shared resources in an IOrg-AutoNet, which we call objects in the context of access

52 4. SRBAC: The Access Control Model

control, also have certain attributes related to SRBAC. Section 4.6 defines elementary
attributes for objects, and calls them access scopes. It explains the dependencies between
access scopes and secure relations. An organizational categorization of objects is then
introduced using a compound attribute based on access scopes. The section explains how
permissions are associated with access scopes, and consequently with object categories, in
SRBAC.

SRBAC has components representing organizational structures. Section 4.7 describes
those components and explains their use. Two subsections describe two network structures
built on node categories and object categories respectively. Those network structures
integrate the SRBAC model to support decentralization and self-management.

Section 4.8 defines the SRBAC model using the RBAC model [89] as a basis. Nodes,
objects, their attributes and the organizational structures, which are described in previ-
ous sections, are essential components of SRBAC irrespectively of its basic model. This
section presents their integration in the SRBAC version that is based on RBAC. Besides,
it describes the other SRBAC components resulting from RBAC.

Section 4.9 presents the specification language of SRBAC policies. It explains how
SRBAC policies can be specified using a standard language, which is the OASIS eXtensible
Access Control Markup Language (XACML) [4]. It justifies the choice of this language
with respect to SRBAC requirements. It describes enhancements of an RBAC/XACML
profile aiming at fulfilling the requirements of SRBAC policy specification.

Section 4.10 concludes the chapter with a summary of the proposed access control
model. The summary focuses on the contributions of SRBAC with respect to its basic
model RBAC. Afterwards, the section briefly motivates the solution proposed in the next
chapter for access control administration.

4.1 Access Control Requirements

IOrg-AutoNet nodes are supposed to have variable roles in the network with regard to
their evolving attributes of trustworthiness, availability and authority. We need an ac-
cess control model that assigns roles to nodes depending on such information related to
the network context. Certain components in this model should represent the organiza-
tional structure of the IOrg-AutoNet. Besides, the sought access control model should
support decentralization and collaboration between nodes. Particularly, it should sup-
port self-management and self-adaptation in access control administration. The following
subsections justify those different access control requirements in IOrg-AutoNets.

4.1.1 Organizational Structure

The IOrg-AutoNet structure transforms an infrastructureless network into an autonomous
organization. This means that the principals of such an organization are expected to be
the network nodes themselves. Each node should have a role in this organization, and its
access to the shared resources would depend on its role.

53

Requirement R 4.1 The access control model should be based on the dependence of ac-
cess privileges upon the assignment of roles to nodes.

Furthermore, just as in any organization, all roles do not define the same privileges,
and a role may define a subset of the privileges of another role. A hierarchy of node roles
is therefore possible to build. By making use of the relationships between roles in such
a hierarchy, which define privilege inheritance, we can achieve more efficient and scalable
access control.

Requirement R 4.2 the access control model should allow the use of hierarchical rela-
tionships between node roles in specification of permissions.

As explained in Chapter 3, the IOrg-AutoNet structure evolves, which may unexpect-
edly change the nodes’ memberships in the divisions of the corresponding organizational
structure, and possibly their roles. In other words, the evolution of an IOrg-AutoNet
affects its access control system. Therefore, the sought access control model should allow
its administrative counterpart to react to changes in the IOrg-AutoNet structure.

Requirement R 4.3 The access control model should have components that represent the
organizational structure of the IOrg-AutoNet.

4.1.2 Context-Awareness

The role of a node defines its access privileges. Such a role is basically identified by the
management capabilities and responsibilities assigned to the node. These management
attributes of a node may change unexpectedly due to the network evolution. Therefore,
the role of a node should be based on its up-to-date administrative characteristics.

Besides, the availability of a node may affect its access rights. A node belonging to the
same community of the resource hosting node may have certain kinds of permissions that
cannot be assigned to a node belonging to a different community, even if the both access re-
questing nodes basically have the same authority privileges in the network. Therefore, the
up-to-date availability coordinates of a node should be associated with its administrative
attribute to identify its role.

In addition to authority and availability considerations, the trustworthiness of a node
is also an access control parameter in IOrg-AutoNets, because they are basically infras-
tructureless networks. An access requesting node may win or lose certain access rights due
to its trust credentials, which are represented in an IOrg-AutoNet by its trust level. Trust
levels of nodes are also subject to changes. The up-to-date trust level should be associated
with administrative privileges and availability coordinates to identify the role of a node.

Requirement R 4.4 The access control model should be aware of the networking context
and its changes in terms of authority, availability and trustworthiness of nodes.

54 4. SRBAC: The Access Control Model

4.1.3 Decentralization

An infrastructureless network is not supposed to have a central authority. We try how-
ever in the IOrg-AutoNet structure to make use of a possible partial centralization through
creating communities and their subdivisions (cf. Chapter 3), with respect to possible avail-
ability constraints in the application field. Even when partial centralization is possible,
the decentralization is a must between the authority nodes of the network communities.
Moreover, the decentralization between subdivisions should be also considered inside a
community. In terms of access control, each authority of a community or a sub-community
should have its own autonomous policy enforcement module.

Requirement R 4.5 The access control model should allow a decentralized enforcement
of its policies.

The administration of the access control system must not be centralized either. The
IOrg-AutoNet structure may evolve very frequently in certain applications, and the corre-
sponding access control administration should be a continuous, reactive distributed pro-
cess. Therefore, in an IOrg-AutoNet, where the nodes themselves manage their network,
there should not be a single administrative role of the type SSO (System Security Officer).

Requirement R 4.6 The access control model should allow its administrative counter-
part to define distributed administration policies.

4.1.4 Collaboration

IOrg-AutoNet nodes share the security policy either by simple replications or using some
distribution algorithm. If a node is not able to host or share the security policy, it can
access it on its authority node as a shared resource. An IOrg-AutoNet node is able to
enforce the security policy autonomously. However, that policy is subject to changes with
respect to the network evolution. Actually, the network nodes need to collaborate to
accomplish such changes. They need to negotiate to reach a unified decision about the
changes to apply, in order to maintain the consistency of the security policy.

Requirement R 4.7 The access control model should allow its administrative counter-
part to define collaborative administration.

We can summarize the characteristics of an access control model that supports collab-
oration as follows:

• Generic: the nodes should be able to use and exchange different types of access
control parameters, such as availability, trust and authority.

• Scalable: the nodes may need to perform big numbers of shared operations.

• Fine-grained: access control for individual subjects targeting individual objects
should stay possible, even if the categorization of subjects and objects is required
with respect to the organizational structure.

55

• Flexible: the access control policies and their modifications in the context of a
collaboration should be transparent for the users, and based on high-level objectives.

• Dynamic: supports specification and modification of policies at runtime.

More details about the access control requirements for collaboration can be found in [100].

4.1.5 Self-Management

The IOrg-AutoNet nodes should be able to manage the access control system by them-
selves. It is required that the role of an authority node defines privileges of access control
administration. In other words, the administrative model of the access control system
should be based on the access control model itself.

Requirement R 4.8 The access control model should be generic enough to serve as a
basis of an administrative counterpart.

As a part of a network that presents needs for autonomic computing, the access control
administration system should have the following properties:

• Self-configuration: node-role and permission-role assignments should be based on
mappings between the node roles and the network structure.

• Self-optimization: the optimization of the access control policies in response to the
network evolution should imply the optimization of the access control administration
policies as well.

• Self-protection: the access control management privileges should be defined as access
control rights.

• Self-healing: the access control administration policies should be updated with re-
spect to the reconfiguration of the access control policies in response to unexpected
changes in the network or in its context.

More details about the autonomic computing properties can be found in [56].

Requirement R 4.9 The access control model should allow the access control adminis-
tration system to be autonomic.

4.1.6 Self-Adaptation

The access control administration system should be able to adapt the access control mate-
rial to the different types of changes in the network or in its context. This can be achieved
when the access control model fulfills the previous requirements from R 4.1 to R 4.9. The
entities of the access control administration system itself are also subject to changes with
respect to the network evolution. Such entities are supposed to be based on the variable
components of the access control model for purposes of self-management. In other words,
the administration system should be able to adapt itself after adapting the components of

56 4. SRBAC: The Access Control Model

the access control model in response to the network evolution. Actually, self-adaptation
is required in autonomic systems that should detect and survive unexpected changes, as
explained in details in [50]. Our approach for self-adaptation is that an administrative
role is specified in an autonomous way with respect to a corresponding role in the access
control model. More details will be provided in Chapter 5.

Requirement R 4.10 The access control model should support mappings between its
roles and corresponding administrative roles.

4.2 Related Work

One may think that the SRBAC model can be based on the traditional Access Control
Matrix model [61], which is usually defined as a Discretionary Access Control (DAC)
model. At a first glance, a DAC model, whereby access decisions are taken at the discretion
of the resource owner, can be seen as suitable for infrastructureless environments because
of the absence of a trusted central authority. However, there are several shortcomings
in such a model with respect to SRBAC requirements. Particularly, it does not support
assignment of attributes, such as roles and categories, to subjects or objects. In other
words, at least, the requirements related to the organizational structure (R 4.1 - R 4.3)
cannot be fulfilled.

The Lattice-Based Access Control models [88] constitute a family of traditional security
models that are based on the concept of assigning security labels to subjects and objects.
The use of such labels my help defining roles, categories and related structures (R 4.1 - R
4.3). However, those models are defined for controlling data flow in terms of confidentiality
or integrity, while SRBAC is supposed to control resource usage. Nevertheless, an access
right granted by SRBAC might result in an illegal data flow. A model for controlling data
flow in IOrg-AutoNets can be a future adjacent solution used together with SRBAC.

The requirement R 4.1 implies the need for a model that associates nodes with roles.
Therefore, the Role-Based Access Control (RBAC) model [89] can be a basis for SR-
BAC. Particularly, RBAC supports hierarchical relationships between roles (R 4.2). Some
RBAC-based approaches have been proposed for multidomain, decentralized collaborative
environments [93, 94] (R 4.3, R 4.5 - R 4.7). On the other hand, RBAC is used as a basis
in certain context-aware solutions [28, 103] (R 4.4). However, the existing RBAC-based
solutions usually propose particular enhancements to RBAC that we do not necessarily
need in IOrg-AutoNets. We think that it is better to define SRBAC by adapting the orig-
inal RBAC model itself, with respect to the access control requirements of IOrg-AutoNets
that are not fulfilled (R 4.3 - R 4.10).

Other access control models define other types of organizational structuring of access
control components. The Task-Based Access Control (TBAC) model [99] proposes struc-
turing of access actions, which is basically required in workflow applications. However, our
focus is currently on organizational structuring of subjects, roles and objects (R 4.2, R
4.3). The ongoing task-based validation of rights in a workflow-like access control process
can be a future enhancement of SRBAC. The TeaM-based Access Control (TMAC) model
[98] makes it possible to grant access rights at runtime, taking into account the team to

57

which the access requesting subject currently belongs, in addition to its role. This is ac-
tually required in dynamic organizational structures, such as the IOrg-AutoNet’s, where
teams of authority nodes can be temporarily created to accomplish different administra-
tion tasks. However, we currently just seek collaborations between the authority nodes
that have to share administration tasks (R 4.7). A team-based access control feature can
be a future enhancement of SRBAC.

The Usage CONtrol (UCON) model [105] could be an interesting basis for SRBAC. It
is an attribute-based model, in which persistent and mutable attributes of subjects and
objects, in addition to context-aware attributes, can be defined as access control parame-
ters. Therefore, we can define node roles and categories of subjects and objects in UCON,
taking into account context changes (R 4.1, R 4.3, R 4.4). Besides, UCON does not
assume the centralization of policy enforcement or management (R 4.5, R 4.6). More-
over, other interesting concepts of UCON, such as obligations, conditions and continuity
of decisions, make of it an access control model which is generic, scalable, fine-grained,
flexible and dynamic (R 4.7). However, it is not clear how to define relationships between
attributes, which presents a challenge in fulfilling the requirement R 4.2. Furthermore,
a corresponding administrative model is not yet proposed in the literature, which means
that self-management and self-adaptation features should be worked out from scratch in
order to fulfill the requirements R 4.8, R 4.9 and R 4.10. Actually, we prefer basing
SRBAC on the RBAC model. The main advantage of RBAC, with respect to UCON, is
that it has an administrative model to build upon. The ongoing access control features
provided by UCON can be left to a future work.

The Organization-Based Access Control (Or-BAC) model [5] is role-based, and it sup-
ports role hierarchies (R 4.1, R 4.2). It categorizes subjects and resources in an abstract
manner (R 4.3). It defines a component dedicated to the use of context information in
access control (R 4.4). Policy enforcement can be decentralized in Or-BAC (R 4.5), and
its administration model AdOr-BAC [32] is distributed (R 4.6) and collaborative (R 4.7).
Moreover, the fact that AdOr-BAC is expressed using Or-BAC itself (R 4.8), together
with the use of a context entity, may establish a framework for self-management (R 4.9)
and self-adaptation (R 4.10). In other words, we may just need to suitably configure the
components of the Or-BAC model, and enhance them with autonomic computing support,
in order to define the SRBAC model. However, a simpler enhancement of RBAC would
be enough to achieve the sought access control model. We do not necessarily need all the
features of Or-BAC in our work. An extension of SRBAC based on Or-BAC could be
studied in a future work.

4.3 Contributions

We chose RBAC as a basis for the definition of SRBAC, as already rationalized in Section
4.2. It is role-based by definition (R 4.1), and defines role hierarchies (R 4.2). It does not
clearly define organizational structures for access control elements other than roles, but
such structures can easily be incorporated (R 4.3). For instance, organizational structures
were defined for users and permissions in a previous work [73] in order to establish a

58 4. SRBAC: The Access Control Model

platform for the definition of the administrative model ARBAC02. No specific support
of context awareness was defined in the original RBAC model, but it has abstract and
flexible component specifications, which may help filling such a gap (R 4.4). For instance, a
previous work [28] could define environment roles in RBAC for context-aware applications.
Besides, RBAC is generic enough to allow configuring its components in a way that makes
the access control system decentralized (R 4.5), distributed (R 4.6), collaborative (R 4.7)
and autonomic (R 4.8 - R 4.10), as we elaborate in this chapter.

Briefly, our contribution is the adaptation of the RBAC model to the requirements
of IOrg-AutoNets as infrastructureless networks on one hand, and autonomic networks
on the other hand. The following list gives the main elements of this contribution, with
regard to the requirements discussed in Section 4.1:

• Nodes and resources are categorized in organizational structures based on context-
aware attributes (R 4.3, R 4.4).

• The role of a node is specified using the context-based attributes mentioned above
(R 4.4).

• The role of a node defines its privileges in terms of access control policy enforcement
and management. This allows nodes to enforce policies in a decentralized way and
collaborate to manage the access control system by themselves in a distributed way
(R 4.5 - R 4.8).

• The role of a node can be mapped to categories of nodes and resources, which
supports the autonomic administration of role assignments (R 4.9).

• The role of an authority node autonomously defines its administrative role in the
access control administration system. Therefore, the authority nodes can eventu-
ally adapt this system to certain changes they might perform on the access control
materials (R 4.10).

• The XACML profile for RBAC [15] is enhanced to express the SRBAC components
that represent the organizational structures defined for nodes and resources.

4.4 Secure Relations

The first time two IOrg-AutoNet nodes communicate, they establish a secure relation
between them, which lasts as long as the both nodes remain in the network. The type
of a secure relation is determined by the organizational attributes of the involved nodes,
in addition to their administrative responsibilities in the network. Administrative re-
sponsibilities are identified by a node attribute called “Basic Role”, which we define in
this section. Hence, a secure relation can be at different trust levels or the same trust
level, inter-community or intra-community, and between nodes of different basic roles or
the same basic role. A node may have different secure relations of different types with
different nodes.

59

4.4.1 Basic Roles

An IOrg-AutoNet node may acquire certain access rights to perform administrative actions
on other nodes and/or their objects. A basic role is assigned to a node in each of its
secure relations to identify its administrative capabilities, if any. The assignment of basic
roles to nodes is initially the result of a high-level configuration. Eventually, the access
control administration system will adapt the basic roles of the different nodes to changes
in the network and its environment. We call a role “basic” when it defines administrative
privileges for a node irrespectively of its trust level and community membership. Whereas,
the trust level, the community membership and the basic role are altogether needed to
concretely specify the actual role of a node in a secure relation, as we will see later in this
chapter.

Basic roles are assigned to nodes with respect to their capability classes. A node should
have a minimum set of capabilities to be able to acquire a certain basic role. Hence, a
basic role corresponds to the capability class defining such a minimum set. Basic roles
follow a total order based on the total order of the corresponding capability classes. A
basic role is greater than another basic role if it defines the same administration privileges
at least, which means if it corresponds to a higher capability class. The highest basic
role in an IOrg-AutoNet is denoted by A, and is assigned to an Authority node in each
secure relation binding it to a node under its control. The lowest basic role in an IOrg-
AutoNet is denoted by NA (Non-Administrative), and is assigned to a node when it has
no administrative rights in a secure relation. The two basic roles NA and A are the initial
ones with NA ≤ A.

The reputation system (cf. Assumption 3.1) or the resource management system (cf.
Assumption 3.3) may imply changes in the basic roles of certain nodes because of changes
in trustworthiness and availability respectively. Further, those systems may use for a first
time basic roles from a totally-ordered predefined set having NA and A as lower and upper
bounds respectively. For instance, the resource management system may use the basic role
Delegated Authority (DA), which defines a subset of the administrative privileges of A, in
order to designate certain nodes as the delegated authority nodes of a subnet.

Definition 4.1 Let B be the totally-ordered set of basic roles with NA and A as lower
and upper bounds respectively and bAbility the function which returns the capability class
defining the minimum requirements for acquiring a basic role:

• bAbility : B −→ K

– ∀b1, b2 ∈ B, (b1 ≥ b2)⇔ (bAbility(b1) ≥ bAbility(b2))

– bAbility(NA) = LD

– bAbility(A) = HD

Notation 4.1 Starting by Definition 4.1, and for the rest of the thesis:

• We use b, with eventual superscript or subscript indices to denote a basic role (an
element of B).

60 4. SRBAC: The Access Control Model

4.4.2 Secure Relation Definition

A secure relation type is identified by the trust levels, the community memberships and
the basic roles of the bound nodes. It is enough to identify the bound nodes to determine
their trust levels and communities using the set of mapping functions F of the network
(cf. Definition 3.2). Therefore, a secure relation can be defined using the identities of the
bound nodes and their basic roles in this secure relation.

Definition 4.2 Let SR be the set of all the secure relations and sRels the function which
returns the set of secure relations of a node:

• SR ⊆ N 2 × B2

– ∀ρ ∈ SR, ρ = (x, y, bx, by), bx is the basic role of x in ρ
and by is the basic role of y in ρ

– ∀ρ1, ρ2 ∈ SR, ((ρ1 = (x, y, bx, by)) ∧ (ρ2 = (x, y, b′x, b
′
y)))

⇒ ((bx = b′x) ∧ ((by = b′y))

• sRels : N −→ 2SR

– ∀x ∈ N , sRels(x) = {ρ ∈ SR | (ρ = (x1, x2, b1, b2)) ∧ ((x = x1) ∨ (x = x2))}

Notation 4.2 Starting by Definition 4.2, and for the rest of the thesis:

• We use ρ, with eventual superscript or subscript indices to denote a secure relation
(an element of SR).

4.4.3 Secure Relation Types

The type of a secure relation determines the security material to use to protect the con-
fidentiality and the integrity of the exchanged data. Particularly, our research concerns
the secure-relation-based access control in IOrg-AutoNets, as will be discussed in details
in this chapter. Figure 4.1 illustrates examples of different types of secure relations in
the organizational structure of an IOrg-AutoNet, in which we only have the two initial
trust levels and the two initial basic roles. We can notice in Figure 4.1 that an authority
node may be seen as a non-administrative node by a non-administrative node of another
community. For a non-administrative node, the authority node is specifically the one that
manages its community.

The variable set of authority nodes represents a board of security managers. They
are together responsible of the self-management of the network in the security context.
Besides, they represent the authentication and authorization servers of the network. The
set of authority nodes is supposed to vary in an autonomic manner, in terms of the
involved nodes and their number. Authority nodes should have secure relations among
them in order to be able to cooperate in network administration operations. They also
should have secure relations with the nodes of their respective communities in order to be
able to control those latter. Hence, the set of secure relations may evolve in an unexpected
manner with respect to the evolution of the set of authority nodes.

61

Community

Authority of High Trust

Authority of Low Trust

Node of High Trust

Node of Low Trust

Secure Relation Types

Authority-Authority of same Trust Level

Authority-Authority of different Trust Levels

Authority-Node of same Trust Level

Authority-Node of different Trust Levels

Node-Node of same Trust Level and Community

Node-Node of different Trust Levels and same Community

Node-Node of same Trust Level and different Communities

Node-Node of different Trust Levels and Communities

Figure 4.1: Examples of Secure Relation Types in an IOrg-AutoNet

A mutual authentication should take place before a secure relation is established be-
tween two IOrg-AutoNet nodes. Authentication between a new node and an authority
node takes place during the node insertion operation. Node insertion takes place through
a single-hop communication between the new node and the authority node of the selected
community, and using a protected short-distance channel, such as an infrared connection.
According to the capability class of the new node, it is assigned either a public-key certifi-
cate, or a secret key shared uniquely with the authority node of its community. In the first
case, the new node generates its key pair, and the authority node assumes the role of the
certification authority. In the second case, the authority node securely establish and share
the secret key with the new node using a suitable protocol, such as the Diffie-Hellman Key
Exchange Protocol.

As for authentication between two non-authority nodes, either they have certificates
assigned by their authority nodes and they use them in a certificate-based mutual authen-
tication protocol, or one at least could not be assigned a certificate and the authority nodes
intervene as authentication servers. Actually, we only point out here a brief idea about
the key infrastructure and the authentication system in an IOrg-AutoNet. We already
worked on such authentication schemes in the context of a Master’s thesis about security
models and protocols in home networks [7]. The network model defined in that Master’s
thesis can be considered as the groundwork of the IOrg-AutoNet model. In a future work,
such issues will be more elaborated, and key establishment and mutual authentication
protocols will be proposed specifically for IOrg-AutoNets.

62 4. SRBAC: The Access Control Model

4.5 Node Roles

Let x and y be two IOrg-AutoNet nodes bound by a secure relation ρ. See the previous
section for more details about secure relations. Suppose that x should perform a certain
action on a certain object hosted by y. The node x may, or may not, be granted the
required access rights depending on three of its attributes as evaluated by y. Those
attributes are the trust level, the community membership and the basic role. The values
of the basic roles of the both nodes depend on the type of ρ (cf. Section 4.4). SRBAC
uses a compound node attribute built on the previous basic ones, called Regular Role, for
assigning permissions to nodes in the context of a secure relation. Consequently, the value
of a regular role also depends on the type of the encapsulating secure relation.

4.5.1 Regular Roles

When a node has administrative privileges in a secure relation, which means that its basic
role in this secure relation is not NA, its regular role determines the set of communities
it may manage. We call such a set of communities the administration scope of the node.
Here, we first define a function that allows SRBAC mechanisms to determine the admin-
istration scope of a node, and then we define a function to determine the regular role of a
node in any of its secure relations:

Definition 4.3 Let aComm be the function which returns the set of communities or sub-
divisions of communities belonging to the administration scope of a node with regard to a
given basic role:

• aComm : N × B −→ 2C

Definition 4.4 Let RR be the set of regular roles, bRole the function which returns the
basic role of a node in a secure relation, and rRole the function which returns the regular
role of a node in a secure relation:

• RR ⊆ T × C × B × 2C

• bRole : N × SR −→ B

• rRole : N × SR −→ RR

– ∀x ∈ N ,∀ρ ∈ sRels(x), ∃b ∈ B, bRole(x, ρ) = b,
rRole(x, ρ) = (tLevel(x), nComm(x), b, aComm(x, b))

Figure 4.2 shows examples of regular roles belonging to a hierarchy. We will define the
regular role hierarchy in the next subsection. Those regular roles belong to a subset of the
possible regular roles in an IOrg-AutoNet composed of two communities c1 and c2, and
using the initial trust levels and the initial basic roles. However, we should particularly
notice in this figure the use of the two regular roles (L,N , NA, ∅) and (H, ∅, A, C). Those
two regular roles do not actually belong to RR. No node can be assigned to any of
them. They are used for delimiting the lattice representing the regular role hierarchy, as
illustrated in the example of this Figure 4.2.

63

4.5.2 RRH: Regular Role Hierarchy

Just as any organization, an IOrg-AutoNet should have an administrative hierarchy for
structuring its principals. The total order of the basic roles already represents such a
structure. However, the trust level and the community membership of a node may upgrade
or downgrade its administrative capabilities. This is why the administrative hierarchy of
an IOrg-AutoNet is actually based on the regular roles of its nodes, rather than their
basic roles. Here we define a domination relationship between regular roles, which results
in such a hierarchy. The total orders of trust levels and basic roles, and the partial orders
defined on the community membership and the administration scope, help building this
relationship.

Definition 4.5 Let as1 and as2 be two sets of communities or subdivisions of communities
representing two administration scopes, we write as1 � as2, and we say that as1 dominates
as2, if and only if the nodes of any community in as2 belong to a community in as1, which
may be defined formally as follows:

• ∀as1, as2 ∈ 2C ,
(as1 � as2)⇔ (∀c2 ∈ as2, ∃c1 ∈ as1, c2 ⊆ c1)

Notation 4.3 Starting by Definition 4.5, and for the rest of the thesis:

• We use as, with eventual superscript or subscript indices to denote an administration
scope (an element of 2C).

We say that a regular role r1 dominates another regular role r2 in RR, if and only if
the trust level in r1 is higher than or equal to the trust level in r2, the community in r1
is a subset of or equal to the community in r2, the basic role in r1 is higher than or equal
to the basic role in r2, and the administration scope in r1 dominates the administration
scope in r2. We use the same rules to compare any regular roles with any of the two
abstract regular role values (L,N , NA, ∅) and (H, ∅, A, C), which are used for delimiting
the regular role hierarchy, as illustrated in the example of Figure 4.2.

Definition 4.6 Let r1 and r2 be two regular roles, we write r1 �RR r2, and we say that
r1 dominates r2 in RR, if and only if:

• ∀r1, r2 ∈ (RR ∪ {(L,N , NA, ∅),(H, ∅, A, C)}),
r1 = (t1, c1, b1, as1), r2 = (t2, c2, b2, as2),
(r1 �RR r2)⇔ ((t1 ≥ t2) ∧ (c1 ⊆ c2) ∧ (b1 ≥ b2) ∧ (as1 � as2))

Notation 4.4 Starting by Definition 4.6, and for the rest of the thesis:

• We use r, with eventual superscript or subscript indices to denote a regular role (an
element of RR).

