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Résumé

Depuis 2002, le codage vidéo distribué a connu un véritable essor de par ses résultats
théoriques séduisants, et ses applications potentielles attractives. En effet, avec ce mode
de compression, toute comparaison inter-image est transférée au décodeur, ce qui implique
une baisse considérable de la complexité à l’encodeur, et de plus, un encodage indépendant
des caméras dans le cas de compression multi-vues. Cette thèse a pour but de proposer
de nouvelles solutions dans le domaine du codage vidéo distribué, et particulièrement dans
son application aux systèmes multi-caméra. Ces contributions se présentent sous plusieurs
aspects : un nouveau modèle débit-distorsion et sa mise en pratique sur trois probléma-
tiques, de nouvelles méthodes de construction de l’information adjacente et enfin une étude
approfondie du décodeur des trames Wyner-Ziv. Ces nouvelles approches ont toutes pour
but d’améliorer les performances débit-distorsion ou de permettre une compréhension plus
précise du comportement du codeur. Celles-ci sont exposées en détail dans ce manuscrit
avec au préalable une explication complète du contexte dans lequel elles s’inscrivent.

Abstract

Since 2002, distributed video coding has become a major paradigm, because of its attractive
theoretical results, and its promising target applications. Indeed, in such a compression
system, all inter frame comparison is shifted from the encoder to the decoder, which im-
plies an important complexity reduction at the encoder, and moreover, an independent
encoding of the camera in case of multiview compression. This thesis aims at proposing
new solutions for distributed video coding, and especially within multi-camera setting.
These contributions handle several aspects of distributed video coding paradigm as: a new
rate-distortion model and its applications, novel side information generation techniques
and finally a detailed study of the Wyner-Ziv decoder. All these new approaches aim
at enhancing the rate-distortion performance or at leading to a better comprehension of
the coder behavior. These ones are explained in detail in this manuscript preceded by a
complete overview of their context.
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Résumé en français

Introduction

La compression vidéo est un enjeu de recherche, qui depuis des décennies, mobilise de
nombreuses équipes et de nombreux industriels. Depuis son objectif initial qui consistait
à simplement diminuer de plus en plus le débit nécessaire à la description d’un flux vidéo,
de nombreuses problématiques ont émergé, avec pour seules différences des conditions de
transmission, de matériel, ainsi que de puissance des codeurs/décodeurs. En effet, si pour
chacun des paradigmes s’inscrivant dans le domaine général de la compression vidéo, le
but reste d’améliorer les performances du compromis haute qualité de décodage et faible
débit, il n’en reste pas moins que les conditions dans lesquelles s’opère cette compression
influent nettement sur les objectifs plus précis, et les techniques employées. Par exemple,
le schéma de codage ne sera pas le même s’il s’inscrit dans une transmission sur un réseau,
sur un canal bruité ou non bruité. De manière similaire, les techniques de compression
employées différeront selon la puissance des encodeurs et des décodeurs, ou selon s’il y a
une ou plusieurs caméras.

La compression vidéo dite classique (car plus courante) s’emploie à extraire la corréla-
tion entre les images à l’encodeur. C’est ainsi qu’elle fait appel à des techniques complexes
(en terme de puissance de calcul) telles que l’estimation de mouvement (ou de disparité
dans le cas de séquences multivues) pour diminuer la quantité d’information à transmettre
au décodage. Ce schéma de compression est parfaitement adapté aux conditions matérielles
suivantes: une compression sur une station à forte capacité de calcul, et un décodage léger
sur des systèmes à faible puissance (platine DVD, diffusion de la télévision, etc.). Or,
de nos jours, bien que ce type de configuration reste très utilisé, de nouveaux besoin ont
émergé ces dernières années. En effet, de plus en plus de systèmes légers se sont doté
de matériel de capture, et ont ainsi eu le besoin de compresser des séquences vidéos (par
exemple des téléphones portables). En outre, de plus en plus de systèmes employant des
réseaux de caméras (comme la vidéo surveillance) nécessitent une compression légère et
surtout sans communication entre les caméras (obligatoire avec le codage classique si l’on
veut exploiter la corrélation entre les caméras).

C’est à partir de ces types de besoins qu’est né, en 2002, le codage vidéo dit distribué,
dont le principe est de transférer au décodeur tout type de calcul visant à une quelconque
comparaison inter-image. Cette idée provient de résultats théoriques publiés 30 ans plus
tôt par Slepian et Wolf d’une part, et Wyner et Ziv d’autre part, qui prouvent que sous
certaines conditions, l’encodage de deux sources corrélées peut se faire conjointement ou
indépendamment sans qu’il n’y ait de perte d’efficacité de transmission à partir du moment
ou le décodage est, lui, effectué conjointement.
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Ces séduisants résultats théoriques encouragèrent de nombreuses équipes de chercheurs
à se lancer dans le développement de schémas de codage vidéo distribué avec comme but
(théoriquement possible) d’égaler les performances des schémas classiques tels que MPEG-
x, H.263 puis H.264, etc. Seulement, même si le codage vidéo distribué a connu des débuts
prometteurs, les performances débit-distorsion des codeurs actuels sont encore loin du
but. En effet, un certain nombre d’hypothèses des théorèmes des années 1970 ne sont pas
forcément respectées et limitent un peu la progression des performances de codage. Il n’en
reste pas moins que la marge de progression des codeurs vidéo distribués est encore grande
et nombreux de leurs modules peuvent encore être améliorés.

Dans le cadre du projet européen Discover, un certain nombre de laboratoires ont
développé un schéma complet de codage vidéo distribué qui est actuellement l’un des plus
efficaces et l’un des plus populaires. Ce schéma constituera le point de départ de la plu-
part des travaux présentés dans cette thèse, et c’est pourquoi nous en dégageons ici les
principales problématiques. Les images de la séquence sont réparties en deux types, les
trames clefs et les trames Wyner-Ziv (WZ), réparties selon la structure suivante (répétée
tout au long de la séquence) : une trame clef suivie de n trames WZ. Les images clefs sont
encodées et décodées de manière indépendante grâce à des codecs de type Intra, tels que
H.264 Intra ou JPEG2000. Celles-ci sont utilisées au décodeur pour générer une estimation
des trames WZ appelée information adjacente. De leur côté, les trames WZ sont également
encodées indépendamment, et subissent le traitement classique de compression de données,
à savoir une transformation suivie d’une quantification. Ensuite, à la place du codeur en-
tropique (usuellement utilisé pour les schémas de compression classiques) le flux résultant
de la quantification est traité par un codeur canal (LDPC ou turbodécodeur), celui-ci pro-
duisant, par nature, un flux systématique (une version de l’information en entrée) et un
flux de parité (une redondance utilisée pour corriger les erreurs de transmission). L’astuce
de ce type de schéma est de ne pas transmettre le flux systématique et de le substituer au
décodeur par l’information adjacente générée grâce aux trames clefs. Ainsi, l’information
de parité, initialement destinée à corriger les erreurs de canal, est transmise ici dans le
but d’annuler les erreurs d’estimation. Le flux WZ alors reconstruit est finalement projeté
dans le domaine pixel.

L’astuce de la compression utilisant des codeurs canal est celle qui fait l’originalité et
l’attractivité du codage vidéo distribué, mais c’est aussi celle qui implique le plus d’éléments
limitant et le plus de travaux de recherche. Premièrement, elle implique de connaître la
corrélation de l’information adjacente et de la trame WZ originale, or ni à l’encodeur, ni
au décodeur ces deux informations sont disponibles en même temps. De plus, l’encodeur
doit savoir la quantité exacte d’information de parité à envoyer. C’est pourquoi, le schéma
de codage Discover (et quasiment toutes ses variantes) effectue un décodage progressif
avec un canal de retour pour demander au fur et à mesure à l’encodeur d’envoyer plus
d’information parité. C’est l’une des plus grosses limitations de ces schéma, car elle im-
plique un décodage en temps réel, difficilement réalisable.

Le second élément déterminant de ce type de schéma est la génération d’information
adjacente fondée sur les trames clefs. Les performances de codage dépendent fortement
de la qualité de l’estimation de la trame WZ. C’est pourquoi de nombreuses recherches
s’attellent à améliorer la précision de l’information adjacente en proposant des méthodes
efficaces d’estimation de mouvement ou de disparité notamment.
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Les travaux menés durant cette thèse nous ont conduit à nous intéresser à plusieurs
des problématiques du codage vidéo distribué. Tout d’abord, nous avions pour objectif
d’étudier précisément les conditions d’extension du codage vidéo distribué au cas multivue
pour lequel de nouvelles questions se posent, comme la disposition stratégique des trames
clefs et des trames WZ dans le plan temps-vues, ou bien la manière de générer des estima-
tions intervue, et de les fusionner avec l’estimation temporelle afin d’obtenir une unique
information adjacente. Tout en proposant des solutions à ces différents enjeux, nous avons
été amenés à nous pencher sur des problématiques du codage vidéo distribué en général
(non spécifiques au multivue) comme une amélioration de l’interpolation temporelle, le
raffinement du modèle de bruit de corrélation au turbodécodeur, la suppression du canal
de retour, ou encore l’étude de métriques servant à estimer la qualité de l’information ad-
jacente. De plus, nous nous sommes penchés sur des schémas de codage vidéo distribué
différents de Discover. Ainsi, nous avons proposé une nouvelle approche pour les sché-
mas utilisant de l’information de hachage. En outre, dans le cadre du projet ANR Essor
nous avons développé en collaboration avec le LSS, l’IRISA et I3S un codeur s’inspirant
de la structure de Discover mais adoptant une approche de codage en ondelettes pour
les trames clefs et WZ.

Ainsi, dans le manuscrit qui suit, nous présentons nos contributions, après avoir détaillé
leur contexte et objectif. Celles-ci sont organisées en trois parties correspondant chacune
à une thématique générale dans laquelle s’inscrivent les solutions proposées. Une première
partie traite de tout ce qui vise à améliorer la compréhension du codeur en général, et
des performances débit-distorsion en particulier. Dans une seconde partie, nous nous pen-
chons sur tout ce qui a trait avec l’information adjacente, et enfin dans une dernière partie
nous effectuons un zoom sur le turbodécodeur et ses problématiques. Voici le détail des
différents chapitres composants ce manuscrit.

Chapitre 1 - l’état de l’art du codage distribué : nous présentons les origines du
codage vidéo distribué à travers l’étude rapide des méthodes existantes de codage source
distribué, et de leur deux principales extensions à la vidéo. De plus, nous entrons en détail
dans le fonctionnement du codeur Discover et présenterons les différentes problématiques
qui en découlent. Ce chapitre ne présente pas un état de l’art détaillé de chacun des mod-
ules car ceux-ci sont proposés plus tard dans les chapitres appropriés.

Partie 1 - Proposition et application d’un modèle débit-distorsion : Dans cette
partie, nous nous intéressons au comportement général des performances débit-distorsion
du schéma de codage distribué. En se fondant sur un modèle débit distorsion original,
nous étudions plus précisément l’entrée du codeur (et la classification des types d’images),
puis la sortie avec le phénomène de propagation d’erreurs en cas de perte d’image. Enfin,
nous nous penchons sur l’étude de la suppression du canal de retour.
Chapitre 2 - un nouveau modèle débit-distorsion : nous présentons ici une étude
originale visant à modéliser l’erreur d’estimation de la trame WZ au décodeur. L’expression
obtenue comporte une structure très simple qui sépare l’erreur provenant de la quantifi-
cation des trames de référence, et l’erreur provenant de l’estimation de mouvement. Ce
modèle suppose un certains nombre d’hypothèses, qui seront testées dans ce chapitre.
Chapitre 3 - Application : dans ce chapitre nous décrivons trois problématiques pour
lesquelles nous avons eu recours au modèle proposé. La première concerne la classifica-
tion des images à l’entrée du schéma de codage. Ainsi, nous détaillons les classifications
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existantes et en proposons une comportant une nombre plus réduit de trame clefs, ré-
duisant ainsi la complexité de l’encodeur. Grâce au modèle débit-distorsion proposé, nous
établirons une stratégie de décodage optimale (ordre de traitement des trames au dé-
codeur). Ensuite, nous nous pencherons sur le phénomène de propagation d’erreurs dans
le cas d’une perte d’image au moment de la transmission d’une vidéo monovue. Nous
étudions l’importance des images en fonction de leur position dans l’ordre de décodage,
et nous apercevrons d’un certains nombre de problématiques liées au contrôle du débit à
l’encodeur comme le fait de ne pas allouer le même débit aux trames WZ selon la position
qu’elles occupent dans la séquence. Enfin, nous proposons un schéma original de suppres-
sion du canal de retour se fondant sur le modèle de distorsion proposé afin d’allouer le débit
par trame, et en le répartissant entre les plans de bits des différentes bandes en fonction
d’un calcul utilisant la distance de Hamming.

Partie 2 - génération de l’information adjacente : dans cette partie nous nous
intéressons exclusivement à l’estimation de la trame WZ au décodeur. Après avoir effectué
une revue de littérature précise des méthodes existantes, nous nous présentons première-
ment l’algorithme d’interpolation développé au sein du projet Essor. Puis nous détaillons
les méthodes d’interpolation denses (un vecteur par pixel) proposées ainsi que nos méthodes
de fusion de l’estimation temporelle et intervue. Enfin, nous présentons notre approche
originale de schéma à base d’information de hachage.
Chapitre 4 - état de l’art : nous présentons ici en détail les différentes problématiques
liées à l’information adjacente qui sont les méthodes d’estimations (interpolation, extrap-
olation, etc.), puis leur fusion dans le cas de multiples estimations, et enfin les schéma à
base d’information de hachage existants.
Chapitre 5 - interpolation Essor : ce chapitre a pour but de présenter la méth-
ode d’interpolation proposée dans le cadre du projet Essor. Nous détaillons également
le codeur dans lequel cet algorithme s’inscrit, et montrerons certains résultats débit-
distorsion.
Chapitre 6 - méthodes denses : fondé sur l’idée que l’économie du nombre de vecteurs
servant à effectuer les interpolations au décodeur n’était pas justifiée (car ces vecteurs ne
sont en fait pas transmis comme ce serait le cas dans un schéma classique), et qu’il était
donc possible de décrire le mouvement grâce à des champs denses (un vecteur par pixel)
nous avons proposé une famille de méthodes de raffinement du champ, en se fondant sur la
structure de la méthode d’interpolation de Discover, et en adaptant deux techniques de
raffinement existantes : l’algorithme de Cafforio-Rocca [Cafforio, Rocca, 1983] et de Miled
[Miled et al., 2009] (fondé sur l’étude des variations totales). Enfin, dans ce chapitre nous
proposons trois méthodes de fusion originales, dans le sens où elles adoptent une approche
linéaire (combinaison linéaire des candidats) alors que la litérature n’effectue que des fu-
sions binaires (l’un ou l’autre des candidats).
Chapitre 7 - schéma à base d’information de hachage : en partant du principe
que le décodeur n’a pas toutes les informations nécessaires à l’estimation parfaite de la
trame WZ, certaines solutions proposent de transmettre ce qu’on appelle de l’information
de hachage, et qui correspond à une description localisée et bien choisie de l’image WZ,
de manière à améliorer son estimation au décodage. Dans ce chapitre nous proposons une
nouvelle approche pour générer et sélectionner l’information de hachage, et en outre nous
proposons détendre l’algorithme proposé par Yaacoub et al [Yaacoub et al., 2009a] pour la
génération d’information adjacente dans le cas multivue.



13

Partie 3 - zoom au niveau du turbodécodeur : Dans cette partie, nous nous
penchons sur deux problématiques liées au tubodécodeur. Premièrement, nous proposons
un raffinement de la modélisation du bruit de corrélation, et enfin, nous nous intéressons
aux métriques servant à estimer la qualité de l’information adjacente.
Chapitre 8 - modélisation du bruit de corrélation : dans ce chapitre nous présen-
tons une revue détaillée des méthodes existantes visant à modéliser le bruit de corrélation.
D’après cette revue de littérature, nous pouvons constater que plus le modèle est fin (et
proche de la vraie distribution de l’erreur), plus les performances sont bonnes. Ainsi,
nous avons proposé d’utiliser le modèle gaussien généralisé plutôt que la trop peu générale
laplacienne unanimement adoptée. Les résultats obtenus sont mitigés. Bien que dans de
nombreux cas, le raffinement proposé par la gaussienne généralisée présente des résultats
très acceptables, il existe certains cas pour lesquels les performances restent inchangés.
Nous effectuons donc dans ce chapitre une étude un peu plus poussée de la modélisation
du bruit de corrélation afin de mieux comprendre et analyser les résultats obtenus.
Chapitre 9 - étude de la qualité de l’information adjacente : lorsqu’une méthode
de génération d’information adjacente est testée, elle est souvent évaluée grâce au PSNR.
Or Kubasov [Kubasov, 2008] a montré que cette métrique pouvait par moment donner une
idée erronée de cette qualité. Dans ce chapitre, nous proposons d’étendre l’étude initiée
par celui-ci. Ainsi, nous tentons de comprendre dans quelles situations le PSNR semble
adéquat, et dans quels cas cette mesure peut présenter des limites de fiabilité. De plus,
nous testons pour chacun de ces cas de figure la fiabilité d’autres mesures, plus proche du
comportement du turbodécodeur.

Annexe - Utilisation des méthodes d’estimation de disparité pour le com-
pressed sensing appliqué aux images multivues : j’ai également été amené durant
mon doctorat, à travailler sur d’autres sujets annexes que je n’intègre pas dans ma thèse car
trop éloignés du domaine du codage vidéo distribué. Cependant, ces travaux en parallèles
sont liés avec l’approche distribuée par le fait qu’ils traitent d’un autre sujet très en vogue
de nos jours: le compressed sensing, que nous avons proposé d’étendre à des images et
vidéos multivues en appliquant certaines méthodes d’estimation de disparité traitées dans
ce manuscrit. Vous trouvez l’ensemble des articles publiés dans cette annexe.

Afin d’implanter et évaluer les contributions ci-dessus, nous avons été amené à dévelop-
per d’une part une extension au multivue du codeur Discover, et d’autre part un codeur
complet basé ondelettes dans le cadre du projet Essor.
De plus, nous précisons que cette thèse s’est inscrite dans le cadre de deux projets : Es-
sor, projet ANR constitué du LSS, de l’IRISA, de I3S et de Telecom ParisTech ainsi que
Cedre, projet franco libanais en collaboration avec l’université Saint-Esprit de Kaslik.

Dans ce résumé, nous présenterons de manière synthétique l’ensemble des contributions
développées durant la thèse.

Etat de l’art du codage vidéo distribué

Résumé du chapitre 1 du manuscrit de thèse.

Il est avant tout nécessaire de faire un bref historique rappelant les origines et fonde-
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ments d’une telle approche dans le codage vidéo. Le problème à résoudre est de transmettre
l’information générée par deux sources corrélées, X et Y , sur un canal avec les débits, RX
et RY , les plus faibles possibles. Au décodeur, les informations reçues, X̂ et Ŷ doivent
également présenter la plus grande ressemblance avec l’information envoyée, et ainsi min-
imiser les distorsions d(X, X̂) et d(Y, Ŷ ). En 1973, Slepian et Wolf [Slepian, Wolf, 1973]
étudièrent les débits minimum nécessaires à la transmission, dans le cas d’une distorsion
nulle, et pour plusieurs cas de figure. Deux d’entre eux s’avèrent être les points de départs
de ce qu’on appellera plus tard le codage distribué. La première configuration est celle dans
laquelle, à l’encodeur comme au décodeur, le codage se fait avec une pleine connaissance
de l’autre source. Autrement dit, on encode et on décode X et Y conjointement. Sous ces
conditions, le débit minimum requis est RX + RY = H(X,Y ) où H(X,Y ) est l’entropie
conjointe des deux sources. Slepian et Wolf prouvent que ce résultat, bien connu dans
cette configuration, est le même que dans le deuxième cas de figure nous intéressant ici,
correspondant à la situation dans laquelle l’encodage se fait indépendamment (le décodage
étant encore conjoint). Autrement dit, encoder des sources indépendamment plutôt que
conjointement ne dégrade pas les performances tant que le décodage se fait conjointement.
En 1976, Wyner et Ziv [Wyner, Ziv, 1976] étendirent ce résultat au cas d’une transmission
avec perte (où d(Y, Ŷ ) 6= 0).

Il fallut attendre presque trente ans avant que ces résultats théoriques prometteurs
soient mis en pratique en codage vidéo. Pourtant, ils apportent une approche nouvelle
adaptée à des problématiques réelles et évidentes. Depuis quelques années, la compression
vidéo doit de plus en plus s’adapter à son support. Plus précisément, les mobiles ou tout
autres caméras légères ne supportent pas tous les calculs que les codages usuels requièrent
pour obtenir de bonnes performances. En effet, l’extraction de la corrélation entre trames
se fait principalement par de l’estimation de mouvement entre images, et c’est celle-ci qui
est à l’origine de la plus grande partie de la complexité des codeurs comme H.26x. En
supprimant cette extraction de mouvement réalisée à l’encodeur, on peut considérable-
ment réduire la puissance de calcul requise tout en ne dégradant théoriquement pas les
performances. Les premières solutions de ce qu’on appellera le codage vidéo distribué, ar-
rivèrent au début des années 2000. Deux solutions furent à l’époque proposées: PRISM
[Puri, Ramchandran, 2003] et le codeur de Standford [Aaron et al., 2002; Girod et al.,
2005]. Dans la thèse et donc dans ce résumé nous nous pencherons principalement sur la
deuxième des solutions dont le schéma, représenté dans figure 1 est le suivant : la séquence
vidéo est divisée en deux ensembles dont les éléments sont extraits alternativement de la
vidéo afin d’augmenter la corrélation entre ceux-ci. Les trames clefs (TC) constituent le
premier ensemble dont les images sont codées indépendamment entre elles avec un codeur
intra classique (JPEG, H.26x Intra, JPEG 2000,...). Le second ensemble est composé des
trames Wyner Ziv (TWZ). Celles-ci sont d’abord projetées dans le domaine transformé
(ondelettes ou cosinus discret principalement), puis quantifiées et enfin encodées grâce à
un codeur canal (turbocode ou LDCP). Ces types de codes produisent ce qu’on appelle
l’information systématique (qui est la copie de l’entrée) et une information de parité qui
est l’information redondante capable au décodeur de corriger les erreurs intervenues sur
l’information systématique. Dans le schéma de codage vidéo distribué de Stanford seule
l’information de parité est transmise (partiellement) au décodeur. L’information systéma-
tique est remplacée par une estimation de la TWZ correspondante. Cette estimation est
appelée l’information adjacente (IA) et est générée grâce aux TC déjà décodées. Ainsi,
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l’hypothèse sous-jacente est que l’erreur d’estimation est assimilable à une erreur de trans-
mission canal. Une fois l’IA corrigée par l’information de parité, la trame est projetée
dans le domaine spatial. Ce schéma de codage fut également la base du projet européen
Discover [Guillemot et al., 2007].

Figure 1: Schéma de codage vidéo distribué inspiré de Stanford, basé DCT.

Un domaine nouveau est également apparu ces dernières années, c’est celui des systèmes
multicaméra (vision stéréo, vidéo 3D, ...). Dans ce genre de système de codage, le problème
de la complexité des codeurs actuels se pose de la même façon. À cela, s’ajoute le fait que
l’extraction de la corrélation entre images, comme elle se fait usuellement, nécessite une
connaissance des images des caméras voisines, et donc nécessite tout ce qui en découle en
matière d’installation, de communication, etc. Le codage vidéo distribué présente donc un
double avantage s’il est appliqué aux systèmes multivues : celui de réduire la complexité
et celui de supprimer les communications entre caméras difficiles à mettre en oeuvre. Le
schéma du codage vidéo distribué multivue (CVDM) est similaire à celui du CVD monovue,
apportant néanmoins de nouvelles problématiques. Les premières applications du CVDM
peuvent se retrouver dans [Guo et al., 2006a; Artigas et al., 2006; Ouaret et al., 2006].

La thèse synthétisée ici traite donc du CVDM fondé sur un codeur adoptant la structure
de Stanford. Nous détaillons dans le Chapitre 1 de la thèse, les différents blocs de ce schéma
et les différentes techniques proposées dans la littérature. A chaque fois, nous en dégageons
des problématiques que nous nous proposons de traiter dans la suite du manuscrit.

Modèle débit-distorsion et son application

Résumé des chapitre 2 et 3 du manuscrit de thèse.

Modèle débit-distorsion

Les performances générales du codeur vidéo distribué dépendent en partie de la qualité de
l’information adjacente. En effet, plus l’information adjacente est différente de la trame
WZ initiale, plus le débit requis par le turbodécodeur est grand. Nous nous proposons
donc, dans le Chapitre 2, d’établir une expression pour modéliser la variance de cette
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erreur au décodeur. Nous obtenons l’expression suivante :

σ̂2
eI

= Md1,d2 + k2
1DI1 + k2

2DI2 .

où σ̂2
eI

est la variance de l’erreur que l’on cherche à estimer. Le terme Md1,d2 correspond
à l’erreur d’estimation de l’interpolation dans le cas où celle-ci est générée en utilisant
des trames de référence non quantifiées (alors qu’en pratique elles sont quantifiées). Les
termes DI1 et DI2 correspondent aux erreurs de quantification des images de référence et
les coefficients k1 et k2 dépendent des distances entre les trames de références et la trame
WZ estimée.

Dans ce chapitre nous proposons également un certains nombre de tests afin de valider
notre modèle. Pour cela, nous considérons les différentes hypothèses nécessaire à l’obtention
de la formule ci-dessus. Malgré des imprécisions à bas-débit, il résulte de ces tests que le
modèle permet une estimation très acceptable de la distorsion observée en pratique.

L’avantage de notre modèle est sans nul doute dans la simplicité de son expression.
En effet, les différents facteurs impactant sur la distorsion finale sont séparés en termes
indépendants : d’un côté le terme Md1,d2 mesure l’erreur provenant de l’activité de mou-
vement dans la séquence. C’est donc une erreur intrinsèque dépendant uniquement du
contenu de la vidéo. Au contraire, les distorsions DI1 et DI2 sont dues uniquement à la
quantification et donc au choix extérieur du compromis débit-distorsion. Cette structure
simple nous permet plus aisément de modéliser le comportement général du codeur, et nous
proposons dans le chapitre suivant, d’utiliser ce modèle pour comprendre et optimiser le
codeurs.

Etude des schémas multi-vues

Le codage vidéo distribué multivue, bien qu’il soit fondé sur la même stratégie de codage
que le CVD monovue, apporte de nouvelles possibilités et avec elles, de nouveaux prob-
lèmes. L’apport le plus remarquable est celui concernant la génération d’information ad-
jacente. Dans les schémas CVD utilisés pour ces travaux, l’estimation de la TWZ au
décodeur est construite grâce à une méthode d’interpolation entre deux trames. Plus de
détails seront donnés dans la partie dédiée à la construction de l’IA, mais ce qu’il faut
retenir est que les méthodes usuelles effectuent une interpolation d’image grâce à deux TC
encadrant la TWZ à estimer. Dans le codage monovue, il n’y a qu’un sens d’interpolation
(le sens temporel). L’aspect multicaméra permet une interpolation fondée sur des TC
n’appartenant pas à la même vue. Cela permet de construire une estimation de meilleure
qualité, mais cela apporte de nouvelles questions concernant la position des trames dans
le plan bidimensionnel “temps-vues”. Dans les figures 2 et 3, nous donnons deux exemples
de schémas existants dans la littérature. Il est évident, en vue de ces deux figures que
les stratégies de décodage pour les deux schémas présentés seront totalement différentes.
En effet, pour le schéma asymétrique, figure 3, l’IA ne pourra être générée que dans le
sens des vues, alors que pour le schéma symétrique 1

2 une interpolation temporelle et une
interpolation intervue seront disponibles pour générer l’IA finale qui sera alors turbodé-
codée. L’étape intermédiaire, qui passe de deux interpolations à une IA unique est appelée
fusion et est détaillée plus loin dans le document. En dehors de toute considération débit-
distorsion, le choix du schéma a des conséquences sur les techniques mises en oeuvres pour
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le codage (interpolation, fusion, estimation de paramètres...), mais également sur le choix
du matériel de capture vidéo. En effet, si une caméra encode des TC, elle aura besoin
d’une puissance de calcul plus importante que si celle-ci encode simplement des TWZ.

Figure 2: Schéma symétrique 1
2 Figure 3: Schéma asymétrique

Dans le Chapitre 3, nous avons établi un état de l’art des schémas de codage existant
dans la littérature. Les conclusions que nous en avons tirées nous amènent à penser que
les schémas existants comportent un nombre trop élevés de TC, ce qui implique une com-
plexité d’encodage encore trop forte, et des résultats débit-distorsion sous-optimaux. C’est
pourquoi nous proposons également dans ce chapitre un nouveau schéma symétrique com-
portant moins de TC et donc allégeant l’encodage tout en améliorant les performances de
codage.vEnfin, nous avons utilisé le modèle débit-distorsion proposé plus tôt afin d’étudier
différentes stratégies de décodage envisageables dans ce nouveau schéma et nous avons pu
déterminer la meilleure d’entre elles. La répartition des trames et l’ordre de décodage choisi
peuvent être observés dans la figure 4. Enfin, les résultats débit-distorsion de la figure 5
montrent que le schéma proposé est plus performant que ceux existants déjà (en plus que
d’être moins complexe et donc plus adapté à l’esprit distribué).

Etude de la propagation d’erreur en cas de perte de trame

Les schémas monovues ne présentent pas la même latitude qu’en multivue en ce qui con-
cerne la disposition des types de trames. En effet, le seul paramètre modifiable est la
taille des groupe d’images (Group of Pictures, GOP). Celle-ci est très souvent fixe, mais
il existe des algorithmes où la taille est adaptative [Ascenso et al., 2006]. Pour une taille
de GOP fixée, il y a en revanche plusieurs stratégies de décodage possibles, i.e., l’ordre
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Figure 4: Schéma symétrique 1
4 proposé
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Figure 5: Résultats débit-distorsion du
schéma proposé

de décodage des TWZ peut varier. Dans le Chapitre 3, nous avons déterminé, grâce au
modèle débit-distorsion proposé, la meilleure des stratégies pour un cas de GOP 4. Un
élément à prendre en compte également dans le choix d’un schéma de codage, est celui
du phénomène de propagation d’erreur. Les différentes stratégies de décodage ne sont pas
sensibles de la même manière aux pertes de trames dans le GOP. Dans le Chapitre 3, nous
avons étudié le phénomène de propagation d’erreur dans un schéma monovue de taille 4.
Grâce au modèle débit-distorsion, nous avons pu anticiper le comportement du codeur en
cas de perte de trames lors de la transmission. Cela peut s’avérer utile lors du choix de la
stratégie de codage, ou bien lors de l’allocation de débit à l’encodeur.

Contrôle du débit à l’encodeur permettant de s’affranchir de la boucle de
retour

Une des problèmes liés au schéma de codage de Discover est la limitation de la boucle de
retour. En effet, comme il n’existe aucune méthode permettant d’estimer à l’encodeur le
nombre de bits de parité à envoyer au turbodécodeur afin de permettre une reconstruction
acceptable, les schémas actuels nécessitent l’utilisation d’une boucle de retour. Le décodeur
reçoit une première salve de bits de parité, puis estime la probabilité d’erreur dans le signal
reconstruit. Si celle-ci est trop grande (comparée généralement à un seuil), alors le décodeur
demande des bits supplémentaires, par l’intermédiaire de ce canal de retour. L’utilisation
de ce canal est évidement très peu envisageable dans une implantation pratique du schéma.

Dans le Chapitre 3, nous proposons un algorithme d’estimation de débit à l’encodeur
qui permet de supprimer ce canal de retour. Voici une brève description du principe de
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Figure 6: Comparaison entre le débits estimés et obtenus avec boucle de retour (les valeurs
sont normalisées).

notre approche développée, sans perte de généralité, dans le cas d’une configuration où la
taille des groupes d’image est fixée à 4.

Dans un premier temps, en se fondant sur le modèle proposé plus haut, nous détermi-
nons la valeur des débits par trame :

Rm =
1

2
log2

(
µm
(
M2,2 + 1

2DK

)

DK

)

Rl =
1

2
log2

(
µl
(
M1,1 + 1

2DK

)

DK

)
.

où Rm et Rl sont respectivement les débits des trames du milieu du groupe d’image et des
trames latérales (les deux autours de la trame du milieu). DK correspond à la distorsion
de la trame clef précédente. Ces expression ont été obtenues en fixant une contrainte qui
force les distorsions des trames à être constantes le long de la séquence (une contrainte
fortement liée au confort visuel). On peut voir des les figures 6 (a) et (b) que les débits
estimés correspondent bien aux débits idéaux obtenus avec une boucle de retour.

Dans un second temps, l’algorithme partage le débit estimé juste avant entre les dif-
férents plans de bits des différentes sous-bandes. Ce débit par sous-bande est estimé en
s’appuyant sur la distance de Hamming entre la WZ originale et une estimation (très sim-
ple) de l’information adjacente. Cette technique présente des résultats débit-distorsions
acceptables dans lesquels notre schéma dégrade de seulement 0.6 dB les résultats obtenus
dans le cas idéal, c’est à dire celui avec utilisation de la boucle de retour.

Génération de l’information adjacente

Résumé des chapitre 4, 5, 6 et 7 du manuscrit de thèse.

Méthodes de référence

Dans cette partie nous présenterons plus précisément tout ce qui concerne les méthodes
d’interpolation utilisées pour générer l’information adjacente. Notons que certaines so-
lutions proposent d’utiliser d’autres approches type extrapolation [Natario et al., 2005]
pour se détacher des problèmes liés aux interpolations. Pourtant cette famille de méthodes
restent les plus performantes aujourd’hui, et ces pourquoi nous nous concentrerons sur ce
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type d’approches. Comme indiqué dans la figure 7, pour estimer une TWZ, les algorithmes
d’interpolation nécessitent deux TC encadrant la TWZ. Celles-ci ne doivent pas forcément
être les trames immédiatement voisines de la TWZ, elles peuvent se situer plus loin dans la
vidéo. Les algorithmes d’interpolation ont pour but d’estimer les deux champs de vecteurs
reliant la TWZ à chacune des TC. Ceux-ci sont utilisés pour compenser les TC et construire
alors une estimation de la TWZ.

Figure 7: Interpolation de la TWZ entre deux TC. Les champs de vecteurs estimés sont
utilisés pour la compensation qui consiste à moyenner les deux blocs des TC.

Dans le cadre du projet européen Discover, un algorithme [Ascenso et al., 2005a] en
quatre étapes qui s’avère être l’un des plus efficaces parmi les méthodes existantes, a été
proposé. La première étape consiste à filtrer les TC afin d’augmenter la robustesse de la
méthode. Ensuite un premier champ de vecteur est calculé entre les deux TC (utilisant
un algorithme de recherche par bloc). Ce champ de vecteur sert de base à la construction
d’un champ bidirectionnel cette fois-ci entre la TWZ et les deux TC. Une troisième étape
consiste à raffiner ce champ bidirectionnel, à nouveau à l’aide d’un algorithme de recherche
par bloc. La dernière étape est une opération de filtrage (filtrage médian) sur les vecteurs
obtenus.

Cette méthode, très efficace, a souvent été utilisée pour effectuer des interpolations
intervues [Areia et al., 2007]. Toutefois, si dans le domaine temporel elle permet une très
bonne estimation des mouvements de la scène, dans le sens des vues, sa structure est
limitée et ne délivre pas une bonne appréciation de la structure de la scène, nécessaire
pour une interpolation. Cependant, même si ces résultats sont moins bons que pour une
interpolation de mouvement, elle donne de meilleurs résultats que beaucoup de méthodes
existantes dans le sens des vues.

1 2 43

Figure 8: Schéma général des méthodes d’interpolation denses proposées. Les blocs en
traits pleins constituent les étapes de l’algorithme de Discover, et ceux en traits pointillés,
constituent les raffinements de champs de vecteurs.
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Interpolation développée dans le cadre du projet Essor

Dans le cadre du projet ESSOR, nous avons proposé une nouvelle méthode d’interpolation
par bloc qui obtient de meilleures performances que Discover. Celle-ci effectue deux
estimations de champs de vecteurs monodirectionnels entre les TC (une dans chaque sens),
ensuite selon une méthode prenant en compte les pixels indépendamment, elle construit
une estimation qui s’avère être bien souvent meilleure que celle générée avec Discover.
Cette méthode propose donc une première solution pour se détacher de la description par
bloc de Discover en considèrent les pixels un par un. Seulement, les champs de vecteurs
sont encore par bloc. Dans la suite, nous proposons d’estimer directement les champs de
vecteur pixel par pixel.

Méthodes denses

Interpolation denses

Toutes ces méthodes adoptent une approche par bloc, i.e., elles utilisent un champ de
vecteurs par bloc (généralement de taille 8×8 pixels). Cela est justifié dans les schémas de
codage classiques type H.264, car les estimations de mouvement se font à l’encodeur et les
champs obtenus sont alors transmis donc économisés. En revanche, dans des schémas de
CVD, ces étapes d’interpolation sont effectuées au décodeur, et il n’y a aucune raison de
limiter le nombre de vecteurs, sauf bien sûr pour des raisons de complexité mais l’hypothèse
est souvent faite en CVD que la complexité au décodeur n’est pas un problème. Ainsi,
nous proposons une famille de méthodes effectuant une interpolation dense, i.e.,un vecteur
par pixel (figure 8).

Estimer un champ dense n’est pas un problème si simple car en augmentant le nom-
bre de vecteurs, on diminue inévitablement la stabilité. Ainsi, nous proposons d’utiliser
deux techniques de raffinement, permettant de rendre dense un champ initialement décrit
par bloc. Les deux techniques de raffinement de champs de vecteurs utilisées sont celles
reposant sur l’algorithme de Cafforio-Rocca et sur une approche variationnelle.

Le descriptif détaillé des méthodes est donné dans le Chapitre 6. Pour résumer, le pre-
mier algorithme de raffinement propose pixel par pixel une correction optimale d’une valeur
initiale bien choisie en fonction des voisins. La deuxième adopte plutôt une approche vari-
ationnelle ayant pour but d’obtenir un champ lisse dans l’ensemble mais avec changement
brutal au niveau des contours. On peut voir dans le tableau 1 que pour certaines séquences,
le gain par rapport à la méthode de référence Discover est très fort. En revanche, le gain
est plus faible pour d’autres. Cela est du au fait que les performances obtenues dépendent
encore fortement des paramètres internes aux méthodes. Cela étant, les résultats restent
encourageants et nous invite à trouver un moyen d’adapter ces paramètres aux contenu
des séquences.

Méthodes de fusion

Dans la section précédente, nous avons présenté les méthodes d’interpolation d’images
utilisées. Dans les schémas où il y a une interpolation par TWZ, l’estimation résultante
constitue l’IA à turbodécoder. En revanche, dans la plupart des schémas multivues, au
moins deux interpolations sont effectuées (temps et vues), et ainsi deux estimations doivent
être fusionnées afin de constituer une unique IA. Dans cette section, nous présentons, et
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CD DC VD Mean
akiyo∗ 0.00 -0.08 0.00 -0.02
city∗ 0.93 0.17 1.12 0.74
container∗ 0.17 -0.23 0.17 0.04
eric∗ 0.18 -0.16 0.24 0.08
football∗ -0.27 -0.12 -0.16 -0.18
foreman∗ 0.20 0.21 0.20 0.21
mother and daughter∗ 0.01 0.00 0.01 0.01
mobile∗ 0.84 0.00 1.03 0.62
news∗ 0.09 0.00 0.09 0.06
tempete∗ -0.10 -0.01 -0.08 -0.06
silent∗ -0.02 0.02 -0.02 -0.01
waterfall∗ 0.01 0.01 0.01 0.01
planet∗ (synthetic sequence) 0.09 0.22 0.14 0.15
book arrival+ -0.12 0.07 -0.11 -0.05
outdoor+ 0.25 0.03 0.29 0.19
ballet+ 0.13 0.04 0.15 0.11
ballroom+ -0.04 0.06 0.01 0.01
uli+ -0.00 0.03 0.02 0.02
Moyenne 0.13 0.02 0.17 0.11

Table 1: ∆ PSNR moyen sur les IA dans le sens temporel et pour plusieurs séquences.
∗: séquences monovues (352× 288, 30 fps), +: séquences multivues (512× 384, 30 fps)

nous mettrons en équation les fusions existantes et nous proposerons trois nouvelles fu-
sions. Cette section est tirée de travaux présentés dans [Maugey et al., 2009].

La figure 9 représente les différents éléments rentrant en jeu lors de la fusion. L’hypothèse
est qu’il faut créer une unique IA pour le décodage d’une TWZ nommée, Wn,t. Pour cela
quatre TC sont disponibles: In,t-1, In,t+1, In-1,t et In+1,t. Les interpolations ont donnés
quatre champs de vecteurs, vb, vf , vl et vr afin de compenser ces TC et donner quatre
estimations Ĩn,t- , Ĩn,t+ , Ĩn-,t, Ĩn+,t. Les méthodes considèrent souvent qu’il n’y a que deux
estimations, car les deux temporelles ainsi que les deux intervues sont souvent moyennées
pour ne générer qu’une seule estimation temporelle et une seule intervue.

Méthodes existantes
Avec les notations de la figure 9, voici une liste des fusions les plus performantes existantes.
Les fusions existantes sont dites “binaires”, c’est-à-dire que pixel par pixel elles choisissent
la meilleure valeur parmi celles disponibles. Par la suite, nous les opposerons aux fusions
“linéaires” qui effectuent une combinaison des valeurs disponibles.

La fusion idéale (Id) étudiée dans [Areia et al., 2007; Maugey, Pesquet-Popescu,
2008], correspond à la borne supérieure des fusions binaires. Pixel par pixel, la meilleure
des estimations est choisie en calculant la véritable erreur:

Ĩ(s) =

{
ĨN (s), if |ĨN (s)−Wn,t(s)| < |ĨT (s)−Wn,t(s)|
ĨT (s), sinon.

La fusion par différence de pixels (PD), proposée par Ouaret et al. [Ouaret et al.,
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Figure 9: Problématique de la fusion de quatre estimations pour une TWZ à un instant
t de la caméra n: les Ix correspondent aux TC disponibles au décodeur et Ĩx à leurs
versions compensées en mouvement, estimant Wn,t. Les vx correspondent aux vecteurs de
mouvement.

2006] dans laquelle l’erreur d’estimation est approximée grâce aux trames placées avant et
après la TWZ courante:

Ĩ(s) =

{
ĨN (s), si EbN (s) < EbT (s) etEfN (s) < EfT (s)
ĨT (s), sinon.

où EbN = |ĨN − In,t−1|, EfN = |ĨN − In,t+1|, EbT = |ĨT − In,t−1| et EfT = |ĨT − In,t+1|.
La fusion par différence des compensations en mouvement (MCD) proposée

dans [Guo et al., 2006a] et dans laquelle la valeur absolue de la différence entre les deux
TC temporelles compensées est seuillée ainsi que la valeur des vecteurs de mouvement:

Ĩ(s) =





ĨN (s), si |Ĩn,t−(s)− Ĩn,t+(s)| > T1

ou ‖vb(s)‖ > T2

ou ‖vf (s)‖ > T2

ĨT (s), sinon.

La fusion par projection selon les vues (Vproj) [Ferre et al., 2007] consiste à
projeter l’estimation temporelle sur les vues adjacentes (dcl(·) et dcr(·)). On calcule ensuite
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les deux erreurs avec les TC des vues adjacentes (El et Er). Celles-ci sont à nouveau
compensées en disparité vers la vue centrale:

Ĩ(s) =

{
ĨN (s), si |dc−1

l (El)(s)| > T ou |dc−1
r (Er)(s)| > T

ĨT (s), sinon.

La fusion par projection temporelle (Tproj) [Ferre et al., 2007] qui est la version
temporelle de la Vproj.

Ĩ(s) =

{
ĨN (s), si mc−1

b (Eb) < T oumc−1
f (Ef ) < T

ĨT (s), sinon.

Méthodes proposées
La première des méthodes proposées, comme celles de l’état de l’art est dite “binaire”:
La fusion binaire par différence des compensations en mouvement et disparité
(MDCDBin) compare les résidus des estimations temporelles et intervues qui sont définis
par ET (s) = |Ĩn,t−(s)− Ĩn,t+(s)| et EN (s) = |Ĩn−,t(s)− Ĩn+,t(s)|.

Ĩ(s) =

{
ĨN (s), si EN (s) < ET (s)
ĨT (s), sinon.

L’approche innovante de nos travaux est de proposer et de tester deux fusions dites linéaires
pour lesquelles la valeur de l’estimation finale est une combinaison linéaire des estimations
disponibles. Les coefficients de cette combinaison sont déterminés en fonction de plusieurs
paramètres.
Dans la fusion linéaire par différence des compensations en mouvement et dis-
parité (MDCDLin), les résidus ET and EN sont utilisés pour bâtir les coefficients:

Ĩ(s) =
ET (s)

ET (s) + EN (s)
ĨN (s) +

EN (s)
ET (s) + EN (s)

ĨT (s)

L’idée de la fusion linéaire fondée sur l’erreur d’estimation et la norme des
vecteurs (ErrNorm), est de prendre en compte l’information concernant la taille des
vecteurs de mouvement:

Ĩ(s) =
Ĩerr(s) + Ĩnorm(s)

2
où

Ĩnorm(s) =
(‖vb‖+ ‖vf‖)ĨN (s) + (‖vl‖+ ‖vr‖)ĨT (s)

‖vb‖+ ‖vf‖+ ‖vl‖+ ‖vr‖

Ĩerr(s) =
ET (s)ĨN (s)

ET (s) + EN (s)
+

EN (s)ĨT (s)
ET (s) + EN (s)

Les résultats expérimentaux (figure 10) pour ces méthodes proposées sont encourageants
car elles obtiennent de meilleures performances débit-distorsion que les méthodes exis-
tantes.
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Figure 10: Qualité de l’IA pour différentes méthodes de fusion, pour différent pas de
quantification des TC, et pour deux séquences book arrival and outdoor.

Schémas à base d’information de hachage

Partant du principe qu’il existe de zones dans l’image qui ne peuvent être estimées au
décodeur (car ces zones ne sont pas présentes dans les TC, comme dans le cas d’occlusions
par exemple), certaines schémas envoient une petite partie de l’information WZ afin d’aider
l’estimation de l’IA et du bruit de corrélation dans ces zones. Ces schémas, dits à base
d’information de hachage, soulèvent plusieurs problématiques: le choix de l’information de
hachage à transmettre, son mode de compression, et son utilisation au décodeur.

Dans cette thèse nous proposons un nouveau schéma de ce type représenté dans la
figure 11. Contrairement aux méthodes existant dans la littérature, nous avons choisi
d’effectuer cette sélection au décodeur et d’utiliser le canal de retour pour transmettre à
l’encodeur la sélection. Ainsi, au lieu d’avoir une mauvaise estimation de l’IA (typique-
ment une moyenne) mais la trame originale disponible comme les méthodes existantes l’ont,
nous avons choisi de nous affranchir de la connaissance de la trame originale mais d’avoir
à disposition la vraie IA estimée. Une fois la sélection faite, l’encodeur compresse ces in-
formations de hachage retenues. Pour cela nous avons choisi d’utiliser la même matrice de
quantification que celle adoptée dans Discover. Le choix des paramètres de quantifica-
tion s’est effectué expérimentalement.

Une fois l’information de hachage sélectionnée, compressée et transmise, le décodeur
utilise cette information supplémentaire pour construire une information adjacente plus
précise. Celle-ci est obtenue grâce à une algorithme génétique où différents candidats sont
fusionnés et sélectionnés selon les règles de l’évolution des êtres vivants. Les résultats
obtenus par ce schéma sont présentés dans la figure 12. Ceux-ci montrent le potentiel de
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Figure 11: Structure générale du schéma à base d’information de hachage proposé. En
rouge, le canal de retour qui constitue la spécificité de notre approche.
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Figure 12: Performances débit-distorsion pour deux séquences au format CIF. En pointillés
rouges, les performance du codeur de référence Discover et en lignes noires et pleines
l’algorithme proposé.
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notre schéma et du fait de transmettre de l’information de hachage pour affiner l’estimation
de l’information adjacente au décodeur.

Estimation du bruit de corrélation

Résumé du chapitre 8 du manuscrit de thèse.

Nous rappelons que dans la structure générale des codeurs CDV type Stanford, le dé-
codeur corrige les IA avec les bits de parité envoyés par le codeur WZ. Ce processus est
effectué sous l’hypothèse que l’erreur d’estimation peut être considérée comme une erreur
de canal. Pour fonctionner, le turbo décodeur a besoin d’un modèle pour le bruit de cor-
rélation entre la TWZ et son IA associée et les performances du codec dépendent en partie
de la qualité de ce modèle. Le bruit de corrélation est généralement estimé à l’aide d’un
modèle Laplacien [Aaron et al., 2002].
Nous proposons dans cet article de remplacer le modèle Laplacien par un modèle Gaussien
Généralisé (GG) recouvrant une large classe de distributions classiques comme les Gaussi-
ennes ou les Laplaciennes. Il a été montré que ce modèle est bien adapté pour la représen-
tation des coefficients d’ondelettes de signaux ou d’images [Mallat, 1989]. Notons enfin
qu’il a été montré que cette distribution offre un bon modèle pour les coefficients de DCT
d’images naturelles [Müller, 1993]. Ces propriétés peuvent conduire à appliquer ce modèle
aux deux transformations usuelles en compression d’images et de vidéos que sont la DCT
et les ondelettes.

Soit X la TWZ originale et soient Ip et Is les trames de références construites à partir
des TC précédente et suivante. Au décodeur, l’IA est notée Y et le résidu R est défini
comme la différence entre les trames Ip et Is compensées. Soit s = (x, y) un pixel et en
notant les champs de vecteurs de mouvement précédent et suivant par MVp et MVs, alors
Y et R s’expriment de la manière suivante :

Y (s) =
Ip(s +MVp(s)) + Is(s +MVs(s))

2
, (1)

R(s) =
Ip(s +MVp(s))− Is(s +MVs(s))

2
. (2)

X, Y et R peuvent être transformés à l’aide d’une DCT entière 4×4 ou à l’aide d’une trans-
formée en ondelette biorthogonale de type 9/7 (sur 3 niveaux de décomposition). Nous
notons ainsi par xk,i, yk,i et rk,i les ième coefficients de la kème sous-bande (k ∈ [1, ...,K]
et i ∈ [1, ..., Nk]), résultant de la décomposition de X, Y et R.

Une hypothèse classique en CVD est de considérer que la corrélation dépend unique-
ment de la sous-bande et que le bruit est modélisé par une distribution Laplacienne. Dans
les premiers travaux sur le CVD [Aaron et al., 2002], l’estimation des coefficients se fai-
sait hors-ligne. Autrement dit, il était supposé que les paramètres (αk)

K
k=1 de chaque

sous-bande sont connus par le décodeur. Cette hypothèse, peu réaliste puisqu’elle suppose
connue l’erreur xk,i − yk,i au décodeur, a ensuite été remplacée par une solution en-ligne
[Brites, Pereira, 2008] qui consiste à estimer l’erreur à l’aide des coefficients du résidu rk,i.
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La densité de probabilité d’une GG de moyenne nulle et de paramètres (α, β) ∈ R∗2+ :

fα,β(x) =
β

2αΓ
(

1
β

)e−
(
|x|
α

)β
,

où Γ(x) =
∫∞

0 tx−1e−tdt est la fonction Gamma d’Euler (si β = 1 on retrouve la densité
d’une Laplacienne). Nous proposons d’estimer les paramètres de la densité de probabil-
ité de deux manières: méthodes des moments, et méthodes du maximum de vraisemblance.

Méthode 1 Méthode 2 city football foreman
Lap hors-ligne GG hors-ligne MV -0,96 -3,73 -1,78
Lap hors-ligne GG hors-ligne Mom 1,21 -3,61 -1,52
Lap en-ligne GG en-ligne MV 0,36 -3,29 -0,90
Lap en-ligne GG en-ligne Mom -1,30 -4,30 -1,88
Lap hors-ligne Lap en-ligne 1,73 2,67 1,53
GG hors-ligne MV GG en-ligne Mom 1,40 2,10 1,39
Lap hors-ligne GG en-ligne Mom 0,44 -1,64 -0,38

Table 2: Gains en débit (%) de la méthode 2 par rapport à la méthode 1 sur différentes
séquences.

