
�>���G �A�/�, �T���b�i�2�H�@�y�y�8�d�N�d�d�j

�?�i�i�T�b�,�f�f�T���b�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�T���b�i�2�H�@�y�y�8�d�N�d�d�j

�a�m�#�K�B�i�i�2�/ �Q�M �k�9 �J���` �k�y�R�R

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

���`�+�?�B�i�2�+�i�m�`�2�b �2�i �K�û�+���M�B�b�K�2�b �/�2 �b�û�+�m�`�B�i�û �T�Q�m�`
�H�ö���m�i�Q�@�T�`�Q�i�2�+�i�B�Q�M �/�2�b �b�v�b�i���K�2�b �T�2�`�p���b�B�7�b

�_�m���M �>�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�_�m���M �>�2�X ���`�+�?�B�i�2�+�i�m�`�2�b �2�i �K�û�+���M�B�b�K�2�b �/�2 �b�û�+�m�`�B�i�û �T�Q�m�` �H�ö���m�i�Q�@�T�`�Q�i�2�+�i�B�Q�M �/�2�b �b�v�b�i���K�2�b �T�2�`�p���b�B�7�b�X
�A�M�7�Q�`�K���i�B�[�m�2 �m�#�B�[�m�B�i���B�`�2�X �h�û�H�û�+�Q�K �S���`�B�b�h�2�+�?�- �k�y�R�y�X �6�`���M�Ï���B�b�X ���T���b�i�2�H�@�y�y�8�d�N�d�d�j��

https://pastel.archives-ouvertes.fr/pastel-00579773
https://hal.archives-ouvertes.fr

�Ecole Doctorale
d'Informatique,
T�el�ecommunications
et �Electronique de Paris

Th�ese

pr�esent�ee pour obtenir le grade de doctoral de

TELECOM ParisTech

l'Ecole Nationale Sup�erieure des T�el�ecommunications

Ruan HE

Architectures et m�ecanismes de s�ecurit�e
pour l'auto-protection de syst�emes pervasifs

Soutenance le 30 Novembre 2010 devant le jury compos�e de

Pr. Fr�ed�eric Cuppens Rapporteurs
Pr. Dominique Ga•�ti Rapporteurs
Dr. Thierry Coupaye Examinateurs
Pr. Isabelle Demeure Examinateurs
Pr. Julie A.McCann Examinateurs
Dr. Marc Lacoste Encadrant Industriel
Dr. Jean Leneutre Directeur de th�ese

�Ecole Doctorale
d'Informatique,
T�el�ecommunications
et �Electronique de Paris

Dissertation

Submitted in ful�llment of the requirements for the

Ph.D. degree in Computer Science of

TELECOM ParisTech

By

Ruan HE

Security Architecture and Mechanisms for
Self-protection of Pervasive Systems

Defended on November 30, 2010

Dissertation Committee:

Pr. Fr�ed�eric Cuppens Reviewer
Pr. Dominique Ga•�ti Reviewer
Dr. Thierry Coupaye Examiner
Pr. Isabelle Demeure Examiner
Pr. Julie A.McCann Examiner
Dr. Marc Lacoste Thesis Advisor
Dr. Jean Leneutre Thesis Advisor

Acknowledgement

It is hard to express in words how thankful I am to my advisors Marc Lacoste and Jean
Leneutre, whose guidance and supports have made this thesis successfully realized. They
have not only been my advisors but also friends who have taught me so many things beyond
research. I would also like to especially thank Jacques Pulou whose suggestions have helped
in improving my thesis. He too has been a genuine source of inspiration and jokes relating
to research and beyond. I would also like to thank all members ofMAPS/SHINE/MADE
and MAPS/STT/NDS departments of Orange Labsfor their support and friendship.

Secondly, I would like to thank the two reviewers Pr.Fr�ed�eric Cuppens, Pr.Dominique
Ga•�ti, and the three examiners Dr.Thierry Coupaye, Pr.Isabelle Demeure, Pr.Julie A.McCann
of my dissertation committee for all their hard work and their important and useful com-
ments.

Finally I would like to thank my family, extraordinary parents and my lively wife for
their relentless support and encouragement in all aspects of life, and making me a person
who I am today.

i

R�esum�e

0.1 Introduction

0.1.1 Emergence de l'informatique pervasive

La notion de syst�eme pervasif a �et�e introduite au d�ebut des ann�ees 90 par Mark Weiser
dans [147] qui propose une int�egration de l'informatique embarqu�ee et de la communication
sans �l �a nos activit�es quotidiennes. Un syst�eme pervasif est un environnement dans
lequel l'homme peut interagir avec des �equipements qui ont des capacit�es de calcul et
de communication. Le traitement d'informations par ces �equipements peut guider et
am�eliorer nos activit�es quotidiennes.

Les progr�es dans les technologies li�ees aux syst�emes embarqu�es et �a la communica-
tion sans �l ont permis �a ces syst�emes de devenir une r�ealit�e. La miniaturisation des
�equipements informatiques et les progr�es dans l'int�egration de la micro-�electronique pour
les syst�emes embarqu�es, ont transform�e les interactions homme-machine, les rendent om-
nipr�esentes et di�uses. Certaines innovations r�ecentes dans la conception des puces et
des nanotechnologies permetent de r�eduire la consommation �energ�etique des syst�emes em-
barqu�es. D'autre part, l'am�elioration des communications sans �l permet de connecter ces
appareils embarqu�es au r�eseau de mani�ere plus e�cace. Ces deux avanc�ees majeures ont
permis l'�emergence de syst�emes pervasifs concr�etisant la vision de Mark Weiser.

Dans cette th�ese, un syst�eme pervasif correspond �a un r�eseau (compos�e de terminaux)
qui est :

� distribu�e et d�ecentralis�e : les terminaux sont physiquement distribu�es dans une
r�egion et sont reli�esentre eux par des connexions sans �l. Quelque soit leur localisa-
tion physique, la communication sans �l permet de les connecter entre eux. Cette
architecture distribu�ee n�ecessite une coordination d�ecentralis�ee des terminaux.