64 4. SRBAC: The Access Control Model

(L, N , NA, ∅)

(L, c2 , A, {c2})

(L, c2 , NA, ∅)

(L, c2 , A, {c1,c2})

(H, c2 , NA, ∅)

(H, c2 , A, {c2})

(H, c2 , A, {c1,c2})

(L, c1 , A, {c1})

(L, c1 , NA, ∅)

(L, c1 , A, {c1,c2})

(H, c1 , NA, ∅)

(H, c1 , A, {c1})

(H, c1 , A, {c1,c2})

(H, ∅ , A, {c1,c2})

(H, ∅, A, {c1, c2}): upper RRH bound, abstract role, having all permissions
(L,N , NA, ∅): lower RRH bound, abstract role, having no permissions

Figure 4.2: Example of a Regular Role Hierarchy (RRH)

The operation �RR defines a partial order that creates a lattice hierarchy, in which a
regular role inherits access privileges from its descendants. This is the hierarchy that we
call RRH (Regular Role Hierarchy). Figure 4.2 illustrates a part of the RRH of a network
composed of two communities c1 and c2, and having the initial sets of trust levels and
the two basic roles NA and A. To make the figure as legible as possible, we ignored the
case where a node which is not the authority of its community, can be an authority of
another one, such as the case of a node having the role (H, c1, A, {c2}). The direction of
the arrows indicates the propagation of access privileges from a role to its senior roles by
inheritance.

4.6 Object Attributes

The IOrg-AutoNet users, who are not supposed to be experts in network security, are not
likely to be able to specify SRBAC policies. They simply provide some sort of an end-user
configuration, in addition to a set of high-level application-dependent objectives. The
modules of the security policy system would then derive the equivalent low-level access
control policy specification. The way to do this is, on one hand, to specify access scopes
for each object according to the enduser configuration, and on the other hand, to associate

65

permissions with each access scope with respect to the high-level application-dependent
objectives. This section describes access scopes and their association with permissions.
It also defines object categories based on access scopes, which helps specifying the set of
permissions corresponding to a set of objects.

4.6.1 Access Scopes

On one hand, a subset of basic attributes of three possible types are assigned to an object
in order to determine its access scopes. On the other hand, an access scope defines the
actions that can be performed on the objects with which it is associated. In other words,
a set of resources having the same subset of access scopes are associated with a subset of
access rights. The basic attributes are specified for an object with respect to the trust
level, the community membership and the basic role of the potential access requesting
nodes.

Definition 4.7 Let Atto be the set of basic attributes of an object o, and αT ,t, αC,c and
αB,b basic attributes identifying the access scopes corresponding to a trust level t, a com-
munity c and a basic role b respectively, a node x may access o if and only if:

• ((t ∈ T) ∧ (αT ,t ∈ Atto) ∧ (tLevel(x) ≥ t))
∨ ((c ∈ C) ∧ (αC,c ∈ Atto) ∧ (x ∈ c))
∨ ((b ∈ B) ∧ (αB,b ∈ Atto) ∧ (∃ρ ∈ sRels(x), bRole(x, ρ) ≥ b))

Remark 4.1 In Definition 4.7:

• An access scope of an object may determine if a node can access or not regardless of
the access type. However, the same access scope defines a set of permissions for each
associated object, whereby the access type for a certain object can be determined. So
a node can first know if access is authorized according to an access scope, and then
it checks the associated permissions.

• An object having αT ,t as access scope is called Confidential at t.

• An object having αC,c as access scope is called Communal in c.

• An object having αB,b as access scope is called Administrative for b.

An object is by default confidential and communal at the trust level and in the com-
munity of its hosting node respectively. Besides, the hosting node itself and its security
materials are by default administrative objects for the basic role A. Such an initial specifi-
cation is derived from an initial end-user configuration. Eventually, the adaptation to the
network evolution, and possibly to changes in the end-user configuration, would modify
the access scopes of objects.

Example 4.1 Let x be a new node and (t, c, LD) its category. Let y be the authority
node of the community c; hence responsible of adding new nodes to it. Suppose that x is

66 4. SRBAC: The Access Control Model

a device that cannot perform public key operations. In this case, y creates a secret key K
and shares it with x using an appropriate key exchange protocol.

The security material K should be hosted by both x and y. By default, the copy of K
hosted by x should have the set of attributes {αT ,t, αC,c, αB,A}. Suppose that the category
of y becomes (t, c′, HD) after a change in its membership, and that y will always manage
the community c even if it belongs to another community c′. The set of attributes of the
copy of K hosted on x should be then updated to become {αT ,t, αC,c′ , αB,A}.

4.6.2 Object Categories

A set of objects having the same subset of basic attributes, and possibly hosted on different
nodes, defines an object category. As previously explained, the elements of such a set of
objects should be all associated with the same set of permissions. Given that an access
scope is identified by the trust level, the community membership or the basic role of the
potential access requesting nodes, we can use node attributes to define object categories.

Definition 4.8 Let P be the set of permissions, Attp the set of basic object attributes
associated with a permission p, OC the set of object categories and pPool the function
which returns the set of permissions associated with an object category:

• OC ⊆ (T ∪ {nilT })× (C ∪ N)× (B ∪ {nilB})

– ((t, c, b) ∈ OC)⇔ (((t, c, b) = (nilT ,N , nilB)) ∨
((c = N) ∧ (b = nilB) ∧ (∃x ∈ N , tLevel(x) = t)) ∨
((b = nilB) ∧ (∃x ∈ N , tLevel(x) = t, nComm(x) = c)) ∨
(∃x ∈ N , ∃ρ ∈ sRels(x), tLevel(x) = t, nComm(x) = c, bRole(x, ρ) = b))

• pPool : OC −→ 2P

– pPool(nilT ,N , nilB) = P
– ∀t ∈ T , pPool(t,N , nilB) = {p ∈ P | αT ,t ∈ Attp}
– ∀t ∈ T , ∀c ∈ C, pPool(t, c, nilB) = {p ∈ P | {αT ,t, αC,c} ⊆ Attp}
– ∀t ∈ T , ∀c ∈ C,∀b ∈ B, pPool(t, c, b) = {p ∈ P | {αT ,t, αC,c, αB,b} ⊆ Attp}

Notation 4.5 Starting by Definition 4.8, and for the rest of the thesis:

• We use p, with eventual superscript or subscript indices to denote a permission (an
element of P).

Remark 4.2 In Definition 4.8:

• nilB is used in the place of the basic role to ignore it when needed.

• See Definition 3.2 and Remark 3.1 for an explanation of nilT .

• The set of object categories OC is defined to distribute permissions on trust levels
first, then on communities, then on sub-communities at all depths, and finally on
basic roles, with respect to the attributes of the potential access requesting nodes.

67

4.7 Organizational Structures

The trust levels are totally ordered, and so are the capability classes and the basic roles.
Besides, a partial order defined on community membership results from dividing the net-
work into communities. The previous total and partial orders defined on node attributes
imply a partial order between node categories and another one between object categories.
A partial order defined on a node attribute gives a structure of relationships between
its possible values. This allows SRBAC mechanisms to use node categories and object
categories in an organized way. This section describes the structures built for the node
categories and the object categories respectively.

4.7.1 NS-N: Network Structure for Nodes

According to the node categorization introduced in Definition 3.2, the network nodes
are distributed on trust levels first, on communities and their subdivisions afterward and
finally on capability classes. The nodes belonging to the same trust level are distributed
on communities. The nodes belonging to the same trust level and community may belong
to different subdivisions of that community. The nodes belonging to the same trust level
and community, or eventually a subdivision of a community, are categorized according
to capability classes. Actually, this node categorization defines a tree structure based
on a domination relationship between node categories. Here, we define that domination
relationship, and give an example of the tree structure.

Definition 4.9 Let nPool be the function which returns the subset of nodes associated
with a node category:

• nPool : NC −→ 2N

– nPool(nilT ,N , nilK) = N

– ∀(t,N , nilK) ∈ NC,nPool(t,N , nilK) = {x ∈ N | (tLevel(x) = t)}

– ∀(t, c, nilK) ∈ NC,nPool(t, c, nilK) = {x ∈ N | (tLevel(x) = t) ∧ (x ∈ c)}

– ∀(t, c, k) ∈ NC,nPool(t, c, k) =
{x ∈ N | (tLevel(x) = t) ∧ (nComm(x) = c) ∧ (cClass(x) = k)}

Definition 4.10 Let nc1 and nc2 be two node categories, we write nc1 �NC nc2, and we
say that nc1 dominates nc2 in NC, if and only if the nodes of nc2 belong to nc1:

• ∀nc1, nc2 ∈ NC, (nc1 �NC nc2)⇔ (nPool(nc2) ⊆ nPool(nc1))

Notation 4.6 Starting by Definition 4.10, and for the rest of the thesis:

• We use nc, with eventual superscript or subscript indices to denote a node category
(an element of NC).

68 4. SRBAC: The Access Control Model

(nilT,N,nilK)

(H,N,nilK) (L,N,nilK)

(L,c1,nilK) (L,c2,nilK)(H,c1,nilK) (H,c2,nilK)

(H,c1,HD)(H,c1,LD) (H,c2,HD)(H,c2,LD) (L,c1,HD)(L,c1,LD) (L,c2,HD)(L,c2,LD)

Figure 4.3: Example of a Network Structure for Nodes (NS-N)

The operation �NC defines a partial order that creates a tree structure, in which a
category inherits nodes from its descendants. We call this tree NS-N (Network Structure
for Nodes). Figure 4.3 illustrates the NS-N of the network that has the regular role
hierarchy illustrated in Figure 4.2. We can note in these two figures a mapping between
regular roles and node categories. Actually, a node can be assigned a regular role (t, c, b, s)
if it belongs to the node category (t, c, bAbility(b)). In other words, a node can be candidate
for assignment to a regular role if it has the corresponding trust level and community
membership, and fulfills the minimum capabilities associated with the corresponding basic
role. This mapping allows the access control administration system to be more efficient
and scalable in selecting nodes for assignment to regular roles, and to optimize the regular
role hierarchy in response to the evolution of the network structure. More details about the
autonomic access control administration system of IOrg-AutoNets are provided in Chapter
5. The direction of the arrows in Figure 4.3 indicates that a node category inherits nodes
from its juniors.

4.7.2 NS-P: Network Structure for Permissions

According to Definition 4.8, there is an object category associated with all the possible
permissions in an IOrg-AutoNet. This root object category corresponds to the root node
category in NS-N. Actually, each node category corresponds to an object category. Node
categories and object categories are specified using equivalent parameters, which are the
basic node attributes, taking into account the mapping between basic roles and capability
classes. The capability class in a node category is an estimation of node capabilities
in terms of computing and data storage, while the basic role in an object category is
a constraint on the administration privileges of a potential access requesting node with
respect to such capabilities. This mapping is already defined using the function bAbility
(see Definition 4.1). In terms of access control administration, node categories are prefixed
to the assignment of regular roles to nodes, while object categories are prefixed to the

69

(nilT,N,nilB)

(H,N, nilB) (L,N, nilB)

(L,c1, nilB) (L,c2, nilB)(H,c1, nilB) (H,c2, nilB)

(H,c1,A)(H,c1,NA) (H,c2,A)(H,c2,NA) (L,c1,A)(L,c1,NA) (L,c2,A)(L,c2,NA)

Figure 4.4: Example of a Network Structure for Permissions (NS-P)

assignment of permissions to regular roles. An organizational structure, which is similar
to NS-N in the specification of its elements, can be defined for object categories and the
associated permissions. This structure is based on a domination relationship between
object categories. Here, we define this relationship, and then we give an example of the
corresponding structure.

Definition 4.11 Let oc1 and oc2 be two object categories, we write oc1 �OC oc2, and
we say that oc1 dominates oc2 in OC, if and only if the permissions associated with oc1
belong to the set of permissions associated with oc2:

• ∀oc1, oc2 ∈ OC, (oc1 �OC oc2)⇔ (pPool(oc1) ⊆ pPool(oc2))

Notation 4.7 Starting by Definition 4.11, and for the rest of the thesis:

• We use oc, with eventual superscript or subscript indices to denote an object category
(an element of OC).

The operation �OC defines a partial order that creates a tree structure, in which
a category inherits permissions from its ascendants. We call this tree NS-P (Network
Structure for Permissions). Figure 4.4 illustrates the NS-P of the network that has the
regular role hierarchy illustrated in Figure 4.2 and the NS-N illustrated in Figure 4.3. We
can note in this example a mapping between regular roles and object categories, which
results in an autonomous assignment of permissions to regular roles, as explained later in
Section 4.8.2. We can also note that NS-P is the inverse tree of NS-N, regardless of their
respective goals. This mapping between those two organizational structures allows the
access control system to be autonomic, as will be elaborated in Chapter 5. The direction
of the arrows in Figure 4.4 indicates that an object category inherits permissions from its
seniors.

70 4. SRBAC: The Access Control Model

RRH

Nodes
NRA Regular

Roles

PRA

Permissions

NS-P

Object

Categories

NS-N

Node

Categories DSD

Context

Time

SSD

(trust, community, basic role,
administration scope)

(trust, community,
capabilities)

(trust, community,
basic role) of

potential subjects

Secure Relations

Communication Sessions

An Access Session

Constraints

RRH: Regular Role Hierarchy

NRA (PRA): Node- (Permission-) “regular” Role Assignments

NCA (PCA): Node- (Permission-) Category Associations

NS-N (NS-P): Network Structure for Nodes (Permissions)

SSD (DSD): Static (Dynamic) Separation of Duty

1-N Relationship

N-N Relationship

Apply to

PCANCA

Figure 4.5: SRBAC Model as an Adaptation of RBAC

4.8 SRBAC Definition

We describe in this section the model used for controlling the access to the objects of
an IOrg-AutoNet node when requested by another node of the same network within a
communication session. This section defines the access control model of IOrg-AutoNets,
which we call SRBAC (Secure-Relation Based Access Control). It is based on secure
relations because certain node and object attributes are used to specify its policies, and
the evaluation of those attributes at policy enforcement time depends on the type of the
secure relation which is already established between the access requesting node and the
resource hosting node.

As previously elaborated, the values of the attributes of a node in a secure relation
define its access rights. Given that a regular role is composed of all the SRBAC-relevant
basic node attributes, we may consider that a node acquires permissions in a secure relation
depending on the value of only one of its attributes, which is its regular role. This is
basically why SRBAC may be be based on the RBAC (Role-Based Access Control) model
[89], as illustrated in Figure 4.5. More details about the choice of RBAC as a basis for
SRBAC were already provided in Sections 4.2 and 4.3.

Figure 4.5 shows the different components of SRBAC and the relationships between
them, as a result of adapting RBAC to IOrg-AutoNets. We already described the core com-
ponent representing the “Regular Roles” in section 4.5.1 as a compound node attribute.
Node categories and object categories were also described as compound attributes in sec-

71

tions 3.1.4 and 4.6.2 respectively. Moreover, the SRBAC structures NS-N, NS-P and RRH
were previously elaborated in section 4.7. The SRBAC components mentioned above, in
addition to the two self-explanatory components “Nodes” and “Permissions”, are inde-
pendent of the use of RBAC as a basis for SRBAC. This section defines the other SRBAC
components and relationships in the context of RBAC adaptation to IOrg-AutoNets. How-
ever, the use of node categories and object categories to pick up nodes and permissions
respectively, which is illustrated in Figure 4.5, will not be explained in this chapter. Ac-
tually, selecting nodes to assign roles to them, and selecting permissions to be assigned
to roles, make part of the SRBAC administration mechanisms. Chapter 5 explains such
mechanisms after defining the autonomic administration model accompanying SRBAC.

4.8.1 NRA: Node-Role Assignment

Each node has one regular role at least. Initially, a new node x has the regular role
(L, ci, NA, ∅), as a result of the integration in a certain community ci and the lowest trust
level, and without any administration privileges. The regular role of the node x may
eventually change, according to a high-level configuration or an autonomic adaptation to
context changes. For example, if x becomes highly trusted and if it is selected to be the
authority of its community, its regular role becomes (H, ci, A, {ci}). The initial regular
role remains assigned to a node, in addition to other eventual regular roles, according
to the inheritance relations in RRH. Besides, regular roles may be assigned to a node
irrespectively of inheritance while the network evolves. For example, a node belonging to
the category (H, ci, HD), designated as the delegated authority (the basic role DA) of the
sub-community s of ci, and selected to be the authority of another community dj , has the
two independent regular roles (H, ci, DA, {s}) and (H, ci, A, {dj}).

Consequently, many regular roles can be assigned to a single node. It is also true that
many nodes can be assigned to a single regular role. For instance, all the members of a
node category (x, y, nilK) are assigned to the regular role (x, y,NA, ∅), either directly or
by inheritance. NRA is a many-to-many relationship as illustrated in Figure 4.5. Policy
enforcement mechanisms of SRBAC use a set of functions to review the NRA relationship,
as detailed in the following definitions.

Definition 4.12 Let nRoles be the function which returns the set of all the regular roles
assigned to a given node, and rNodes the function which returns the set of all the nodes
assigned to a given regular role:

• nRoles : N −→ 2RR,
∀x ∈ N ,∀ρ ∈ sRels(x), nRoles(x) = {r ∈ RR | rRole(x, ρ) = r}

• rNodes : RR −→ 2N ,
∀r ∈ RR, rNodes(r) = {x ∈ N | ∃ρ ∈ sRels(x), rRole(x, ρ) = r}

Definition 4.13 Let NRA be the set of direct node-role assignments, and dRoles the
function which returns the set of regular roles directly assigned to a node:

• NRA ⊆ N ×RR

72 4. SRBAC: The Access Control Model

– ∀x ∈ N ,∀r ∈ RR, ((x, r) ∈ NRA)⇔
((r ∈ nRoles(x)) ∧ (∀r′ ∈ RR, r′ 6= r, r′ �RR r, r′ /∈ nRoles(x)))

• dRoles : N −→ 2RR,∀x ∈ N , dRoles(x) = {r ∈ RR | (x, r) ∈ NRA}

For performance and scalability reasons, a policy enforcement mechanism of SRBAC
makes use of the inheritance relationships between regular roles when it needs to specify
the set of all the regular roles currently assigned to a node. It starts by specifying the set
of direct regular roles of the node by looking them up in the set NRA, and then adds all
their inherited regular roles. For this purpose, it uses the function allnRoles described in
Definition 4.14 hereafter. This function extends the function nRoles already described in
Definition 4.12. Actually, the function nRoles returns the highest regular roles a node can
activate according to its current secure relations, and the function dRoles (cf. Definition
4.13) returns the direct ones among them. Whereas, the function allnRoles returns all
the regular roles a node can currently activate, and in an efficient and scalable way.

Definition 4.14 Let allnRoles be the function which returns the direct regular roles of a
node and all their inherited regular roles:

• allnRoles : N −→ 2RR,∀x ∈ N ,
allnRoles(x) = {r ∈ RR | ∃r′ ∈ dRoles(x), r′ �RR r}

Remark 4.3 In Definition 4.14:

• See Definition 4.13 for the specification of the function dRoles.

4.8.2 PRA: Permission-Role Assignment

The SRBAC model does not define a specific format for a permission. SRBAC essentially
cares about the assignment of permissions to object categories, and eventually to regular
roles. Actually, The Permission-Role Assignment (PRA) relationship, illustrated in figure
4.5, is based on the mapping between regular roles and object categories on one hand,
and between object categories and permission pools on the other hand. This means that
the set of access privileges represented by a regular role is automatically deduced. We
explained in section 4.6.2 how a set of permissions is associated to every object category.
We describe in the following definition how a regular role is associated to a set of object
categories; hence to a set of permissions.

Definition 4.15 Let rObjects be the function which returns the set of object categories
associated with a regular role by mapping:

• rObjects : RR −→ 2OC

– ∀r ∈ RR, (r = (t, c,NA, ∅))⇔ (rObjects(r) = {(t, c,NA)})
– ∀r ∈ RR, ((r = (t, c, b, as)) ∧ (b 6= NA))
⇔ (rObjects(r) = {(t, c′, b) ∈ OC | c′ ∈ as})

73

Obviously, a single regular role may be assigned to many permissions. This is due to
the possible association of more than one permission with the object categories associated
with that regular role, and because this latter may inherit permissions from junior regular
roles in RRH. It is also possible that a single permission be assigned to many regular roles
because a permission assigned to a regular role is also assigned to its senior regular roles in
RRH. Moreover, the regular roles assigned to a single permission may be independent with
respect to the domination relation �RR (cf. Definition 4.6). For instance, the authority
nodes may belong to different independent communities, which means that they will have
different independent regular roles in RRH, while they may have the same permission to
access a set of shared resources in order to collaborate to accomplish a certain administra-
tion task. Actually, PRA is a many-to-many relationship, and SRBAC provides functions
to review it as described in the following definitions. These functions are efficient and
scalable because they first search a set of direct permission-role assignments, which is rel-
atively straightforward, and then they make use of the inheritance between regular roles
to achieve their respective outputs.

Definition 4.16 Let PRA be the set of direct permission-role assignments, rPerms the
function which returns the set of permissions assigned to a regular role, and pRoles the
function which returns the set of regular roles assigned to a permission:

• PRA ⊆ RR× P

– ∀r ∈ RR, ∀p ∈ P,
((r, p) ∈ PRA)⇔ (∃oc ∈ rObjects(r), p ∈ pPool(oc))

• rPerms : RR −→ 2P ,∀r ∈ RR,
rPerms(r) = {p ∈ P | ∃r′ ∈ RR, ((r′, p) ∈ PRA) ∧ (r �RR r′)}

• pRoles : P → 2RR, ∀p ∈ P,
pRoles(p) = {r ∈ RR | ∃r′ ∈ RR, ((r′, p) ∈ PRA) ∧ (r �RR r′)}

4.8.3 Access Sessions

A node must create an access session to perform certain actions on certain shared resources.
Many access sessions may be created during a session of communication between two nodes
already bound by a secure relation, and for any of the both nodes. The type of the secure
relation defines the permissions of the access requesting node, as previously explained.
A node activates the regular role assigned to it in the secure relation, which allows it to
acquire the required privileges. The fact that a secure relation is the context of an access
session is illustrated in figure 4.5.

In the RBAC model [89], an access session is assigned to only one user on one hand,
and to many activated roles of that user on the other hand. However, a node (a user in
SRBAC) activates only one regular role in an SRBAC access session, which is its regular
role in the encapsulating secure relation. Actually, a node may also have other regular
roles in a secure relation by inheritance, but there is no need to activate them because the
activated regular role already inherits their permissions. Therefore, an access session in

74 4. SRBAC: The Access Control Model

SRBAC is assigned to only one node and to only one regular role as illustrated in figure
4.5. Nevertheless, a node may create parallel access sessions, encapsulated each by one of
its secure relations, and may activate a different regular role in each of them. In other
words, a node in SRBAC may activate many regular roles simultaneously, such as a user
in RBAC, but in a decentralized and distributed context.

4.8.4 Constraints

As illustrated in Figure 4.5, different types of constraints may be applied on the relation-
ships that bind the components of SRBAC. A constraint may be static, which means that
it is applied permanently on a relationship and irrespectively of any access session. This is
the case of SSD (Static Separation of Duty) constraints, which are applied on NRA (Node-
Role Assignments). An SSD constraint in SRBAC prevents assigning two conflicting roles
to the same node, just as the case of any variant of RBAC [89].

Other constraints may be dynamic, which means that they are applied on the creation
of access sessions. A dynamic constraint may also be applied after the creation of an access
session, which means on the access operation itself, in the case of ongoing access control.
However, the current version of SRBAC, which is illustrated in Figure 4.5, concerns the
traditional beforehand access control. Some dynamic constraints are based on the require-
ments of the encapsulating secure relations. This is the case of DSD (Dynamic Separation
of Duty) constraints, which are applied on session-role assignments. A DSD constraint
in SRBAC prevents a node from activating two of its regular roles in two simultaneous
access sessions created in the contexts of two different secure relations, if such a parallel
activation of regular roles may present a conflict of interest. There is no need for DSD
constraints in one SRBAC access session, where only one regular role is activated.

There may be other dynamic constraints that depend upon secure relations in SRBAC.
They are the context-based constraints, which are applied on PRA (Permission-Role As-
signment), as illustrated in Figure 4.5. Actually, the context of an access session is a
secure relation, which means that any dynamic constraint based on the requirements of
the encapsulating secure relation is a context-based constraint. So we should have con-
sidered that DSD constraints are context-based. However, a DSD constraint in SRBAC
involves many simultaneous access sessions of a single node, which means that its scope is
larger than the context of a single access session. More precisely, the Separation of Duty
(SoD) constraints in SRBAC, either static (SSD) or dynamic (DSD), have a network scope.
They are actually based on the context of the network as a whole. As for a context-based
constraint of the type illustrated in Figure 4.5, it has a single secure relation as a context.
Such a constraint compares the attributes of the access requesting node and the resource
hosting node, in order to cancel certain permissions of the activated regular role if needed.

Some constraints are dynamic but independent of the encapsulating secure relation.
This is the case of time-based constraints, which are applied on PRA, as illustrated in
Figure 4.5. They are dynamic because they define certain time conditions to check during
the creation of an access session. The time here may indicate certain date and hour, but
also the moment when a certain event is triggered. Time-based constraints are needed
in infrastructureless environments, where any component may not be available at certain

75

moments, or certain access operations should be delayed for application-dependent reasons.
For instance, in a mission-based network, a subdivision of a community may be created,
which may imply the assignment of regular roles for the first time to certain nodes, but
the activation of these regular roles should wait for the starting time of the mission.

The Separation-of-Duty (SoD) constraints are used in almost all the security systems
based on RBAC [89]. Actually, SoD constraints make part of the NIST proposed standard
for RBAC [85]. We particularly add the constraints based on context and time in SRBAC
to fulfill the requirements of the dependence upon secure relations and the evolution of the
network structure respectively. Context and time constraints are actually used in existing
solutions based on RBAC. The OrBAC model [5] uses a context component that may
define context-based constraints. The TRBAC model [21] uses time-based constraints for
enabling or disabling roles in access sessions.

4.8.5 Formal Definition of the SRBAC Model

After describing the different components of the SRBAC model, and giving formal defi-
nitions for certain ones and their related functions, we may conclude this section by the
following formal definition of the SRBAC model:

Definition 4.17 SRBAC has the following components:

• N : the set of network nodes (cf. Definition 3.2).

• S: a set of access sessions.

• CS: a set of communication sessions.

• SR: the set of secure relations (cf. Definition 4.2).