Le tableau 2 montre un exemple de résultat que l’on obtient en changeant le modèle
Laplacien par un modèle GG dans le cas d’une transformée DCT entière 4×4. Les gains en
débit sont calculés à l’aide de la « métrique » de Bjontegaard [Bjontegaard, 2001]. On con-
state que sur toutes les séquences testées la méthode GG permet de diminuer le débit aussi
bien en mode hors-ligne (jusqu’à 3, 73% sur Football CIF et 1, 78% sur Foreman QCIF)
qu’en mode en-ligne. Pour un PSNR de 38, 38dB sur la séquence Football cela correspond
à une réduction de 194kbs hors-ligne et 128kbs en-ligne, et sur Foreman à 39, 94dB les
différences sont de 44kbs hors-ligne et 46kbs en-ligne. On peut noter que la méthode MV
semble plus performante en hors-ligne et que la méthode des moments donne de meilleurs
résultats en mode en-ligne. Finalement, on peut remarquer qu’en utilisant GG Mom en
mode en-ligne on peut, sur certaines séquences, obtenir des gains par rapport aux résultats
avec le modèle Laplacien hors-ligne.

Etude des métriques d’estimations de la qualité de l’information
adjacente

Résumé du chapitre 9 du manuscrit de thèse.

Dans la littérature, la qualité de l’information adjacente est quasiment toujours mesurée
grâce au PSNR :

PSNR = 10 log10

(
2552

EQM

)

où EQM est l’erreur quadratique moyenne entre l’image originale, Iref et l’information
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adjacente, I :

EQM =
1

Nwidth ×Nheight

∑

p∈J1,NheightK×J1,NwidthK

(
I(p)− Iref (p)

)2
.

Bien que cette métrique soit celle la plus couramment adoptée, il existe des cas de
figure où celle-ci ne parvient pas à bien indiquer la bonne valeur de la qualité (cf thèse de
Denis Kubasov [Kubasov, 2008]). Dans la thèse nous avons fabriqué une autre situation
dans laquelle le PSNR ne prédit pas le bon ordre de qualité entre deux information adja-
centes. On peut voir dans la Figure 13 deux trames visant à estimer la même TWZ avec
deux erreurs différentes. La première a été construite grâce à une interpolation classique
et l’autre avec l’addition d’un bruit artificiel stationnaire à la trame originale. Ces deux
estimations présentent le même PSNR (cf tableau 3). Or après décodage, il s’avère que
l’interpolation obtient de bien meilleures performances que l’IA avec le bruit artificiel.

Type d’IA PSNR de l’IA (dB) débit (kb) PSNR décodé (dB)
Interpolation de Discover 29.05 137.28 39.29
Originale+ bruit artificiel 29.04 192.46 35.40

Table 3: Exemple des limites du PSNR comme métrique de qualité de l’IA.

(a) (b)

Figure 13: Les deux IA du tableau 3 (a) Discover 29.05 dB and (b) bruit artificiel
29.04 dB.

C’est au vue de ce constat que nous proposons de tester d’autres métriques qui vis-
eraient à mesurer plus fidèlement la qualité de l’information adjacente. Une des métriques
a été proposée par Kubasov dans sa thèse :

SIQ = 10 log10


 2552

1
Nwidth×Nheight

∑
p∈J1,NheightK×J1,NwidthK

∣∣∣I(p)− Iref (p)
∣∣∣
1
2


 . (3)

Nous choisissons également d’étudier une version plus générale de cette mesure avec
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a > 0 :

SIQa = 10 log10


 2552

1
Nwidth×Nheight

∑
p∈J1,NheightK×J1,NwidthK

∣∣∣I(p)− Iref (p)
∣∣∣
a


 .

Dans le but d’élaborer une métrique la plus proche du fonctionnement du turbo dé-
codeur, nous proposons la métrique suivant qui cumule les distances de Hamming sur tous
les plans de bits et sur toutes les bandes :

HSIQ(qi) = 10 log10

(
1

1
Nbits

∑
b

∑
bp

∑
c I(b, bp, c)⊕ Iref (b, bp, c)

)
(4)

où I et Iref sont les versions transformées et quantifiées respectivement de l’IA et de la
TWZ originale.

Pour tester ces métriques (PSNR, SIQa avec a ≤ 1 et HSIQ), nous avons créé des
bases de données d’IA pour lesquelles nous avons définie une «vraie» qualité fondée sur
les résultats débit-distorsion après turbodécodage. Nous avons ensuite comparé cette
«vraie» qualité aux qualité mesurées avec les métriques proposées. Voici les conclusions
obtenues. Lorsqu’au sein d’une même base de données, il n’y a qu’un type d’erreur (erreurs
d’estimation de mouvement par exemple), toutes les métriques, y compris le PSNR, sont
fiables. Ce qui valide l’utilisation habituelle du PSNR. Seulement lorsque dans la base de
données, plusieurs types d’erreur apparaissent (erreurs d’estimation de mouvement et de
quantification des TCs), le PSNR obtient alors un score de fiabilité très faible, alors que
les autres métriques demeurent performantes. C’est donc dans le cas où différents types
d’erreur se côtoient que le PSNR présente ses limites. Cela est dû au fait que le PSNR
tient compte plus fortement des grandes erreurs, alors que le turbodécodeur est sensible à
tous types d’erreur (forte ou non) tout comme les SIQa proposées (avec a ≤ 1) et la HSIQ.

Conclusion

Perspectives ou extension des travaux effectués

En se fondant sur les résultats et conclusions tirées de chacune de nos contributions, nous
détaillons ici les différentes pistes qui seraient, selon nous, intéressantes d’explorer.

De nouveaux schémas multivues à base d’extrapolation contenant moins de
trames clefs : le schéma symétrique proposé dans le Chapitre 3 obtenant de meilleurs
résultats, il serait intéressant d’explorer encore plus de modes de classification, et les
techniques de génération d’information adjacente qui en découleraient. Si l’utilisation
d’interpolations limite en effet l’extension de la distance entre les trames clefs (car vrai-
ment trop mauvaises pour des trames clefs trop éloignées), on pourrait songer à effectuer
des extrapolations qui ne diminuent pas en performances quand l’éloignement des trames
clefs s’accroit. Cela nécessiterait une élaboration de méthodes d’extrapolation multivues
encore inexistantes aujourd’hui. En revanche, pour des schémas de ce type, une perte
de trame peut s’avérer catastrophique pour les performances. Il serait donc intéressant
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d’étudier ce phénomène grâce à une extension au multivue du modèle débit-distorsion pro-
posé.

Un contrôle du débit étendu au multivue, moins dépendant de paramètres à
estimer offline : une fois le modèle débit-distorsion étendu au multivue, il deviendra pos-
sible d’étendre pas la même l’algorithme de contrôle du débit proposé au cas de séquences
multivue. En revanche, pour le cas monovue et multivue, il est également nécessaire de se
pencher sur la mise en pratique de cette méthode. En effet, l’algorithme existant est trop
dépendant de certains paramètrage effectué en amont et dépendant de la vidéo. Il faudrait
ainsi pouvoir estimer ces coefficients en ligne, directement à l’encodeur.

Une meilleure adaptation en ligne des paramètres des méthodes d’estimations
denses : les résultats obtenus dans le Chapitre 6 nous amènent au constat suivant : les
méthodes proposées peuvent s’avérer très efficaces dans certaines situations, mais ne dé-
passent pas l’approche par bloc de Discover dans d’autres cas de figure. Nous pensons
que cela est dû à une trop forte dépendance de ces méthodes aux paramètres, et qu’il serait
intéressant d’envisager une solution de détermination en ligne de ces paramètres.

Des méthodes de fusion fondées sur la reconnaissance de contour : après avoir
exploré des fusions linéaires, il serait certainement profitable de fonder le calcul de coeffi-
cients de la combinaison sur des considérations “objet”. Autrement dit, il sera bénéfique de
détecter les objets dans la scène, et ainsi prévoir les zones d’occlusion ou de fort mouvement.

Extension du modèle gaussien généralisé au cas non spatialement station-
naire : on a vu que dans certains cas de figure, les performances restaient inchangées
quels que soient les paramètres de la gaussienne généralisée modélisant le bruit de corréla-
tion. Autrement dit, la distribution à modéliser n’est pas bien choisie, et mériterait d’être
considérée comme non stationnaire spatialement. En effet, dans une image, la corrélation
entre l’information adjacente et l’image originale n’est pas la même suivant les régions, et
ils serait intéressant de considérer ce phénomène avec une distribution gaussienne général-
isée ou avec un mélange de gaussiennes.

Application des métriques de qualité de l’information adjacente : L’étude des
métriques mesurant la qualité de l’information adjacente proposée dans ce manuscrit s’en
tient à des considérations théoriques. Il serait donc intéressant d’appliquer ces idées afin
d’améliorer les performances débit-distorsion du schéma. Par exemple, on pourrait penser
à développer une méthode de génération d’information adjacente dans laquelle l’erreur
quadratique moyenne serait remplacée par une des métriques proposées.

Une optimisation du codeur Essor afin de tester les différentes méthodes
proposées sur deux types de codeur : même si nous avons présenté des résultats
débit-distorsion du schéma de codage vidéo distribué Essor, nous avons vu que ces per-
formances n’étaient pas encore optimisées. Il faudrait pour cela se pencher sur chacun
des modules de ce schéma et d’optimiser (quantificationdes trames WZ dans le domaine
transformée, estimation du bruit de corrélation, etc.). Une fois le codeur optimisé, nous
pourrions alors tester les différentes contributions de cette thèse sur le schéma Essor. Il
serait intéressant d’observer le comportement des métriques d’estimation de la qualité de
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l’information adjacente avec un décodeur LDPC, ou bien tester la modélisation du bruit de
corrélation par des gaussiennes généralisées sur ce même décodeur LDPC dans le domaine
des ondelettes.

Le codage vidéo distribué, quel avenir ?

Le codage vidéo distribué est un domaine de recherche pour le moins atypique. En effet,
de part sa nouveauté, son potentiel et la beauté des résultats théoriques sous-jacents, il
constitue un domaine de recherche très populaire et de nombreuses équipes de recherche
travaillent à l’amélioration des performances de codage, ce qui fait que l’état de l’art,
malgré la jeunesse du domaine, est déjà conséquent. Cependant, cette effervescence est
en train de s’estomper de nos jours. On voit dans certaines reviews d’articles que cer-
tains chercheurs commencent à être sceptiques quant au potentiel du codage distribué.
D’une part les résultats ne sont pas à la hauteur des attentes pour le moment, d’autre
part l’argument de la diminution de la complexité à l’encodeur convainc de moins en mois.
En effet, l’application phare initiale du codage vidéo distribué étant les systèmes à faible
puissance de calcul (type téléphone portable), on peut facilement comprendre qu’avec les
progrès d’efficacité des processeurs existants, les téléphones portables pourront soutenir
très rapidement des calculs de plus en plus lourds.

Ce n’est pas pour autant qu’il faut se montrer défaitiste au sujet du codage vidéo
distribué. En effet, si l’argument de la complexité ne pèse plus, il y aura toujours un
avantage considérable que le codage vidéo distribué apportera : celui de supprimer tout
besoin de communication entre les caméras à l’encodage. Il est fort probable qu’il faille
attendre longtemps avant que les progrès technologiques viennent balayer cet argument.
Une autre raison de se montrer optimiste quant à l’avenir du codage vidéo distribué est le
formidable potentiel que celui-ci offre aujourd’hui. Pour chacun des modules, il est clair
qu’il reste encore de fortes progressions à faire. Par exemple, les techniques de génération
d’information adjacentes doivent être encore améliorées, et spécialement dans le sens des
vues. Un gros enjeu du codage vidéo distribué est la modélisation de la corrélation qui
doit savoir trouver les différentes stationnarités existantes. Enfin, si certains chercheurs
pointent les limites du schéma de type Stanford, il reste néanmoins possible d’inventer
d’autres schémas de codage, permettant de se rapprocher des conditions des théorèmes
fondamentaux.
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Introduction

Since decades, video compression has been a main research topic which has mobilized
many research groups and many industrials. From its initial goal which simply consists in
reducing the rate necessary for the description of a video sequence, many other issues have
risen depending on transmission, material or system power conditions. Indeed, whereas
the purpose of all of these new paradigms remains to improve the compromise between a
low rate and a high decoded quality, it is obvious that external conditions have a strong
influence on adopted techniques or on more precise goals. For example, the video coding
architecture would not be the same whether encoding and decoding is performed with a
powerful system or not, or whether there is one camera or several.

So-called classical video compression (because more usual) aims at extracting inter
frame correlation at the encoder. This approach thus relies on complex techniques (in
terms of power requirements) such as motion estimation (or disparity estimation for multi-
view sequences) in order to reduce the quantity of information to transmit to the decoder.
This scheme is perfectly adapted to the following conditions: a compression performed
on a powerfull station, and a light decoding with low-power systems (DVD player, TV
broadcasting, etc.). However, whereas these configurations remain usually adopted, some
new needs have risen in the last years. Indeed, more and more capture hardware systems
need to perform video compression. Furthermore, more and more camera networks sys-
tems (such as videosurveillance) require non-complex compression algorithms and above
all coding techniques which do not need communication between cameras (necessary in
classical video coding since it is needed to extract the intercamera correlation).

Based on all these arguments, distributed video coding paradigm has appeared in early
2000’s. This new paradigm proposes to shift all of the complex interframe comparisons to
the decoder side. This idea is based on 30-year old theoretical results from Slepian and
Wolf on one hand, and Wyner and Ziv on the other hand, which have stated that, under
some specific conditions, two correlated sources could be encoded independently or jointly
and transmitted with the same rate and the same distortion, as soon as the decoding is
performed jointly.

These seductive theoretical results have led several research teams to develop dis-
tributed video coding schemes with the purpose (theoretically possible) to equal the per-
formance of classical schemes such as MPEG-x, H.263, then H.264, etc. However, even if
distributed video coding has been rapidly seen as a promising paradigm, the rate-distortion
performance of current coders is far from the initial target. Indeed, several hypotheses of
the founder theorems are not strictly verified and thus limit the efficiency of the existing
codecs. Distributed video coding has nevertheless a lot of room for improvement since
many modules can still be enhanced.
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The European project Discover has permit to several research teams to develop a
complete distributed video coding scheme which is nowadays one of the most efficient and
popular existing architectures. This scheme will be the starting point of most of the works
presented in this thesis manuscript. That is why we draw, here, the main characteristics
of this approach. The images of the sequence are divided into two types, the key frames
and the Wyner-Ziv (WZ) frames, split as follows: one key frame, then one WZ frame,
another key frame, and so forth. The key frames are independently encoded and decoded
using intra codecs such as H.264 Intra or JPEG2000. These are also used at the decoder
to generate a WZ frame estimation, called side information. The WZ frames are encoded
independently with the classical source coding process: a transformation followed by a
quantization. Then, instead of the entropy coder (usually adopted in classical source cod-
ing schemes) the output of the quantizer is processed with a channel encoder (LDPC or
turbocodes), obtaining a systematic stream (a version of the input), and a parity stream
(the redundancy information used to correct the channel errors). The idea consists in not
transmitting the systematic information and in replacing it at the decoder by the side
information generated with the key frames. Thereby, the parity information, initially de-
signed to correct the channel error is transmitted in order to avoid the estimation errors.
The WZ stream is then reconstructed and inverse transformed.

The original idea of using channel codes for compression is what makes distributed video
coding original and attractive, but it is on the other hand what raises the largest number
of limiting aspects and research works. Firstly, the system needs to know the correlation
between the side information and the original WZ frame, yet, these two elements are not
together available, neither at the encoder nor at the decoder. Moreover, the encoder needs
to know the exact number of parity bits to send. That is why, the Discover architecture
(and almost all of the existing ones) make a progressive decoding by using a backward
channel to request some more parity information as one goes along. It is one major limit
of the system because it requires a hardly conceivable real-time transmission and decoding.

The second key element of this scheme is the side information generation task. Decod-
ing performances strongly depend on the WZ estimation quality. That is why many works
aims at enhancing the efficiency of motion/disparity estimation techniques.

The work conducted during this thesis led us to investigate many aspects of distributed
video coding. First of all, we aimed at studying in detail the conditions of extending dis-
tributed video coding to multiview settings, which brings some new important questions,
such as the disposition of the key and WZ frames in the time-view space, or the way of
generating inter-view estimations and how to merge it with the temporal estimation so that
the decoder has a unique side information. While proposing some solutions to these differ-
ent problems, we have looked into several general aspects of distributed video coding (non
specifically monoview or multiview), such as the improvement of temporal interpolation, a
refinement of the correlation noise model, the backward channel suppression and a study
of the side information quality metrics. Moreover, we have also studied other distributed
video coding schemes by developping a hash-based scheme, and a wavelet-based coding
architecture in collaboration with different research groups (LSS, IRISA and I3S).

Thereby, in this manuscript, we will present these contributions, their detailed context,
purpose and results. These ones are organized in three parts, each of them corresponding
to a different theme. The first part will present our contribution to improve the compre-
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hension of the coder behavior in general, and its rate-distortion performance in particular.
In a second part, we present some new improvements for the side information generation,
and finally, in the third and last part, we make a zoom on the WZ decoder difficulties. In
more details, the manuscript is organized as follows:

Chapter 1 - A distributed coding state-of-the-art: we will present the origins of
distributed video coding through a rapid study of the distributed source coding techniques,
and the two main approaches for distributed video coding. Moreover, we will detail the
architecture of Discover coder and its different still open problems. This chapter will not
present a detailed state-of-the-art of each module because this will be done later in each
chapter.

Part I - Proposal and applications of a rate-distortion model: In this part,
the general behavior of a distributed video coding scheme is first analysed and modelled.
Based on an original rate-distortion model, we will more precisely study the coder input
(the frame classification), and the output with the error propagation phenomenon in case
of frame losses. Finally, we propose an original solution to get rid of the backward channel.
This first part contains two chapters:
Chapter 2 - A new rate-distortion model: we present here an original study which
aims at modelling the WZ estimation error at the decoder. The obtained expression has a
very simple and interesting structure which separates (mainly at high bitrates) the errors
coming from the key frame quantization, and the errors coming from the motion estima-
tion. This model is based on several hypotheses whose validity will also be tested in this
chapter.
Chapter 3 - Applications of the rate-distortion model: in this chapter we describe
three problems for which we have resorted to the proposed distortion model. The first of
them corresponds to the image classification at the coder input. We detail all of the exist-
ing classifications in multiview configuration, and we then propose a new one involving a
reduced number of reference frames, leading thus to a less complex encoding. Based on the
proposed rate distortion model, we will determine the optimal decoding strategy (i.e.,WZ
decoding order) of this scheme. Then, we will study the error propagation phenomenon in
case of entire frame loss in monoview setting. We will observe the relative importance of
the images depending on their position in the decoding order, and we will perceive some
fundamental notions related to rate control at the encoder, such as the idea of not allo-
cating an identical rate to all the WZ frames, and of taking into account their position
in the sequence. Finally, we propose a new scheme allowing to get rid of the backward
channel. Based on the proposed rate-distortion model, the rate control algorithm estimates
the global frame rate and divided it between the bitplanes in function of the Hamming
distance, contrary to the existing techniques which directly estimate the bitplane rates
based on the entropy estimation.

Part II - Side information generation: in this part, we will exclusively study
the WZ estimation process at the decoder, motivated by the observation that distributed
video coding performance strongly depends on side information quality. After a detailed
review of the existing techniques in the literature, we present the interpolation algorithm
designed in collaboration with other research teams of the Essor project (see Chapter 5
for more details). Then, we detail the proposed dense (one vector per pixel) interpolation
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algorithms as well as the proposed methods for the fusion of the inter-view and temporal
estimations. Finally, we will present an original hash-based scheme.
Chapter 4 - State-of-the-art : we present here all the problems related to the side
information such as the estimation methods (interpolations, extrapolations, etc.), then the
fusion of several estimations (for multiview setting), and finally the existing hash-based
schemes which helps the decoding process by sending well-chosen WZ informations.
Chapter 5 - Essor interpolation: this chapter details the interpolation technique
proposed within the Essor project. We also detail the developed coder in which this
algorithm has been integrated, and we show some rate-distortion results.
Chapter 6 - Side information refinement : the techniques detailed in this chapter
are based on the idea that the savings of the interpolation vector number was not justified
isince the WZ estimation is performed at the decoder, and on the fact that it was possi-
ble to describe the motion/disparity with a dense field (one vector per pixel). We have
proposed a family of vector field refinement methods, starting from the Discover interpo-
lation structure, and adding two refinement steps, each of them performed by two possible
adapted techniques: the modified Cafforio-Rocca algorithm [Cafforio, Rocca, 1983] and the
Miled one [Miled et al., 2009] (based on the total variation). Finally, in this chapter, we
propose three original fusion methods, performing a linear combination between the pixels
instead of a binary choice as usually done in the literature.
Chapter 7 - Hash-based scheme: aware of the fact that the decoder does not have
all of the informations necessary for a perfect WZ frame estimation, some solutions have
been proposed to send some so-called hash information, which corresponds to a localized
and well-chosen WZ frame description, in order to enhance the side information generation
process at the decoder side. In this chapter we propose a novel approach for generating
and selecting the hash information, and moreover we extend the algorithm developed by
Yaacoub et al. [Yaacoub et al., 2009a] to a multiview configuration.

Part III - Zoom on the Wyner-Ziv decoder: In this part, we study two problems
related to the turbo decoding process. Firstly we propose to refine the correlation noise
modelling, and then we focus on the metrics used to estimate the side information quality.
Thiw part contains two chapters:
Chapter 8 - Correlation noise estimation: in this chapter we will present a detailed
review of the existing techniques which aim at modelling the correlation noise. The con-
clusion of this review is that the finer the model is (and the closer to the true distribution
the estimated probability density function is), the better the performance. As a conse-
quence, we have proposed to use a Generalized Gaussian model instead of the commonly
adopted Laplacian one. The obtained rate-distortion results are mitigated. Whereas the
proposed refinement mostly leads to a decoding efficiency enhancement, their exist some
cases for which the performance remains unchanged. To better understand this behaviour,
we propose a more advanced study which will be detailed at the end of this chapter.
Chapter 9 - Side information quality estimation: when a side information genera-
tion method is tested, it is commonly evaluated with the PSNR. Yet, Kubasov [Kubasov,
2008] has shown that this metric could lead, in some situations, to a wrong estimation of
its quality. In this chapter, we propose to extend his study and try to understand when the
PSNR is suitable, and when this measure may present some reliability limits. Furthermore,
we propose new metrics and test for each of the studied situations the reliability of the
proposed metrics, more adapted to the turbodecoder behavior.
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Appendix - Compressed sensing of multiview images based on disparity
estimation methods: beside my PhD, I have been led to work on other topics, not
integrated in this manuscript, because they are quite far from distributed video coding
paradigm. They deal with a very famous subject: the compressed sensing, and we propose
to extend some existing methods in video to multiview images and sequences by apply-
ing some of the disparity estimation methods described in this manuscript. The common
point with distributed video coding, that inspired our contributions, is the necessity to
take into account at the reconstruction the correlation that exists between frames, either
in multi-component images, or multiview sequences. As for distributed video coding, the
estimation of the motion and/or disparity fields is based on reconstructed frames and does
not need to take into account the rate of the resulting vector field. This enables the use of
dense estimation methods, and is one of our original contributions, together with different
algorithms for reconstructing images and displacement fields iteratively. This appendix
contains all of the published articles related to compressed sensing.

In order to implement and evaluate all of the contributions described here, we have
developed on one hand a multiview extension of the Discover coder, and on the other
hand a complete wavelet-coder within the Essor project.
Moreover, we precise here, that this thesis was done as part of two projects: Essor,
french ANR project (constituted by the LSS, the IRISA, I3S and Telecom ParisTech)
and Cedre, a franco-lebanese project in collaboration with the Holy-Spirit University of
Kaslik (USEK).
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Chapter 1

Distributed coding principles

In this chapter, we first introduce the origin of distributed video coding. After recalling
some basic notions in information theory, we present the fundamental results of Slepian
and Wolf in case of lossless coding, and of Wyner and Ziv in case of lossy coding. Then we
explain how this theory of distributed source coding has been brought into practice 30 years
after its publications.

The approach of distributed source coding in video compression has attracted much
interest and we present in Section 1.2 the two main existing architectures (Prism and
Stanford). Since all the contributions exposed in this manuscript thesis have been proposed
in the framework of a distributed video coding scheme inspired by the Stanford approach,
we explain in detail how it operates, and for every module, we list the open questions and
we briefly introduce how we have tried to answer them in the next chapters.
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1.1 Distributed source coding

In this section we briefly introduce the principles underlying the distributed source coding
(DSC) paradigm, which comes from two fundamental results of information theory stated
in the 1970’s and put in application to video transmission only recently. In Section 1.1.1,
we first present the theoretical background of DSC, and then, in Section 1.1.2 we present
the main practical applications.

1.1.1 Theoretical statement

Slepian-Wolf and Wyner-Ziv works aim at studying the classical problem of encoding and
decoding two correlated sources X and Y (the transmission is performed over a loss-
less channel). Before presenting these two surprising and important theorems in Para-
graphs 1.1.1.3 and 1.1.1.4, we introduce some useful notions taken from information theory,
for a better understanding of the following.

1.1.1.1 Definition and problem statement

1.1.1.1.a Probability mass function and entropy

Let A = {K1,K2, ...,KA} be a set of A elements, and let X be a discrete random variable
taking its values in A . The probability mass function (pmf) of X is defined by

pX(x) = Prob [X = x] , x ∈ A . (1.1)

If X = (X1, X2, ..., Xn) is a vector of n independent realizations of X, the pdf definition
of X becomes:

pX(x) = Prob [X = x] , x = (x1, x2, ..., xn) ∈ A n. (1.2)

Based on the intuitive idea that a rare element brings more information than a more
probable one, Shanon has proposed a definition of the self-information of a symbol x ∈ A :

I(x) = − log2 (pX(x)) .

The entropy (in bits) of a discrete random variable X is a measure of the amount of
uncertainty one has about the values of the variable. It is defined as the self-information
average of the elements in the set A :

H(X) = −
A∑

i=1

pX(Ki) log2 (pX(Ki)) . (1.3)

An important property of entropy is that it is maximized when all the messages in the
message space are equiprobable.

1.1.1.1.b Rate and admissibility of the rate

The entropy is not a simple measure of uncertainty, it is also one theoretical bound for the
rates as stated in an important theorem. Before writting it, let us recall some notions of
source coding. Firstly, an encoder, C (n,M) associates the input vector x = (x1, x2, ..., xn)
to an integer of the set M = {1, 2, . . . ,M}. Then, after the channel, the decoder, D (n,M),
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associates this integer of M to a vector x̂ ∈ A n. In this configuration, this couple encoder-
decoder is related to a rate, R = 1

n log2 (M) which defines the information unit per element
sent by the transmitting source. Based on these definitions, a rate R is said admissible if
for all ε > 0, there exists a n, an encoder C

(
n, [enR]

)
and a decoder D

(
n, [enR]

)
such as

Prob
[
X̂ 6= X

]
< ε.

Based on this notion, one can state the following theorem.

Théorème 1 If R > H(X), R is admissible.

In other words, the entropy constitutes the lower bound of the set of admissible rates.

1.1.1.1.c Extension to the case of two correlated sources

The extension of the previous notions to two correlated sources leads to similar definitions.
Indeed, if X and Y are two correlated random variables taking their values respectively in
AX = {K1,K2, ...,KAX} and AY = {K ′1,K

′
2, ...,K

′
AY
}, their joint pmf is defined by:

pXY (x, y) = Prob [X = x, Y = y] , x ∈ AX , y ∈ AY . (1.4)

In the same manner, if X = (X1, X2, ..., Xn) ∈ A n
X and Y = (Y1, Y2, ..., Yn) ∈ A n

Y , their
joint pmf is:

pXY(xy) = Prob [X = x,Y = y] =
n∏

i=1

pxi(yi), (1.5)

with x = (x1, x2, ..., xn) ∈ A n
X , y = (y1, y2, ..., yn) ∈ A n

Y . The transmission of X
and Y is performed by using two encoders and two decoders. Similarly to the case of a
unique source, the couple of rates (RX , RY ) is said admissible when there exist encoders
and decoders which enable a perfect recontruction of both sources.

Based on the joint pmf, one can define the marginal distributions:

pX(x) =
∑

y

pXY (x, y) (1.6)

pY (y) =
∑

x

pXY (x, y) (1.7)

and the conditional distributions, drawing the probability of a source when the other is
known:

pX|Y (x) =
pXY (x, y)

pY (y)
(1.8)

pY |X(y) =
pXY (x, y)

pX(x)
. (1.9)

Consequently, the joint entropy can be defined by

H(X,Y ) = −
∑

x

∑

y

pXY (x, y) log2 (pXY (x, y)) (1.10)

and the conditional entropy by

H(X|Y ) = −
∑

y

pY (y)
∑

x

pX|Y (x|y) log2

(
pX|Y (x|y)

)
(1.11)

and identically for H(Y |X).
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Figure 1.1: Two correlated source transmission scheme. RX and RY are respectivly the
rates for the two sources X and Y . The dashed lines between the encoders and between
the decoders correspond to potential communication links between them.

1.1.1.1.d Distortion

When the reconstruction is not perfect, a fidelity criterion called distortion is commonly
introduced in order to measure the difference between X̂ and X:

d =
1

n

n∑

k=1

D(Xk, X̂k) (1.12)

where D(x, x̂) is a given distortion function defined on A × Â . This distortion is used to
define the rate-distortion (RD) function which gives for a given distortion d, the minimum
rate R allowing a transmission with a reconstruction at this distortion.

1.1.1.2 Problem statement

We present here the hypotheses of two fundamental theorems presented in the following,
which have initiated the DSC paradigm. The problem, summarized in Figure 1.1, deals
with the conditions of coding two correlated sources X and Y . Firstly, they are encoded
with their own separate encoder. Then they are transmitted over a lossless channel, with
a respective rate of RX and RY . Then, they are decoded and we denote by X̂ and Ŷ their
reconstructed version. In case of lossy compression, X̂ and Ŷ do not entirely recover X
and Y , while for lossless transmission we have X̂ = X and Ŷ = Y .
The purpose of the theoretical study presented in the following is to determine the rate-
distortion optimal conditions for this transmission in several configurations. These con-
figurations differ on whether the knowledge of the other source is available or not at the
encoder and/or at the decoder (dashed-line in Figure 1.1).

1.1.1.3 Lossless transmission

In 1973, Slepian and Wolf (SW) [Slepian, Wolf, 1973], studied the previously introduced
problem (Section 1.1.1.2), in case of lossless transmission, i.e.,X̂ = X and Ŷ = Y . They
have given the admissible rate region, i.e.,the set

{(RX , RY ) such as RX and RY are admissible}
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for several different configurations, which depend on whether the encoders and the decoders
have access or not to the information about the other source. A first result, stated by
Theorem 1, is that the admissible rate regions for a lossless transmission at least contains
the set {(RX , RY ), RX ≥ H(X) and RY ≥ H(Y )}. When the encoders or the decoders
have the knowledge of the other sources, this minimum admissible rate region is extended.
It is not the point here to detail all of Slepian-Wolf study, thus we only give two particular
and interesting results:

• The classical coding is when the two encoders and the two decoders are able to use
the information of the other source. For this configuration, if the source X is trans-
mitted with a rate RX , the source Y can be transmitted with a rate H(X,Y ) − RX ,
without having any loss at the decoder. In other words, the admissible rate region is

RX +RY ≥ H(X,Y ).

This result can be observed in Figure 1.2 (a).

• The distributed coding is when the encoding of X and Y is, this time, performed
independently, while the decoding is still done jointly. For this case, Slepian and
Wolf stated that the admissible rate region has surprisingly the same lower bound.
In other words, if the source X is transmitted with a rate RX , the source Y can still
be transmitted with a rate H(X,Y )−RX without any loss. One can also observe this
important results on Figure 1.2 (b) which presents on the right the corresponding
admissible rate region.

Therefore, Slepian and Wolf have stated in their paper that it is one and the same
thing from the point of view of rate performance, to encode two correlated sources jointly
or independently (for lossless transmission), while the decoders have the knowledge of both
sources and of the correlation model.

This theorem was the starting point of many papers. First works have rapidely risen in
the 1970’s, with Wyner who has used the Slepian and Wolf theorem in order to investigate
multiple-user communication [Wyner, 1974], and extension to three sources independently
encoded [Wyner, 1975]. In 1975, Cover has proven the Slepian and Wolf theorem in case of
ergodic sources [Cover, 1975]. Even recently, distributed source coding for lossless trans-
mission has been investigated, for example with an application to satellite communications
[Yeung, Zhang, 1999], or for more involved lossless source coding networks (more than two
sources, zig-zag networks, etc.) [Stankovic et al., 2006].

1.1.1.4 Lossy transmission

In 1976, Wyner and Ziv (WZ) have extended the Slepian and Wolf theorem to lossy trans-
mission [Wyner, Ziv, 1976], i.e.,when some information loss is allowed in the communication
process. Instead of the admissible rate region Wyner and Ziv studied the rate distortion
function for the same configuration. They have proven that if the distortion measure is the
mean square error (MSE), and if the two sources are jointly Gaussian, the rate distortion
function is identical for joint and independent encoding since the decoding is performed
jointly. In other words, under some conditions on the pdf of the sources, distributed source
coding can achieve the same performance as classical coding in case of lossy transmission.
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(a) Classical coding scheme and the corresponding admissible rate region (gray area).

(b) Distributed coding scheme and the corresponding admissible rate region (gray area).

Figure 1.2: Results of Slepian-Wolf study for classical and distributed coding. The red
links indicate the communications allowed during the encoding/decoding.
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Several important works, based on Wyner and Ziv results, have been conducted soon
afterwards. Berger, in 1977 [Berger, Longo, 1977] introduced the lossy version of non-
asymmetric Slepian-Wolf scheme, multiterminal (MT) source coding. Research for lossy
DSC is still nowadays very active. Indeed, a lot of important problems are still open,
as the lossy MT source coding problem with two non-jointly Gaussian sources, as it was
investigated in [Bassi et al., 2009] for Bernouilli-Gaussian correlation.

1.1.2 Applications

The Slepian and Wolf paper [Slepian, Wolf, 1973] does not present how to reach the proven
rate bounds. First practical solutions were brought by Wyner [Wyner, 1974] who proposed
the use of linear channel codes. This was the beginning of many solutions which adopt a
“syndrom-based” approach by using channel coder for data compression. The two channel
codes which are mainly used are the low-parity-density-check codes (LDPC) [Liveris, 2002]
[Varodayan et al., 2005] and the turbocodes [Garcia-Frias, Zhao, 2001] [Aaron, Girod,
2002]. The turbocodes were proposed by Berrou et al.. [Berrou et al., 1993] [Berrou,
Glavieux, 1996]; the reader can refer to a clear tutorial on turbocodes in [Ryan, 1997] for
more precisions.

Practical WZ schemes can be realized by using a quantization and a SW coder. The first
applications, in 1999, proposed to combine these two processes. The resulting solution is
called, Distributed source coding using syndromes (DISCUS) and is detailed in [Pradhan,
Ramchandran, 1999] [Pradhan, Ramchandran, 2003]. The coding scheme proposed by
Pradhan and Ramchandran is an asymmetric scheme, i.e.,one source Y is encoded alone
(at a rate of H(Y )) and is used as side information only at the decoder to help the other
source decodingX, and then to allow a transmission ofX at a rate ofH(X|Y ) theoretically.
A more efficient solution is to make a quantization for the rate-distortion control followed
by a SW coder, which plays the role of the entropy coder. The SW coder uses linear channel
codes. A solution proposed by Yang et al.. in [Yang et al., 2008] allows to come very close
to the bounds in case of two jointly Gaussian sources coding. This method is based on a
trellis-coded quantization and an efficient channel coding (with LDPC or turbocodes).

1.2 Distributed video coding

Both works of Slepian-Wolf and Wyner-Ziv have stated that it was possible, under certain
conditions, to avoid the inter-source correlation extraction at the encoder without any loss
in performance. If we consider the different frames of a video sequence as belonging al-
ternatively to two correlated sources, one can immediately use these theoretical results for
removing the very complex motion estimation between the frames at the encoder, with-
out reducing the rate-distortion performance. On the contrary, in the case of distributed
video coding, the comparison between frames is performed at the decoder. A reduction
of the encoding complexity could be interesting for any kind of low-power systems, as
videosurveillance, cellphone, etc. Moreover, in multicamera systems, a distributed coding
approach could permit to avoid all the communications between cameras, needed by clas-
sical interframe coders [Guillemot et al., 2007].

Then, first practicle implementations of distributed video coding (DVC) or WZ video
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Figure 1.3: Prism architecture.

coding, appeared 30 years after the theory but soon after first WZ source coding schemes,
in 2002 with two different approaches: the Prism architecture [Puri, Ramchandran, 2002]
(detailed in Section 1.2.1) and the Stanford scheme [Aaron et al., 2002] (detailed in Sec-
tion 1.2.2). All the works proposed in this manuscript thesis are based on the Stanford
approach, that is why, in the following, we give more importance to the techniques involved
by this DVC scheme.

1.2.1 Prism Architecture

The Prism (“Power-efficient, Robust, hIgh compression, Syndrom-based Multimedia cod-
ing”) architecture [Puri, Ramchandran, 2002][Puri, Ramchandran, 2003] was proposed in
2002. An evolved version of the coder has been implemented in 2007 (described in [Puri
et al., 2007]), and it is the one we have chosen to present here since it is better performing.
The general scheme is summarized in Figure 1.3.
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1.2.1.1 Prism encoder

The frame is divided into blocks of size 8 × 8. Each block is processed with the coding
scheme summarized in Figure 1.3, whose different steps are detailed in the following.

• Transform: the block is firstly transformed using a discrete cosinus transform
(DCT). The outpout of this block is a one-dimensional vector, which contains the 64
coefficients arranged after a zig-zag scan on the two dimentionnal transformed 8× 8
block.

• Quantization: the coefficients are then quantized using a scalar quantization mainly
inspired by H.263+ one [Cote et al., 1998].

• Classification: at the same time, the encoder performs a classification on the blocks,
and more precisely on its bitplanes. This step is the most important one in the
Prism architecture because it is where the WZ approach rises. The purpose of
this step is to determine which bitplane to transmit, and whether to WZ encode
or to entropy encode. Moreover, this step aims at choosing the class for the block
which corresponds to the level of correlation with the side information. The SI is
called the reference block, and is obtained from different ways depending on the
computation capacity of the encoder. If the encoder is powerful, a motion estimation
is performed in order to find the most similar block in the previous frame (in that case,
the obtained motion vector is transmitted). For low-power encoders, the reference
block is simply the block which has the same location in the previous reference
image. Having this reference block, the encoder compares the number of similar most
significant bits in the bitplane decomposition of the current and reference blocks for
each coefficient. The most significant bits which are identical in the block and its
side information decomposition are not transmitted (because they will be recovered
at the decoder). On the other hand, the remaing bits are either WZ encoded with
a channel encoder (for the most significant of them) or simply entropy coded (for
the least significant ones). Moreover, based on the sum of squared differences (SSD)1

between the reference and the current block, the encoder determines an index i which
indicates the class of Laplacian correlation noise which would help for the decoding.

• Syndrom encoding: as explained in the previous item, the transmitted bitstream
is either WZ or entropy encoded. The adopted entropy coder is similar to the one
adopted in some video compression standards [Cote et al., 1998]. The channel coder
is not an LDPC or turbocode because of the small length of the bitstream. The
adopted channel encoder multiplies the input bitstream by a parity matrix (which
depends on the correlation noise class i) and use the BCH [Macwilliams, Sloane,
1977] block codes, efficient for small-length bitstreams.

• Hash generation: in order to help the prediction at the decoder, a hash informa-
tion is generated at the encoder. In the Prism scheme, the hash is a CRC (Cyclic
Redundancy Check) checksum of size 16 bits. This represents a “signature” of the
original block which is used at the decoder to test the reliability of the prediction.

1The SSD between two vectors x = (xi)i=1...n and y = (yi)i=1...n is
∑n
i=1(xi − yi)

2
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1.2.1.2 Prism decoder

The decoder scheme is shown in Figure 1.3. In the following we describe each module used
for the decoding of the 8× 8 blocks.

• Side information (SI) generation: the purpose of this step is to find the best
prediction of the block. The decoder performs a motion search, in order to generate
a set of candidates. Each possible prediction is then decoded, via the rest of the
decoding chain. The selected side information is the one whose decoded version
satisfies the hash check module.

• Syndrom decoding: the syndrom decoding consists in two steps. Firstly, the bits
which were entropy and WZ coded are decoded. Secondly, the decoder finds the
closest codeword to the side information within the specified coset. This step is quite
complex, and a less complex suboptimal algorithm [Fossorier, Lin, 1995] has been
proposed with a loss of 0.2− 0.3 dB.

• Hash check: at this step, the checksum of the previously decoded block is calculated
and compared to the transmited hash information. If it does not correspond, the
decoding restarts with another candidate (given by the initial motion search).

• Reconstruction, post-processing once the quantized codeword recovered, a pre-
dictor is used to estimate the best reconstructed block in the sense of the mean square
error (MSE). The reconstruction is then inverse transformed in order to obtain the
decoded block.

1.2.1.3 Performance and related works

The experiments shown in [Puri et al., 2007] state that the Prism architecure allows
to approach the H.263+ inter frame coder performance for some test sequences. These
performances were theoretically analyzed in [Majumdar et al., 2005], and it was confirm
that Prism architecture could perform a good compression for sequences containing slow
and easily estimated motion, but less acceptable efficiency for more complex sequences, as
football. An open-source implementation of this architecture was proposed by Fowler in
2005 [Fowler, 2005].
The main drawback of this coding scheme is that the proposed approach is not stricly
distributed since the encoder needs a reference block, and then performs an inter frame
comparison.

1.2.2 Stanford approach

At the same time, in 2002, a research group at the Stanford university proposed another
approach for practical WZ video coding [Aaron et al., 2002]. They have chosen to adopt
a frame approach (contrary to the block-based Prism architecture) by splitting the se-
quence into two types of frames (which alternate along the time): the key (K) frames
and the Wyner-Ziv (WZ) frames, and encoding these frames independently. The K frames
form a Y source which is encoded/decoded alone, and the WZ frames constitute a X source
which is encoded alone and decoded thanks to the side information given by Y .
One of the most popular Stanford scheme extensions was proposed by the European project
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Figure 1.4: Generic Stanford architecture. In italic, the corresponding Discover ap-
proach.

Discover [DISCOVER-website, 2005]. In the following we detail the encoding and decod-
ing process of the general Stanford scheme (summarized in Figure 1.4) and at the same time
we specify the Discover approach (The Discover blocks are given in italic in Figure 1.4)
and we detail block by block the various techniques proposed in the literature. Note that
for some specific topics, a detailed state-of-the-art is proposed later in the manuscript,
more precisely when we explain our contributions related to these topics.

1.2.2.1 Key frame coding

The key frame coding is relatively simple since it is performed with an intra frame coder.
Some solutions involve a DCT-based intra codec such as the H.263+ codec [Aaron et al.,
2002] [Girod et al., 2005], or H.264 Intra [Brites et al., 2006b]. Some other works use a
wavelet-based approach and use the JPEG-2000 still image codec for key frame compres-
sion, as explained in [Guillemot et al., 2007].

1.2.2.2 WZ frame coding

1.2.2.2.a Image classification

The sequence is divided into two types of frames: the key frames and the WZ frames. A
set of one K frame followed by n WZ frames is called a Group of Pictures (GOP). The size
of the GOP, n+ 1, is fixed in the majority of the works. If the GOP size is small (2), the
estimation of the WZ frame would be of a better quality, but if the GOP size is larger (4,
16, etc.) the number of K frames decrease and the complexity too (because a K frame is
more complex to encode than a WZ frame).
The image classification issue brings two fundamental questions. The first one concerns the
determination of the optimal GOP size. In [Ascenso et al., 2006], Ascenso et al. proposed
a solution at the encoder for adapting the GOP size to the motion activity in the sequence,
i.e.,a high motion activity would make the GOP size decrease, while the absence of high
motion would lead to a larger GOP size.
Secondly, a large GOP size (greater or equal to 4) leads us to wonder about the optimal
WZ frame decoding order. An empirical solution has been proposed in [Aaron et al., 2003].
In Section 3.1, we propose a theoretical study which aims at determining the best decoding
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order in case of a GOP length of 4.

1.2.2.2.b Transform

First solutions in DVC did not involve any transform and thus directly process the WZ
frame in the pixel domain [Aaron et al., 2002] [Girod et al., 2005] [Ascenso et al., 2005a]
[Brites et al., 2006a] [Morbee et al., 2007].

Later, the idea of working in the transform-domain has appeared to be interesting since
it allows to improve the performance without adding any sensible complexity. Almost all of
the proposed solutions adopt the 4×4 integer DCT [Aaron et al., 2004b] [Brites et al., 2008].
The output of this module is then a matrix whose rows correspond to the 16 coefficients
taken in the zig-zag order [Wiegand et al., 2003], and whose columns correspond to the
coefficients (image size divided by 16) taken in the raster order. These are also the solutions
adopted by the Discover scheme as it can be seen in Figure 1.4.

Some other approaches prefer a wavelet transform, such as Guo et al. [Guo et al.,
2006a] [Guo et al., 2006b] but they are far less numerous than the DCT based schemes.

1.2.2.2.c Quantization

In Discover, the quantization of the coefficients is done with a classical linear quantiza-
tion (with a dead zone for AC coefficients) on 2mb levels, where mb is the number of bits
used for the description of the band b. The number of levels depends on the frequency
index of the band, in order to describe the most significant bands (the first ones in the
zig-zag order) more accurately. In Discover, this number of levels is given by 8 predeter-
mined quantization points [Brites et al., 2006b] (inspired from [Aaron et al., 2004b]). This
matrix, given in Table 1.1 presents the number of levels (2mb) depending on the band for 8
quantization points (called quantization index QI); QI=1 corresponds to low bitrate while
QI=8 corresponds to high bitrate.
Having the number of levels, the encoder calculates the quantization step using the maxi-
mum band value (for the frame). This maximum value is transmitted to the decoder.

Table 1.1: WZ matrix setting 8 quantization points. For each QI, it is given the number
of levels for the 16 bands.

band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
QI 1 16 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
QI 2 32 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
QI 3 32 8 8 4 4 4 0 0 0 0 0 0 0 0 0 0
QI 4 32 16 16 8 8 8 4 4 4 4 0 0 0 0 0 0
QI 5 32 16 16 8 8 8 4 4 4 4 4 4 4 0 0 0
QI 6 64 16 16 8 8 8 8 8 8 8 4 4 4 4 4 0
QI 7 64 32 32 16 16 16 8 8 8 8 4 4 4 4 4 0
QI 8 128 64 64 32 32 32 16 16 16 16 8 8 8 4 4 0

1.2.2.2.d Channel encoder

After the quantization, the WZ frames bitstream is channel encoded, obtaining two types
of data: the systematic and the parity information. Originally, a channel encoder produces
parity information in order to be able to correct at the decoder the errors in the systematic
information. In distributed source coding based on channel codes, the systematic infor-
mation is not transmitted, but replaced at the decoder by a side information (see next
sections). Only a part of the parity information is transmitted to the decoder in order to
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correct the side information error.

The existing solutions use either LDPC codes [Xu, Xiong, 2006] or, in the majority
of the cases, the turbocodes [Aaron et al., 2002] [Dalai et al., 2006]. Guillemot et al., in
[Guillemot et al., 2007] give a comparison between turbocodes and LDPC performance for
WZ video coding, and they show that LDPC based schemes slightly outperform turbocodes
based ones (with a very small gap).

1.2.2.2.e Side information generation

At the decoder side, the WZ frame is firstly estimated by the side information generation
module. This estimation is performed using several kinds of techniques: interpolation,
extrapolation, etc. We propose in Chapter 4 a detailed overview of the techniques existing
in the literature.

It is important to note that DVC coding performance strongly depends on the SI quality.
The most popular (and one of the best) existing technique is the one presented in the
Discover scheme. In Chapter 6, we propose several new methods which aim at improving
the side information quality, using Discover as reference. Moreover, in Chapter 9, we
propose a complementary study about the existing SI quality measures (mainly PSNR)
and observe that in some situations the PSNR does not give a good estimation of the side
information quality. That is why we propose several other metrics which seem to provide
more reliable results than the PSNR.

1.2.2.2.f Channel decoder

The generated side information is used to calculate the a priori information for the channel
decoder. The side information Y is considered as a noisy version of the original WZ frame
X. The noise N is assumed to be additive, i.e.,Y = X +N . The side information is then
used to calculate the properties of N , assumed to be Laplacian in the literature [Brites,
Pereira, 2008] (and in Discover). The different existing techniques for noise correlation
estimation are detailed in Chapter 8. The literature seems to show that the precision of
the model has an impact on the performance. In this chapter we thus also propose to use
a Generalized Gaussian model to refine the correlation estimation.

After the correlation estimation, the channel decoder starts the decoding by receiving
a first flow of parity bits. After decoding each packet, the decoder calculates the error
probability. If this one is greater than a threshold (set to 10−3 in Discover [Brites et al.,
2008]) the decoder requests more parity bits to the encoder, and this until the bit error
probability becomes lower than the threshold.

1.2.2.2.g Reconstruction

After decoding all the bitplanes, the decoded bin is used to estimate the optimal dequan-
tized coefficient value. The simplest existing method [Aaron et al., 2002] consists in taking
the SI value if this one is inside the decoded bin, and in taking the bin bound closest to
the SI value otherwise.
In 2007, Kubasov et al. [Kubasov et al., 2007b] proposed to use the optimal reconstruction
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levels in the sense of the MSE, which come from the Laplacian correlation model. At the
end, the reconstructed DCT coefficients are inverse transformed.

1.2.2.2.h The drawbacks of the backward channel

One of the major drawback of the Stanford DVC scheme is the necessity of a backward
channel. Indeed, the encoder needs to wait for the decoder request to send the correct
amount of parity information. This forces DVC schemes to have a real-time decoding.
This real-time constraint is hardly possible, in the sense that it would imply a complexity
reducing at the decoder, very high for the moment because of the iterative algorithms used
in turbodecoding.
Some works in the literature have tried to get rid of this return loop. We present these
methods in detail in Section 3.3.1.2. Removing the backward channel implies a significant
loss in performance (around 1 dB), and it also implies to betray the distributed coding
spirit by performing a non-complex comparison between the previous and next key frames
in order to have a coarse estimation of the correlation at the encoder. In Section 3.3, we
propose our own encoder rate estimation method, based on the proposed rate-distortion
model introduced in Chapter 2.

1.2.2.2.i Hash-based schemes

Another drawback of Stanford scheme is that, in some cases, the decoder cannot find in
the K frames the information necessary for the WZ estimation (i.e.,in case of occlusions,
rapid motion, etc.). This is why some works have proposed to help the side information
generation by sending some localized and well-chosen “hash” information to the decoder. In
Section 4.3 we present the different existing hash-based schemes and we detail the several
problems brought by such coders. Moreover, in Chapter 7, we propose a new hash-based
scheme using at the decoder a fusion based on a genetic algorithm.

1.2.3 Multiview distributed video coding

Multiview or stereo distributed video coding (MVDVC) paradigm is very similar to monoview
DVC one, in the sense that the general encoding/decoding process is identical. The two
main differences are the frame-type distributions in the time-view space and, and thus the
side information generation methods.

1.2.3.1 Schemes

In monoview DVC, the classification of the images only consists in determining the number
of WZ frames in a GOP. In MVDVC, the frame classification issue is far more complex
because of the numerous possible frame type distribution. In Section 3.1 we propose a
review of the different existing classifications drawn in Figure 3.1. We first observe that
this classification strongly impacts on the rest of the coding chain, more specifically it
impacts on the number and the position of available K frames, and thus on the way of
generating the side information. Moreover, we observed that the existing classification
schemes have to encode a too high number of K frames (in some of them, some cameras
are entirely composed by K frames). That is why, in Section 3.1.2, we propose a scheme
that contains less K frames (therefore it is less complex at the encoder), and which is the
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extension to multiview of a GOP of size 4 in monoview DVC. We study, based on the
proposed rate-distortion model, the best WZ frame decoding order.

