J. A. Stratton and L. J. Chu, Steady???State Solutions of Electromagnetic Field Problems. II. Forced Oscillations of a Conducting Sphere, Journal of Applied Physics, vol.12, issue.3, pp.236-240, 1941.
DOI : 10.1063/1.1712900

S. Schelkunoff, Electromagnetic waves, 1943.

G. Brown and O. Woodward-jr, Experimentally determined radiation characteristics of conical and triangular antennas, RCA review, vol.13, issue.2, pp.425-452, 1952.

N. Lindenblad, Antennas and transmission lines at the empire state television station, Communications, issue.2, pp.10-26, 1941.

L. Lewis, M. Fassett, and J. Hunt, A broadband stripline array element, 1974 Antennas and Propagation Society International Symposium, pp.335-337, 1974.
DOI : 10.1109/APS.1974.1147206

P. Gibson, The Vivaldi Aerial, 9th European Microwave Conference, 1979, pp.101-105, 1979.
DOI : 10.1109/EUMA.1979.332681

S. Suh, A Comprehensive Investigation of New Planar Wideband Antennas, 2002.

V. Rumsey, Frequency independent antennas, IRE International Convention Record, pp.114-118, 1957.
DOI : 10.1109/IRECON.1957.1150565

J. Dyson, The equiangular spiral antenna, IRE Transactions on Antennas and Propagation, vol.7, issue.2, pp.181-187, 1959.
DOI : 10.1109/TAP.1959.1144653

H. Booker, Slot aerials and their relation to complementary wire aerials, JIEEE, vol.93, issue.4 4, 1946.

R. Bawer and J. Wolfe, The spiral antenna, IRE International Convention Record, pp.84-95, 1960.
DOI : 10.1109/IRECON.1960.1150893

J. Kaiser, The Archimedean two-wire spiral antenna, IRE Transactions on Antennas and Propagation, vol.8, issue.3, pp.312-323, 1960.
DOI : 10.1109/TAP.1960.1144840

J. Dyson, R. Bawer, P. Mayes, and J. Wolfe, A Note on the Difference Between Equiangular and Archimedes Spiral Antennas (Correspondence), IEEE Transactions on Microwave Theory and Techniques, vol.9, issue.2, pp.203-205, 1961.
DOI : 10.1109/TMTT.1961.1125304

J. Wang, J. Tillery, and M. Acree, Multioctave wideband mode-0 operation of spiralmode microstrip antennas, IEEE Transactions on Antennas and Propagation Symposium, vol.3, issue.6, pp.1860-1863, 1997.

T. Weiland, A discretization method for the solution of maxwell's equations for sixcomponent fields, Electronics and Communications AEUE, vol.31, issue.3 7, pp.116-120, 1977.

K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, issue.7, pp.302-307, 1966.

P. Johns and R. Beurle, Numerical solution of 2-dimensional scattering problems using a transmission-line matrix, Proceedings of the Institution of Electrical Engineers, pp.1203-1208, 1971.
DOI : 10.1049/piee.1971.0217

P. Johns, A Symmetrical Condensed Node for the TLM Method, IEEE Transactions on Microwave Theory and Techniques, vol.35, issue.4, pp.370-377, 1987.
DOI : 10.1109/TMTT.1987.1133658

I. Chapitre, Réduction de l'´ epaisseur des antennes planes unidirectionnellesàunidirectionnellesà très large bande passante [19] R. F. Harrington, Field Computation by Moment Methods, 1993.

H. Wheeler, Fundamental Limitations of Small Antennas, Proceedings of the IRE, vol.35, issue.12, pp.1479-1484, 1947.
DOI : 10.1109/JRPROC.1947.226199

L. J. Chu, Physical Limitations of Omni???Directional Antennas, Journal of Applied Physics, vol.19, issue.12, pp.1163-1175, 1948.
DOI : 10.1063/1.1715038

J. S. Mclean, A re-examination of the fundamental limits on the radiation Q of electrically small antennas, IEEE Transactions on Antennas and Propagation, vol.44, issue.5, p.672, 1996.
DOI : 10.1109/8.496253