� dynamique et ouvert : les terminaux, en particulier les terminaux mobiles, peu-
vent rejoindre et quitter un r�eseau pervasif �a tout moment. Cette ouverture rend
l'architecture du syst�eme dynamique : c'est-�a-dire que la topologie du syst�eme �evolue
au cours du temps pendant l'ex�ecution. Ce caract�ere dynamique de l'architecture
n�ecessite une mod�elisation du syst�eme su�samment exible pour prendre en compte
l'�evolution de topologie du syst�eme.

� complexe et de grande taille : l'�echelle de ces syst�emes peut atteindre des centaines
voire des milliers de terminaux. La mise en place d'une fonction de coordination,
g�erant non seulement ces terminaux, mais �egalement leurs connexions, est une tâche
d'un niveau de complexit�e �elev�e. Au lieu de solutions traditionnellement centralis�ees
qui g�erent un petit nombre de terminaux, les syst�emes pervasifs �a grande �echelle
doivent appliquer une solution plus e�cace.

Plusieurs types de menaces sont identi��es dans cette th�ese. Il existe des menaces locales
qui ins�erent des logiciels malicieux en compromettant la con�dentialit�e et l'int�egrit�e du

ii

syst�eme local de chaque terminal. Les menaces au niveau de r�eseau peuvent provoquer
des attaques du type \Denial of Service " qui compromettent la disponibilit�e d'une partie
ou de la totalit�e des terminaux du r�eseau. De plus, des menaces hybrides peuvent viser
en même temps les terminaux et le r�eseau.

0.1.1.1 Syst�eme auto-prot�egeable

Les syst�emes pervasifs sont sujets �a un ensemble de menaces �evoluant tr�es rapidement et
doivent faire face �a des exigences de s�ecurit�e h�et�erog�enes, ce qui n�ecessite des m�ecanismes
de protection plus e�caces et exibles. La gestion manuelle de la protection devient beau-
coup trop complexe, les administrateurs de s�ecurit�e devant con�gurer chaque terminal.
Ceci apparâ�t impossible pour les syst�emes pervasifs �a grande �echelle. L'approche au-
tonome de gestion de s�ecurit�e [47] automatise l'administration des manipulations r�ep�etitives
de bas niveau et repr�esente une solution prometteuse pour r�esoudre les probl�emes pr�ec�edents.
Un syst�eme auto-prot�egeable r�ealise des op�erations de protection sans ou avec peu d'intervention
d'administrateurs ou d'utilisateurs.

Dans cette th�ese, nous nous int�eressons �a l'auto-protection des syst�emes pervasifs, se
focalisant sur la faisabilit�e de la r�ealisation d'un canevas logiciel pour l'auto-protection.
L'objectif de ce canevas logiciel est de permettre aux terminaux et �equipements de r�eseau
de r�eagir contre les menaces, les attaques de tous niveaux (i.e. du niveau du syst�eme
d'exploitation jusqu'au niveau applicatif). Malheureusement, la diversit�e des menaces et
le caract�ere dynamique des syst�emes pervasifs rendent l'auto-protection tr�es di�cile. En
se basant sur l'approche informatique autonome, nous appliquons les th�eories du contrôle
aux m�ecanismes de protection classiques pour �etendre le canevas de protection vers un
canevas logiciel dans lequel les menaces peuvent être �elimin�ees de mani�ere autonome.

Contexte : l'approche informatique autonome (autonomic computing) IBM a
tout d'abord pr�esent�e le principe de l'informatique autonome comme un syst�eme auto-g�er�e,
lib�erant les administrateurs de la gestion des tâches de bas niveau, en proposant d'utiliser
des boucles de contrôle autonomes pour am�eliorer le comportement de syst�emes [90]. Qua-
tre propri�et�es sont d�e�nies : l'auto-con�guration, l'auto-optimisation, l'auto-protection,
et l'auto-gu�erison. L'informatique autonome consiste en un ensemble de patrons logiciels,
d'architecture d'implantation, et de processus pour r�eduire la complexit�e d'administration
d'un syst�eme. Elle r�epond �a certaines probl�ematiques des syst�emes informatiques tel que
:

� La complexit�e croissante : les syst�emes informatiques, les applications, et les envi-
ronnements d'ex�ecution sont en forte croissance. Les m�ecanismes d'administration
ne sont pas toujours e�ectifs face �a cette croissance. Un syst�eme informatique �a
grande �echelle compos�e de centaines ou de milliers d'applications n�ecessite un grand
nombre de con�gurations pour chaque tâche d'administration, ce qui est hors du
contrôle humain. La maintenance de ce type de syst�eme informatique devient un
verrou technique pour le passage �a �echelle. L'informatique autonome fournit des
outils pour administrer les syst�emes d'une fa�con autonome en permettant aux ad-

iii

ministrateurs de se concentrer sur les strat�egies de haut niveau plutôt que sur des
m�ecanismes de bas niveau.

� L'�evolution continue des syst�emes logiciels : les syst�emes logiciels sont en �evolution
constante, ne peuvent jamais être compl�etement sp�eci��es, et doivent être soumis �a
une adaptation continue [141]. Cette �evolution peut porter sur deux parties : sur
les exigences de conception, ce qui conduit �a une mise �a jour du syst�eme, ou sur
l'environnement d'ex�ecution, ce qui se traduit par une adaptation du syst�eme. Le
premier type d'�evolution demande une infrastructure extensible et exible, et illustre
le fait que l'environnement d'ex�ecution n'est pas connu a priori au moment de la
conception. La deuxi�eme �evolution montre que l'environnement applicatif ne peut
pas rester constant [87]. L'informatique autonome permet de prendre en compte ces
deux �evolutions en recon�gurant dynamiquement les fonctionnalit�es, l'architecture
et les politiques d'administration d'un syst�eme informatique.

� La croissance du coût d'administration : le coût d'administration est devenu un
facteur critique pour les syst�emes informatiques complexes. De plus, les con�gura-
tions manuelles peuvent �egalement induire des dysfonctionnements et des pertes de
donn�ees. L'informatique autonome est consid�er�ee comme un moyen de r�eduire ce
coût de maintenance en permettant des recon�gurations dynamiques et des optimi-
sations guid�ees par des r�etroactions sur le comportement des syst�emes.