1.2.3.2 Side information

As it was mentioned above, the multicamera configuration has an impact on the way of
generating the side information (a detailed state-of-the-art is given in Chapter 4). More
precisely, while the temporal estimation remains similar to monoview schemes, the inter-
view estimation techniques are different because they exploit for most of them the geometry
of the scene (whereas some schemes still use temporal methods for inter-view estimations).
Moreover, multiview configuration implies the fact that several estimations are available
in order to build a unique side information. This raises the issue of how to merge all this
available information in order to build a good SI (the main existing fusion techniques are
detailed in Section 4.2).
In Chapter 6 we present the different methods proposed to tackle these two issues brought
by the multiview configuration. We first propose several pixel-precision interpolation meth-
ods that we test for temporal and inter-view estimations, and we propose several efficient
fusion methods.

1.3 Conclusion

Distributed video coding is a very surprising paradigm. In spite of the fact that it is
relatively recent, much work has been done to try to achieve the theoretical rate-distortion
performance. However, wheras it is very promising (theoretically), the actual performances
are quite disappointing, since they are far from inter-frame video coding ones.

However, as it was explained in this chapter, the Stanford architecture presents a
certain number of modules which are perfectible: the frame classification in multiview
coding, the necessity of a backward channel, the side information generation, the fusion
of temporal and inter-view estimation, hash-based schemes, correlation noise estimation.
For all of these topics we present our contributions, in the next chapters. Some of them
aim at obtaining a better understanding of the codec behaviour (with the proposal of a
rate-distortion model, and the proposal of new SI quality metrics), while the other aim at
improving the general performance of the coder.
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Part I

Rate distortion model and
applications

“Understand and model the DVC scheme behavior.”
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Chapter 2

Rate distortion model for the
prediction error

Knowing that the Wyner-Ziv decoding efficiency strongly depends on the side information
quality, it is worth finding an expression for the error between the original Wyner-Ziv frame
and its estimation. In this chapter we propose an original model for the distortion of this
error which presents some advantages, such as the fact that it separates the error coming
from quantization and the error coming from motion/disparity interpolation. Afterwards,
a discussion including experiments about the hypotheses behind this model is proposed.
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2.1 Context

In this chapter, we aim at modelling the error between the original Wyner-Ziv frame and
the side information. First we need to define how the side information is generated. This
is shown in Figure 2.1 and is detailed below.

The Wyner-Ziv frame is denoted by I. The two1 reference frames used to estimate I are
denoted by I1 and I2. The two reference frames can be either the previous and next frames
in monoview or neighbour views in multiview framework. At the encoder side, the I1 and
I2 frames are quantized. The resulting frames, denoted by Ĩ1 and Ĩ2, are transmitted. The
previous operation corresponds to the intra coding of the key frames which is simplified
and seen here as a single quantization block followed by a lossless transmission.

Figure 2.1: Context of the proposed distortion model.

In the following, we consider that the side information is built with a motion/disparity
compensation of the quantized reference frames, as it is done in practice. The SI con-
struction process is summed up in Figure 2.2. Vector estimation can be based either on
motion or disparity interpolation. In both cases, all of the equations given in the fol-
lowing hold. The compensated frames are denoted by Ī1 and Ī2 and they are computed
as follows. If Nwidth and Nheight are respectively the width and height of the images,
and if p ∈ J1, NheightK × J1, NwidthK represents the coordinates of a pixel, we denote by
u1(p) and u2(p) the two motion/disparity vectors associated to I1 and I2 at p. Then, the
compensated frames read:

Ī1(p) = Ĩ1(p− u1(p)) and Ī2(p) = Ĩ2(p− u2(p)). (2.1)

The side information is considered as the linear combination between the two compensated
frames Ī1 and Ī2 (like it is classically done in the DVC coder). The coefficients of this linear
combination depend on the distances between I and I1 and between I and I2. The distance
between two frames is the number of images between them plus one. For example, the

1For the moment we suppose that the side information is generated with only two reference frames, an
extension to the more general case of n reference frame is proposed in Equation (2.9).
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distance between two consecutive frames is 1. It is accepted [Ascenso et al., 2006] that a
reference frame far from the Wyner-Ziv frame has less influence than a closer image for
the motion/disparity compensation. This idea leads us to the following intuitive statement
which corresponds to the common way of building the side information: if d1 (respectively
d2) is the distance between I1 (resp. I2) and I, the corresponding coefficient, k1 (resp. k2)
of the linear combination is given by

k1 =
d2

d1 + d2
( resp. k2 =

d1

d1 + d2
). (2.2)

The expression of the side information, Î, is then

∀p ∈ J1, NheightK× J1, NwidthK, Î(p) = k1Ī1(p) + k2Ī2(p). (2.3)

Figure 2.2: Side information construction of the Wyner-Ziv frame I using the references
frames I1 and I2 (or their quantized version) at a respective distance of d1 and d2 and
compensated with the fields u1 and u2.

With the side information defined, we are now able to introduce the prediction error
eI , given by the expression

∀p ∈ J1, NheightK× J1, NwidthK, eI(p) = I(p)− Î(p). (2.4)

The purpose of the following section is to model this error, as it plays a very important
role in the decoding performances. More precisely, we propose an expression of its vari-
ance, since the channel decoding efficiency is strongly correlated with the amplitude of the
variance of the error, eI [Aaron, Girod, 2002].

2.2 Hypotheses and calculation

In this subsection we aim at determining a simple expression for the variance of the error eI
introduced in Section 2.1. This variance has the following definition (under the hypothesis
that the spatial process eI is wide sense stationnary with E {eI(p)} = 0)

σ2
eI

= E
{
eI(p)2

}
,

with p ∈ J1, NheightK× J1, NwidthK. This can thus be written as

σ2
eI

= E

{(
I(p)− Î(p)

)2
}
.
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According to Equation (2.3), the distortion is then

σ2
eI

= E
{(
I(p)− k1Ī1(p)− k2Ī2(p)

)2}
.

If we take into account the vector fields, we can write

σ2
eI

= E

{(
I(p)− k1Ĩ1(p− u1(p))− k2Ĩ2(p− u2(p))

)2
}
. (2.5)

We introduce two quantities to make Equation (2.5) more exploitable. These elements are
I1(p− u1(p)) and I2(p− u2(p)), for p ∈ J1, NheightK × J1, NwidthK. They are the original
(non quantized) reference frames compensated with the same vector fields as those for Ĩ1

and Ĩ2. Therefore, we obtain

σ2
eI

= E
{(
I(p)− k1Ĩ1(p− u1(p))− k2Ĩ2(p− u2(p))

+ k1I1(p− u1(p))− k1I1(p− u1(p))

+k2I2(p− u2(p))− k2I2(p− u2(p)))2
}
,

reorganized as follows:

σ2
eI

= E
{(
I(p)− k1I1(p− u1(p))− k2I2(p− u2(p))

+ k1I1(p− u1(p))− k1Ĩ1(p− u1(p))

+ k2I2(p− u2(p))− k2Ĩ2(p− u2(p))
)2}

. (2.6)

We notice that the first line of (2.6) can be interpreted as the estimation error when the
reference frames are not quantized. In other words this quantity only depends on motion
activity or disparity vector field variance in the video sequence: it is assumed that it does
not vary with the rate (this hypothesis is discussed in Section 2.3.3). The second and the
third lines can be seen as the expression of the quantization error of the two reference
frames.

Here, we make a second assumption which states that these three quantities are decor-
related. Indeed, at high bitrate, the three errors come from different physical aspects. This
implies that the cross terms in (2.6) (involving different types of errors) are zero or at least
negligible (Hypothesis 2 in Section 2.3.2), and then the expression of the approximated
distortion, σ̂2

eI
reads

σ̂2
eI

= E
{

(I(p)− k1I1(p− u1(p))− k2I2(p− u2(p)))2
}

+ k2
1E

{(
I1(p− u1(p))− Ĩ1(p− u1(p))

)2
}

+ k2
2E

{(
I2(p− u2(p))− Ĩ2(p− u2(p))

)2
}
. (2.7)

The first line of (2.7) corresponds to the variance of the estimation error obtained by
compensating the non quantized reference frames. It only depends on the distances d1

and d2 (we develop this concept in Section 2.3.3 with more details); it is denoted in the
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following by Md1,d2 . The second and the third lines are the reference frame distortions due
to quantization. They are denoted by DI1 and DI2 . In Section 2.3.1, we will discuss the
approximation stating that

DI1 = E

{(
I1(p− u1(p))− Ĩ1(p− u1(p))

)2
}

hyp
= E

{(
I1(p)− Ĩ1(p)

)2
}
.

and the similar one derived for I2. The expression of the distortion is then written as

σ̂2
eI

= Md1,d2 + k2
1DI1 + k2

2DI2 . (2.8)

An interesting property of the obtained distortion formula is that the errors coming from
quantization and motion/disparity interpolation are separated, which will allow for the
future contributions an easier theoretical study of rate-distortion coding scheme behavior.

A last remark should be added concerning the number of reference frames. In the previ-
ous study, the distortion was expressed with only two reference images. Given N reference
frames, I1, . . . , IN , available to generate the side information, since the side information
is a linear combination of the motion/disparity compensated reference frames (with the
vector fields u1, . . . ,uN ), we still consider that the coefficients k1, . . . , kN depend on the
distances d1, . . . , dN , and then, under similar hypotheses as before, we can obtain a more
general expression:

σ̂2
eI

= Md1,...,dN +k2
1DI1 + . . .+k2

NDIN with ∀i ∈ [1, N ] ki =
1

N − 1

∑N
j=0,j 6=i dj∑N
j=0 dj

. (2.9)

In the next subsections we shall tests the reliability of the different underlying hypothe-
ses of this model.

2.3 Model validation

2.3.1 Approximation for quantization distortion

Hypothesis 1 The term E

{(
I1(p− u1(p))− Ĩ1(p− u1(p))

)2
}

can be approximated by

E

{(
I1(p)− Ĩ1(p)

)2
}
and then can be assimilated to the quantization error of the reference

frame I1. An equivalent hypothesis can be formulated for I2.

Hypothesis 1 formulates the assumption that the error between the compensated ref-
erence frame and the compensated quantized reference frame can be assimilated to the
simple quantization error of the reference image. In order to test the validity of this
hypothesis, a set of experiments was performed. For several video sequences and for

several quantization steps, both distortions, E
{(

I1(p− u1(p))− Ĩ1(p− u1(p))
)2
}

and

E

{(
I1(p)− Ĩ1(p)

)2
}
, have been measured. The difference between them has been cal-

culated and then normalized with respect to the value of the quantization error of the
reference frame. The resulting statistic is then a percentage of errors between the two
entities. Results are displayed in Table 2.1 and indicate that the two distortions are very
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Figure 2.3: Evolution of the distortions measured on foreman sequence at a QP=31. In full
black line, the difference between compensated original and quantized reference frames, in
red dashed line, the quantization error of the reference frame.

similar. Indeed the error between them is never greater than 1.51%. The two plots, dis-
played in Figures 2.3 and 2.4, show the behavior of the two distortions along time for
two sequences (foreman and mobile) and two quantization steps (QP 31 and 40). Though
the difference between the two distortions is more sensible at low bitrate (QP 40), it still
remains very similar, confirming that Hypothesis 1 is reasonable.

QP 31 34 37 40
eric 0.38 0.47 0.47 0.49
foreman 0.38 0.33 0.38 0.55
football 0.87 1.01 1.35 1.51
soccer 0.26 0.46 0.49 0.75
mobile 0.10 0.10 0.10 0.14
Average 0.33 0.40 0.47 0.58

Table 2.1: Per cent error between the two quantities

E

{(
I1(p− u1(p))− Ĩ1(p− u1(p))

)2
}

and E
{(

I1(p)− Ĩ1(p)
)2
}

for 6 video sequences

(176× 144, 60 frames) and 4 quantization parameters (QP) for the key frames.
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Figure 2.4: Evolution of the distortions measured on mobile sequence at a QP=40. In full
black line, the difference between compensated original and quantized reference frames, in
red dashed line, the quantization error of the reference frame.

QP 31 34 37 40
eric 4.28 7.44 11.63 16.87
foreman 3.26 3.90 6.88 10.75
football 3.31 4.99 7.17 10.71
soccer 2.74 3.84 5.83 7.42
mobile 4.88 8.08 11.76 17.42
Average 7.48 10.07 13.20 16.90

Table 2.2: Per cent error between the two quantities σ2
eI

and σ̂2
eI

for 6 video sequences
(176× 144, 60 frames) and 4 quantization parameters (QP) for the key frames.

2.3.2 Decorrelation between the quantization and the motion/disparity
estimation errors

Hypothesis 2 The three following cross correlation terms are considered as negligible com-
pared to Md1,d2, k2

1DI1 and k2
2DI2:

σeI1 ,eI2 = k1k2E
{(
I1(p− u1(p))− Ĩ1(p− u1(p))

)(
I2(p− u2(p))− Ĩ2(p− u2(p))

)}

σeI ,eI1 = k1E
{

(I(p)− k1I1(p− u1(p))− k2I2(p− u2(p)))
(
I1(p− u1(p))− Ĩ1(p− u1(p))

)}

σeI ,eI2 = k2E
{

(I(p)− k1I1(p− u1(p))− k2I2(p− u2(p)))
(
I2(p− u2(p))− Ĩ2(p− u2(p))

)}

This is the key assumption of our model. Indeed, thanks to it we are able to write an
expression of the distortion which separates the motion/disparity estimation error and the
quantization error allowing simpler rate distortion analyses of the coding scheme.
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QP 31 34 37 40
eric 5.82 9.42 14.07 28.59
foreman 16.31 11.79 27.61 17.81
football 1.84 3.03 4.77 6.64
soccer 2.73 9.69 9.45 11.53
mobile 3.20 4.41 6.66 12.53
Average 5.98 7.67 12.51 15.42

Table 2.3: Per cent error between the temporal numerical derivatives of σ2
eI

and σ̂2
eI

for 6
video sequences (176 × 144, 60 frames) and 4 quantization parameters (QP) for the key
frames.

As in Section 2.3.1, several experiments have been run in order to check the validity
of Hypothesis 2. For several sequences and for several rates (obtained by modifying the
quantization step of the key frames), the real distortion, σ2

eI
, is measured, and compared

to the approximation σ̂2
eI
. We calculate the per cent error between them. The obtained

results are reported in Table 2.2 and in Figures 2.5 and 2.6. While the distance is quite
small (under 10%) for the major part of the statistics, there are some larger values (the
maximum being 17.42% for mobile at low bitrates) which demonstrates that, in some
cases (mainly for high QP), the approximation σ̂2

eI
does not fully reflect the reality. Plots

in Figures 2.5 and 2.6 confirm the tendance. They show the evolution of σ2
eI

(in plain
black line) and σ̂2

eI
(in dashed dotted red line). The Figures also display the aspect of

the quantities σeI1 ,eI2 (dotted green line), σeI ,eI1 and σeI ,eI2 (dotted blue lines), which are
supposed to be negligible compared to Md1,d2 (plain green line), k2

1DI1 and k2
2DI2 (plain

blue lines).
In Figure 2.5 which displays results obtained at high bitrate, the approximation σ̂2

eI
is

very similar to the original distortion σ2
eI ,eI1

. At low bitrate (Figure 2.6), the approximation
error is wider and confirms the bad results in Table 2.2. In a rate allocation/estimation
framework, the crux of the matter is to approximate the evolution of the distortion along
time. To this end, we do not need access to the exact distortion value. In this light,
and since the gap between the true and the estimated distortion remains unchanged, the
obtained results are adequate to the rate allocation/estimation problem and thus can be
deemed as satisfying. Then, we have calculated the numerical temporal differential of
the distortions and we have measured the difference (in %) between them. The obtained
results, in Table 2.3, seem disappointing, but it is known that the differential is more
sensible to errors. For example, the plots in Figure 2.5 have very close evolutions, but the
differential error is about 16%. In this light, the results in Table 2.3 are quite good, and
show that even if at low bitrate there is a gap between σ2

eI
and σ̂2

eI
, it remains constant

along the sequence. The σ̂2
eI

thus at least predicts reliably the evolution of the original
distortion σ2

eI
and at high bitrate, predicts its almost exact value. To conclude, in the light

of these acceptable results, the proposed distortion model seems to be suited to the aimed
applications.

2.3.3 Md1,d2 does not depend on the quantization level

Hypothesis 3 Md1,d2 = E
{

(I(p)− k1I1(p− u1(p))− k2I2(p− u2(p)))2
}

does not de-
pend on quantization level of the the key frame.
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Figure 2.5: Evolution of the distortions measured on foreman sequence at a QP=31.

The term Md1,d2 has been introduced to highlight the separation of the quantization error
and the motion/disparity estimation error. Though in the definition the quantized ref-
erence frames have been avoided and replaced by the original motion compensated ones,
there still remains a little dependency to the reference image quantization through the
motion/disparity vector fields, u1 and u2. Indeed, they have been calculated between the
two quantized versions of the reference frames, and therefore, depend on the QP. In this
subsection, some experiments have been run in order to measure the influence of the quan-
tization on Md1,d2 . For several sequences we have calculated the statistics presented in
Table 2.4. They correspond to the average error in (%) between the mean value Md1,d2

calculated with motion/disparity estimated at four QP (31,34,37 and 40). The obtained
results show thatMd1,d2 obviously depends on the QP but not so much, and we can assume
that it is independent from the reference image quantization.

2.3.4 Discussion about hypothesis validation

Looking at all the results in Section 2.3.1, 2.3.2 and 2.3.3, several conclusions can be drawn.

• For Hypothesis 2, the term mainly responsible of the sensible gap between σ2
eI

and σ̂2
eI

is σeI1 ,eI2 . Indeed, the fact that it becomes non zero easily can be explained, precisely
when there are only few differences between I1 and I2, i.e., in case of low motion
or similar texture. The two other terms, σeI ,eI1 and σeI ,eI2 , are nearly always very
small. For example for mobile, the gap at low bitrate is 17.42%, which is explained by
the fact that the texture is very similar from one frame to another in this sequence,
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Figure 2.6: Evolution of the distortions measured on mobile sequence at a QP=40.

eric foreman football soccer mobile
4.30 7.92 1.31 10.58 6.70

Table 2.4: Average error in (%) between the mean value of Md1,d2 calculated at four QPs
(31,34,37,40).

contrary to soccer sequence which is more complex, and has thus led to similarity
between σ2

eI
and σ̂2

eI
.

• Hypothesis 3 seems to be quite well verified for soccer. The explication is certainly
more complex than for Hypothesis 2, but we can guess that the texture of the images
and their resistance against compression are important elements for the validity of
Hypothesis 3.

• At the end, the proposed model is acceptable. While the simplifications made may
lead to a gap between the model and the true distortion at low bitrate, the evolution
of σ̂2

eI
is always well predicted, which is very significant for many applications. More-

over, the simple expression of the model (separation of the quantization and motion
estimation errors) allows a very easy rate-distortion analysis along the GOP, as we
will see in the next section.
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2.4 Rate distortion model

2.4.1 Results from information theory

In this section, we recall some classical results of information theory, which are presented in
more details in [Berger, 1971; Cover, Thomas, 2006]. If χ is a probability space, we study
here the coding of a random variable, X ∈ χ, and its reconstruction (denoted by X̂ ∈ χ).
The purpose is to study the rate distortion characteristics depending on the probabilist
properties of the source. This one generates sets of n elements X = X1, X2, . . . , Xn, iid
and following the probability density p. These n-symbols are described with an index
fn(X) ∈ {1, 2, . . . , 2nR} (where R is the transmission rate per element). At the decoder,
an estimation of X is associated to this index. This estimation is called the reconstruction
and is denoted by X̂ ∈ χn.

We recall that the distortion is defined as a function d :

χ2 → R+, (x, x̂) 7→ d(x, x̂)

which gives the cost of representing x ∈ χ by x̂ ∈ χ. There exists many distortion functions.
Two of them are well known and often used :

d(x, x̂) =

{
0 if x = x̂
1 if x 6= x̂

(Hamming) (2.10)

d(x, x̂) = (x− x̂)2 (square-error) (2.11)

The distortion between two n-sequence, x = (x1, . . . , xn) and x̂ = (x̂1, . . . , x̂n), is then
defined as

d(x, x̂) =
1

n

n∑

i=1

d(xi, x̂i)

.
Then, we introduce the definition of a

(
2nR, n

)
rate distortion code as a encoding

function
fn : χn → {1, . . . , 2nR},

and a decoding function
gn : {1, . . . , 2nR} → χn.

The associated distortion is

D = E {d(X, gn(fn(X)))} .

From this definition we can introduce the following notion: a rate distortion pair (R,D) is
achievable if there exists a sequence of

(
2nR, n

)
rate distortion codes such that

lim
n→∞

E {d(X, gn(fn(X)))} ≤ D.

An important theorem of rate distortion theory states that the rate distortion function
for a source X with a bounded distortion function d is:

R(D) = min
p(x,x̂):

∑
(x,x̂ p(x)p(x|x̂)d(x,x̂)

I(X; X̂) (2.12)
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It can be extended to well-behaved continuous sources with unbounded distortion measures.
Let us consider the case of a square error distortion (Equation (2.11)). It is proven

[Gray, 1990], that the Shannon lower bound rate can be written as (for a continuous source
under a distribution p):

R(D) = h(p)− 1

2
log2(2πeD) (2.13)

Now, let us study the particular case of video coding. A natural frame distribution is
sometimes assumed to be Gaussian, and an error image distribution is usually considered
as Laplacian. Then, let us develop Equation (2.13) in case of Generalized Gaussian distri-
butions. For two strictly positive real numbers α and β, the Generalized Gaussian pdf is
defined as:

fGG(x) =
β

2αΓ(1/β)
e
−
(
|x|
α

)β

where Γ(x) =
∫∞

0 tx−1e−tdt is the classical “gamma” function. The coefficient β impacts on
the general shape of the distribution, and α gives the scale. The variance of the Generalized
Gaussian law is:

σ2
GG = α2 Γ(3/β)

Γ(1/β)
.

It is also known that the expression of the entropy is [Nadarajah, 2005]:

hGG(p) =
1

β
− log2

(
β

2αΓ(1/β)

)
.

If we express the entropy as a function of the variance, we obtain:

hGG(p) =
1

2
log2




(
2e1/β Γ(1/β)

β

)2 Γ(1/β)

Γ(3/β)︸ ︷︷ ︸
g(β)

σ2
GG


 .

We notice that g(β) only depends on the general shape of the source distribution. Let us
write now the corresponding rate-distortion function (with Equation (2.13)):

R(D) =
1

2
log2

(
g(β)σ2

GG

)
− 1

2
log2(2πeD)

R(D) =
1

2
log2

(
g(β)

2πe

σ2
GG

D

)
(2.14)

which can be inversed and written in the following distortion-rate form:

D(R) =
2πe

g(β)︸ ︷︷ ︸
µ

σ2
GG2−2R

D(R) = µσ2
GG2−2R (2.15)

where µ depends on the distribution.
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2.4.2 Proposed model

Based on Equation (2.15) we are able to write a rate distortion function for a frame Iref

(at high bitrates):
DIref = µIrefσ

2
Iref

2−2RIref . (2.16)

If Iref is a reference frame, σ2
Iref

corresponds to its variance. But if Iref is a reconstructed
Wyner-Ziv frame estimated thanks to two reference frames I1 and I2, then σ2

Iref
corresponds

in fact to the error variance σ2
eIref

.
Then, using the proposed model for the distortion expression, we obtain the following rate
distortion function for a Wyner-Ziv frame (thanks to Equation (2.8)):

DIref = µIref
(
Md1,d2 + k2

1DI1 + k2
2DI2

)
2−2RIref . (2.17)

Recursive analysis : based on this simple model structure, it is simple to make a
recursive analysis in case of WZ frames generated thanks to other WZ frames. For example,
if we assume in the previous equation that I1 was generated thanks to I ′1 and I ′2, one can
easily write:

DI = µIref

(
Md1,d2 + k2

1

(
µI1

(
Md′1,d

′
2

+ k′21 DI′1
+ k′22 DI′2

)
2−2RI1

)
+ k2

2DI2

)
2−2RIref .

This idea leads us to make several works based on this model, which are presented in
Chapter 3.

2.5 Conclusion

In this chapter, we proposed a distortion model for the WZ frame estimation. Based on
several hypotheses, this model manage to give a good description of the true distortion, or
at least its evolution along the time. Thanks to the simple model structure, we are now
able to write the rate-distortion function expression of a WZ frame, in function of the rates
of the key frames and other WZ frames. The next chapter uses these properties to model
the coder behaviour.
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Chapter 3

Applications of the rate-distortion
model

The characteristics of the WZ frame estimation distortion model introduced in the previous
chapter are twofolds. First of all, its structure is simple since it separates the error coming
from the motion/disparity error and the error due to the reference frame quantization.
Secondly, the distortion model gives a good estimation of the evolution of the true distortion,
which can be interesting for several applications, such as the rate estimation at the encoder.
Based on these ideas, we propose here to use them in three important problems in DVC.
Firstly, in Section 3.1 we study the frame type repartition at the encoder input of a multiview
scheme, we propose a novel and more efficient frame classification, and we use the model
for establishing the optimal WZ frame decoding order.
Moreover, in Section 3.2, we investigate the codec behavior in case of frame loss. Based
on the proposed distortion expression, we aim at modelling the error propagation and thus
the influence of the WZ frame position in the GOP. Finally, we use the model for rate
estimation at the encoder and thus to propose an algorithm allowing to get rid of the
feedback channel, which will be presented in Section 3.3.
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3.1 Multiview schemes

In a multiview distributed video coding context, image type classification is a crucial
problem, because of the consequence it has on the whole rest of the coding scheme (for
example, side information generation methods). Then, a distribution of the two types of
frames in the time-view space (Figure 3.1 (a)), called scheme in the following, has to be
adopted before the encoding process.

In this section, we first describe the schemes existing in the literature (Section 3.1.1),
and then we propose new symmetric schemes (Section 3.1.2) for which we shall determine
the best decoding strategy based on the previously introduced RD model. These methods
will be validated by experimental results (Section 3.1.3). 1

3.1.1 State-of-the-art

As we can guess from Figure 3.1 (a), many configurations of frame repartition are conceiv-
able. Surprisingly, the existing solutions are not so numerous and can be divided in three
main categories. Before presenting them, we introduce the three types of cameras used2.

• Key cameras: all of their generated frames are key frames. They can be encoded
with an Intra coder but also with an Inter coder, involving only frames from other
Key cameras. Anyway, these cameras need to be more powerful since intra or inter
encoding is more complex than WZ encoding.

• Wyner-Ziv cameras: all of their frames are Wyner Ziv frames. The side-information
for them is built by using the KFs of the other cameras. These cameras are less
demanding in terms of computational power.

• Hybrid cameras: their frames can be key andWyner Ziv frames. The side-information
is built thanks to the key frames of the other cameras and also thanks to their own
key frames. The advantage of using this type of cameras is that the problem becomes
symmetric, and all the cameras in the system are identical.

Using all these types of cameras, many possible settings are conceivable. In the following,
we present some configurations existing in the literature. In Figure 3.1 (b) (c) and (d), the
KFs are in grey and the WZFs in white. Again, three main schemes exist:

� The asymmetric scheme (AS): The type of cameras alternates between Key and
Wyner-Ziv, as shown in Figure 3.1 (b). Then the side-information is built using the
closest frames in the view direction. This principle is used for example in [Ouaret
et al., 2006][Artigas et al., 2007b].

� The hybrid 1/2 scheme (Hyb2): One camera over two is a Key camera and between
them, there are hybrid cameras. This scheme is illustrated in Figure 3.1 (c). In this

1The material in this section was published in:

• T. Maugey and B. Pesquet-Popescu, “Side information estimation and new symmetric schemes
for multi-view distributed video coding,” J. on Visual Communication and Image Representation,
vol. 19, no. 8, pp. 589–599, Dec. 2008, special issue: Resource-Aware Adaptive Video Streaming.

2There exist many hardware classifications, the one presented here is done from the point of view of
the types of frames generated with the camera.
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(a) (b)

(c) (d)

Figure 3.1: Frame disposition in the time-view space for different schemes (a) Time-view
space representation (b) The asymmetric scheme (c) The hybrid 1/2 scheme (d) The sym-
metric 1/2 scheme.
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case, the side-information can be estimated in the temporal and in the view direction
leading to the necessity of performing a fusion between these two estimations. This
scheme was proposed for example in [Ouaret et al., 2006][Ouaret et al., 2007][Ouaret
et al., 2009][Artigas et al., 2006][Artigas et al., 2007b].

� The symmetric 1/2 scheme (Sym2): The cameras are all hybrid with one KF for one
WZF. This scheme is presented in Figure 3.1 (d). The KFs and the WZFs are placed
on a quincunx grid in the time-view axes. The side-information for each WZF can
be then computed in the view direction and in the time direction. This case also has
to cope with the fusion problem. It was proposed in [Guo et al., 2006a].

3.1.2 Symmetric schemes

Based on the analysis of the dependency between the number of estimations and the quality
of the side information, we propose a new symmetric scheme. Our first goal is to preserve
the symmetric nature of the schemes because asymmetric ones are too much restrictive for
the camera configuration (position, power, etc.). Since in the mono-view distributed video
coding the length of the GOP can be more than 2, we propose to investigate the extension
of a GOP size of 4 to multiview. This is why we propose a scheme called symmetric 1/4
(Sym4) in Figure 3.2. This scheme, if its performance proves to be acceptable, has the
advantage of being even less complex at the encoder, and this is one of the main goals
of distributed coding. However, the decoder complexity is increased, since the number of
WZFs which need to be channel decoded has grown.
We did not consider a scheme similar to the one used for hierarchical B frames (in multi-
view source coding [ISO/IEC MPEG & ITU-T VCEG, 2007]), with I frames obtained
only by a dyadic subsampling of the video sequence, since we wanted to fully exploit the
correlations in both temporal and view directions for each WZF. Indeed, in the JMVM
approach, the first motion/disparity compensated interpolations are done in a single direc-
tion (temporal or view).

With this new symmetric scheme, several ways of decoding are conceivable. In this
section we propose a theoretical study, in order to choose the one having the best Rate-
Distortion (RD) performance. Based on the recursive rate-distortion analysis introduced
in Chapter 2, we will first study the mono dimensional case, and then we will extend the
conclusions for multi-dimensional (temporal and view) conditions.

In one dimension, corresponding to the view or time axis in the Sym4 scheme, three
decoding strategies may be envisaged, as illustrated in Figure 3.3. In the first strategy,
the two WZFs closest to the KFs are first decoded and thanks to them, the SI of the
middle WZF is then interpolated. In the second strategy, very similar in spirit with the
“hierarchical B frames” [ISO/IEC MPEG & ITU-T VCEG, 2007], the middle WZF is first
decoded and then it is used to generate the SI necessary for decoding the two other WZFs.
In the third strategy, all the WZFs are simultaneously decoded, thanks to the SI generated
from the two KFs.

In order to choose the best decoding strategy, let us study the theoretical dependencies
between frames in the three situations. Based on the RD model introduced in Chapter 2,
and with the notations in Figure 3.3, let us calculate the RD function for each of the three
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Figure 3.2: Symmetric 1/4 scheme (Sym4). KF are in grey, WZF in white.
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Strategy
1

Strategy
2

Strategy
3

Figure 3.3: Three decoding strategies for Sym4. The numbers indicate the temporal order
of estimating the SI for the different WZFs.
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strategies, and compare them. We call the middle WZF,Wm, and the two others are called
lateral frames, Wl. We do not make the difference between the two Wl, because the three
decoding strategies give an identical role to both lateral WZFs. Denoting by Dl and Dm

(resp. by Rl and Rm) the variances of the estimation errors (resp. the rates) of the frames
Wl and Wm, let us calculate the total distortion: D = 2Dl + Dm. We denote by DK the
distortion of a KF (supposed here to be equivalent for all the KFs). The equations in the
following are written under high hypothesis assumption.

• Strategy 1: Following the temporal WZ decoding order of “strategy 1” in Figure 3.3,
we can first write the distortion of the lateral frames generated by two KFs at a
distance of 1 and 3 (the two coefficients of the linear combination are thus 3

4 and 1
4).

Equation (2.8) leads to:

Dl = µσ2
l 2
−2Rl = µ

(
M1,3 +

(
3

4

)2

DK +

(
1

4

)2

DK

)
2−2Rl

= µσ2
l 2
−2Rl = µ

(
M1,3 +

5

8
DK

)
2−2Rl

The distortion of the middle frame, after reconstructing the lateral WZFs, is:

Dm = µσ2
m2−2Rm = µ

(
M1,1 +

(
1

2

)2

Dl +

(
1

2

)2

Dl

)
2−2Rm

= µ

(
M1,1 +

1

2
Dl

)
2−2Rm

= µM1,12−2Rm + µ2 1

2

(
M1,3 +

5

8
DK

)
2−2(Rm+Rl)

• Strategy 2: Again according to the temporal estimation order in Figure 3.3, the
distortion of the middle frame is:

Dm = µσ2
m2−2Rm = µ

(
M2,2 +

1

2
DK

)
2−2Rm

Then the distortion of each of the lateral frames reads:

Dl = µσ2
l 2
−2Rl = µ

(
M1,1 +

1

4
Dm +

1

4
DK

)
2−2Rl

= µ(M1,1 +
1

4
DK)2−2Rl + µ2 1

4

(
M2,2 +

1

2
DK

)
2−2(Rm+Rl)

• Strategy 3: We start by estimating the distortion of the middle frame:

Dm = µσ2
m2−2Rm = µ

(
M2,2 +

1

2
DK

)
2−2Rm

Then, the distortion of the lateral frames is:

Dl = µσ2
l 2
−2Rl = µ

(
M1,3 +

5

4
DK

)
2−2Rl
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Then, it is possible to compute the total distortion of the WZFs for each strategy:

D1 = Dm + 2Dl (3.1)

In order to plot these three rate distortion functions, we have to estimate the quantities:
σ2
K , M1,3, M1,1 and M2,2. We thus estimate these elements for each frame and then we

calculate the average in order to have the general behavior of each sequence. We use 100
frames of the first camera for temporal coefficients and four times 8 frames at the same
temporal instant for the view coefficients. Figure 3.4 presents these coefficients estimated
on two multi-view test sequences, in the time direction and in the view direction.
Three remarks can be made:

• First, as expected, the motion/disparity prediction errors (M parameters), as well
as the quantization errors, are much lower than the variance of the KFs (σ2

K).

• Secondly, the estimation error is lower when the maximum distance (i.e.,the distance
to the furthest frame) is small. Indeed, M1,1 < M2,2 < M3,1.

• Finally, the estimation errors are more important for breakdancer sequence than for
ballet sequence. We can thus expect worse results for this sequence and in general,
estimating these prediction errors gives a good idea about the coding performances
that may be expected for a given sequence.

The estimation of µ coefficients is based on a detailed rate distortion analysis presented in
[Fraysse et al., 2009]. We consider that the frames are coded at high bitrate and we assume
that the KFs have a Gaussian distribution and the WZF errors have a Laplacian distribu-
tion. Note also that, in this reference are deduced rate-distortion models for theoretical
sources and low bitrates. However, these are less practical to exploit, so here we keep with
the classical high bitrate rate-distortion model. The µ coefficients can also be estimated
from the real RD functions of the KFs or WZFs by performing a linear regression of the
practical RD functions.

Using these estimated values, we plot the different RD functions for the two test se-
quences, ballet and breakdancer, in temporal and view directions. Figure 3.5 shows the
experimental results and one can see that the best strategy is the second one.
We have thus the best solution for the one dimensional problem. The Figure 3.6 shows
the proposed two dimensional solution corresponding to the previous analysis. Indeed,
separately in the view direction and in the temporal direction, the best decoding strategy
is the second one. The Figure 3.6 presents the decoding strategy, and the different estima-
tions made for each WZF. For the first WZF to decode, we make the fusion between three
estimations (temporal, inter-view and diagonal). For the second, we compute the fusion of
temporal and view estimations.

3.1.3 Experimental validation

In this section we test the proposed approaches. We use again the two multi-view test
sequences: breakdancer and ballet. In order to save some computation complexity, we re-
duce the spatial resolution to 256 × 192 after a low-pass filtering as it is done in [Areia
et al., 2007]. For both, the frame rate is 15 fps and we use the 8 cameras with the first
20 frames per view. The results are presented through rate-distortion performance. The
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Figure 3.4: Values of the different dependency coefficients for “Ballet” and “Breakdancer”
sequences.

Table 3.1: Complexity comparison (computation time in seconds per frame) at the encoder
and at the decoder, for different schemes.

Scheme Encoder Decoder
H.264 Intra 0.25 0.03

Hyb2 0.21 5.11
Sym2 0.13 14.45
Sym4 0.07 17.46

rates presented are the total rates (WZF + KF) per camera (because the schemes used are
symmetric) for the luminance component (as usual for WZ coding).

We present in Table 3.1, the computational complexity (time in seconds per frame),
at the encoder and at the decoder for different schemes. This was measured on an “Intel
Core 2 Duo” machine, 2.66 GHz, under Linux, for breakdancer sequence, on 5 views and 5
frames per view. The reported results are the average computation times per frame. The
experimental results confirm that the Sym4 scheme is far less complex than Sym2 at the
encoder (the encoding complexity of Sym4 represents only 50% of the Sym2 complexity
and only 30% of the Intra configuration complexity), which is interesting for distributed
video applications on low-power systems. The decoding complexity increasing is considered
for the moment (here and in the literature) as a non-problem.

In experiments shown in Figure 3.7, we compare the Sym4 with the Sym2 and with the
Hyb2 (see Figure 3.1 (c)). We notice that, when the performance of Sym2 is better than
the Intra coding, the Sym4 is better than both Sym2 and Hyb2. This can be explained by
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Figure 3.5: Rate-Distortion functions for the test sequences “Ballet” and “Breakdancer” (8
cameras, 256 × 192, 15 fps per view, average over 100 frames and 8 views). D1, D2 and
D3 are the distortions corresponding to the three estimation strategies.
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Figure 3.6: Decoding strategy for Sym4. The plain arrows represent the side information
generation at the first step, and the dashed arrows at the second step.
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the fact that the Intra frames are replaced by WZFs, using lower bit rates. However, for
the breakdancer sequence, the coding efficiency is lower for the WZFs than for the Intra
frames, and thus replacing KFs by WZFs degrades the performance. This explains why for
this sequence Sym4 has lower performance than Hyb2, but we notice that Sym4 is better
than Sym2. The results are interesting because they show the potential of using a scheme
involving less KFs.
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Figure 3.7: Comparison of the RD performance for ballet and breakdancer (8 cameras,
256× 192, 15 fps per view) for different coding schemes.

3.2 Frame loss analysis

Once we have determine in the previous section an efficient decoding strategy for monoview
DVC ( Figure 3.3, strategy "2"), it would be interesting to study its behaviour in case of
frame loss. This is what is performed in this section.

3.2.1 Context

Let us recall the adopted decoded strategy for a GOP size of 4. First the middle WZ
frame, denoted by Wm, is decoded thanks to a side information generated using the two
KFs, K1 and K2. Then, the lateral frames Wl1 and Wl2 are decoded using the reference
frames and the decoded frameWm. In Section 3.1.2, we proved that this decoding strategy
is optimal between all possible decoding schemes. It has also been empirically used in
[Aaron et al., 2003]. We notice that the three kinds of frames play a different role in this
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decoding process. 3

3.2.2 Theoretical analysis

The expression of the average distortion in a GOP is: DT = 1
4(DK + Dl1 + Dm + Dl2).

We recall that the general rate distortion function for a frame X can be approximated, at
high bitrate, by

DX = µσ2
X2−2RX , (3.2)

where RX is the allocated rate in bits per pixel, σ2
X the original variance of the frame X,

and µ a constant depending on the source distribution (see Section 2.4.1). In this section
we study the expression of the GOP distortion for several case of figure: no loss, loss of a
key frame, loss of a middle WZ frame and finally, loss of a lateral WZ frame.
Case of a lossless transmission: This case has already been studied in Section 3.1.2. We
do not give the detail of the calculation, we thus only briefly recall the obtained distortions:

DK = µKσ
2
K2−2RK (3.3)

Dm = µm

(
M2,2 +

1

2
DK

)
2−2Rm (3.4)

Dli = µl

(
M1,1 +

1

4
DK +

1

4
Dm

)
2−2Rli . (3.5)

We obtain the average distortion of a GOP using:

DT =
1

4
(DK +Dm + 2Dli). (3.6)

Loss of parity bits for Wl1 : if the parity bits used to decode the frame Wl1 are lost, the
estimation error can not be corrected. Thus, we have Rl1 = 0. The distortion of the frame
Wl1 is that of its corresponding SI and can be expressed as:

D∗l1 =µl

(
M1,1 +

1

4
DK +

1

4
Dm

)
. (3.7)

The distortion of the KF, as well as Wm and Wl2 , remain unchanged and are expressed as
in Equantions (3.3), (3.4) and (3.5).
The average GOP distortion becomes:

Dl
T =

1

4
(DK +Dm +D∗l1 +Dl2). (3.8)

Loss of parity bits for WZm: in this case, the distortion of the KF is as in (3.3), and
the distortion of the Wm frame is:

D∗m =µm

(
M2,2 +

1

2
DK

)
, since Rm = 0. (3.9)

3The material in this section was published in:

• T. Maugey, T. André, B. Pesquet-Popescu, and J. Farah, “Analysis of error propagation due to
frame losses in a distributed video coding system,” in Proc. Eur. Sig. and Image Proc. Conference
(EUSIPCO), Lausanne, Switzerland, Aug. 2008.
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Therefore, the distortion of the Wli frames, for i ∈ {1, 2}, becomes:

D∗li =µl

(
M1,1 +

1

4
DK +

1

4
D∗m

)
2−2Rli . (3.10)

We have the following average distortion of a GOP:

Dm
T =

1

4
(DK +D∗m + 2D∗li). (3.11)

Loss of a Key Frame: When K1 (or K2) is lost, before decoding the corresponding GOP,
this frame needs to be estimated using other KFs supposed to be well received (the two
located at a distance of 4 frames before and after the current lost KF). The corresponding
estimation error variance is σ2

eK
. Therefore, the distortion of the KF is:

D∗K = µ∗Kσ
2
eK

2−2RK , with RK = 0

D∗K = µ∗K

(
M4,4 +

1

2
DK

)
. (3.12)

Thus, the distortion of the Wm frame will be:

D∗m =µm

(
M2,2 +

1

4
D∗K +

1

4
DK

)
2−2Rm . (3.13)

and the distortion of the Wl1 and Wl2 frames modifies accordingly:

D∗l1 =µl

(
M1,1 +

1

4
D∗K +

1

4
Dm

)
2−2Rl1 (3.14)

D∗l2 =µl

(
M1,1 +

1

4
D∗m +

1

4
DK

)
2−2Rl2 . (3.15)

We have the following average GOP distortion in this case:

DK
T =

1

4
(D∗K +D∗m +D∗l1 +D∗l2). (3.16)

The motion interpolation errors (M1,1, M2,2, M4,4) are experimentally estimated. These
errors, as well as σ2

K , have been estimated with the test sequences foreman (QCIF, 30 fps,
200 frames) and coastguard (QCIF, 30 fps, 150 frames). The estimation of µ coefficients
was firstly based on a detailed rate distortion analysis presented in [Fraysse et al., 2009],
as in Section 3.1.2, but were finally experimentally determined using a linear regression
of practical RD functions. Moreover, we experimentally established that the rates for the
four frames must be different in order to have a uniform decoding quality in a GOP: if we
consider a rate R in bpp for the KF, the rate for the Wm frame is arbitrary taken R/2 and
for the Wl as R/4. These ratios were adopted for the theoretical plots (Figure 3.8) where
we present the average rate in bpp.

Because of several approximations assuming high bitrate hypotheses (detailed in the
previous chapter), the values of the theoretical rate distortion function are bigger than
expected for low bitrate and we only present the curves at high bitrate (above 1 bpp).
However, these plots still allow more interesting remarks. In Figure 3.8, we notice the
importance of the error propagation phenomenon. Indeed, for both video sequences, the
loss of a KF propagates over the entire GOP and leads to a much higher distortion than in
the case of a Wm loss, which in turn induces a more important distortion than that caused
by a Wl frame loss. These theoretical results thus illustrate the fact that an error occurred
in a K or Wm frame will spread over the other frames when using that biased frame as a
reference frame.
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(b) coastguard, QCIF, 30 fps, 150 frames.

Figure 3.8: Theoretical rate-distortion functions, corresponding to the lossless case and to
the three loss situations, for (a)foreman and (b)coastguard sequences.

3.2.3 Experimental validation

In this section, we compare the experimental and theoretical rate-distortion functions in
the same frame loss conditions as those considered in the theoretical study (Figure 3.8)
in previous section. Practical WZ coding was obtained with a Discover scheme. Exper-
iments were run on the same test video sequences, foreman and coastguard. The results
presented in Figure 3.9 correspond, at each bitrate, to the average distortion of the entire
sequence. For each loss type, every GOP in the sequence is affected by the loss (e.g., for
a Wm or Wl loss, one over four frames in the sequence are lost). If the lost frame is a
WZF, its parity bits are transmitted but cannot be exploited by the decoder. For the WZ
frames losses, no concealment is performed at the decoder. But if the lost image is a KF,
the frame is estimated at the decoder using the two closest KF.
Two main remarks can be done regarding these experimental plots. First, we are able
to see in the obtained curves the error propagation caused by a frame loss. Indeed, the
experiments show that if a frame is used to generate the side information for other WZFs,
its loss will deeply affect the decoding performances. The second remark concerns the
similarity between the theoretical and experimental plots. Indeed, the theoretical plots
have predicted the relative importance of the frame losses (K,Wm, Wl) at high bitrate.
One can see in the experiments that this prediction is also true at low bitrate. The pro-
posed theoretical approach can thus be used in similar situations in order to improve the
decoding performances.

Moreover, we present another experimental result which analyzes the evolution of the
decoder behavior through time and compares the case of lossless transmission to the case
where the transmission is randomly affected by frame losses (Figure 3.10). In such a
decoding scheme, it is interesting to study the side information evolution linked with the
rate per frame evolution. Indeed, the final PSNR of each frame is almost equal for a lossy
or a lossless transmission, since the rate for a WZF will increase in order to correct the
errors using the parity bits. Then, if the estimation error is bigger, the requested parity
bits will be more numerous, but the decoded frame will have almost the same PSNR. In
Figure 3.10 (up), we present the evolution of the side information quality (for the KFs,
we represent the PSNR of the decoded frame). In Figure 3.10 (bottom), the evolution of
the transmitted rate per frame is presented. The experiments were run on the coastguard
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Figure 3.9: Experimental rate-distortion functions, corresponding to the lossless case and
to the three loss situations, for (a)foreman and (b)coastguard sequences.

(QCIF, 30 fps) sequence with the first 97 frames. For the lossy transmission (plain plots),
the frame losses occurred randomly. The vertical lines represent the moments when the
losses occurred (solid lines for K losses, dashed lines forWm losses, and dotted lines forWl

losses). One can notice that the rates for KFs and WZFs do not exactly correspond to the
ratios indicated in the previous section. Indeed, they have been established experimentally
taking into account a larger number of frames.
The obtained curves confirm the previous remarks on the relative importance of the frame
losses (K, Wm, Wm). Indeed, we can see that a K loss affects the 6 other frames around
it, i.e. their SI PSNR is lower and their rate per frame is bigger. Besides, the loss in
SI PSNR and the increase in the requested data rate are larger for the closest neighbors
than the rest of the GOP. This proves that the error propagation influence due to frame
loss decays with time (in both directions). On the other side, a Wm loss affects only two
frames around it, whereas a Wl loss does not affect any other frame. In fact, a Wl loss is
not visible on the presented curves because only the reconstruction is affected in this case
and it does not concern the transmission rate or the SI PSNR.

3.3 Backward channel suppression

3.3.1 Introduction

3.3.1.1 Motivations and related problems of rate control at the encoder

We previously mentioned that the main problem of actual DVC schemes is the presence of
a feedback loop, thus forcing a real time decoding and negligible transmission times, not
conceivable in practice. This backward channel is employed to create a communication
between the turbo encoder and the turbo decoder. More precisely, after the reception of
a first stream of parity bits (the parity bits are divided into a certain number of chunks),
the turbo decoder performs the corresponding bitplane decoding. Then it estimates the
error probability for it, and if this one is greater than a threshold (arbitrary fixed here at
10−3 [Brites et al., 2008]), the turbo decoder requests another parity bits stream, via the
backward channel. This operation is repeated until the error probability becomes lower
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Figure 3.10: Evolution of the side information PSNR (up) and of the rate per frame
(bottom) through time. The dotted curves correspond to a lossless transmission and the
plain curves correspond to the case where the transmission is randomly affected by frame
losses. The KF losses (resp. Wm and Wl) are represented by vertical plain lines (resp.
dashed and dotted lines).
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than the threshold, or if a maximum number of parity bits requests4 has been reached.
Knowing the decoding mechanism which is performed for each bitplane of each band, the
use of the backward channel is obvious: allowing a transmission with an optimal rate,
i.e., the minimum rate required for a reconstruction with a bit error probability under
10−3. Then, the suppression of this backward channel can degradate the rate-distortion
performance.

3.3.1.2 Existing rate estimation algorithms

There exists not so many solutions for rate control at the encoder and some of them
are developed for a specific context, quite different from our transform domain scheme.
For this reason we just mention here the methods developed by Morbee et al. [Morbee
et al., 2007] and by Yaacoub et al. [Yaacoub et al., 2008], using pixel-domain DVC scheme.

In our context, i.e.,a scheme inspired by Discover, working in the DCT domain, and
describing the WZ information with bitplanes, only three methods were proposed. All of
them calculate for each bitplane the number of parity information to send and use a GOP
size of 2 in their test.

Brites and Pereira’s algorithm [Brites, Pereira, 2007] estimates the bitplane entropy by
considering the error probability based on the Laplacian error distribution modelled with
a coarse version of the side information (for example the average of the reference frames
or a fast motion interpolation). The algorithm deduces from this entropy a quantity of
information allocated to the current bitplane. Because a rate underestimation could have
dramatical consequences on the final performances, Brites and Pereira proposed to add a
term which takes into account the error propagation along the bitplanes. Whereas sig-
nificant losses are conceivable, this method presents a too high dependency to the coarse
side information calculated at the encoder. Indeed, the gap between a simple key frame
average and a fast motion interpolation is high (except for hall monitor sequence which
has almost no motion). Moreover, the performance quality seems to also strongly depend
on the additional term, and its calculation is not precisely explained in the paper. It is
thus difficult to determine if this additional term needs to estimate some parameters or
not.
Sheng et al.. [Sheng et al., 2008; Sheng et al., 2010] have proposed a very similar approach,
where the number of parity bits needed at the decoder is estimated based on the corre-
lation noise estimation (i.e., the Laplacian distribution parameter used to model the side
information error).
More recently, Halloush and Radha [Halloush, Radha, 2010] proposed a quite different
approach. They estimate bitplane by bitplane the parity rate based on the Hamming dis-
tance between the previous key frame and the current WZ frame. They obtained losses of
equivalent order of magnitude.
Moreover Kubasov et al. [Kubasov et al., 2007a] also make a rate estimation at the en-
coder. However, their purpose is no longer to avoid the backward channel but to reduce
the decoding complexity by sending an estimated rate for each bitplane and by completing
it by requesting the missing parity bits with the return loop. They estimate the rate, as

4In fact, in some implementations, another criterion for the bitplane decoding stop is when the decoding
does not converge, i.e., when the error probability does not decrease after a certain number of requests.
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Brites and Pereira, by integrating the Laplacian distribution over the bins, and using this
value to calculate the bitplane conditional entropy. If the methods which aim at getting rid
of the return loop must not perform a rate underestimation, the rate estimation technique
of Kubasov et al. aim at having no overestimation. Consequently, even if the techniques
are similar, the target are quite different.