H. Schantz, Introduction to ultra-wideband antennas, IEEE Conference on Ultra Wideband Systems and Technologies, 2003, pp.1-9, 2003.
DOI : 10.1109/UWBST.2003.1267792

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2059-2074, 1999.
DOI : 10.1109/22.798001

B. A. Munk, Frequency Selective Surfaces : Theory and Design, p.13, 2000.
DOI : 10.1002/0471723770

J. Pendry, A. Holden, W. Stewart, and I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures, Physical Review Letters, vol.76, issue.25, pp.4773-4776, 1996.
DOI : 10.1103/PhysRevLett.76.4773

J. Pendry, A. Holden, D. Robbins, and W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2075-2084, 1999.
DOI : 10.1109/22.798002

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters, vol.84, issue.18, pp.4184-4187, 2000.
DOI : 10.1103/PhysRevLett.84.4184

V. Veselago, THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND ??, Soviet Physics Uspekhi, vol.10, issue.4, pp.509-514, 1968.
DOI : 10.1070/PU1968v010n04ABEH003699

J. Pendry, Negative Refraction Makes a Perfect Lens, Physical Review Letters, vol.85, issue.18, pp.3966-3969, 2000.
DOI : 10.1103/PhysRevLett.85.3966

D. Schurig, J. Mock, B. Justice, S. Cumer, J. Pendry et al., Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science, vol.314, issue.5801, pp.977-980, 2006.
DOI : 10.1126/science.1133628

F. Yang and Y. Rahmat-samii, Electromagnetic Band Gap Structures in Antenna Engineering, p.26, 2008.
DOI : 10.1017/CBO9780511754531

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2059-2074, 1999.
DOI : 10.1109/22.798001

S. Tretyakov and C. Simovski, DYNAMIC MODEL OF ARTIFICIAL REACTIVE IMPEDANCE SURFACES, Journal of Electromagnetic Waves and Applications, vol.32, issue.2, pp.131-145, 2003.
DOI : 10.1163/156939303766975407

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko et al., Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches, IEEE Transactions on Antennas and Propagation, vol.56, issue.6, pp.1624-1632, 1928.
DOI : 10.1109/TAP.2008.923327

O. Luukkonen, F. Costa, C. Simovski, A. Monorchio, and S. Tretyakov, A Thin Electromagnetic Absorber for Wide Incidence Angles and Both Polarizations, IEEE Transactions on Antennas and Propagation, vol.57, issue.10, pp.3119-3125, 2009.
DOI : 10.1109/TAP.2009.2028601

S. Tretyakov, Analytical Modeling in Applied Electromagnetics, p.37, 2003.

M. Rahman and M. Stuchly, Transmission line-periodic circuit representation of planar microwave photonic bandgap structures, Microwave and Optical Technology Letters, pp.15-19, 2001.

S. Clavijo, R. Diaz, and W. Mckinzie, Design methodology for sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2678-2690, 2003.
DOI : 10.1109/TAP.2003.817575

K. Inafune and E. Sano, Theoretical Investigation of Artificial Magnetic Conductors Using Effective Medium Model and Finite-Difference Time-Domain Method, Japanese Journal of Applied Physics, vol.45, issue.5A, pp.3981-3987, 2006.
DOI : 10.1143/JJAP.45.3981

A. Grbic and G. Eleftheriades, Periodic analysis of a 2-D negative refractive index transmission line structure, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2604-2611, 2003.
DOI : 10.1109/TAP.2003.817543

A. Ege-engin, Y. Toyota, T. H. Kim, and M. Swaminathan, Analysis and Design of Electromagnetic Bandgap (EBG) Structures for Power Plane Isolation Using 2D Dispersion Diagrams and Scalability, 2006 IEEE Workship on Signal Propagation on Interconnects, pp.79-82, 1930.
DOI : 10.1109/SPI.2006.289196

A. Tavallaee and R. Abhari, 2-D characterisation of electromagnetic bandgap structures employed in power distribution networks, IET Microwaves, Antennas Propagation, pp.204-211, 2007.
DOI : 10.1049/iet-map:20050336

F. Yang and Y. Rahmat-samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2691-2703, 2003.
DOI : 10.1109/TAP.2003.817559

F. Linot, R. Cousin, X. Begaud, and M. Soiron, Design and measurement of high impedance surface, Proceedings of the Fourth EuCAP : European Conference on Antennas and Propagation, pp.1-4, 2010.