• RR: the set of regular roles (cf. Definition 4.4).

• RRH: the partial order relation on RR called regular role hierarchy (cf. Definition
4.6).

• NC: the set of node categories (cf. Definition 3.2).

• NS − N : the partial order relation on NC called network structure for nodes (cf.
Definition 4.10).

• OC: the set of object categories (cf. Definition 4.8).

• P: the set of permissions (cf. Definition 4.8).

• NS − P : the partial order relation on OC called network structure for permissions
(cf. Definition 4.11).

• NRA: the set of direct node-role assignments (cf. Definition 4.13).

• PRA: the set of direct permission-role assignments (cf. Definition 4.16).

76 4. SRBAC: The Access Control Model

• NCA: a set of associations between nodes and node categories.

• PCA: a set of associations between permissions and object categories.

• node : S −→ N : a function mapping an access session si to a single node node(si).

• activeRoles : S −→ 2RR: a function mapping an access session si to a set of active
regular roles such that activeRoles(si) ⊆ allnRoles(node(si)). See Definition 4.14
for the specification of the function allnRoles.

• canAccess : S × P −→ {true, false}: a predicate defined as (canAccess(s, p) =
true) ⇔ (∃r ∈ activeRoles(s), p ∈ rPerms(r)). See Definition 4.16 for the specifi-
cation of the function rPerms.

Notation 4.8 Starting by Definition 4.17, and for the rest of the thesis:

• We use s, with eventual superscript or subscript indices to denote an access session
(element of S).

4.9 Policy Specification

A traditional access control policy is a set of rules granting each a right to a subject to
perform an action on an object. So each rule defines a relationship between a subject
and a permission. Figure 4.5 shows that in SRBAC there is not a direct relationship
between a node, which is the subject in our case, and a permission. Such a relationship
is actually the result of activating NRA (Node-Role Assignment), PRA (Permission-Role
Assignment) and RRH (Regular Role Hierarchy) associations in an access session, taking
into account possible constraints. Therefore, the rules of an SRBAC policy define the
components and the relationships illustrated in Figure 4.5.

4.9.1 The XACML Standard

We propose to specify an SRBAC policy using the OASIS eXtensible Access Control
Markup Language (XACML) [4]. Its rules can be derived from an enduser configuration
and high-level application-dependent objectives, because it is a declarative high-level lan-
guage. Human administrators can use it when necessary to manage policies, because it
has a user-friendly syntax for experts. Enforcement modules can use it to derive low-level
policies, because they can parse its different elements according to a predefined scheme.
Autonomic administration mechanisms can use it to respecify rules in a logic-based lan-
guage in order to analyze and modify them if needed, because it can provide information
about the semantic. It is an open standard based on the well-recognized eXtensible Markup
Language (XML), and already used in many information systems, which is suitable for
exchanging rule information in the heterogeneous environment of IOrg-AutoNets.

More specifically, we use the RBAC profile of XACML v2.0 [15] to specify SRBAC
policies. This OASIS standard uses the ANSI INCITS 359-2004 [2] standard defined for
RBAC, which is based on the RBAC reference model [85] adopted by the NIST institute

77

RPS

Role

Node

NCPS

PPS Permission

OCPS

RBAC/XACML Profile

1

*

*

1

1*
1*

1
*

*

*

*

Role = Regular Role in SRBAC

RPS: “regular” Role Policy Set

PPS: Permission Policy Set

NCPS: Node Category Policy Set

OCPS: Object Category Policy Set

1-1 Relationship1

N-N Relationship*

1-N Relationship*1

Figure 4.6: RBAC Profile of XACML V2.0 Extended with SRBAC Entities

[3]. The OASIS XACML 2.0 RBAC profile [15], which we call “the Standard” in the rest
of this section, defines an XML-based language for specifying RBAC elements. However,
it only covers core and hierarchical variants of the reference RBAC model [85], which
may imply a lack in the resulting SRBAC policy specification if constraints should be
considered. This lack does not currently make a problem in our work. Actually, our
access control administration system does not currently support constraint management,
so we do not necessarily need to express them in SRBAC policies in our current work.

We extend the elements of the Standard to express the components of SRBAC, which
are illustrated in figure 4.5, except for constraints. Access sessions and their associations
are not expressed either in SRBAC policies, because they are enforcement components.
Actually, we can use the elements of the Standard without modifying their definitions
because regular roles and their associations in SRBAC are variants of roles and their
associations in RBAC. However, organizational components, such as node categories and
object categories and the associated structures NS-N and NS-P, are not considered in
the Standard. Therefore, we extend it with new XACML 2.0 elements to express those
SRBAC components and their associations. Figure 4.6 illustrates the basic elements of
the Standard and the SRBAC extensions.

78 4. SRBAC: The Access Control Model

4.9.2 Using Standard Entities

In the Standard, a role is defined as an XACML attribute for an entity representing a user
in RBAC. This definition is suitable for SRBAC, where a user is a node, and a regular
role is defined as a node attribute (cf. Section 4.5.1). SRBAC policies use one attribute
for regular roles having the AttributeId "&role;", as defined in, and recommended by,
the Standard. Given a regular role r ∈ RR, the corresponding attribute value for a node
assigned to r is written "&roles;r", where "&roles;" is the XML entity defined in the
Standard for expressing possible role values.

We use the Role <PolicySet> (RPS) of the Standard to associate the nodes sharing
the same regular role with a set of permissions. This association is expressed as a reference
to a Permission <PolicySet> (PPS) in an RPS. A PPS instance is supposed to express
every detail about the permissions assigned to a given role. We make a slight modification
to a PPS instance to adapt it to SRBAC requirements. Instead of referencing all the
information about permissions, we only reference the target resources (object categories).
However, the PPS specification does not change, because a rule can contain only resource
information in XACML v2.0. Details of the permissions associated to each object category
are specified in a separate policy set that we add to the Standard as explained hereafter. As
for representing a role hierarchy, we use the approach of the Standard without modification.
The Standard expresses role inheritance by referencing the PPS instances associated with
junior roles in the PPS instance associated with their senior role.

4.9.3 Extending the Standard

We add a new attribute for users (nodes). It has the AttributeId &nodecategory;. We
also add the entity &nodecategories; to express the possible values of that attribute.
This new attribute is used to specify node categories and the NS-N structure. As for
specifying object categories and the NS-P structure, there is no need for defining new
entities because we consider a resource in the Standard as a representation of an object
category. Actually, we do not generally need to handle an object individually in SRBAC,
because a permission is supposed to be associated to a category of objects. However,
if needed, the basic attributes of nodes and objects can be added to the Standard and
used to handle individual nodes and objects. Actually, an advantage of using the XACML
language is that it supports fine-grained access control through the generic use of attributes
in defining access rules.

We add the NodeCategory <PolicySet> (NCPS) to express the NS-N structure. An
instance of NCPS associates the nodes sharing the same node category with another in-
stance of NCPS representing its senior node category in NS-N. This is to say that the nodes
belonging to the node category identified by an NCPS instance also belong to the senior
node category referenced in this instance. We also add the ObjectCategory <PolicySet>
(OCPS) to express the association between an object category (resource in the Standard)
and a set of permissions. A permission is specified as a relation between an action, the
object category and possibly a condition. In addition to expressing permissions, an OCPS
instance references the OCPS instance of the junior object category, which gives the rep-

79

resentation of the NS-P structure. This is to say that the permissions associated to the
object category of an OCPS instance are also associated to its junior object category.

Detailed samples of the previous XACML elements are provided in Appendix A, as a
part of an example about applying SRBAC in a Home Network. Those samples will help
understanding how we use XACML instructions in negotiating SRBAC policies. Actually,
XACML is not basically defined for decentralized collaborative systems. Our approach
of filling this gap is to make nodes negotiate XACML elements instead of enhancing the
XACML language with support for decentralization. More details about access control
administration and security policy negotiation are provided in Chapters 5.

4.10 Conclusion

This chapter described an access control model for Infrastructureless Organizational Au-
tonomic Networks (IOrg-AutoNets), and proposed a specification language for its policies.
The model is called Secure Relation Based Access Control (SRBAC). It aims at protecting
shared resources during a communication between two nodes in the context of a secure
relation between them. The SRBAC model considers the IOrg-AutoNet as an organization
managed by its own nodes according to different administrative roles. Therefore, autho-
rization decisions are role-based, and a role hierarchy is used to organize node privileges.
The SRBAC model is decentralized and context-aware, in conformity with the infrastruc-
tureless nature of IOrg-AutoNets. Decentralization is achieved through the integration of
privileges of access control administration into node roles. Context-awareness is achieved
through the integration of environment variables representing the infrastructureless con-
text into node roles as well. Those environment variables specify the trustworthiness, the
availability, the administrative capabilities and the authority scope.

For the particular purposes of an autonomic network, the SRBAC model is defined in
a way that allows the access control administration system to have the properties of auto-
nomic computing. In this context, the SRBAC model supports distribution, collaboration,
self-management and self-adaptation. By incorporating components representing the net-
work organizational structure in SRBAC, whereby nodes and resources can be distributed
on categories, the nodes of the network can share the administration tasks and collaborate
to accomplish them. Self-management is possible because, on one hand, certain node roles
define capabilities of access control administration, which allows the administrative coun-
terpart of SRBAC to be based on SRBAC itself. On the other hand, the mapping between
node roles and categories of nodes and resources provides self-configuration capabilities
for node-role and permission-role assignment administration. Finally, self-adaptation is
possible because the context-aware components of SRBAC can be modified in response to
changes in the network context, which eventually changes the components of the admin-
istrative model itself because they are based on the components of SRBAC.

The SRBAC model is based on the Role-Based Access Control (RBAC) model [89]. The
RBAC model already provides required components, such as roles, role hierarchies and role
associations. This chapter explained how RBAC was adapted to the other requirements
of IOrg-AutoNets, basically by using context information in role specification and by

80 4. SRBAC: The Access Control Model

incorporating components representing the organizational structure of the network. This
choice of RBAC was also motivated by the fact that a distributed administrative model is
already defined for RBAC, which can be extended to define an administrative counterpart
for SRBAC. The Administrative SRBAC (ASRBAC) model, which is described in Chapter
5, is an extension of the Administrative RBAC (ARBAC02) model [73] based on adding
support for context-awareness, collaboration, self-management and self-adaptation.

SRBAC policies should be specified using a standard language that is flexible and
platform-independent, which is required in a heterogeneous environment. We proposed
in this chapter a specification language based on the OASIS eXtensible Access Control
Markup Language XACML v2.0 [4]. More specifically, the language we proposed is an
extension of the RBAC profile of XACML v2.0 [15]. We extend this profile with elements
used to express the SRBAC components that represent the organizational structure of the
network. However, XACML assumes the presence of a central authority, which cannot be
the case in IOrg-AutoNets. Therefore, the nodes may need to negotiate possible policy
modifications, when they manage changes in the network context, before applying them
locally. Section 5.6 in Chapter 5 proposes a sketch of a policy negotiation algorithm for
IOrg-AutoNets.

An interesting future work could be an enhancement of SRBAC to avoid potential
limitations related to performance and scalability. There might be for example such kinds
of problems in building the RRH (Regular Role Hierarchy) in a scenario where a consider-
able number of differences between nodes might result from the highly variable topology
of the network. For instance, a mission-based military MANET may include thousands
of tiny information gathering robots thrown in a hostile area. We have to consider each
node as a community by itself in such a scenario, which means that there will be at least
as much regular roles as nodes. It might be a formidable task to manage the RRH in such
a network.

81

Chapter 5

ASRBAC: The Administration
Model

After defining an access control model for IOrg-AutoNets, which we denoted by SRBAC
(cf. Chapter 4), we need to study the administration of the corresponding access control
system. More specifically, we need to know how to configure the components modeled by
SRBAC, specify SRBAC policies, and adapt the component configuration and the policy
specification to the evolution of the network. We also need to know who will perform the
previous tasks, and what techniques it should have to accomplish them. This chapter ex-
plores the SRBAC administration requirements, defines the Administrative SRBAC (AS-
RBAC) model that fulfills those requirements, elaborates the administration techniques
modeled by ASRBAC, specifies the ASRBAC policies in a generic language-independent
manner, and finally makes a focus on node collaboration in terms of negotiating the adap-
tation of access control policies.

Section 5.1 recalls the SRBAC requirements related to administration, which were
described in Section 4.1. Those requirements are distribution, decentralization, self-
management and self-adaptation. Afterward, it goes into the details of more require-
ments specific to the administrative model, which are context-aware updates, self-aware
mappings and policy negotiation.

Section 5.2 discusses existing access control administration models. It mainly refers
to ARBAC02 [73] as a basis for ASRBAC, AdOr-BAC [5] as a competing model and
AROBAC07 [107] as a basis for future extensions.

Section 5.3 explains our contributions to access control administration with regard to
the Autonomic Computing Paradigm [50]. It talks about using context-awareness and self-
awareness to monitor the network and the access control system itself. It points out the
ability of ASRBAC to adapt certain access control components to the detected changes by
analyzing monitoring information. It emphasizes the self-configuration and self-adaptation
of certain components. Besides, it points out the node cooperation mechanisms employed
in an ASRBAC-based system.

Section 5.4 defines the ASRBAC model. It mainly explains how ASRBAC is actually
a variant of SRBAC itself, and how the ASRBAC components are autonomously defined

82 5. ASRBAC: The Administration Model

by the SRBAC components. The section shows how this dependency between ASRBAC
and SRBAC is behind the self-adaptation capabilities of the access control system. The
self-configured specification of administrative roles and their hierarchy are presented. The
administrative node-role and node-permission assignments are described. Finally, a lan-
guage independent specification of generic ASRBAC policies is given.

Section 5.5 describes the autonomic functionality supported by ASRBAC. After spec-
ifying the environment variables used in monitoring the context, it explains four different
types of autonomic actions. They are the context-aware predefined self-management, the
autonomic control loop, the mapping-based self-adaptation and the autonomous evolution.
Finally, it points out the collaboration of nodes to accomplish those different autonomic
operations.

Section 5.6 describes how authority nodes negotiate SRBAC policies while collabo-
rating to accomplish one of the administrative tasks described in the previous sections,
which is the modification of permissions. It proposes a negotiation algorithm based on
evaluating the similarity of XACML rules in two policies, and then using the evaluation
result in unifying the SRBAC policy modifications.

Section 5.7 concludes the chapter with a summary of ASRBAC focusing on the details
of our contribution to access control administration. It also points out the issues to be
handled in future works.

5.1 Administration Requirements

Because an IOrg-AutoNet is basically an infrastructureless network, we cannot depend on
a central network authority for SRBAC administration. Actually, there should be a set of
authorities collaborating to maintain a consistent implementation of SRBAC components
and policies. The SRBAC requirements R 4.6 and R 4.7 already indicated the need for
distribution and collaboration in the administration of the access control system.

Requirement R 5.1 The SRBAC administration model should define distributed and
collaborative techniques.

In an autonomic network, the security administration should be basically assumed by
the network nodes themselves. In other words, certain administrative privileges defined
by specific regular roles should allow a set of qualified nodes to share the access control
administration and collaborate to achieve its objectives. This actually fulfills the Require-
ment R 5.1 described above. This also indicates that the SRBAC model should be used as
a basis for its own administration model. Such a linkage allows the administration model
to make use of the autonomic computing properties supported by the SRBAC components,
and makes its components able to adapt to the effects of its own mechanisms. Actually,
the previous autonomic computing requirements were already indicated by the SRBAC
requirements R 4.8 to R 4.10.

Requirement R 5.2 The SRBAC administration model should be based on the SRBAC
model itself, essentially through a mapping between regular roles and administrative roles,
which helps acquiring self-management and self-adaptation properties.

83

In addition to the previous requirements R 5.1 and R 5.2, which are based on the
SRBAC requirements R 4.6 to R 4.10, this section describes hereafter further specific
requirements based on the techniques that should be employed for SRBAC administration.

5.1.1 Context-Aware Updates

The SRBAC component NS-N (Network Structure for Nodes; cf. Section 4.7.1) represents
the IOrg-AutoNet structure in the access control system. Initially, NS-N is specified ac-
cording to a high-level configuration done by the endusers at the network deployment time.
Afterward, it should adapt to the evolution of the network. The SRBAC administration
system is supposed to update the NS-N component in response to certain critical changes
in the network context, such as using a trust level or a capability class for the first time,
or integrating or revoking a community (cf. Section 3.2).

Context-awareness may also be needed in the administration of Node-Role Assignments
(NRA; cf. Section 4.8.1). Actually, when a basic attribute of a node changes, the set
of regular roles assigned to that node may change (cf. Section 4.5.1). A basic node
attribute changes in response to a modification in the high-level security configuration, or
an evolution of the network. In both cases, the SRBAC administration system should be
able to capture the nodes’ contextual information that may imply changes to NRA.

Permission-Role Assignments (PRA) are self-configured, due to associations between
permissions and object categories on one hand, and associations between object categories
and regular roles on the other hand (cf. Section 4.8.2). The evolution of the network may
change Permission-Role Assignments indirectly, because it may imply the modification
of one or both of those associations of object categories. Actually, context-awareness is
needed for modifying the associations between permissions and object categories. Such
a modification needs certain context information representing the up-to-date high-level
security configuration and application objectives.

Requirement R 5.3 The SRBAC administration model should support the detection of
changes in the network context.

5.1.2 Self-Aware Mappings

The regular roles and the set of inheritance relationships between them, which we call
the Regular Role Hierarchy (RRH), are specified according to a mapping between regular
roles and node categories (cf. Section 4.5.2). This means that they should be respecified
using that same mapping when the node categories change.

The assignment of regular roles to nodes is also based on the mapping between node
categories and regular roles. Actually, a node is looked up in a corresponding node category
representing certain administrative capabilities (cf. Section 3.1.4), to be assigned to a
certain regular role.

Changes in basic node attributes may modify the access scopes, which implies a recat-
egorization of objects (cf. Section 4.6), and eventually a rederivation and redistribution of
permissions for each object category. Changes in node attributes are detected as changes

84 5. ASRBAC: The Administration Model

in node categories. So updating object categories may be a result of a mapping with
modified node categories.

Permission-Role Assignments (PRA; cf. Section 4.8.2) are expressed using autonomous
associations between regular roles and object categories, given that an object category is
already associated with a set of permissions. In other words, when regular roles change,
PRA is modified by mapping. Whereas, changes in the associations between permissions
and object categories do not cause changes in the way PRA are expressed, but the privi-
leges of regular roles change implicitly.

Requirement R 5.4 The security administration model should allow the authority nodes
to detect changes in the SRBAC components.

5.1.3 Policy Negotiation

When a critical change takes place while the network evolves, the SRBAC component that
represents the Network Structure for Nodes (NS-N) changes. Each authority node changes
the NS-N part corresponding to its administration scope, but it needs to validate changes
with other authority nodes that may share with it certain subdivisions of that NS-N part.
Moreover, the final changes on all the NS-N tree should be mutually validated by all the
authority nodes.

When a regular role is assigned to a node, the computing and storage capabilities of
that latter are used to select it among others in its node category. However, many nodes in
a category may share the same capabilities allowing them to acquire a regular role, while
the number of instances of that regular role in the node category is limited with respect to
the number of candidate nodes. For example, we need one authority in a community, while
this latter may include many nodes that can assume that role. Node election mechanisms
are used to select a node for role assignment. Nevertheless, many authority nodes may
need to work together on such an election with respect to their respective authority scopes.

When the Network Structure for Permissions (NS-P) component adapts to NS-N
changes, or when the high-level security specifications change, the set of permissions as-
sociated to each object category should be respecified. Each authority node can apply
such respecification autonomously. Nevertheless, SRBAC policy instances should be the
same in the whole network. Therefore, after each NS-P modification, the authority nodes
need to unify their permission specifications and the associations between permissions and
object categories.

Requirement R 5.5 The security administration model should allow the authority nodes
to negotiate SRBAC policies.

5.2 Related Work

The ASRBAC model is based on the ARBAC02 model [73]. This latter is an administrative
counterpart of the RBAC model [89]. This was one reason to choose it as long as the
SRBAC model is based on the RBAC model. A second reason is the use of RBAC

85

itself to define ARBAC02, which is compatible with our requirement of basing ASRBAC
on SRBAC itself for self-management and self-adaptation purposes (cf. Requirement R
5.2). The other reasons are related to the conformity of ARBAC02 with the organizational
properties of IOrg-AutoNets. Actually, ARBAC02 is a distributed model that makes use of
the structure of the encapsulating organization in assigning nodes and permissions to roles.
As elaborated in [73], the integration of organizational aspects provided solutions for many
problems raised by the predecessor models ARBAC97 [84] and ARBAC99 [86]. So the
distribution of administration in ARBAC02 and the support of organizational structures
are other two reasons for choosing it as a basis for ASRBAC. Moreover, RBAC and
ARBAC02 are generic and flexible in specifying and using the organizational components.
This allowed us to define such components in SRBAC and use them in ASRBAC in a way
to extend ARBAC02 with a support of Autonomic Computing, as will be explained later
in Section 5.5 (see Figure 5.3).

In another research effort [29, 30], the authors define an alternative model of ARBAC97
[84] that is more complete and flexible. They define the administrative scope concept that
associates each role in the role hierarchy to a set of roles under its control. In a more
recent work [37], the concept of administrative scope is further enhanced to support a
large distributed system composed of multiple administrative subsystems. Such solutions
essentially concern managing the role hierarchy. As for the administration of user-role and
permission-role assignments, they do not provide a generic organization-based solution
such as the one provided by ARBAC02 [73]. Hence, we can not build on such solutions
for managing the mutable structure of IOrg-AutoNets. Actually, we define in ASRBAC
the equivalent of the administrative scope in [29, 30, 37], but we still call it role range
as in ARBAC02 because it is autonomously specified using a range of regular roles. The
role range in ASRBAC is associated with an organizational scope to provide an adaptable
specification of the rights of an administrative role to manage regular roles, their hierarchy
and also their assignments to nodes and permissions (cf. Section 5.4.5).

In addition to the decentralization and distribution of administration, collaboration
is also required in IOrg-AutoNets (cf. Requirement R 5.1). An interesting existing work
[64] addresses distributed administration of RBAC in collaborative environments. This
work defines the DARBAC model, according to which each administrative role has an
administrative domain, and collaborates with other administrative roles to manage the
whole access control system. However, it considers traditional static structures. In ASR-
BAC, the regular role range associated with an administrative role defines a community
or a set of communities as the administrative domain, but also takes the trust level into
consideration (cf. Section 5.4.1). This trust consideration is one of the aspects that give
ASRBAC the ability to adapt to the mutable structure of an IOrg-AutoNet.

The Administrative Organization Based Access Control (AdOr-BAC) model [32] could
be an interesting candidate for managing security in IOrg-AutoNets, whereby SRBAC
could be extended to make use of additional organization-based features provided by the
Or-BAC model [5]. A recent work on AdOr-BAC [31], which particularly handles aspects
of administration confinement constraints and multi-grained administration, meets our
expectation concerning the extensibility of this model in terms of self-administration (cf.
Section 4.2). However, we consider that our current definition of ASRBAC as an extension

86 5. ASRBAC: The Administration Model

of ARBAC02 already provides a comprehensive support for many Autonomic Computing
properties, including self-administration, as we will elaborate in Section 5.5.

The most recent administration solution proposed for RBAC-based access control sys-
tems is the Administrative Role and Organization Based Access Control (AROBAC07)
model [107]. It particularly concerns decentralized security administration in B2B (Busi-
ness - to - Business) and B2C (Business - to - Customer) applications. Actually, this
solution aims at improving the scalability and performance of the administration of ac-
cess control systems in a multi-organizational context. It is a flexible and generic so-
lution, which can be enhanced to achieve an autonomic security administration system.
However, we currently handle an IOrg-AutoNet as a single organization, which makes
ARBAC02 more suitable for our requirements. Nevertheless, in certain IOrg-AutoNet
applications, roles and permissions are likely to increase dramatically. In such cases, it
would be better to handle each community as an organization, and the whole network as
a multi-organizational foundation. Hence, it would be an interesting future work to ex-
tend SRBAC with the multi-organizational aspects of the scalable Role and Organization
Based Access Control (ROBAC) model [106], and then to use AROBAC07 as a basis for
ASRBAC by extending it with a support for Autonomic Computing.

5.3 Contributions

By defining ASRBAC as an extension of ARBAC02 [73], we already can specify distributed
access control administration policies as parts of the policies of the access control system
itself, and in which the mutable organization structure of IOrg-AutoNets is taken into
consideration. See Section 5.2 for the motivations of choosing ARBAC02 as a basis for
ASRBAC. We still need to fulfill the other requirements of SRBAC administration (cf.
Section 5.1), which correspond to a support of Autonomic Computing. Roughly speaking,
the use of autonomic computing mechanisms in access control administration is our contri-
bution with respect to the basis model ARBAC02. More specifically, we may summarize
the contributions of ASRBAC as an extension of ARBAC02 in the following list that takes
the administration requirements specified in Section 5.1 into account (see Section 5.5 and
Figure 5.3 for more details):

1. Collaboration (Requirement R 5.1): The authority nodes collaborate to accomplish
administration tasks related to the whole network, in parallel with performing other
administration actions specific to their respective administration scopes.

2. Context-Awareness (Requirement R 5.3): An authority node is able to monitor
the output of context-aware systems while the network evolves in order to detect
systematic and critical changes in the network context concerning the node and
object attributes relevant to SRBAC (cf. Sections 4.5.1 and 4.6).

3. Self-Awareness (Requirement R 5.4): An authority node is able to detect changes in
the components and policies of SRBAC resulting from any administration operation
performed by itself, by another authority node in the network or, in exceptional
cases, by an expert user.

87

4. Autonomic Computing Properties (Requirement R 5.2):

(a) Self-Adaptation:

i. Network Structure for Nodes (NS-N) adapts to context-aware changes con-
sidered as critical.

ii. Network Structure for Permissions (NS-P) adapts to NS-N changes.
iii. Regular roles and Regular Role Hierarchy (RRH) adapt to NS-N changes.
iv. Node-Role Assignments (NRA) adapt to systematic context-aware changes

in the set of nodes and/or node attributes, and/or to NS-N changes.
v. Permission-Role Assignments (PRA) adapt to changes in regular roles and

RRH.

(b) Self-Optimization: Low-level permissions are rederived from high-level security
objectives and redistributed on the elements of NS-P in response to systematic
context-aware changes in the end-user specifications of objects, object attributes
and/or security rules.