3.3.1.3 Hypotheses and main idea of the proposed approach

All of the existing methods have done the choice to directly estimate the parity rate bitplane
by bitplane without firstly estimating a global frame rate. In our opinion, it would be more
precise to consider that the problems related to backward channel suppression are twofold.
Firstly, the encoder needs to estimate the total rate per frame (the sum of the parity bits
required for all the bitplanes of all bands), and secondly, the encoder has to estimate the
distribution of this total rate among all the bitplanes of all the bands.
In this Section 3.3, we present a solution to this problem. More precisely, we present
in Section 3.3.2 how we estimate the rate per frame, based on the previously introduced
model. Then, in Section 3.3.3, we present our approach to estimate the number of parity
bits to send for each bitplane of each band.

While the existing rate control algorithms are only tested with a GOP size of 2, we think
that it would be more challenging if the proposed technique was tested for a configuration
where the ratio of WZ frames is larger than 1/2. More precisely, we adopt a structure
with a GOP length equal to 4: one reference frame followed by three WZ frames, where
the different WZ frames do not play the same role inside the GOP. The optimal decoding
order was proved in Section 3.1.2 and is presented in Figure 3.3 (b).

In the following, we keep the same notations as above for K, Wm, Wl, DK and Dm,
Dl, RK , Rm and Rl (Section 3.2.1).

3.3.2 Frame rate estimation

The first problem of backward channel suppression is to predict at the encoder the total
rate for each frame of the sequence. We propose to calculate for each frame the rate needed
to obtain an homogeneous decoded frame distortion along the GOP (and then along the
sequence). First, in Section 3.3.2.1 we introduce, based on the model of Chapter 2, an
expression of the distortion for each frame of a GOP. Then, in Section 3.3.2.2, we deduce
an expression of the theoretical rates (RK , Rm and Rl). Then (in Section 3.3.2.3) we
explain how to estimate the allocated rates based on the theoretical formulas. Finally, in
Section 3.3.2.4, we compare the predicted rate with the experimental rate (Discover with
a return loop).
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3.3.2.1 Rate expression

Using Equation (2.8), the distortion of each frame of the GOP can be determined. We
recall here the expressions of the distortion:

DK = µKσ
2
K2−2RK

Dm = µm

(
M2,2 +

1

2
DK

)
2−2Rm

Dl = µl

(
M1,1 +

1

4
DK +

1

4
Dm

)
2−2Rl .

3.3.2.2 Homogeneous distortion inside the GOP

Several criteria can be adopted for determining the optimal rate-distortion tradeoff. In
the proposed approach, we choose a simple and justified (corresponding to a constraint for
good visual quality) criterion: the distortion along the sequence must be constant. We can
thus add the following constraint on the previous equations:

DK = Dm = Dl

in order to have the same distortion along the GOP. Let us formulate the WZ rates as a
function of the key frame rate, RK . First, the middle WZ frame rate, Rm is obtained by
writing

Dm = DK

µm

(
M2,2 +

1

2
DK

)
2−2Rm = DK

Rm =
1

2
log2

(
µm
(
M2,2 + 1

2DK

)

DK

)
.

With the same approach, we obtain the lateral WZ frame rate

Dl = DK

µl

(
M1,1 +

1

4
DK +

1

4
Dm

)
2−2Rl = DK

Rl =
1

2
log2

(
µl
(
M1,1 + 1

2DK

)

DK

)
. (3.17)

Finally, we obtain two rate expressions which are directly determined by the key frame
distortion. In other words, after the choice of the key frames quality (i.e., after adjusting
the QP), the rates of the WZ frames are directly determined.

3.3.2.3 Practical approach

At this step, we have the explicit expressions of the rates for each frame inside the GOP.
However, these expressions still contain several parameters which need to be estimated.

• The µ coefficients depend on the source distributions, they can be theoretically de-
termined as explained in [Fraysse et al., 2009]. In our practical framework, we ex-
perimentally obtain (by linear regression) the µ parameters based on experimental
rate distortion performances.
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• The M1,1 and M2,2 coefficients correspond to the interpolation errors in case of zero-
distortion reference frames. By definition, they cannot be calculated at the encoder
because of the DVC principle and because of the complexity of motion interpolation
methods. For this problem, we consider that the two reference frames are available
at the encoder and we perform a simple average (low computational complexity)
between them. The use of the key frames at the encoder may be arguable, as it
opposes the distributed source coding main framework. However, it is a classical
liberty taken in the literature [Ascenso, Pereira, 2007], [Morbee et al., 2007], [Sheng
et al., 2010], [Halloush, Radha, 2010] and as long as it remains non complex, it
is acceptable for practical applications. Moreover, in the hypotheses of DSC, the
encoder needs to know the exact correlation between the two sources. In our case, the
correlation information is mainly given by these M coefficients. Obviously, the true
M values cannot be available in practice at the encoder, but they can be estimated.
That is why we estimate the M coefficients by M̂ , the distortion of the average
between the two reference frames. In Figure 3.11, one can observe the evolutions
of the true PSNR associated to M and of the estimated PSNR associated to M̂
for foreman and soccer sequences. It can be highlighted that the estimated PSNR
evolution is quite similar to real PSNR one, which is promising for rate estimation.

• The variance σ2
K can be directly estimated at the encoder (this information is easily

available). Logically, we should not consider that this information would be avail-
able at the WZ encoder, because of the distributed source coding spirit. However
the liberty of accessing to the key frames informations has already been taken and
justified in the previous point, therefore, we consider σ2

K information available. In
fact, the results do not change very much wether the variance is constant or not.

3.3.2.4 Experiments

For several sequences, we compare the predicted rate to the experimental rate obtained with
the Discover scheme with a return loop. In the first column of Figure 3.12 (respectively
second column of Figure 3.12), the plots correspond to the normalized rates (for a better
readability, the rates have been divided by their maximum) for the middle WZ frames Wm

(respectively the lateral WZ frames Wl). Note that the maximum value for the theoretical
and the experimental rates are not the same. This comes from the approximation of the
proposed model. These multiplying coefficients need to be offline estimated and vary from
a sequence to another.

It can be seen that the predicted rate corresponds to the experimental rate. Even if
there is still a small imprecision, the high variations are well estimated. To confirm this
observation, we have calculated the percentage of underestimated and overestimated frame
rates (see Table 3.2). Firstly, one can remark that the rates are mainly overestimated,
which is justified by the fact that underestimating the number of parity bits to send
sensibly damage the reconstruction. Furthermore, one can observe that the results are
quite acceptable, because a very few percentage of frame have a |∆Rate|>10%. In [Sheng
et al., 2008], between 9 and 15% of the frames have a |∆Rate|>30kbs for QCIF sequences.
In our tests, where a difference of 10% corresponds approximately to a error of 20kbs, one
can see that never more than 3% of the frames have a |∆Rate|>20kbs, which is sensibly
more acceptable. This is the advantage of having a global frame vision when allocating
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(b) Wl of foreman sequence
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0 20 40 60 80 100 120 140 160 180
15

20

25

30

35

40

# frame

P
S

N
R

 (
d
B

)

 

 

10log10(255
2
/M

11
)

10log10(255
2
/M
^

11
)

(d) Wl of soccer sequence

Figure 3.11: Comparison between the true PSNR associated toM and the estimated PSNR
associated to M̂ for two CIF sequences (352× 288, 30 frame per second).
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(b) Wl of foreman sequence (CIF)
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(g) Wm of city sequence (CIF)
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(h) Wl of city sequence (CIF)
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(g) Wm of silent sequence (QCIF)
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(h) Wl of silent sequence (QCIF)
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(g) Wm of coastguard sequence (QCIF)
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(h) Wl of coastguard sequence (QCIF)
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(g) Wm of suzie sequence (QCIF)
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Figure 3.12: Comparison between the normalized experimental and theoretical rates.
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← underestimation good estimation overestimation →
∆Rate (%) (-∞ -10) [-10 -5) [-5 -2) [-2 2] (2 5] (5 10] (10 +∞)
foreman (CIF) 1.6 8.9 21.9 44.7 11.3 9.7 1.6
city (CIF) 0 0 3.2 55.2 40.6 0.8 0
silent (QCIF) 0 0.8 10.5 53.6 21.1 12.1 1.6
coastguard (QCIF) 0.8 2.4 12.1 23.5 30.0 28.4 2.4
suzie (QCIF) 0 0 2.8 37.1 29.5 27.6 2.8
Average in % 2.9 79.7 17.4

Table 3.2: Percentage of frames of a sequence whose ∆Rate (difference between theoretical
and experimental rate in %) is included in the range.

the rate. The next step is to share this rate among the bitplanes. This is the goal of the
method presented in next section.

3.3.3 Bitplane rate estimation

Knowing the total bitrate needed for a WZ frame, the next step is to determine the
number of parity bits which have to be sent band by band, and bitplane by bitplane in
order to allow a correct turbo decoding. Let us first recall the WZ frame encoding process
(Section 3.3.3.1), before presenting the ideas of the proposed approach (Section 3.3.3.2)
and finally testing it (Section 3.3.3.3).

3.3.3.1 Wyner-Ziv frame encoding

While the frame rate estimation (proposed in Section 3.3.2) does not completely depend
on the precise implementation of the adopted coder (for example LDPC codes can replace
turbocodes, etc.), the bitplane rate estimation is directly correlated to the chosen WZ
encoding technique. That is why we quickly recall in this subsection the WZ encoding
process, described in [Artigas et al., 2007a].
At the encoder the WZ frames are 4×4 DCT transformed, decomposing the frame into 16
frequency bands. Then, the coefficients of each band are quantized. Knowing that low fre-
quency coefficients have a larger dynamics than the high frequency ones, the quantization
steps must depend on the band. For each band, a certain number of levels, 2M , is fixed,
obtaining then a number of M bitplanes associated to this band (and a corresponding
quantization step). In [Brites et al., 2006b], Brites et al. present the Discover quanti-
zation approach. They use 8 quantizers, represented by their QI, (QI=1 corresponds to
the lowest bitrate, and QI=8 to the highest bitrate), and for each of them, they fix the
number of bitplanes for each band. In other words, for each QI we have several rates rb,bp
to estimate, as represented in Table 3.3 for QI = 8 (where b index corresponds to the band
index, and bp denotes the bitplane level).

3.3.3.2 Proposed algorithm

As explained in the previous section, the problem of bitplane rate estimation consists in
determining how to share the total frame bitrate, R̂ (estimated on the basis of the proposed
rate-distortion model), between the bitplane rates rb,bp. In other words, the purpose is to
choose the rates rb,bp under the constraint

∑
b,bp rb,bp = R̂.
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bitplane
r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 0
r3,1 r3,2 r3,3 r3,4 r3,5 r3,6 0
r4,1 r4,2 r4,3 r4,4 r4,5 0 0
r5,1 r5,2 r5,3 r5,4 r5,5 0 0
r6,1 r6,2 r6,3 r6,4 r6,5 0 0
r7,1 r7,2 r7,3 r7,4 0 0 0
r8,1 r8,2 r8,3 r8,4 0 0 0

band r9,1 r9,2 r9,3 r9,4 0 0 0
r10,1 r10,2 r10,3 r10,4 0 0 0
r11,1 r11,2 r11,3 0 0 0 0
r12,1 r12,2 r12,3 0 0 0 0
r13,1 r13,2 r13,3 0 0 0 0
r14,1 r14,2 0 0 0 0 0
r15,1 r15,2 0 0 0 0 0

Table 3.3: Rate matrix per band and per bitplane for QI= 8

The proposed algorithm can be summed up as:

1. The encoder performs a coarse estimation of the side information at the decoder (in
practice the average of the reference frames computed previously for the choice of
the total bitrate is used).

2. Band by band, and bitplane by bitplane, the encoder calculates the Hamming dis-
tance, dHamb,bp (number of different bits, for two vectors xi and yi, i ∈ [1, N ] dHam =∑N

i=1 xi⊕yi, where ⊕ is the logical XOR), between the bitplane of the original frame
and the corresponding bitplane in the average estimation.

3. Deducing from the Hamming distances computed previously, the percentage, p%
b,bp, of

the total rate to be affected, band by band, and bitplane by bitplane by the formula:

p%
b,bp =

dHamb,bp∑
b,bp d

Ham
b,bp

.

4. The encoder computes the rates:

rb,bp = p%
b,bp· R̂.

5. The encoder then adds a security rate on the more significant bitplanes. This security
is a multiplying factor which is high for the most significant bitplanes, and which
regularly decreases until the last bitplane. It depends on the QI adopted for the
WZ frame. In our experimental results we set the exact values of this multiplying
coefficient offline for each video, which obviously cannot be done in practice.

Step 5 was added because the first experiments have shown that even if the bitplane
rates are in general well estimated, a small underestimation of a rate at this level could
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Avg rate/frame (kb) Avg PSNR (dB)
Discover Prop. ∆ Discover Prop. ∆

(CIF) foreman 12.31 15.96 3.65 30.51 30.12 −0.39
city 18.31 26.59 8.28 26.83 26.49 −0.34

(QCIF) silent 3.81 4.64 0.83 29.27 29.11 −0.16
coastguard 4.18 5.13 0.95 27.80 27.95 −0.15
suzie 3.23 4.33 1.10 32.49 32.16 −0.33

Table 3.4: Average (Avg) rate/frame (kb) and PSNR (dB) comparison between Discover
and proposed no feedback scheme (denoted by Prop. above) performances, for several
sequences, when the key frames are quantized with a QP of 40.

sensibly damage the performances. More precisely, the bit error probability evolution (in
function of the rate) can be very fast [Berrou, Glavieux, 1996]: even with a small rate
underestimation, the error probability can be far greater than 10−3 (error value reached
when the Discover optimal rate is sent). The PSNR difference can sometimes be around
3dB if only one bitplane is badly reconstructed. Obviously, damages are larger if the first
bitplane is not well recovered rather than the last one, thus the security rate addition
favors the first bitplanes.

3.3.3.3 Experiments

For several sequences, we tested the proposed bitplane rate estimation (based on the frame
rate level estimation presented in Section 3.3.2). For each of them, we compare the average
rates and the average PSNR of decoded frames. Results are presented in Table 3.4.
The obtained results show that the proposed approach degrades the optimal (but unattain-
able) Discover performance by 0.3−0.4 dB and requires around 30% of additional bitrate.
At first sight the results may seem disappointing, because of the sensible degradation of
Discover efficiency. In fact, the performances of the proposed method are acceptable for
the following reasons.

First, as already explained, the Discover scheme transmits the optimal rate and then
such optimized performances should be seen as oracle results that any return-loop-free
scheme would hardly achieve. A suppression of the return loop necessarily leads to a loss
of video quality and/or an excess of transmitted rate.

Moreover, whereas it is difficult to precisely compare our results to the ones obtained
by the existing methods (mainly because they use a GOP size of 2 for rate control), one can
make several remarks anyway. Firstly, we can observe that for the scheme in pixel domain
(Stanford scheme) proposed by Morbee et al. [Morbee et al., 2007] the obtained losses offer
a similar order of magnitude. For instance, for foreman sequence (with a GOP size of 2),
their rate increase was around 40%, which is more than with our method. Secondly, Brites
et al.. in [Brites, Pereira, 2007] have obtained an average loss of around 1.2 dB. Even if
the experimental conditions are not the same, if we measure with the Bjontegaard metric
[Bjontegaard, 2001] the gap between the Discover scheme and the proposed backward
channel free algorithm (see Figure 3.14 for suzie), the loss is about 0.66 dB. If we cannot
state precisely if our method outperforms the literature ones, we are able to affirm that our
method works pretty well and leads to losses of the same order of magnitude as existing
techniques do.
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Figure 3.13: Comparison between the decoded frame PSNR for Discover scheme (with
a return loop) and for the proposed solution (without return loop) for the Wm (a) and Wl

(b). foreman sequence (key frames at QP 40).

In Figure 3.13, we can see the PSNR evolution along the time of the decodedWZ frames,
reconstructed with the proposed algorithm and with the reference Discover scheme, and
of the side information. One can remark that the losses are localized in some frames where
the loss in magnitude can be more than 1 − 2 dB. This is explained by the fact that
the rates for these frames is underestimated and then the reconstruction quality strongly
affected. Furthermore, one can see that when a middle WZ frame is badly estimated
(Figure 3.13 (a)), the error propagates in the rest of the GOP (the lateral WZ frame,
Figure 3.13 (b)).

The main drawback of the proposed technique is that it depends on several parameters
estimated offline and which vary from the sequence (the µ coefficients, the multiplying
factors to adjust the estimated rate to the theoretical rates and the security factors). This
is obviously one major limit of our solution, which however remains promising, because of
its encouraging results, and because it is conceivable to estimate these parameters online
at the encoder, based on other available informations.
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3.4 Conclusion

In this chapter, we studied three important issues of DVC. First, we have proposed a new
frame repartition, less complex and more efficient than the ones existing in the literature
and, based on the proposed distortion model, we have determined the optimal decoding
order.
The second issue was the study of error propagation in the GOP in case of frame loss.
Thanks to this analysis, we have confirmed that the different frames have not the same
role and importance in the GOP. This observation lead us to look into the rate allocation
between the frames. This was studied in the third part of this chapter, when we have
proposed a rate estimation algorithm in order to get rid of the backward channel, one of
the main drawbacks in DVC. Our technique presents interesting and promising results,
but is still dependent on some parameters which need to be determined offline and which
depend on the sequence.
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Part II

Side information construction

“Distributed video coding performance strongly depends on the side information quality.”
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Chapter 4

State-of-the-art of the side
information generation

In this chapter, we present the main existing types of side information generation methods,
and for each of them, the main and more efficient techniques. This study will lead us to
see several types of configuration depending on monoview/muliview settings, frame classi-
fication, available reference frame, available context information (depth, scene, etc.). . .

First, in Section 4.1 we present the methods used for generating an estimation of the
WZ frame, and then, in Section 4.2, we will study the case when there are several available
estimations which need to be merged pixel by pixel. Finally, in Section 4.3, we describe the
hash-based schemes designed for transmitting some localized and well-chosen WZ informa-
tion, in order to help the side information generation process at the decoder.

Contents
4.1 Estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.2 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.3 Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1.4 Spatial estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1.5 Refinement methods . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2.2 Symmetric schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2.3 Other schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Hash-based schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.1 Definition of a hash-based scheme . . . . . . . . . . . . . . . . . 124
4.3.2 Hash information transmission . . . . . . . . . . . . . . . . . . . 124
4.3.3 Hash based side information generation methods . . . . . . . . . 126

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



108 4. State-of-the-art of the side information generation

Distributed video coding performances do not achieve yet the classical inter frame video
coding scheme ones, as they ideally could. One of the reasons is arguably that the quality
of the side information is not yet good enough. Indeed, at the decoder side, the turbocodes
or LDPC, correct the side information while using parity information sent by the encoder.
If the correlation noise model is determined and not far from the true error distribution
(see Chapter 8 for more details), the more precise the Wyner-Ziv estimation (closed to the
original WZ frame), the less bits would be required for the SI correction by the channel
decoder. Thus, many works have been conducted in order to build a more precise WZ
estimation, by exploiting several kinds of available information (already decoded frames,
geometry of the scene in case of multiview coding, etc.).

In this chapter, we propose a review of the main existing side information generation
algorithms. They differ in their complexity but also from the point of view of the schemes
they are based on. Indeed, a method developed for a multiview configuration has not the
same issues as those designed for monoview video coding or even for stereo coding. They
also depend on the frame distribution (GOP size, frame type disposition in the time-view
space for multiview coding). Some works propose a review of the literature but they are
limited to one configuration. For example, in [Artigas et al., 2007b], Artigas et al.. de-
scribe some of the existing methods for multiview coding, but only for a special frame
distribution in the time-view space (which we called hybrid scheme). Though we expose
here the methods for several configurations, we will only give the algorithms which are
based on the Stanford scheme and not those based on the PRISM approach.

Distributed video coding aims at reducing the encoding complexity while shifting the
inter frame estimation to the decoder. Then the major part of the existing side information
generation algorithms does not deal with the computation time issue since estimation is
performed at the decoder side, where the computational capacity is assumed to be very
powerful. However, some works, as that of Wang et al.. in [Wang, Liu, 2009], propose
a parallel implementation of a side information generation method, which is then faster.
But finally, knowing that the iterative channel decoder is far more complex than the usual
WZ estimation methods, and knowing that the general DVC scheme is still suboptimal
nowadays, it is probably a little too early, quite unuseful and hopeless to set the purpose
of reducing the algorithms complexity.

In the following we will adopt these following notations: the original estimated WZ
frame belonging to the nth camera (n ∈ N) at time t (t ∈ N) is denoted by W , and its
generated side information by Ŵ . Îm,k denotes the already decoded reference frame which
is the kth frame of the mth camera. In case of monoview estimations, the notation Î0,k is
simplified to Îk. In other words, when the reference frames have only one index, it means
by default that we are in the case of monoview coding.
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Figure 4.1: Interpolation methods for side information generation use already decoded
frames which are before and after, or left and right, the estimated WZ frame.

4.1 Estimation methods

4.1.1 Interpolation

The mathematical interpolation concept consists in estimating an unknown information
from other available neighbouring informations. Thus, as presented in Figure 4.1, interpo-
lation algorithms in DVC are based on reference frames or in general on already decoded
frames (because reconstructed WZ frames can also be used) which are before and after, or
left and right, the WZ frame to be estimated, W .

The simplest interpolation is the frame averaging and was used at the very beginning
of DVC [Aaron et al., 2002]. For every pixel p ∈ J1, NheightK × J1, NwidthK, the WZ frame
estimation is the average of the two neighboring frames, It−1 and It+1, pixel values1:

W (p) =
1

2

(
It−1(p) + It+1(p)

)
.

This very naïve method is not complex at all, and moreover, it can be very efficient in
case of low motion (for instance, the beginning of the video hall monitor in Figure 4.4 (a)).
On the contrary, average based interpolation leads to a very poor side information when
motion activity is more intense (Figures 4.4 (b) and (c)).

As a consequence, the techniques proposed afterwards were more sophisticated and
efficient, since they take into account the motion of the scene. They are called motion
interpolation (MI) methods, and constitute the main category of the existing types of SI
generation algorithms. They consist in estimating the two motion vector fields, ut−1 and
ut+1, respectively between W and It−1, and W and It+1, and after in averaging the two
compensated frames, ∀p ∈ J1, NheightK× J1, NwidthK:

W (p) =
1

2

(
It−1(p− ut−1(p)) + It+1(p− ut+1(p))

)
.

The first MI technique is the simplest one and was also proposed at the beginning of DVC
[Aaron et al., 2002]. It is called symmetric motion vector (SMV) interpolation, and is a
naive bidirectional motion estimation. The motion vectors are obtained, block per block,

1We adopt for this formula and for some others in the following the monoview notation because it
has initially risen from works dealing with the temporal direction, but it can be easily extended to the
multicamera case.
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by finding the best symmetric motion vector fields (i.e.,symmetric means ut−1 = −ut+1).
This estimation of the best candidate for a block, b, is performed by calculating for each
tested vector, utested the following sum square distance (SSD):

SSD =
∑

p∈b

(
It−1(p− utested(p))− It+1(p + utested(p))

)2
.

The chosen vector is the one which achieves the lowest SSD, assuming the hypothesis
that the motion vector estimation is good when the forward estimation is similar to the
backward estimation. Another hypothesis is that the motion is completely linear and sym-
metric. This method is quite efficient, and better than the average when motion activity
is present (see Figures 4.4 (d) and (e)). But it is however not robust when motion is
complex (see Figure 4.4 (f)). However, it was commonly used in the DVC literature, as
in [Girod et al., 2005][Guo et al., 2006a][Ouaret et al., 2006][Ouaret et al., 2007][Yaacoub
et al., 2009a]. Aaron et al.. used it in the case of GOP size equal to 4, [Aaron et al.,
2003], proposing to use a hierarchical structure in the WZ frame decoding order (see Sec-
tion 1.2.2.2.a).

Aware of the fact that the simple SMV method can be rapidly limited in case of complex
motion, several works have been done in order to enhance this technique and make it more
sophisticated. Some of them were inspired by interpolation algorithms developed outside
of the DVC framework, for example by Zhai [Zhai et al., 2005], or by Chen in 2002 [Chen,
2002], who performed two motion estimations: a forward (between It−1 and It+1) and a
backward (between It−1 and It+1) one. Then, the obtained motion vectors are divided by
two, and finally the two estimations are merged while choosing block per block the best
estimation. This method is called motion compensated frame interpolation (MCFI).
In 2004, Aaron et al.. [Aaron et al., 2004b] improved their initial SMV method by adding
to the bidirectional block matching, smoothness constraints on the estimated motion, and
perform an overlapped block motion compensation (in case of GOP size of 2).
In [Artigas et al., 2006], Artigas et al.. use a technique proposed by Lee et al.. in [Lee
et al., 2003] for the purpose of frame up-conversion in the classical coding, which presents
several similarities with the issues involved in the side information generation for DVC.

Another improvement of the simple MCFI method is proposed by Dinh et al.. [Dinh
et al., 2007]. They use edge information to perform the motion estimation. Indeed, edges
can help to define objects and then to define classes of vectors, because generally vec-
tors are identical inside an object. In general, it is interesting to take into account the
geometry of the scene in an interpolation method. If algorithms only take into account
the SSD or SAD (sum of the absolute differences) between compensated blocks, they can
sometimes match a very similar block in the other image (and choose the corresponding
vector), but which does not correspond to the same object than the initial block. This is
not a matter in a classical estimation/compensation problem, because the goal is only to
minimise the mean square error. But in order to perform an interpolation, when dividing
the motion vector by two to estimate the middle frame, the estimated vector does not nec-
essarily correspond physically to the scene, and then the interpolation would not be precise.

The largest advance for side information generation was proposed by the members of
the European project Discover [DISCOVER-website, 2005][Artigas et al., 2007a] (DIS-
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1 2 43

Figure 4.2: DISCOVER interpolation method.

tributed COding for Video sERvices). The elaborated technique [Ascenso et al., 2005a] is
nowadays the most popular algorithm and other researches compare their performance to
it. This is why we present here in detail this method, schematized in Figure 4.2.

The Discover method is constituted by four steps. The input of this algorithm are
the two reference frames Ik1 and Ik2 , and the output are the two motion vector fields uk1
and uk2 . The following is the detail of each block.

1. Forward motion estimation - the algorithm starts with a motion estimation between
the two reference frames. For each block of Ik2 , the vector which points onto the
most similar block of Ik1 is found. Let bk1 and bk2 be two blocks of respectively Ik1
and Ik2 , related to a vector u. The similarity between them is calculated with the
following criterion called weighted mean absolute difference (WMAD):

WMAD(bk1 ,bk2) =
1

Nb

∑

p∈bk2

∣∣∣Ik2(p)− Ik1(p− u)
∣∣∣
(

1 + λ‖u‖2
)

(4.1)

where Nb is the block size. This criterion is a classical mean absolute difference
(MAD), with an regularization additional term λ‖u‖2 which penalizes large vectors.
This criterion is crucial and is one of the reasons why Discover obtains very good
performances. For some images in some sequences, the difference between WMAD
and MAD can achieve 2 dB. The experimental optimal value for λ is 0.05 [Ascenso
et al., 2006].

2. Motion vector splitting - the second step of Discover algorithm consists in estab-
lishing for each block of the WZ frame W a bidirectional vector determined from the
vectors calculated in the first step (see Figure 4.3). This is done by:

• firstly dividing by two the vectors of the forward motion estimation
• then selecting the best motion vector for each block. In other words, for each

block, the algorithm chooses among the half forward motion vector, the one
which points to W the closest to the centre of the block. Then, this selected
vector is shifted to the centre of the block, and extended by symmetry, in order
to obtain a bidirectional motion vector.

3. Bidirectional motion estimation - the next step is a simple bidirectional motion esti-
mation around the initial position determined previously. The best vector is chosen
by minimizing the WMAD metric as in step 1 (Equation (4.1)), slightly modified to
be adapted to the bidirectional mode:

WMAD(bk1 ,bk2) =
1

Nb

∑

p∈bk2

∣∣∣Ik2(p + u)− Ik1(p− u)
∣∣∣
(

1 + λ‖u‖2
)

(4.2)

with the same hypotheses as in Equation (4.1).
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4. Vector median filtering - at this stage, the motion vectors often present small spatial
incoherences, and then need to be smoothed. The Discover method proposes to
use a weighted median filter as in [Alparone et al., 1996]. The filtered vector ufil is:

ufil = min
u

Nneighbour∑

j=1

wj‖u− uj‖1 (4.3)

with
wj =

∑

p∈bk2

|Ik2(p + uj)− Ik1(p− uj)|2

and where uj are the neighboring vectors. The obtained vector is then close to its
reliable neighbours.

This method was proposed in a pixel-domain context, but was also commonly used
and competitive in transform-domain schemes [Brites et al., 2006b]. Moreover, the Dis-
cover algorithm was designed for estimating a WZ frame between two key frames which
are placed directly before and after it, in other words, in a GOP size of 2. But in [Ascenso
et al., 2006], Ascenso et al. proposed a flexible GOP size scheme. As a consequence, the
Discover technique is used for long-term estimations, and also for non-symmetric inter-
polations, i.e.,when the distance with the backward frame is different from the distance
with the forward frame. There is no major modification to obtain such asymmetric in-
terpolations. Indeed, we only need to divide the motion vector by the appropriate value
(instead of 2). In addition, Ascenso et al.. add a second bidirectional estimation, just after
the first one, but with a finer block size (half width and height) and with a smaller search
window. This additional step achieves a 0.1 − 0.2 dB gain compared to [Ascenso et al.,
2005a] initial technique.

Several other Discover improvements have been proposed in the literature, as those
by Klomb et al., [Klomp et al., 2006], who developed a similar technique involving sub-
pel estimation. In [Huang, Forchhammer, 2008], Huang et al. complete the scheme in
Figure 4.2 with two additionally blocks and by performing the technique with the three
Y, U and V components. The first one is another bidirectional motion estimation but this
time the block size is variable. Then, for the final construction step, the classical average
of the two motion compensations is replaced by an overlapped block motion compensation
(OBMC), as in [Lee et al., 2003]. In practice, the most sensible improvement due to these
techniques is the OBMC. The U and V information utilization does not change sensibly
the SI quality, and besides, the variable block search does not lead to large gains. More
recently, Ascenso and Pereira [Ascenso, Pereira, 2008] proposed a clear description of every
block of Discover technique, and its possible refinements.

The previous methods adopt a block-based approach for frame interpolation. In other
words, the motion is estimated by blocks of diverse sizes. Some other works have chosen
a different approach, like Kubasov et al.. in [Kubasov, Guillemot, 2006] who propose to
estimate the motion based on a triangularization of the reference frames. First, the ref-
erence frame It−1 is meshed. Then they perform an estimation of the mesh position in
the reference frame It+1. At the end, they perform the interpolation based on this mesh
displacement estimation. This original approach does not bring by itself sensible benefits,
thus they proposed to make a hybrid estimation: block based merged with mesh-based
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Figure 4.3: DISCOVER vector splitting.
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(a) Average 39.43 dB. (b) Average 26.15 dB. (c) Average 24.28 dB.

(d) SMV 39.36 dB. (e) SMV 28.98 dB. (f) SMV 27.00 dB.

(g) Discover 39.38 dB. (h) Discover 29.51 dB. (i) Discover 29.03 dB.

Figure 4.4: (a),(d) and (g) hall monitorsequence with no motion: all of the methods obtain
the same SI quality - (b), (e) and (h) coastguardsequence with a linear background motion:
Average method fails while both motion based techniques construct a equivalent quality
SI - (c), (f) and (i) foremansequence with a complex motion: Average and SMV fail, and
only Discover obtains an acceptable SI

interpolation. The results show that if we perform a ideal fusion (oracle) of the two es-
timations (mesh-based and block-based), the gain can be acceptable (around 1 dB), but
with a real and feasible fusion, the gain is low.

Another novelty for frame interpolation in the monoview DVC framework is to use
more than 2 reference frames. Recently, Petrazzuoli et al.. [Petrazzuoli et al., 2010] pro-
posed to use 4 reference frames It−3, It−1, It+1 and It+3 in order to obtain a non-linear
interpolated trajectory and then model more complex motions. The gain obtained by this
method are promising and show the need of considering more complex motion models for
further improvement in side information generation.

4.1.2 Extrapolation

Interpolation techniques give, for the most recent of them, side informations of quite ac-
ceptable quality. However, they obtain good results only for limited GOP size (as 2 or
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Figure 4.5: Extrapolation methods for side information generation use past decoded frames
which are before the estimated WZ frame.
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Figure 4.6: Comparison of side information PSNR between extrapolation and interpolation
techniques for increasing GOP size, for foremansequence.

4, but rarely more), because, by definition, interpolation algorithms need one reference
frame before, and one after the estimated WZ frame. If the two reference frames are too
far away (with more than 3 frames between them), the interpolation quality is sensibly
degraded. This explains the fact that extrapolation methods have been proposed, because
they only use the past information, i.e.,the past already decoded frame(s) (see Figure 4.5).
In general, extrapolation techniques give a less precise estimation than the interpolation,
but they are more convenient because they can be used with longer size blocks (8, 16,
32 and even more), without decreasing the quality. It is explained in [Tagliasacchi et al.,
2006b], and we present in Figure 4.6, some tests for foreman sequence, which show the
evolution of estimation quality of interpolation and extrapolation, while the GOP size is
increasing. One can observe in Figure 4.6 that whenever the GOP size is greater than 4,
interpolation performance becomes lower than extrapolation one.

The first motion extrapolation methods were introduced in [Aaron et al., 2004b][Girod
et al., 2005]: the motion compensated extrapolation (MCE). The principle is simple. Let us
assume that two frames are available at the decoder (i.e.,they are already decoded). These
two frames are just before the estimated WZ frame W . If W is at time t, we denote the
two extrapolated frames It−2 and It−1.
The method consists in firstly estimating the motion between It−2 and It−1 (e.g. by block
matching with smoothness constraint). Then, the motion is extrapolated to time t and
the side information is constructed by calculating the overlapped motion compensation of
frame It−1. This non complex technique is not very competitive and does not achieve the
motion interpolation performance for the case of short GOP. On the contrary, when the
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Figure 4.7: The motion vectors between It−1 and It−2 are used for extrapolating the frame
W .

GOP size is large, the interpolation efficiency is degraded and at this moment, the simple
MCE offers a better description of the WZ frame.

In 2005, Natario et al.. [Natario et al., 2005] give a detailed version of the MCE
algorithm, which can be decomposed in 4 steps:

• Motion estimation between It−2 and It−1. As shown in Figure 4.7, for each block
of It−1, a block matching is performed in order to find the most similar block in It−2,
in order to obtain the motion vector field u.

• Motion field filtering which consists in averaging the vectors u with their neigh-
bours in order to obtain a smoothed field, enabling to construct a better side infor-
mation.

• Motion projection from frame It−1 to frame W . More precisely, for each block b,
a vector ub was computed in step 1 and the projection consists stating for block b,
the vector −ub as the motion vector between It−1 and W .

• Overlapping and uncovered areas. After motion compensation (with the −ub

motion vector field), some pixels would be estimated by more than one candidate
(coming from different blocks). In this case, an average of the estimation values
is performed. On the contrary, it happens that some areas of the WZ frame are
not covered by the compensated blocks. In this case a rapid spatial estimation is
performed (average of the available neighbours).

Borchert et al.. in [Borchert et al., 2007a][Borchert et al., 2007b] propose a more so-
phisticated extrapolation technique. Instead of using 2 reference frames, their algorithm
is based on three frames It−3, It−2 and It−1. They perform several motion estimations:
between It−2 and It−3, between It−2 and It−1 and between It−1 and It−2. Based on the
estimated vector fields they can predict the uncovered areas and perform temporal hole-
filling. They obtain a sensible gain compared to simple MCE, especially where motion is
more complex (for example with carphone sequence).
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Figure 4.8: 3D-scene acquisition by two stereo cameras, with their own spatial centre and
coordinate system.

4.1.3 Disparity

Though the techniques presented before can be used in a multiview context, they were
designed at the origin for side information construction of monoview sequences. In other
words, they were destined to perform motion interpolation, and to model motion activity.
In the view direction, the difference between frames (same time but coming from different
cameras) is called disparity and does not present exactly the same properties as motion.
Indeed, in motion estimation, the purpose is to detect the background and objects in the
scene, and to find their movement. For disparity estimation, once the objects and the
background determined, the goal is to detect their displacement (depending on the depth),
but also their deformation, due to camera disposition.

A clear and detailed description of the 3D geometry and the camera projection problem
is proposed in the PhD thesis of Daribo [Daribo, 2009]. The different elements of these
issues are summarized in Figure 4.8. A 3D scene acquisition is performed by two cameras
(left and right). Each of the cameras has its own intrinsic parameters. Disparity estimation
techniques must take into account these elements while calculating the disparity field.
They also need to use the extrinsic parameters which correspond to every kind of external
information (as the position and the orientation). At the end, once the camera parameters
are known, the 3D geometry based methods often require the depth information (the
depth corresponds to the distance between the object and the camera optical center).
More precisely, when at the left camera, one is able to know for each point of the image
the distance, d, between the camera plane and the true point in the 3D scene, it is possible
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to know easily how to project it on the right camera. In the particular case of rectified
cameras (i.e.,when all the points on a line of left image are set on the same line in the right
image) the link between depth and projection is very simple. Every point of the left image
is translated horizontally (with a vector u), proportionally to the inverse of its depth, d,
following the relation:

u =
f · t
d

where f is the focal distance, and t the distance between the two cameras.
Though the problematic of inter-view prediction is quite different from motion estima-

tion, several works adopted the block-based motion interpolation techniques for disparity
estimation. That is the case of Areia et al.. [Areia et al., 2007] who use Discover algo-
rithm (see Section 4.1.1) for inter camera disparity estimation. They justify this by the
fact that disparity-based methods are not performant compared to Discover technique
even if they better fit the problematic. Indeed, this is true for some sequences where defor-
mations between views are small, and where block matching can thus be adapted. Ouaret
et al., in [Ouaret et al., 2007][Ouaret et al., 2006], also use MCE technique for inter-view
interpolation, but complete it with geometry based algorithm, described below.

Pure inter-view interpolation algorithms are not only based on block-matching as mo-
tion interpolation are. Indeed they involve the integration of the geometry of the scene
and base their estimation on a 3-dimensional representation as several works which have
been proposed out of the distributed video coding framework, as [Martinian et al., 2006],
[Chen, Williams, 1993], [Shum, Kang, 2000]. The DVC interpolation techniques presented
below are mainly based on these works.

One technique is called homography projection, and was used in [Guo et al., 2006a],
[Ouaret et al., 2007][Ouaret et al., 2006]. This approach relies on a 3×3 matrix (called ho-
mography) which relates one view to another one in the homogeneous coordinates system.
This matrix has 9 parameters (aij)i=1...3,j=1...3 (where a33 = 1). Based on this matrix, each
point, (x1,y1), of the image in the first view is mapped to a point, (x2,y2), in the second
view with the following relation:

λ



x2

y2

1


 =



a11 a12 a13

a21 a22 a23

a31 a32 1





x1

y1

1


 (4.4)

where λ is a scale factor. The previous equation yields:

x2 =
a11x1 + a12y1 + a13

a31x1 + a32y1 + 1
and y2 =

a21x1 + a22y1 + a23

a31x1 + a32y1 + 1
. (4.5)

Some particular transformations are obtained for some value combination. For exam-
ple, the homography matrix describes a pure translation when the diagonal terms (a11

and a22) are equal to 1, and a12 = a21 = a31 = a32 = 0. Another example is when
a13 = a23 = 0, the λ scale factor is equal to 1 and we have an affine transformation. In the
general case it is called a perspective transformation. The parameters are computed using
a gradient descent applied to minimize a criterion composed by the mean square difference
between the original image and the wrapped image. One can notice than homography
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estimation is a similar problem with global motion estimation, where the purpose is to
estimate the global displacement of the camera [Dufaux, Konrad, 2000] (translation, rota-
tion, zoom, etc.). The main disadvantage of that approach is that the scene is assumed to
be on a planar surface, which is rapidly non verified especially when there are objects at
the foreground and at the background (ex: outdoor sequence).

This disadvantage of not separating objects and foreground is avoided by Artigas et
al.. in [Artigas et al., 2006]. Their method uses the information of a depth map to project
back the elements of an image on a 3D scene and re-project them on the second image.
This works correctly while the depth map information is precise, because it takes into
account every object of the scene. This method is however very limited because it requires
a depth map transmission (then, higher rate), and it also requires a depth map capture
(because it cannot be estimated at the encoder), which is rarely possible in the classical
simple inter-view installations (only while using specific hardware as z-cameras).

Areia et al.. in [Areia et al., 2007] mention another technique (but do not adopt it and
prefer a motion interpolation algorithm) which consists in estimating the disparity field
on a past pair of frames (already decoded) and extrapolate it to the current WZ frame.
Several similar techniques exist but they are very limited because they are based on a
particular type of frame repartition in the time-view space, which generally employ too
many intra coded frames (more complex and less efficient).

4.1.4 Spatial estimation

The SI generation methods seen until now are based on neighboring reference frames, from
which are extracted some informations of movement, disparity, or any kind of correlation.
Other approaches are not based on other reference frames. The main advantage is that
this prevents any error propagation (i.e.,when a reference image is not entirely recovered,
the error propagates into the frame using it for its SI generation, which is not the case for
spatial estimation).

In his PhD thesis [Kubasov, 2008], Kubasov presents a very simple spatial estimation
algorithm. The general idea amounts to an intra coding (with H.264 intra) of a filtered and
downsampled version of the original frame. The image is upsampled at the decoder. The
results are surprising because the PSNR of the spatial estimation are quite good but, after
decoding they requires more rate for a lower decoding quality. This pointed out the limits
of the PSNR metric for the estimation of the SI quality. The reader can see Chapter 9 for
more details.

Tagliasacchi et al.. [Tagliasacchi et al., 2006a] propose a more advanced technique
which consists in dividing the image in macroblocks into two sets separated like on a
chessboard. One set is decoded using only a temporal interpolation while the other uses
besides a spatial estimation which is generated thanks to the already decoding neighboring
macroblocks. This method leads to an impovement of 1 dB compared to the scheme
involving only the temporal side information.
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4.1.5 Refinement methods

All of the methods presented above aim at building a unique side information and at de-
coding it after construction. This approach presents however a disadvantage: for instance,
an error in the estimation of the side information propagates along the bitplanes. More
precisely, an error on the ith coefficient of the nth band would require parity bits from the
turbodecoder for all of the bitplanes. Another example: a block estimation error would
require parity bits for all the bands of all the affected coefficients. The refinement methods
proposed to reconstruct the side information while the turbodecoding is being performed,
and based on the already decoded information. They differ in their level of refinement
(band, pixel, bitplane) and in their structure, but they all have the same purpose: using
the already turbo decoded information to perform a side information refinement for the
rest of turbodecoding.

Let us first make a tour of methods performing bitplane by bitplane refinement. Firstly,
Ascenso et al. in 2005 [Ascenso et al., 2005b] introduced a novel technique to continuously
refine the motion vectors used for the side information interpolation while the WZ bit-
planes are decoded. First a classical interpolation is done, and after the first bitplane
decoding, the decoder detects the blocks where the initial side information differs from
the decoded frame. For the selected block, the side information is reestimated by block
matching using the decoded frame information. This improves the side information for the
remaining bitplanes to be decoded, thus increasing the coding efficiency.

Later, Adikari et al.. [Adikari et al., 2006] proposed another bitplane level refinement
algorithm using luminance and chrominance information, which was rapidly improved by
Weerakkody et al.. [Weerakkody et al., 2007] who proposed a spatial-temporal refinement
algorithm extending the Adikari’s work to iteratively improve the initial side information
obtained by motion extrapolation; this comprises interleaving the initial estimation for
error detection and flagging, followed by de-interleaving and filling of the flagged bits with
an alternate iterative use of spatial and temporal prediction techniques.

Although, in [Ascenso et al., 2005b; Adikari et al., 2006; Weerakkody et al., 2007], the
authors present high rate-distortion gains (up to 3 dB in some sequences), the performance
results are obtained using lossless key frames at the decoder, which is an impractical video
coding scenario and really impact, on the final rate-distortion results.

An other type of refinement was proposed by Varodayan et al.. [Varodayan et al., 2008]
who developed a method to update the motion field throughout the decoding process us-
ing the previously decoded frame as side information. This proposal uses an unsupervised
method to learn the forward motion vectors based on expectation maximization. This
method was only compared with JPEG performances, this does not give a reliable infor-
mation about its efficiency.

Martins et al.. in [Martins et al., 2009] proposed novel side information refinement tech-
nique with new approaches, notably for the choice of level refinement. While other existing
techniques perform refinement after each received bitplane, Martins’ technique proposed
to reestimate the side information after the decoding of each band. The advantage of this
technique is that it is less complex than the other while keeping the same results. A similar
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band approach was proposed by Badem et al.. [Badem et al., 2009] and by Macchiavello
et al.. [Macchiavello, De Queiroz, 2007] for a scalable approach.

The previous methods perform side information refinement during the turbodecoding
process. In the following, we present other refinement techniques which perform several
turbo decoding steps and between each of them, the decoder reestimates the side informa-
tion. A first one is proposed by Artigas et al.. in [Artigas, Torres, 2005] whose technique
consists in constructing an interpolation and after a turbo decoding, refining it and rede-
coding it. The obtained results are not so good in the general case, but for first estimations
of poor quality, the refinement technique can lead to sensible rate-distortion improvement.

A more advanced method was proposed in [Ye et al., 2008] for the monoview case
and [Ouaret et al., 2009] for the multiview configuration. First the decoder performs a
classical interpolation (Discover) which is turbodecoded. After that, the decoder detects
suspicious motion vectors and refines them. After an optimal motion compensation (not
necessarily an average of the two compensated reference frames), the frame is turbodecoded
again. They obtain 0.6 dB of gain compared to the classical transform-domain scheme for
several QCIF sequences.

4.2 Fusion

4.2.1 Problem statement

The fusion problem springs up since in the multi-view DVC context, one ends up with
having several different estimations of the current WZ frame in order to have only one
side information to correct with the parity bits at the turbodecoder. While previously we
have seen several ways of generating a frame estimation (interpolation, extrapolation, etc.),
in this section, we study the case when there are several estimations for one WZ frame.
The fusion methods strongly depend on the adopted configuration (the available frames,
estimation methods, etc.). More precisely, the state-of-the-art methods were developed
in two different contexts. The first one is in the symmetric schemes (Section 4.2.2). We
give more details for this configuration because it is the one adopted in our work, and
the presented methods will constitute our references for comparison with the literature
later. The second configuration is the case of non-symmetric schemes, where the adopted
frame distributions is not satisfying for us because of a too high number of key frames (see
Section 4.2.3).

4.2.2 Symmetric schemes

In this section, we review the existing solutions for the fusion problem in the case of a quin-
cunx frame distribution (symmetric scheme presented in Section 3.1.1), in which we have
two estimations for W coming from the temporal and the inter-view interpolations. This
is illustrated in Figure 4.9: motion estimation produces two motion vector fields, ub and
uf , which in turn are used to provide temporal estimations of W from In,t−1 and In,t+1.
Therefore, we note with În,t− = In,t−1(ub) the prediction obtained by compensating the
image In,t−1 with vector ub. Likewise, we have În,t+ = In,t+1(uf ). As far as disparity esti-
mation is concerned, we note the disparity fields as ul and ur (which have quite different
characteristics from motion vector fields), and the corresponding estimations as În−,t and
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Figure 4.9: Fusion problem: Ix are the available KFs and Îx their motion compensated
version, estimating the WZ frame W . ux are the vector fields.

În+,t. Finally, the two temporal (or inter-view) estimations are combined in order to obtain

a single estimation, respectively ÎT = 1
2

(
În,t− + În,t+

)
and ÎN = 1

2

(
În−,t + În+,t

)
. The

fusion problem amounts to produce an estimation of W from ÎT and ÎN with the target
of minimizing the mean square error with respect to the actual WZ frame. In particular,
an efficient fusion technique should produce a smaller MSE than both the individual esti-
mations ÎT and ÎN . All of the existing fusions are “binary” fusions, i.e.,pixel by pixel the
merged value is taken from the temporal or the inter-view estimation.

The ideal fusion (Id), studied in [Areia et al., 2007] is the upper bound one can
achieve when performing a binary fusion. Pixel by pixel, the true estimation error, taking
into account the original WZ frame, is computed and used as an oracle in order to decide
what is the best value for the SI. The equation of the ideal fusion is for each pixel p:

Ŵ (p) =

{
ÎN (p), if |ÎN (p)−W (p)| < |ÎT (p)−W (p)|
ÎT (p), otherwise.
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The pixel difference fusion (PD) was proposed by Ouaret et al. in [Ouaret et al.,
2006]. The interpolation error is estimated using the backward and forward frames of the
same view. Two estimation errors are computed for the inter-view interpolation EbN = |ÎN−
In,t−1| and EfN = |ÎN − In,t+1| and, similarly, for temporal interpolation EbT = |ÎT − In,t−1|
and EfT = |ÎT − In,t+1|. The equation of the PD fusion is therefore:

Ŵ (p) =

{
ÎN (p), if EbN (p) < EbT (p) andEfN (p) < EfT (p)

ÎT (p), otherwise.

The motion compensated difference fusion (MCD) was proposed by Guo et al.. in
[Guo et al., 2006a]. In this fusion algorithm, the absolute value of the difference between
În,t− and În,t+ is thresholded by T1 and the motion vector values are also thresholded by
T2. The equation of the MCD fusion process is:

Ŵ (p) =





ÎN (p), if |În,t−(p)− În,t+(p)| > T1

or ‖ub(p)‖ > T2

or ‖uf (p)‖ > T2

ÎT (p), otherwise.

The view projection fusion (Vproj) was proposed by Ferré et al.. in [Ferre et al.,
2007]. In this case, the estimation ÎT is projected onto In−1,t and In+1,t. This projection
consists in disparity compensations (dcl(·) and dcr(·)) based on a simple block matching
disparity estimation. The error images El = In−1,t − dcl(ÎT ) and Er = In+1,t − dcr(ÎT )
are thresholded, leading to two masks which are projected back onto the WZ frame, with
disparity compensations (dc−1

l (·) and dc−1
r (·)) based on ur and ul. The equation of the

Vproj fusion process is:

Ŵ (p) =

{
ÎN (p), if |dc−1

l (El)(p)| > T or |dc−1
r (Er)(p)| > T

ÎT (p), otherwise.

The temporal projection fusion (Tproj) was proposed by Ferré et al.. in [Ferre et al.,
2007]. It is the equivalent of the Vproj fusion in the temporal direction. The estimation
ÎN is first projected on In,t−1 and In,t+1 by motion compensation. Two error images,
Eb = In,t−1 −mcl(ÎN ) and Ef = In,t+1 −mcr(ÎN ), are then thresholded and the obtained
masks are projected back onto the original position. The equation of the Tproj fusion
process is:

Ŵ (p) =

{
ÎN (p), if mc−1

b (Eb) < T ormc−1
f (Ef ) < T

ÎT (p), otherwise.

4.2.3 Other schemes

As it was explained in the introduction of this section, fusion algorithms strongly depend
on the adopted scheme. Some methods developed in a specific kind of frame distribution
would not have the same initial hypotheses as the one presented above, based on a sym-
metric scheme. For example, several techniques are proposed based on hybrid schemes
(see Section 3.1.1 for more details), i.e.,when the camera type alternates between complete
intra, and mixed intra-WZ frames. In other words, for the estimation of a WZ frame, all
the available frames directly “around” it are intra coded. This allows easier fusion based
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on more numerous available informations.

In such a scheme, Artigas et al.. in [Artigas et al., 2006][Artigas et al., 2007b], proposed
to use the fact that in the neighboring views, all the frames are known (because they are
intra coded). In other words, the decoder calculates the temporal interpolation error in
this view, and projects this image error to the current view, in order to use this information
for the fusion. This method and others in the same spirit are interesting for their good
utilization of the multiview aspect (projection on the neighboring views), but they need
too much information at the decoder. Indeed, for one WZ frame, these methods need
between 6 and 8 key frames, contrary to symmetric schemes based methods who need only
4 frames. This is why we do not detail these methods and we will not compare against
them in the following.