D�e�s de l'auto-protection L'auto-protection est l'une des quatre propri�et�es princi-
pales de l'informatique autonome [90]. Le principe de l'auto-protection est d'int�egrer des
boucles de r�etroaction dans des canevas logiciel de m�ecanismes de protection existants.
Dans cette th�ese, nous d�e�nissons un canevas logiciel d'auto-protection dans lequel les
applications peuvent être mises en oeuvre et bien prot�eg�ees. Pour les syst�emes informa-
tiques bas�es sur ce canevas, tous les modules logiciels, du niveau de mat�eriel au niveau
applicatif, sont prot�eg�es. La construction d'un tel canevas logiciel suppose de relever les
d�e�s suivants :

� La s�ecurit�e de bout en bout : du fait de leur ouverture de nouvelles vuln�erabilit�es
sont apparues dans les syst�emes pervasifs par rapport aux syst�emes informatiques
classiques. Les comportements malveillants peuvent compromettre les syst�emes aussi
bien du côt�e du terminal que du côt�e r�eseau. Par cons�equent, un canevas logiciel de
protection e�cace devrait couvrir tous ces aspects et se d�efendre contre toutes les
menaces potentielles.

� La exibilit�e du contrôle des applications : un canevas logiciel d'auto-protection peut
se concevoir comme une couche s�epar�ee coop�erant avec un syst�eme �a superviser et
�a prot�eger. Il prot�ege les applications en appliquant des m�ecanismes de r�eaction
compl�ementaires. Par cons�equent, ce type de canevas logiciel n�ecessite de pouvoir
exercer un contrôle pendant l'ex�ecution des applications. D'o�u le besoin d'une plate-
forme exible permettant la recon�guration dynamique du syst�eme �a prot�eger.

iv

� Le compromis entre l'e�cacit�e des m�ecanismes de protection et leur coût : le coût des
m�ecanismes de protection reste important, un syst�eme strictement prot�eg�e n�ecessite
souvent des contrôles pour chaque op�eration. Ce coût comprend deux parties : un
coût de calcul et un coût de communication. Le premier correspond �a l'allocation
de ressources de calcul. Le deuxi�eme est le tra�c suppl�ementaire induit pour la
coordination des m�ecanismes de protection. Un canevas logiciel de protection e�cace
devrait donc minimiser ces deux types de coûts.

� La faisabilit�e d'implantation de la s�ecurit�e autonome : dans plusieurs domaines
de recherche tels que les syst�emes sensibles au contexte ou le cloud computing,
l'ensemble des syst�emes sont g�er�es d'une mani�ere autonome, sans aucune intervention
de l'utilisateur. Les m�ecanismes d'un syst�eme pervasif ne pourront être con�gur�es
manuellement et devront donc de protection devront donc être auto-g�er�es.

0.1.2 Approche et contributions

0.1.2.1 Approche

Malgr�e les progr�es r�ecents sur les syst�emes informatiques autonomes, l'auto-protection
reste un sujet relativement peu trait�ee. Nous consid�erons que l'on est encore loin d'atteindre
un syst�eme auto-prot�eg�e, tant du point de vue de la conception, que de la mise en oeuvre,
du fait des manques suivants :

1. une architecture de r�ef�erence g�en�erique pour l'organisation des composants consti-
tutifs du canevas;

2. une approche fondamentale, mais extensible pour la mise en oeuvre de la s�ecurit�e;

3. un patron de conception pour la s�ecurit�e des syst�emes autonomes;

4. un paradigme e�cace pour supporter l'ex�ecution et le contrôle des applications.

Nous proposons les approches suivantes pour pallier ces manques :

� une architecture de protection de bout en bout : une telle architecture o�re une
structure g�en�erique qui peut être utilis�e pour di��erents syst�emes. On quali�e un
canevas logiciel de protection de bout en bout s'il peut prot�eger �a la fois ses terminaux
et ses �equipements de r�eseau. Par exemple, un syst�eme d'isolation local ne pourra
pas lutter contre les attaques au niveau du r�eseau parce qu'il ne poss�ede pas d'une
vue globale sur l'ensemble du r�eseau.

� Une approche orient�ee contrôle d'acc�es : le contrôle d'acc�es est consid�er�e comme une
fonction de s�ecurit�e fondamentale pour assurer la s�ecurit�e dans notre canevas logiciel
d'auto-protection. Le m�ecanisme associ�e �a cette fonction est g�en�eralement int�egr�e
comme un module de s�ecurit�e dans le noyau des syst�emes d'exploitation a�n de lim-
iter l'acc�es aux ressources par des validations. En outre, d'autres fonctionnalit�es de
s�ecurit�e telles que la gestion de l'anonymat (\privacy ") peuvent �egalement d�ependre

v

du contrôle d'acc�es. Le contrôle d'acc�es implique g�en�eralement une politique et des
m�ecanismes. La politique sp�eci�e les di��erentes r�egles d'acc�es, les m�ecanismes as-
surent leur validation.

� Une implantation du patron de conception : le patron autonome peut être r�ealis�e au
niveau du mat�eriel (par exemple, l'auto-diagnostic du mat�eriel [12]), du syst�eme
d'exploitation (par exemple, l'auto-con�guration ou gestion de la s�ecurit�e [83]),
du middleware (par exemple, l'infrastructure d'auto-gu�erison), ou de l'application
(par exemple, l'auto-optimisation [102], ou l'optimisation de la qualit�e de service).
Notre canevas logiciel traite la s�ecurit�e �a deux niveaux, en utilisant des boucles de
r�etroaction autonome distinctes pour l'auto-protection du r�eseau et du terminal: (1)
une boucle de contrôle du terminal met �a jour les r�egles de contrôle d'acc�es locaux;
(2) une boucle de contrôle du r�eseau g�ere la coordination d'un ensemble de terminaux
dans le r�eseau.