M. Qiu and S. He, A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions, Journal of Applied Physics, vol.87, issue.12, pp.8268-8275, 2000.
DOI : 10.1063/1.373537

L. Zhang, N. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, An efficient finiteelement method for the analysis of photonic band-gap materials, IEEE MTT-S International Microwave Symposium Digest, pp.1703-1706, 1999.

M. Bozzi, S. Germani, L. Minelli, L. Perregrini, and P. De-maagt, Efficient calculation of the dispersion diagram of planar electromagnetic band-gap structures by the MoM/BI-RME method, IEEE Transactions on Antennas and Propagation, vol.53, issue.1, pp.29-35, 2005.
DOI : 10.1109/TAP.2004.840522

F. Linot, X. Begaud, M. Soiron, C. Renard, and M. Labeyrie, Characterization of a loaded high impedance surface, International Journal of Microwave and Wireless Technologies, vol.2, issue.06, pp.483-487, 2009.
DOI : 10.1109/TAP.2008.923327

R. Pearson, B. Phillips, K. Mitchell, and M. Patel, Application of waveguide simulators to FSS and wideband radome design, IEE Colloquium on `Advances in Electromagnetic Screens, Radomes and Materials, pp.7-8, 1996.
DOI : 10.1049/ic:19961433

J. Baracco, M. Paquay, and P. De-maagt, An electromagnetic bandgap curl antenna for phased array applications, IEEE Transactions on Antennas and Propagation, vol.53, issue.1, pp.173-180, 2005.
DOI : 10.1109/TAP.2004.840418

O. Luukkonen, P. Alitalo, C. Simovski, and S. Tretyakov, Experimental verification of analytical model for high impedance surfaces, Electronics Letters, vol.45, issue.14, pp.720-721, 2009.
DOI : 10.1049/el.2009.0975

W. Mckinzie, On the surface wave properties of Sievenpiper-type metamaterial absorbers, 2009 IEEE Antennas and Propagation Society International Symposium, pp.1-4, 2009.
DOI : 10.1109/APS.2009.5172198

M. Fan, Z. Hu, R. Feng, X. Zhang, and Q. Hao, Advance in 2d-ebg research, J. Infrared Millim. Waves, vol.22, issue.2, p.33, 2003.

L. Yang, M. Fan, F. Chen, J. She, and Z. Feng, A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits, IEEE Transactions on Microwave Theory and Techniques, vol.53, issue.1, pp.183-190, 1933.
DOI : 10.1109/TMTT.2004.839322

H. Yang, R. Kim, and D. Jackson, Design consideration for modeless integrated circuit substrates using planar periodic patches, IEEE Transactions on Microwave Theory and Techniques, vol.48, issue.12, pp.2233-2239, 2000.
DOI : 10.1109/22.898969

G. Goussetis, A. Feresidis, and J. Vardaxoglou, Tailoring the AMC and EBG Characteristics of Periodic Metallic Arrays Printed on Grounded Dielectric Substrate, IEEE Transactions on Antennas and Propagation, vol.54, issue.1, pp.82-89, 2006.
DOI : 10.1109/TAP.2005.861575

P. Kovacs, High Gain Microstrip Antenna Using Planar Circularly Symmetric EBG Structures, 2007 17th International Conference Radioelektronika, pp.1-5, 2007.
DOI : 10.1109/RADIOELEK.2007.371681

E. Hammerstad, Equations for Microstrip Circuit Design, 1975 5th European Microwave Conference, pp.268-272
DOI : 10.1109/EUMA.1975.332206

A. Sanada, Planar single-and double-negative material implementations and applications, URSI General Assembly, p.37, 2005.