4.3 Hash-based schemes

4.3.1 Definition of a hash-based scheme

In the classical distributed video schemes, the WZ transmission is done only through the
Slepian-Wolf coder, in order to correct the side information generated at the decoder. The
correlation between the side information and the original frame is not the same in all the
frame. Some regions are badly estimated and would request a high number of parity bits,
but others are well recovered and would require a lower rate. Moreover, at the decoder,
while side information is generated, some regions cannot be estimated because they do
not exist in the reference frames. For all of these reasons, some works propose to transmit
some pieces of WZ information in order to enhance the side information estimation process.
The issue of this problem is twofold, first, the specific WZ information, called hash, has
to be selected and well chosen, and secondly, it has to be compressed and transmitted
to the decoder. Then, at the decoder, the side information method uses the hash for a
better estimation. The general structure of a hash-based DVC scheme is presented in
Figure 4.10. Each of the blocks in bold (specific to hash-based schemes) are presented in
detail in the following subsections. In the following, the key frame rate is given by RK , the
hash rate by RH and the WZ parity bits rate by RWZ(RH) (which depends on RH). The
objective of a hash-based scheme is, for a equivalent decoding quality, to obtain a WZ rate
(RH +RWZ(RH)) lower than the parity rate in case of no hash transmission, RWZ(0).

4.3.2 Hash information transmission

4.3.2.1 Hash selection

Hash information transmitted to the decoder aims at improving side information quality
in some regions hard to estimate by classical algorithms (occlusions, rapid motion, etc.).
Then, the encoder has to foresee the regions of the image to transmit, i.e.,the encoder has
to guess where the interpolation at the decoder would fail. Indeed, easily estimated regions
would not need hash information, and would thus reduce the rate RH . Yaacoub et al..
in [Yaacoub et al., 2009a; Yaacoub et al., 2009b; Yaacoub et al., 2009c] do not perform a
hash selection: they transmit all of the 16×16 blocks, because their purpose is to measure
the efficiency of their genetic algorithm in a hash based scheme and not to prove that a
transmitting hash improves rate-distortion performances. In Chapter 7, we extend their
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Figure 4.10: General structure of a Hash-based DVC scheme. The block with bold strokes
are specific.

work and perform a block selection at the encoder.
Two Stanford-inspired hash based schemes were proposed by Aaron et al.. [Aaron et al.,
2004a], at the begining of DVC, and by [Ascenso, Pereira, 2007] in the context of Dis-
cover project. Though they differ for the hash compression and for the proposed hash
based side information generation techniques, their block selection is identical: the encoder
thresholds the difference between the previous reference frame and the current frame for
each macroblock. The hash information is sent only in the case where the sum square
difference is greater than the threshold. In spite of the fact that using the previous key
frame could bend the rules of distributed source coding, it remains non complex compared
to intra coding.

4.3.2.2 Hash compression

Once the hash information cleverly selected, the blocks are compressed and transmitted.
Aaron [Aaron et al., 2004a] describes very briefly how they compress the blocks: they are
coarsely subsampled and quantized (in the pixel domain), and for blocks where no hash is
transmitted, a specific codeword is sent.
Ascenso [Ascenso, Pereira, 2007] proposed to compress the blocks in the DCT domain. The
subbands are quantized and not all of them are transmitted. More precisely, the encoder
has a fixed maximum energy, δ, to transmit and selects the n first bands (in the zigzag
order) where n is the maximum number of bands such as the total energy is lower than δ.
The number n is fixed for each frame. Then, the decoder makes the difference between the
obtained hash code and the previous hash blocks, in order to reduce the dynamic range of
the coefficients. At the end, the obtained stream is entropy coded. Moreover, the encoder
builds a binary image which indicates if the hash information is transmitted or not. This
map is also compressed and sent to the decoder.
Yaacoub et al.. [Yaacoub et al., 2009a; Yaacoub et al., 2009b; Yaacoub et al., 2009c] also
work in the DCT domain, and transmit (1/8) of the DCT coefficients.
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4.3.3 Hash based side information generation methods

4.3.3.1 Hash motion estimation / interpolation

The hash information for a block at the decoder can be seen as a coarse version of the
original frame. More precisely, if b is a block, the compression of this block can be seen
as an irreversible transformation t. The generated hash for this block is thus t(b). The
purpose for the decoder is to find in the reference frames a block, b′ whose transformation,
t(b′), is similar to t(b).
In [Aaron et al., 2004a], the method is just a simple motion estimation with a modified
criterion (the SSD between the blocks is replaced with the SSD between the transforma-
tions of these blocks). If no hash is received, the decoder takes the corresponding block in
the previous frame.
In [Ascenso, Pereira, 2007] the technique is a little more developed. The hash motion
estimation is bidirectional (previous and next key frames) and then uses past and future
information which enhances the motion search precision. Moreover, when the side infor-
mation is built (based on hash, previous and next frame) the side information and the
received hash are merged in a multiplexer.
Tagliasacchi et al.. in [Tagliasacchi, Tubaro, 2007] also perform hash based motion esti-
mation and propose a rate distortion analysis of the hash based scheme.

4.3.3.2 Genetic algorithm fusion

Based on the principles of evolution and natural genetics, Genetic Algorithms (GAs) [Gold-
berg, 1989] are well suited for non-linear optimization problems. Yaacoub et al.. [Yaacoub
et al., 2009a; Yaacoub et al., 2009b; Yaacoub et al., 2009c] use a GA in a fusion-based
approach and aim at improving the quality of the side information relying on several initial
estimations.

This algorithm was integrated in one of our contribution, we thus give its detailed
description in the corresponding chapter (in Section 7.1.3). In a nutshell, the genetic
fusion algorithm principle is to merge different estimations by using the evolution and
natural genetic laws. The results obtained by Yaacoub et al.. are convincing concerning
the benefits of using this kind of approach.

4.4 Conclusion

We have seen that the problem of side information generation is really popular (a high
number of existing methods) but also very complex (a great specificity of each problem).
Whereas the developped techniques improve the SI quality, they are designed for very
particular conditions and become inefficient as soon as the configuration is slightly mod-
ified. That is especially the case of the fusions methods which differs from the available
frames, and from the quality of the estimation to merge. In the next chapters, we propose
several techniques in order to enhance the side information generation process for several
configurations (temporal and inter-view interpolations, fusions and hash-based schemes).
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Chapter 5

Essor project scheme

The Essor project (codagE de SourceS vidéO distRibué), funded by French ANR, gathered
several research departments (IRISA Rennes, LSS Supélec, I3S Nice, LTCI Télécom
ParisTech) with the target of investigating several aspects of distributed source coding. For
monoview distributed video coding we developed a new wavelet-based scheme, with a novel
interpolation method. In Section 5.1, we explain the general structure of the proposed
scheme and we detail some parts of it. In Section 5.2 we detail the side information
generation technique, and finally in Section 5.3 we illustrate with some experimental results.
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Figure 5.1: Wavelet based distributed video coding scheme adopted by the Essor project.

5.1 A wavelet based distributed video coding scheme

The Essor codec architecture is inspired from the Stanford approach just as the Discover
scheme [DISCOVER-website, 2005]. The differences with Discover are twofolds: firstly
both the intra and WZ coding use wavelets (instead of DCT), and secondly, the interpo-
lation algorithm is different (see Section 5.3 for more details). However, the functional
blocks of the Essor Codec (Figure 5.1) follow the same principles as all Stanford-based
schemes:

1. Partition of the GOP: The way of partioning the K and WZ frames within a GOP
(similar to Discover, not detailed here).

2. K frame coding: Encoding and decoding of K frames with a still image codec.

3. WZ encoding: Encoding of a WZ frame, including the DWT, quantification of coef-
ficients, and accumulate LDPC coding of each bitplane.

4. SI construction: Construction of SI using K frames or/and the previously constructed
WZ frames.

5. WZ decoding: Decoding of a WZ frame using reconstructed SI frame and the syn-
drome bits of the WZ frame. This process covers the residual error estimation, LDPC
decoding, and reconstruction of the WZ frame.

Following sections describe the details of the main blocks of the scheme.

5.1.1 Key Frame Encoding and Decoding

The KFs are separately encoded by the still image compression standard JPEG2000. The
reference implementation, Verification Model (VM) 8.5, is adopted. The JPEG2000 en-
coder is presented in Figure 5.2. The key element of the JPEG2000 encoder is the EBCOT
algorithm (Embedded Block Coding with Optimized Truncation) [Taubman, 2000], which
can be divided into two parts. In the first part, each quantized subband is divided into
blocks, called code-blocks. These code-blocks are independently coded, with a bitplane
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Figure 5.2: The JPEG2000 encoder.

arithmetic encoder. A rate-distortion curve is computed for each code-block and is used
by the second part of EBCOT to create the final bitstream by allocating to each code-
block a bit budget such that the total distance is minimized given the available bitrate.
This stream, composed of EBCOT packets organized in quality layers, can be reordered
depending on the desired scalability. The main features of JPEG2000 come from the use
of a wavelet transform (resolution scalability), a bitplane-by-bitplane coding (quality scal-
ability), a code-block coding (spatial random access) and a flexible organization of the
codestream (manipulations in the compressed domain).

5.1.2 Wyner Ziv Frame Encoding

In Essor architecture, WZ frames are encoded in three steps. First of all the DWT
is applied to the frame, then each coefficient is uniformly quantized using one of the
predefined step sizes. Finally, each bitplane of each quantized frequency subband is coded
with accumulate LDPC code. The details of the each step can be found in the following
sections.

5.1.2.1 Discrete Wavelet Transform and quantization

A separable transform is used for the WZFs in order to perform the dyadic decomposition
of an entire frame into frequency subbands (see Figure 5.3). For each frame, the rows and
columns are successively decomposed over two levels of decomposition of a DWT using a
fast lifting implementation of the discrete biorthogonal CDF 9/7 filter (proposed by Cohen,
Daubechies and Feauveau in [Cohen et al., 1992]), which results into one LL subband
(horizontal and vertical low frequencies), two LH subbands (horizontal low frequencies and
vertical high frequencies), two HL subbands (horizontal high frequencies and vertical low
frequencies) and two HH subbands (horizontal and vertical high frequencies) as shown in
Figure 5.3. It is used as the default filter in the irreversible wavelet transform of JPEG2000
due to its good compression performance. The pair defines 9 coefficients for the lowpass
filter and 7 coefficients for the highpass filter of the analysis decomposition, all having
irrational coefficients. The wavelet decomposition is performed only on two levels, because
with more levels, the number of coefficient in the LL band would become too small and
this would affect the LDPC efficiency (not adapted for too small bitstreams).

A uniform scalar quantization is then used for the approximation subband. For the
detail subbands, a dead-zone quantization is applied. The Essor codec uses 8 different
Quantization Indexes (QI) in order to adjust the rate allocation of the WZ frames. Each
QI is associated to a set of quantization steps (one per band). The number of quantization
levels for each subband in this setting are shown in Table 5.1. The quantized coefficients of
each subbands are then organized in bitplanes and given as input to the channel encoder.
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Figure 5.3: Dyadic decomposition of an input frame (a) in frequency subbands after one
(b) and two (c) decomposition levels.

Table 5.1: 8 quantization indexes used for controling the WZ quantization precision. The
8 tables indicate the number of levels used to describe each band.

QI=1 QI=2 QI=3 QI=4
16 0 0 0 16 8 0 0 32 8 0 0 64 16 0 0
0 0 0 0 8 0 0 0 8 8 0 0 16 16 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

QI=5 QI=6 QI=7 QI=8
64 32 0 0 64 32 4 4 64 32 16 16 128 64 32 32
32 16 0 0 32 32 4 4 32 32 16 16 64 64 32 32
0 0 0 0 4 4 0 0 16 16 8 8 32 32 16 16
0 0 0 0 4 4 0 0 16 16 8 8 32 32 16 16

5.1.2.2 Accumulate LDPC coding

Low Density Parity Check (LDPC) codes have been first proposed by [Gallager, 1963] and
reinvented by [Mackay, Neal, 1997]. A k/n rate linear binary (n, k) LDPC Code is a block
code that is defined by an (n− k)× n sparse parity check matrix H, which has only a few
number of 1s in each row and column (for instance, Equation (5.1)).

H =




1 0 1 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 1 1
0 0 1 1 0 0 0 1 1 0
0 0 0 0 0 1 1 1 0 1



. (5.1)

An ensemble of the LDPC codes is described by the degree distribution polynomials λ(x)
and ρ(x) [Richardson et al., 2001]. λ(x) is given as

λ(x) =
∑

i

λix
i−1, (5.2)

and ρ(x) is defined as
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Figure 5.4: Bipartite graph representation of the parity check matrix H.

ρ(x) =
∑

j

ρjx
j−1, (5.3)

where λi is the fraction of edges that are incident on degree-i bit nodes and ρj is the
fraction of edges that are incident on degree-j check nodes. The rate of the LDPC code
for a given pair (ρ(x), λ(x)) is bounded by

R ≥ 1−
∫ 1

0 ρ(x)dx
∫ 1

0 λ(x)dx
, (5.4)

with equality if and only if the rows of the parity check matrix are linearly independent.
The transmitter sends the syndrome s = Htx. The receiver receives the vector y with

a transition probability p(y|x). The aim of the decoder is to find the maximum likelihood
codeword xML = arg maxx p(y|x). If H does not include cycles, the sum product algorithm
converges to the exact solution [Pearl, 1988].

In our scheme, the quantized DWT coefficients of the WZFs are encoded bitplane
per bitplane (from the most significant to the least significant bit) using a Slepian-Wolf
encoder based on LDPC accumulate (LDPCA) codes, and only the produced accumulated
syndromes are put into a buffer and sent to the decoder. LDPCA codes were described
in [Varodayan et al., 2005] as an efficient way of using LDPC codes in a rate-adaptive
distributed source coding scheme. The LDPCA encoder consists of an LDPC syndrome-
former concatenated with an accumulator (see Figure 5.5). The LDPCA decoder changes
its decoding graph each time it receives an additional increment of accumulated syndromes.
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This structure enables a smooth rate-adaptivity where the modification of the decoding
graph always maintains the degree of all source nodes. At the decoder, the SI generated
from the key frames is used to decode the WZFs. The accumulated syndrome bits stored
in the buffers are transmitted in small amounts upon the decoder request via the feedback
channel.

5.1.3 Wyner-Ziv Frame Decoding

Wyner Ziv decoding of the Essor codec is composed of the residual error estimation, the
decoding of accumulate LDPC bits, and finally an Inverse DWT is applied to the decoded
wavelet coefficients. The correlation noise estimation is performed as in Discover (more
details in Chapter 8).

5.1.3.1 Accumulate LDPC Decoding

The Essor codec uses the accumulated syndrome bits stored in the buffers that are trans-
mitted gradually depending on the correct decoding. In syndrome decoding, the belief
propagation algorithm is used. It can be resumed as follows.

� Definitions

• The set of bits n that participates in the check m is N (m) ≡ {n : Hmn = 1}. For
example, N (1) ≡ {1, 3, 5, 7} in Figure 5.4.

• The set of checks in which bit n participates isM(n) ≡ {m : Hmn = 1}. For example,
M(1) ≡ {1, 2} in Figure 5.4.

• N (m)\n is the set N (m) with bit n excluded.

• qxmn is the probability of the n’th bit of vector x, where x gives the informations
obtained via checks other than check m.

• rxmn is the probability of check m satisfied if bit n of x is considered fixed at x and
the other bits qmn′ : n′ ∈ N (m)\n.

• δqmn is difference between the probabilities n’th bit of the vector x is 0 and 1 given
the informations obtained via checks other than check m, δqmn = q0

mn − q1
mn.
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• δrmn is the probability check m satisfied if bit n x is 0 given the informations ob-
tained via checks other than check m minus that of bit n x is 1, δrmn = r0

mn − r1
mn.

� Initialization

Depending on the vector y received from the channel and the channel model, the
likelihood probability p(xn|y) for each bit n is calculated. For instance, for a memoryless
binary symmetric channel with crossover probability ρ, p(x1 = 0|y1 = 0) = (1 − ρ) and
p(x1 = 1|y1 = 0) = ρ.

q0
mn and q1

mn values are initialized with the corresponding likelihood probabilities re-
ceived from the channel respectively, such that q0

mn = p(xn = 0|y) and q1
mn = p(xn = 1|y).

Then each variable node sends the messages δqmn to its connected check.

� Check node iteration

Each check node sends a message to the connecting bit j, raij . This message is an
approximation of the probability that check i is satisfied given the symbol j is a:

raij = Pr{check i satisfied|xj = a}, (5.5)

r0
mn ≈

∑

xn′ :n′∈N (m)\n
p(

∑

xz :z∈N (m)

xz = 0mod 2|xn = 0)
∏

N (m)\n
q
xn′
mn′ (5.6)

Then there is a shortcut for calculating raij by first calculating δrmn:

δrmn =
∏

n′∈N (m)\n
δqmn′ , (5.7)

where r0
mn = 1/2(1 + δrmn) and r1

mn = 1/2(1 − δrmn). The δrmn can be calculated effi-
ciently by using a backward-forward algorithm [Bahl et al., 1974].

� Variable node iteration

In this step, the q0
mn and q1

mn values are calculated by using the output from the check
node iteration.

q0
mn = αmnp(xn = 0|y)

∏

m′∈M(n)\m
r0
m′n, (5.8)

and
q1
mn = αmnp(xn = 1|y)

∏

m′∈M(n)\m
r1
m′n, (5.9)

where αmn is a normalization factor such that q0
mn + q1

mn = 1.

� Final Guess

Posterior probabilities of each bit can be calculated as

q0
n = αnp(xn = 0|y)

∏

m∈M(n)

r0
mn, (5.10)
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and
q1
n = αnp(xn = 1|y)

∏

m∈M(n)

r1
mn. (5.11)

The estimate x̂ can be found by just thresholding the posterior probabilities

x̂n = arg max
i
qin. (5.12)

For the codeword decoding point, x̂n, we can check if all the check nodes are satisfying
Hx̂ = 0 mod 2. If it is not the case, the check-node and variable-node iterations will
be repeated respectively. The iterations halt either if a codeword is found or a maximum
number of iterations is reached.

5.2 Proposed interpolation method

• C. Dikici, T. Maugey, M. Agostini, and O. Crave, “Efficient frame interpola-
tion for wyner-ziv video coding,” in Proc. SPIE Visual Commun. and Image
Processing, San Jose, CA, USA, Jan. 2009.

The material in this section was published in:

5.2.0.2 Forward and Backward motion estimation

A block matching algorithm can be used to find the best block match of the target block
b in KF X2i in the next KF, X2(i+1). The parameters that characterize the estimation
technique are the block size, the matching criterion, the search range and the precision.
Given that the best matching for the block b of X2i in X2(i+1) is f with a motion vector
~wf , the projection of these two blocks onto the frame X2i+1 is c = b+f

2 , where c is centred
at the center of the block b + ~wf/2. An illustration of the forward motion estimation
between X2i and X2(i+1) and their projection on X2i+1 can be found in Figure 5.6(a).
When the forward motion vectors are projected on the frame X2i+1 under the assumption
of linear velocity of the motion vectors, overlapping and uncovered areas will appear. The
overlapping areas correspond to the multiple motion vectors which pass through a unique
pixel, whereas uncovered areas correspond to the absence of the motion trajectory through
these pixels.

A similar calculation is done for the backward motion estimation (see Figure 5.6(b)),
where the aim is to find the block b inX2i which is the best estimation of block f inX2(i+1).
Given a motion vector ~wb, the candidate block c of X2i+1 can be calculated similarly as in
the forward case c = b+f

2 , where here c is centred at f + ~wb/2.

5.2.0.3 Bidirectional Interpolation

Forward and backward motion vectors ( ~wf , ~wb) are computed between two key frames as
explained in the previous section. We assume that there exists a linear motion between
the key frames and the interpolated frames. Hence ~wf/2 and ~wb/2 are used for the motion
compensation. After the forward and the backward motion compensation, a bidirectional
frame interpolation step is applied as follows:
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(a) Forward interpolation. (b) Backward interpolation.

Figure 5.6: Classical interpolation tools.

(a) Block diagram of KF Interpolation. (b) Forward-Backward interpola-
tion.

Figure 5.7: Essor frame interpolation.

Let pi(x, y) be the pixel value of the i-th frame at the coordinates of x and y. We
define the set C of motion compensated blocks that pass through the pixel p2i+1(x, y) as
C(p2i+1(x, y)). Then the interpolated pixel value yields:

p̂2i+1(x, y) =

{
1
|C|
∑|C|

i=1 ci if |C| > 0,

0.5× (p2i(x, y) + p2i+2(x, y)) else,
(5.13)

where |C| is the number of members in the set C. Hence if the set C is not empty, (i.e.,at
least one motion vector passes through the pixel value p2i+1(x, y)), then an averaging of
the corresponding pixel values in the motion compensated blocks of the set C is performed.
Otherwise, we apply a simple averaging of the pixel values in previous and next KFs. The
block diagram of the Essor’s interpolation method and the visualization of the bidirec-
tional estimation is found in Figure 5.7. Contrary to the non overlapped block matching
approach in [Ascenso et al., 2005a], Essor’s KF interpolation method allows overlapped
block matching and a pixel by pixel estimation is done in the final step.
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5.3 Experimental results

In order to evaluate the proposed interpolation method, we use QCIF resolution sequences
with 15 fps such as foreman, news and hall monitor for the first 75 frames. Even frames
are selected as KFs and their lossy version is available at the decoder, and the odd frames
are interpolated from the KFs. We compare our results with average frame interpolation
and with the methods proposed in [Ascenso et al., 2005a; Ascenso et al., 2006] available
online at [DISCOVER-website, 2005]. In all our experiments, we use a fixed block size of
8×8 pixels, a search range of ±16, a step size of 4 pixels for the overlapped blocks, and an
integer pixel precision for the forward and the backward motion estimation. The step size
determines the shift of the blocks for calculating the next motion vector, hence MV’s are
calculated for the overlapped blocks for every 4 pixels in height and width. We use three
different KF types: lossless coding of KFs, H.264 intra-coding of KFs with different visual
qualities, and JPEG-2000 coding of KFs with different visual qualities.

5.3.1 Lossless Key frames

In this section, the side information is generated using non-degraded reference frames.
We compare the proposed method (Essor) to the Discover approach [Artigas et al.,
2007a] and the basic interpolation method (average of the two reference frames, denoted
by Avg). Experimental results are presented in Table 5.2. One can see that our approach
outperforms the Discover solution by up to 1.04 dB.

Table 5.2: Performance of frame interpolation methods in PSNR [dB] for lossless Key
Frames.

Sequence Avg [Ascenso et al., 2005a] [Ascenso et al., 2006] Our method
news 39.76 39.80 39.83 40.27

foreman 27.86 29.42 29.79 29.90
hall monitor 37.84 38.57 38.69 39.73

5.3.2 Lossy Key frame encoding with H.264 Intra

In practical video coding contexts, the KFs are compressed, and the available KFs are
not the original one anymore. In many coding schemes in the literature [Artigas et al.,
2007a], the coder used to encode the KFs is H.264 Intra [Wiegand et al., 2003]. In this
section, the proposed interpolation is compared to the Discover one, in case of H.264 Intra
transmission of the KFs. We use three different quantization levels corresponding to low,
medium, and high bitrates (QPs respectively equal to 40, 34 and 27). The experimental
results are presented for the three test sequences in respectively Tables 5.3, 5.4, and 5.5.
The respective KFs average PSNR values are given in the first row of each table. For
each quantization step, we compare the average PSNR values obtained with our approach
with the ones obtained by Discover and by the average method. The results show
an improvement of the performance in average PSNR value compared to the Discover
approach, of 0.2 dB for news, 0.1 dB for foreman, and 0.5 dB for hall monitor. We note
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that, for low PSNR values of the KF coding, the interpolation methods can slightly surpass
the average PSNR value of the KFs because the motion activity is really low.

Table 5.3: Performance of news sequence when KFs are coded as H-264 Intra frames with
mean PSNR values 29.3 dB, 34.34 dB, and 40.7 dB.

Average KF Distortion 29.3 dB 34.34 dB 40.7 dB
Averaging 29.614 33.47 37.64
Discover 29.616 33.49 37.72

Essor 29.704 33.64 37.96

Table 5.4: Performance of foreman sequence when KFs are coded as H-264 Intra frames
with mean PSNR values 29.5 dB, 33.6 dB, and 39.9 dB.

Average KF Distortion 29.5 dB 33.6 dB 39.9 dB
Averaging 26.43 27.28 27.74
Discover 27.43 28.76 29.64

Essor 27.57 28.87 29.66

Table 5.5: Performance of hall monitor sequence when KFs are coded as H-264 Intra frames
with mean PSNR values 30.9 dB, 34.3 dB, and 40 dB.

Average KF Distortion 30.9 dB 34.3 dB 40 dB
Averaging 29.9 33.31 36.53
Discover 30.05 33.73 37.30

Essor 30.27 34.10 38.02

5.3.3 Lossy Key frame encoding with JPEG-2000

While the Discover approach consists in using a discrete cosinus transform (DCT) based
method, in the Essor project, the adopted DVC scheme is based on the discrete wavelet
transform (DWT). Indeed, the intra coder is chosen to transmit the KFs is JPEG-2000
[JPEG-2000, 2000]. This section provides the results obtained by this setup, and a compar-
ison is given with the existing methods. Similar to the previous section, we produced three
different levels of quantization, for the three sequences, which can be seen respectively in
Tables 5.6, 5.7, and 5.8. One can see that the results of the proposed approach surpass the
ones of the two other tested approaches by up to 0.9 dB in some cases.
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Table 5.6: Performance of news sequence when KFs are Intra coded as JPEG-2000.

Average KF Distortion 29.5 dB 37 dB 41.5 dB
Averaging 29.48 35.71 38.01
Discover 29.49 35.74 38.04

Essor 29.59 35.99 38.40

Table 5.7: Performance of foreman sequence when KFs are Intra coded as JPEG-2000.

Average KF Distortion 31 dB 35 dB 41 dB
Averaging 26.97 27.70 27.8
Discover 28.11 29.40 29.73

Essor 28.26 29.57 29.79

Table 5.8: Performance of hall monitor sequence when KFs are Intra coded as JPEG-2000.

Average KF Distortion 30.9 dB 39 dB 43.4 dB
Averaging 30.53 35.78 37.17
Discover 30.72 36.43 37.94

Essor 30.93 37.13 38.88

5.3.4 Interpolation error analysis

As presented in the previous section, Essor interpolation method outperforms the Dis-
cover techniques. In this section we propose to analyze the behaviour of the SI error for
the different methods.

Figure 5.8 represents the evolution of the PSNR of the side information along the time
for QCIF foreman test sequence. These plots show that when the motion activity is not
important, Essor method outperforms the others. This can be explained by the fact that
this technique presents a smoothing property. In case of high motion activity, Discover
builds an SI of higher quality than Essor.

In Figure 5.9, zooms on the side informations for the third frame of news test sequence
are represented. Error images are also shown. Looking at these figures, one can clearly
see the smoothed aspect of Essor estimation, while the SI of Discover presents some
blocking artifacts.

5.3.5 Rate-distortion performances

The different blocks presented in this chapter have been implemented by us and several re-
search members of Essor project. A complete scheme is now available, and in this section
we present the rate-distortion curves obtained for several video sequences. However, the
presented performances are the very first results obtained with the implemented schemes,
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Figure 5.8: PSNR [dB] quality of each interpolated SI frame of foreman sequence for the
three interpolation methods. K frames are quantized with JPEG2000.

and thus are not yet optimized. Indeed, several parameters have to be tested, such as
the quantization matrix, the alpha calculation, the correspondence between the key frame
quantization and the WZ quantization index.

Figure 5.10 displays the Essor decoding performance for three QCIF sequences, com-
pared with the JPEG2000 intra coding results. For the three sequences, the Essor codec
is more efficient than JPEG2000 intra coding.

5.4 Conclusion

The proposed interpolation technique seems to be efficient and outperforms the reference
for several test sequences. This algorithm has been integrated in an original coding scheme
developped within the french ANR project Essor. Even if the results seem to be promising,
they need to be further tested, optimized and finally compared to the state-of-the-art
scheme Discover.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Interpolation performance of the news sequence, frame #3, zooming on the
centre of the frame. (a)Original frame. (b)Zoom on original frame. (c)Zoom on Discover
interpolation. (d)Zoom on Essor interpolation performance. (e)Zoom on Discover
interpolation error. (f)Zoom on Essor interpolation error.
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Figure 5.10: Rate-Distortion performance of Essor scheme compared to JPEG2000 Intra
for three QCIf video sequences, 176× 144.
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Chapter 6

Side information refinement

Almost all of the side information generation methods developed for DVC adopt a block-
based approach. This is mainly explained by two reasons. Firstly, the existing methods
involve different techniques (as motion search, block vectors filtering, etc.) which were
initially built for classical video coding, where the number of vectors need to be limited
because of their transmission cost. This motivation is not relevant in DVC because the SI
generation is performed at the decoder, and thus, the vectors are not transmitted. Therefore,
the SI generation algorithms can perform their estimation pixel by pixel, which would avoid
the blocking artifacts.
The second reason was given by some works which studied pixel-based motion interpolation
for classical video coding [Tang, Au, 1998]. They indeed found that sometimes a pixel-based
interpolation would sensibly improve the performances of a block-based motion interpolation
by avoiding the blocking artifacts, but on the other hand, pixel-based methods can sometimes
degrade the quality of the estimation by adding a salt-and-pepper effect. Another drawback
of pixel-based approaches is their big complexity. However, this disadvantage is not seriously
considered in DVC where the decoder computation capacity is assumed to be high anyway.
In this chapter, we propose to study pixel-based, dense, SI estimation in the DVC context.
Firstly, in Section 6.1, we propose a family of dense interpolation methods, which are based
on two refinement techniques: the Cafforio-Rocca algorithm [Cafforio, Rocca, 1983] and a
total-variation based method proposed by Miled [Miled et al., 2009]. Then in Section 6.2,
for a multiview context, we propose several fusion methods which aim at merging temporal
and inter-view interpolations.
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Figure 6.1: Structure of proposed interpolation scheme.

6.1 Generation of dense vector fields

6.1.1 Motivations and general structure

As explained above, we investigate here the efficiency of dense (one vector per pixel) in-
terpolation methods for temporal and inter-view estimations. We thus propose several
estimation techniques, all of them based on the Discover interpolation algorithm. In-
deed, this block-based frame estimation scheme is one of the most efficient interpolation
technique in the literature, and it could thus be interesting to transpose it to a pixel-
based approach. However, a naive adaptation (for example a decrease of the block size
to 1) would product the bad effects highlighted in [Tang, Au, 1998], i.e.,salt-and-pepper
artefacts. That is why our technique keeps the Discover scheme and adds two refining
blocks which aim at avoiding pixel estimation drawbacks by adopting a differential-based
approach.

The classical Discover scheme is based on the following three main steps: monodi-
rectional field estimation (mono-FE), bidirectional field estimation (bi-FE) and median
filtering. The novelty of our approach is to introduce a first vector field refinement stage
between the mono-FE and the bi-FE and a second one after the median filter, at the
very end of the chain. The complete image interpolation scheme, proposed in this work,
is represented in Figure 6.1. Two algorithms are proposed for both refinements: a first
one inspired by Cafforio-Rocca works presented in Section 6.1.2 and another one based on
total variation presented in Section 6.1.3. For each refinement block three possibilities are
possible: Discover (D) with no refinement, Cafforio-Rocca (C) and total variation (V),
which leads to nine possible schemes denoted by XY , where X ∈ {D,C, V } corresponds to
the first refinement block, and Y ∈ {D,C, V } corresponds to the second refinement block.
For example, the initial Discover scheme is denoted by DD, and a simple Cafforio-Rocca
monodirectional refinement is denoted by CD.

In the following, Ib and Ia denote the two reference frames which have been low-pass
filtered (the two reference frame non filtered, I input

b and I input
a correspond to the decoded

key or WZ reference frames). They can belong to the same camera for motion interpolation,
or they can belong to different cameras in case of inter-view estimations. Moreover, as
presented in Figure 6.1, the monodirectional block based vector field is denoted by uab.
After the first block refinement, it is denoted by u∗ab. Similarly, the bidirectional vector
fields are denoted by ua and ub before refinement and u∗a and u∗b after.

The next sections are the presentation of each refinement algorithm principles. Each
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of them is firstly independently tested in its natural configuration, i.e.,the Cafforio-Rocca
based algorithm are tested in a monoview scheme while total-variation based ones are
tested in a stereo context. In Section 6.1.4, all the methods are tested and compared on
the same database.

6.1.2 Cafforio-Rocca algorithm (CRA)

The first refinement algorithm we propose to introduce in the Discover interpolation
scheme is the Cafforio-Rocca (CR) technique [Cafforio, Rocca, 1983], which is one of the
most popular motion estimation techniques in classical monoview video analysis. The CR
ME algorithm is pel-recursive, meaning that the MV computed for the last pixel (or more
generally, a function of the previous MVs) is used as initialization for the current pixel pro-
cessing. The pixels are not necessary scanned in raster order; rather, an order that better
preserves the correlation between successively processed pixels is often preferred, e.g. by
scanning the even lines from the left to the right and the odd ones from the right to the left.

The original CRA consists in applying, for each pixel p of the image, three steps, until
the estimated MV u(p) is obtained.

Initialization. Some a priori information is used as initialization value, u(1)(p). Often
the vector computed for the previous position is used for initialization.

Validation. The motion-compensated error A = |Ia(p)− Ib(p+u(1))| is compared to the
non-compensated error, incremented by a positive quantity γ: B = |Ia(p)−Ib(p)|+γ.
If A ≤ B the initialization vector is validated and kept for the next step: u(2) = u(1).
Otherwise, the null vector is used: u(2) = 0. The validation step allows to prevent
algorithm divergence and to get rid of outliers, which can occur for example when
the initialization vector belongs to a different object with respect to the current
position. Of course, it may happen that the non-compensated error is smaller than
the compensated error even if the current vector is not an outlier: the threshold value
γ allows to control the number of validated vectors which are reset to zero.

Refinement. The last step consists in refining the validated vector u(2) by adding to it a
correction δu. This correction is obtained by minimizing the energy of the prediction
error, under a constraint on the norm of the correction vector. The Lagrangian cost
function is then:

J(δu) = [Ia(p)− Ib(p + u(2) + δu)]2 + λ‖δu‖2 (6.1)

Using a first order expansion of Ib, it turns out that the value of δu minimizing J is:

δu(p) =
−εφ

λ+ ‖φ‖2 (6.2)

where ε = Ia(p)− Ib(p+u(2)) is the prediction error associated to the MV u(2), and
φ = ∇Ib(p+u(2)) is the spatial gradient of the motion compensated reference image.
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6.1.2.1 Monodirectional refinement

• M. Cagnazzo, W. Miled, T. Maugey, and B. Pesquet-Popescu, “Image interpo-
lation with edge-preserving differential motion refinement,” in Proc. Int. Conf.
on Image Processing, Cairo, Egypt, Nov. 2009.

The material in this section was published in:

6.1.2.1.a Principle

Now we describe the CRA modifications needed in the context of DVC image interpolation.
The three steps are modified and moreover we use a different scanning order, based on the
blocks used in the forward field estimation: the blocks are scanned in a raster scan order,
and the same is done for the pels within each block.

Our monodirectional version of the CRA takes as input uab, the MVF produced by
the forward ME (see Figure 6.1). These vectors are used in the initialization step: if p is
the first position (i.e., top and leftmost) in the block, the vector u(1)(p) is initialized with
uab(p). Otherwise, we use a weighted average of the left, up, and up-right neighboring
vectors, with different weights if the neighbors are in the same block or not.

As far as the validation step is concerned, we not only compute the compensated
error associated to u(1)(p) (A = |Ia(p) − Ib(p + u(1)(p))|) and the non-compensated
error (B = |Ia(p) − Ib(p)|), but also the compensated error associated to uab(p) (C =
|Ia(p) − Ib(p + uab(p))|), and we choose the vector with the least absolute error. As in
the original algorithm, the non-compensated error is increased by a threshold γ in order
to reduce the reset frequency.

The new validation step allows us to reintroduce the uab(p) as validated vector while
scanning the current block. This is useful, since, independently from the scanning order, it
can happen that, within the same block, we pass several times from one object to another.
At the first object boundary crossing, the MV is likely reset by the validation pass, then
the pel-recursive nature of the CRA allows to reconstruct the MV of the new object by
accumulating the corrections from one pel to the other. However, if during the scanning
we come back to the first object, with the original CRA we can only reset to zero the MV;
with this modification, we can benefit of a fast recovery of the first object MV.

In the last step, we refine the validated MV u(2)(p) by adding a correction δu. Like
in the original algorithm, the correction should minimize the prediction error, under the
constraint of a regularization condition. In the original algorithm it is possible to find a
closed form of the optimal solution when the regularization is simply a constraint on the
correction norm. Here we want to use a stronger constraint. Namely, we consider the
diffusion matrix D(∇I):

D(∇I) =
1

|∇I|2 + 2σ2

[( ∂I
∂y

− ∂I
∂x

)( ∂I
∂y

− ∂I
∂x

)T
+ σ2I2

]

We use I2 to refer to the 2 × 2 identity matrix. When the regularization constraint
takes into account the diffusion matrix, one is able to inhibit blurring of MV field across
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object boundaries [Nagel, Enkelmann, 1986] [Alvarez, Sanchez, 2000]. This kind of con-
straint is well known in the literature of optical flow motion estimation and is called Nagel-
Enkelmann constraint [Nagel, Enkelmann, 1986]. We propose therefore the following cost
function:

J(δu) = [Ia(p)− Ib(p + u(2) + δu)]2 + λδuTDδu (6.3)

where we used the shorthand notation D = D (∇Ib). We notice that, in the homogeneous
regions where σ2 � |∇Ib|2, the cost function becomes equivalent to the one used in the
original algorithm, see Equation (6.1).

Here we show that even with the new cost function, a closed form of the optimal vector
refinement exists, and we give it at the end of this section. Like in the original algorithm,
the first step is a first order expansion of the cost function:

J ≈
[
Ia(p)− Ib(p + u(2))−∇Ib(p + u(2))T δu

]2
− λδuTDδu =

(
ε+ φT δu

)2
+ λδuTDδu,

where we defined the compensation error ε = Ia(p)−Ib(p+u(2)(p)) and the compensated
gradient φ = ∇Ib(p + u(2)(p)). Then we look for the refinement δu∗ which minimizes the
function cost: we set to zero the partial derivatives of J .

0 =
∂J

∂δu
(δu∗) = 2(εφT δu∗)φ+ 2λDδu∗ = 2

(
φφT + λD

)
δu∗ + 2εφ. (6.4)

Note that the derivative of δuTDδu has been computed in Equation (6.4) using the sym-
metry of D . The last equation is equivalent to:

δu∗ = −
(
φφT + λD

)−1
εφ.

Using the matrix inversion lemma, we find the optimal update vector:

δu∗ =
−εD−1φ

λ+ φTD−1φ
. (6.5)

It is interesting to observe the similitude between the final formula and the original one in
Equation (6.2). Actually, Equation (6.5) reduces to Equation (6.2) in homogeneous regions
or for very high values of the parameter σ.

For parameter setting, we have run several experimental tests over a set of 4 test
sequences, characterized by different motion content: city, eric, foreman, and mobile (352×
288, 30 fps). First, we have performed some experiments in order to tune the parameters
λ, γ, and σ of the proposed algorithm. We look for the parameter values maximizing the
PSNR between the reconstructed and the original WZF. We show some results for λ, in
Table 6.1. We report the average PSNR of reconstructed WZF for different values of the
parameters, averaged over the test sequences, and with KFs encoded at QP=31. Similar
results were obtained for other quantization steps. We conclude that the best value for the
parameters are λ = 2000, γ = 20 and σ = 50. These values will be used in the following.

6.1.2.1.b First experiments

In this section, we first present experimental results for the CD method over several
monoview video sequences. This method will be further tested for other configurations
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λ 500 1000 2000 3000 5000
PSNR [dB] 30.31 30.46 30.57 30.52 30.50

Table 6.1: Impact of λ parameter on side information quality in the CD method. Average
over the four test sequences, QP=31.
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Figure 6.2: SI PSNR improvement [dB] between DD (reference) and CD.

in Section 6.1.4. We have used the same set of 4 test sequences, characterized by different
motion content: city, eric, foreman, and mobile. In order to evaluate the effectiveness of
the proposed technique, we first compared the SI produced by CD with the one produced
by Discover (DD) using out set of four input sequences. The criterion considered for
the comparison was the PSNR between the original WZF and its estimation produced by
each of the techniques.

The results of the first tests are summarized in Figure 6.2. We note that for each
sequence and for each KF’s quantization step, CD produces a SI more similar to the
original WZF (in the sense of the PSNR). However the gain can be quite different according
to the sequence. We obtain higher gain when there is high, regular motion like in mobile
and city (up to more than 1.1 dB). When the motion is less regular we have a bit smaller
but still significant gain (up to about 0.5 dB for foreman). Finally, some gains are still
obtained for the sequence eric, around 0.2 dB. We observe as well that the gain is generally
smaller for severely quantized KFs: this is reasonable since low quality KFs provide a less
reliable gradient information, which is at the basis of Cafforio-Rocca approach.

These first experiments were conducted for a GOP size of 2, i.e., KFs are interleaved,
one by one with the WZFs. We repeated the same experiment for larger GOPs, and we
found that the proposed CD method is still better than the reference DD, even though
the gap becomes smaller. The results of these tests are reported in Table 6.2. Even in the
least favorable case of a GOP size of 8, CD is almost 0.2dB better than DD.

We then computed the global RD performance of the scheme for the sequences of the
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QP values
GOP size 31 34 37 40
2 0.68 0.58 0.52 0.31
4 0.38 0.33 0.28 0.22
8 0.23 0.23 0.22 0.18

Table 6.2: SI PSNR improvement [dB] of CD over DD (reference) for different GOP sizes,
average over the test set.

test set. The results were compared with those of the reference Discover coder using
the Bjontegaard metric [Bjontegaard, 2001] at four operational points corresponding to
QP ∈ {31, 34, 37, 40}. We observed an average rate reduction of 5.9% and an average
PSNR improvement of 0.32 dB for the sequences of the test set. These results validate the
CD proposed method.

6.1.2.2 Bidirectional refinement

• M. Cagnazzo, T. Maugey, and B. Pesquet-Popescu, “A differential motion es-
timation method for image interpolation in distributed video coding,” in Proc.
Int. Conf. on Acoust., Speech and Sig. Proc., Taipei, Taiwan, Apr. 2009.

The material in this section was published in:

6.1.2.2.a Principle

We propose a new version of the CR algorithm, allowing us to obtain better ME for Wyner-
Ziv frames in the context of DVC. With respect to the original algorithm, we do not dispose
any more of the frame to be estimated but only of the encoded version of the adjacent
KFs. We will still refer to these images as Ib and Ia. Moreover we want to exploit the
block-based MVFs produced by the Discover algorithm, ua and ub.

Our ME algorithm still consists in the initialization, validation and refinement steps;
but they are modified to fit the new context; moreover we use a different scanning order,
based on the blocks used in the Discover algorithm. A raster scan order between blocks
can be used, however it is worth noting that the blocks are processed independently, so
the algorithm lends itself to a parallel implementation. Within each block the positions
are scanned so as to keep a high correlation between consecutively scanned positions. A
possible scanning order is shown in Figure 6.3.

The initialization of the backward and forward vectors for the current position p is
different if it is the first position (i.e., top and leftmost, as highlighted in Figure 6.3) in the
current block or not. In the first case, we use the MV estimated for the current block by
the Discover algorithm; otherwise, we recursively use the MV produced by our algorithm
for the last scanned position. We call u(0)

a (p) and u
(0)
b (p) (or a priori) the backward and

forward vectors obtained from the initialization step.
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Figure 6.3: Scan order for the proposed algorithm. Highlighted position are initialized
with the input MVF; others with the MV of the previously scanned position.

The validation step amounts to computing the quantities:

A = |Ia(p + u(0)
a (p))− Ib(p + u

(0)
b (p))|

B = |Ia(p)− Ib(p)|+ γ,

C = |Ia(p + ua(p))− Ib(p + ub(p))|.

If A (resp. B or C) is the least quantity, we use u
(0)
a and u

(0)
b (resp. null or ua and

ub) as validated vectors. Note that, like the original CR algorithm, a threshold γ is used
to penalize the reset of the estimated vector. A high threshold causes less vector resets,
producing more regular but maybe less accurate motion vector fields.

In the last step, we refine the MVs at the output of the validation step, (u(1)
a and u

(1)
b )

by adding a correction (d2 and δub). So the cost function J depends on both refinements:

J(d2, δub) = [Ia(p + u(1)
a + d2)− Ib(p + u

(1)
b + δub)] + λa‖d2‖2 + λb‖δub‖2

Like in the original algorithm, the cost function is approximated by first order expansions;
however here we expand both Ia and Ib:

J ≈ [Ia(p + u(1)
a ) +∇Ia(p + u(1)

a )Td2 − Ib(p + u
(1)
b )−∇Ib(p + u

(1)
b )T δub]

2 + λa‖d2‖2 + λb‖δub‖2

=
(
ε+ φTa d2 − φTb δub

)2
+ λa‖d2‖2 + λb‖δub‖2

where we defined:

ε = Ia(p + u(1)
a )− Ib(p + u

(1)
b )

φa = ∇Ia(p + u(1)
a )

φb = ∇Ia(p + u
(1)
b )

Then, the actual refinements are defined as those minimizing the function cost and are
found by setting to zero the partial derivatives of J . Let us start with the derivative wrt
d2.

∂J

∂d2
= 0⇔ 2[ε+ φTa d2 − φTb δub]φa + 2λad2 = 0⇔

[ε− φTb δub]φa + (λaI2 + φaφ
T
a )d2 = 0⇔ d2 =

φTb δub − ε
λa + ‖φa‖2

φa (6.6)
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The last equation has been obtained by applying the matrix inversion lemma,
(
λI + uuT

)−1
=

1
λ

(
I− uuT

λ+‖b‖2
)
.

Likewise, the partial derivative of J with respect to d2 is zero iff:

δub =
φTa d2 + ε

λb + ‖φb‖2
φb (6.7)

Substituting Equation (6.7) in (6.6), and applying again the matrix inversion lemma, we
can easily find the optimal refinements:

δu∗a =
−εφa

λa + ‖φa‖2 + λa
λb
‖φb‖2

(6.8)

δu∗b =
εφb

λb + ‖φb‖2 + λb
λa
‖φa‖2

. (6.9)

Since usually λa = λb, the previous equations further simplify into:

δu∗a =
−εφa

λ+ ‖φa‖2 + ‖φb‖2
(6.10)

δu∗b =
εφb

λ+ ‖φa‖2 + ‖φb‖2
. (6.11)

which are formally very similar to the original algorithm update step in Equation (6.2) but
for the meaning of ε and the presence of the sum of the two compensated gradient norms.

In order to determine the best value for the parameters of the proposed algorithm, we
have run it over four popular test sequences at CIF resolution (eric, foreman, football and
city) and we have obtained the even frame interpolation. These images were compared
with the original frames by computing the PSNR.

In all our experiments, the threshold γ proved to have a small influence over the global
performance, given that it is greater or equal to 50, so we used this value in the following.

Then we determined the relationship between the best λb and λa. The experiments
confirmed the intuition that these parameters should have very close values. For all our test
sequences, and for all tested values of QP, we found that the best performance is obtained
when |λb−λa| < 0.1λa; moreover, within this interval the performance are very consistent,
with a PSNR variation of less than 0.03 dB. For the sake of brevity, we only report some
of these results in Table 6.3. As a consequence, in the following we take λb = λa and so
we shall drop the subscript.

Finally, we looked for the best value of λ. We have computed the SI PSNR over the
test sequences for several values of the parameter between 1000 and 15000. As shown
in Figure 6.4 the average PSNR performance are quite consistent for λ ≥ 5000, with a
maximum around 7500, which has been used as value for λ in the following.

6.1.2.2.b First experiments

With the values of parameters defined in the previous subsection, we have compared the
DC method with Discover by running them over the same test sequences and using
several QPs for the KF coding. The results are summarized in Figure 6.5. We observe that
the DC is able to improve the WZF quality, up to over 0.6 dB in the average and to over
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-1000 -500 0 500 1000
eric 32.29 32.33 32.33 32.32 32.32
football 23.19 23.19 23.19 23.17 23.17
foreman 33.86 33.89 33.90 33.89 33.89
city 27.15 27.16 27.17 27.16 27.15
Average 29.12 29.14 29.15 29.14 29.13

Table 6.3: PSNR of SI images over the test sequences for different ∆λ = λb − λa and
QP=31. Average over λa ∈ [1000, 10000].
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Figure 6.4: Average PSNR of side information over test sequences as a function of λ, for
QP=31.



153

31 34 37 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Quantization step

∆
 P

S
N

R
 −

 d
B

 

 

foreman
city
eric
football

Figure 6.5: SI PSNR differences between DD (reference) and DC methods.

QP values
GOP size foreman city eric football
2 0.65 0.24 0.12 0.11
4 0.46 0.28 0.13 0.11
8 0.39 0.28 0.12 0.12

Table 6.4: SI PSNR improvement of DC for different GOP sizes [dB].

2 dB on the single image. The best results have been obtained for the foreman sequence,
characterized by a complex motion. The gain is still interesting for the sequence city,
characterized by a more regular motion. Smaller gains are obtained when the movement
is more irregular (football) and for the sequence eric. We observe as in the CD tests that
the gain is smaller for highly quantized KFs.

A further experiment was conducted in order to assess the efficiency of the DC when
larger GOP sizes are used. We performed a comparison similar to the one reported in
Figure 6.5, the only difference being the distance among the key frames. The results are
reported in Table 6.4. It is interesting to observe that the PSNR improvement with respect
to the DD method is quite consistent even for large GOP sizes.

In the last set of experiments, we used the new SI within the global DVC scheme, and
computed the global RD performance for QP=31, 34, 37, 40. This was compared with
the RD performance over the test sequences of the reference Discover coder, and the
results are again reported using the Bjontegaard metric [Bjontegaard, 2001], for the same
four QPs. As shown in Table 6.5, the DC method allows some interesting rate reductions
(3.5% for foreman and 2.0% in average). The PSNR improvement is smaller than the one
we have found on the sole side information. This is reasonable since this time the PSNR
is computed on the KFs as well (in order to give a right idea of rate improvement on the
whole sequence coding), which are identical for the two schemes.
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foreman city eric football Average
∆Rate -3.52% -1.97% -1.02% -1.53% -2.01%
∆PSNR 0.18 0.10 0.06 0.08 0.10

Table 6.5: Average RD performances improvement of DC with respect to the reference
DD scheme.

6.1.3 Total variation based algorithm

This method was initially developed for inter-camera estimation in stereo vision. To com-
pute the disparity values between two images taken from different viewpoints, the pixels
have to undergo a matching procedure, often referred to as the stereo correspondence prob-
lem. This process consists in finding for each pixel in one image, its corresponding point
in the other image, based on their positions and intensity values. The most critical choice
for a stereo matching algorithm is the optimization technique which minimizes a given
measure of photometric similarity between pixels.