� Un m�ecanisme de contrôle en temps r�eel : une approche pour faire face aux �evolutions
continuelles est de migrer certaines activit�es de la phase de conception vers l'ex�ecution.
Avec cette philosophie, un syst�eme logiciel est constitu�e d'une infrastructure statique
d�e�nie au moment de la conception et d'un ensemble de composants dynamiques
qui peuvent être mis �a jour ou remplac�es lors de l'ex�ecution. L'approche �a base
de politiques a d�emontr�e sa exibilit�e et sa g�en�ericit�e pour pouvoir supporter cette
philosophie [138]: les fonctionnalit�es du syst�eme sont r�egies par un ensemble de poli-
tiques. Lors du changement de contexte, une autre politique peut être s�electionn�ee
et activ�ee a�n que le syst�eme puisse mieux s'adapter �a son nouvel environnement.

Contributions principales Les �el�ements pr�ec�edents identi�ent les principes de concep-
tion de base pour construire un canevas logiciel d'auto-protection. Di��erentes technologies
peuvent être choisies pour r�ealiser ces principes. Les contributions principales de cette
th�ese d�ecrivent des m�ecanismes d�evelopp�es et mis en oeuvre pour r�ealiser notre canevas
logiciel d'auto-protection. Il s'agit des �el�ements suivants :

� Une architecture �a trois couches pour l'auto-protection : un espace d'ex�ecution four-
nit un environnement d'ex�ecution pour des applications; un plan de contrôle super-
vise l'espace d'ex�ecution ; et un plan autonome guide le plan de contrôle en prenant
en compte l'�etat du syst�eme, l'�evolution des risques, la strat�egie de s�ecurit�e d�e�nie
par l'administrateur, et les pr�ef�erences de l'utilisateur.

� Une approche du contrôle d'acc�es �a base d'attributs: l'approche propos�ee (appel�ee
G-ABAC) exprime les politiques d'autorisation en se basant sur des attributs. Cette
approche apporte �a la fois une neutralit�e vis-�a-vis du mod�ele de contrôle d'acc�es, et
une exibilit�e permettant des manipulations �el�ementaires sur ces politiques.

� Un canevas logiciel �a base de politiques pour r�ealiser la gestion autonome de la
s�ecurit�e : l'approche �a base de politiques a montr�e ses avantages pour l'administration

vi

des syst�emes complexes et dynamiques [105]. Un canevas logiciel autonome de poli-
tiques de s�ecurit�e (ASPF) fournit une solution coh�erente et d�ecentralis�ee pour ad-
ministrer les politiques d'autorisation pour les syst�emes pervasifs �a grande �echelle.
L'int�egration des patrons autonomes am�eliore �egalement la souplesse et la facilit�e
d'adaptation au contexte.

� Un noyau de s�ecurit�e embarqu�e pour l'application des politiques de contrôle d'acc�es
: les politiques d'autorisation d�e�nies pr�ec�edemment sont appliqu�ees par une ar-
chitecture d'autorisation au niveau du syst�eme d'exploitation. Ce noyau appel�e
VSK contrôle l'acc�es aux ressources d'une mani�ere dynamique a�n de r�eduire le
surcoût des m�ecanismes d'autorisation. Ce m�ecanisme permet �egalement de sup-
porter di��erents types de politiques d'autorisation.

� Un langage d�edi�e (Domain-Speci�c Language ou DSL) pour la sp�eci�cation de poli-
tiques d'adaptation : toutes les adaptations de notre canevas logiciel d'auto-protection
de bout en bout sont contrôl�ees par des strat�egies de haut niveau appel�ees poli-
tiques d'adaptation. Un DSL tenant compte de nombreux facteurs pour les d�ecisions
d'adaptation. est d�e�ni pour sp�eci�er ces politiques.

0.1.3 Organisation de la th�ese

Ce document de th�ese commence par une pr�esentation d�etaill�ee du contexte applicatif
dans la Partie I. Les principaux choix de conception pour construire un canevas logi-
ciel autonome qui ont �et�e e�ectu�es, sont d�ecrits dans le chapitre 2. Ce chapitre explore
�egalement quelques solutions existantes pour en d�eterminer les limites et les possibilit�es.
Une mod�elisation du syst�eme d'adaptation prenant en compte le dynamisme et la exi-
bilit�e des syst�emes pervasifs est pr�esent�ee au chapitre 3. Le mod�ele obtenu est extensible
et permet de d�ecrire des aspects multiples tels que le niveau de risque, la qualit�e de service,
la performance, etc. Trois sc�enarios de travail ainsi que les menaces et les contre-mesures
correspondantes sont �egalement pr�esent�es dans ce chapitre.

Les contributions principales de la th�ese sont d�ecrites dans la partie II. Dans le
chapitre 4, nous introduisons G-ABAC, une approche pour le contrôle d'acc�es �a base
d'attributs. Bien que G-ABAC ne soit pas vraiment un mod�ele de contrôle d'acc�es
formalis�e, il explore un paradigme �a base d'attributs pour sp�eci�er un grand nombre
de politiques d'autorisation. Il o�re aussi l'avantage de pouvoir supporter des mod�eles
d'administration di��erents. En se basant sur G-ABAC, nous proposons un canevas logiciel
d'administration appel�e ASPF qui r�ealise la gestion distribu�ee des politiques de s�ecurit�e
dans les syst�emes pervasifs. D'une part, ASPF peut être vu comme un canevas logiciel qui
r�ealise la gestion de politiques G-ABAC de contrôle d'acc�es. D'autre part, ASPF �etend
XACML [77], l'architecture traditionnelle d'autorisation, en int�egrant des fonctionnalit�es
autonomes pour en simpli�er la gestion. L'application des politiques G-ABAC du côt�e
de terminal est r�ealis�ee par VSK, qui est une architecture d'autorisation souple et l�eg�ere
au niveau du syst�eme d'exploitation. VSK permet d'appliquer les politiques de contrôle
d'acc�es sp�eci��ees par G-ABAC. Il est possiblle avec VSK de con�gurer dynamiquement

vii

les politiques de contrôle d'acc�es. Par ailleurs, il est �egalement possible lors de la vali-
dation de demandes d'acc�es de combiner les d�ecisions de plusieurs politiques de contrôle
d'acc�es di��erentes. Toutes ces caract�eristiques font VSK une plate-forme côt�e terminal
relativement e�cace et pouvant servir de base pour le canevas logiciel d'auto-protection.
ASPF et VSK sont les contributions principales de cette th�ese, et seront respectivement
d�etaill�ees aux chapitres 5 et 6. Un langage d�edi�e (DSL) pour la sp�eci�cation des politiques
d'adaptation est d�ecrit dans le chapitre 7. Ce DSL permet d'exprimer des compromis en-
tre la s�ecurit�e et d'autres aspects comme l'e�cacit�e �energ�etique au cours de la phase de
prise de d�ecision. Un m�ecanisme de traduction ra�ne ce DSL en un m�ecanisme temps
r�eel. L'int�egration de ces politiques d'adaptation dans des canevas logiciel existants est
�egalement illustr�ee.