Y. Zhang, J. Von-hagen, M. Younis, C. Fischer, and W. Wiesbeck, Planar artificial magnetic conductors and patch antennas, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2704-2712, 2003.
DOI : 10.1109/TAP.2003.817550

N. Akhoondzadeh-asl and H. Ghobadi, Influence of Element Shape on the Bandwidth of Artificial Magnetic Conductors, Journal of Electromagnetic Waves and Applications, vol.53, issue.1, pp.929-946, 2007.
DOI : 10.1163/156939307780748995

K. H. Kim and J. Schutt-aine, Design of EBG Power Distribution Networks With VHF-Band Cutoff Frequency and Small Unit Cell Size for Mixed-Signal Systems, IEEE Microwave and Wireless Components Letters, vol.17, issue.7, pp.489-491, 2007.
DOI : 10.1109/LMWC.2007.899299

E. Hammerstad, Computer-Aided Design of Microstrip Couplers with Accurate Discontinuity Models, MTT-S International Microwave Symposium Digest, pp.54-56, 1981.
DOI : 10.1109/MWSYM.1981.1129818

N. Alexopoulos and S. Wu, Frequency-independent equivalent circuit model for microstrip open-end and gap discontinuities, IEEE Transactions on Microwave Theory and Techniques, vol.42, issue.7, pp.1268-1272, 1994.
DOI : 10.1109/22.299766

H. Mosallaei and K. Sarabandi, Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate, IEEE Transactions on Antennas and Propagation, vol.52, issue.9, pp.2403-2414
DOI : 10.1109/TAP.2004.834135

C. Simovski, P. De-maagt, and I. Melchakova, High-impedance surfaces having stable resonance with respect to polarization and incidence angle, IEEE Transactions on Antennas and Propagation, vol.53, issue.3, pp.908-914, 2005.
DOI : 10.1109/TAP.2004.842598

M. Azad and M. Ali, Novel Wideband Directional Dipole Antenna on a Mushroom Like EBG Structure, IEEE Transactions on Antennas and Propagation, vol.56, issue.5, pp.1242-1250, 2008.
DOI : 10.1109/TAP.2008.922673

C. Antenne-spirale-d-du, 57 III-3.2 Impédance d'entrée, 60 III-3.6 Conclusions, p.62

F. Yang and Y. Rahmat-samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2691-2703, 2003.
DOI : 10.1109/TAP.2003.817559

H. Mosallaei and K. Sarabandi, Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate, IEEE Transactions on Antennas and Propagation, vol.52, issue.9, pp.2403-2414
DOI : 10.1109/TAP.2004.834135

X. Begaud, Antennes non-standard : nouvelles technologies pour les architectures de capteurs, Chapitre 9 : Antennes large bande et conducteurs magnétiques artificiels, p.46, 2010.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2059-2074, 1999.
DOI : 10.1109/22.798001

Y. Zhang, J. Von-hagen, M. Younis, C. Fischer, and W. Wiesbeck, Planar artificial magnetic conductors and patch antennas, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2704-2712, 2003.
DOI : 10.1109/TAP.2003.817550

L. Yousefi, B. Mohajer-iravani, and O. Ramahi, Enhanced Bandwidth Artificial Magnetic Ground Plane for Low-Profile Antennas, IEEE Antennas and Wireless Propagation Letters, pp.289-292, 2007.
DOI : 10.1109/LAWP.2007.895282

R. Bawer and J. Wolfe, The spiral antenna, IRE International Convention Record, pp.84-95, 1960.
DOI : 10.1109/IRECON.1960.1150893

S. Bie-large-bande and .. , 72 IV-3.1 Réalisation de l'antenne, 73 IV-3.2 Configurations cartésiennes : maquettes V03 et, p.81

I. Chapitre, Application des surfaces haute impédancè a la réalisation d'antennesàantennesà large bande passante

. Latroisì-emé-etape-consiste, a partir des motifsélémentairesmotifsélémentaires ainsi dimensionnés, ` a construire un diagramme de phase « large bande ». Celui-ci correspond au recouvrement optimal des bandes CMA de chaque rangée de motifs. Dans le cas de la spirale, la phase du coefficient de réflexion reste comprise entre deux valeurs limites, pp.120-120