In the field of dense disparity estimation, global optimization methods have attracted
much attention due to their excellent experimental results [Scharstein, Szeliski, 2002].
These methods exploit various constraints on disparity such as smoothness, view consis-
tency etc, while using efficient and powerful optimization algorithms. In this section, we
consider a disparity estimation approach based on a set theoretic formulation. The pro-
posed method, described in [Miled et al., 2006] [Miled et al., 2009], is a global stereo method
inspired from a work developed for image restoration purposes [Combettes, 2003]. In the
adopted set theoretic framework, the main concern is to find solutions that are consistent
with all the available information about the problem. Each piece of information, derived
from a prior knowledge and consistency with the observed data, is represented by a convex
set in the solution space and the intersection of these sets (the feasibility set) constitutes
the family of possible solutions. The aim is then to find an acceptable solution minimizing
the given objective function. A formulation of this problem in an Hilbert image space H
is therefore:

Find u ∈ p =

m⋂

i=1

Si such that J(u) = inf J(p) , (6.12)

where the objective J : H → (−∞,+∞] is a convex function and the constraint sets
(Si)1≤i≤m are closed convex sets of H. The constraint sets can generally be modelled as
level sets:

∀i ∈ {1, . . . ,m}, Si = {u ∈ H | fi(u) ≤ δi} , (6.13)

where, for all i ∈ {1, . . . ,m}, fi : H → R is a continuous convex function and (δi)1≤i≤m are
real-valued parameters such that S =

⋂m
i=1 Si 6= ∅. Many powerful optimization algorithms

have been proposed to solve this convex feasibility problem. For the proposed solution, we
employ the constrained quadratic minimization method developed in [Combettes, 2003]
and particularly well adapted to our needs. However, due to space limitation, we will not
describe the algorithm but the reader is referred to [Miled et al., 2006; Combettes, 2003]
for more details.

We integrate it in our proposed scheme for both disparity and motion estimation. The
next two sections explain how this initial disparity estimation algorithm is adapted to
motion or disparity interpolation.
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• W. Miled, T. Maugey, M. Cagnazzo, and B. Pesquet-Popescu, “Image interpo-
lation with dense disparity estimation in multiview distributed video coding,”
in Int. Conf. on Distributed Smart Cameras, Como, Italy, Sep. 2009.

• T. Maugey, W. Miled, and B. Pesquet-Popescu, “Dense disparity estimation in
a multi-view distributed video coding system,” in Proc. Int. Conf. on Acoust.,
Speech and Sig. Proc., Taipei, Taiwan, Apr. 2009.

The material in this section was published in:

6.1.3.1 Monodirectional refinement

6.1.3.1.a Principle

The monodirectional refinement stage aims at improving the forward vectors produced
by the monodirectional estimation between the left and right KFs Ia and Ib, using the
set theoretic framework described above. For this purpose, we first define the objective
function, based on the physical data model. By considering the sum of squared intensity
differences (SSD) measure, this objective function can be expressed as follows:

J̃(u) =
∑

p∈D
[Ia(p)− Ib(p + u(p))]2 (6.14)

where D ⊂ N2 is the image support. This expression is non-convex with respect to the
displacement field u. Thus, in order to avoid a non-convex minimization, we use the
initial estimate ū produced by the first monodirectional estimation stage (based on a
block matching process) and we express the non-linear term Ib(p+u(p))) around ū using
the standard first order approximation:

Ib(p + u) ' Ib(p + ū) + (u− ū)∇Ib(p + ū) , (6.15)

where ∇Ib(p + ū) is the gradient of the compensated left frame. Note that for notation
concision, we have not made anymore explicit that u and ū are functions of p in the above
expression.

With the approximation of Equation (6.15), the cost function J̃ under the minimization
in Equation (6.14) becomes quadratic in u, as follows:

J(u) =
∑

p∈D
[L(p) u(p)− r(p)]2 (6.16)

where

L(p) = ∇Ib(p + ū(p)),

r(p) = Ib(p)− Ib(p + ū(p)) + ū(p) L(p).

Given the objective function to be minimized, we incorporate, in what follows, the
constraints modelling prior information on the estimated field as closed convex sets in the
form of Equation (6.13). The most common constraint on the field is the knowledge of its
range of possible values. Indeed, motion/disparity values often have known minimal and
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maximal amplitudes, denoted respectively by umin = (umin
x , umin

y ) and umax = (umax
x , umax

y ).
The associated set is

S1 = {u = (ux, uy) ∈ H | umin
x ≤ ux ≤ umax

x and umin
y ≤ uy ≤ umax

y } . (6.17)

Furthermore, the vector field should be smooth in homogeneous areas while keeping sharp
edges. This can be achieved with the help of a suitable regularization constraint. In
this work, we make use of the total variation (tv) measure which recently emerged as
an effective tool to recover smooth images in various image processing research fields.
Practically, tv(u) represents a measure of the lengths of the level lines in the image [Rudin
et al., 1992]. Hence, if u is known a priori to have a certain level of oscillation so that a
bound τ is available on the total variation, controlling tv(u) restricts the solutions to the
convex set

S2 = {u ∈ H | tv(u) ≤ τ} . (6.18)

It should be noticed that the upper bound τ can be estimated with good accuracy from
prior experiments and that the considered minimization method is shown to be robust with
respect to the choice of this bound [Miled et al., 2006].

In summary, we formulate the field estimation problem as the minimization of the
quadratic objective function (Equation (6.19)) over the feasibility set S = ∩2

i=1Si, where
the constraint sets (Si)1≤i≤2 are given by Equations (6.17) and (6.18). The obtained field
is then fit into the bidirectional estimation stage to get symmetric predictions from the
two KFs.

In practice, the vectors umin and umax are computed online based on the initial values
of the input vector field uab. The bound τ was set after a set of experiments on several
test sequences. The evaluation of the optimal τ value needs to be precise, because too
much regularization would prevent taking into account some objects. The value was set to
τ = 1500. One can see in Figure 6.6 the effects of the regularization on one example of a
disparity field for the rectified video sequence book arrival. The refinement algorithm has
smoothed the disparity field in the background, and in the objects. However, the contours
of the objects keep being sharp.

(a) Initial block-based disparity field, uab (b) Refined dense disparity field, u∗ab

Figure 6.6: Visual examples of the difference between block-based and pixel-based hori-
zontal component of the disparity fields for book arrival rectified sequence.
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Figure 6.7: SI PSNR differences between DD (reference) and V D methods

6.1.3.1.b First experiments

We evaluate the V D method on the two multiview test sequences ballet (non-rectified) and
outdoor (rectified). For both sequences, the spatial resolution has been halved by two, so
that the images have a size of 512×386, and only the first 7 cameras were used. The V D
refinement technique has been performed to estimate the SI of the WZFs corresponding
to views 2, 4 and 6. For each view, we consider four quantization steps (QP = 31, 34, 37
and 40), in order to compare to the DD algorithm in a relatively wide range of key frame
quantization levels.
In Figure 6.7, we plot the average difference between the PSNR of the V D SI and the
PSNR of DD SI for these two test sequences. One can see that V D enhances the quality
of the SI only for ballet and outdoor at QP=37 and QP=40. Moreover, this improvement
is quite low (less than 0.1 dB). The fall of the PSNR quality for outdoor is explained by
the fact that the cameras are close, and the initial DD estimation is of a very good quality,
and thus hardly improvable (excepting for coarsely quantized key frames, and thus, a lower
quality of DD estimation).
However, we can deduce from these first results (further results will be provided in Sec-
tion 6.1.4) than the V D method does not present for inter-view estimations the same
efficiency as Cafforio-Rocca based method for temporal interpolation.

6.1.3.2 Bidirectional refinement

6.1.3.2.a Principle

The bidirectional refinement stage consists in recovering first the forward and backward
vectors of the Discover algorithm, denoted respectively by ub and ua, and applying then
the iterative optimization algorithm within the set theoretic framework. The cost function
to be minimized, in this case, is based on the assumption that the pixel in the image
Ib compensated by the forward vector u∗b has the same intensity value as the pixel in Ia
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compensated by the backward vector u∗a. It allows to jointly estimate both vectors, as
follows:

J̃(u∗a,u
∗
b) =

∑

p∈D
[Ia(p + u∗a(p))− Ib(p + u∗b(p))]2. (6.19)

This expression is non-convex with respect to the displacement fields u∗a and u∗b . Like
in the monodirectional refinement case, it is approximated by first order approximations
to get a convex cost function. However, here we expand both Ia and Ib around initial
Discover vectors ua and ub, respectively:

J(u∗a,u
∗
b) =

∑

p∈D
[Ia(p + ua(p))− Ib(p + ub(p))

+∇Ia(p + ua(p))(ua(p)− ua(p))

−∇Ib(p + ub(p))(ub(p)− ub(p))]2

=
∑

p∈D
[L(p)u(p)− r(p)]2 , (6.20)

where we defined

u = (u∗a,u
∗
b)
>

L(p) = [∇Ia(p + ua(p))−∇Ib(p + ub(p))]

r(p) = Ia(p + ub(p))− Ib(p + ua(p)) + L(p)(ua,ub)
>.

Once the global convex objective function to be minimized is defined, we add the convex
constraints based on the properties of the estimated fields. We retain, as previously, the
range values constraint and the edge preserving regularization one. The constraint sets
associated with the first a priori information are

S1 = {u = (ux, uy) ∈ H | umin
ax ≤ ux ≤ umax

ax and umin
ay ≤ uy ≤ umax

ay } , (6.21)

S2 = {u = (ux, uy) ∈ H | umin
bx ≤ ux ≤ umax

bx and umin
by ≤ uy ≤ umax

by } . (6.22)

The regularization constraint, whose effect is to smooth homogeneous regions in the field
while preserving edges, introduces a bound on the integral of the norm of the spatial
gradient. Thus, imposing an upper bound on the total variation allows to efficiently restrict
the solution to the constraint sets:

S3 = {u ∈ H | tv(u∗a) ≤ τu∗a} , (6.23)
S4 = {u ∈ H | tv(u∗b) ≤ τu∗b} , (6.24)

where τu∗a and τu∗b are positive constants that can be estimated from prior experiments and
image databases.

The problem of motion/disparity estimation can finally be formulated as jointly finding
the forward and backward fields which minimize the energy function in Equation (6.20)
subject to the constraints (Si)1≤i≤4. The problem becomes therefore bivariate and to solve
it, we have adapted the convex optimization algorithm considered in the monodirectional
case, taking into account the dimensionality of the problem.

The parameter τ was experimentally fixed at 1500, which is the same value as in the
monodirectional case.
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Figure 6.8: SI PSNR differences between DD (reference) and DV methods for inter-view
estimations.

6.1.3.2.b First experiments

We evaluate the DV method similarly to the V D one. We consider two multiview se-
quences (with a resolution halved by two: 512 × 384) ballet and book arrival and their
first 7 cameras. We calculate the inter-view interpolations with DV and DD methods,
for 4 quantization steps for the key frames (QP equal to 31, 34, 37 and 40) and compare
their PSNR. Figure 6.8 presents the ∆PSNR results in dB. The efficiency of DV method is
obviously disappointing. Indeed, DV does not improve the DD results and even degrades
them sensibly for book arrival sequence. The total variation based bidirectional refinement
seems not to be very efficient for inter-view estimation. In the next section, this method
is tested for temporal interpolation.

6.1.4 Experiments

In the previous section, we introduced the proposed refinement methods and tested their
integration in the proposed general interpolation scheme for their natural configurations:
the Cafforio-Rocca based interpolations were tested for temporal estimation, while the
total-variation based methods were applied in inter-view estimations since they are based
on Miled’s work whose purpose was the disparity estimation. In this section, we propose
further experiments where the proposed refinement methods are tested in every configura-
tion (intra and inter-camera) and where they are compared between each other.

With the interpolation scheme proposed in Section 6.1.1 (Figure 6.1), 9 different meth-
ods can be considered. The first method is our reference, i.e.,Discover. It is referred to
as DD. Then, we have seen in the previous sections the one-refinement methods (CD,
DC, V D and DV ), and we present here more complete tests for them.
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Figure 6.9: SI PSNR differences between DD (reference) and DV methods for temporal
interpolations (multiview sequences in red-brown, and monoview ones in blue)

The tests presented in the rest of the section were all obtained under the same experi-
mental conditions. First the reference frames of all the video sequences are intra coded at
4 different QPs: 31, 34, 37 and 40. In the following, when we talk about QP, it corresponds
to the quantization of the reference frames1. Then, for every QP, we calculate the original
method DD in both directions (for multiview sequences only). Then we calculate the
interpolation obtained with the CD, DC, V D and DV refinement methods, and compare
the PSNR with the DD reference method. Results are shown in figures which plot the
∆PSNR in dB in function of the different QPs.

In our experiments, we observed that the DV method leads to a poorer SI than the
Discover interpolation in almost all cases. Results for inter-view estimations have already
been given in Figure 6.8. Figure 6.9 shows the performance of the DV temporal interpola-
tion, for several video sequences: multiview sequences in red or brown (ballet, breakdancer,
book arrival and uli) and monoview sequences in blue (foreman and mobile). Excepting
for breakdancer for which DV obtains a quite acceptable improvement for some QPs, the
total-variation based monodirectional refinement does not enhance the DD estimations
PSNR. That is why, in the following we do not consider this estimation and only compare
the three other methods: V D, CD and DC.

In Figures 6.10 and 6.11, we show the ∆PSNR results for 4 multiview sequences of
respectively the temporal and the inter-view interpolations. Moreover, we show in Ta-
ble 6.6 the average ∆PSNR over the frames and over the QPs for several video sequences
(monoview and multiview) for the temporal interpolation. One can observe that the pro-
posed methods obtain satisfying performances. Indeed, in temporal direction, the ∆PSNR

reaches for example 0.7 dB for city sequence, 0.6 dB for mobile and 0.3 dB for outdoor.
However, there is no denying that the presented results are not completely acceptable since

1For example, we will say “the method obtains an improvement of . . . at a QP of. . . ” instead of “the
method obtains an improvement of . . . with reference frames quantized at a QP of. . . ”.
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Figure 6.10: ∆PSNR between refinement methods and the reference method DD for tem-
poral interpolation in different multiview sequences.
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Figure 6.11: ∆PSNR between refinement methods and the reference method DD for inter-
view interpolation in different multiview sequences.
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CD DC VD Mean
akiyo∗ 0.00 -0.08 0.00 -0.02
city∗ 0.93 0.17 1.12 0.74
container∗ 0.17 -0.23 0.17 0.04
eric∗ 0.18 -0.16 0.24 0.08
football∗ -0.27 -0.12 -0.16 -0.18
foreman∗ 0.20 0.21 0.20 0.21
mother and daughter∗ 0.01 0.00 0.01 0.01
mobile∗ 0.84 0.00 1.03 0.62
news∗ 0.09 0.00 0.09 0.06
tempete∗ -0.10 -0.01 -0.08 -0.06
silent∗ -0.02 0.02 -0.02 -0.01
waterfall∗ 0.01 0.01 0.01 0.01
planet∗ (synthetic sequence) 0.09 0.22 0.14 0.15
book arrival+ -0.12 0.07 -0.11 -0.05
outdoor+ 0.25 0.03 0.29 0.19
ballet+ 0.13 0.04 0.15 0.11
ballroom+ -0.04 0.06 0.01 0.01
uli+ -0.00 0.03 0.02 0.02
Mean 0.13 0.02 0.17 0.11

Table 6.6: Average SI ∆ PSNR in temporal direction for several test sequences.
∗: monoview sequences (352× 288, 30 fps), +: multivew sequences (512× 384, 30 fps)

they are limited sometimes (ex: waterfall, ballet in the view direction) and even negative
in some cases (ex: football, ballroom in view direction). Nevertheless, the ∆PSNR drawn
in Table 6.6 present promising aspects. Indeed, the average improvement is positive and
around 0.13 for CD, and 0.17 for V D for temporal interpolation. One can observe that
the refinement methods are more competitive for temporal estimations. In this configu-
ration it is interesting to observe that the DC method leads to very limited gain, almost
every time lower than 0.1 dB. On the other hand, monodirectional refinements V D and
CD sometimes sensibly improve the temporal DD estimations (ballet and outdoor) but
sometimes degrade it (ballroom and book arrival).

Moreover, we notice that the monodirectional refinements methods are more efficient
than the bidirectional ones. It can be explain by the fact that the monodirectional re-
finement is followed by several steps which have a better behaviour if their initialization
is more precise and reliable, as it is the case with CD and V D methods. This is the
reason why we have not investigated the double-refinement methods (CC, CV , V C, V V ).
Indeed, we have reached the best improvements for the monodirectional refinements, but
almost 0 dB in average for bidirectionnal one, therefore it appeared hopeless to perform
both refinements.

However, though the monodirectional refinement methods seem to build side informa-
tion of better quality, they sometimes sensibly degrade the DD interpolation. This could
be explained by the fact that these methods strongly depend on their parameter opti-
mization. Indeed, they have been optimized for some videos, as it was explained in the
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previous sections, and these parameters were kept for the other sequences of the database.
The parameters are thus not optimal anymore, and this explain why the methods are less
efficient. Such a parameter dependency would be a main drawback of our method, unless
further works would lead to an online optimal parameter estimation.

6.2 Proposed fusion methods

• T. Maugey, W. Miled, M. Cagnazzo, and B. Pesquet-Popescu, “Fusion schemes
for multiview distributed video coding,” in Proc. Eur. Sig. and Image Proc.
Conference, Glasgow, Scotland, Aug. 2009.

The material in this section was published in:

6.2.1 Recall of the context

Another step in the side information construction is the merging of several estimations in
the multiview setting. This fusion is mainly performed at the pixel level in the literature.
In this section we propose some other dense fusions methods. We adopt the same notations
as those which were introduced in Part II, Section 4.2.2. They are recalled in Figure 6.12.
For the estimation of a WZ frameW , four images are available, which are used to generate
four motion/disparity compensated frames.

6.2.2 Proposed techniques

The fusion solutions presented in the side information generation state-of-the-art chapter
(Section 4.2.2) section achieve good performance in some cases. For example, the PD
(Pixel difference) fusion is quite efficient when the temporal motion activity is low. On the
contrary, non-fusion estimation qualities strongly depend on the sequence. In this section,
we propose three new methods aiming at more robustness. The first two use the residual
(i.e. the difference between the two compensated reference frames), like the MCD fusion
does. The residual is commonly used to approximate the estimation error in DVC, for
example for the distribution model analysis at the turbo decoder.

The motion and disparity compensated difference binary fusion (MDCDBin)
compares the temporal and inter-view residuals, and uses for the estimation the one having
the smallest one at each position. As for the existing solutions, the decision is binary. The
temporal and inter-view residuals are respectively defined as ET (p) = |Ĩn,t−(p)− Ĩn,t+(p)|
and EN (p) = |Ĩn−,t(p)− Ĩn+,t(p)|. Therefore, the prediction by MDCDBin is defined as:

Ĩ(p) =

{
ĨN (p), if EN (p) < ET (p)

ĨT (p), otherwise.

This criterion is improved in the case of motion and disparity compensated dif-
ference linear fusion (MDCDLin), where the residuals ET and EN are no longer used
to take a binary decision, but rather to compute a linear combination of inter-view and
temporal estimations. The prediction by MDCDLin is then:

Ĩ(p) =
ET (p)

ET (p) + EN (p)
ĨN (p) +

EN (p)

ET (p) + EN (p)
ĨT (p)
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Figure 6.12: Fusion problem: Ix are the available KFs and Îx their motion compensated
version, estimating the WZ frame W . ux are the vector fields.
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Figure 6.13: SI quality for different fusion methods, at different KF quantization levels,
and for two test sequences book arrival and outdoor.

Finally, in the case of Estimation-error and vector-norm based linear fusion
(ErrNorm), we build on the consideration that often the larger are the motion vectors, the
less reliable is the estimation. Therefore, we use the motion vector norms as weights in
computing a linear combination between ĨT and ĨN . The resulting image is then averaged
with the one produced by MDCDLin to obtain the new estimation. More precisely, in the
ErrNorm case we have the following equations:

Ĩ(p) =
Ĩerr(p) + Ĩnorm(p)

2
where

Ĩnorm(p) =
(‖vb‖+ ‖vf‖)ĨN (p) + (‖vl‖+ ‖vr‖)ĨT (p)

‖vb‖+ ‖vf‖+ ‖vl‖+ ‖vr‖

and Ĩerr(p) =
ET (p)ĨN (p)

ET (p) + EN (p)
+

EN (p)ĨT (p)

ET (p) + EN (p)

6.2.3 Experimental results

We compared the state-of-the-art fusion techniques presented in Section 4.2.2 with the pro-
posed ones, by running them on two multiview test sequences, book arrival and outdoor,
from [Ingo Feldmann et al., 2008]. For both sequences, the spatial resolution was halved
from 1024× 772 to 512× 386, and only the first 8 cameras were used. We performed the
dense WZ frame estimation algorithm in order to produce the vector fields for both tem-
poral and inter-view interpolations. We considered lossy coded KFs and four quantization
steps (QP= 31, 34, 36 and 40), in order to observe the behavior of fusion methods in a
relatively wide range of bit-rates.

The performance of all the methods are shown in Figure 6.13, where we give the
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QP 31 34 36 40
PD -6.0131 -4.9926 -4.2939 -3.0226
MCDLin -0.9516 -1.0624 -0.9639 -0.8322
ErrNorm 0.3893 0.2253 0.1658 0.0740

Table 6.7: ∆PSNR between different fusion method and the best non-fusion estimation
(inter-view estimation in this case) for outdoor sequence.

QP 31 34 36 40
PD 0.2901 0.1293 0.0807 -0.0244
MCDLin 0.5777 0.4926 0.4799 0.3709
ErrNorm -0.1393 0.0271 0.1761 0.2636

Table 6.8: ∆PSNR between different fusion method and the best non-fusion estimation
(temporal estimation in this case) for book arrival sequence.

PSNR of the SI with respect to the original WZF. Gray bars correspond to simple cases,
where only temporal or inter-view estimation are considered, the white bar corresponds
to the ideal (i.e. oracle-driven) fusion, the blue bars are the state-of-the-art methods
explained in Section 4.2.2, and the red ones are the proposed techniques. We notice that
for the book arrival test sequence, the temporal estimation is slightly better than the inter-
view one, while the opposite is true for the second sequence, outdoor. In both cases, the
comparison between the ideal fusion (which can be seen as an upper bound for fusion
method performances) and no-fusion cases, shows that fusion can sensibly improve the
WZF estimation.

However state-of-the-art methods look like not being able to adequately take advantage
from the fusion: while for the book arrival sequence, MCD and PD fusions obtain good
performances, much better than the non-fusion predictions ĨT and ĨN , this is no longer the
case for the second sequence, where state-of-the-art methods perform worse than simple
inter-view estimation. We conclude that these methods are not robust enough when there
is a sensible gap of quality between the temporal and inter-view estimations.

Different observations can be made for the proposed methods (red bars in Figure 6.13).
The first remark is that MDCDLin outperforms MDCDBin, showing that a linear based
fusion is more efficient than a binary decision based method. Moreover, for the book
arrival sequence, the MDCDBin method reaches better performances than the existing
solutions. For the outdoor sequence, where the other solutions obtain a lower SI quality,
the proposed methods achieve good results and ErrNorm fusion sensibly improves the ĨN
prediction. Finally, for ease of comparison, some of the results in Figure 6.13 are reported
in Tables 6.7 and 6.8, in terms of the difference between the best non-fusion estimation for
each sequence and three fusion methods, PD (the best existing method), MDCDLin and
ErrNorm (the best proposed methods).

In Figure 6.14 we present the rate-distortion performance obtained when using PD,
MDCDLin and ErrNorm within a complete DVC multiview coder (inspired by Discover
[Areia et al., 2007]). The results confirm that the proposed methods (red curves) out-
perform existing ones (blue curves). In order to facilitate the comparison, the average
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∆ Rate (%) ∆ PSNR (dB)
PD 21.96 -0.84
MCDLin 2.24 -0.13
ErrNorm -3.64 0.22

Table 6.9: Rate-distortion performance comparison between the different fusion methods
and the inter-view non-fusion estimation for outdoor sequence, obtained with the Bjonte-
gaard metric [Bjontegaard, 2001].

∆ Rate (%) ∆ PSNR (dB)
PD -2.78 0.19
MCDLin -6.07 0.37
ErrNorm -3.13 0.20

Table 6.10: Rate-distortion performance comparison between the different fusion meth-
ods and the temporal non-fusion estimation for book arrival sequence, obtained with the
Bjontegaard metric [Bjontegaard, 2001].

performances computed with the Bjontegaard metric [Bjontegaard, 2001] are shown in
Tables 6.9 and 6.10. We note that ErrNorm is consistently better than the non-fusion
techniques (obtaining a rate reduction up to 3.83%), while MDCDLin is always better
than PD, which in turn, is much worse than the non-fusion method for the outdoor se-
quence.

6.3 Conclusion

In this chapter we have investigated the interest of adopting a pixel approach for the side
information generation. Based on several experiments, we have highlighted the potential
of dense estimation and fusion. Whereas the proposed interpolation methods are not yet
optimized since they do not lead to a systematic improvement, they already show promising
results, a mean improvement of 0.11 dB over 19 test sequences. On the other hand, the
proposed fusion techniques seem to be more stable than the existing methods.
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Chapter 7

Hash-based side information
generation

In some situations (occlusion, rapid motion, etc.), SI generation is limited since the infor-
mation to be estimated is hardly predictable (limited displacement model, lack of informa-
tion in the reference frames, etc.). Distributed video coding schemes have to modify their
approach for enhancing the WZ estimation at the decoder. We have seen in Section 4.3.3
that some schemes adopt a hash-based approach, in which the encoder sends to the decoder
well chosen WZ information (intra coded) in order to facilitate the side information gen-
eration and then to enhance the efficiency of channel decoding.
In this chapter, we present a novel hash based scheme mainly inspired by Yaccoub’s work
[Yaacoub et al., 2009a; Yaacoub et al., 2009b; Yaacoub et al., 2009c]. We recall here that
Yaacoub et al. have investigated how to enhance the side information quality in monoview
DVC by performing a genetic algorithm (GA) based fusion, but without studying precisely
the selection and encoding of hash information. We propose here to extend their work by
constructing a complete hash-based scheme with an original hash selection and compression.
Moreover the proposed scheme is tested in monoview and multiview conditions. First in
Section 7.1, we introduce the general structure of the proposed scheme. Then in Section 7.2,
we make a zoom on some specific steps of the proposed algorithm where the configuration
(monoview/multiview) impact on the developed techniques. Finally, in Section 7.3, we
present the experimental results of the proposed hash-based scheme.
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Figure 7.1: General structure of the hash-based DVC scheme. In red, the specificity of our
proposed solution, in which the hash-based selection is performed at the decoder.

7.1 Proposed algorithm

The algorithm presented here proposes to improve the side information quality using some
hash information sent by the encoder to perform a fusion based on a genetic algorithm.
The general structure of a hash-based scheme is summarized in Figure 7.1. As we have
seen in Section 4.3, hash-based schemes have to deal with three main issues.

Firstly, the hash information has to be cleverly selected. More precisely, the encoder
needs to guess exactly where the decoder would fail in the WZ estimation. This step is
fundamental, since the hash information is very expensive in terms of rate cost. State-of-
the-art approaches perform this selection at the encoder, by coarsely estimating the side
information (average between the reference frames) and thresholding the difference with
the true original error. In our approach, we have chosen to perform this selection at the de-
coder (red arrow in Figure 7.1). In spite of the fact that the original frame is not available
anymore at the decoder, the hash selection module has access to the exact WZ estimation
knowledge. We believe that the knowledge of the side information at the decoder is more
interesting and useful than the knowledge of the original frame at the encoder with a poor
available estimation of the SI. Secondly, the hash has to be compressed and transmitted to
the decoder. Thirdly, hash information is used at the decoder to generate a finer SI. The
proposed approach is based on a fusion of several estimations, contrary to state-of-the-art
methods which only perform a hash motion interpolation, as it was explained in Section 4.3.

The general structure of our proposed hash selection and hash-based side information
generation algorithm is presented in Section 7.1.1, and then a zoom on the hash infor-
mation coding and the genetic algorithm are proposed respectively in Section 7.1.2 and
Section 7.1.3.

7.1.1 General structure

The general structure of the proposed system at the decoder is presented in Figure 7.2.
The method consists in firstly generating a classical side information and secondly, for each
badly-estimated block, requesting some hash information from the encoder in the meantime
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as the parity bits for turbodecoding so that a hash-based side information estimation can
be performed at the decoder side. Therefore, unlike the previous works [Ascenso, Pereira,
2007] and [Aaron et al., 2004a], the intraframe encoding paradigm is preserved here, since
the decision on the need of sending hash information is performed at the receiver, instead of
thresholding the difference between the two reference (key) frames. The different steps of
our hash-based side information generation algorithm (at the decoder side) are as follows:

1. SI construction - The encoder generates a side information using the available
neighboring reference frames. The adopted technique depends on the configuration
(monoview or multiview). The obtained SI is divided into several 4×4 blocks, referred
to as bSIk , and each block is processed independently by the subsequent operations
of the algorithm.

2. SI quality - For each block, the distortion of the side information is estimated at
the decoder side. Similarly to “SI construction” step, the adopted technique depends
on the number of available reference frames. The distortion is denoted by Dk for the
block bSIk .

3. Thresholding - The Dk value is thresholded by a T value which is calculated
depending on the percentage of hash blocks sent to the decoder. If the distortion
is lower than T , the side information is considered good enough, such that it can
be directly turbo-decoded. Otherwise, bSIk is assumed to be a bad estimation of the
original WZ frame, and therefore the Hash SI construction is performed.

4. Hash SI construction - The side information is re-estimated thanks to some hash
information transmitted at a rate of rHk . First, several estimations are generated
depending on the scenario (monoview/multiview). Then, the GA algorithm is per-
formed in order to build the fusion of these candidates. The computed hash-based
side information bHSIk depends on the rate rHk .

5. Block assembling - It consists in constructing the entire side information by as-
sembling the blocks estimated with (bHSIk ) or without (bSIk ) the hash information.
The final side information (FSI) is then turbo-decoded.

7.1.2 Hash information generation

The block size is fixed to 4 × 4, the same as the DCT block size of the Wyner Ziv frame
coding. In the following, we describe how each hash block (a vector of 16 coefficients, one
per band) is encoded. Based on the fact that some information regarding the WZ frame
(as the dynamic range of the bands) is available at the decoder, we decide to perform
uniform quantization of the hash information, similar to the quantization performed for
WZFs encoding (with a dead zone for the AC coefficients). The number of quantization
levels is specified by a quantization matrix, showing the number of levels per band for
eight rate-distortion points (from low to high bit rate). The matrix [Brites et al., 2006b]
is recalled in Table 7.1.

After the quantization process, the hash is converted into bitplanes and transmitted to
the decoder. The corresponding rate is given by the sum of the logarithms of the non-zero
bands levels at a chosen line of the quantization matrix.
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Figure 7.2: General structure of the hash-based side information generation algorithm
performed at the decoder side.
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Table 7.1: WZ and hash quantization matrix
band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
QI 1 16 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
QI 2 32 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
QI 3 32 8 8 4 4 4 0 0 0 0 0 0 0 0 0 0
QI 4 32 16 16 8 8 8 4 4 4 4 0 0 0 0 0 0
QI 5 32 16 16 8 8 8 4 4 4 4 4 4 4 0 0 0
QI 6 64 16 16 8 8 8 8 8 8 8 4 4 4 4 4 0
QI 7 64 32 32 16 16 16 8 8 8 8 4 4 4 4 4 0
QI 8 128 64 64 32 32 32 16 16 16 16 8 8 8 4 4 0

7.1.3 Genetic algorithm

As explained before, for some part of the SI, the decoder uses a GA algorithm for an hash-
based raffinement of the WE frame estimation process. A flowchart diagram of this GA is
shown in Figure 7.3. The GA operates at the block level. Initially, for a given block in the
WZ frame, each of the co-located blocks in the available SI candidate frames represents a
possible solution. A candidate solution is referred to as a chromosome, which consists of a
sequence of pixels (genes) arranged in a matrix to form a block. A population is a set of
chromosomes in the solution space. The similarity between a given chromosome and the
corresponding block in the WZ frame represents its fitness score, which is evaluated as the
inverse of the mean-square-error between the received hash word and a local hash word
extracted from the candidate block.
An initial population is first generated by duplicating each candidate block a number of
times proportional to its fitness, until the desired population size Sp is reached. The
chromosomes are then randomly shuffled and arranged into pairs. Each pair (parent chro-
mosomes) undergoes a vertical crossover followed by an horizontal crossover to yield a
couple of child chromosomes (called offsprings). Each of the crossover operations occurs
with a probability Pc. In order to extend the solution space and reduce the possibility of
falling into local optima, a mutation is performed on offsprings by randomly selecting a
gene and inverting one of its bits. Mutation usually has a very low probability of occur-
rence Pm [Chang et al., 2001]. The fitness of the resulting chromosomes is then evaluated
and a number Sf ≤ Sp of the most fit chromosomes is selected, while the others are deleted
to make room for new ones. The surviving chromosomes are then duplicated a number of
times proportional to their fitness and the whole procedure is repeated until the maximum
number Imax of iterations is reached. Finally, the fittest chromosome is chosen as the best
candidate to be used as side information for decoding the colocated block in the WZ frame.

7.2 Zoom on the three setting-dependent steps

Some of the steps presented in the algorithm above change whether they are involved
in a monoview or a multiview scheme. More precisely, as long as the block needs the
reference frames around, the adopted method would be different wether they are involved
in a monoview or multiview configuration.

7.2.1 Initial side information generation

The proposed hash SI algorithm is based on a first SI estimation. This WZ estimation is
based on the available reference frames. The adopted method depends on the number of
reference frames used for the SI generation process.
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Figure 7.3: Flowchart diagram of the genetic algorithm.
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Monoview: for a one-view setting, we generate the initial side information with an
interpolation algorithm. More precisely we use the efficient Discover interpolation tech-
nique. The reader can refer to Section 4.1.1 for more details.

Multiview: in a multi-camera configuration, more than two frames are available. More
precisely, this number depends on the adopted scheme (or frame type repartition in the
time-view space). The hash-based scheme is assumed to be integrated in a scheme named
symmetric 1

2 (see Section 3.1), where the type of frames is distributed as a chessboard in
the time-view space. Therefore, for the estimation of one WZ frame, four reference frames
are available. Two of them belong to the same camera as the WZ frame and are used to
generate a temporal interpolation (Discover). The two others belong to the neighboring
cameras at the same instant as the estimated WZ frame. They are used to generate an
inter-view interpolation (Discover). The two interpolations are then merged using the
proposed ErrNorm fusion method (see Section 6.2).

7.2.2 Side information block distortion estimation

For each block of the generated side information estimation, the decoder needs to esti-
mate the distortion without using the original frame. We propose here two approaches
(for monoview and multiview settings) which are based on the reference frames, and the
previously estimated motion/disparity vector fields.

Monoview: The technique used for this SI distortion estimation is the mean square of
the difference between the two motion-compensated reference frames, a technique usually
adopted for estimating the distortion while performing estimation fusion (see Section 4.2).
This approach works under the hypothesis that in the regions where the two motion com-
pensated frames differ, the SI would be badly estimated, and on the contrary, the fact the
two motion compensated reference frames are similar would signify that the SI estimation
is reliable. A visual result is shown in Figures 7.4 (a) and (b). One can see that the
transmitted hash blocks actually correspond to the regions where the side information has
important errors.

Multiview: The multiview approach is quite similar. Indeed, the decoder firstly
performs the difference between the motion/compensated reference frames (of the same
camera), and secondly the difference between the disparity compensated reference frames
(of the neighboring cameras). Then these two errors are combined using the coefficients of
the linear interpolation fusion ErrNorm (see Section 6.2). As for the monoview setting, we
compare in Figures 7.4 (a) and (b) the true error of the WZ estimation and the selected
hash blocks. One can see that the blocks are transmitted for regions where high errors
occur.

7.2.3 Candidates of the Genetic Algorithm

The genetic algorithm aims at merging a certain number of candidates. These candidates
are obtained by using different estimation methods (mainly interpolation).

Monoview: we propose to use the same set of candidates as in the original genetic
algorithm based fusion proposed by Yaacoub et al. [Yaacoub et al., 2009a]: an average be-
tween the two reference frames, a simple Motion-Compensated Interpolation (MCI) [Aaron
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(a) SI error (foreman) (b) hash blocks sent (foreman)

(c) SI error (outdoor) (d) hash blocks sent (outdoor)

Figure 7.4: Comparison between the true error and the selected hash blocks for foreman
and outdoor sequences.
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et al., 2002] and the Hash-based MCI (HMCI) [Aaron et al., 2004a]. Moreover we propose
to add the Discover interpolation.

Multiview: for multi-camera configuration, we propose to use all of the dense inter-
polation methods proposed in the previous chapter (CD, DC and V D). Each of these
three techniques generates one interpolation in the temporal direction, and one inter-view
estimation (i.e.,6 candidates). Moreover, each couple of temporal/inter-view estimations
is merged in order to generate three other candidates. The adopted fusion is again the
ErrNorm, because it is competitive and because it performs linear combination between
the pixels, and then creates real new candidates (compared to binary fusions which would
have given only a duplicate of existing candidates).

7.3 Experimental results

The results presented here have been obtained with three CIF (352× 288) test sequences
(foreman, mobile and football) for a GOP size of 2 (for monoview setting) and another test
sequence for multiview configuration: rectified outdoor (512× 384).
For the GA parameters, the following set was determined experimentally after intensive
simulations: Sp = 60, Sf = 40, Imax = 10, Pc = 0.8, Pm = 0.01.

7.3.1 First results

In this section, we present the first results obtained for the proposed algorithm. These pre-
liminary results have the purpose to set the best parameter values (especially the percentage
of hash information to be sent, and the quantization index used for its transmission). For
this reason, a set of experiments have been run on the three test video sequences of each
configuration (mono/multiview). The quantity of hash information transmitted can vary
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due to two parameters: the number of blocks which require a hash side information refine-
ment (measured in %) and the quantization level (given as a QI parameter, see Table 7.1).
We run several experiments in order to adopt the best configuration. We tested all of the
couples (%, QI) in the set {2%, 5%}×{QI 1,QI 2,QI 4,QI 6}. In these tests we measured
the rate, rH (due to the hash transmission), and the PSNR (the quality in dB) of the hash
SI. Then we performed the turbo decoding of these obtained hash SI and measured for
each couple the number of transmitted parity bits, and the quality of the final decoded
WZ frame.

Figure 7.5 presents the results obtained for foreman (average PSNR depending on the
average rate of either the hash bits or the parity bits) at a quantization step for the key
frames of 31. The different couples of points represent the rate-distortion values respec-
tively for the hash side informations and for the final turbo decoded WZ frames. Note that
the final turbo decoded rate is the addition of the hash rate and the required parity bits.

What is noticeable in Figure 7.5 and was confirmed for all sequences is that the best
couple is a percentage of 2% with a quantization of QI = 4. That means that the hash
sent has to be quite precise but its rate is quite low.

Besides, in our preliminary results we have seen that the genetic algorithm, in spite
of its complexity, brings a real interest compared to a simple direct hash-based fusion
or inverse DCT of the received hash. Indeed, in our tests, we obtained that a candidate
fusion done with the genetic algorithm could lead to an improvement of 0.2−0.5 dB for the
PSNR of the WZ estimation, compared to a simplest fusion (using the hash as reference
information). In the next section, we test the performances of the proposed hash algorithm
and compare the obtained rate-distortion results to the Discover reference scheme.

7.3.2 Rate-distortion results

The rate-distortion curves are shown in Figure 7.6 for the three mono-view CIF sequences
and in Figure 7.7 for the multiview sequence. It can be observed that, at high bitrates,
the performance of the hash-based scheme is always better than the reference. This is
explained by the fact that at these rates, the hash rate is low compared to the rate of
the parity information sent for turbo-decoding. On the contrary, at low bitrates, the
hash rate becomes too high and the performance of the hash-based scheme is degraded
for foreman and mobile. To measure the general gain, we use the Bjontegaard metric
[Bjontegaard, 2001]. Though for mobile the average gain is almost zero, for foreman
and football sequences with a less uniform motion, the gains are interesting. Indeed, the
decoded quality is improved by 0.14 dB for foreman and 0.19 dB for football. Moreover,
the rate reduction is around 2.7% for foreman and 3.0% for football. Improvements in the
multiview setting are also acceptable. For outdoor sequence, the PSNR improvement is
about 0.1 dB and the rate reduction is of −1.15%.

7.4 Conclusion

In this chapter, we have presented two new hash-based DVC schemes (one monoview and
one multiview) which present two novelties. Firstly, the hash information selection is
performed at the decoder (and not at the encoder as in the previous hash-based schemes)
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and thus uses the true side information. This information is more pertinent than the
knowledge of the true WZ frames, as it is the case when the hash selection is performed at
the encoder. Moreover, we propose to use a genetic based fusion algorithm which aims at
merging several efficient temporal and inter-view interpolations. The experimental results
confirmed that the proposed approach can lead to interesting improvements.

However, the proposed hash-based scheme has two drawbacks. These ones are already
existing classical disadvantages of DVC, but they are deepened in our architecture. Firstly,
our scheme accentuates the need of a return loop, since it performs the hash selection at
the decoder. Moreover, the decoding complexity is sensibly increased by all of the GA
candidates, especially in the multiview setting.
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Part III

Zoom on Wyner Ziv decoding

“A better understanding of what happens at the WZ decoder.”
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Chapter 8

Correlation noise estimation at the
Slepian-Wolf decoder

The most popular channel codes used in distributed video coding are the turbocodes or the
LDPC. Both of them require an estimation of the a priori probabilty of the variable X (to
decode) and its side information Y . The precision of this estimation has a strong impact
on the error correction efficiency, and thus on the quantity of parity information required.

This a priori probability, pX|Y (X), is also called correlation noise. Its estimation con-
sists in modelling the error distribution X − Y with a probability density function (pdf)
fX|Y (X). The Slepian-Wolf decoder performs the integration of this pdf to compute the a
priori probabilities used for error correction.

In this chapter, we first perform a detailed review of the existing correlation noise esti-
mations techniques (Section 8.1), and then we will propose to use the Generalized Gaussian
model intead of the commonly adopted Laplacian one (Section 8.2). Finally, based on the
observation that a better fitted distribution does not necessarily improve the decoding effi-
ciency, we propose a more complete study in Section 8.3.
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The purpose of several works on correlation noise for distributed video coding was to
estimate a faithful disribution, and almost all of them are based on a Laplacian model. The
problem is that the frame X is not available at the decoder, and thus the distribution of
error X−Y cannot be directly estimated. Two approaches are considered in the literature:

• Offline - In this configuration, the true error X − Y is used for correlation noise
estimation. It is unrealistic since this estimation is performed at the decoder, but it
gives interesting results of “ideal” estimation (like an oracle). The offline configuration
is represented in red in Figure 8.1.

• Online - In this approach, the error X − Y is estimated by another residual. This
residual is usually [Girod et al., 2005; Artigas et al., 2007a] Y1−Y22 , where Y1 and Y2

are two versions of the side information, like the two motion compensated reference
frames. This is shown in the green part of Figure 8.1.

8.1 State-of-the-art: existing models

All of the existing solutions use a Laplacian model for the correlation noise estimation.
The Laplacian distribution is given by

∀x ∈ R, flap(x) =
1

2α
e−
|x|
α where α ∈ R+∗.

This model is popular since it roughly corresponds to the true error distribution in practice
(we will see in Section 8.2 that it often happens that the model is limited and does not
propose a good and fine description of the distribution). Another reason of its utilization
is its simplicity. Indeed, only one coefficient, α has to be estimated and it is a memory less
model.
It is however obvious that the error is not stationary (in time and space), because the
motion activity differs in different regions of the image and at different instants in the
sequence. The α parameter can thus be estimated at different levels of precision, while
dealing with the compromise between time or space precision (α estimated with a few
samples) and the statistic precision (α estimated with a lot of samples).
The literature proposes several ways of estimating α. They differ from the level of precision
(sequence, frame, band, macroblock, coefficient, pixel) and from domain (transformed or
pixel). The following is a description of some of these methods. One of the most relevant
work is the one by of Brites et Pereira [Brites, Pereira, 2008] who give a detailed comparison
of each level of precision. Most of the methods described in the following review of literature
come from this work. In the following section, the estimation error variance is denoted by
σ2 when it is calculated with the true original frame (offline) and σ̂2 when it is calculated
with the residual (online setting).

8.1.1 Pixel domain

For pixel domain distributed video coding schemes, the channel encoding/decoding of the
WZ frames is performed in the pixel space, and then, the correlation noise is also estimated
as a pixel estimation error. All of the different existing levels of precision are represented
in Figure 8.2. The major works in correlation noise estimation in pixel-domain have again
been proposed by Brites et al. [Brites et al., 2006d; Brites et al., 2006c].
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Figure 8.1: Online and offline general description for correlation noise estimation at the
Wyner-Ziv decoder
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Figure 8.2: Existing levels of precision for α parameter estimation in pixel domain.
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8.1.1.1 Sequence level

The sequence level parameter estimation consists in setting one value of α for the whole
sequence. In [Brites et al., 2006d], Brites et al estimate this parameter offline. They
compute the average variance of the error, σ2

sequence along the sequence and deduce αoffsequence

from the well-known relation
αoffsequence =

σsequence√
2

.

In this case, we have a very coarse approximation of the correlation between the Wyner-Ziv
frame and its side information, because the assumption of stationarity along the sequence
is not often verified. Moreover this sequence level approach is not proposed with online α
estimation.

8.1.1.2 Frame Level

The frame level precision starts to overcome the non-stationarity of the noise correlation.
Indeed, instead of calculating the α for all the sequence, it is evaluated for each frame.
The process is however similar to the one of the sequence level. Indeed, for the offline
setting, the variance of the estimation error, σ2

frame, is calculated and used for deducing
the corresponding αframe:

αoffframe =
σframe√

2
.

For the online setting, instead of the true error variance, the decoder calculates the variance
of the residual, σ̂2

frame, (the difference between the two motion compensated frames divided
by two):

αonframe =
σ̂frame√

2
.

For distributed video coding in a multicamera configuration (with hybrid or symmetric
frame type repartition, see Section 3.1.1 for more details), Avudainayagam et al. adopt
a similar approach in [Avudainayagam et al., 2008] but take into account the 4 reference
frames (instead of 2).
Deligiannis et al. in [Deligiannis et al., 2009] also proposed a Laplacian frame level noise
correlation estimation, but their Laplacian model is a little more sophisticated because it
takes into account the variance of the side information.

8.1.1.3 Block level

The temporal non-stationarity (along the sequence) is resolved by frame level precision.
On the other hand, it is accepted that the correlation noise is also spatially non-stationary.
Since some regions of the image are badly estimated (occlusions, rapid motion, etc.) and
other are well estimated. That is why Brites et al. propose to be more precise and decide
to evaluate α for each 8× 8 macro-block. The evaluation method slightly differs from the
other level. Indeed the estimation error variance is calculated block by block but now, this
value is taken into account only if the block variance is greater than 1 for offline setting1

1to avoid a zero or too little value
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and greater than the frame variance:

αoffblock = max

{
σblock√

2
,

1√
2

}

αonblock = max

{
σ̂block√

2
, αonframe

}

This approach reflects the choice, in online setting, to overestimate the noise correlation,
i.e.,to set the lowest αblock at αframe. In fact, the behind assumption is that the correlation
is stationary except where the side information diverges.

8.1.1.4 Pixel Level

Because the block stationarity is still a too strong assumption, Brites et al. propose to
refine once more the α estimation by adopting a similar approach for pixel estimation. In
other words, the block evaluation is assumed to be stationary except when the square error,
e2
pixel is lower than the block error variance for online setting (and greater than 1 in offline
configuration). Moreover, for online estimation, the technique also takes into account the
quantity Dblock which is the square of the difference between the average of residual on the
block and on the entire frame.

αoffpixel =

{
1√
2

if σ2
block ≤ 1

|epixel|√
2

if σ2
block > 1

αonpixel =





αonframe if σ̂2
block ≤ σ̂2

frame

αonblock if σ̂2
block > σ̂2

frame and Dblock ≤ σ̂2
frame

αonblock if σ̂2
block > σ̂2

frame and Dblock > σ̂2
frame and ê

2
pixel ≤ σ̂2

block
|êpixel|√

2
if σ̂2

block > σ̂2
frame and Dblock > σ̂2

frame and ê
2
pixel > σ̂2

pixel

The Brites method is more advanced than the one of Qing et al. [Qing et al., 2007]
which does not perform such thresholding considerations and then sometimes diverges.

8.1.2 Transform domain

Transform domain noise correlation also consists in estimating an error variance, σ, and
deduces the value of α by the same relation used in the spatial domain. Nevertheless,
the error variance is estimated in the transform domain (commonly 4× 4 DCT) and must
be different for each of the 16 bands. The “transform domain” estimation is thereby exe-
cuted for each band, and as before, the existing methods vary from their level of precision
(Figure 8.3). In the following, band denotes the band index.

8.1.2.1 Sequence level

As in the pixel domain configuration, the estimation error variance along the sequence is
estimated but this time, σ2

sequence(band). The α calculation is then:

αoffsequence(band) =
σsequence(band)√

2
.

It does not exist an equivalent online estimation, whereas it would not be difficult to extend
the previous equation to online settings, but the inprecision due to temporal and spatial
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Figure 8.3: Existing levels of precision for α parameter estimation in DCT domain.
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stationarity assumption, added to the inprecision of the residual, would lead to a too coarse
estimation of α.

8.1.2.2 Frame Level

The frame level precision α estimation is obtained by once again calculating the estimation
error variance for each band and for each frame, and thus having

αoffframe(band) =
σframe(band)√

2

αonframe(band) =
σ̂frame(band)√

2
.

In [Slowack et al., 2009], Slowack et al propose to take into account the quantization
noise in the online setting α estimation for a frame level precision. Indeed, the residual
is obtained by calculating the difference between the two motion compensated reference
frames which are quantized. The method is quite efficient especially when the quantization
is very coarse.

8.1.2.3 Coefficient level

The estimation of α at coefficient level proposed by Brites uses the quantity |t(band, coefficient)
(respectively t̂(band, coeff)|) which is the 4 × 4 DCT transform of the image error (re-
spectively of the residual) for an offline (respectively online) setting. The αcoeff (band) is
given by

αoffcoeff (band) = max

(
1√
2
,
|t(band, coeff)|√

2

)

αoncoeff (band) = max

(
αonframe(band),

|t̂(band, coeff)− µ(band)|√
2

)

where µ(band) is the mean of t̂(band, coeff) with respect to coeff .

Several works in the literature adopt the coefficient level precision. They propose
alternative approaches but retain the same hypotheses: a Laplacian model whose parameter
is estimated for every coefficient of each band. Dalai and Pereira [Dalai et al., 2006]
estimate α as a function of global frame statistics (error variance per band) and also based
on the confidence the decoder can have in the side information (which is estimated by the
residual). Later, Esmaili et al. [Esmaili, Cosman, 2009] determine a set of several modes
(of possible α values), then the decoder guess coefficient by coefficient the most appropriate
mode (the modes correspond in fact to different statistics in the scene as background, rapid
motion object, etc.). The ideas of coefficient classification is also adopted in Huang and
Forchhammer work [Huang, Forchhammer, 2009].

8.1.3 Performance evaluation

All of these works demonstrate that refining the correlation noise model sensibly improves
the performances. However, the gains are quite limited in some cases, like the results by
Brites have shown. Indeed, switching from a frame level to a pixel level precision for on-
line setting reduces the required rate by 6%, which is acceptable, but only by 0.5 in some
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situations depending on the sequence and the bitrate. Rate gains can be greater in offline
settings but they do not transpose in the same proportion in the RD gains. Nevertheless,
they show what can be the maximum evolution gap and encourage to continue the corre-
lation noise model refinement, even though the gains are each time limited.

The performances also show that a coefficient level precision does not bring acceptable
gains especially in online settings. Indeed, it is useless to be very precise with a residual
which is already a limited estimation. That is why, in the following, we adopt a DCT frame
level precision, while still comparing our proposition to coefficient level configuration, which
is actually the reference in correlation noise estimation.

8.2 Proposed model: Generalized Gaussian model

As it can be seen in Figure 8.4 the Laplacian model does not always fit the error distribution
in distributed video coding and a refinement of the model seem to be justified. We thus
propose here to use the more general Generalized Gaussian (GG) model which is potentially
enable to better fit the true distribution.

• T. Maugey, J. Gauthier, B. Pesquet-Popescu, and C. Guillemot, “Using an
exponential power model for wyner-ziv video coding,” in Proc. Int. Conf. on
Acoust., Speech and Sig. Proc., Dallas, Texas, USA, Mar 2010.