(c) Self-Configuration: (Autonomic Control Loop)

i. Changes in regular roles and RRH result in the reconfiguration of admin-
istrative roles and the Administrative Role Hierarchy (ARH).

ii. Changes in NRA result in the reconfiguration of the Administrative Node-
Role Assignments (ANRA), which redefines the set of authority nodes.

iii. Changes in administrative roles and ARH result in the reconfiguration of
the Administrative Permission-Role Assignments (APRA).

5. Policy Negotiation (Requirement R 5.5): In the context of their collaborative net-
work administration, and to maintain a consistent low-level security configuration,
authority nodes negotiate the changes they may perform on SRBAC policies.

5.4 ASRBAC Definition

ASRBAC is an access control model, whereby the subjects are the authority nodes of the
network, the objects are the components of SRBAC and the permissions are the rights to
perform administrative actions to eventually adapt the SRBAC components to the network
evolution. ASRBAC is an application of SRBAC itself, in which authority nodes acquire
administrative permissions through administrative roles, and an Administrative Role Hi-
erarchy (ARH) defines inheritance relationships between administrative roles. Figure 5.1
illustrates the components of ASRBAC and its relation with SRBAC. We can see in this
figure that the Administrative Node-Role Assignments (ANRA) and the Administrative
Role Hierarchy (ARH) in ASRBAC are derived from the Node-Role Assignments (NRA)
and the Regular Role Hierarchy (RRH) in SRBAC respectively. It is this dependency
between ASRBAC and SRBAC that will allow us to propose self-adaptation solutions, as
will be elaborated later in this chapter.

As introduced in Sections 5.2 and 5.3, ASRBAC is a variant of ARBAC02 [73] extended
with autonomic behavior. ARBAC02 defines solutions for the administration of the role

88 5. ASRBAC: The Administration Model

RRH: Regular Role Hierarchy

NRA (PRA): Node- (Permission-) “regular” Role Assignments

NCA (PCA): Node- (Permission-) Category Associations

ARH: Administrative Role Hierarchy

ANRA (APRA): Administrative Node- (Permission-) Role Assignments

NS-N (NS-P): Network Structure for Nodes (Permissions)

1-N Relationship

N-N Relationship

Define

RRH
NRA

PRA
Permissions

NS-N

Node

Categories
Nodes

Regular

Roles

Admin.

Roles

ARH
ANRA

APRA

Admin.

Permissions

(trust, administration scope)

NS-P

Object

Categories

PCA

NCA

Figure 5.1: ASRBAC as a Model Based on SRBAC

hierarchy and the assignment of roles to users and permissions in RBAC. Similarly, AS-
RBAC defines solutions for the administration of RRH (Regular Role Hierarchy), NRA
(Node-Role Assignments) and PRA (Permission-Role Assignments) in SRBAC. As for
managing the organizational components, ARBAC02 actually leaves the administration of
the Organization Structure for Users (OS-U) and the Organization Structure for Permis-
sions (OS-P) to the principals of the Human Resources (HR) and Information Technology
(IT) respectively. As for ASRBAC, it defines solutions for the administration of NS-N
(Network Structure for Nodes) and NS-P (Network Structure for Permissions), which cor-
respond to OS-U and OS-P respectively. ASRBAC makes use of the support of distributed
administration in ARBAC02, which is required in infrastructureless environments, and ex-
tends it with Autonomic Computing properties, which is specific to IOrg-AutoNets. More
details about this extension will be provided in Section 5.5.

A node may be simultaneously assigned to a set of regular roles in the context of SR-
BAC, and to a set of administrative roles in the context of ASRBAC. More specifically, a
regular role assigned to a node and making of it an authority node autonomously imply the
assignment of this node to a corresponding administrative role. In other words, the Ad-
ministrative Node-Role Assignments (ANRA) are self-configured because they are actually
a subset of the Node-Role Assignments (NRA) in SRBAC. We can also understand that
the administrative roles are actually the subset of regular roles assigned to the authority
nodes and having A as the value of the basic role. On the other hand, the Administrative
Permission-Role Assignment (APRA) relationships are spontaneously defined according
to the correspondence between the elements of an administrative role and the attributes
of the SRBAC components under its control.

89

5.4.1 Administrative Roles

The authority nodes share the administration of SRBAC components in the communities
under their respective control. For specifying the administrative roles of an authority
node, we do not need to know about its community membership. We are rather interested
in the set of communities under its control. We do not need to specify its basic role either,
because it is A by definition in an administrative role. However, we still need to know its
trust level, because even if a node has administrative privileges, it must not be able to
use them in trust levels higher than its own one. Consequently, an administrative role is
represented by a trust level and an administration scope.

Definition 5.1 Let AR be the set of administrative roles and aRoles the function which
returns the subset of administrative roles of an authority node:

• AR ⊆ T × 2C

• aRoles : N −→ 2AR

– ∀x ∈ N , aRoles(x) = {(t, as) | ∃r ∈ allnRoles(x),∃c ∈ C, r = (t, c, A, as)}

Remark 5.1 In Definition 5.1:

• The function allnRoles returns the set of all the regular roles assigned to a node
directly or by inheritance (cf. Definition 4.14).

5.4.2 Administrative Role Hierarchy

Here we define a domination relationship between administrative roles, which results in
an administrative role hierarchy. The total order of trust levels, and the partial order
defined on the administration scope, help building that relationship. An administrative
role ar1 dominates an administrative role ar2 if and only if the trust level in ar1 is higher
than or equal to the trust level in ar2 and the administration scope in ar1 dominates the
administration scope in ar2.

Definition 5.2 Let ar1 and ar2 be two administrative roles, we write ar1 �AR ar2, and
we say that ar1 dominates ar2 in AR:

• ∀ar1, ar2 ∈ AR, ar1 = (t1, as1), ar2 = (t2, as2),
(ar1 �AR ar2)⇔ ((t1 ≥ t2) ∧ (as1 � as2))

Notation 5.1 Starting by Definition 5.2, and for the rest of the thesis:

• We use ar, with eventual superscript or subscript indices to denote an administrative
role (element of AR).

90 5. ASRBAC: The Administration Model

(L, {c2})

(L, {c1,c2}) (H, {c2})

(H, {c1,c2})

(L, {c1})

(H, {c1})

(L, ∅)

Figure 5.2: Example of an Administrative Role Hierarchy (ARH)

The binary operation �AR defines a partial order over the set of administrative roles.
We represent this partial order by a hierarchy, in which an administrative role is senior
of the administrative roles it dominates. The Administrative Role Hierarchy (ARH) is an
inheritance hierarchy, where each administrative role inherits administrative permissions
from its junior administrative roles. For instance, Figure 5.2 illustrates the ARH of an
IOrg-AutoNet having two communities c1 and c2, and the initial set of trust levels.

5.4.3 ANRA: Administrative Node-Role Assignments

The function aRoles described above in Definition 5.1 also defines the set of Administra-
tive Node-Role Assignments (ANRA). As previously explained, the nodes in this set are
the authority nodes of the network and the administrative roles are their regular roles that
make of them authority nodes (by incorporating the basic role A). Actually, an authority
node is supposed to collaboratively manage the network with other authority nodes for
many purposes including access control administration. The administrative roles in AS-
RBAC particularly concern the capabilities of access control administration assigned to
authority nodes.

Definition 5.3 The set of Administrative Node-Role Assignments (ANRA) is defined as
follows:

• ANRA ⊆ N ×AR

– ∀x ∈ N ,∀ar ∈ AR, ((x, ar) ∈ ANRA)⇔
((ar ∈ aRoles(x)) ∧ (∀ar′ ∈ AR, ar′ 6= ar, ar′ �AR ar, ar′ /∈ aRoles(x)))

Remark 5.2 In Definition 5.3:

• The set ANRA associates an authority node with the set of administrative roles di-
rectly assigned to it without using the inheritance relationship in ARH. This provides
a scalable representation of administrative node-role assignment.

91

Table 5.1: APRA in ASRBAC

Administrative Role Organizational Scope Hierarchical Scope
(t, as) ∈ AR {(t, c, nilK) | c ∈ as} ∪ {(t, c, nilB) | c ∈ as} {[(L, c, NA, ∅), (t, c, A, {c})[| c ∈ as}
AR {(nilT ,N , nilK), (nilT ,N , nilB)}](L,N , NA, ∅), (H, ∅, A, C)[

Variables Constants
t: Trust Level L: Lowest-trust level

as: Administration Scope H: Highest-trust level
c: Community NA: non-administrative basic role

A: Authority basic role
N : The set of network nodes
C: The set of communities
T : The set of trust levels

nilT : Trust levels are not considered
nilK : Capability classes are not considered
nilB : Basic roles are not considered
AR: The set of administrative roles

5.4.4 APRA: Administrative Permission-Role Assignments

An administrative role defines a set of role ranges in RRH, a set of branches in NS-N
and a set of branches in NS-P over which it may imply administrative privileges. Hence,
an authority node can manage a certain set of regular roles and their assignments to
each other. Besides, it manages their assignments to nodes and permissions selected
from certain node an object categories. Moreover, it can manage those categories and
their assignments to each other in their respective structures. The role ranges and the
branches of the organizational structures altogether define the domain of administration
of an authority node. In certain cases, the target of an administrative action can not
be managed by a single authority node. Therefore, the set of authority nodes may form
together an administration board that has the whole RRH, NS-N and NS-P structures as
an administration domain.

So in order to define the set of Administrative Permission-Role Assignments (APRA),
we need to specify for an administrative role, the administration domain in form of a set
of node/object categories and a set of regular role ranges. Besides, we need to add a
specification entry that represents the collaboration between authority nodes to manage
the SRBAC components that a single authority node cannot manage alone. Table 5.1
defines the set of Administrative Permission-Role Assignments (APRA) in an ASRBAC-
based access control administration system.

As elaborated in Section 5.5.5 and depicted in Figure 5.3, APRA is self-configured
with respect to the configuration of the administrative roles and their hierarchy ARH.
The first line in Table 5.1 states that an administrative role ((t, as), t ∈ T , as ∈ 2C) defines
its administration domain with respect to its attributes, namely the trust level (t) and the

92 5. ASRBAC: The Administration Model

administration scope (as). An administration domain is a combination of an organizational
scope and a hierarchical scope. An organizational scope is a set of branches in NS-N and
NS-P represented by the set of the root node categories and the root object categories
respectively. A hierarchical structure is a set of regular role ranges in the Regular Role
Hierarchy (RRH).

More specifically, for an administrative role ((t, as) ∈ AR), the trust level (t) and each
one of the communities in the administrative scope (as) define together a branch of NS-
N/NS-P and a regular role range. The branch of NS-N is represented by a root composed
of the trust level and the community and ignoring the capability class ((t, c, nilK), c ∈ as).
The branch of NS-P is represented by a root composed of the trust level and the community
and ignoring the basic role ((t, c, nilB), c ∈ as). The regular role range begins by, and
includes, the regular role corresponding to the non-administrative nodes of the lowest trust
level in the community, and ends by, but does not include, the regular role corresponding
to the authority node that has the same trust level of the administrative role and can
manage the community ([(L, c,NA, ∅), (t, c, A, {c})[, c ∈ as).

A regular role range in the hierarchical scope of an administrative role is open at
the upper bound side because an authority node must not be able to control its own
security administration privileges. Therefore, there is at least one regular role assigned to
an authority node and out of the administration domains of all the administrative roles.
This is one of the reasons for which the authority nodes may need to work together as an
administration board in certain cases.

The second line in Table 5.1 allows authority nodes to collaborate to manage certain
SRBAC components when needed. This generic APRA entry states that the set of all the
administrative roles (AR) has for administration domain a combination between the whole
NS-N and NS-P trees represented by the tree roots ({(nilT ,N , nilK), (nilT ,N , nilB)}),
and the whole RRH hierarchy represented by an open regular role range that has for
bounds the delimiters of RRH (](L,N , NA, ∅), (H, ∅, A, C)[), which are abstract regular
roles used for specification purposes only.

5.4.5 ASRBAC Policies

As illustrated in Figure 5.1, administrative permissions are not associated with the object
categories of NS-P. The targets of administrative actions are the SRBAC components,
including the object categories and the NS-P themselves. Those administrative targets
are also categorized, but according to the specifications of the relevant administrative roles
(cf. Section 5.4.4).

ASRBAC policies can be expressed using the extended version of the RBAC Profile
of XACML V2.0 [15] that we propose for the specification of SRBAC policies (cf. Sec-
tion 4.9), as long as ASRBAC is a variant of SRBAC itself (cf. Figure 5.1). Actually,
ASRBAC policy specification is a part of the SRBAC policy specification itself, which
is one of the self-management features of ASRBAC. The Role <PolicySet> (RPS) that
defines and assigns an authority regular role to a node, implicitly defines and assigns the
corresponding administrative role to that node. According to Figure 4.6, the RPS is then
associated with a Permission <PolicySet> (PPS), which in its turn is associated on one

93

hand to one or more other PPS instances to express the inheritance of permissions from
junior regular roles, and on the other hand to one or more ObjectCategory <PolicySet>
(OCPS) instances where the actual permissions are specified.

However, administrative permissions are not associated with object categories, as il-
lustrated in Figure 5.1. So the PPS of an authority regular role will directly include the
permissions related to the administration of SRBAC components. These administrative
permissions are actually specified in a rule that defines an action called manage, and a
set of resources representing the organizational scope and the hierarchical scope of the
administrative role. Appendix A gives in Section A.2 an example of the XACML entity
corresponding to the PPS of an authority regular role in a Home Network.

As for the collaborative management accomplished by all the authority nodes, which
is represented in the second line of Table 5.1, a specific RPS uses the “basic role” at-
tribute and its value A to state that all the authority nodes can acquire the collaborative
administrative permissions specified in an associated PPS when they work together on
an administrative task. This specific SPS instance only includes a rule that defines the
action manage, and two resources representing respectively the whole NS-N/NS-P trees as
organizational scope and the whole RRH as hierarchical scope.

The XACML action manage used for the specification of ASRBAC policies in the
Permission <PolicySet> (PPS) instances of the authority regular roles is implemented
using the following five ASRBAC predicates, which have as parameters an administrative
role ar, a root nc of a branch in NS-N and a root oc of a branch in NS-P belonging to the
organizational scope of ar, and a regular role range [r1, r2[belonging to the hierarchical
scope of ar:

1. canAssign(ar,@nc, [r1, r2[): ar can select a node from the node category nc, or any
of its junior node categories, to assign it to a regular role in [r1, r2[.

2. canAssignP (ar,@oc, [r1, r2[): ar can select a permission associated with the object
category oc, or any of its senior object categories, to assign it to a regular role in
[r1, r2[.

3. canModify(ar, [r1, r2[): ar can revoke users or permissions assigned to a regular
role in [r1, r2[, and it can add or remove regular roles and role-role inheritance
associations in [r1, r2[.

4. canModifyNC(ar, nc): ar can add or remove node categories in the branch of NS-N
defined by the root nc.

5. canModifyOC(ar, oc): ar can rederive and redistribute the permissions associated
with the object categories of the branch of NS-P defined by the root oc, and add or
remove object categories in that latter.

Definition 5.4 Let (t, as) ∈ AR be an administrative role in the access control adminis-
tration system of an IOrg-AutoNet, we define for it the following five sets of administrative
actions based on ASRBAC predicates:

94 5. ASRBAC: The Administration Model

1. {canAssign((t, as),@(t, c, nilK), [(L, c,NA, ∅), (t, c, A, {c})[) | c ∈ as}

2. {canAssignP ((t, as),@(t, c, nilB), [(L, c,NA, ∅), (t, c, A, {c})[) | c ∈ as}

3. {canModify((t, as), [(L, c,NA, ∅), (t, c, A, {c})[) | c ∈ as}

4. {canModifyNC((t, as), (t, c, nilK)) | c ∈ as}

5. {canModifyOC((t, as), (t, c, nilB)) | c ∈ as}

Definition 5.5 We define for the set of all the administrative roles the following five
collaborative administrative actions based on ASRBAC predicates:

1. canAssign(AR,@(nilT ,N , nilK),](L,N , NA, ∅), (H, ∅, A, C)[)

2. canAssignP (AR,@(nilT ,N , nilB),](L,N , NA, ∅), (H, ∅, A, C)[)

3. canModify(AR,](L,N , NA, ∅), (H, ∅, A, C)[)

4. canModifyNC(AR, (nilT ,N , nilK))

5. canModifyOC(AR, (nilT ,N , nilB))

Table 5.1 can be implemented in any IOrg-AutoNet to express all the possible Adminis-
trative Permission-Role Assignments (APRA) and to integrate the related administrative
policies in the access control policies of the network using the extended version of the
RBAC Profile of XACML V2.0 proposed for SRBAC. Definitions 5.4 and 5.5 can be ap-
plied in any IOrg-AutoNet to perform all the possible administrative actions of ASRBAC.
As elaborated in this section, the authority nodes can perform APRA configuration, AS-
RBAC policy specification and administrative actions without any human intervention.
Actually, a very important contribution of ASRBAC is that its configuration and enforce-
ment are completely self-managed.

5.4.6 Formal Definition of the ASRBAC Model

On one hand, after describing the different components of the SRBAC model, giving
formal definitions for certain ones and their related functions, and finally giving a formal
definition of SRBAC at the end of Section 4.8 (cf. Definition 4.17). On the other hand,
after describing and giving formal definitions for the different components of the SRBAC
model and their related functions, we may conclude this section by the following formal
definition of the ASRBAC model:

Definition 5.6 ASRBAC has the following components:

• All the components of SRBAC as stated in Definition 4.17.

• AR: the set of administrative roles, where RR⇒ AR (cf. Definition 5.1).

• ARH: the partial order relation on AR called administrative role hierarchy (cf.
Definition 5.2).

95

• ANRA: the set of administrative node role assignments, where NRA⇒ ANRA (cf.
Definition 5.3).

• APRA: the set of administrative permission role assignments (cf. Table 5.1).

• AP : the set of administrative permissions, which are administrative actions on SR-
BAC components (cf. Definitions 5.4 and 5.5).

5.5 Autonomic Computing Support in ASRBAC

An administrative action in ASRBAC is either based on a collaborative decision taken by
the authority nodes, or on an autonomous mapping between access control components.
The authority nodes may adapt NS-N, and in certain cases NRA and NS-P, to the network
evolution according to decisions taken after analyzing certain detected changes in the
network context. This is the case of decision-based administrative actions. RRH and PRA,
and in certain cases NRA and NS-P, must be adapted to the evolution of other components
of SRBAC for mapping reasons. The authority nodes accomplish such adaptations in the
context of autonomous mapping-based administrative actions. For instance, changes in
the availability conditions of the network nodes, which can be detected and analyzed
using a dedicated environment variable, imply modification decisions for NS-N because
the community composition must change. A modification in NS-N implies in its turn
autonomous changes to NS-P to map to NS-N changes.

We describe in this section the support of Autonomic Computing in the ASRBAC
model by exploring the different types of administrative actions and other related aspects.
We explain how an ASRBAC-based system detects different kinds of changes in the net-
work context while the network evolves, and how it responds to the detected changes.
Figure 5.3 illustrates the Autonomic Computing functionality features in ASRBAC.

5.5.1 Context-Aware Information

The authority nodes continuously evaluate those variables, which allows them to monitor
the network and its context in order to detect and analyze evolution events (cf. Section
3.2). Table 5.2 describes the environment variables that we consider in our work, with
respect to the evolution of the structure (cf. Section 3.2), to changes in high-level security
configuration or to the modification of administrative responsibilities of certain nodes. We
should note that an evolution at the community level may imply a set of evolution events
at the node-level (cf. Definition 3.4), and that network merging or splitting may imply a
set of evolution events at the community-level and the node-level (cf. Definition 3.7). We
should also note that an evolution of the structure may cause changes to the basic roles
of certain nodes, as illustrated in Figure 3.2.

The trust level of a node changes when it wins or loses in terms of its trustworthiness in
the network. This is a systematic evolution, to which the relevant authority node should
respond by changing the set of regular roles of that node. In certain cases, a new element
may be used from the predefined set of trust levels in the network. For instance, if a new

96 5. ASRBAC: The Administration Model

Administration Process

Context-Aware Changes

Self-Aware Changes

Modify

Define

Collaborate to execute

NS-N: Network Structure for Nodes

NS-P: Network Structure for Permissions

RRH: Regular Role Hierarchy

NRA: Node “regular” Role Assignments

PRA: Permission “regular” Role Assignments

ARH: Administrative Role Hierarchy

ANRA: Administrative Node Role Assignments

APRA: Administrative Permission Role Assignments

Context-Aware Systems

NS-N NS-P

RRH PRANRA

ARHANRA

Authority

Nodes

APRA

Network

Level

SRBAC Level

ASRBAC Level

Trustworthiness,

Membership and

Mission

Trust, Availability and Authority

Specification

Figure 5.3: Support of Autonomic Computing in ASRBAC

Table 5.2: Environment Variables

Environment Variable Evolution Event
Trust Trust level used for a first time
Availability Evolution takes place at community-level
Authority Basic role (capability class) used for a first time
Specification High-level security specifications change
Trustworthiness Trust level changes for one or more nodes
Membership Evolution takes place at node-level
Mission Basic role changes for one or more nodes

97

node joins the network, it is usually assigned to the trust level L. However, there might
be already nodes assigned to this lowest trust level, and the reputation system decides
that their trustworthiness should be higher than the trustworthiness of the new node. It
eventually uses a new trust level for those nodes and keeps the new node only assigned to L.
This is a critical evolution, to which all the authority nodes should eventually respond by
updating the Network Structure for Nodes (NS-N). A reputation system (cf. Assumption
3.1) may output the environment variables Trustworthiness and Trust describing changes
in node trustworthiness and in the set of the currently assigned trust levels respectively.

A node may win or lose its membership in the network either individually (cf. Def-
inition 3.3) or in the context of an evolution at the community-level (cf. Definition 3.4)
or the network level (see network merging and splitting in Definition 3.7). Such changes
in the membership of a node may cause changes in the basic role of the same node or
other nodes (cf. Figure 3.2). For example, when the authority of a community is removed
or banished, another node should acquire the authority basic role (A) to replace it. In
these cases of systematic change, the relevant authority nodes should modify the set of
Node-Role Assignments (NRA). A resource management system (cf. Assumption 3.3) may
output the environment variables Membership and Mission describing changes in nodes’
memberships and basic roles respectively.

The network evolution events may result in critical changes in the components of
the autonomic access control system. For example, when a community is integrated or
revoked, or when a basic role is used for a first time, such as using the basic role DA (Del-
egated Authority) in a first subnet exportation, all the authority nodes should respond by
updating the NS-N (Network Structure for Nodes) component, which eventually modifies
all the components of SRBAC and ASRBAC as illustrated in Figure 5.3. The resource
management system may output the environment variables Availability and Authority de-
scribing changes in the community composition and in the set of the currently assigned
basic roles respectively.

As introduced in Section 5.3, permissions are rederived from high-level security speci-
fications and redistributed on object categories in the Network Structure for Permissions
(NS-P), in response to certain detected changes in the network. Such policy reconfigura-
tion may be implied by changes in NS-N, which are changes in NS-P as well by mapping.
In other words, low-level policies may adapt to changes in the values of the environment
variables Trust, Availability and Authority. Besides, if the endusers modify their high-level
security configuration, the NS-P will be also updated in terms of associations between per-
missions and object categories. Such changes are critical, to which all the authority nodes
should eventually respond by negotiating and performing modifications to the SRBAC
access rules. The Security Policy System of the IOrg-AutoNet (cf. Section 2.2.4) is also a
context-aware system that may output the environment variable Specification describing
changes in the high-level security configuration of the network.

5.5.2 Predefined Self-Management

Certain decision-based administrative actions in ASRBAC follow a systematic predefined
self-management functionality. Such administrative actions occur in response to expected

98 5. ASRBAC: The Administration Model

changes in the context of the network. The environment variables reporting expected
changes are considered as non-critical because they do not lead to changes in the policies
of the autonomic administration system itself [50]. Therefore, in ASRBAC, the non-critical
changes are the ones that will not result in changing the set of Administrative Permission-
Role Assignments (APRA). As depicted in Figure 5.3, we have two types of non-critical
context-aware changes that do not lead to the modification of the ASRBAC policies:

1. Node-Role Assignments (NRA) adapt to systematic context-aware changes in the
set of nodes and/or node attributes. Section 5.5.1 explains that such NRA self-
adaptation is performed in response to detected changes in the environment variables
Trustworthiness, Membership and Mission.

2. Low-level permissions are rederived from high-level security specifications and redis-
tributed on the elements of the Network Structure for Permissions (NS-P) in response
to systematic context-aware changes in the set of objects and/or object attributes,
or in the set of high-level security rules. Section 5.5.1 explains that such permission
self-optimization is performed in response to detected changes in the environment
variable Specification.

Example 5.1 An authority node x may leave the network because of a node removal or
banishment. The environment variable Membership reports this event to the other author-
ity nodes of the network. If one of them has an administrative role senior to aRoles(x) it
deletes the set {(x, r) | r ∈ RR, (x, r) ∈ NRA}. Otherwise, the authority nodes negotiate
and agree on this deletion. Besides, one or more communities would have no authority
node as a result, which is detected by the relevant authority nodes through the environment
variable Mission. In response to this event, those authority nodes negotiate to select a
qualified node to replace the lost authority node.

5.5.3 Autonomic Control Loop

An autonomic system should be able to cope with critical changes in its environment by
adapting itself [56]. Such functionality is achieved through autonomic control loops [41],
whereby the execution of the autonomic actions result in a feedback that may change
the administration policies of the autonomic system itself. Critical changes are detected
through monitoring critical environment variables [50], such as Trust, Availability and
Authority as explained in Section 5.5.1. Such changes make the authority nodes decide to
modify SRBAC components, which is basically the goal of administrative actions, but they
will also make ASRBAC policies adapt accordingly. Figure 5.3 illustrates the autonomic
control loop of ASRBAC. We can see in this figure that the Network Structure for Nodes
(NS-N) adapts to critical context-aware changes, and that NS-N self-adaptation eventually
changes the set of Permission-Role Assignments (PRA) and the set of Administrative
Permission-Role Assignments (APRA). In other words, the access control administration
system of an IOrg-AutoNet is able to detect critical changes in the Trust, Availability
and/or Authority conditions in the network, and to adapt the access control policies and
its own policies accordingly.

99

Example 5.2 A reputation system (cf. Assumption 3.1) may decide that a trust level t
must be used for a first time. The authority nodes capture this critical decision through
detection and analysis of changes in the environment variable Trust. The following mod-
ifications then take place (see figure 5.3):

1. Decision-based update of NS-N: Creation of the new node category (t,N , nilK)
and the set of its junior node categories. Certain nodes are then removed from
their respective node categories to be added to the new ones because they should be
assigned to the new trust level. NS-N will be then updated by integrating the new
node categories.