L. Inclan-sanchez, Dans notre cas, les motifs sont radiaux et progressifs Du centre vers la périphérie chaque sous-bande de la spirale, définie par un anneau de rayonnement , se retrouve dans une bande CMA ou quasi-CMA de la structure Ce caractère est maintenu sur toute la bande de fréquences de fonctionnement de la spirale en s'assurant que la progression et les dimensions des motifs permettent le recouvrement des différentes bandes CMA. La figure IV.5 illustre la méthodologie proposée. [1] E. Rajo-Iglesias Mutual coupling reduction in patch antenna arrays by using a planar ebg structure and a multilayer dielectric substrate, IEEE Transactions on Antennas and Propagation, vol.56, issue.6, pp.1648-1655, 2008.

F. Yang and Y. Rahmat-samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2691-2703, 2003.
DOI : 10.1109/TAP.2003.817559

G. Goussetis, A. Feresidis, and J. Vardaxoglou, Tailoring the AMC and EBG Characteristics of Periodic Metallic Arrays Printed on Grounded Dielectric Substrate, IEEE Transactions on Antennas and Propagation, vol.54, issue.1, pp.82-89, 2006.
DOI : 10.1109/TAP.2005.861575

E. Hammerstad, Equations for Microstrip Circuit Design, 1975 5th European Microwave Conference, pp.268-272
DOI : 10.1109/EUMA.1975.332206

J. Bell and M. Iskander, A low-profile Archimedean spiral antenna using an EBG ground plane, IEEE Antennas and Wireless Propagation Letters, vol.3, issue.1, pp.223-226, 2004.
DOI : 10.1109/LAWP.2004.835753

M. Azad and M. Ali, Novel Wideband Directional Dipole Antenna on a Mushroom Like EBG Structure, IEEE Transactions on Antennas and Propagation, vol.56, issue.5, pp.1242-1250, 2008.
DOI : 10.1109/TAP.2008.922673

A. Thior, A. Lepage, and X. Begaud, Low profile, directive and ultra wideband antenna on a high impedance surface, EuCAP, 3rd European Conference on Antennas and Propagation, pp.3222-3226, 2009.

M. Grelier, S. Mallegol, M. Jousset, A. Lepage, and X. Begaud, Dispositif d'antenne comportant une antenne filaire plane et un réflecteur d'antenne large bande et procédé de réalisation du réflecteur d'antenne, p.69

M. Vahdani, Low-profile, Ultra Wideband and Dual Polarized Antennas and Feeding Systems, p.75, 2008.
URL : https://hal.archives-ouvertes.fr/pastel-00006086

M. Grelier, M. Jousset, S. Mallegol, A. Lepage, and X. Begaud, Wideband QAMC reflector???s antenna for low profile applications, META'10, 2nd International Conference on Metamaterials, Photonic Crystals and Plasmonics in Cairo (Egypt), pp.505-509, 2010.
DOI : 10.1007/s00339-011-6256-9

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2059-2074, 1999.
DOI : 10.1109/22.798001

H. Nakano, K. Kikkawa, N. Kondo, Y. Iitsuka, and J. Yamauchi, Low-Profile Equiangular Spiral Antenna Backed by an EBG Reflector, IEEE Transactions on Antennas and Propagation, vol.57, issue.5, pp.1309-1318, 2009.
DOI : 10.1109/TAP.2009.2016697

S. Best and D. Hanna, Design of a broadband dipole in close proximity to an EBG ground plane, IEEE Antennas and Propagation Magazine, vol.50, issue.6, pp.52-64, 2008.
DOI : 10.1109/MAP.2008.4768923

R. Mateos, C. Craeye, and G. Toso, High-gain wideband low-profile antenna, Microwave and Optical Technology Letters, vol.3, issue.12, pp.2615-2619
DOI : 10.1002/mop.21987

I. Chapitre, Application des surfaces haute impédancè a la réalisation d'antennesàantennesà large bande passante

R. Mateos and C. Craeye, Eigenmode analysis of an amc ground plane for wideband highgain antennas, ICEAA : International Conference on Electromagnetics in Advanced Applications, pp.317-319, 2007.