• J. Gauthier, T. Maugey, B. Pesquet-Popescu, and C. Guillemot, “Améliora-
tion du modèle statistique de bruit pour le codage vidéo distribué,” in Proc.
GRETSI, Dijon, France, Sep. 2009.

The material in this section was published in

8.2.1 Definition and parameter estimation

The pdf of Generalized Gaussian (or Exponential Power Distribution, EPD) with zero
mean and parameters α ∈ R∗+ and β ∈ R∗+ reads

fgg(x) =
β

2αΓ
(

1
β

)e−
(
|x|
α

)β
,

where Γ(x) =
∫∞

0 tx−1e−tdt is the classical “gamma” function. Several methods are avail-
able to compute the parameters of an EPD, among them the maximum likelihood esti-
mation and the moment estimation. In this section we give some details about these two
classical estimation methods, which will then be compared in the DVC framework.

8.2.1.1 Moment estimation

A first idea to estimate (α, β) is to compute the moments of order 2 and 4, leading to:

µ2 = α2
Γ
(

3
β

)
Γ
(

1
β

) and µ4 = α4
Γ
(

5
β

)
Γ
(

1
β

) . Combining these two formulas, the kurtosis κ can be
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expressed as a function of β: κ = µ4
µ22

=
Γ
(

5
β

)
Γ
(

1
β

)
Γ
(

3
β

)2 = g(β). Finally, the parameters α and

β can be estimated by:

β̂ = g−1(κ), α̂ =

√√√√√
Γ
(

1

β̂

)

Γ
(

3

β̂

)µ2. (8.1)

This method thus relies on the estimation of the variance and kurtosis of the observed
samples, and on the inversion of the function g : R∗+ → R∗+. This function being strictly
decreasing, it is possible to compute a unique g−1(κ) for all κ ∈ R∗+.

8.2.1.2 Maximum likelihood estimation

Our goal in this section is again to find an estimation of α and β given a set of independent
observations ξ = (ξi)1≤i≤N . The pdf of the joint distribution reads

Fα,β(ξ) =


 β

2αΓ
(

1
β

)



N

e
−∑N

i=1

(
|ξi|
α

)β
.

The anti log-likelihood can be expressed as:

p(α, β|ξ) = − ln(Fα,β(ξ)) =

N∑

i=1

( |ξi|
α

)β
+N


ln(α)− ln


 β

2Γ
(

1
β

)




 . (8.2)

To minimize the anti log-likelihood, which is tantamount to maximizing the likelihood, we
first differentiate p(α, β|ξ) with respect to α:

∂p(α, β|ξ)

∂α
= − β

αβ+1

N∑

i=1

|ξi|β +
N

α
.

Looking for the zeros of this partial derivative we get αmin as a function of β:

αmin =

(
β

N

N∑

i=1

|ξi|β
) 1

β

. (8.3)

Combining (8.2) and (8.3), we obtain:

p(α̂, β|ξ) =
1

β
− ln


 β

Γ
(

1
β

)


+

1

β
ln

(
β

N

N∑

i=1

|ξi|β
)

= h(β).

Finally, we compute β̂ as the argmin of h and we get α̂ by replacing β by β̂ in (8.3).

8.2.1.3 Comparison

Both methods are tested against different generated EPD vectors with given parameters
(α, β). The size of the observation vector was set to 6336 to match the number of coefficients
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in a DCT subband of a CIF video frame. For the different chosen parameters, the computed
values were very close to the real ones with both methods (the mean square error being less
than 10−3). In Table 8.1, the variances of the estimated parameters over 100 observation
vectors are reported. While with both methods and for all the tested combinations of
parameters the variances on the estimated parameters are small, the moment method
presents a slightly higher deviation. It should finally be noted that the complexity of the
moment method is sensibly lower than that of the maximum likelihood method (with our
Matlab implementation, the moment method is almost 80 times faster).

(α, β) Moment ML
(1.5, 1) (0.116, 0.048) (0.052, 0.022)
(3, 2) (0.054, 0.065) (0.036, 0.032)
(1.25, 1.5) (0.033, 0.047) (0.028, 0.037)

Table 8.1: Standard deviations over 100 observed vectors of (α̂, β̂) for different values of
(α, β) (corresponding to Laplacian, Gaussian and Generalized Gaussian distributions).

8.2.2 Approach validation

Before testing the benefits of using a more precise estimation, we study whether the de-
coding performances are improved by using a model which better fits the actual noise
distribution.
For a band b, the error discretly lies between a minimum value,min, and a maximum value,
max. In this range, a model is estimated at the decoder, the obtained function is denoted
by f (the associated discrete probability mass function, i.e.,the discrete value multiplied
by the length of the bin, is denoted by f∗). Let Hb be the distribution of the error (i.e.,the
histogram of error values). To evaluate the discrepancy between Hb and f , many classical
measures can be considered. We have chosen the following family of functions:

da(f,Hb) =

max∑

n=min

|f∗(n)−Hb(n)|a ,

where a ∈ R∗+. For each band b of a given frame, two models are estimated, f1 and f2.
The decoding of this band is performed and the obtained rate is denoted by r1

b if f1 has
been used for calculating the a priori probabilities for the turbo decoding (respectively r2

b

if f2 has been used). We recall that this rate corresponds to the number of bits required
to reach a bit error probability lower than 10−3. Let a be in R∗+ and let us introduce the
following Hypothesis, Hyp:

For each band, ∀(i, j) ∈ [1, 2]2, i 6= j,

da(fi, Hb) ≤ da(fj , Hb)⇔ rib ≤ rjb

Minimizing the distance between Hb and f , i.e.,improving the error distribution model,
is justified only if Hyp is true. For four CIF test sequences, we test for every band of
every frame if Hyp is verified. In the experiments, f1 and f2 correspond to respectively a
Laplacian and an EPD distributions. The obtained results are presented in Tab. 8.2 for
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Figure 8.4: Examples of error distributions and the best fitted Laplacian model, for differ-
ent bands and different sequences.
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d2 d1 d
1
2 d

1
3

waterfall 97 97 97 97
foreman 94 91 91 97
football 82 94 94 82
mobile 94 85 88 88

Table 8.2: % of measures where Hyp was verified.

a ∈ {2, 1, 1
2 ,

1
3}, corresponding to the most representative values among the experimental

set.
The obtained statistics show that there is a strong correlation between the distances da

and the measured rates. In other words, attempting to fit well the histogram is justified
by the fact that in this way it is likely to improve the performances. Based on this idea,
in the next section we test the performances of the EPD distribution.

8.2.3 Experimental results

In the previous section we proved that fitting well to the error distribution can improve
the coding performances. In this section we test the coding efficiency of using an EPD
instead of the classical Laplacian model employed in the literature.

8.2.3.1 Experimental setting

The presented experimental results were obtained with the DVC scheme described in the
introduction. Tests were run on two CIF video sequences: “City” and “Football” (352×288,
30Hz) and one QCIF sequence: Foreman (176× 144, 15Hz). The 100 first frames (50 KFs,
and 50 WZFs) of each sequence are coded, and for each coding configuration, the average
rate (in kbs) has been measured. To cover a wide range of rates, the methods have been
tested at four quantization levels (Q-Index for the WZFs | Q-Step for H.264 intra coding
of the KFs) chosen as follows: 1|42, 4|34, 6|31 and 8|28.
Tests are run both for the Laplacian and the EPD models, with the online and offline
coefficient estimation modes. For the EPD model, the maximum likelihood (ML) and mo-
ment (Mom) estimation methods are both employed for “on/offline” parameter prediction.
Results are shown in Tab. 8.3, presenting the average rate gain (in %). These gains are
estimated with the Bjontegaard metric [Bjontegaard, 2001]. Additional results are shown
in Tabs. 8.4 and 8.5, presenting the bitrates obtained by different methods for the four
quantization levels on the CIF Football sequence and QCIF Foreman sequence. Finally,
Fig. 8.5 presents the RD results of the different models for the CIF Football sequence. The
following notations are used in these tables: “Lapl” stands for Laplacian method and “On”,
resp. “Off” mean online and offline estimation modes.

8.2.3.2 Comparison in the offline setting

We first compare the results of the different methods in the offline mode. The corresponding
results on the test sequences can be read from the first two lines of Tab. 8.3, 8.4 and 8.5
and from the red plots of Fig. 8.5. We see that on both videos the EPD model (in ML or
Mom case) needs a smaller bitrate than the Laplacian model, with average bitrate gains up
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to 3.73% for Football (CIF) and 1.78% for Foreman (QCIF). At high bitrate for these two
sequences, the transmission rate can be reduced by 194kbs with a CIF video and 44kbs
with a QCIF sequence. Another interesting conclusion is that the maximum likelihood
estimation performs systematically better than the moment method.

8.2.3.3 Comparison in the online scenario

A second comparison is performed in the online mode. The results in this case are reported
in the third and fourth lines of Tab. 8.3. Black plots in Fig. 8.5 also present the online mode
results for the Football sequence. Once again, the EPD model outperforms the Laplacian
model. Yet, it is interesting to note that unlike the offline setting, the moment method
yields better results than the ML, meaning that the moment estimation method seems
more robust. The bitrate gain reaches 4.3% for the Football (CIF) sequence and 1.88%
for the Foreman video (QCIF). In Tabs. 8.4 and 8.5 we see that in the online mode the
EPD method reduces the transmission rate by 128kbs for a CIF video and by 46kbs for
a QCIF sequence when compared with the Laplacian method. This realistic scheme also
outperforms H.264 intra coding (7% of rate saving, and 0.35dB of quality improvement for
the Football sequence).

8.2.3.4 Comparison between the offline and online settings

Finally, we compare the results obtained in the offline and online settings. Considering the
fifth and sixth lines of Tab. 8.3, it is worth noting that the loss incurred by switching from
offline to online is slightly higher with the Laplacian model.
The last considered case is the comparison between Laplacian offline and EPD online, with
results reported in the last line of Tab. 8.3 and in Fig. 8.5. It is interesting to note that
the online results obtained with EPD are better than the offline results with the Laplacian
model for the Football and Foreman sequence. In other words, it means that the EPD
model with parameters computed without knowledge of the original WZ performs better
than the Laplacian model with parameters estimated with this knowledge. For the City
sequence, these rates are close (0.44%) when considering the whole bitrate range. Note
that for this last sequence with high bitrates (1600kbs to 4000kbs), we observe that the
EPD online performs slightly better (0.75% gain in bitrate) than the Laplacian offline.

Method 1 Method 2 City Football Foreman
Lapl Off EPD Off ML -0.96 -3.73 -1.78
Lapl Off EPD Off Mom 1.21 -3.61 -1.52
Lapl On EPD On ML 0.36 -3.29 -0.90
Lapl On EPD On Mom -1.3 -4.30 -1.88
Lapl Off Lapl On 1.73 2.67 1.53
EPD Off ML EPD On Mom 1.4 2.10 1.39
Lapl Off EPD On Mom 0.44 -1.64 -0.38

Table 8.3: Rate gains (%) by method 2 over method 1 on City, Football (CIF, 30Hz) and
Foreman (QCIF, 15Hz) sequences.
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Figure 8.5: Rate-distortion performance for football sequence, CIF, 100 frames, 30 fps.

8.2.3.5 Discussion

Knowing that a better fitted distribution enables an improvement of the RD permormances,
the purpose of these tests is to measure the reliability of the EPD model. Experimental
results have shown that the EPD model is finer than the Laplacian one, yielding bitrate
improvements on the considered test sequences. Improvements may of course vary from
one video to another depending on how close the residual distribution is to a Laplacian
one. We also want to emphasize that the gains obtained in this paper can be compared
to those offered by other works involving refinements of the noise model [Brites, Pereira,
2008; Brites et al., 2006d].
Moreover, another purpose of this work was to propose a realistic model, in the sense that
it does not need the knowledge of the original WZ frame. This is precisely what is shown
in Sec. 8.2.3.3 and 8.2.3.4. Indeed, we proposed an efficient online solution, which even
outperforms the offline standard technique in some cases.

8.3 A more complete study

8.3.1 Motivations

Results presented in the previous section were satisfying for a set of sequences (of different
spatial and temporal resolutions), and thus proved that refining the model by using a more
general distribution could be an amelioration of the system.
However, while testing the GG efficiency, we obtained some suprising results. Indeed, in
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PSNR (in dB) 28.49 32.64 34.31 38.38

Lapl OFF 531 1402 2066 3916
EPD OFF MV 519 1351 1988 3722
∆rate (kbs) −12 −51 −78 −194
Lapl ON 552 1448 2103 3953
EPD ON Mom 532 1380 2019 3825
∆rate (kbs) −20 −68 −84 −128

Table 8.4: Rate results (kbs) on the Football sequence (CIF, 30Hz) for different values of
average PSNR.

PSNR (in dB) 31.36 34.4 36.44 39.94

Lapl OFF 225 424 624 1055
EPD OFF MV 224 421 611 1009
∆rate (kbs) −1 −3 −13 −44
Lapl ON 227 432 632 1080
EPD ON Mom 226 425 622 1034
∆rate (kbs) −1 −7 −10 −46

Table 8.5: Rate results (kbs) on the Foreman sequence (QCIF, 15Hz) for different values
of average PSNR.

some situations (an example in Figure 8.6), the GG distribution which fits the true error
distribution much better than the Laplacian in the offline setting, leads to the same rate
for a equivalent decoded quality. In other words, in some cases, a better fitted distribution
does not lead to a compression improvement.

Based on this observation, we aim at understanding what does a “good fitted” distri-
bution mean. In other words, we need to study under which metric (MSE or another) the
model has to fit the true error. Experimental principles and their results are presented in
next section.

8.3.2 Experiments and results

8.3.2.1 Experiments setting and results

We denote the histogram of the true error by h(x) where x is a possible error value. Let
fα,β be the pdf of a proposed GG model whose parameters are (α, β). In the following
we aim at determining an appropriate distance metric d for measuring the difference be-
tween the histogram and the model, d(h, fα,β). A distance, d would be appropriate if when
d(h, fα,β) is minimum, the turbodecoding with fα,β model is optimal. The distance is in
fact computed with the discrete version of fα,β denoted by f∗α,β , whose values correspond
to the values of fα,β multiplied by the bin length.

The most obvious distance is the SSD distance:

dSSD(h, fα,β) =
∑

x

(
h(x)− f∗α,β(x)

)2
.
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Figure 8.6: Two distributions modelling the true error histogram. They both allow a
transmission with the minimum rate (corresponding to 12 turbodecoder requests) whereas
one is far better fitted than the other.

The SSD, because of the square, penalizes high differences between the histogram and its
model. Moreover this distance does not take into account the amplitude of the error x,
i.e.,a difference between the model and the histogram would cost the same price for a low
or high error x.

If we want to avoid the high difference penalization, one can replace the square by a
power lower than 1 (1

2 for example):

d 1
2
SD(h, fα,β) =

∑

x

∣∣∣h(x)− f∗α,β(x)
∣∣∣
1
2
.

Another classical distance is the Kullbach-Leiber distance (KLD) [Kullback, Leibler,
1951], which is designed for pdf similarity description:

dKLD(h, fα,β) =
∑

x

h(x) log
h(x)

f∗α,β(x)
,

or

dKLD(h, fα,β) =
∑

x

1

2

(
h(x) log

h(x)

f∗α,β(x)
+ fα,β(x) log

f∗α,β(x)

h(x)

)
,

for its symmetric version. Contrary to SSD, the KLD penalizes high ratios (and not high
differences). In other words the KLD would advantage the distribution which performs a
good fitting on the queue of distribution (where h(x) is lower, i.e.,when x is higher). In
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the following dKLD denotes the symmetric KLD.

In order to test the reliability of these metrics, for all of the bands of several frames of
different video sequences at various quantization steps, we propose to make the following
experiment. Having an error histogram (offline) h(x), and the Discover estimated Lapla-
cian fα̂,1, we run the turbodecoding of a same side information, with a large number (600)
of different GG fα,β and measure the required rates for the current band. The different
distributions are generateed randomly around the initial Laplacian pdf. Besides, for each
of the distribution we measure the distance to the true histogram.

For each distance we count the number of times when the following assertion is true
over the whole database:

∀α1, α2, β1, β2 ∈ R, d(fα1,β1 , h) ≤ d(fα2,β2 , h)⇔ rα1,β1 ≤ rα2,β2 , (8.4)

where rα,β is the required rate for turbodecoding the SI under the model fα,β , all the
decoded frames having the same quality.

The obtained statistics indicate that the KLD is the most appropriate metric among
the three proposed measures, but without obtaining a constant and acceptable percentage
of Equation (8.4) truthfulness. Indeed, the validation of assertion in Equation (8.4) could
reach 95% in some cases but 80% in other configurations (band, sequence, etc.)2. There-
fore, it could be interesting to investigate more deeply the obtained results by displaying
the 3D surfaces: (x = α, y = β, z = rα,β) and (x = α, y = β, z = dKLD(h, fα,β)).

In Figures 8.7 and 8.8, we present two typical examples. Before commenting them,
a little explanation of what is displayed is needed. Firstly, we generate a set of 600
random parameter couples (α, β) in a relatively wide but realistic range (based on many
observations): 0 < β < 2 and 20 < α < 90.

For each of the 600 couples (α, β) we measure the required rate (denoted by rα,β) by
the turbodecoding of the corresponding band, with the a priori information calculated
based on fα,β . Moreover, for each couple, we measure the distance dKLD(h, fα,β). For
both figures, we present the results as explained in the following:

• (a): the representation of the histogram (blue), the pdf (or one of the pdfs) which
achieves the lowest required rate (in red) and the pdf which reaches the minimum
distance to the histogram (in green).

• (b): 3D representation of the obtained rate (expressed in number of requests) as a
function of the coefficients α and β. On the left, the cloud of points is represented in
3D, on the right, an horizontal projection is illustrated. The crosses represented in
red correspond to couples which reach the minimum rate, i.e.,the optimal distribution
models.

• (c): similar 3D representation as in (a) with the KLD instead of the rate. The red
crosses still correspond to the couples which obtain the minimum rates, and the green
point indicates the couple which achieves the minimum distance, i.e.,the estimation
of the best distribution model (which is not necessarily the real optimal model).

2Thus, precise average statistics would not give interesting information.
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Figure 8.7: Example of experimental results obtained for soccer sequence. The pdf distri-
bution which obtained the minimum rate (respectively the minimum KLD distance to the
histogram) are in red (respectively in green).

−200 −150 −100 −50 0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

error x

e
rr

o
r 

p
ro

b
a
b
ili

ty

 

 pdf with minimum rate

pdf with minimum distance

Error histogram h(x)

(22.98, 0.86)

(22.89, 1.12)

(a) Estimation of the true error distribution h(x)

20

40

60

80

100

0.5

1

1.5

2
15

20

25

30

35

40

αβ

n
u
m

b
e
r 

o
f 
re

q
u
e
s
ts

20 30 40 50 60 70 80 90
0.5

1

1.5

2

α

β

(b) rate in function of α and β (3D representation on the left, and up view on the right).
Red crosses correspond to the minimum rates.

20

40

60

80

100

0.5

1

1.5

2
0

1

2

3

4

5

6

7

αβ

d
is

ta
n
c
e

20 30 40 50 60 70 80 90
0.5

1

1.5

2

α

β

(c) KLD distance between the model and the error histogram as a function of α and β
(3D representation on the left, and up view on the right). Red crosses correspond to the

minimum rates and the green square is the minimum distance.



204 8. Correlation noise estimation at the Slepian-Wolf decoder

Figure 8.8: Example of experimental results obtained for mobile sequence. The pdf distri-
bution which obtained the minimum rate (respectively the minimum KLD distance to the
histogram) are in red (respectively in green).
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8.3.2.2 Discussion

If we analyse the two cases displayed in Figures 8.7 and 8.8, we observe than in the first
one the green distribution (with the minimum KLD) does not achieve the minimum rate
(i.e.,the green point is out of the red point zone in subplot (c)) while in the second the
minimum distance pdf achieves a minimum rate.

The main observation we can make about these results is the following. In one case
(Figure 8.7) only two distributions (very similar) achieve a minimum rate and a small
modification of the optimal α or β implies a rate improvement. In other words, the (α, β)
determination strongly impacts on the turbodecoding rates. It can be seen by observing
the red and green pdf which are quite similar, and lead to totally different rates. Figure 8.8
shows a totally different case of figure: the red zone (corresponding to the minimum rate) is
very wide which means that almost all tested couples (exactly 85%) achieve the minimum
number of requests. It can also be observed in Figure 8.8 (a), where the plotted pdf are
very different, but achieve a similar rate.
The second observation happens in any band of every sequence, it is not a isolated example.
This could explain the limits of GG refinement that we described at the beginning of
Section 8.3.

8.3.3 Conclusion

The conclusion of these experiments is firstly that the GG model works always better
or at least similarly to a Laplacian one, which justifies the proposition of using a GG
model. Moreover, it was observed that sometimes a better fitted distribution improves the
performance. However, it is also observed that refining the model is not necessarily the only
criterion that matters for improving the RD performances, the choice of the distance being
probably also to be further studied. Moreover, these observations may also be explained
by the fact that the correlation is not stationary over the frame, and a memoryless model
cannot be the best solution. This was tackled in some very recent works by using Hidden
Markov Model (HMM) [Toto-Zarasoa et al., 2010] or particle filtering [Stankovic et al.,
2010]. In addition to spatially correlated models, informed models (e.g. , using hash) may
probably better respond to this problem.
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Chapter 9

Side information quality estimation

The study presented in Part II has shown that distributed video coding performances strongly
depend on the quality of the side information. Indeed, an estimation Y (performed at the
decoder) close to the original frame X would require a few parity bits for error correction.
The purpose of side information construction is to build the best estimation. The problem
studied in this chapter is the meaning of “best estimation”. The most popular distortion
measure for side information quality is the PSNR with respect to the reference WZ frame,
but nothing assures that this represent the best evaluation in this specific framework, and in
this chapter we try to show why. In Section 9.1 we present some tests which point out the
limits of a PSNR measure. In Section 9.2, we describe the existing measures for SI quality
estimation in a DVC context, and in Section 9.3 we present some novel measures. Then,
we compare state-of-the-art measures and the proposed ones (in Section 9.5) in several
experimental conditions.
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9.1 Motivations

PSNR metric is used almost always when dealing with side information estimation. The
literature shows that, often, a PSNR gain for the side information results a PSNR gain (or
rate saving) for the decoded video. However it is known that this is not always the case. For
example, Kubasov, in [Kubasov, 2008], presented one case where one side information has a
better PSNR than another, but after decoding, the second one has a better reconstruction
for a lower rate. In other words, there exist some cases where the PSNR metric is not
reliable for predicting the impact on the end-to-end rate-distortion performances.

In this chapter, we extend the Kubasov study and propose a more complete analysis
of PSNR metric performance. Moreover we test the Kubasov metric, SIQ, and our metric
based on the Hamming distance.

In Kubasov thesis manuscript [Kubasov, 2008] the two side informations were generated
by a motion interpolation method and a simple spatial interpolation method. Here, we
present another “artificial” example. The video sequence is foreman, in CIF format, at 30
frames per second. For the frame number 10, we generate two side informations. One is
constructed with the Discover interpolation of frame 9 and 11 (Figure 9.1 (a) and first
line of Table 9.1). The PSNR of this estimation is 29.05 dB. The second side information
(Figure 9.1 (b) and second line of Table 9.1) was built by adding a uniform random noise
on the original frame in order to obtain the same PSNR (29.04 dB). Then both side
informations were turbodecoded with the same conditions (QI=8 for the WZ quantization).
Results are presented in Table 9.1 and show that in spite of an equivalent PSNR, the two
side informations do not obtain the same decoding performances. Indeed, the Discover
interpolation allows to obtain a decoded frame at a PSNR of 39.29 dB, using a rate of
137.28 kb, while the artificial noisy estimation needs more rate (192.46 kb) and leads to a
poorer decoded image (35.40 dB).

Table 9.1: An example of the limits of PSNR metric as a side information quality measure.
Type of SI PSNR of the SI (dB) rate (kb) decoded PSNR (dB)

DISCOVER interpolation 29.05 137.28 39.29
Original + Artificial noise 29.04 192.46 35.40

In this particular case, we can see that the PSNR does not give a good information on
the evaluation of the SI quality. The purpose of this chapter is to determine if this example
is isolated and rarely happens in practice, or on the contrary if we can better understand
when the PSNR can be trusted and when it presents its limits (and in this case, if the
proposed metrics are reliable).

9.2 State-of-the-art

9.2.1 PSNR metric

The Peak-Signal-Noise-Ratio (PSNR) was developed to estimate the image quality in gen-
eral, in presence of a reference. For example, it is used to estimate the noise in an image,
I, while comparing it to its original, Iref . In case of classical images (i.e.,the pixel values



209

(a) (b)

Figure 9.1: The two side informations of the example in Table 9.1: (a) Discover29.05 dB
and (b) artificial noise 29.04 dB.

have a dynamic of 255) its expression reads:

PSNR = 10 log10

(
2552

MSE

)

where MSE is the Mean Square Error between the image and its reference:

MSE =
1

Nwidth ×Nheight

∑

p∈J1,NheightK×J1,NwidthK

(
I(p)− Iref (p)

)2
.

The PSNR is known to be a first order estimator of human visual perception, because of the
mean-square error. Indeed, human vision is more sensible to high magnitude differences,
and MSE penalizes high errors (in opposition for example with MAD, the Mean Absolute
Difference). This metric is then commonly adopted to evaluate image and video quality,
even though it is far from being perfect and its drawbacks have been largely discussed
in the literature [Wang, Bovik, 2009][Girod, 1993]. For example, an image shifted to one
pixel left would have a very poor PSNR, although human vision would see no difference.
Furthermore, in video coding, PSNR does not take any temporal aspects into account,
despite the fact that our perception is very sensible to motion activity.
Whereas PSNR presents some limits to estimate the decoded video quality, it is not the
point of our study, and then we keep the PSNR to measure the distortion at the output
of the decoder. Here we study the limits of the PSNR in its role of estimating the side
information quality. We investigate why PSNR would be justified whereas there is no
visual consideration before turbodecoding.

9.2.2 SIQ

In his PhD thesis [Kubasov, 2008], Kubasov proposes a novel metric that he called Side
Information Quality (SIQ). Instead of using a squared error, he defines the SIQ metric
using a squared root:

SIQ = 10 log10


 2552

1
Nwidth×Nheight

∑
p∈J1,NheightK×J1,NwidthK

∣∣∣I(p)− Iref (p)
∣∣∣
1
2


 . (9.1)
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The choice of using the root comes from the following argument. At the channel decoder,
the side information is used to produce the log-likelihood ratio (LLR):

LLR = log
p(x = 0)

p(x = 1)
.
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Figure 9.2: LLR as a function of p(x = 0).

The plot in Figure 9.2 displays the aspect of the LLR in function of the probabil-
ity p(x = 0). One can remark that the LLR is almost constant and near to zero for a
wide probability range (between 0.1 and 0.9). The consequence of it, is that for high and
medium errors, the decoder obtains almost the same LLR value, what is the opposite of
MSE behaviour. After this observation, the use of power 1

2 becomes justified, since the
main property of x → x

1
2 function is that it is almost constant for high x and vary a lot

for low values of x.

Kubasov in his manuscript has tested the SIQ and showed for one example that the SIQ
could be more reliable than PSNR. In addition to the fact that SIQ was not deeply tested
and proved to be reliable, Kubasov does not investigate why the PSNR fails sometimes
and why it keeps being a reliable measure other times; two problems that we propose to
tackle in this chapter.

9.3 Proposed metric

9.3.1 Generalization of the SIQ

The SIQ idea of changing square in the PSNR formula immediatly leads us to propose
metrics based on other power than 1

2 . In fact, it would be interesting to test any kind of
metrics, SIQa, given by a

SIQa = 10 log10


 2552

1
Nwidth×Nheight

∑
p∈J1,NheightK×J1,NwidthK

∣∣∣I(p)− Iref (p)
∣∣∣
a




with a ∈ (0, 1] and with the same notations than in Section 9.2.2. While it is obviously
impossible to test all the values for a, we propose to retain two specific values:
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• a = 1, which correspond to the l1-norm commonly used in signal processing. We call
the associated metric SIQ1.

• a = 1
3 , in this case we try to further enhance the difference between small error

values. The metric associated to 1
3 is called SIQ 1

3
.

For uniformization reasons, the original SIQ metric is denoted by SIQ 1
2
in the following.

After this direct Kubasov’s work generalization, in the next section, we propose to develop
metrics which are more adapted to the turbodecoding procedure.

9.3.2 A Hamming distance based metric

In our DVC framework, after transform and quantization, the WZ frame is transposed into
bitplanes. Each bitplane is encoded successively (the most significant coming first). For
each bitplane, the decoder receives a first sample of parity bits and starts the decoding
algorithm of the corresponding bitplane of the side information. If the error probability is
too high (> 10−3), the decoder requests one more set of parity bits, restarts the decoding
and so forth.

The PSNR and the SIQ sum the difference in the spatial domain with more or less
importance given to high errors. However a difference in the spatial domain is far from
what the channel decoder is sensible to. Indeed, a Slepian-Wolf decoder requires parity
information as long as the error probability of the bitstream remains too high. Between
the comparison in the spatial domain, and the sensibility of the turbodecoder, there are
two important blocks: a transformation and a quantization.

With this new measure, we propose to take into account the structure of the WZ coder.
Thus, we propose a metric based on a Hamming distance between the side information
bitstream and the original bitstream. If I and Iref are the transformed and quantized
versions (at QI = qi) of respectively the SI and the reference image, b denotes the band, bp
the bitplane, c the coefficient and Nbits the total number of binary numbers in the frame
decomposition, the proposed Hamming Side Information Quality (HSIQ) metric is given
by:

HSIQ(qi) = 10 log10

(
1

1
Nbits

∑
b

∑
bp

∑
c I(b, bp, c)⊕ Iref (b, bp, c)

)
(9.2)

where ⊕ denotes the binary addition operator.

The advantage of this metric is that it is very close to the turbodecoder behaviour.
The difference with the PSNR and SIQ, is that the HSIQ measures the required rate and
not the distortion, which is exactly what the turbodecoder does when establishing an error
probability threshold at 10−3.
Moreover, another advantage of the HSIQ metric is that it depends on the quantization of
the WZ frame, which can be very interesting for estimating SI quality for specific quanti-
zation conditions.
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9.4 Methodology of metric comparison

In this section, we introduce the methodology used for estimating the reliability of the
existing and the proposed metrics. Contrary to decoded video quality metrics which have
to be compared with human subjective experiments for their reliability tests, side informa-
tion quality measures must be correlated with the rate-distortion performance of the codec.
The rate-distortion performance is measured with a couple (R, d) ∈ R+ × R+, which is
not obvious to compare with another rate-distortion couple in the 2D space. Figure 9.3
illustrates the fact that, having only two points does not give an order information. Indeed,
both possibilities shown inFigures 9.3 (b) and (c) are conceivable. In the following, we in-
troduce a theoretical environment allowing to compare two couples under a rate distortion
model.

The ordering between RD curves has more chances to succeed if we have several rate-
distortion points. For example, in Figure 9.4 (a) and Figure 9.4 (b), one can determine
the better curve. On the contrary, in Figure 9.4 (c), it is not obvious to see which curve is
better than the other. That is why we use the commonly adopted Bjontegard metric.
In [Bjontegaard, 2001] Bjontegaard proposed a method for comparing two rate-distortion
curves. This technique needs 4 points for each curve and calculates the area between them
and can deliver two types of comparison: the Bjontegaard PSNR gain yields the average
gain in PSNR (dB) for the same number of bits, while the Bjontegaard bit savings yields
the average savings in bits for the same resulting PSNR.

In the following, the Bjontegaard comparison function is denoted by bjm (., .) whose
inputs are two sets of 4 rate-distortion couples (the first input is the reference). Since the
Bjontegaard comparison result can be given in both rate diminution or PSNR gain in dB,
we choose arbitrarily, for the following, to compare the different curves in terms of rate
saving percentage (of the second input with respect to the first input). In other words a
rate-distortion curve (R1

i , d
1
i )i=1...4 is under another (R2

i , d
2
i )i=1...4 if the Bjontegaard met-

ric bjm
(
(R1

i , d
1
i )i=1...4, (R

2
i , d

2
i )i=1...4

)
≤ 0.

Based on the Bjontegaard comparison, we can now define an equivalence relation be-
tween two sets of 4 RD points, referred to as “RD sets”, (and their associated schemes)
∀ (Ri, di)i=1...4 ∈ (R+ ×R+)

4
,

(R1
i , d

1
i )i=1...4 = (R2

i , d
2
i )i=1...4 ⇔ bjm

(
(R1

i , d
1
i )i=1...4, (R

2
i , d

2
i )i=1...4

)
= 0 (9.3)

and similarly we define an order relation between RD sets through:

(R1
i , d

1
i )i=1...4 ≤ (R2

i , d
2
i )i=1...4 ⇔ bjm

(
(R1

i , d
1
i )i=1...4, (R

2
i , d

2
i )i=1...4

)
≤ 0. (9.4)

The reflexivity, transitivity and symmetry can be easily proven. Having this equivalence
relation, the corresponding class of equivalence can be defined as:

∀ (Ri, di)i=1...4 ∈
(
R+ ×R+

)4
, [(Ri, di)i=1...4] =

{
(Reqi , d

eq
i )i=1...4 ∈

(
R+ ×R+

)4 such as bjm ((Ri, di)i=1...4, (R
eq
i , d

eq
i )i=1...4) = 0

}
. (9.5)
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Figure 9.3: It is difficult to compare two rate-distortion points in the 2D space without
any additional information.
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Figure 9.4: Having 4 RD points it is possible in the most part of the cases to determine
the order between RD points of the same curves, excepting when the curves are crossed.
In this case we propose to use the Bjontegaard metric to come to a decision.

The set of the equivalence classes is denoted by RD. One can now introduce an order
relation between the equivalent classes of RD:

∀[(R1
i , d

1
i )i=1...4] ∈ RD, ∀[(R2

i , d
2
i )i=1...4] ∈ RD,

[(R1
i , d

1
i )i=1...4] ≤ [(R2

i , d
2
i )i=1...4]⇔ bjm

(
(R1

i , d
1
i )i=1...4, (R

2
i , d

2
i )i=1...4

)
≤ 0. (9.6)

Having now a possibility to compare two RD sets, we want to link this order relation
to the side information quality estimation issue. If n and m are two non-zero integers, we
denote by In,m the set of images of height n and width m. Let us define a decoder function
dec which has two images as input.

The first image I0 is the original frame which is encoded and decoded based on the
second input image (I1) as side information. The dec function associates these two images
to one set of 4 rate distortion couples ([(R1

i , d
1
i )i=1...4]) obtained by encoding the original

frame at 4 quantization steps and decoding it with I1 as side information. More precisely
the rate-distortion couple gives the rate R required to obtain the decoded frame with a
distortion d using the side information, I1.
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Thanks to this theoretical setting, we are now able to state whether a side information,
I1, is better or not than another, I2. We only need to compare dec(I0, I1) = [(R1

i , d
1
i )i=1...4]

and dec(I0, I2) = [(R2
i , d

2
i )i=1...4] with the order relation defined above. Because final

turbodecoding performances optimization constitutes our principal goal, this quality order
between two estimations is the real order, i.e.,the order we want to model, with the quality
metrics (as PSNR, SIQ or HSIQ) which are functions from (In,m)2 to R (M is the set of
the quality metrics).

To measure the reliability of the metrics, we introduce the following confidence crite-
rion. A metric m ∈M respects the confidence criterion if:

∀(I0, I1, I2) ∈ In,m, dec(I0, I1) ≤ dec(I0, I2)⇔ m(I1, I0) ≤ m(I2, I0) (9.7)

In the following, we test the different metrics with respect to this confidence criterion
over different test sequences in our database, for different experimental conditions.

9.5 Experimental results

9.5.1 Common side information features

Experiments presented in this Section 9.5 consist in testing the reliability of the different
metrics described previously. This reliability is given by statistics computed on different
experimental databases, which are composed by side informations of different qualities.
Then the “confidence criterion” is calculated by counting the number of times the metric
estimates the good quality order. The results are given by a final percentage which indicates
a confidence measure of the metrics (more details will be given in Section 9.5.2 and 9.5.3).
To be relevent, tests must be run on representative sets of side informations. First, for one
WZ frame, its estimations must be numerous (100 in our tests), then the quality range
between the best and the worst SI must be relatively wide (almost 2 − 3 dB in PSNR).
The estimation generation methods are explained in Sections 9.5.2.1 and 9.5.3.1. Finally,
the database must contain real errors. This is why, in this section we analyse the different
origins of the errors in a side information.

In DVC, the methods to generate side information for the Wyner-Ziv frames are nu-
merous, but the ones which are commonly used are motion estimation based algorithms.
Based on the already decoded frames, these methods use motion information to build the
estimation of the WZ frame. Even if the approaches differ (interpolation, extrapolation,
fusion see Part II for more details) the general structure is based on a reference frame
compensation. Then, the two types of errors under consideration in that type of side in-
formation are the quantization of the reference frames, and the motion estimation errors
(essentially block artefacts).

9.5.2 The reasons why the PSNR is commonly used

9.5.2.1 Experiment settings

The first experiments correspond to the case where the estimation is generated with ref-
erence frames compressed at the same level of quantization. This is the case in a scheme
such as Discover[DISCOVER-website, 2005]. The SI database is generated for each of
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the first 100 frames of breakdancer, book arrival, and outdoor sequences1, and for each
quantization step (reference frames are quantized at QP 31, 34, 37 and 40). Let I0 be one
original WZ frame of a test sequence. Let Ĩ1 and Ĩ2 be two quantized reference frames (at
a fixed QP). To generate the database, we first estimate the backward and forward motion
vector fields respectively between Ĩ1 and I0, and between Ĩ2 and I0. They are denoted
by u1 and u2. Assuming, as explained in the previous section, that the estimation error
comes from inaccuracies in some vectors, we generate the N different side informations,
Îsik , of the experimental database, by introducing iid errors on a random number of motion
vectors. At the end, the PSNR of the obtained SI is controlled in such a way that the
PSNR range of the databased is not wider than ∆ which is a threshold fixed in advance.
The procedure is detailed in Algorithm 1.
Once all the database is created, for each frame of each sequence at each quantization
level, all the SIs are turbodecoded at 4 QI (4,5,6,7)2. In other words, we compare
∀k ∈ {1, . . . , N},

(Rki , d
k
i )i=1...4 = dec(Î0, Isik ).

Then, we are able to compute the statistics measuring the reliability of the metrics. For
each metric m ∈ M, we compute the percentage cases when the following equivalence is
satisfied ∀k ∈ {1, . . . , N} and ∀l ∈ {1, . . . , N}:

m(Îsik ) ≤ m(Îsil )⇔ bjm
(

(Rki , d
k
i )i=1...4, (R

l
i, d

l
i)i=1...4

)
≤ 0 (9.8)

The results are presented and discussed in the next section.

9.5.2.2 Discussion

The tests were run for 3 sequences: breakdancer, outdoor, book arrival (512×384 resolution)
at four quantizations steps for the key frames (31, 34, 37, 40). Each of the generated side
information is decoded at four QI (4, 5, 6, 7) in order to obtain the class [(Ri, di)i=1...4].
The database contains 100 different side informations, with a value of ∆ (which determines
the maximum difference in PSNR between the estimation of the database) equal to 3 dB
(PSNR). For the generation of a specific estimation, the maximum number of affected
blocks is equal to 100 and the maximum error applied to a vector field is 10 pixels.

The results are presented in Table 9.2. The percentages correspond to the number of
times when the Equation (9.8) is verified. One can remark than the PSNR, the SIQ and
the HSIQ obtain similar results. The three metrics seem to be reliable for this type of
database.
In other words, since the reference frames are similarly quantized and the estimation error
comes from motion vector imprecision, the different side information qualities are well
estimated by the PSNR (and by the several SIQa metrics and by the HSIQ). Therefore,
these experiments do not cast doubt on the majority of the papers using PSNR to measure
their improvement on a reference method, because they are in this case of figure (similar
reference frames and motion estimation/compensation interpolation methods).
However, the limits of PSNR exist, as in the examples presented in Section 9.1, and we

1These three sequences have been chosen because they present very different characteristics.
2The chosen QI are high beacause a too coarse WZ quantization would not be appropriate with the SI

quality range, and would make their turbodecoding diverge.
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Input: The original frame I0, the two quantized reference frames Ĩ1 and Ĩ2.
Output: a set of N side informations,

(
Îsii

)
i=1:N

, of different quality;

NaffectedBlocksMax - maximum number of affected motion vectors;
EMax - maximum error applied to motion vectors;
NBlocks - number of blocks per vector fields;
∆ - maximum dB difference between the SI PSNR of the database;

begin
Initialization: calculation of the two motion vector fields with a motion
estimation (me)

u1 = me
(
I0, Ĩ1

)
and u2 = me

(
I0, Ĩ2

)

Îsi0 = 1
2

(
Ĩ1 (u1) + Ĩ2 (u2)

)
; /* initial SI */

i=1;
while i ≤ N do

ui1 ← u1 ;
ui2 ← u2 ;
N i
affectedBlocks ← rand() ∗NaffectedBlocksMax ; /* rand() gives a

random number between 0 and 1 (uniform) */
for j = 1 : N i

affectedBlocks do
nj ← floor(rand() ∗NBlocks) ; /* random block selection */
ej ← 2 ∗ (rand()− 0.5) ∗ EMax ; /* random error */
e′j ← 2 ∗ (rand()− 0.5) ∗ EMax ; /* random error */
ui1(bnj )+ = (ej , e

′
j);

ui2(bnj )+ = −(ej , e
′
j);

end

Îsii = 1
2

(
Ĩ1

(
ui1
)

+ Ĩ2

(
ui2
))

; /* Average of the 2 motion

compensated frames */

Validation: keep the generated SI if its PSNR is in the acceptable
range if |PSNR(Îsii )− PSNR(Îsi0 )| ≤ ∆

2 then
save Îsi0 ;
i+ +;

end
end

end
Algorithm 1: Side information database generation with identically quantized reference
frames
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breakdancer outdoor book arrival
QP 31 34 37 40 31 34 37 40 31 34 37 40 Avg
PSNR 90.1 87.6 90.4 87.3 89.9 93.2 92.0 90.5 90.9 91.7 92.0 90.0 90.5
SIQ1 89.9 89.2 89.3 87.0 89.1 92.5 93.1 89.0 92.2 91.7 92.0 91.1 90.5
SIQ 1

2
89.7 88.7 89.4 86.0 89.0 92.5 93.0 88.9 91.6 92.2 92.2 90.6 90.3

SIQ 1
3

89.0 86.0 87.5 87.0 88.3 92.2 92.7 88.7 90.0 91.1 92.5 89.8 89.6
HSIQ 89.1 86.6 87.7 86.5 88.9 93.6 93.3 89.0 90.4 91.0 92.9 90.1 90.0

Table 9.2: Percent of veracity of the confidence criterion of Equation (9.8) for several
sequences and several quantization steps for the reference frames used to generate the side
information databases.

shall see in the next section in which context they may happen, and if the other metrics
manage to estimate correctly the side information quality.

9.5.3 The limits of the PSNR

The study of the previous section has shown that in a database where the quantization of
the reference frames was the same for all theN estimations, the PSNR gives good reliability
results (as good as the SIQa and the HSIQ). The previous database corresponds to the
case where all of the N estimations have a similar type of error, block artifacts and similar
quantization. Nevertheless, the counterexamples provided in Section 9.1 were obtained
with side information presenting very different types of error. The Discover interpolation
has block artifacts (high and localized errors), the spatial error and the noisy frame have a
small error affecting almost all the pixels. In this section, we aim at constructing a database
with different types of errors. This database needs to be realistic, it should represent error
configurations similar to those obtained with actual DVC interpolation schemes.

9.5.3.1 Experiment settings

In the next section, the side information generation method is similar to the one of Sec-
tion 9.5.2, but differs in the fact that the reference frames are not quantized with the
same QP. In other words, the QP is also a random variable. In order to keep a fixed ∆
in PSNR between the maximum and the minimum values, the NaffectedBlocksMax depends
on the quantization of the reference frames. In other words, in the database, good quality
key images would generate estimations strongly affected by the vectors errors, and on the
contrary, coarse reference frames based estimations would be very slightly affected by the
additional motion vector errors. The method for side information generation is given in
Algorithm 2.
This database is realistic and not artificial. Indeed, schemes involving key frames quantized
at different QP can be easily considered. For example, in case of multiview coding, the
quantization can be different for each camera. Furthermore, it can also be the case in the
sequences where the QP is changed during the coding process.

9.5.3.2 Discussion

As for Section 9.5.2, tests were run for three video sequences: outdoor, book arrival and
breakdancer (512 × 384). All of the 100 generated side informations are turbodecoded at
four QI (4, 5, 6 and 7) in order to determine for each of them the class [(Ri, di)i=1...4] they
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Input: The original frame I0, the two original reference frames I1 and I2.
Output: a set of N side informations,

(
Îsii

)
i=1:N

, of different quality;

NaffectedBlocksMax(QP ) - maximum number of affected motion vectors which
depends on the QP of the key frames;
EMax - maximum error applied to motion vectors;
NBlocks - number of blocks per vector fields;
∆ - maximum dB difference between the SI PSNR of the database;

begin
i=1;
while i ≤ N do

Key frame quantization: QP ← randomly 31, 34, 37 or 40
Quantization of reference frames at QP → Ĩ1, Ĩ2

Initialization: calculation of the two motion vector fields with a
motion estimation (me)

u1 = me
(
I0, Ĩ1

)
and u2 = me

(
I0, Ĩ2

)

Îsi0 = 1
2

(
Ĩ1 (u1) + Ĩ2 (u2)

)
; /* initial SI */

ui1 ← u1 ;
ui2 ← u2 ;
N i
affectedBlocks ← rand() ∗NaffectedBlocksMax(QP ) ; /* rand() gives a

random number between 0 and 1 (uniform) */
for j = 1 : N i

affectedBlocks do
nj ← floor(rand() ∗NBlocks) ; /* random block selection */
ej ← 2 ∗ (rand()− 0.5) ∗ EMax ; /* random error */
e′j ← 2 ∗ (rand()− 0.5) ∗ EMax ; /* random error */
ui1(bnj )+ = (ej , e

′
j);

ui2(bnj )+ = −(ej , e
′
j);

end

Îsii = 1
2

(
Ĩ1

(
ui1
)

+ Ĩ2

(
ui2
))

; /* Average of the 2 motion

compensated frames */

Validation: keep the generated SI if its PSNR is in the acceptable
range if |PSNR(Îsii )− PSNR(Îsi0 )| ≤ ∆

2 then
save Îsi0 ;
i+ +;

end
end

end
Algorithm 2: Side information database generation with different quantized reference
frames
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Sequence breakdancer outdoor book arrival Average
PSNR 66.09 61.65 74.99 67.57
SIQ1 92.27 91.90 95.66 93.27
SIQ 1

2
90.83 91.88 95.27 92.66

SIQ 1
3

90.53 91.81 94.79 92.37

HSIQ 90.84 93.82 93.68 92.78

Table 9.3: Percent of veracity of the confidence criterion of Equation (9.8) for several
sequences and for the second database with different types of errors.

belong to.
Once the database is obtained (side informations generated and their decoded quality cal-
culated), first experiments lead us to obtain statistics presented in Table 9.3. They are the
percentages of veracity of the confidence criterion (Equation (9.8)) over the different sets
of side informations. While SIQa and HSIQ seem to keep being reliable, one can easily
observe that this is no longer the case for the PSNR metric. The PSNR gives the right
quality order between two side informations in only 2 cases out of 3 (HSIQ and SIQ are
right in more than 90% of the cases). These results highlight that in some cases, PSNR is
far from being completely reliable.

In the following, we investigate one particular case3 and try to analyse why the PSNR
is sometimes wrong in SI quality estimation.
Then, let us focus on the side information database of frame 3 of outdoor sequence. First
we sort the 100 side informations in the decoding performances growing order and we
number them in this order. In other words, i and j are two natural numbers between 2
and 100, we have

dec(I0, Îsii ) ≤ dec(I0, Îsij )⇔ i ≤ j

with the order relation defined by Equation (9.6). For each side information, Îsij , we
calculate its relative rate saving (RRS), which is the rate decrease percentage (in the sense
of Bjontegaard metric) comparing to Îsij−1 added with the RRS of Îsij−1:

RRS(Îsi1 ) = 0

∀i > 1, RRS(Îsii ) = bjm
(
(Rii, d

i
i)i=1...4, (R

i−1
i , di−1

i )i=1...4

)
+RRS(Îsii−1). (9.9)

In other words, the RRS value for the ith side information corresponds to the cumulated
rate saving with respect to the side information of lowest quality (Îsi1 ). In Figure 9.5 (a),
we plot the RRS values. Between the lowest and the best side information we observe a
RRS difference of approximately 4% which allows to say that the database is significantly
wide from the point of view of the decoding quality.
Figures 9.5 (b)-(f) present the plots of respectively the PSNR, SIQ1, SIQ 1

2
, SIQ 1

3
and

HSIQ for the same order. In other words, a quick look on these figures permits to see
if the metric has a general growing appearance and then preserves the real quality order

3All of what is presented in the following is not an isolated exception and similar behaviours are observed
all over the different databases. Thus, the following can be seen as a general trend and is very revealing of
what exactly happens while measuring the side information quality with different techniques.
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Figure 9.5: Metric values as a function of the number of estimations for frame 3 of out-
door sequence (512×384). The estimations are sorted in the decoded performance growing
order (real quality). Cyan and purple circles indicate the examples illustrated in Fig-
ures 9.7, 9.8, 9.9, 9.10, 9.11 and 9.12.
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Figure 9.6: Metric values as a function of the number of estimations for frame 3 of book
arrival sequence (512 × 384). The estimations are sorted in the decoded performance
growing order (real quality).
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of Figure 9.5 (a). It is thus easy to see that HSIQ and SIQa have an acceptable growing
behaviour, similar to the RRS evolution, but on the other hand, PSNR does not preserve
the ordering relationship since two consecutive estimations can have a negative variation
of more than 1 dB instead of an improvement. Moreover, one can notice that SIQ1 (Fig-
ure 9.5 (c)) and HSIQ (Figure 9.5 (f)) are the two metrics which evoluate the most similarly
to the RRS behaviour (Figure 9.5 (a)), especially during the second part of the plot. One
more time, this phenomenon happens for each of the tested databases, as the reader can
see in another example (Figure 9.6, book arrival, frame 3).

Let us focus once again on a particular example which is revealing of what often hap-
pens. In the following we study the case of Îsi64 and Îsi65 (resp. cyan and purple circles in
Figure 9.5). This study is motivated by the fact that, even though RRS(Îsi64) < RRS(Îsi65),
the PSNR of the SI predicts the opposite order, i.e.,PSNR(Îsi64) > PSNR(Îsi65), and with
a very high gap of more than 1.4 dB. SIQa and HSIQ predict the right order for these
estimations, and then, a developed study of this example may be interesting as it can lead
us to better understand the limits of PSNR.
Firstly, we propose to look at the side information images themselves. In Figures 9.7 (a)
and (b), one can see the two estimations. One can easily remark that the block artifact
errors are more numerous in Îsi65 than in Îsi64. Indeed, the random number of affected block,
NBlocks, is 30 for the estimation 64 and is 198 for the estimation 65. Moreover, Îsi64 has
been constructed with reference frames quantized at a QP of 37 while Îsi65 is based on key
frames compressed with a QP of 34. In other words, the two estimations both present
distortion coming from key frame quantization and motion errors, but without the same
proportions. Therefore, let us analyse the error image associated to the different metrics,
in order to understand how the two types of error are taken into account by the measure.
Since the PSNR is calculated with a SSD, we show in Figures 9.8 (a) and (b) the square
error image. One can see that the square error only brings out high errors as blocking
artifacts, and quantization error is thus not visible. This explains why the PSNR of Îsi65 is
so much larger than the PSNR of Îsi64.
On the contrary, if we look at Figures 9.9 (a) and (b), which display the absolute er-
ror, one can perceive the quantization error in estimation error of the 64th SI. It is more
obvious in Figures 9.10 (a) and (b) for the absolute error with a power of 1

2 , where the
quantization error is almost as highly taken into account as the block errors. One can
also remark that the quantization error is higher in the left image (QP 37) which explains
that SIQ(Îsi64) < SIQ(Îsi65). Finally, this observation is even more visible for a power of 1

3
(Figures 9.11 (a) and (b))
Then for a qi = 1 we plot the Hamming difference images band by band and bitplane by
bitplane for the two estimations (Figures 9.12 (a) (b)). These images show that the number
of different bits (white points) is visually similar in both estimation decompositions, which
means that HSIQ also takes into account both types of errors with the same weight.