2. Mapping of NS-P: The new node categories imply the creation of the new object
category (t,N , nilB), and its senior object categories. Low-level SRBAC permissions
will be rederived from high-level security specifications and redistributed on object
categories. NS-P will be then updated by integrating the new object categories.

3. Mapping of RRH: For each element in the new set of node categories {(t, c, k) ∈
NC}, if k = LD then the regular role (t, c,NA, ∅) is created, otherwise the set of
regular roles {(t, c, b, as) | bAbility(b) = k, as ∈ 2C \ {∅}} is created. RRH will be
then updated by integrating the new regular roles.

4. Spontaneous update of ARH: The set of regular roles {(t, c, b, as) | c ∈ C, b =
A, as ∈ 2C \ {∅}}, which indicates a potential designation of new authority nodes in
the network, causes the new set of administrative roles {(t, as) | as ∈ 2C \ {∅}} to be
created and integrated in ARH.

5. Spontaneous update of APRA Each new administrative role will be assigned to
the corresponding set of administrative permissions, which represents an update of
the ASRBAC policies through the modification of APRA (cf. Section 5.4.4).

5.5.4 Mapping-Based Self-Adaptation

In addition to systematic and critical context-aware decision-based administrative actions,
ASRBAC defines autonomous self-aware mapping-based actions. An authority node is
able to detect changes in the components and policies of SRBAC resulting from any
administration operation performed by itself, by another authority node in the network
or, in exceptional cases, by an expert user. Figure 5.3 illustrates the following mapping-
based self-adaptation actions accomplished by authority nodes in response to detected
changes in self-aware data:

1. The Network Structure for Permissions (NS-P) adapts to the changes of the Network
Structure for Nodes (NS-N). Actually, NS-P elements are respectively equivalent
to NS-N elements, and the NS-P tree structure is the inverse of the NS-N tree
structure, taking into account the correspondence between basic roles and capability
classes (cf. Sections 4.7.1 and 4.7.2). As a result of adapting NS-P to NS-N, the
low-level permissions associated with the different object categories in NS-P will be

100 5. ASRBAC: The Administration Model

redistributed on those categories after being rederived from the high-level security
specifications of the network. Example 5.2 explains this kind of self-adaptation.

2. The regular roles and the Regular Role Hierarchy (RRH) adapt to NS-N changes.
One or more regular roles can be specified with regard to the attributes of a node
category. Example 5.2 explains this kind of self-adaptation.

3. Node-Role Assignments (NRA) adapt to NS-N changes. A change in NS-N means
that certain nodes will change their respective categories. This actually means that
the Trustworthiness, Membership and/or Mission of such nodes could have been
changed, which implies the need for updating NRA.

4. Permission-Role Assignments (PRA) adapt to changes in regular roles and RRH.
The assignment of permissions to a regular role in SRBAC is actually an association
between that regular role and a corresponding set of object categories (cf. Defini-
tions 4.15 and 4.16). Because this association is based on the specification of the
regular role, a self-aware change of PRA takes place in response to changes in the
specification of the set of regular roles.

5.5.5 Autonomous Evolution

As an autonomic computing system, an ASRBAC-based access control administration sys-
tem adapts to its environment and to its own actions without any, or with a minimum
of, human intervention [51]. ASRBAC components are completely self-configured with
respect to the changes applied by the ASRBAC agents themselves (authority nodes) to
SRBAC components and policies, or with respect to changes in other ASRBAC compo-
nents. Figure 5.3 illustrates the following self-configuration actions accomplished in terms
of an autonomous evolution of ASRBAC:

1. Changes in regular roles and RRH result in the reconfiguration of administrative roles
and the Administrative Role Hierarchy (ARH). This actually takes place when the set
of regular roles based on the authority basic role A is modified. Usually, changes to
the Trust and Availability conditions in the network may imply such modifications.
According to Definitions 5.1 and 5.2 respectively, the set of administrative roles of
a node is a subset of the set of its regular roles based on the A basic role, and the
ARH hierarchy is based on the RRH hierarchy.

2. Changes in NRA result in the reconfiguration of the Administrative Node-Role As-
signments (ANRA). This actually takes place in case of acquisition or dispossession
of the authority role. More specifically, this is the case of a change in NRA in re-
sponse to a change in the environment variable Mission captured from the output of
the resource management system as a context-aware information, or as a self-aware
information from the output of an operation of NS-N adaptation. As a result, the set
of authority nodes (ASRBAC agents) changes as well, which can be also considered
as a kind of self-adaptation in ASRBAC.

101

3. Changes in administrative roles and ARH result in the reconfiguration of the Ad-
ministrative Permission-Role Assignments (APRA). Section 5.4.4 explains in details
how the specification of an administrative role autonomously determines its ad-
ministrative permissions. Reconfiguring APRA with respect to changes in ARH is
actually the respecification of the administration policies of ASRBAC. Because this
reconfiguration comes at the end of an autonomic process that begins by a criti-
cal context-aware adaptation of NS-N, as illustrated in Figure 5.3, it defines the
autonomic control loop of an ASRBAC-based system (cf. Section 5.5.3).

5.5.6 Node Cooperation

The authority nodes cooperate when they use their administrative roles to perform differ-
ent kinds of administrative actions. Figure 5.3 depicts that the authority nodes collaborate
to execute the different context-aware and self-aware autonomic operations on SRBAC
components. Actually, an authority node is able to perform most of such operations inde-
pendently in its administrative domain, which is characterized by a set of ranges of regular
roles and a set of node/object categories (cf. Section 5.4.4). However, the authority nodes
may need to eventually agree on certain modifications in the context of certain autonomic
operations for one of the following two reasons:

1. The target of an administrative operation may be out of the administration domain
of any authority node. For example, suppose that an authority node having the
regular role (H, c1, A, {c1}) must be removed from a network where C = {c1, c2}
and c2 has its own authority. The authority node of c1 cannot remove itself, and
the authority node of c2 can not remove it either. The regular role (H, c1, A, {c1}),
which determines the authority node of c1, is not in the administration domain of
any of the two authority nodes of the network. In this case, they need to collaborate
to accomplish the node removal task. Section 5.4.5 explains in more details how the
authority nodes can act as a board of administrators.

2. The administrative operation is based on a decision taken after detecting and analyz-
ing certain context-aware information. This is the case of self-adaptation of NS-N,
and certain cases of self-adaptation of NRA and NS-P, as illustrated in Figure 5.3.
The authority nodes need to agree on the adaptation decisions before executing them
because they may need to:

(a) validate a unique configuration of the NS-N component.

(b) elect a qualified node for assignment to a regular role.

(c) negotiate permissions’ optimization to maintain a consistent SRBAC policy
specification in the network. We give a particular concern to policy negotiation,
and elaborate corresponding mechanisms in Section 5.6. As for the other cases
of node cooperation, they will make part of a future work.

102 5. ASRBAC: The Administration Model

5.6 Policy Negotiation Mechanisms

As illustrated in Figure 5.3, the Network Structure for Permissions (NS-P) may be mod-
ified with respect to context-aware and/or self-aware changes. A change in NS-P means
that the authority nodes must rederive the SRBAC permissions from the high-level se-
curity specifications and redistribute them on the object categories. This SRBAC policy
optimization may be a response to the detection of context-aware information indicating
changes in the high-level security specifications, as explained in Section 5.5.2. It could
also be a second step after adapting the NS-P structure in response to self-aware changes
in the Network Structure for Nodes (NS-N), as explained in Section 5.5.4.

More concretely, authority nodes should modify the ObjectCategory <PolicySet>
(OCPS) instances in the XACML specification of the SRBAC policies (cf. Section 4.9)
when the high-level security configuration changes and/or when the network structure
mutates. As explained in Section 5.5.6, this should be a collaborative administration
task to maintain a consistent SRBAC policy specification in the network. The XACML
specification language [4] does not support collaboration between security administrators.
Therefore, each authority node will have to modify the OCPS instances independently,
and then cooperate with the other authority nodes to unify their modifications.

Roughly speaking, all the authority nodes use the same modules of permission deriva-
tion and distribution of the Security Policy System (SPS) to translate and enforce the
high-level security configuration (cf. Section 2.2.4). However, in order to be realistic, the
access control administration system should consider the possibility of having differences
between the authority nodes in the results of permission derivation and distribution. For
example, in a mobile IOrg-AutoNet, the topology may be variable enough to make au-
thority nodes unable to capture the same context-aware information, which may make
them execute different changes on the same access rules. Therefore, the authority nodes
should negotiate the resulting access control rules in order to unify their OCPS instances
in case of a conflict. This collaboration is also necessary when the modifications concern
policy parts that are out of the administration domain of a single authority regular role
(cf. Section 5.4.4). Furthermore, this type of node cooperation is clearly justified when
a network evolution implies the merging of two communities, the merging of two whole
networks or the reintegration of an exported subnet (cf. Section 3.2).

By applying a concept of similarity computation on XACML rules, such as the one
proposed in [66], we propose in this section a policy negotiation algorithm, which takes
into account all the decisions of all the authority nodes, but gives the most trusted ones
the privilege to take the final decisions. We should note here that we only refer to the rule
similarity computation concepts proposed by the authors of [66] but not their algorithm
of policy integration. In their approach, each party keeps its own policies, and the goal is
to take a policy integration decision at access time in case of conflicts. In our approach,
all the involved parties (authority nodes) should eventually unify their policies.

Algorithm 5.1 We propose the following policy negotiation algorithm for unifying SR-
BAC permissions in the context of an adaptation of NS-P or an optimization of access
control rules:

103

1. PHASE 1: Preliminary local policy modifications per authority node:

(a) Each couple of authority nodes compute the similarity of their XACML rules.
Each authority node will then be aware of the differences in rule specifications
with respect to all the other authority nodes.

(b) Each authority node takes its own decisions to modify the rules for which dif-
ferences are detected.

2. PHASE 2: Intermediate unified policy modifications per trust level:

(a) Each couple of authority nodes belonging to the same trust level compute the
similarity of the modified XACML rules. Each authority node will then be aware
of the decisions of all the other authority nodes belonging to the same trust level.

(b) Each authority node takes its own decisions to modify the rules for which dif-
ferences in decisions with other authority nodes of the same trust level are
detected.

(c) The previous two steps are repeated on each trust level until no more differences
in rule modifications are detected on that trust level.

(d) An authority node of each trust level, except the highest trust level, is elected to
multicast the modification results to the set of authority nodes belonging to the
highest trust level.

3. PHASE 3: Final global unified policy modifications:

(a) Each authority node of the highest trust level takes its own decisions to remodify
the rules taking into account the modification decisions reported from each lower
trust level.

(b) Each couple of authority nodes belonging to the highest trust level compute the
similarity of the remodified XACML rules. Each authority node of the highest
trust level will then be aware of the decisions of all the other authority nodes
belonging to the highest trust level.

(c) Each authority node of the highest trust level takes its own decisions to modify
the rules for which differences with other authority nodes of the highest trust
level are detected.

(d) The last two steps are repeated until no more differences in rule modifications
are detected on the highest trust level.

(e) An authority node of the highest trust level is elected to multicast the final global
modification results to the authority nodes of all the lower trust levels.

The policy negotiation algorithm that we propose in this section (Algorithm 5.1) is
illustrated in Figure 5.4. As illustrated in this figure, Algorithm 5.1 is based on the
following set of policy negotiation mechanisms:

104 5. ASRBAC: The Administration Model

SC LD SC LD

RE HM

SC LD

SC

Lowest Trust Level

Highest Trust Level

SC LD

Start

End

Yes

No

Rule Differences?

SC: Similarity Computation

LD: Local Decision

RE: Representative Election

HM: High-trust oriented Multicasting

LM: Low-trust oriented Multicasting

LD

RE HM

RE LM

LD

PHASE 1 PHASE 2 PHASE 3

Figure 5.4: Policy Negotiation Algorithm for ASRBAC

105

ri, rj : XACML rules of different policies applied on the same resource

Figure 5.5: Rule Similarity Types (Extracted from [66])

• SC (Similarity Computation): The XACML format is structured enough to
extract the details of an access control rule from a policy and compare them with
the details of another rule of another policy applied on the same resource. Therefore,
it is possible to define a format for the similarity between two XACML rules and
then to design an algorithm to compute rule similarity. For example, the authors
of [66] define a format for rule similarity and an algorithm that decides if a rule
converges, diverges, restricts, extends or shuffles another rule. Figure 5.5, which is
extracted from [66], illustrates those rule similarity types.

• LD (Local Decision): taken for rule modification.

• RE (Representative Election): of an authority node in a trust level.

• HM (High-trust oriented Multicasting): of modified XACML rules.

• LM (Low-trust oriented Multicasting): of modified XACML rules.

Algorithm 5.1 is actually a groundwork for a future enhancement of the access control

106 5. ASRBAC: The Administration Model

administration system of IOrg-AutoNets. We only intend in this section to describe the
basic ideas we currently may propose in terms of a platform for a future policy negotiation
protocol. In a future work, the policy negotiation mechanisms of Algorithm 5.1 should be
elaborated and should take the security concerns into account, and the policy negotiation
protocol should be specified, formalized and validated.

5.7 Conclusion

This chapter presented our main contribution as a step Toward a Security Admin-
istration System for Autonomic Networks. It is an administration model defined
in the context of an autonomic access control system for a specific model of autonomic
networks that we call IOrg-AutoNets (cf. Definition 3.2). Our administration model
is called ASRBAC (Administrative SRBAC). It is the administrative counterpart of the
SRBAC (Secure Relation Based Access Control) model, which we defined as the access
control model of IOrg-AutoNets in Chapter 4. ASRBAC is a variant of SRBAC itself,
and its administration policies are incorporated in the access control policies of SRBAC.
This dependency between ASRBAC and SRBAC is the key feature behind the support of
Autonomic Computing in ASRBAC.

We explained the access control administration requirements in IOrg-AutoNets in or-
der to motivate the different features of ASRBAC. We can summarize those requirements
by the need for context-awareness, self-awareness and node cooperation in order to achieve
a distributed, collaborative, self-managing, self-adaptable, access control administration
solution. Afterward, we could discuss a number of existing solutions to see if they ful-
fill such requirements, whereby we emphasized the choice of ARBAC02 [73] as a basis
for ASRBAC. That choice was mainly based on the dependency between the adminis-
trative model ARBAC02 and the corresponding access control model RBAC [89], given
that RBAC is the basis of SRBAC. It was then possible to describe the contributions of
ASRBAC with respect to ARBAC02. Roughly speaking, ASRBAC extends ARBAC02
with a support for Autonomic Computing.

After introducing the requirements, motivations and contributions of ASRBAC, it was
time to define it. We gave a formal definition of ASRBAC (Definition 5.6) describing its
components. A formal definition for each administrative component was then provided.
Definition 5.1 describes the administrative roles and explains their autonomous relation-
ship with the regular roles of SRBAC. Definition 5.2 describes the administrative role hier-
archy. Definition 5.3 describes the administrative node-role assignments and explains their
autonomous relationship with the node-role assignments of SRBAC. Table 5.1 describes
the administrative permission-role assignments and explains how the specification of an
administrative role autonomously defines its administration scope based on organizational
and hierarchical components of SRBAC. The administration scope of an administrative
role identifies then its administrative permissions as a set of administrative actions on
those SRBAC components. Definitions 5.4 and 5.5 describe those administrative actions
for individual and collaborative administration respectively.

A very important section in this chapter (Section 5.5) elaborated then the Autonomic

107

Computing support in ASRBAC. Figure 5.3, which mainly illustrates the autonomic con-
trol loop of ASRBAC starting by detecting context-aware evolution events and ending by
adapting all SRBAC and ASRBAC components, and Table 5.2, which describes the envi-
ronment variables detected by the autonomous agents of ASRBAC (authority nodes) and
the related evolution events, were the key elements of discussion in that section. Different
types of autonomic administration operations were discussed, namely the predefined self-
management, the autonomic control loop operations, the mapping-based self-adaptation
and the autonomous evolution. The section ended by motivating node cooperation in
IOrg-AutoNets in the context of access control administration, before dedicating a sep-
arate other section for describing a sketch of a policy negotiation algorithm as a future
solution for node cooperation.

ASRBAC still needs a considerable work, mainly in order to elaborate the very details
of each type of autonomic administration operation and validate its Autonomic Computing
properties. Actually, we propose the IOrg-AutoNet, SRBAC and ASRBAC models as a
platform of a security administration solution in autonomic networks. Many detailed
solutions should be studied having that platform as a basis. In this chapter, we could
identify many future works. In terms of node cooperation, we still have as problems
to solve the validation of NS-N modifications and the election of nodes for assignment
to regular roles. Particularly, after describing a groundwork for policy negotiation, we
could identify many issues that need to be handled, such as rule similarity computation,
taking local decisions of policy modifications considering the recommendations of other
nodes at different trust levels, and the multicasting of unified decisions at a trust level
to administrative nodes of different trust levels. Finally, the issue of scalability must be
addresses in a future work, whereby we may redefine ASRBAC using for basis a multi-
organizational administrative model such as AROBAC07 [107], and considering certain
communities of high populations in an IOrg-AutoNet as independent Infrastructureless
Organizational Autonomic Networks.

108 5. ASRBAC: The Administration Model

109

Part III

Feasibility and Realization

111

Chapter 6

Case Study: Home Network

In this chapter, we explain the configuration of the components of SRBAC and ASRBAC
and the specification of their policies in a Home Network. This chapter also redevelops a
part of the Home Network example using a competing access control model in the literature
and compares the resulting elements with those of SRBAC and ASRBAC.

Section 6.1 provides the initial configuration of SRBAC components after the network
deployment phase. As pointed out in Assumption 3.4, we do not propose a deployment
solution for an IOrg-AutoNet in general. In this section, we propose a scenario for this
initialization phase in a home network, particularly to show how low-level access control
configuration can be derived from high-level security specifications. SRBAC policies are
presented in a language-independent manner. However, a representative part of those
policies is developed in the SRBAC policy specification language (cf. Section 4.9), which
is an extension of the RBAC Profile of XACML V2.0 [15], and separated in Appendix A.

Section 6.2 completes the home network example in the context of access control ad-
ministration. It aims at enforcing the ASRBAC policies to adapt the initial SRBAC
configuration to given examples of evolution transitions. The section starts by build-
ing the initial NS-N and NS-P elements, which are not presented in Section 6.1 because
they concern the administration part. Afterward, the initial ASRBAC components are
developed. Finally, evolution scenario examples are discussed, showing how ASRBAC’s
administrative actions can be performed.

Section 6.3 aims at comparing SRBAC/ASRBAC with the competing model Or-BAC
[5] in the context of enforcement and implementation. The Or-BAC model has a com-
parable support for organizational and context-aware concepts. It is flexible enough to
provide the desired access control characteristics in many application fields.

6.1 SRBAC in a Home Network

In this section, we study the configuration and policy specification of SRBAC in a home
network. A family of three persons lives in this home. They are a father, a mother and
their son. Each one has a cellular phone with a BlueTooth interface. The cellular phone of
the father can access the Internet. The father also has a laptop with WiFi and BlueTooth

112 6. Case Study: Home Network

interfaces, and his car can send alert messages using a WiFi connection. The mother has
a digital camera that can communicate using WiFi as well.

Assumption 6.1 We assume the following for the initialization of this specific IOrg-
AutoNet instance:

• The deployment of the home network is a centralized operation performed by a resi-
dent trusted and designated by all the other residents.

• This resident should do a simple network configuration and a high-level specification
of resource sharing rules.

• He needs to be aware of the meanings of initial communities and initial trust levels
in order to do the network configuration.

• He can use a human-like high-level language to specify security rules, whereby he
should consider the initial trust levels, communities and node roles.

Right after deployment, the initial configuration of SRBAC components and the initial
low-level SRBAC policies are derived from the information provided by the resident. This
section describes instances of such initial configurations and specifications.

6.1.1 Regular Roles and Node-Role Assignment

The father uses his laptop to do the simple network configuration illustrated in Table
6.1. Three communities are specified according to the availability expectations in the
network. In general, the set of devices of each person constitutes a community, because
they are supposed to be available for each other nearly permanently, with respect to the
availability of the other devices of the network. As for the trust-based classification of
the network nodes, the father just needs to distinguish between low-trust and high-trust
devices according to application-based trust considerations.

The initial configuration illustrated in Table 6.1 may give the impression that the
members of a same community have the same trust level. Actually, the two classifications
are independent because they depend on different node attributes. For instance, if the
father organizes work meetings at home, the devices of the attendees are expected to join
his community during the meeting according to the availability conditions, but they will
generally have trust levels lower than that of the father’s devices.

The father should allow the laptop to exchange information with each device in the
network at the deployment time using a safe channel1, such as an infrared connection. The
laptop will use such a channel to get information from each device about its computation
and storage capabilities. Such information will be used to classify the network nodes
according to their capabilities. For example, the Car and the Camera will not be able to
perform asymmetric cryptography or to store public-key certificates. So they will belong to
the Light-Duty capability class LD (cf. Section 3.1.3). Whereas, all the other devices are

1A safe channel may be a short-range connection created for exchanging specific data. It helps protecting
a communication before securing the network.

113

Table 6.1: High-Level Configuration of a Home Network

Low trust High trust
Father’s community fPhone, Laptop, Car
Mother’s community mPhone, Camera
Son’s community sPhone

fPhone: father’s cellular Phone
mPhone: mother’s cellular Phone
sPhone: son’s cellular Phone

Table 6.2: Initial Node Categories in a Home Network

Node Category Nodes
(H,F,HD) fPhone, Laptop
(H,F,LD) Car
(H,M,HD) mPhone
(H,M,LD) Camera
(L, S,HD) sPhone

H: High trust F: Father’s community HD: Heavy-Duty
L: Low trust M: Mother’s community LD: Light-Duty

S: Son’s community

supposed to have enough computation and storage capabilities to belong to the Heavy-
Duty capability class HD. The Laptop will classify itself as Heavy-Duty, because the
network deployment tool would have refused to run on it otherwise. This capability-based
classification is used with the trust-based and availability-based classifications specified by
the father (cf. Table 6.1) to create the initial node categories (cf. Section 3.1.4). Table 6.2
illustrates the initial node categories and their members in our Home Network example.

Being the device chosen by the father to accomplish the network deployment task, the
Laptop will designate itself as the authority node of the father’s community. The other
nodes of the community will be non-administrative, even if certain of them are classified as
heavy-duty, such as the father’s cellular phone. Actually, classifying a node as heavy-duty
simply means that it can be designated as authority when needed.

The laptop should also specify an authority node for each community. There is only
one heavy-duty device in each of the two other communities (cf. Table 6.2). So the laptop
will designate the mother’s cellular phone and the son’s cellular phone as the authority
nodes of their respective communities. In case of many candidates for the authority role
in a community, the current authority nodes in the network collaborate to select one of

114 6. Case Study: Home Network

Table 6.3: Initial NRA in a Home Network

Regular Role Nodes
(H,F,A, {F}) Laptop
(H,F,NA, ∅) fPhone, Car
(H,M,A, {M}) mPhone
(H,M,NA, ∅) Camera
(L, S,A, {S}) sPhone

A: Authority node
NA: Non-Administrative node

See Section 4.5.1 for the specification of a regular role

those candidates using a specific election algorithm2, such as choosing the node that has
the best storage capabilities.

The resulting initial set of Node-Role Assignments (NRA; cf. Section 4.8.1) is illus-
trated in Table 6.3. At this point, inheritance can be applied between regular according
to a Regular Role Hierarchy (RRH; cf. Section 4.5.2) roles to specify all the regular roles
a node can activate. Figure 6.1 illustrates the initial RRH in our Home Network example.

6.1.2 Permissions and Permission-Role Assignment

In addition to the simple network configuration represented by Table 6.1, the father uses
his laptop to specify the following initial set of high-level policy specifications for sharing
the resources of the home network:

Policy Set 6.1 The device of a user in the home network may access a resource hosted
by the device of another user according to the following rules:

1. All the home residents can use the Internet Connection tool (IC) on the father’s
cellular phone.

2. A resident should be as trusted as the son to read a set of Family Documents (FD)
hosted by the parents’ devices.

3. A resident should be as trusted as the father to read a set of Private Files (PF) hosted
by the parents’ devices.

4. Only the mother is trusted to remotely switch her Digital Camera (DC) on or off.

5. Only the father is trusted to remotely copy and delete PHotos (PH) from the mother’s
digital camera.

2We assume that suitable distributed election algorithms are implemented in the access control system
to allow authority nodes to collaborate to choose among a set of nodes for the assignment of a regular role.

115

(L, N , NA, ∅)

(L,F,NA,∅)

(L,F,A,{F}) (H,F,NA,∅)

(H,F,A,{F})

(H,∅,A,{F,M,S})

(L,M,NA,∅)

(L,M,A,{M}) (H,M,NA,∅)

(H,M,A,{M})

(L,S,NA,∅)

(L,S,A,{S})

(H, ∅, A, {F,M, S}): upper RRH delimiter, abstract role, having all permissions
(L,N , NA, ∅): lower RRH delimiter, abstract role, having no permissions

Figure 6.1: Initial RRH of a Home Network

6. Only the father is trusted to handle his Car Alerts (CA) using a device that manages
his community.

The network deployment application will use the modules of the Security Policy System
(cf. Section 2.2.4) to derive low-level access control rules from the previous high-level
specifications. However, it first rewrites them in SRBAC terms. The rules for this rewriting
are specified in a dedicated policy. For example, the following can be a set of rules for
rewriting Policy Set 6.1, which produces the high-level SRBAC Policy Set 6.2:

• All the home residents ⇒ low-trust non-administrative nodes of every community.

• A resident should be as trusted as user u⇒ the trust level of u is considered.

• Only the user u is trusted to⇒ the trust level and the community of u are considered.

• Using a device that manages⇒ the basic role A (Authority) is used. Otherwise, the
basic role NA (Non-Administrative) is used by default.

• Identifying the host of a resource is needed in the implementation phase of the access
control system, but it does not add any information to SRBAC policy specification.