F. Tanyer-tigrek, R. Mateos, C. Craeye, and I. Lager, Design of an amc plane for a unidirectional, low-profile tulip-loop antenna, EuCAP, 3rd European Conference on Antennas and Propagation, pp.3139-3142, 2009.

M. Higaki, K. Inoue, S. Obayashi, S. Sekine, H. Shoki et al., Small Artificilal Structure for Low Profile Antenna by Analogy wilth EBG Structure, 2008 International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, pp.127-130, 2008.
DOI : 10.1109/IWAT.2008.4511306

C. Validation-du-principe-pour-la-zone, 99 V-3.1 Configuration 99 V-3.2 Diagramme de phase, p.102

M. Grelier, S. Mallegol, M. Jousset, and X. Begaud, Réflecteur d'antenne large bande pour une antenne filaire plane a polarisation circulaire et procédé de réalisation du réflecteur d'antenne, Brevet N?INPI : FR 1003 900, p.91

C. Liu, Y. Lu, C. Du, J. Cui, and X. Shen, The broadband spiral antenna design based on hybrid backed-cavity, IEEE Transactions on Antennas and Propagation, vol.58, issue.111, pp.1876-1882, 2010.

M. Publications, F. Grelier, A. C. Linot, X. Lepage, M. Begaud et al., Analytical methods for AMC and EBG characterisations, META'10, 2nd International Conference on Metamaterials, Photonic Crystals and Plasmonics, pp.221-224, 2010.

:. C. Colloque-national-avec-comité-de-lecture, M. Djoma, X. Grelier, A. C. Begaud, S. Lepage et al., Méthode de Dimensionnement d'une Surface Haute Impédance compacte, 17 ièmes Journées Nationales Microondes, 2011.

. Séminaires, European School of Antennas Artificial EBG surfaces and metamaterials for antennas

S. Conférence, Journées antennes non standard

G. Ondes, Groupe Antennes Réseaux TLB Caractérisation de surface hautes impédances " , présentation orale

C. Workshop and . Métamatériaux, ApplicationàApplicationà la miniaturisation d'antennesàantennesà très large bande passante " , présentation orale

S. De-la, 35 II.13 CircuitéquivalentCircuitéquivalent de la structure chargée périodiquement 35 II.14 CircuitéquivalentCircuitéquivalent de la structure chargée périodiquement, II.12 Configuration 38 II.17 Comparaison des résultats : approche analytique et expérimentale . . . . . . . 39 II.18 Répartition des champsélectromagnétiqueschampsélectromagnétiques : dans une ligne micro-ruban (a), p.39
URL : https://hal.archives-ouvertes.fr/in2p3-00087569

.. Cartographie-de-rayonnement-en-site, 49 III.7 Distribution du courant sur la spirale en espace librè a f=2, p.50

Z. Densité-de, 51 III 52 III.11Adaptation de la spirale : réflecteur, 53 III.14Cartographie des diagrammes en azimut pour h t = ? 1GHz, p.54

5. Du and C. , 55 III.17Comparaison de la densité d'´ energié electriquè a f=5GHz 56 III.18Comparaison de la densité d'´ energié electriquè a f=6 56 III.19Diagramme de phase analytique : cas, 59 III.23Cartographie des diagrammes en azimut pour h t = ? 1GHz, p.59

S. De-la, 66 IV.2 Evolution de ?f /f 0 et de ? m /P pour h = 2mm et ? r = 2 67 IV.3 Evolution de ?f, IV.1 Configuration, p.70

.. Plan-en-coupe-de-l-'antenne, V. , V. Entre-réf, and V. V03, 74 IV 76 IV.14Polarisation principale : comparaison entre Réf, 75 IV.13Adaptation : comparaison entre Réf., V03 V03 78 IV.17Cartographie des diagrammes en azimut : V03 78 IV.19Photographies des configurations V03 et 79 IV.21Polarisation principale : comparaison entre Réf. et V10 . . . . . . . . . . . . . . 80 IV.22Polarisation croisée : comparaison entre Réf. et V10 . . . . . . . . . . . . . . . 80 IV.23Cartographie des diagrammes en azimut, p.81