La validation du canevas logiciel d'auto-protection est pr�esent�ee dans la partie III. Bas�e
sur les r�esultats du projet E2R [95], la mise en oeuvre du côt�e du terminal est r�ealis�ee et
�evalu�ees au Chapitre 8 (dans le cadre des projet FUI Mind et Pronto). Les �evaluations
[81, 83] montrent l'e�cacit�e et la exibilit�e de l'architecture d'autorisation au niveau du
syst�eme d'exploitation. Le chapitre 9 d�ecrit ASPF et sa mise en oeuvre au niveau du
r�eseau. Les �evaluations du canevas logiciel d'auto-protection de bout en bout [82, 14]
ont �et�e r�ealis�ees au sein du projet ANR SelfXL. Ces �evaluations illustrent l'e�cacit�e des
deux boucles autonomes en termes de temps de r�eponse et de r�esilience. En�n, une autre
validation du canevas dans le domaine du cloud computing est pr�esent�ee dans le chapitre
10. Ces travaux font partie d'un projet en cours pour traiter la probl�ematique de la
s�ecurit�e des infrastructures de type cloud.

0.1.4 Contributions

0.1.4.1 Architecture de s�ecurit�e autonome

Avec la forte croissance de la complexit�e des syst�emes de protection, l'administration
des m�ecanismes de s�ecurit�e et des politiques d'autorisation devient un probl�eme cri-
tique. L'informatique autonome [90] d�e�nit une approche prometteuse pour simpli�er
l'administration en int�egrant des boucles de contrôle r�etroactives. Un canevas d'auto-
protection g�ere tous ses composants de s�ecurit�e sans ou avec un minimum d'intervention
de l'humaine, et il peut r�eagir de fa�con autonome aux �evolutions li�ees au changement des
pr�ef�erences de l'utilisateur ou de l'environnement de fa�con autonome.

Approche �a base de politiques Un besoin de conception pour un tel syst�eme au-
tonome est de d�evelopper un canevas logiciel d'administration e�cace et simple qui fait
collaborer tous les composants en suivant une strat�egie de protection globale. L'approche
�a base de politiques peut r�epondre �a ce besoin [105]. Dans cette approche, des politiques
abstraites de haut niveau guident le comportement du canevas de protection et g�en�erent
dynamiquement des op�erations de bas niveau [137]. D'autre part, le canevas logiciel de
contrôle d'acc�es applique les politiques : tous les acc�es aux ressources sont contrôl�es par
une politique d'autorisation [35, 132]. Par rapport �a l'objectif de cette th�ese, a�n qui est
de proposer un canevas logiciel de s�ecurit�e autonome, l'approche �a base de politiques est

viii

consid�er�ee comme une base de conception de conception qui faciliteant le contrôle d'acc�es.
Une politique de contrôle d'acc�es d'un tel canevas logiciel est un ensemble de r�egles

qui d�e�nissent des conditions potentielles pour acc�eder aux ressources. La s�eparation
entre la politique et ses m�ecanismes permet une �evolution dynamique de la strat�egie
d'administration sans modi�er l'infrastructure sous-jacente. Par cons�equent, le canevas
logiciel �a base de politiques est capable de contrôler dynamiquement la protection des
syst�emes pervasifs sans modi�er ses m�ecanismes de protection sous-jacents. Deux types
des politiques sont utilis�es dans notre canevas logiciel: les politiques d'autorisation qui sont
des r�egles pr�edictives pour contrôler l'acc�es et les politiques d'adaptation qui modi�ent
l'ex�ecution du syst�eme lors de changement de contexte.

Fonctionnalit�e vs. maturit�e autonome Du point de vue des fonctionnalit�es au-
tonomes, IBM �echelonne le degr�e de maturit�e de l'informatique autonome en cinq niveaux
: le niveau basique, le niveau g�erable, le niveau pr�edictif, le niveau adaptatif et le niveau
autonome. Les di��erents canevas logiciels autonomes peuvent être class�es selon ce degr�e
de maturit�e. Chaque niveau de maturit�e perfectionne le niveau le pr�ec�edant en o�rant
des fonctionnalit�es suppl�ementaires qui rendent le canevas plus autonome. Par exemple,
un canevas logiciel est classi��e en niveau pr�edictif si les fonctionnalit�es des deux niveaux
sous-jacents (le niveau basique et le niveau g�erable) sont bien �etablis. A�n d'atteindre le
niveau autonome qui est l'un des objectifs de cette th�ese, notre canevas logiciel devrait
contenir toutes les fonctionnalit�es qui correspondent �a ces cinq niveaux.

Le niveau le plus bas (le niveau basique) peut être consid�er�e comme un environnement
d'ex�ecution des applications sans m�ecanisme de contrôle. Le niveau g�erable pr�evoit des
m�ecanismes de contrôle fondamentaux et le niveau pr�edictif applique quelques r�egles de
pr�ediction au-del�a du niveau g�erable. Le niveau adaptif tient compte du contexte pour
optimiser l'ex�ecution. En�n, le niveau autonome propose des strat�egies s�emantiques pour
guider le comportement de l'adaptation.