Policy Set 6.2 A node may access a resource hosted by another node, in the context of
a secure relation binding them, according to the following rules:

1. Low-trust non-administrative nodes of every community can execute IC.

2. Non-administrative nodes having the trust level of the son in every community can
read FD.

116 6. Case Study: Home Network

Table 6.4: Initial Object Categories in a Home Network

Object Category Resources Permissions
(H,F,A) CA (CA,RWX)
(H,F,NA) PF,PH (PF,R),(PH,RW)
(H,M,NA) PF,DC (PF,R),(DC,X)
(H,S,NA) PF (PF,R)
(L,F,NA) IC,FD (IC,X),(FD,R)
(L,M,NA) IC,FD (IC,X),(FD,R)
(L, S,NA) IC,FD (IC,X),(FD,R)

A: Authority node may access R: Read IC: Internet Connection
NA: administrative role not required W: Write FD: Family Documents

X: eXecute PF: Private Files
DC: Digital Camera
PH: PHotos
CA: Car Alerts

3. Non-administrative nodes having the trust level of the father in every community can
read PF.

4. Non-administrative nodes having the trust level of the mother in the mother’s com-
munity can activate/deactivate DC.

5. Non-administrative nodes having the trust level of the father in the father’s commu-
nity can copy or delete PH.

6. The Authority node of the father’s community that has the trust level of the father
can manage CA.

The Laptop will categorize resources according to the trust level, the community mem-
bership and the basic role of the potential access requesting nodes (cf. Section 4.6.2).
Table 6.4 specifies the initial object categories derived from the above high-level policy
specifications, in addition to the associated resources and permissions.

The mapping between initial regular roles and initial object categories (cf. Definition
4.15) is then applied to specify the set of permissions associated to each regular role
corresponding to each object category. The initial Permission-Role Assignments (PRA;
cf. Section 4.8.2) of the home network of our example is illustrated in Table 6.5.

At this point, the initial SRBAC configuration is accomplished. It is time for the laptop
to perform the final task related to access control in the network deployment phase. It
communicates with the other authority nodes to inform them about their roles and to
share the initial SRBAC configuration with them3. Each authority node communicates

3We assume that suitable cryptographic materials and protocols are used for a mutual authentication
between two nodes in a first communication, after which a secure relation is established (cf. Section 4.4)

117

Table 6.5: Initial PRA in a Home Network

Regular Role Permissions
(H,F,A, {F}) (CA,RWX)
(H,F,NA, ∅) (PF,R),(PH,RW)
(H,M,NA, ∅) (PF,R),(DC,X)
(L,F,NA, ∅) (IC,X),(FD,R)
(L,M,NA, ∅) (IC,X),(FD,R)
(L, S,NA, ∅) (IC,X),(FD,R)

Table 6.6: Initial Low-Level SRBAC Policies in a Home Network

Regular Role Nodes Permissions
(H,F,A, {F}) Laptop (IC,X),(FD,R),(PF,R),(PH,RW),(CA,RWX)
(H,F,NA, ∅) fPhone, Car (IC,X),(FD,R),(PF,R),(PH,RW)
(H,M,A, {M}) mPhone (IC,X),(FD,R),(PF,R),(DC,X)
(H,M,NA, ∅) Camera (IC,X),(FD,R),(PF,R),(DC,X)
(L, S,A, {S}) sPhone (IC,X),(FD,R)

then with the nodes of its community to inform them about their roles, and to share with
them the PRA part of the configuration (cf. Table 6.5)4.

Afterward, each node becomes able to create an access session in the context of a secure
relation, in order to use the resources of another node by activating its direct regular role
referenced in NRA (cf. Table 6.3) or one of its junior roles according to RRH (Figure 6.1).
For example, the mother’s cellular phone can activate its inherited role (H,M,NA, ∅) to
switch the mother’s camera on (the permission (DC,X)), or its inherited role (L,M,NA, ∅)
to read family documents (the permission (FD,R)). Table 6.6 shows all the permissions
that can be granted to a node through its direct regular role, either due to that latter
itself or using inheritance between regular roles.

Table 6.6 is a language-independent specification of the initial low-level SRBAC policies
corresponding to the high-level security rules in Policy Set 6.2. Appendix A provides the
policy sample instances corresponding to the role (H,F,A, {F}), as can be expressed in
our extended version of the RBAC Profile of XACML V2.0 [15] proposed for SRBAC.
The use and extension of that profile of XACML [4] for SRBAC policy specification are
motivated and described in Section 4.9.

to avoid the authentication step in future communications
4A node only needs the PRA specification to enforce SRBAC policies locally after identifying the regular

role of the access requesting node in the secure relation binding them (cf. Section 4.8), while the authority
nodes need to share all the SRBAC configuration because they are supposed to manage the access control
system together (cf. Section 5.5)

118 6. Case Study: Home Network

Table 6.7: Initial NS-N in a Home Network

Node Category Nodes
(nilT ,N , nilK) fPhone, Laptop, Car, mPhone, Camera, sPhone
−(H,N , nilK) fPhone, Laptop, Car, mPhone, Camera
−− (H,F, nilK) fPhone, Laptop, Car
−−−(H,F,HD) fPhone, Laptop
−−−(H,F,LD) Car
−− (H,M,nilK) mPhone, Camera
−−−(H,M,HD) mPhone
−−−(H,M,LD) Camera
−(L,N , nilK) sPhone
−− (L, S, nilK) sPhone
−−−(L, S,HD) sPhone

nilT : Trust-based classification is not considered
N : Community-based classification is not considered

nilK: Capability-based classification is not considered

6.2 ASRBAC in a Home Network

We focus here on the enforcement of ASRBAC policies in certain scenarios of our example,
whereby we try to emphasize the autonomic aspects in our solution for access control
administration. Beforehand, the initial NS-N (Network Structure for Nodes) and NS-P
(Network Structure for Permissions), and the initial ASRBAC specific components, should
be configured. Actually, those components should be created right after the network
deployment, but they were not needed in the first part of the example (Section 6.1).

6.2.1 Network Structure Components

According to the descriptions of the organizational components NS-N (cf. Section 4.7.1)
and NS-P (cf. Section 4.7.2), the node membership illustrated in Table 6.2 will propagate
to senior node categories to form the initial NS-N as illustrated in Table 6.7. Similarly, the
resource/permission membership illustrated in Table 6.4 will propagate to junior object
categories to form the initial NS-P as illustrated in Table 6.8.

6.2.2 Administrative Roles and their Assignments

The authority nodes in the network will be the administrative nodes of the access control
administration system. Their administrative roles are defined by their regular roles using
the trust level and the administration scope parameters (cf. Definition 5.1). Table 6.9
illustrates the initial Administrative Node-Role Assignments (ANRA; cf. Definition 5.3)
in our example. An initial Administrative Role Hierarchy (ARH; cf. Definition 5.2) is also

119

Table 6.8: Initial NS-P in a Home Network

Object Category Resources Permissions

−−−(H, F, A) CA (CA,RWX)

−−−(H, F, NA) PF,PH (PF,R),(PH,RW)

−− (H, F, nilB) PF,PH,CA (PF,R),(PH,RW),(CA,RWX)

−−−(H, M, NA) PF,DC (PF,R),(DC,X)

−− (H, M, nilB) PF,DC (PF,R),(DC,X)

−−−(H, S, NA) PF (PF,R)

−− (H, S, nilB) PF (PF,R)

−(H,N , nilB) PF,DC,PH,CA (PF,R),(DC,X),(PH,RW),(CA,RWX)

−−−(L, F, NA) IC,FD (IC,X),(FD,R)

−− (L, F, nilB) IC,FD (IC,X),(FD,R)

−−−(L, M, NA) IC,FD (IC,X),(FD,R)

−− (L, M, nilB) IC,FD (IC,X),(FD,R)

−−−(L, S, NA) IC,FD (IC,X),(FD,R)

−− (L, S, nilB) IC,FD (IC,X),(FD,R)

−(L,N , nilB) IC,FD (IC,X),(FD,R)

(nilT ,N , nilB) IC,FD,PF,DC,PH,CA (IC,X),(FD,R),(PF,R),(DC,X),(PH,RW),(CA,RWX)

nilT : Trust level of the access requesting node is not considered
N : Community membership of the access requesting node is not considered

nilB: Basic role of the access requesting node is not considered

created. It is actually the result of removing the non-authority roles from the initial RRH,
and ignoring the community membership and basic role parameters in each remaining
regular role. Figure 6.2 illustrates the initial ARH of our example.

As for the initial Administrative Permission-Role Assignment (APRA; cf. Section
5.4.4), each authority node can use its administrative role or one of its junior roles to
manage the elements of the SRBAC components NS-N (Table 6.7), NRA (Table 6.3), RRH
(Figure 6.1), NS-P (Table 6.8) and PRA (Table 6.5) with respect to its administration
domain, which does not concern its own access rights. Hence, a collaboration between
authority nodes is required to manage certain elements of those SRBAC components when
they are out of all the administration domains of all those authority nodes.

Table 6.9: Initial ANRA in a Home Network

Administrative Role Authority Node
(H, {F}) Laptop
(H, {M}) mPhone
(L, {S}) sPhone

See Section 5.4.1 for the specification of an administrative role

120 6. Case Study: Home Network

(L,{F})

(H,{F})

(L,{M})

(H,{M})

(L,∅)

(H,{F,M,S})

(L,{S})

(H, {F,M, S}): upper ARH delimiter, abstract role, having all administrative permissions
(L, ∅): lower ARH delimiter, abstract role, having no administrative permissions

Figure 6.2: Initial ARH of a Home Network

Table 6.10: Initial APRA in a Home Network

Administrative Role Organizational Scope Hierarchical Scope
(H, {F}) {(H, F, nilK), (H, F, nilB)} {[(L, F, NA, ∅), (H, F, A, {F})[}
(L, {F}) {(L, F, nilK), (L, F, nilB)} {[(L, F, NA, ∅), (L, F, A, {F})[}
(H, {M}) {(H, M, nilK), (H, M, nilB)} {[(L, M, NA, ∅), (H, M, A, {M})[}
(L, {M}) {(L, M, nilK), (L, M, nilB)} {[(L, M, NA, ∅), (L, M, A, {M})[}
(L, {S}) {(L, S, nilK), (L, S, nilB)} {[(L, S, NA, ∅), (L, S, A, {S})[}
{(L, {S}), (H, {M}), (H, {F})} {(nilT ,N , nilK), (nilT ,N , nilB)}](L,N , NA, ∅), (H, ∅, A, {F, M, S})[

An administration domain is expressed using a set of NS-N and NS-P branches as node
and permission pools respectively (organizational scope) and a set of regular role ranges
as a hierarchical scope (cf. Table 5.1). Administrative actions are expressed using a set of
predicates allowing the modification of NS-N, NRA, RRH, NS-P and PRA with respect
to administration domains (cf. Definitions 5.4 and 5.5). Table 6.10 illustrates the initial
APRA in our example of home networks. We will use in the following the corresponding
administrative predicates to explain how ASRBAC is enforced in this Home Network.

6.2.3 Evolution Scenario 1: Visitor

A young relative will spend some months with the son at the family residence. He has
a cellular phone with BlueTooth support and a digital audio player that can be accessed
through BlueTooth as well. Those two devices will join the home network as new nodes
in the community of the son, who takes this decision. The son will use his cellular phone,
which is the authority node of its community, to add the devices of the young rela-
tive. The network administration interface on the son’s cellular phone will then execute

121

Table 6.11: Modified NS-N in a Home Network after Evolution Scenario 1

Node Category Nodes
(nilT ,N , nilK) fPhone, Laptop, Car, mPhone, Camera, sPhone, rPhone, Player
−(H,N , nilK) fPhone, Laptop, Car, mPhone, Camera
−− (H,F, nilK) fPhone, Laptop, Car
−−−(H,F,HD) fPhone, Laptop
−−−(H,F,LD) Car
−− (H,M,nilK) mPhone, Camera
−−−(H,M,HD) mPhone
−−−(H,M,LD) Camera
−(L,N , nilK) sPhone, rPhone, Player
−− (L, S, nilK) sPhone, rPhone, Player
−−−(L, S,HD) sPhone, rPhone
−−−(L, S, LD) Player

the two evolution transitions nodeInsertion(rPhone, S) and nodeInsertion(Player, S),
where rPhone is the new node representing the cellular phone of the relevant and Player
is the new node representing his digital audio player.

According to the effects of the insertion of a new node described in Definition 3.3,
and to the administrative domain described in Table 6.10 for the administrative role
of the son’s cellular phone (L, {S}), this latter can perform the administrative action
canModifyNC((L, {S}), (L, S, nilK)) to update the Network Structure for Nodes (NS-N)
illustrated in Table 6.7. In terms of trustworthiness, the organizational scope of (L, {S}) is
relevant, because a new node is assigned to the lowest trust level L initially (cf. Definition
3.3). As for capability classification, the son’s cellular phone communicates with the two
new devices using safe channels, and it finds out that the relative’s cellular phone is heavy-
duty, while his digital audio player is light-duty.

The son’s cellular phone adds the two new nodes to the NS-N branch having the
root category (L, S, nilK). The membership of the two new nodes will then propagate
by inheritance to the dominating node categories (L,N , nilK) and (nilT ,N , nilK). Table
6.11 shows the resulting NS-N. The son’s cellular phone, which is the authority node of
its community, can take the decision of this NS-N modification independently. However,
all the authority nodes should be aware of it. So the son’s cellular phone multi-casts
the modified parts of NS-N to the father’s laptop and the mother’s cellular phone. For
this reason, it uses the Security Policy Logic-based Specification (SPLS) language and the
autonomic reconfiguration module of the Security Policy System (cf. Figure 2.2).

After inserting the two new nodes rPhone and Player in the network structure by
adding them to its community, the authority node sPhone must assign them to certain
roles in order to determine their permissions. According to the administrative permissions
assigned to the administrative role (L, {S}) in Table 6.10, sPhone can perform the admin-
istrative action canAssign((L, {S}),@(L, S, nilK), [(L, S,NA, ∅), (L, S,A, {S})[) to assign

122 6. Case Study: Home Network

Table 6.12: Modified NRA in a Home Network after Evolution Scenario 1

Regular Role Nodes
(H,F,A, {F}) Laptop
(H,F,NA, ∅) fPhone, Car
(H,M,A, {M}) mPhone
(H,M,NA, ∅) Camera
(L, S,A, {S}) sPhone
(L, S,NA, ∅) rPhone, Player

regular roles to rPhone and Player, which belong to its organizational scope represented by
the root node category (L, S, nilK), from its hierarchical scope represented by the regular
role range [(L, S,NA, ∅), (L, S,A, {S})[.

The initial regular role of a node is non-administrative and identified by the trust level
L (its initial trust level) and by its community. Such an initial regular role belongs to the
hierarchical scope of sPhone. It is actually the included lower bound (L, S,NA, ∅) of the
regular role range of its administrative domain. The authority node sPhone assigns this
regular role to rPhone and Player, by modifying the Node-Role Assignment (NRA) set
illustrated in Table 6.3, which results in the modified NRA illustrated in Table 6.12, and
multi-casts those modifications to the authority nodes Laptop and mPhone.

The relative wishes to access the Internet and to allow the son to download audio files
from his digital audio player. The two new nodes rPhone and Player will be automatically
able to use the Internet connection tool and read the family documents, as specified in
the Permission-Role Assignments (PRA) in Table 6.5 for the regular role (L, S,NA, ∅).
However, that initial PRA does not allow the devices of the son to access the content
of the new node rPhone. The son uses his cellular phone, which is an authority node
in the network, to enhance the set of security rules. He creates the Policy Set 6.3 using
the Human/Security System Interface (HSSI) of the Security Policy System (cf. Section
2.2.4). This latter rewrites the new security rule in SRBAC terms, which produces the
high-level internal Policy Set 6.4.

Policy Set 6.3 In addition to the Policy Set 6.1, we specify that:

1. Only the son is trusted to download Audio Files (AF) from the digital audio player
of the relative.

Policy Set 6.4 In addition to the Policy Set 6.2, we specify that:

1. Non-administrative nodes having the trust level of the son in the son’s community
can read AF.

According to Table 6.10 and the additional high-level Policy Set 6.4, the authority
node sPhone can perform the administrative action canModifyOC((L, {S}), (L, S, nilB))

123

Table 6.13: Modified NS-P in a Home Network after Evolution Scenario 1

Object Category Resources Permissions
−−−(H, F, A) CA (CA,RWX)
−−−(H, F, NA) PF,PH (PF,R),(PH,RW)
−− (H, F, nilB) PF,PH,CA (PF,R),(PH,RW),(CA,RWX)
−−−(H, M, NA) PF,DC (PF,R),(DC,X)
−− (H, M, nilB) PF,DC (PF,R),(DC,X)
−−−(H, S, NA) PF (PF,R)
−− (H, S, nilB) PF (PF,R)
−(H,N , nilB) PF,DC,PH,CA (PF,R),(DC,X),(PH,RW),(CA,RWX)
−−−(L, F, NA) IC,FD (IC,X),(FD,R)
−− (L, F, nilB) IC,FD (IC,X),(FD,R)
−−−(L, M, NA) IC,FD (IC,X),(FD,R)
−− (L, M, nilB) IC,FD (IC,X),(FD,R)
−−−(L, S, NA) IC,FD,AF (IC,X),(FD,R),(AF,R)
−− (L, S, nilB) IC,FD,AF (IC,X),(FD,R),(AF,R)
−(L,N , nilB) IC,FD,AF (IC,X),(FD,R),(AF,R)
(nilT ,N , nilB) IC,FD,AF,PF,DC,PH,CA (IC,X),(FD,R),(AF,R),(PF,R),(DC,X),(PH,RW),(CA,RWX)

Table 6.14: Modified PRA in a Home Network after Evolution Scenario 1

Regular Role Permissions
(H,F,A, {F}) (CA,RWX)
(H,F,NA, ∅) (PF,R),(PH,RW)
(H,M,NA, ∅) (PF,R),(DC,X)
(L,F,NA, ∅) (IC,X),(FD,R)
(L,M,NA, ∅) (IC,X),(FD,R)
(L, S,NA, ∅) (IC,X),(FD,R),(AF,R)

to categorize the new resource (AF) and the associated permission in the object category
(L, S,NA), given that (L, S,NA) �OC (L, S, nilB). The new resource and permission
propagate by inheritance in the Network Structure for Permissions (NS-P) illustrated in
Table 6.8, which produces the new NS-P illustrated in Table 6.13.

The new PRA illustrated in Table 6.14 is deduced from the mapping between the regu-
lar role (L, S,NA, ∅) and the object category (L, S,NA), whereby sPhone can use the ad-
ministrative action canAssignP ((L, {S}),@(L, S, nilB), [(L, S,NA, ∅), (L, S,A, {S})[) to
execute that mapping. The authority node sPhone multi-casts the modifications of PRA
and NS-P to the authority nodes Laptop and mPhone, and each authority node multi-casts
the modified elements of PRA to the nodes of its community.

Eventually, each node in the network can be aware of all the permissions that can
be granted to a node through its direct regular role, either due to that latter itself or
using inheritance between regular roles, which is illustrated in Table 6.15. This table
represents the modified low-level SRBAC policies resulting from the two nod-insertion
evolution transitions accomplished on behalf of the devices of the son’s visitor.

124 6. Case Study: Home Network

Table 6.15: Low-Level SRBAC Policies in a Home Network after Evolution Scenario 1

Regular Role Nodes Permissions
(H,F,A, {F}) Laptop (IC,X),(FD,R),(PF,R),(PH,RW),(CA,RWX)
(H,F,NA, ∅) fPhone, Car (IC,X),(FD,R),(PF,R),(PH,RW)
(H,M,A, {M}) mPhone (IC,X),(FD,R),(PF,R),(DC,X)
(H,M,NA, ∅) Camera (IC,X),(FD,R),(PF,R),(DC,X)
(L, S,A, {S}) sPhone (IC,X),(FD,R),(AF,R)
(L, S,NA, ∅) rPhone, Player (IC,X),(FD,R),(AF,R)

We can notice that the new permission concerning the download of audio files (AF,R)
is assigned to all the nodes of the son’s community, and to its authority node sPhone
by inheritance. The son’s device (sPhone) is specifically concerned by this new security
rule, but regardless of its authority role, which grants the new permission to any device
belonging to the same trust level and community.

6.2.4 Evolution Scenario 2: Mission

The resource management system (cf. Assumption 3.3) finds out that the relative’s cellular
phone (the non-administrative node rPhone) has more capabilities than the son’s cellular
phone (the authority node sPhone) to better manage the son’s community. Actually, the
both nodes are assigned to the capability class HD because each of them has the minimum
capabilities required in this class. However, the resource management system is supposed
to indicate the best candidates for a basic role each time the set of nodes evolves.

The resource management system is a distributed context-aware system in the network.
Its output is monitored and analyzed by all the authority nodes (cf. Figure 5.3). One
of the environment variables that can be evaluated at its output is called Mission. It
indicates potential changes in the basic roles of the network nodes (cf. Table 5.2), which
is the case in this scenario. The three authority nodes of the network Laptop, mPhone
and sPhone (cf. Table 6.12) may then capture the context-aware information telling that
rPhone is a better candidate for managing the son’s community.

At this stage, the authority nodes analyze each the potential change of an authority
node. The rules of this analysis are application-dependent. For the purpose of our example
of a Home Network, we may propose the following rules for such analysis:

• A node can acquire an administrative role if it is likely to stay in the network for
more than a month.

• If an authority node should be replaced, it may refuse if it is assigned to the highest
trust level H.

The previous analysis rules would make each authority node accept to replace sPhone by
rPhone in managing the son’s community. This is accomplished by assigning the regular
role (L, S,NA, ∅) to sPhone, and then assigning the regular role (L, S,A, {S}) to rPhone.

125

This order of assignment is important, because a community may stay for some time
without an authority node waiting for designating one, while a community may not have
more than one authority node.

Table 6.10 indicates that the administrative role (L, {S}), which is assigned to the
authority node sPhone (cf. Table 6.9), may use the range [(L, S,NA, ∅), (L, S,A, {S})[to
assign regular roles to nodes in the NS-N branch having the root node category (L, S, nilK).
This means that the authority node sPhone can independently accomplish the first step
of the evolution transition of this scenario by assigning the regular role (L, S,NA, ∅) to
itself. It informs the other authority nodes once it resigns from the administration of its
community. This is actually not specific to this case of authority node replacement. In all
cases, Node-Role Assignment (NRA) modifications performed by an authority node must
be multi-casted to other authority nodes.

At this point, the network is not stable because the son’s community has no authority
node. This is not specific to this scenario either. When a community loses its authority
node for any reason, the network reaches this unstable situation, and the other authority
nodes must be aware of it. In this scenario for example, they become aware due to the
multi-casting of the resigning authority node. In another scenario, an authority node
might be lost, which is up to the resource management system to discover and report
on its output environment variables. The solution for this unstable situation is to elect
another node to replace the resigning authority node. This could be a node from another
community. However, in this scenario, there is no need for the node election process
because the resource management system indicates that the node rPhone is supposed to
replace the resigning authority node sPhone.

Actually, the second step of this scenario is a cooperative effort between authority
nodes. Even if the node sPhone can stay assigned to the administrative role (L, {S})
temporarily after accomplishing the first step in order to accomplish any required tasks,
Table 6.10 states that the role of an authority node for the son’s community is out of
the hierarchical scope of any individual administrative role. Nevertheless, this table
also states that the authority nodes can decide together how to manage a role of an
authority node. In other words, they can perform together the administrative action
canAssign(AR,@(nilT ,N , nilK),](L,N , NA, ∅), (H, ∅, A, C)[) (cf. Definition 5.5).

Usually, the authority nodes take individual decisions, and then they negotiate to unify
the modified policies (cf. Algorithm 5.1). In this scenario, the negotiation algorithm will
return without launching the negotiation process because the decisions will be identical, as
long as the decision is already indicated by the resource management system. Eventually
the modified NRA set and low-level SRBAC policies, which are illustrated in Tables 6.16
and 6.17 respectively, will be registered on the authority nodes Laptop and mPhone, the
old authority node sPhone having become a non-administrative node will keep only the
Permission-Role Assignment (PRA) which did not change (cf. Table 6.14), and finally the
node rPhone will be informed about its new authority role by the other authority nodes
and receive the whole up-to-date SRBAC configuration.

As depicted in Figure 5.3 and formally described in Definitions 5.1 and 5.3, Node-Role
Assignments (NRA) in SRBAC define Administrative Node-Role Assignments (ANRA)
in ASRBAC. Therefore, in this scenario, the set ANRA illustrated in Table 6.9 will au-

126 6. Case Study: Home Network

Table 6.16: Modified NRA in a Home Network after Evolution Scenario 2

Regular Role Nodes
(H,F,A, {F}) Laptop
(H,F,NA, ∅) fPhone, Car
(H,M,A, {M}) mPhone
(H,M,NA, ∅) Camera
(L, S,A, {S}) rPhone
(L, S,NA, ∅) sPhone, Player

Table 6.17: Low-Level SRBAC Policies in a Home Network after Evolution Scenario 2

Regular Role Nodes Permissions
(H,F,A, {F}) Laptop (IC,X),(FD,R),(PF,R),(PH,RW),(CA,RWX)
(H,F,NA, ∅) fPhone, Car (IC,X),(FD,R),(PF,R),(PH,RW)
(H,M,A, {M}) mPhone (IC,X),(FD,R),(PF,R),(DC,X)
(H,M,NA, ∅) Camera (IC,X),(FD,R),(PF,R),(DC,X)
(L, S,A, {S}) rPhone (IC,X),(FD,R),(AF,R)
(L, S,NA, ∅) sPhone, Player (IC,X),(FD,R),(AF,R)

tonomously change, producing the modified ANRA illustrated in Table 6.18.

6.3 SRBAC vs. Or-BAC

The Or-BAC model [5] and its administrative model AdOr-BAC [32] incorporate and
extend the access control concepts of many models in the literature including the RBAC
model [89] and its administrative model ARBAC97 [84], as elaborated in the Or-BAC
official site http://www.orbac.org/. Therefore, comparing SRBAC with Or-BAC allows
us to consider a wide range of access control requirements in a variety of application fields.
In this section we set up the access control system of the above example using Or-BAC,
according to Table 6.1 and Policy Set 6.1, and compare the results with the previous

Table 6.18: Modified ANRA in a Home Network after Evolution Scenario 2

Administrative Role Authority Node
(H, {F}) Laptop
(H, {M}) mPhone
(L, {S}) rPhone

127

Table 6.19: Initial OrBAC’s NRA in a Home Network

Role Context Nodes
Trust Community Scope

A H F {F} Laptop
M {M} mPhone

L S {S} sPhone
NA H F ∅ fPhone, Car

M Camera

H: High trust F: Father’s community A: Authority
L: Low trust M: Mother’s community NA: non-administrative

S: Son’s community

SRBAC implementation of node roles and their associated privileges (cf. Table 6.6).
In order to compare the both models, we should assume that the father will not make

any further configuration or specification after the simple network configuration of Table
6.1 and the high-level specifications of Policy Set 6.1. In other words, we should assume
that the father’s laptop will be responsible of performing all the needed next steps until
reaching an initial Or-BAC implementation derived from those enduser data. Actually,
deriving initial low-level elements from high-level enduser configurations is an essential
characteristic of autonomic systems [56].