Visual results are interesting because they give an explanation of what happens when
the PSNR fails. We can remark that the PSNR metric “counts” the number of high
errors present in the image, mainly coming from blocking artifacts. On the other hand,
the different SIQa metrics count the errors by more or less taking into account the error
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intensity. Indeed, the lower the a value is, the less the magnitude of the error is considered.
As a consequence, for the lowest values (as 1

3 can be), the measure almost only “counts” the
number of pixel where the estimation and the original differs, which is not exactly what
corresponds to the decoder behaviour. It can be seen by looking at the appearance of the
curves in Figures 9.5 and 9.6. Though the SIQ 1

3
is growing (see (d)), its evolution does not

fit the RRS evolution of (a), and is more like a succession of 4 levels which corresponds
to the 4 quantization steps of the reference frames. In other words, the SIQ 1

3
too much

takes into account quantization errors. This remarks may also be done for the SIQ 1
2
which

present a similar 4 levels looking despite its growing evolution. Under this consideration,
SIQ1 curves seem to have the more corresponding looking among the different SIQa.

Having also a quite acceptable looking, HSIQ make a compromise, because it consid-
ers the magnitude error information only when an error in a bitplane propagates to the
next bitplane. In other words, when the numbers of block errors are of the same order of
magnitude for two side informations, the PSNR can give a good estimation of the quality,
but if the error types are different, i.e.,a highly concentrated error or a diluted error, the
PSNR would disadvantage the highly concentrated error whereas it would be more easily
corrected by the turbodecoder.

9.6 Conclusion

In this chapter we firstly demonstrate that PSNRmetric, despite of an acceptable behaviour
in some usual situations (like monoview Discover configuration), presents important lim-
its for comparing two side information qualities, especially when these one provide different
types of errors (concentrated or diluted).
On the contrary, the family of SIQa metrics and the proposed hamming based HSIQ mea-
sure, obtained acceptable statistics and proved than it may be interesting to use measures
which better correspond the turbodecoding behavior (the LLR for the SIQa, and the trans-
form+quantization structure with the HSIQ).
In the results drawn in this chapter, the SIQa and HSIQ obtained similar performances.
Both of these metrics seem to be adapted for measuring side information quality in a DVC
context. An even more elaborated study should be necessary to differentiate which is the
most reliable metric. Some remarks can however be made. Indeed, whereas the SIQa has
proven to have good statistics over the tested database, the choice of the a coefficient has
a strong importance. It was not verified in the statistics results of Table 9.3, but it is
visible in the appearance of the SIQa curves in Figures 9.5 and 9.6. As it was discussed
in the previous sections SIQ1 seems to be the most adapted metric among the SIQa, as
adapted as the HSIQ, which obtains acceptable statistics and also fits the RRS evolution.
Moreover, HSIQ depends on the quantization and may be appropriate for a finer quality
estimation, depending on the decoding conditions.
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(a) Îsi64, 1.86% (RRS)

(b) Îsi65, 1.92% (RRS)

Figure 9.7: Zoom on the estimations 64 and 65 (respectively cyan and purple circles in
Figure 9.5) and their corresponding RRS measure.
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(a) (Îsi64 − I)2, 30.63 dB (PSNR)

(b) (Îsi65 − I)2, 29.20 dB (PSNR)

Figure 9.8: Zoom on the pixel domain error image associated to the PSNR measure, for
the estimations 64 and 65 (respectively cyan and purple circles in Figure 9.5).
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(a) |Îsi64 − I|, 34.55 dB (SIQ1)

(b) |Îsi65 − I|, 34.90 dB (SIQ1)

Figure 9.9: Zoom on the pixel domain error image associated to the SIQ1 measure, for the
estimations 64 and 65 (respectively cyan and purple circles in Figure 9.5).
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(a) |Îsi64 − I|
1
2 , 42.61 dB (SIQ 1

2
)

(b) |Îsi65 − I|
1
2 , 43.12 dB (SIQ 1

2
)

Figure 9.10: Zoom on the pixel domain error image associated to the SIQ 1
2
measure, for

the estimations 64 and 65 (respectively cyan and purple circles in Figure 9.5).
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(a) |Îsi64 − I|
1
3 , 44.83 dB (SIQ 1

3
)

(b) |Îsi65 − I|
1
3 , 45.25 dB (SIQ 1

3
)

Figure 9.11: Zoom on the pixel domain error image associated to the SIQ 1
2
measure, for

the estimations 64 and 65 (respectively cyan and purple circles in Figure 9.5).
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(a) Isi64 ⊕ I, 13.49 dB (HSIQ)

(b) Isi65 ⊕ I, 13.51 dB (HSIQ)

Figure 9.12: Zoom on the transform domain Hamming error image (qi = 1) for the estima-
tions 64 and 65 (respectively cyan and purple circles in Figure 9.5) and the corresponding
HSIQ value. Dashed red lines separate the bitplanes, while green plain lines separate the
bands (the first band is in the first line, and the first bitplane is in first column).
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Conclusion and future work

We firstly present here a summary of the contributions described in this PhD manuscript
and we detail the future work resulting from them. Finally, we try to use the different
works that we performed in order to build a more global vision of distributed video coding
paradigm.

Summary of the thesis contributions

The main purpose of our thesis work was to tackle different issues brought by distributed
video coding, and particularly in multiview settings. This has been concretised by the de-
velopment of techniques which aimed at improving some modules of the Stanford scheme.
Almost all of the proposed solutions have been developed and tested from a coder of Dis-
cover type, that we have extended to multiview. Only the tests presented in Chapter 5
have been run with the Essor wavelet-based scheme.

A distortion model and its various applications to the coding scheme be-
havior analysis: firstly, we have proposed an expression for modelling the distortion of
the WZ estimation error (Chapter 2). This model presents the main advantage of simplic-
ity. Indeed, it separates the error coming from the motion or disparity estimation and the
error due to the key frame quantization. In the tests, we have seen that the underlying
approximations can generate a significant gap between the theoretical value and the true
distortion. However, this gap is relatively constant and limited, and the model remains
nontheless acceptable and useful for the target applications.
In Chapter 3, we have presented three applications of that proposed model. Firstly, we
have studied the frame classification at the coder input, and we have proposed a new frame
type repartition in the time-view space, which is less complex to encode and which out-
performs the existing solutions. This new scheme was designed using the proposed model
for determining the optimal WZ frame decoding order. Moreover, we have been able to
analyze the error propagation phenomenon in case of entire frame losses. The model has
predicted the coder behavior in such a case, and it was validated by the experiments. The
model allowed us to work on a rate control algorithm at the encoder in order to definitely
get rid of the return loop. If the proposed method leads to consequent losses of perfor-
mances, these ones are of the same order of magnitude as the ones generated by the existing
methods in the literature.

New approaches for side information generation: based on a detailed state-
of-the-art review established in Chapter 4, we have proposed several techniques for side
information quality enhancement at the decoder. The first of them (Chapter 5) has been
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developed in collaboration with the members of the French ANR project Essor. Whereas
this one still describes the motion by block, it is more precise since it manages the overlap-
ping and empty regions. This chapter also shows in detail the proposed codec structure,
developed within the project, and presents some rate-distortion results.
In Chapter 6, we present several interpolation and fusion methods which adopt a pixel
approach. These interpolations are based on the Discover interpolation structure and
add two refinement modules, performed by using the Cafforio-Rocca and Miled algorithms
(that we have adapted to the situation). Once the temporal and inter-view estimations
generated, the proposed fusion methods merge the candidates by making a linear combina-
tion between the pixels, instead of a binary choice classically performed in the literature.
Based on the idea that some regions in the WZ image could not be estimated by the key
frames at the decoder (rapid motion, occlusions, etc.) some schemes, called “hash-based”
schemes, proposed to send to the decoder these regions hardly estimable or some infor-
mation which helps the decoder to recover them. We have proposed in Chapter 7 a new
approach for such schemes, by developping original techniques for hash information selec-
tion, and hash-based side information generation.

Zoom on the decoder: the study of the relation between the side information and
the turbodecoding has appeared to us to be an interesting research issue, in the sense
that it is one fundamental point of the distributed coding approach. This study led us
to investigate two different problems. The first concerns the correlation noise estimation
at the decoder, in order to calculate the a priori probabilities. The first observation was
to remark that in the literature, a model refinement necessarily led to rate distortion
improvements. Therefore, we have proposed a new type of model (Generalized Gaussian)
instead of the classically adopted Laplacian one. Whereas the new model enhanced the
turbodecoding efficiency for some sequences, as we predicted, there were some cases when
a refinement did not lead to an improvement. We have then performed more advanced
tests, and we have indeed verified that in some cases, almost all the tested models obtained
the same performances since they remained at a frame level precision (or more exactly, a
frequency band frame level).
The second problem highlighted by our work is the side information quality estimation.
In almost all the works, even if the gains are validated by rate-distortion performances,
the WZ estimation quality is estimated by the PSNR. In Chapter 9, we have shown (by
extending the work initiated by Kubasov) that the PSNR failed in some situations. We have
then proposed other metrics which remain more reliable for all the situations, because they
are closer to the turbodecoder behavior. We however precise that this study on quality
evaluation metrics does not put in question the results obtained in Part 2, where the
estimations were compared using the PSNR measure, because they were performed in the
situations where the PSNR is reliable.

Perspectives and future work

Based on the results of our contributions and based on the conclusions we have drawn
from them, we detail here the different ideas which would be, to our opinion, interesting
to investigate.

New extrapolation based multiview schemes containing less key frames: the
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symmetric scheme proposed in Chapter 3 obtaining better results than the literature, it
would be interesting to investigate more classification types involving even less key frames,
and the side information techniques adapted to them. If the use of interpolation limits
the extension of the distance between the reference frames (because interpolation is not
competitive when the key frames are too far), we should think of performing extrapola-
tions which do not become less efficient when this distance grows. This would necessitate
to elaborate extrapolation methods for inter-view estimations, not existing nowadays. On
the other hand, a frame loss could be dramatic for the performances. It would be thus
interesting to study this phenomenon using an extension to multiview of our proposed
rate-distortion model.

A rate control algorithm extended to multiview and less dependent of the
offline parameters: once the rate-distortion model is extended to multiview, it would
become possible to extend the proposed rate control algorithm to multiview. However, for
both monoview and multiview configurations, it is necessary to work on a practical ver-
sion of this algorithm. Indeed, the existing one is based on parameters which need to be
estimated offline and which depend on the sequence. These parameters must be estimated
online, directly by the encoder.

A better online adaptation for the dense interpolation methods: the results
obtained in Chapter 6 led us to the following conclusions: the proposed methods can be
very efficient in some situations, but do not improve the block-based Discover approach
in other cases. We think that this is due to a too high dependence to parameters, and that
it would be interesting to build an online estimation solution for them.

Fusion methods based on shape recognition: after the exploration of linear fu-
sions, it would certainly be beneficial to base the linear combination coefficient calculation
on “object” considerations. In other words, it would be interesting to detect the objects in
the scene, and thus predict the regions corresponding to high motion and occlusions.

Extension of the Generalized Gaussian model to the non spatially station-
nary case: we have seen that in some situations, the performances keep unchanged for
almost all the chosen parameters fixed for the Generalized Gaussian modelling the cor-
relation noise. In other words, the distribution to model is not well chosen, and should
be considered as non spatially stationary. Indeed, in an image, the correlation between
side information and original image is not the same in all the regions, and it should be
interesting to consider this phenomenon with a Generalized Gaussian distribution (or with
the addition of several distributions, as it was performed in DSC framework [Bassi et al.,
2008] with Gaussian-Bernouilli-Gaussian models).

Applications for the proposed side information quality metrics: The study
performed in this manuscript about the side information quality metrics do not go fur-
ther than theoretical (but interesting) considerations. It would be thus beneficial to find
some applications for these ideas, in order to improve the rate-distortion performances.
For example, we could develop some side information generation methods in which the
mean-square-error could be replaced by one of the proposed reliable metrics.
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An Essor codec optimization in order to test our contributions with two
different types of coders: even if we have presented some rate-distortion performances
of the distributed video coding scheme Essor, we have seen that these performances were
not yet optimized. For this objective, we should work on each of the codec modules and
optimize it (WZ frame quantization, noise correlation, etc.). Once the coder available,
we should then test the different contributions of this thesis with the Essor scheme.
It should be interesting to observe the behavior of the proposed quality metrics with an
LDPC decoder, or to test the Generalized Gaussian model performance on this same LDPC
decoder, in the wavelet domain.

What future for distributed video coding?

Distributed video coding is a quite unusual research paradigm. Indeed, its novelty, its
potential and the beauty of its underlying theoretical results contribute to make it very
popular and to the fact that many research groups work for its coding performances im-
provement, which have the consequence that, in spite of the domain youth, the state-of-the-
art is already weighty. However, this effervescence is nowadays being smoothed out. We
see in some articles review that some researchers start to be skeptical about the distributed
video coding potential. One one hand, the current results are not up to the ones expected,
on the other hand, the complexity decreasing argument is less and less convincing. Indeed,
the main justification of distributed video coding was initially to reduce the need of power
at the encoders for some low-power systems (like cellphones), yet it is obvious that, with
the efficiency improvements of the current processors, cellphones are rapidly going to be
able to perform more and more heavy calculations.

However, we should not be pessimistic about the future of distributed video coding.
Indeed, if the complexity argument is not convincing any more, there will always be one
considerable advantage brought by a distributed approach: the suppression of the need of
communication between cameras. It is very plausible that the technology progress will not
rapidly sweep away this argument. Another reason for being optimistic about the future of
distributed video coding is the enormous potential that it represents. For each module of
its architecture, it is obvious that there remain many important improvements to do. For
example, the side information generation techniques can still be enhanced, especially in
the inter-view direction. An important issue of distributed video coding is the correlation
noise estimation which needs to find the existing several stationarities. At least, if some
researchers highlighted the limits of the Stanford scheme, it is nonetheless conceivable to
invent another coding scheme, allowing to be closer to the theoretical conditions.
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ABSTRACT

In a multiview-imaging setting, image-acquisition costs could

be substantially diminished if some of the cameras operate at

a reduced quality. Compressed sensing is proposed to effectu-

ate such a reduction in image quality wherein certain images

are acquired with random measurements at a reduced sam-

pling rate via projection onto a random basis of lower dimen-

sion. To recover such projected images, compressed-sensing

recovery incorporating disparity compensation is employed.

Based on a recent compressed-sensing recovery algorithm for

images that couples an iterative projection-based reconstruc-

tion with a smoothing step, the proposed algorithm drives im-

age recovery using the projection-domain residual between

the random measurements of the image in question and a

disparity-based prediction created from adjacent, high-quality

images. Experimental results reveal that the disparity-based

reconstruction significantly outperforms direct reconstruction

using simply the random measurements of the image alone.

Keywords— Compressed sensing, multiview, disparity

compensation, directional transforms

1. INTRODUCTION

More and more applications, like 3D reconstruction, creation

of virtual environments, surveillance applications, etc., re-

quire systems which capture a scene with several cameras.

In these cases, the correlation between images is high be-

cause they describe the same scene. Compression, restora-

tion, or other data processing should therefore exploit this re-

dundancy in order to improve performance. The correlation

between multiview images can be taken into account by esti-

mating the disparity between them, which corresponds to the

displacement of an object between the images and which is a

quantity related to the object’s depth. Since multiview tech-

nology is relatively new, the acquisition of the multiview data

can be rather costly. However, the acquisition cost of mul-

tiview images could be greatly reduced if only some of the

multiviews are captured at high resolution or high fidelity; the

other views could possibly be acquired at a lower acquisition

cost and thereby be reduced in quality. Such lower acquisi-

tion cost could be effectuated by using a compressed-sensing

(CS) recovery of these latter images. CS (e.g., [1]) is a re-

cent paradigm which allows describing a signal with a rate

lower than Nyquist without any loss. This is possible under

a certain hypothesis of sparsity, and is often driven by linear

projection onto random basis. Such random-projection-based

signal acquisition could feasibly be accomplished using a so-

called single-pixel camera [2]; the corresponding reconstruc-

tion can be achieved via any one of a number of emerging

schemes for CS image reconstruction (e.g., [3, 4, 5]).

In this paper, we propose to incorporate disparity compen-

sation (DC) into the CS reconstruction of multiview images.

In [4], an efficient block-based CS reconstruction of images

using directional transforms was proposed. Our goal here is

to improve the performance of this algorithm by considering

disparity information at the reconstruction. The results that

we obtain are promising and demonstrate that we can reach a

recovery quality of more than 50 dB with an acquisition sam-

pling rate divided by at least two. As previously mentioned,

we anticipate that this paradigm can be useful in a multiview

acquisition wherein some cameras have lower quality than

others.

The remainder of the paper is organized as follows. Sec. 2

gives an overview of the CS paradigm introducing the basics

for our method which is in turn presented in detail in Sec. 3.

Experimental results demonstrating the efficiency of the DC

scheme are presented in Sec. 4. Finally, some concluding re-

marks are made in Sec. 5.

2. BACKGROUND

In CS, a real-valued signal x of length N has to be recov-

ered from M samples, where M ≪ N [1]. In other words,

x should be reconstructed from the observations y = Φx,

where y has length M , and ΦM×N is called the measurement

matrix. This recovery is possible if x is sufficiently sparse in

a certain space. The usual choice for the measurement basis

Φ is a random matrix; in the following, we assume that Φ is

orthonormal such that ΦΦT = I . In general, the sparsity con-

dition for x recovery will exist with respect to some unknown

transform Ψ. In this case, the key to CS reconstruction is

the production of a sparse set of significant transform coeffi-

cients, x̌ = Ψx, and the ideal recovery procedure searches for

978-1-4244-7493-6/10/$26.00 c©2010 IEEE ICME 2010
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the x̌ with the smallest l0 norm consistent with the observed

y. However, as this l0 optimization is NP-complete, several

alternative procedures have been proposed. For example, ap-

plying a convex relaxation to the l0 problem results in an l1
optimization, as exemplified by basis/matching-pursuit-based

algorithms [6, 7, 8]:

x̌ = argmin
x̌

‖x̌‖1 , such that y = ΦΨ−1x̌

where Ψ−1 represents the inverse transform. Generally, such

algorithms could be implemented with linear programming.

Recently, projection-based CS-reconstruction techniques

have been proposed [9]. Algorithms of this class recover x̌ by

successively projecting and thresholding: the reconstruction

starts from some initial approximation x̌(0), which is further

refined in an iterative manner, as in the following:

ˇ̌x(i) = x̌(i) +
ΨΦT

λ
(y − ΦΨ−1x̌(i))

x̌(i+1) =




ˇ̌x(i),

∣∣∣ˇ̌x(i)
∣∣∣ ≥ τ (i)

0, otherwise
,

(1)

where λ is a scaling factor, and τ (i) is the threshold used at the

ith iteration. It is straightforward to see that this procedure is

a specific instance of a projected Landweber (PL) algorithm

[10].

In [3], a block-based approach of the above paradigm for

the CS recovery of 2D images was proposed. In this tech-

nique, the sampling of an image is driven by random matrices

applied block-by-block to the image, while the reconstruc-

tion is a variant of the PL reconstruction of (1) that incorpo-

rates a smoothing operation (e.g. Wiener filtering), ostensibly

to eliminate block artifacts due to the block-based sampling.

Due to its combination of block-based CS (BCS) sampling

and smoothed-PL (SPL) reconstruction, this technique was

denoted BCS-SPL in [4]; we adopt this same terminology

here. The recovery process in BCS-SPL is iterative—the ap-

proximation of the image at iteration i+1, x(i+1), is obtained

from x(i) as [4]:

function x(i+1) = SPL(x(i), y,Φblock,Ψ, λ)

x̂(i) = Wiener(x(i))

for each block j

ˆ̂x
(i)
j = x̂

(i)
j +ΦT

block(y − Φblockx̂
(i)
j )

ˇ̌x(i) = Ψˆ̂x(i)

x̌(i) = Threshold(ˇ̌x(i), λ)

x̄(i) = Ψ−1x̌(i)

for each block j

x
(i+1)
j = x̄(i) +ΦT

block(y − Φblockx̄
(i)
j )

(2)

In [4], the initialization is done as x(0) = ΦT y, and the recon-

struction process is stopped once
∣∣D(i+1) −D(i)

∣∣ < 10−4,

where D is defined as the mean squared error (MSE), D(i) =
1

block size

∥∥∥x(i) − ˆ̂x(i−1)
∥∥∥
2
, between the ith image reconstruc-

tion and the first refinement step at the (i + 1) iteration.

We note that we employ hard thresholding for the operator

Threshold(·), where the convergence factor λ is fixed for all

iterations [11] (specifically, it varies as function of the num-

ber of coefficients of Ψ from one transform to another [12]).

We note also that the convergence for hard-thresholding algo-

rithms of this nature has been proven in [13].

3. DC-BCS-SPL RECONSTRUCTION

In [4], the BCS-SPL reconstruction originating in [3] was

demonstrated to provide effective reconstruction for 2D im-

ages when used with directional transforms. In the following,

we propose an iterative DC algorithm for the reconstruction

of multiview images; this algorithm is based on the BCS-SPL

method described in the previous section and incorporates

the estimation of and compensation for disparity between the

multiple views. Since multiview images are strongly corre-

lated, we exploit this correlation by deploying CS reconstruc-

tion on the DC residual. The method assumes the same setup

as in [4]; that is, for the current image xd, which is the image

to be CS-reconstructed, we have the projection/measurement

matrix Φ; the set of observations, y = Φxd; and the direc-

tional transform used in the reconstruction, Ψ. Additionally,

to adapt the BCS-SPL algorithm to the multiview scenario,

we assume that we know images adjacent to xd; specifically,

we know the closest images to the “left” and “right” of xd

which are xd−1 and xd+1, respectively.

The DC-BCS-SPL algorithm is partitioned into two

phases. In the first phase, a predictor xp for xd is cre-

ated by bidirectionally interpolating the closest views, xp =
ImageInterpolation(xd−1,xd+1). Next, we calculate the

residual r between the original observation y and the observa-

tion resulting from the projection of xp using the same mea-

surement matrix, Φ. This residual then drives the BCS-SPL

reconstruction. We note that, alternatively, xp could be given

by the direct BCS-SPL reconstruction of the current image,

i.e., xp = BCS-SPL(y,Φ,Ψ). However, we have found

that, at low subrates (M/N small), the quality of the interpo-

lated image is much better than that of the direct BCS-SPL

reconstruction.

In the second phase, the reconstructed residual r̂ is fur-

ther refined with reverse DC to obtain the final reconstruction

x̂d. In the second phase, DVd−1 and DVd+1 are the left

and right disparity vectors, respectively; these are obtained

from disparity estimation (DE) applied to the current recon-

struction, x̂d, of the current image and the left and right ad-

jacent images. The disparity vectors then drive the DC of the

current image to produce the current prediction, xp, and its

corresponding residual, r. We note that the second phase of

the algorithm is repeated k times. The complete algorithm is
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presented below:

Given Φ, Ψ, and y = Φxd:

(1)




xp = ImageInterpolation(xd−1,xd+1)

yp = Φxp

r = y − yp

r̂ = BCS-SPL(r,Φ,Ψ)

x̂d = xp + r̂

Repeat k times:

(2)




{DVd−1,DVd+1} = DE(x̂d,xd−1,xd+1)

xp = DC(x̂d,DVd−1,DVd+1)

yp = Φxp

r = y − yp

r̂ = BCS-SPL(r,Φ,Ψ)

x̂d = xp + r̂

As illustrated in Fig. 1, the quality of DC-based recon-

struction is several dBs higher than that obtained by direct

BCS-SPL reconstruction. We have found this to be true re-

gardless of the transform Ψ employed. Note that Fig. 1 is

for a single iteration (k = 1) of phase 2 of the reconstruc-

tion; further improvement results from iteratively repeating

phase 2. Given the quality of the reconstruction after phase 1,

the predictor at each step will be obtained by DC between the

current reconstructed image and its neighbors; the improve-

ment in reconstruction quality is due to the refinement of the

disparity vectors, leading to a smoother residual at each step

which is much easily reconstructed by BCS-SPL.

Note that the original images (xd−1 and xd+1) are used

as references for DE. This is pertinent, since the proposed al-

gorithm serves to reduce the acquisition cost (camera quality)

by at least 25% (equivalent to a subrate M/N = 0.5, the

maximum we consider). We note also that phase 2 of the pro-

posed algorithm converges quickly—typically, 2 ≤ k ≤ 5
is sufficient for convergence in PSNR to the second decimal

place.

4. EXPERIMENTAL RESULTS

In this section, we present more comprehensive experimen-

tal results, evaluating several directional transforms for both

direct and DC-based CS reconstruction. Specifically, we de-

ploy a discrete cosine (DCT), a discrete wavelet (DWT), a

dual-tree discrete wavelet (DDWT) [14], and a contourlet

transform (CT) [15] within the BCS-SPL framework as de-

scribed in Sec. 3. We refer to the resulting implementations

as transform for direct CS reconstruction using the trans-

form in question, and DC-transform for the corresponding

DC scheme using the algorithm of Sec. 3; here, transform ∈
{DCT,DWT,DDWT,CT}. In our simulations, the disparity

(a)

(b)

Fig. 1. Monopoly, 512 × 512: BCS-SPL reconstruction us-

ing 64 × 64 DCT at subrate M/N = 0.2. (a) Direct BCS-

SPL (PSNR = 29.03 dB); (b) one-step DC-BCS-SPL (PSNR

= 42.70 dB).

is estimated using a full-search block-based DE algorithm,

where the size of the block is 16 × 16, and the search area is

32× 32 pixels. For BCS-SPL, we have used a 64× 64 block

size for the sampling and reconstruction processes. The num-

ber of decomposition levels for the tested transforms is 6. We

use the BCS-SPL implementation available from its authors1.

Figs. 2–5 present the PSNR performance for several 512×
512 images from the Middlebury database2 at several sub-

rates, M/N . All images are rectified and the radial distortion

has been removed. It should be noted that, since the qual-

ity of reconstruction can vary due to the randomness of the

1http://www.ece.msstate.edu/˜fowler/
2http://cat.middlebury.edu/stereo/data.html
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Fig. 2. Reconstruction quality (dB) for ”Aloe” test image, as

a function of the subrate, and for different transforms.

measurement matrix Φ, all PSNR values in the figures are

obtained by averaging 5 independent trials. It is evident that

the DC-based recovery leads to higher-quality results, having

an average gain of ∼7 dB with respect to direct BCS-SPL re-

construction. The results confirm that both direct BCS-SPL

as well as DC-BCS-SPL with the DDWT achieve the best

performance at both low and high subrates. Moreover, for

highly textured content (e.g., the Monopoly image), the gain

of the DC-based reconstruction over the direct reconstruction

reaches a peak of ∼13 dB.

5. CONCLUSION

In this paper, we have considered the situation in which ran-

dom projections coupled with CS reconstruction are used

to reduce image-acquisition cost within a multiview setting.

Specifically, we have assumed that an image is subject to ran-

dom projections during its acquisition, and that high-quality

adjacent images are available to aid its CS reconstruction. We

have proposed the incorporation of DE and DC into the CS re-

construction, such that two adjacent images are used to form

a prediction of the current image in between them. This pre-

dicted image is then projected using the same measurement

matrix as was used to acquire the random CS projections of

the current image. CS reconstruction then proceeds on the

residual between the projected prediction and the projected

image. Experimental results reveal a substantial increase in

reconstruction quality for the DC-based algorithm as opposed

to a simple, direct CS reconstruction driven by the random

measurements of the image rather than the projection-domain

residual.

We note that, although we have specifically considered the
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Fig. 3. Reconstruction quality (dB) for ”Baby” test image, as

a function of the subrate, and for different transforms.
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Fig. 4. Reconstruction quality (dB) for ”Bowling” test image,

as a function of the subrate, and for different transforms.
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age, as a function of the subrate, and for different transforms.

multiview setting, we anticipate that the techniques presented

here are also applicable to stereo images in which one image

is acquired with high quality and the other is subject to CS-

based random projections. In the DC-BCS-SPL algorithm we

present here, one would simply modify the prediction process

so as to be unidirectional rather than bidirectional.
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ABSTRACT

Compressed sensing is applied to multiview image sets and inter-

image disparity compensation is incorporated into image recon-

struction in order to take advantage of the high degree of inter-

image correlation common to multiview scenarios. Instead of re-

covering images in the set independently from one another, two

neighboring images are used to calculate a prediction of a tar-

get image, and the difference between the original measurements

and the compressed-sensing projection of the prediction is then re-

constructed as a residual and added back to the prediction in an

iterated fashion. The proposed method shows large gains in per-

formance over straightforward, independent compressed-sensing

recovery. Additionally, projection and recovery are block-based to

significantly reduce computation time.

Index Terms— Compressed sensing, multiview images, dis-

parity compensation

1. INTRODUCTION

Many systems today use multiple cameras to capture information

about a specified scene, such as 3D reconstruction, creation of vir-

tual environments, and surveillance applications. Because multi-

view systems require multiple sensors, the cost of data acquisi-

tion is often much higher than that of traditional systems. In these

multiple perspective, or multiview, situations, the correlation be-

tween images is often very high due to similar content. Compres-

sion, restoration, or other data-processing tasks can benefit greatly

by exploiting this redundancy of content to improve their perfor-

mance. Disparity compensation (DC) between the images within

a multiview image set can be used to take advantage of this corre-

lation.

Compressed sensing (CS) (e.g. [1]) is a recent paradigm which

allows for a signal to be sampled at sub-Nyquist rates and pro-

poses a methodology of recovery which incurs no loss. CS tells us

that this is achievable under the assumption that the original signal

can be described sparsely in either its ambient domain or in some

other basis, Ψ. The core of the signal-acquisition step commonly

involves a projection onto a random basis, Φ, which must exhibit

a high level of incoherence with the sparse domain [1]. Physi-

cal implementations of this methodology have been made, such as

the well-known single-pixel camera [2], and many methods have

been proposed for the recovery of signals acquired in this manner

[3, 4, 5, 6, 7, 8].

In this paper, we propose a joint CS reconstruction algorithm

for multiview image sets which takes advantage of the strong cor-

relation between images within the set. In [4], an efficient algo-

rithm for reconstructing randomly projected blocked images was

proposed. The goal of this paper is to enhance the accuracy of this

algorithm within the multiview setting through the use of inter-

image DC during the reconstruction process. The results we ob-

tain are promising and show substantial performance improvement

over the straightforward, independent CS recovery of the images

of the set, even at very low subsampling rates.

2. PRELIMINARIES

One of the main advantages of the CS paradigm is the very low

computational burden placed on the encoding process, which re-

quires only the projection of the signal x, of dimensionality N ,

onto some measurement basis, ΦN×M , where M ≪ N . The re-

sult of this computation is the M -dimensional vector of measure-

ments, y = Φx. Φ is often chosen to be a random matrix because

it satisfies the incoherency requirements of CS reconstruction for

any structured signal transform Ψ with a high probability. In this

way, the encoder can also be said to be structure agnostic. We

assume Φ is also chosen to be orthonormal (ΦTΦ = I).

This light encoding procedure offloads most the computation

of CS onto the decoder. Because the inverse of the projection x̂ =
Φ−1y is ill-posed, we cannot directly solve the inverse problem to

find the original signal from the given measurements. Instead, the

CS paradigm tells us that the correct solution for x is the sparsest

signal which lies in the set of signals that match the measurements

[1]; i.e.,

x̂ = argmin
x

‚

‚Ψx
‚

‚

ℓ0
s.t. y = Φx, (1)

where sparsity is measured in the domain of transform Ψ. How-

ever, this ℓ0-constrained optimization problem is computationally

infeasible due to its combinational and non-differentiable nature.

Thus, a ℓ1 convex relaxation is often applied, sacrificing accuracy

but permitting the recovery to be implemented directly via linear-

programming techniques (e.g., [9, 7, 8]). Further relaxations of

the optimization have also been attempted, such as the mixed ℓ1-

ℓ2 method proposed in [10]. However, all of these schemes still

suffer from very long reconstructions times for N of any practical

or interesting size.

Iterative thresholding algorithms have also been proposed as

another class of solutions for CS recovery. The most common

of these is the iterated hard thresholding (IHT) algorithm (e.g.,

[11, 12, 13, 14]). IHT replaces the constrained optimization for-

mulation with an unconstrained optimization problem via a La-

grangian multiplier and further relaxes the problem by loosening

the equality constraint to an ℓ2-distance penalty,

x̂ = argmin
x

‚

‚Ψx
‚

‚

ℓ1
+ λ

‚

‚y −Φx
‚

‚

ℓ2
. (2)

Algorithms of this class recover x̂ by successive projection and

thresholding operations. Given some initial approximation x̌(0) to

the transform coefficients x̌ = Ψx, the solution is calculated in

the following manner:

ˇ̌x(i) = x̌(i) +
1

γ
ΨΦT

“

y −ΦΨ−1x̌(i)
”

, (3)

x̌(i+1) =

(

ˇ̌x(i),
˛

˛

˛

ˇ̌x(i)
˛

˛

˛
≥ τ (i),

0 else,
(4)
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where γ is a scaling factor, and τ (i) is the threshold used at the

ith iteration. Further observation of this process shows us that this

procedure is actually a specific instance of a projected Landweber

(PL) algorithm [15]. We note that convergence of IHT has been

shown in [5].

IHT recovery improves reconstruction speed by at least an or-

der of magnitude and maintains a high degree of accuracy. Recon-

struction time can be further reduced by implementing a block-

based measurement and recovery procedure, as proposed in [3].

In this technique, Φ is applied on a block-by-block basis, while

the reconstruction step incorporates a smoothing operation (such

as Weiner filtering) into the IHT. By employing blocking, the re-

sults in [3] show a reduction of computation time by four orders

of magnitude for comparable accuracy versus linear programming

approaches. In [4], this method is referred to as block CS and

smoothed PL (BCS-SPL) and is extended via the use of directional

transforms. The algorithm in [4] is given as

function x(i+1) = SPL(x(i),y,Φblock,Ψ, λ)

x̂(i) = Wiener(x(i))
for each block j

ˆ̂x
(i)
j = x̂

(i)
j +ΦT

block(y −Φblockx̂
(i)
j )

ˇ̌x(i) = Ψˆ̂x(i)

x̌(i) = Threshold(ˇ̌x(i), λ)

x̄(i) = Ψ−1x̌(i)

for each block j

x
(i+1)
j = x̄

(i)
j +ΦT

block(y −Φblockx̄
(i)
j )

Here, x(0) = ΦTy. The method uses hard thresholding with a

fixed convergence factor λ for all iterations [6], and can be calcu-

lated as a function of the number of coefficients used in Ψ [16].

3. DC-BCS-SPL

In [4], BCS-SPL was shown to be both more computationally ef-

ficient and to provide more accurate reconstructions than other re-

covery techniques, especially when using directional transforms

as the sparse basis. We now propose a method which incorporates

disparity estimation and compensation as side information into this

competitive recovery algorithm with the goal of improving recov-

ery accuracy when used within the multiview setting. We exploit

the strong correlations between multiview images by reconstruct-

ing the residual between images and their disparity-compensated

predictions as a means for refining the accuracy of direct BCS-

SPL reconstruction. Our method requires no additional informa-

tion from the encoder, simply the typical CS formulation—namely,

the measurement matrix, Φd; a set of measurements, y = Φdxd;

and the sparsity basis, Ψ. We refer to this proposed method as

disparity-compensated BCS-SPL (DC-BCS-SPL).

The DC-BCS-SPL algorithm, depicted in Fig. 1, is partitioned

into two phases. In the first phase, a prediction of the current im-

age, xd, is created by bidirectionally interpolating the BCS-SPL

reconstructions of the two nearest views (the left and right neigh-

bors), i.e. xp = ImageInterpolation(x̂d−1, x̂d+1). Next, the

residual, r is calculated by taking the difference between the given

measurements, yd, and the projection of xp onto the measurement

basis, yp = Φdxp. This residual, r = yp − y, is then recon-

structed using BCS-SPL and added back to xp to obtain the recon-

struction x̂d.

In the second phase, the reconstruction obtained from the first

phase is used to refine the prediction, xp. Disparity estimation is

used to find two sets of disparity vectors, DVd−1 and DVd+1, be-

tween x̂d and the reconstructions of its neighbor images. The dis-

parity vectors are then used to produce two disparity-compensated

predictions of x̂d which are averaged together to produce a sin-

gle prediction. This prediction will serve as the xp for the next

reconstruction. This process is repeated k times.

The iterative process improves the quality of the final recon-

struction because the use of DC allows us to make a better predic-

tion of the image, which leads to smoother and more easily recon-

structed residuals, which then allow us to make more accurate pre-

dictions, and so on. DC-BCS-SPL converges quickly—typically

iterating for 2 ≤ k ≤ 5 is sufficient.

4. EXPERIMENTAL RESULTS

In order to observe the effectiveness of the DC-BCS-SPL recov-

ery, we evaluate the performance of the proposed method against

that of the direct-recovery approach, i.e., BCS-SPL used to recon-

struct the frame independently of its neighbors. We use several

transforms, specifically a DCT, DWT, complex dual-tree DWT

(DDWT), and contourlet transform (CT). In our results, we refer

to the implementations of the direct approach simply by the name

of the used transform, and DC-transform is used to refer to the

implementations of DC-BCS-SPL using the named transform. In

our simulations, disparity vectors are calculated using a full block-

based search with integer-pixel accuracy, a block size of 16 × 16,

and a search window of 32 × 32. It is conceivable that the per-

formance of DC-BCS-SPL could be increased with more sophisti-

cated disparity-vector estimation. For DC-BCS-SPL, we consider

two measurement block sizes, 32×32 and 64×64, and the wavelet

based transforms are computed to 5 and 6 levels of decomposition,

respectively, for these block sizes. Additionally, all images within

the measured multiview set are projected using the same subrate.

Tables 1 and 2 present the performance, in PSNR, for several

512 × 512 images from the Middlebury multiview database1 at

several subrates, M/N , and for the two measurement block sizes

considered. All images are rectified, and any radial distortion is

removed. It should be noted that, due to the variation in quality

that can result from differences in random measurement matrices,

all PSNR values represent an average of 5 independent trials.

As illustrated in Fig. 2, the quality of DC-BCS-SPL is over-

all ∼2 dBs higher than the PSNR performance obtained by using

direct BCS-SPL under the same conditions. We have found this

performance gain to be true regardless of the sparsity basis, Ψ,

used. Note that results in Fig. 2 are calculated by using a single

iteration (k = 1) of reconstruction. Increasing the number of iter-

ations shows further performance gains.

The DC-BCS-SPL method shows a performance improvement

of ∼1 dB to ∼3 dB for lower to higher subrates in comparison

to direct BCS-SPL. Of the transforms used, the DDWT gave the

best performance for both direct and DC BCS-SPL. Additionally,

for images with high variation or texture (such as the “Monopoly”

multiview image set), the performance gain of the DC method over

direct BCS-SPL is even more pronounced, peaking at ∼4.5 dB.

It should also be noted that low-variation images benefited from

larger measurement block sizes, as can be seen for the “Plastic”

multiview image set which shows a performance gain of ∼1.5 dBs

when 64× 64 blocks are used instead of 32× 32 blocks.

5. CONCLUSIONS

In this paper, we proposed a new method for the CS recovery of

multiview images which takes advantage of the high degree of

inter-frame correlation which is characteristic of the multiview ap-

plication. We included side information in the form of disparity

1http://cat.middlebury.edu/stereo/data.html



245

Figure 1: The DC-BCS-SPL reconstruction algorithm.

Figure 2: Images from the five multiview sets (left to right: Aloe, Baby, Plastic, Bowling, and Monopoly) reconstructed using the given

experimental framework: the first row using direct BCS-SPL, the second row using DC-BCS-SPL

estimation and compensation and using the technique of recon-

structing a residual rather than an image, and we incorporated this

information into the CS-recovery framework. Experimental results

displayed an increase in performance when using this extra infor-

mation in comparison to recoveries which merely reconstruct each

image independently from one another.
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Abstract—Compressed sensing is applied to multiview image
sets and the high degree of correlation between views is exploited
to enhance recovery performance over straightforward indepen-
dent view recovery. This gain in performance is obtained by
recovering the difference between a set of acquired measurements
and the projection of a prediction of the signal they represent. The
recovered difference is then added back to the prediction, and
the prediction and recovery procedure is repeated in an iterated
fashion for each of the views in the multiview image set. The
recovered multiview image set is then used as an initialization to
repeat the entire process again to form a multistage refinement.
Experimental results reveal substantial performance gains from
the multistage reconstruction.

I. INTRODUCTION

Many modern applications, such as 3D reconstruction, cre-

ation of virtual environments, surveillance systems, and more,

require several cameras to record a scene concurrently from

different perspectives. In these cases, there is a large amount

correlation between the images representing each viewpoint.

Compression, restoration, or other data-processing techniques

can make use of this information redundancy to enhance

their performance or robustness. Disparity compensation (DC)

is commonly used to exploit this redundancy by making a

prediction of a current view from other views in the image

set. In the case of compression, a DC prediction can be used

to calculate a residual between the prediction and the original

image. The residual image obtained in this manner is often

much more amenable to compression than the original image.

Because multiview data acquisition requires many sensors

operating concurrently, the volume of data to be either stored

locally or transmitted remotely can be prohibitive in some

applications. It is anticipated that such applications can benefit

from compressed sensing (CS), a new paradigm which allows

signals to be sampled at sub-Nyquist rates and, under certain

conditions of sparsity and incoherence [1], be recovered with

negligible loss. One common method of CS-based signal

acquisition uses a linear projection onto a random basis, a

scenario that has been shown to be physically realizable with

a single-pixel camera [2]. Recovery of signals sampled in this

manner can be achieved via any one of the many proposed CS

reconstruction schemes (e.g., [3]).

In this paper, we propose a joint CS reconstruction of

multiview image sets by utilizing DC to form predictions

which serve as a form of side information to the image

reconstruction algorithm. We use the efficient block-based

method proposed in [4] as our image-recovery procedure.

Experimental results indicate that the proposed method shows

promising performance and demonstrates high-quality recon-

struction even at very low subsampling rates. We note that a

preliminary system we described in [5, 6] used an approach

similar to that considered here; however, the system of [5, 6]

employed a simpler, two-stage recontruction. In contrast, the

system we propose here adds one or more refinement stages

to produce a multistage reconstruction exhibiting substantial

improvement in performance over the system of [5, 6].

II. BACKGROUND

One of the main advantages of the CS paradigm is the very

low computational burden placed on the encoding process,

which requires only the projection of the signal x, of dimen-

sionality N , onto some measurement basis, ΦN×M , where

M ≪ N . The result of this computation is the M -dimensional

vector of measurements, y = Φx. Φ is often chosen to be

a random matrix because it satisfies the incoherency require-

ments of CS reconstruction for any structured signal transform

Ψ with a high probability. In this way, the encoder can also be

said to be structure agnostic. We assume Φ is also chosen to

be orthonormal (ΦTΦ = I). We define the subsampling rate,

or subrate, of the CS scheme as M/N .

This light encoding procedure offloads most the compu-

tation of CS onto the decoder. Because the inverse of the

projection Φ is ill-posed, we cannot directly solve the inverse

problem to find the original signal from the given measure-

ments. Instead, the CS paradigm tells us that the correct

solution for x is the sparsest signal which lies in the set of

signals that match the measurements [1]; i.e.,

x̂ = argmin
x

∥∥Ψx
∥∥
ℓ0

s.t. y = Φx, (1)

where sparsity is measured in the domain of transform Ψ.

However, this ℓ0-constrained optimization problem is com-

putationally infeasible due to its combinational and non-

differentiable nature. Thus, a ℓ1 convex relaxation is often

applied, sacrificing accuracy but permitting the recovery to

be implemented directly via linear-programming techniques

(e.g., [7–9]). Further relaxations of the optimization have also
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been attempted, such as the mixed ℓ1-ℓ2 method proposed in

[10]. However, all of these schemes still suffer from very long

reconstructions times for N of any practical or interesting size.

Iterative thresholding algorithms have also been proposed as

another class of solutions for CS recovery. The most common

of these is the iterated hard thresholding (IHT) algorithm

(e.g., [11–13]). IHT replaces the constrained optimization

formulation with an unconstrained optimization problem via

a Lagrangian multiplier and further relaxes the problem by

loosening the equality constraint to an ℓ2-distance penalty,

x̂ = argmin
x

∥∥Ψx
∥∥
ℓ1
+ λ

∥∥y −Φx
∥∥
ℓ2
. (2)

Algorithms of this class recover x̂ by successive projection and

thresholding operations. Given some initial approximation x̌(0)

to the transform coefficients x̌ = Ψx, the solution is calculated

in the following manner:

ˇ̌x(i) = x̌(i) +
1

γ
ΨΦT

(
y −ΦΨ−1x̌(i)

)
, (3)

x̌(i+1) =

{
ˇ̌x(i),

∣∣ˇ̌x(i)
∣∣ ≥ τ (i),

0 else,
(4)

where γ is a scaling factor, and τ (i) is the threshold used at

the ith iteration. Further observation of this process shows us

that this procedure is actually a specific instance of a projected

Landweber (PL) algorithm [14]. We note that convergence of

IHT has been shown in [11].

IHT recovery improves reconstruction speed by at least an

order of magnitude and maintains a high degree of accuracy.

Reconstruction time can be further reduced by implement-

ing a block-based measurement and recovery procedure, as

proposed in [3]. In this technique, Φ is applied on a block-

by-block basis, while the reconstruction step incorporates a

smoothing operation (such as Wiener filtering) into the IHT.

By employing blocking, the results in [3] show a reduction of

computation time by four orders of magnitude for comparable

accuracy versus linear-programming approaches. In [4], this

method is referred to as block CS and smoothed PL (BCS-

SPL) and is extended via the use of directional transforms.

The algorithm in [4] is given as

function x(i+1) = SPL(x(i),y,Φblock,Ψ, λ)
x̂(i) = Wiener(x(i))
for each block j

ˆ̂x
(i)
j = x̂

(i)
j +ΦT

block(y −Φblockx̂
(i)
j )

ˇ̌x(i) = Ψˆ̂x(i)

x̌(i) = Threshold(ˇ̌x(i), λ)
x̄(i) = Ψ−1x̌(i)

for each block j

x
(i+1)
j = x̄

(i)
j +ΦT

block(y −Φblockx̄
(i)
j )

Here, x(0) = ΦTy. The method uses hard thresholding with

a fixed convergence factor λ for all iterations [13], and can be

calculated as a function of the number of coefficients used in

Ψ [15].

III. DISPARITY-COMPENSATED

CS RECONSTRUCTION

We propose an iterative disparity-compensated algorithm

for the reconstruction of multiview images using BCS-SPL.

Because multiview images are strongly correlated, we can

exploit this redundancy and consider only the DC residual

for CS reconstruction. The given method assumes the same

context as [4]. Each image in the multiview set, xd, is acquired

using a measurement matrix, Φd, and the decoder is given only

the set of observations yd = Φdxd along with each Φd used.

The decoder makes a blind decision on the sparse basis, Ψ,

to use.

The algorithm is partitioned into three stages, as can be seen

in the block diagram in Fig. 1. In the first, or initial, stage,

each image in the multiview set is reconstructed individually

from the received set of measurements using BCS-SPL. In

the second stage (the “basic” stage), for each image xd,

a prediction, xp, is created by bidirectionally interpolating

the BCS-SPL reconstructions of the closest views, xp =
ImageInterpolation(x̂d−1, x̂d+1). Alternatively, the direct re-

construction of the view as obtained from BCS-SPL could

be used as the initial prediction. However, we have found

that at low subrates, the quality of the final reconstruction

is much better when using an interpolation as the initial

prediction. Next, we compute the residual r between the

measurements and the projection of xp by Φd. This residual in

the measurement domain is then reconstructed using BCS-SPL

and added back to the prediction to generate a reconstruction,

x̂d.

x̂d is further refined in the basic stage by calculating a set

of disparity vectors, DVd−1 and DVd+1 (the right and left

disparity vectors, respectively), via disparity estimation using

the reconstructions of the neighboring right and left views

from the first stage. These disparity vectors then drive the DC

to form a prediction of the current view from these neighboring

views. This prediction is substituted for xp, and the procedure

is repeated. This procedure improves the quality of x̂d at

each iteration by refining the disparity vectors at each step,

producing better predictions and therefore producing smoother

residuals which are more accurately recovered, leading finally

to a more accurate x̂d. For our implementation, we iterated

three times.

Subsequently, one or more bootstrapping stages are per-

formed. A bootstrapping-refinement stage of the algorithm is

simply the repetition of the basic stage as described above

with the results from the second stage substituted for the

references used to drive the DC-CS reconstruction. The stages

could conceivably be repeated until there is no significant

difference between consecutive passes; however, in our exper-

imental framework described in the next section, we consider

only one refinement stage in order to minimize the overall

computational complexity of the reconstruction.

We note that, for each view, a different random measure-

ment matrix is used, and the information retained in the

different projections has a high probability of being comple-
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mentary. Knowing that each view is highly correlated, the

performance gains from the refinement iterations is also due

to complementary, highly correlated information along the

disparity axis. Finally, we note that the system considered in

[5, 6] used only the initial and basic stages described here;

experimental results below, however, demonstrate substantial

performance improvement due to the bootstrapping/refinement

stage in the multistage reconstruction.

IV. EXPERIMENTAL RESULTS

In our experiments, we used the dual-tree discrete wavelet

transform (DDWT) transform [16] as the sparse representation

basis, Ψ. The performance characteristics of the DDWT within

the CS framework has been investigated in [4]. In our results,

the direct reconstruction using BCS-SPL (i.e., the output of

the initial stage of the algorithm) is referred to as “DDWT.”

On the other hand, “DC-DDWT” refers to the results obtained

after the basic stage of the proposed method, while “MS-DC-

DDWT” refers to the results obtained using a third, bootstrap-

ping stage. The DC prediction for each view is calculated

using a block size of 16×16 pixels with a search window of

32×32 pixels. For BCS-SPL, a block size of 64×64 pixels is

used as well as 6 levels of DDWT decomposition. All views

are acquired with the same subrate, M/N .

Figs. 2–6 show the PSNR performance obtained for several

512×512 images from the Middlebury stereo-image database1

over the subrate used. All images are rectified and corrected for

radial distortion. Because the measurement basis is random, all

PSNR results are averaged over five independent trials.

As seen in the figures, the bootstrapping stage yields high-

quality results, showing a gain of approximately 1.5 dB to

0.75 dB for high and low subrates, respectively, as compared

to using only two stages. For highly textured images (e.g.,

“Monopoly,” “Aloe”), the last stage greatly improves the final

reconstruction quality; for smooth images (e.g., “Plastic”), the

gains are more nominal.

V. CONCLUSION

In this paper, we proposed a new method of CS reconstruc-

tion for highly correlated multiview image sets. By way of

a multistage refinement procedure, we use the performance

gains obtained via residual recovery to promote even better

performance. The residual recovery was implemented by using

DC to create image predictions which were projected into the

measurement domain and subtracted from the measurements

of the original image. These residuals were then added back to

the predictions to get final reconstructions more accurate than

direct reconstruction. Repeating the procedure was shown in

our results to garner even better PSNR performance.

1http://cat.middlebury.edu/stereo/data.html
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Fig. 1. The multistage DC-based reconstruction algorithm.
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Fig. 2. Reconstruction quality for “Monopoly” as a function of subrate.
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Fig. 3. Reconstruction quality for “Bowling” as a function of subrate.
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Fig. 4. Reconstruction quality for “Aloe” as a function of subrate.
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Fig. 5. Reconstruction quality for “Baby” as a function of subrate.
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Fig. 6. Reconstruction quality for “Plastic” as a function of subrate.
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