Architecture �a trois couches Dans le contexte des syst�emes pervasifs, le canevas
logiciel de s�ecurit�e autonome de bout en bout que nous proposons r�ealise ces cinq niveaux
de maturit�e selon trois couches (voir la �gure). L'espace d'ex�ecution est un environnement
d'ex�ecution pour les applications qui joue le rôle du niveau basique. Le plan de contrôle
regroupe �a la fois le niveau g�erable et le niveau pr�edictif qui contrôle l'espace d'ex�ecution
en appliquant des r�egles de pr�ediction. Dans notre cas, les politiques d'autorisation sont
des r�egles de pr�ediction pour contrôler l'acc�es aux ressources. Au-dessus, le plan adaptatif
autonome est coordonn�e avec les politiques d'adaptation s�emantique. Cette sous-section
d�ecrit ces trois plans, et plus de d�etails sur la r�ealisation de chaque couche seront pr�esent�es
dans les sous-sections suivantes.

Espace d'ex�ecution: l'espace d'ex�ecution est un environnement dans lequel les appli-
cations peuvent être lanc�ees et ex�ecut�ees. Tous les syst�emes sans m�ecanismes de contrôle
peuvent être consid�er�es comme espace d'ex�ecution. Parce que les niveaux sup�erieurs ap-
pliquent le contrôle, l'espace d'ex�ecution doit fournir une repr�esentation uniforme de toutes
les applications. L'approche �a base de composants (Component-Based Software Engineer-
ing ou CBSE) [40] apparâ�t comme une bonne solution car elle permet d'abstraire toutes les

ix

applications et ressources sous forme de composants. Les interfaces standards sont d�e�nies
et utilis�ees pour contrôler ces composants. D'autres avantages comme la recon�guration
dynamique sont �egalement fournis par CBSE.

Plan de contrôle: le plan de contrôle combine le niveau g�erable et le niveau pr�edictif du
mod�ele de maturit�e autonome d'IBM. A�n de r�ealiser le niveau g�erable, des m�ecanismes
de supervision et de recon�guration sur l'espace d'ex�ecution doivent être propos�es. Pour
r�ealiser le niveau pr�edictif, certains types de r�egles de pr�ediction doivent être utilis�es
pour indiquer les r�eactions potentielles. Comme nous nous int�eressons �a un canevas logi-
ciel d'auto-protection, les politiques d'autorisation sont appliqu�ees comme des r�egles de
pr�ediction. Une politique d'autorisation est compos�ee de plusieurs r�egles qui repr�esentent
les permissions d'autorisation des sujets sur les objets avec des op�erations. Lorsqu'un
composant dans l'espace d'ex�ecution tente d'acc�eder �a un autre composant, une requête
d'acc�es est tout d'abord captur�ee par le plan de contrôle. Ensuite, un module pr�edictif
de d�ecision dans ce plan prend une d�ecision cette requête. Un module de recon�guration
r�ealise ensuite une s�erie de r�eactions en fonction de la d�ecision.

Plan Autonome: Dans un canevas logiciel de contrôle d'acc�es, les r�egles d'autorisation
sont g�en�eralement pr�e�x�ees et ne peuvent pas être modi��ees lors de l'ex�ecution. Cepen-
dant, le canevas n�ecessite une adaptation �a l'�evolution du contexte, o�u les r�egles de
pr�ediction peuvent varier en fonction du contexte [100]. Par exemple, une demande d'acc�es
pourrait être accord�ee si le canevas est dans un contexte relativement sûr et devrait être
refus�ee dans le cas contraire. Le niveau adaptatif propose des fonctions pour e�ectuer
cette mise �a jour en se basant sur des informations de contexte. En�n, pour distinguer un
syst�eme de niveau autonome d'un syst�eme de niveau adaptatif, des politiques d'adaptation
s�emantiques guidant le comportement d'adaptation du canevas logiciel d'auto-protection
doivent être fournies. En bref, le niveau adaptatif r�ealise l'adaptation, alors que le niveau
autonome guide le comportement d'adaptation en fonction des pr�ef�erences de l'utilisateur,
de condition d'ex�ecution, etc.

0.1.5 Contrôle d'acc�es g�en�erique �a base d'attributs (G-ABAC)

Comme d�ecrit dans la section pr�ec�edente, la politique de contrôle d'acc�es est le centre du
canevas logiciel de bout en bout. Le plan autonome s�electionne la politique d'acc�es la plus
ad�equate parmi un ensemble de politiques de contrôle d'acc�es potentielles. Par la suite, il
personnalise et d�eploie la politique choisie sur l'ensemble de terminaux �a travers du r�eseau.
Le plan de contrôle applique des politiques sur mesure dans tous les terminaux. Au niveau
de la sp�eci�cation des politiques de contrôle d'acc�es, certains mod�eles existants d�e�nissent
des mod�eles d'administration [126, 113] a�n de contrôler ou limiter les manipulations
d'administration. Bien qu'il existe des mod�eles de contrôle d'acc�es qui soient tr�es expressifs
[98, 116], peu de mod�eles apportent leur appui sur l'administration qui est un point critique
dans le cas o�u l'on souhaite que des terminaux mobiles puissent être int�egr�es dans des
r�eseaux di��erents. Une approche adoptant une neutralit�e vis-�avis du mod�ele de de contrôle
d'acc�es [24, 79, 136] permet am�eliorer non seulement l'expressivit�e en terme de politiques
sp�eci��ees, mais aussi la exibilit�e pour les mod�eles d'administration.

Bien que les contributions principales de cette th�ese soient la mise en place et l'application

x

de politiques de contrôle d'acc�es, et non la proposition d'un nouveau mod�ele de contrôle
d'acc�es, nous pr�esentons dans cette sous-section une approche appel�ee \contrôle d'acc�es
g�en�erique �a base d'attributs ou G-ABAC ". G-ABAC permet de sp�eci�er un grand nom-
bre de politiques de contrôle d'acc�es existants. Cette approche facilite l'administration,
la validation et la con�guration des politiques de contrôle d'acc�es au niveau du syst�eme
d'exploitation embarqu�e. Son support des mod�eles d'administration est plus g�en�erique: un
grand nombre de mod�eles d'administration peuvent être int�egr�es dans le canevas logiciel
ASPF qui s'applique G-ABAC.