In Or-BAC vocabulary, the home network is the organization, and the subjects are the
devices of the home residents. The role of a subject defines a set of privileges based on
its administrative capabilities and responsibilities. As explained above in Section 6.1.1,
the father’s laptop can specify for each device a role depending on its computation and
storage capabilities.

Given the need for only one authority node for a community, the initial roles in
a community are “Authority” for a node having the required capabilities and “non-
administrative” for the others. Other evolving attributes constitute the context com-
ponent, which might reduce or increase a set of privileges during an access operation. In
our example, the evolving attributes are the trust level, the community membership and
the administration scope. As a result, Table 6.19 represents the configuration of Or-BAC
components that can be derived from the enduser network configuration illustrated in
Table 6.1. Actually, Table 6.19 illustrates the initial Or-BAC’s Node-Role Assignments
(NRA) taking into consideration context-based constraints.

The laptop is now supposed to derive permissions from the specifications of Policy
Set 6.1 and assign them to roles taking the context into consideration. This is now pos-
sible because a classification based on roles and contextual attributes is already done as
illustrated in Table 6.19.

A permission in Or-BAC is an action/activity performed on an object/view, whereby
activities and views are organization-based abstractions of actions and objects respectively.

128 6. Case Study: Home Network

Table 6.20: Initial OrBAC’s PRA in a Home Network

Role Context Permissions
Trust Community Scope

A H F {F} (CA,RWX)
NA H F ∅ (PH,RW)

M (DC,X)
any (PF,R)

L (IC,X),(FD,R)

Table 6.21: Initial OrBAC’s Node-Permission Assignments in a Home Network

Role Context Nodes Permissions
A H, F, {F} Laptop (IC,X),(FD,R),(PF,R),(PH,RW),(CA,RWX)

H, M, {M} mPhone (IC,X),(FD,R),(PF,R),(DC,X)
L, S, {S} sPhone (IC,X),(FD,R)

NA H, F, ∅ fPhone, Car (IC,X),(FD,R),(PF,R),(PH,RW)
H, M, ∅ Camera (IC,X),(FD,R),(PF,R),(DC,X)

For instance, an activity can be a subset of the set of actions {Read, Write, Execute},
and a view can be a set of objects undergoing the same access control rules, such as the
alert management objects on the father’s car. Actually, our focus is on roles and their
associations, so we will simply consider an Or-BAC permission as a couple of a target and
the related set of allowed operations, which is represented by the same notation already
used in Section 6.1.2.

We assume that an Or-BAC system will have the necessary tools for deriving a set of
rules equivalent to the high-level SRBAC rules of Policy Set 6.2, and then for applying a set
of administration rules that allow it to derive the low-level permissions and assign them to
the node roles with respect to context-aware attributes. Table 6.20 illustrates the initial
Or-BAC’s Permission-Role Assignments (PRA) taking into consideration context-based
constraints.

Inheritance relationships can be defined between the elements of each type of Or-BAC
components. Hence, an authority node inherits the privileges of a non-administrative node
if it can put itself in the same context or an inherited context. For instance, the laptop can
perform access actions as an authority node in the context (H,F,{F}), but it can also act as
a non-administrative node in the inherited context (H,F,∅). By applying this inheritance
rule on roles and the context component, we can determine all the permissions a node can
acquire through its role and inherited roles in different possible contexts, as illustrated in
Table 6.21.

Table 6.3 (SRBAC’s NRA) is equivalent to Table 6.19 (Or-BAC’s NRA). Similarly,
Table 6.6 (SRBAC’s low-level policies) is equivalent to Table 6.21 (Or-BAC’s Node-

129

Permission Assignments). This means that Or-BAC can be used for modeling access
control in the Home Network of our example. This result is expected because Or-BAC
is organization-based and context-aware, which is enough for deriving the initial access
control elements in an IOrg-AutoNet. However, it might raise problems when it comes to
the sought autonomic administration of the network evolution.

Actually, the application of the Or-BAC model requires the presence of security experts
to accomplish low-level system configuration and policy specification. As for SRBAC, such
expert users are not needed, because low-level elements can be autonomously derived as
explained throughout Chapters 4 and 5, and instantiated in this Home Network example.
Besides, we assumed that an Or-BAC system would have the necessary derivation mech-
anisms for playing the role of a security administrator, because it is possible to enhance
it with such mechanisms, which allowed us to focus on the capabilities of the Or-BAC
model itself. However, we can say that such derivation capabilities, which usually distin-
guish autonomic computing solutions, present a considerable advantage of SRBAC when
compared with any other access control model.

Nonetheless, the regular roles in SRBAC have a more complex specification format
because of integrating context-based information, which might cause redundancy in using
contextual data. Besides, this mixture of the two different notions of role and context might
require more processing for adapting roles to context changes; hence potentially causing
a performance problem. Actually, we think that it is necessary to work on capability and
context attributes altogether as role parameters to have an autonomic system. Therefore
we intend to keep this methodology and try to solve any potential performance problems in
future works. Besides, we accept some redundancy in handling context-based information
to reach our goal of autonomic administration. The autonomic support in the regular role
specification format is discussed in Chapter 5.

6.4 Conclusion

In order to clarify the concepts of SRBAC and ASRBAC, and to validate their applicability,
this chapter provides a detailed example about the configuration of their components and
the specification of their policies. It is about applying SRBAC and its administrative
counterpart in a Home Network.

We can see in this case study how an access control system based on SRBAC/ASRBAC
could build decentralized low-level access control components and policies depending on
simple high-level network configuration and security rule specifications. We can also see
how it could adapt to certain evolution transitions and context-aware changes without a
human intervention.

The example was also developed in the competing model Or-BAC [5], and the result
was compared with the implementation of SRBAC in order to emphasize the advantages
and disadvantages of this latter.

130 6. Case Study: Home Network

131

Chapter 7

Prototype: Enforcement Model

This chapter proposes a model for enforcing SRBAC and ASRBAC policies, which defines
an architecture for implementing a corresponding access control system. The proposed
enforcement architecture is based on the layered PEI (Policy - Enforcement - Implementa-
tion) framework [87]. A first section describes the PEI framework, a main section presents
our enforcement solution for SRBAC and ASRBAC policies, and a third section concludes
the chapter with a quick summary and certain implementation considerations.

7.1 PEI Framework

This section describes the layered Policy - Enforcement - Implementation (PEI) framework.
Policy is concerned with “what” security needs to be enforced, and mechanism is concerned
with “how” the security is being enforced. The PEI framework bridges the gap between
the what (policies) and the how (enforcement and implementation) by introducing layers
of models. Figure7.1, which is extracted from [87], illustrates the PEI Models Framework.

As illustrated in Figure 7.1, between the top and bottom layers, which represent the
informal requirements and the actual implementation respectively, there are three layers
representing three types of models, namely the policy model, the enforcement model and
the implementation model. At the layer of policy model, informal high-level objectives
are translated into rigor and detail using a formal or quasi-formal notation. This is where
SRBAC and ASRBAC policies are derived from high-level configuration. See Section 6.1
for a detailed example about such policy derivation. With respect to our vision of a security
policy system for autonomic networks (cf. Section 2.2.4), it is at the policy model layer of
PEI where the system uses instances of SPML (Security Policy Management Language)
and SPLS (Security Policy Logic-based Specification). Moreover, the high-level informal
security rules expressed using the so-called HSSI (Human - Security - System Interface)
language in our sketch of a security policy system (Figure 2.2) should be used at the top
layer of the PEI framework.

The enforcement and implementation models address the “how” aspect of enforcing
a policy. The enforcement models address system architectures, block diagrams, and
protocol flows, and they leave certain details to be elaborated in the implementation

132 7. Prototype: Enforcement Model

Figure 7.1: The PEI Models Framework (Extracted from [87])

models. The implementation models are focused on a pseudocode level of detail and
precision. Actually, the enforcement and implementation models should define the link
between an SPML specification and the actual code represented by Java Applications in
our sketch of a security policy system (Figure 2.2). We should note here that we opted for
the Java programming language as the expected implementation language in our solution
because it is platform-independent, which is compatible with the heterogeneity of nodes
in IOrg-AutoNets. However, the models that we present in this chapter can be realized
using several programming languages. In general, the relationship between adjacent layers
in the PEI framework is many-to-many.

7.2 Enforcement Model

This section presents the elements of an enforcement model based on the SRBAC model
and its administrative counterpart ASRBAC. Actually, we describe an enforcement archi-
tecture to present our enforcement model. In terms of enforcement architecture, a typical
authorization system includes a Policy Decision Point (PDP) and a Policy Enforcement
Point (PEP). Usually, an enforcement architecture defines a push mode or a pull mode.
In a push mode, each subject presents his or her information to the PDP, and the decision
is sent to PEP; while in a pull mode, a PEP collects the subject’s information and queries
the PDP for a policy decision.

Instances of both PDP and PEP are installed on each IOrg-AutoNet node. For an
access, the PDP of the resource hosting node identifies the type of the secure relation
binding it with the access requesting node, which allows it to determine the highest regular

133

role in the RRH (Regular Role Hierarchy) that can be activated by the access requesting
node (cf. Section 4.5). The access requesting node presents its information (the activated
role and the target resource). The PDP of the resource provider (RP) node (the host of the
target resource) can then take its decision based on the information related to the secure
relation type (highest regular role authorized), the target resource (object category), and
the SRBAC policies (RPS, PPS and OCPS instances) that relate a regular role to a set of
permissions through mapping with a set of object categories (cf. Section 4.9).

The PDP of the RP node may now ask the PEP on the same node to apply its access
control decision. However, before taking its final decision, as well as during the access
operation, the PDP keeps collecting and analyzing context-aware information (cf. Sec-
tion 5.5.1) that may change the attributes of the access requesting node (Trustworthiness,
Membership and Mission) or in certain cases the access control rules (Trust, Mobility,
Authority and Specification). An authority RP node collects context-aware information
from the outputs of context-aware systems (Figure 5.3). A non-administrative RP node
collects such information through a communication with its authority node. If the col-
lected context-aware information indicates a change, the access operation is blocked before
or during the access session, waiting for the changes to take place, and then a new access
control decision is taken accordingly. A non-administrative RP node only waits for pos-
sible policy modifications, while an authority RP node also executes them, eventually in
collaboration with other authority nodes (cf. Section 5.5.6).

We propose a hybrid approach that uses both the push mode by allowing the access
requesting node to push its access request information to the PDP of the RP node, and
the pull mode by allowing this latter to pull context-aware information before and during
an access session. Figure 7.2 illustrates the architecture corresponding to our enforcement
model. Actually, it is the enforcement architecture of SRBAC policies, as depicted in
the figure. Nevertheless, ASRBAC policies are integrated in SRBAC policies as already
explained in Section 5.4.5 (see Appendix A for an ASRBAC policy example). Therefore,
Figure 7.2 represents the enforcement architecture of both SRBAC and ASRBAC policies.

The architecture includes three main components, namely the access requesting node,
the Resource Provider (RP) node (the host of the target object) and the set of context-
aware systems of the IOrg-AutoNet. These latter are distributed systems in the network,
whereby each authority node can use a distributed directory service to access environment
variables, and each other node can use that service through its authority node. An access
control monitor in the RP node collects resource information from the request of the access
requesting node in order to identify the corresponding object category.

An access session is initialized by a client application on the access requesting node,
in the context of a secure relation binding it with the RP node, and works as follows:

• An access request is sent to a service provider on the RP node (step 1).

• The activated regular role in the access session of the access requesting node, which
is sent with the access request, is pushed to the Policy Decision Point (PDP) by the
service provider (step 2).

• The PDP, which keeps monitoring the environment variables (step 3), pulls context-

134 7. Prototype: Enforcement Model

Context-Aware Systems

Environment Variables
Directory
Service

Access Requesting Node

Client Application

Secure RelationsAccess Session

Resource Provider (RP) Node

Service Provider

1. Service Request
With Activated
Regular Role

Policy
Decision

Point (PDP)

2. Activated Regular Role (Push)
Secure Relations

SRBAC Policy Instances

3. Monitoring
Environment

Variables

4. Context-Aware
Information

(Pull)

Application-Specific DB

Policy
Enforcement
Point (PEP)

Execution
Environment

Access Control
Monitor

RequestService

Resource
Info.

5. Object
Category

6. Privileges

Access Rights

Figure 7.2: Enforcement Architecture for SRBAC Policies

135

aware information from the distributed directory service (step 4), and collects from
the access control monitor the object category corresponding to the target resource,
which is identified in the access request by the execution environment (step 5).

• The PDP has all the needed information (activated regular role, object category
and context-aware changes if any). It uses its database of secure relations to identify
the highest regular role allowed for the access requesting node in the secure relation
binding them, and its SRBAC policy instances to identify the permissions of the
activated regular role with respect to the object category of the target resource. It
can then decide if the access may be granted, given that no context-aware changes
are taking place. The decision is forwarded to the Policy Enforcement Point (PEP)
in the form of confirmed or declined privileges (step 6), and enforced in the execution
environment with regard to a database specific to the requested access.

7.3 Conclusion

We presented the layered PEI (Policy - Enforcement - Implementation) framework, which
bridges the gap between the what (policies) and the how (enforcement and implemen-
tation) by introducing layers of models. Accordingly, we introduced our enforcement
architecture to describe our enforcement model, considering that SRBAC and ASRBAC
models define the policy model layer. We tried in this chapter to introduce an enforcement
architecture that can be implemented using several techniques, given that the relationship
between adjacent layers in the PEI framework is many-to-many.

In the implementation model layer of the PEI framework, several aspects should be
considered, such as policy specifications, requesting node and regular role authentications,
trusted update of node attributes and access control rules, and secure communications
between computing components in the system. The mechanisms of a security system need
also to meet the performance requirements of different access and collaborative scenarios.
We leave the implementation model to a future work, whereby we will consider such aspects
for realizing the enforcement architecture presented in this chapter.

Actually, we already handled many implementation issues in this thesis. In terms of
policy specifications, we described how SRBAC policies (cf. Section 4.9), and eventually
ASRBAC policies (cf. Section 5.4.5), can be expressed using our extension of the RBAC
Profile of XACML V2.0 [15]. We give a detailed example about such XACML specifications
in Appendix A. By using XACML [4], we propose an instance of SPML (Security Policy
Management Language) in our sketch of a security policy system (cf. Section 2.2.4).
However, we still need to study an instance language of SPLS (Security Policy Logic-
based Specification) in this system. The Authorization Specification Language (ASL) [52]
could be used for this purpose, as we already explained in a publication [10]. The use of
ASL needs more study in a future work.

In terms of node authentication, a secure relation is established after a mutual au-
thentication between two nodes (cf. Section 4.4). Because an access session is created in
the context of a secure relation (Figure 4.5), node authentication is already achieved. We
already proposed cryptographic protocols for mutual authentication between nodes in a

136 7. Prototype: Enforcement Model

similar environment in a Master’s thesis [7], but they need more elaboration and adapta-
tion to the IOrg-AutoNet model in a future work. Besides, a solution is needed for the
authenticity of the source of the activated regular role pushed to the PDP of the resource
hosting node (the Resource Provider node).

Finally, in order to have trusted update of node attributes and SRBAC/ASRBAC poli-
cies, the access control system itself performs such modifications through its autonomous
agents (the authority nodes), but we still need to study the trustworthiness of the outputs
of the distributed context-aware systems (Figure 5.3). As for the secure communication
between the components of the enforcement architecture, it may be achieved using our
autonomic security architecture, for which we introduced a sketch in Section 2.2.3. In
other words, certain implementation aspects already make part of our solution to a cer-
tain extent, but we need to complete our work on them and on other implementation
issues before proposing our implementation model.

137

Chapter 8

Conclusion

8.1 Thesis Summary

The objective of this thesis is to establish a basis for security administration in autonomic
networks. We built a research context in the first part, and tried to achieve our objective
in the second part, in the context of an access control solution. The third part was
introduced to prove the feasibility of the proposed solution, and to discuss its enforcement
and implementation features.

8.1.1 Building the Context

In the first part, we presented our definition of autonomic networks (Definition 2.1) and
proposed sketches for an autonomic security architecture (Figure 2.1) and an autonomic
security policy system (Figure 2.2). This was done in the context of a theoretical review
of existing related work.

Afterward, we defined a specific model of autonomic networks without preestablished
infrastructures, and we denominated it IOrg-AutoNet (Definition 3.2). The IOrg-AutoNet
network model defines an evolving context-aware organizational structure. We studied
the evolution scheme of that structure and its potential effects on the administration
responsibilities of the network nodes (Section 3.2). This research context was built in order
to establish a framework for the definitions of an access control model and its autonomic
administrative counterpart.

8.1.2 Achieving the Objective

In the second part, we defined the types of secure relations (Section 4.4) between the net-
work nodes, and explained how the type of a secure relation defines the security materials
to be used in its context, including access control policies. This allowed us then to define
the Secure Relation Based Access Control (SRBAC) model for IOrg-AutoNets. Before
defining SRBAC (Definition 4.17 and Figure 4.5) as a variant of RBAC [89], we discussed
the different attributes of nodes and shared resources, and accordingly introduced a set
of organizational and hierarchical access control components that should make part of

138 8. Conclusion

SRBAC whatever its basis model could be (Definitions 4.6, 4.10 and 4.11). In terms of
enhancement of RBAC, we explained how SRBAC adapts to the context-aware and self-
management requirements of IOrg-AutoNets. In order to propose a complete solution, and
to point out its feasibility, we also studied the specification of SRBAC policies. Eventually,
we proposed an extension of the RBAC Profile of XACML V2.0 [15] (Figure 4.6).

The definition of SRBAC was introduced in order to build the bases of an autonomic
access control system. Therefore, the next step was the definition of its administrative
counterpart ASRBAC. Because RBAC is the basis for SRBAC, and for many other reasons
explained in a study of existing access control administration solutions (Section 5.2), we
used ARBAC02 [73], which is an administrative counterpart of RBAC, as the basis of ASR-
BAC. The extension of the distributed organizational ARBAC02 with node collaboration,
context-awareness, self-awareness, self-adaptation, self-optimization and self-configuration
produced our autonomic, distributed organizational ASRBAC model. Actually, this is
our main contribution in this thesis. Section 5.3 describes the details of this contribution
before defining the ASRBAC model (Definition 5.6).

We defined the different components of the ASRBAC model, explaining the self-
configuration aspect for each one. Definition 5.1 of administrative roles explains how
they can be deduced from the regular roles of SRBAC. Eventually, Definition 5.2 of the
administrative role hierarchy points out its inclusion relationship with the regular role
hierarchy in SRBAC. Definition 5.3 of administrative node-role assignments proves that
they are actually a subset of node-role assignments of SRBAC. And finally, the adminis-
trative permission-role assignments illustrated by Table 5.1 are proved to be autonomously
implied by the specifications of the relevant administrative roles. In order to refine our
access control administration solution, and to prove its autonomic computing features, we
presented a generic ASRBAC policy specification in Section 5.4.5.

The definitions of the ASRBAC model and its components were not enough to em-
phasize all the features of autonomic computing in ASRBAC. Therefore, we dedicated
Section 5.5 to the description of the details of those features. Context-awareness is a basic
feature of the autonomic functionality in our solution. We began by a description of the
context-aware information which are utilized in ASRBAC, and how the network evolution
has effects on them, which was summarized in Table 5.2. It was then time to elaborate the
different kinds of autonomic operations, from predefined self-management to autonomous
evolution passing by autonomic control loop and mapping-based self-adaptation. Figure
5.3 illustrates all the features and types of autonomic administration in ASRBAC. We
concluded this basic section of the thesis by explaining the need for node cooperation to
accomplish the tasks defined by ASRBAC. Furthermore, we found it necessary to end the
chapter with more details about node cooperation by proposing a groundwork for policy
negotiation (Section 5.6).

8.1.3 Proving the Feasibility

In order to prove the feasibility of our solution, we used two methods in two respective
chapters in the third part of the thesis. The first method was a case study of the details of
SRBAC and ASRBAC policy enforcement in a home network, including a comparison with

139

the competing model Or-BAC [5]. The second method was built on describing a possible
prototype as a proof of concepts through an enforcement architecture and implementation
considerations for SRBAC/ASRBAC policies.

We opted for home networks in the case study because they are usually built without
a preexisting infrastructure, and they need an evolving structuring, based on trust, avail-
ability and responsibility attributes, to control the access to their shared resources. They
need to be autonomic, basically because they are not supposed to have expert users. In
brief, a home network needs to be an IOrg-AutoNet (cf. Definition 3.1).

8.2 Future Work

Our solution is presented as a basis for an autonomic access control system. In other words,
we do not claim that we propose the system itself. This is why we consider our research
as a step, or maybe a number of steps, Toward a Security Administration System
for Autonomic Networks. This means that a considerable amount of work must be
done later. Besides, the solution has potential performance and scalability limitations,
which have to be handled by eventual enhancements to the solution proposed currently,
and have to be considered in future extensions. We pointed out the need for a future work
whenever it was necessary in the thesis. Here we give a list of the most indispensable of
those future works:

• Autonomic Security Architecture: The intra-node security architecture de-
scribed in Section 2.2.3 needs more study. An interesting aspect to consider will
be the security of the architecture itself. Another important point, is to develop this
architecture using existing standards.

• Security Policy System: The security policy system illustrated in Figure 2.2 is
just a sketch for a future work. Its different mechanisms need to be studied in details,
above all the management of high-level security specifications and the autonomic
reconfiguration of low-level security rules using logic-based instructions.

• Network Deployment: We assume that an initial network structure is already
created (cf. Assumption 3.4). We just presented an expectation of this initialization
phase in Section 3.2. The network deployment phase needs to be studied in details.

• Self-Healing: This is a very important and a basic functionality in autonomic
networks. We just presented an evolution transition performed in this context, which
is node banishment (cf. Definition 3.3). However, an indispensable future work
should handle self-healing issues in IOrg-AutoNets.

• Authentication: In order to achieve a consistent security administration system
for autonomic network, authentication issues should be handled as well. We already
pointed out this need in Section 4.4, and proposed some initial ideas.

• Security Validation: The security properties of our solution need to be validated
formally, and the prototype modeled in Chapter 7 should support this validation.

140 8. Conclusion

The dynamic behavior of our access control system, which is a response to the IOrg-
AutoNet evolution transitions, may introduce certain security vulnerabilities. We
need to study the vulnerabilities that may be caused by each administrative action.
We need to define our security properties and perform a formal validation of the
effects of each administrative action on them. For example, we may define a set of
security properties representing the global security level of the access control system.
Afterward, we may study the models of the different attacks that could be performed
on the context-aware systems, so that the environment variables may change and the
authority nodes may respond by a set of administrative actions that may decrease
the global security level. A possible security property to verify in this context could
be that “one authority node at least should have the highest trust level H”.

• Policy Negotiation: The policy negotiation solution presented in Section 5.6 is
just a sketch for a future enhancement, whereby the different presented mechanisms
should be developed in details and a policy negotiation protocol should be formally
specified and validated.

• Node Cooperation: As explained in Section 5.5.6, the authority nodes need to
cooperate for many reasons in the access control system. In addition to policy
negotiation, the collaborative validation of SRBAC component adaptation and the
collaborative election of nodes for assignment to certain regular roles should be
worked out.

• Multi-Organizational Support: A scalability issue may arise in certain scenarios
where number of nodes in one or more communities may be considerable. A solution
could be to handle each community as an independent infrastructureless organiza-
tional network in a multi-organizational context. The recent ROBAC model [106]
and its administrative counterpart AROBAC07 model [107] could be used as bases
for SRBAC and ASRBAC respectively.

• Dynamic Attribute-Based Access Control: The mixture of the two different
concepts of role and context in the specification of a regular role in SRBAC might
require more processing for adapting roles to context changes; hence potentially
causing a performance problem. Actually, we think that it is necessary to work
on administration privileges and context attributes altogether as role parameters to
have an autonomic system. Therefore we intend to keep this methodology and try to
solve any potential performance problems in a future work. An interesting solution
could be to use the very recent model UCON [105] as a basis for SRBAC. It is
attribute-based and supports attribute mutability, which may allow us to use all the
attributes we want as access decision parameters and in a consistent and continuous
manner. As for ASRBAC, we might need in this case to propose an administrative
counterpart for UCON in the context of ASRBAC requirements, because UCON
does not have an administrative counterpart yet.

141

Appendix A

XACML Sample Instances in a
Home Network

In this appendix, we write some of the XACML sample instances of the Home Network
example described in Chapter 6. Those instances correspond to the permissions of the
role (H,F,A, {F}). This appendix allows to understand the extension we propose for the
RBAC Profile of XACML V2.0 [15] to incorporate the organizational entities of SRBAC.
It also gives an example of the integration of ASRBAC policy specifications in the SRBAC
policies themselves. Moreover, it provides a basis to understand the realization aspects of
certain access control administration operations elaborated in Chapter 5, such as the use
of XACML instructions in policy negotiation (cf. Section 5.6).