Le chapitre 4 de la th�ese donne une description d�etaill�ee du G-ABAC. Dans le con-
texte du syst�eme pervasif, la neutralit�e vis-�a-vis des mod�eles de contrôle d'acc�es, la
d�ecentralisation de la validation des requêtes d'acc�es, l'e�cacit�e du contrôle d'acc�es, et
la exibilit�e pour changer les mod�eles sont cit�es comme les exigences cl�es de concep-
tion. En appliquant l'approche �a base d'attributs et en e�ectuant une s�eparation entre la
sp�eci�cation des politiques et l'administration des attributs, G-ABAC devient plus exible.
G-ABAC permet de recon�gurer dynamiquement et de personnaliser des politiques a�n
d'am�eliorer l'e�cacit�e. Par cons�equent, toutes les exigences sont satisfaites avec G-ABAC.
Ce chapitre pr�esente �egalement une d�e�nition de G-ABAC, illustrant comment mettre en
oeuvre plusieurs politiques d'autorisation existantes. Toutefois, l'approche d'autorisation
G-ABAC n'envisage pas le d�eploiement pour les syst�emes distribu�es. Un canevas logi-
ciel autonome d'administration de politiques de s�ecurit�e (ASPF) qui d�eploie les politiques
G-ABAC �a travers du syst�eme pervasif est introduit dans le chapitre 5 de la th�ese.

0.1.5.1 Canevas logiciel autonome d'administration de politiques de s�ecurit�e

Le chapitre 4 a propos�e une approche de contrôle d'acc�es g�en�erique, G-ABAC, qui per-
met d'exprimer les politiques de contrôle d'acc�es. Cependant, il faut �egalement pr�eciser
comment s'e�ectue le d�eploiement des politiques G-ABAC. Le chapitre 5 de la th�ese
propose un canevas logiciel appel�e \canevas logiciel autonome d'administration de poli-
tiques de s�ecurit�e ou ASPF " r�ealisant non seulement le d�eploiement de di��erents poli-
tiques de contrôle d'acc�es dans un environnement distribu�e, mais incluant �egalement
l'administration autonome pour am�eliorer les capacit�es d'auto-gestion. En se basant sur ce
canevas logiciel, di��erents mod�eles d'administration correspondants aux di��erents mod�eles
de contrôle d'acc�es peuvent être mis en oeuvre.

L'approche �a base de politiques a �et�e initialement d�evelopp�ee pour r�eduire la complexit�e
d'administration des syst�emes informatiques. L'utilisation des politiques d'autorisation
guide la protection des syst�emes g�er�es. Donc, l'int�egration de ces deux approches am�eliore
le d�eploiement et l'administration des politiques d'autorisation et garantit leur coh�erence.
Avec l'aide de l'informatique autonome, un canevas logiciel �a base de politiques devient �a
la fois convivial, sans intervention humaine et sensible aux �evolutions du contexte.

ASPF met en oeuvre deux boucles d'auto-protection, une au niveau de terminal et
l'autre au niveau de r�eseau. En plus, les politiques d'autorisation s'adaptent en fonction
de l'�evolution du contexte de s�ecurit�e. Pour un tel canevas logiciel qui est �a grande �echelle
et distribu�e, les exigences de conception tels que le support de G-ABAC, l'�evolutivit�e
de l'architecture, la coh�erence des politiques distribu�ees, la convivialit�e, et la sensibilit�e

xi

au contexte sont bien satisfaites grâce �a l'utilisation de l'approche �a base de politiques,
l'architecture d'autorisation d�ecentralis�ee, le patron de conception d'auto-protection et
le patron de conception d'auto-con�guration. En outre, la s�eparation des mod�eles de
base d'ASPF par rapport aux mod�eles �etendus et les mod�eles d'impl�ementation am�eliore
la exibilit�e et permet une r�eutilisation dans di��erents contextes. Cependant, les poli-
tiques d'autorisation administr�ees et d�eploy�ees par ASPF devraient être appliqu�ees par
un syst�eme d'exploitation embarqu�e sous-jacent. L'int�egration et la mise en oeuvre des
politiques G-ABAC au niveau de syst�eme d'exploitation sont d�etaill�ees dans le chapitre
6. La r�eutilisation du canevas ASPF dans le cadre du cloud computing est d�ecrite dans le
chapitre 10.

0.1.5.2 Noyau de s�ecurit�e virtuel (VSK)

Bas�e sur l'approche G-ABAC (chapitre 4), le canevas logiciel ASPF (chapitre 5) administre
des politiques d'autorisation �a travers le syst�eme pervasif. Dans le chapitre 6 de la th�ese,
une nouvelle architecture d'autorisation au niveau du syst�eme d'exploitation appel�ee noyau
de s�ecurit�e virtuel (VSK) est propos�ee. Elle applique les politiques d'autorisation G-ABAC
au niveau du syst�eme d'exploitation. Suivant les �evolutions du contexte, ASPF met �a
jour les politiques d'autorisation. Ces politiques mises �a jour sont install�ees dans VSK,
les futures demandes d'acc�es sont ensuite valid�ees en appliquant ces nouvelles politiques
d'autorisation.

VSK e�ectue une s�eparation compl�ete entre un noyau de contrôle minimal (le plan de
contrôle) et l'ex�ecution de ressources (l'espace d'ex�ecution). Le noyau e�ectue la recon�g-
uration e�cace lors de l'ex�ecution des ressources. Il g�ere �egalement l'autorisation par un
moniteur de r�ef�erence qui supporte di��erents types de politiques. La protection devient
donc cach�ee grâce �a un m�ecanisme de contrôle d'acc�es optimis�e. L'architecture de VSK est
�a base de composants ce qui o�re une grande exibilit�e �a la fois au niveau des ressources
pour la personnalisation et au niveau du noyau de syst�eme d'exploitation pour supporter
la neutralit�e vis-�a-vis des politiques d'autorisation.