A.1 RPS of a Regular Role

The following Role <PolicySet> (RPS) of the role (H,F,A, {F}) states that a node hav-
ing this role can use the permissions specified by the associated Permission <PolicySet>
(PPS):

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="RPS:H_F_A_F:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">

<Target>
<Subjects>
<Subject>

<SubjectMatch MatchId="&function;anyURI-equal">
<AttributeValue

DataType="&xml;anyURI">&roles;(H,F,A,{F})</AttributeValue>
<SubjectAttributeDesignator

AttributeId="&role;"
DataType="&xml;anyURI"/>

</SubjectMatch>

142 A. XACML Sample Instances in a Home Network

</Subject>
</Subjects>

</Target>
<!-- Use permissions associated with the role (H,F,A,{F}) -->
<PolicySetIdReference>PPS:H_F_A_F:role</PolicySetIdReference>

</PolicySet>

A.2 PPS of an Authority Regular Role

The following Permission <PolicySet> (PPS) of the role (H,F,A, {F}) states that it
has the permission of managing SRBAC components because it is based on the authority
basic role A (ASRBAC policy specification). The PPS instance also states that the other
permissions are associated with the object category (H,F,A), and that the PPS instances
associated with the junior roles (L,F,A, {F}) and (H,F,NA, ∅) should be included:

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="PPS:H_F_A_F:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">

<!-- Permissions specifically for the authority (H,F,A,{F}) -->
<Policy PolicyId="Permissions:specifically:for:the:H_F_A_F:authority"

RuleCombiningAlgId="&rule-combine;permit-overrides">
<!-- Permission to manage SRBAC components -->
<Rule RuleId="Permission:to:manage:SRBAC:components"

Effect="Permit">
<Target>

<Resources>
<Resource>

<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">organizational scope
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-id"
DataType="&xml;string"/>

</ResourceMatch>
<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">(H,F,nilK)</AttributeValue>
<!-- nilK = capability class ignored -->

<ResourceAttributeDesignator
AttributeId="&resource;resource-NCroot"
DataType="&xml;string"/>

</ResourceMatch>
<ResourceMatch MatchId="&function;string-equal">

143

<AttributeValue
DataType="&xml;string">(H,F,nilB)</AttributeValue>
<!-- nilB = basic role ignored -->

<ResourceAttributeDesignator
AttributeId="&resource;resource-OCroot"
DataType="&xml;string"/>

</ResourceMatch>
</Resource>
<Resource>

<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">hierarchical scope
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-id"
DataType="&xml;string"/>

</ResourceMatch>
<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">(L,F,NA,{})</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-includedStart"
DataType="&xml;string"/>

</ResourceMatch>
<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">(H,F,A,{F})</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-excludedEnd"
DataType="&xml;string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>

<ActionMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">manage</AttributeValue>
<ActionAttributeDesignator

AttributeId="&action;action-id"
DataType="&xml;string"/>

</ActionMatch>
</Action>

</Actions>

144 A. XACML Sample Instances in a Home Network

</Target>
</Rule>

</Policy>
<!-- Include permissions associated with the object category (H,F,A) -->
<PolicySetIdReference>OCPS:H_F_A:category</PolicySetIdReference>
<!-- Include permissions associated with the role (L,F,A,{F})) -->
<PolicySetIdReference>PPS:L_F_A_F:role</PolicySetIdReference>
<!-- Include permissions associated with the role (H,F,NA,{}) -->
<PolicySetIdReference>PPS:H_F_NA_:role</PolicySetIdReference>

</PolicySet>

A.3 Inherited PPS Instances

We will not write the PPS instance associated with the role (L,F,A, {F}) because it has
no direct permissions in the PRA (Permission-Role Assignments) set, as illustrated in
Table 6.5. As for the PPS of the role (H,F,NA, ∅), the following instance states that its
permissions are associated with the object category (H,F,NA), and that the PPS instance
associated with the junior role (L,F,NA, ∅) should be included:

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="PPS:H_F_NA_:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">

<!-- Include permissions associated with object category (H,F,NA) -->
<PolicySetIdReference>OCPS:H_F_NA:category</PolicySetIdReference>
<!-- Include permissions associated with the role (L,F,NA,{}) -->
<PolicySetIdReference>PPS:L_F_NA_:role</PolicySetIdReference>

</PolicySet>

The following PPS instance of the role (L,F,NA, ∅) states that its permissions are
associated with the object category (L,F,NA). The role inheritance chain stops here
for (H,F,A, {F}). No need to add a reference to the junior role of (L,F,NA, ∅), which
is (L,N , NA, ∅), because it is the abstract delimiter role of the Regular Role Hierarchy
(RRH), as illustrated in Figure 6.1:

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="PPS:L_F_NA_:role"
PolicyCombiningAlgId="&policy-combine;permit-overrides">

<!-- Include permissions associated with object category (L,F,NA) -->
<PolicySetIdReference>OCPS:L_F_NA:category</PolicySetIdReference>

</PolicySet>

A.4 Associated OCPS Instances

The following Object Category <PolicySet> (OCPS) of the object category (H,F,A)
specifies its associated permission (read, write and execute car alerts), and references

145

its junior object category (H,F, nilB) in the organizational component NS-P (Network
Structure for Permissions):

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="OCPS:H_F_A:category"
PolicyCombiningAlgId="&policy-combine;permit-overrides">

<!-- Permissions specifically for the category (H,F,A) -->
<Policy PolicyId="Permissions:specifically:for:the:H_F_A:category"

RuleCombiningAlgId="&rule-combine;permit-overrides">
<!-- Permission to read, write and execute car alerts -->
<Rule RuleId="Permission:to:RWX:car:alerts"

Effect="Permit">
<Target>

<Resources>
<Resource>

<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">car alerts</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-id"
DataType="&xml;string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>

<ActionMatch MatchId="&function;decimal-equal">
<AttributeValue

<!-- Same as Unix: 7 = RWX -->
DataType="&xml;decimal">7</AttributeValue>

<ActionAttributeDesignator
AttributeId="&action;action-id"
DataType="&xml;decimal"/>

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>
<!-- Reference to the junior category in NS-P -->
<PolicySetIdReference>OCPS:H_F_nilB:category</PolicySetIdReference>

</PolicySet>

The following Object Category <PolicySet> (OCPS) of the category (H,F,NA)
specifies its two associated permissions (read and write photos and read private files), and

146 A. XACML Sample Instances in a Home Network

references its junior object category (H,F, nilB) in the organizational component NS-P
(Network Structure for Permissions):

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="OCPS:H_F_NA:category"
PolicyCombiningAlgId="&policy-combine;permit-overrides">

<!-- Permissions specifically for the category (H,F,NA) -->
<Policy PolicyId="Permissions:specifically:for:the:H_F_NA:category"

RuleCombiningAlgId="&rule-combine;permit-overrides">
<!-- Permission to read and write photos -->
<Rule RuleId="Permission:to:RW:photos"

Effect="Permit">
<Target>

<Resources>
<Resource>

<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">photos</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-id"
DataType="&xml;string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>

<ActionMatch MatchId="&function;decimal-equal">
<AttributeValue

<!-- Same as Unix: 6 = RW -->
DataType="&xml;decimal">6</AttributeValue>

<ActionAttributeDesignator
AttributeId="&action;action-id"
DataType="&xml;decimal"/>

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
<!-- Permission to read private files -->
<Rule RuleId="Permission:to:R:private:files"

Effect="Permit">
<Target>

<Resources>
<Resource>

147

<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">private files</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-id"
DataType="&xml;string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>

<ActionMatch MatchId="&function;decimal-equal">
<AttributeValue

<!-- Same as Unix: 4 = R -->
DataType="&xml;decimal">4</AttributeValue>

<ActionAttributeDesignator
AttributeId="&action;action-id"
DataType="&xml;decimal"/>

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>
<!-- Reference to the junior category in NS-P -->
<PolicySetIdReference>OCPS:H_F_nilB:category</PolicySetIdReference>

</PolicySet>

The following Object Category <PolicySet> (OCPS) of the category (L,F,NA)
specifies its two associated permissions (read family documents and execute Internet con-
nection), and references its junior object category (L,F, nilB) in the organizational com-
ponent NS-P (Network Structure for Permissions):

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="OCPS:L_F_NA:category"
PolicyCombiningAlgId="&policy-combine;permit-overrides">

<!-- Permissions specifically for the category (L,F,NA) -->
<Policy PolicyId="Permissions:specifically:for:the:L_F_NA:category"

RuleCombiningAlgId="&rule-combine;permit-overrides">
<!-- Permission to read family documents -->
<Rule RuleId="Permission:to:R:family:documents"

Effect="Permit">
<Target>

<Resources>

148 A. XACML Sample Instances in a Home Network

<Resource>
<ResourceMatch MatchId="&function;string-equal">
<AttributeValue

DataType="&xml;string">family documents</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-id"
DataType="&xml;string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>

<ActionMatch MatchId="&function;decimal-equal">
<AttributeValue

<!-- Same as Unix: 4 = R -->
DataType="&xml;decimal">4</AttributeValue>

<ActionAttributeDesignator
AttributeId="&action;action-id"
DataType="&xml;decimal"/>

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
<!-- Permission to execute Internet connection -->
<Rule RuleId="Permission:to:x:Internet:connection"

Effect="Permit">
<Target>

<Resources>
<Resource>

<ResourceMatch MatchId="&function;string-equal">
<AttributeValue DataType="&xml;string">

Internet connection</AttributeValue>
<ResourceAttributeDesignator

AttributeId="&resource;resource-id"
DataType="&xml;string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>

<ActionMatch MatchId="&function;decimal-equal">
<AttributeValue

<!-- Same as Unix: 1 = X -->

149

DataType="&xml;decimal">1</AttributeValue>
<ActionAttributeDesignator

AttributeId="&action;action-id"
DataType="&xml;decimal"/>

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>
<!-- Reference to the junior category in NS-P -->
<PolicySetIdReference>OCPS:L_F_nilB:category</PolicySetIdReference>

</PolicySet>

The previous XACML sample instances altogether state that a node having the role
(H,F,A, {F}) is an authority node that can manage SRBAC components with respect
to the organizational scope represented by the set {(H,F, nilK), (H,F, nilB)} and the
hierarchical scope represented by the set {[(L,F,NA, ∅), (H,F,A, {F})[}, and that it has
the direct permission to read, write and execute car alerts. It inherits the direct set
of permissions of the role (H,F,NA, ∅) allowing to read and write photos and to read
private files. It also inherits from the role (H,F,NA, ∅) the direct set of permissions of its
junior role (L,F,NA, ∅) allowing to read family documents and to execute the Internet
connection. This result corresponds to Table 6.6, in which we can see all the permissions
that can be assigned to a node by activating a certain role, except for the administrative
permissions.

150 A. XACML Sample Instances in a Home Network

151

Bibliography

[1] Ana project: Autonomic network architecture. http://www.ana-project.org/.

[2] International comittee for informational technology standards. http://www.
incits.org/.

[3] National institute of standards and technology: Role based access control and role
based security. http://csrc.nist.gov/groups/SNS/rbac/.

[4] Oasis extensible access control markup language (xacml). http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=xacml.

[5] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miege, C. Saurel, and G. Trouessin. Organization based access control. In
Proceedings of the 4th IEEE International Workshop on Policies for Distributed
Systems and Networks, 2003.

[6] A. Adnane, R. T. de Sousa,Jr., C. Bidan, and L. Mé. Autonomic trust reasoning
enables misbehavior detection in olsr. In Proceedings of the 2008 ACM Symposium
on Applied Computing, 2008.

[7] M. Aljnidi. Modèles et protocoles de sécurité pour un réseau domestique. Master’s
thesis, TELECOM ParisTech: Ecole Nationale Supérieure des Télécommunications,
2005.

[8] M. Aljnidi. Sécurité des réseaux mobiles autonomes. In Actes du Premier workshop
GET sur les réseaux spontanés, 2006.

[9] M. Aljnidi and J. Leneutre. Autonomic security for home networks. In Proceedings
of the First International Workshop on Self-Organizing Systems, 2006.

[10] M. Aljnidi and J. Leneutre. A security policy system for mobile autonomic networks.
In Proceedings of the First International Conference on Autonomic Computing and
Communication Systems, 2007.

[11] M. Aljnidi and J. Leneutre. Towards an autonomic security system for mobile ad
hoc networks. In Proceedings of the Third International Symposium on Information
Assurance and Security, 2007.

152 BIBLIOGRAPHY

[12] M. Aljnidi and J. Leneutre. Security solutions in mobile autonomic networks. In Pro-
ceedings of the Third International Conference on Information and Communication
Technologies: From Theory to Applications, 2008.

[13] M. Aljnidi and J. Leneutre. Asrbac: A security administration model for mobile au-
tonomic networks (mautonets). In Proceedings of the Second International Workshop
on Autonomous and Spontaneous Security, 2009.

[14] R. Ananthanarayanan, M. Mohania, and A. Gupta. Management of conflicting
obligations in self-protecting policy-based systems. In Proceedings of the Second
International Conference on Automatic Computing, 2005.

[15] A. Anderson. Core and Hierarchical Role Based Access Control (RBAC) Profile of
XACML v2.0. OASIS, 2005.

[16] R. J. Anthony. A policy-definition language and prototype implementation library
for policy-based autonomic systems. In Proceedings of the IEEE International Con-
ference on Autonomic Computing, 2006.

[17] J. Bacon, K. Moody, and W. Yao. A model of oasis role-based access control and its
support for active security. ACM Transactions on Information and System Security,
2002.

[18] S. Barker, M. J. Sergot, and D. Wijesekera. Status-based access control. ACM
Transactions on Information and System Security, 2008.

[19] J. Barkley, K. Beznosov, and J. Uppal. Supporting relationships in access control
using role based access control. In Proceedings of the Fourth ACM Workshop on
Role-Based Access Control, 1999.

[20] R. Barrett, P. P. Maglio, E. Kandogan, and J. Bailey. Usable autonomic computing
systems: The administrator’s perspective. In Proceedings of the First International
Conference on Autonomic Computing, 2004.

[21] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A temporal role-based access
control model. ACM Transactions on Information and System Security, 2001.

[22] R. Bhatti, B. Shafiq, E. Bertino, A. Ghafoor, and J. B. D. Joshi. X-gtrbac ad-
min: A decentralized administration model for enterprise-wide access control. ACM
Transactions on Information and System Security, 2005.

[23] V. Cahill, E. Gray, J.-M. Seigneur, C. D. Jensen, Y. Chen, B. Shand, N. Dimmock,
A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, G. M. Seru-
gendo, C. Bryce, M. Carbone, K. Krukow, and M. Nielsen. Using trust for secure
collaboration in uncertain environments. IEEE Pervasive Computing, 2003.

[24] S. Capkun, L. Buttyan, and J.-P. Hubaux. Self-organized public-key management
for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 2003.

153

[25] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-aware reflective middle-
ware system for mobile applications. IEEE Transactions on Software Engineering,
2003.

[26] S. Chang, Q. Chen, and M. Hsu. Managing security policy in a large distributed web
services environment. In Proceedings of the 27th Annual International Conference
on Computer Software and Applications, 2003.

[27] D. M. Chess, C. C. Palmer, and S. R. White. Security in an autonomic computing
environment. IBM Systems Journal, 2003.

[28] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D. Abowd.
Securing context-aware applications using environment roles. In Proceedings of the
Sixth ACM Symposium on Access Control Models and Technologies, 2001.

[29] J. Crampton and G. Loizou. Administrative scope and role hierarchy operations. In
Proceedings of the Seventh ACM Symposium on Access Control Models and Tech-
nologies, 2002.

[30] J. Crampton and G. Loizou. Administrative scope: A foundation for role-based
administrative models. ACM Transactions on Information and System Security,
2003.

[31] F. Cuppens, N. Cuppens-Boulahia, and C. Coma. Multi-granular licences to decen-
tralize security administration. In Proceedings of the First International Workshop
on Reliability, Availability and Security, 2007.

[32] F. Cuppens and A. Miege. Administration model for or-bac. In On The Move to
Meaningful Internet Systems 2003: OTM 2003Workshops. Springer, 2003.

[33] F. Cuppens and C. Saurel. Specifying a security policy: A case study. In Proceedings
of the 9th IEEE Workshop on Computer Security Foundations, 1996.

[34] N. Damianou, A. Bandara, M. Sloman, and E. Lupu. A survey of policy specification
approaches, 2002.

[35] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification
language. In Proceedings of the International Workshop on Policies for Distributed
Systems and Networks, 2001.

[36] R. Darimont and A. v. Lamsweerde. Formal refinement patterns for goal-driven
requirements elaboration. In Proceedings of the 4th ACM SIGSOFT Symposium on
Foundations of Software Engineering, 1996.

[37] M. A. C. Dekker, J. Crampton, and S. Etalle. Rbac administration in distributed
systems. In Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies, 2008.

154 BIBLIOGRAPHY

[38] S. Dobson. Putting meaning into the network: Some semantic issues for the de-
sign of autonomic communications systems. In Proceedings of the 1st International
Workshop on Autonomic Communication, 2005.

[39] S. Dobson. Achieving an acceptable design model for autonomic systems. In Pro-
ceedings of the Fourth IEEE International Workshop on Engineering of Autonomic
and Autonomous Systems, 2007.

[40] S. Dobson, L. Coyle, and P. Nixon. Hybridising events and knowledge as a basis for
building autonomic systems. Journal of Trusted and Autonomic Computing, 2006.

[41] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic communications.
ACM Transactions on Autonomous and Adaptive Systems, 2006.

[42] H. M. Faheem. A multiagent-based approach for managing security policy. In
Proceedings of the Second IFIP International Conference on Wireless and Optical
Communications Networks, 2005.

[43] L. M. Feeney, B. Ahlgren, and A. Westerlund. Spontaneous networking: An
application-oriented approach to ad hoc networking. Communications Magazine,
IEEE, 2001.

[44] A. Garg, R. Battiti, and G. Costanzi. Dynamic self-management of autonomic
systems: The reputation, quality and credibility (rqc) scheme. In Proceedings of the
1st IFIP TC6 WG6.6 International Workshop on Autonomic Communication, 2004.

[45] E. Gelenbe. Towards autonomic networks. In Proceedings of the 2006 International
Symposium on Applications and the Internet, 2006.

[46] E. Gelenbe. Steps toward self-aware networks. Communications of the ACM, 2009.

[47] M. B. Ghorbel-Talbi, F. Cuppens, N. Cuppens-Boulahia, and A. Bouhoula. Manag-
ing delegation in access control models. In Proceedings of the International Confer-
ence on Advanced Computing and Communications, 2007.

[48] J. Glasgow, G. Macewen, and P. Panangaden. A logic for reasoning about security.
ACM Transactions on Computer Systems, 1992.

[49] J. Y. Halpern and V. Weissman. Using first-order logic to reason about policies.
ACM Transactions on Information and System Security, 2008.

[50] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar, and H. Liu.
The autonomic computing paradigm. Cluster Computing, 2006.

[51] P. Horn. Autonomic computing: Ibm’s perspective on the state of information
technology. Technical report, IBM Research, 2001.

155

[52] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for express-
ing authorizations. In Proceedings of the 1997 IEEE Symposium on Security and
Privacy, 1997.

[53] Y. Karabulut. Implementation of an agent-oriented trust management infrastructure
based on a hybrid pki model. In Proceedings of the 1st International Conference on
Trust Management, 2003.

[54] S. L. Keoh, E. Lupu, and M. Sloman. Peace: A policy-based establishment of ad-
hoc communities. In Proceedings of the 20th Annual Computer Security Applications
Conference, 2004.

[55] J. O. Kephart. Research challenges of autonomic computing. In Proceedings of the
27th International Conference on Software Engineering, 2005.

[56] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
2003.

[57] M. Koch and K. Pauls. Engineering self-protection for autonomous systems. In Pro-
ceedings of the 9th International Conference on Fundamental Approaches to Software
Engineering, 2006.

[58] H. Koshutanski and F. Massacci. E pluribus unum: Deduction, abduction and
induction, the reasonning services for access control in autonomic communication.
In Proceedings of the 1st IFIP TC6 WG6.6 International Workshop on Autonomic
Communication, 2004.

[59] H. Koshutanski and F. Massacci. Interactive access control for web services. In
Proceedings of the 19th IFIP Information Security Conference, 2004.

[60] M. Lacoste, A. Saxena, T. Jarboui, U. Lucking, B. Steinke, J. Pulou, J. Polakovic,
and S. Buljore. Towards autonomic security in beyond 3g infrastructures - end-to-
end reconfigurability ii white paper, 2007.

[61] B. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on Infor-
mation Science and Systems, 1971.

[62] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.
ACM Transactions on Information and System Security, 2009.

[63] M. P. Locatelli and G. Vizzari. Awareness in collaborative ubiquitous environments:
The multilayered multi-agent situated system approach. ACM Transactions on Au-
tonomous and Adaptive Systems, 2007.

[64] Y. Lu, L. Zhang, Y. Liu, and J. Sun. A distributed domain administration of
rbac model in collaborative environments. In Proceedings of the 10th International
Conference on Computer Supported Cooperative Work in Design, 2006.

156 BIBLIOGRAPHY

[65] H. Luo, P. Zerfos, J. Kong, S. Lu, and L. Zhang. Self-securing ad hoc wireless
networks. In Proceedings of the 7th IEEE Symposium on Computers and Commu-
nications, 2002.

[66] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino. Xacml policy integra-
tion algorithms. ACM Transactions on Information and System Security, 2008.

[67] T. Messerges, J. Curkier, T. Kevenaar, L. Puhl, R. Struik, and E. Callaway. A
security design for a general purpose, self-organizing, multi-hop ad-hoc wireless net-
work. In Proceedings of the First ACM Workshop on Security of Ad-hoc and Sensor
Networks, 2003.

[68] P. Michiardi and R. Molva. Core: A collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks. In Proceedings of the IFIP 6th Joint
Working Conference on Communications and Multimedia Security, 2002.

[69] A. Miege. Definition of a Formal Framework for Specifying Security Policies. The
Or-BAC Model and Extensions. PhD thesis, TELECOM ParisTech: Ecole Nationale
Supérieure des Télécommunications, 2005.

[70] D. L. Mills. The autokey security architecture, protocol and algorithms. Technical
report, University of Delaware, 2006.

[71] S. Oh and S. Park. An improved administration method on role-based access control
in the enterprise environment. Journal of Information Science and Engineering,
2001.

[72] S. Oh and R. Sandhu. A model for role administration using organization struc-
ture. In Proceedings of the Seventh ACM Symposium on Access Control Models and
Technologies, 2002.

[73] S. Oh, R. Sandhu, and X. Zhang. An effective role administration model using
organization structure. ACM Transactions on Information and System Security,
2006.

[74] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Transactions on
Information and System Security, 2000.

[75] J. Park and J. Chung. Design of sps model using mobile agent system. In Pro-
ceedings of the IEEE 37th Annual International Carnahan Conference on Security
Technology, 2003.

[76] J. Park and R. Sandhu. The uconabc usage control model. ACM Transactions on
Information and System Security, 2004.

[77] A. A. Pirzada and C. McDonald. Trust establishment in pure ad-hoc networks.
Wireless Personal Communications, 2006.

157

[78] S. Poslad. Specifying protocols for multi-agent systems interaction. ACM Transac-
tions on Autonomous and Adaptive Systems, 2007.

[79] N. Prigent, C. Bidan, J.-P. Andreaux, and O. Heen. Secure long term communities
in ad hoc networks. In Proceedings of the 1st ACM Workshop on Security of Ad Hoc
and Sensor Networks, 2003.

[80] M. A. Razzaque, S. Dobson, and P. Nixon. Cross-layer architectures for autonomic
communications. Journal of Network and Systems Management, 2006.

[81] A. J. Rocke and R. F. Demara. Confidant: Collaborative object notification frame-
work for insider defense using autonomous network transactions. Autonomous Agents
and Multi-Agent Systems, 2006.

[82] P. V. Roy. Self management and the future of software design, 2006.

[83] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems, 2009.

[84] R. Sandhu, V. Bhamidipati, and Q. Munawer. The arbac97 model for role-based
administration of roles. ACM Transactions on Information and System Security,
1999.

[85] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model for role-based access control:
Towards a unified standard. In Proceedings of the Fifth ACM Workshop on Role-
Based Access Control, 2000.

[86] R. Sandhu and Q. Munawer. The arbac99 model for administration of roles. In
Proceedings of the 15th Annual Computer Security Applications Conference, 1999.

[87] R. Sandhu, K. Ranganathan, and X. Zhang. Secure information sharing enabled
by trusted computing and pei models. In Proceedings of the ACM Symposium on
Information, Computer and Communication Security, 2006.

[88] R. S. Sandhu. Lattice-based access control models. IEEE Computer, 1993.

[89] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 1996.

[90] S. Schmid, M. Sifalakis, and D. Hutchison. Towards autonomic networks. In Pro-
ceedings of the First International IFIP TC6 Conference on Autonomic Networking,
2006.

[91] K. E. Seamons, T. Chan, E. Child, M. Halcrow, A. Hess, J. Holt, J. Jacobson,
R. Jarvis, A. Patty, B. Smith, T. Sundelin, and L. Yu. Trustbuilder: Negotiating
trust in dynamic coalitions. In Proceedings of the DARPA Information Survivability
Conference and Exposition, 2003.

158 BIBLIOGRAPHY

[92] M. Seredynski, P. Bouvry, and M. A. Klopotek. Evolution of cooperation in ad hoc
networks under game theoretic model. In Proceedings of the 4th ACM International
Workshop on Mobility Management and Wireless Access, 2006.

[93] B. Shafiq, J. Joshi, E. Bertino, and A. Ghafoor. Secure interoperation in a mul-
tidomain environment employing rbac policies. IEEE Trans. Knowl. Data Eng.,
2005.

[94] M. Shehab, E. Bertino, and A. Ghafoor. Secure collaboration in mediator-free envi-
ronments. In Proceedings of the 12th ACM Conference on Computer and Commu-
nication Security, 2005.

[95] D. K. Smetters and R. E. Grinter. Moving from the design of usable security tech-
nologies to the design of useful secure applications. In Proceedings of the 2002
Workshop on New Security Paradigms, 2002.

[96] M. Smirnov. Autonomic communication: Research agenda for a new communication
paradigm, 2004.

[97] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ubiqui-
tous computing. Computer, 2002.

[98] R. K. Thomas. Team-based access control (tmac): A primitive for applying role-
based access controls in collaborative environments. In Proceedings of the Second
ACM Workshop on Role-Based Access Control, 1997.

[99] R. K. Thomas and R. S. Sandhu. Task-based authorization controls (tbac): A family
of models for active and enterprise-oriented autorization management. In Proceedings
of the IFIP TC11 WG11.3 Eleventh International Conference on Database Securty
XI: Status and Prospects, 1997.

[100] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control in collaborative
systems. ACM Computing Surveys, 2005.

[101] S. S. Yau, Y. Yao, Z. Chen, and L. Zhu. An adaptable security framework for
service-based systems. In Proceedings of the 10th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, 2005.

[102] F. Zambonelli, M.-P. Gleizes, M. Mamei, and R. Tolksdorf. Spray computers: Ex-
plorations in self-organization. Pervasive and Mobile Computing, 2005.

[103] G. Zhang and M. Parashar. Dynamic context-aware access control for grid applica-
tions. In Proceedings of the 4th International Workshop on Grid Computing, 2003.

[104] X. Zhang, M. Nakae, M. J. Covington, and R. Sandhu. Toward a usage-based security
framework for collaborative computing systems. ACM Transactions on Information
and System Security, 2008.

159

[105] X. Zhang, F. Parisi-Presicci, and R. Sandhu. Formal model and policy specification
of usage control. ACM Transactions on Information and System Security, 2005.

[106] Z. Zhang, X. Zhang, and R. Sandhu. Robac: Scalable role and organization based ac-
cess control models. In Proceedings of the International Conference on Collaborative
Computing: Networking, Applications and Worksharing, 2006.

[107] Z. Zhang, X. Zhang, and R. Sandhu. Towards a scalable role and organization based
access control model with decentralized security administration. In Handbook of Re-
search on Social and Organizational Liabilities in Information Security. Information
Science Reference (an imprint of IGI Global), 2009.

[108] H. Zhou and S. N. Foley. A collaborative approach to autonomic security protocols.
In Proceedings of the 2004 Workshop on New Security Paradigms, 2004.