Dans l'architecture d'administration des politiques �a trois couches propos�ee au chapitre
3, l'espace d'ex�ecution est s�epar�e par rapport au plan de contrôle. Le chapitre 5 se con-
centre sur l'architecture du syst�eme d'exploitation permettant la r�ealisation du plan de
contrôle du côt�e de terminal. VSK est donc un plan de contrôle dynamique et l�eger (en
terme de surcoût li�e �a la validation des autorisations), permettant au noyau de contrôler to-
talement l'ex�ecution des applications. VSK applique l'approche �a base de composants qui
fournit une abstraction uniforme des ressources ou applications h�et�erog�enes. La d�e�nition
d'un plan de contrôle dynamique mais l�eger, s�epar�e par rapport aux ressources d'ex�ecution,
permet aux applications de contrôler et de personnaliser leur environnement d'ex�ecution,
ce qui o�re une architecture du syst�eme d'exploitation tr�es exible. L'int�egration des
m�ecanismes de protection dans ce plan permet �egalement de r�eduire le surcoût d'autorisation
sans compromettre la s�ecurit�e, grâce au m�ecanisme \one-time check ", lors de la cr�eation
de liaisons jusqu'au prochain changement de politiques d'autorisation. L'utilisation de
l'approche G-ABAC pour sp�eci�er les politiques d'autorisation rend l'architecture d'autorisation
\policy-neutral ", i.e. l'architecture supporte des mod�eles de politiques d'autorisation de

xii

di��erents types. La s�eparation claire entre les attributs d'autorisation et les r�egles du
G-ABAC augmente �egalement la granularit�e de la sp�eci�cation des politiques. Le noyau
�a base de composants permet de recon�gurer dynamiquement les modules de contrôle
d'acc�es lors de l'ex�ecution. Du point de vue de la mise en oeuvre d'un canevas logiciel
autonome, il est �egalement n�ecessaire de fournir une politique d'adaptation pour guider
la recon�guration dynamique du noyau VSK. La sp�eci�cation d'une telle politique est
r�ealis�ee dans le chapitre 7.

0.1.5.3 Sp�eci�cation de la politique d'adaptation

Le canevas logiciel d'auto-protection pr�esent�e dans les chapitres 4, 5 et 6 ne pr�ecise pas
la sp�eci�cation des politiques d'adaptation qui permettent guider la s�election ou la re-
con�guration des politiques d'autorisation en fonction de l'environnement. Les politiques
d'adaptation sont g�en�eralement sp�eci��ees dans un formalisme ad hoc telles que des r�egles
\if-then-else " qui ne sont pas intuitives pour les utilisateurs. Elles manquent g�en�eralment
de m�ecanismes de v�eri�cation pour corriger des erreurs. Un autre aspect manquant est
l'int�egration de ces politiques dans notre canevas logiciel d'auto-protection.

Des langages d�edi�es (Domaine-Speci�c Langues ou DSL) o�rent de nombreux avan-
tages pour atteindre ces objectifs en prenant en compte la simplicit�e, la v�eri�cation, et
l'int�egration les politiques en ex�ecution. Le chapitre 7 de la th�ese pr�esente un DSL pour
d�ecrire les politiques d'adaptation. Le DSL est bas�e sur l'approche \Event-Condition-
Action ou ECA" et sur les taxonomies d'attaques et de contre-mesures. Il permet de
r�ealiser un compromis entre la s�ecurit�e et d'autres aspects tel que l'�economie d'�energie
pour la prise de d�ecision. Un m�ecanisme de traduction qui ra�ne dynamiquement le DSL
vers un ex�ecutable et l'int�egre dans le canevas logiciel d'auto-protection pr�ec�edent est
�egalement illustr�e. Les di��erents acteurs intervenant dans le processus de la sp�eci�cation
de politique d'adaptation sont identi��es : l'administrateur de syst�eme utilise les poli-
tiques d'adaptation g�en�eriques (Generic Adaptation Policy ou GAP) pour sp�eci�er les
politiques d'adaptation d'une mani�ere intuitive. GAP est ensuite contrôl�ee pour garantir
la �abilit�e lors de l'ex�ecution, et traduite en politique d'adaptation autonome (Autonomic
Adaptation Policy ou AAP) qui sera int�egr�ee �a notre canevas logiciel d'auto-protection en
ex�ecution. Pendant cette int�egration, un compromis entre la s�ecurit�e et d'autre aspects
peut notamment guider le processus de ra�nement.

Actuellement, un canevas de sp�eci�cation et d'application de DSL appel�e yTune est
en cours de d�eveloppement. Il propose un �editeur et un analyseur syntaxique pour la
sp�eci�cation et la v�eri�cation des di��erents DSL. yTune est un m�etalangage pour la
d�e�nition et la mise en oeuvre de DSL. Les travaux en cours se basent sur l'impl�ementation
des m�ecanismes de ra�nement pour un DSL d'auto-protection dans l'analyseur d'yTune,
et le couplage de la châ�ne d'outils DSL avec le canevas logiciel d'auto-protection ASPF.
Dans l'avenir, nous pr�evoyons �egalement d'am�eliorer le DSL d'auto-protection avec des
taxonomies d'attaques et de contre-mesures plus compl�etes et r�ealistes. A travers des
ontologies d�edi�ees �a la s�ecurit�e, une boucle de r�etroaction peut d�etecter les intrusions,
prendre une d�ecision en prenant en compte les di��erents aspects et proposer des r�eactions.

xiii

0.1.6 Perspectives

L'objectif de cette th�ese �etait de r�ealiser un canevas logiciel d'auto-protection de bout
en bout pour les syst�emes pervasifs. Les r�esultats d'�evaluation montrent la faisabilit�e
et l'e�cacit�e. Les travaux �a venir envisagent l'application du canevas logiciel d'auto-
protection pour d'autres types des syst�emes informatiques ou l'extension du canevas logi-
ciel vers d'autres aspects que la s�ecurit�e.

0.1.6.1 Auto-protection pour d'autres types de syst�emes informatiques

Une question en suspens est de savoir si ce canevas logiciel d'auto-protection peut être
utilis�e pour prot�eger d'autres types de syst�emes informatiques que les syst�emes pervasifs.
Les syst�emes informatiques actuels ont plusieurs probl�ematiques telles que la complexit�e
croissante, l'�evolution continue et un surcoût d'administration �elev�ee. Certaines solutions
de s�ecurit�e existantes se concentrent g�en�eralement sur une de ces probl�ematique sans
porposer une approche globale pour l'ensemble des probl�ematiques. De plus, les admin-
istrateurs doivent manuellement con�gurer les m�ecanismes de protection ce qui implique
un surcoût �elev�e et peut induire des dysfonctionnements et des pertes de performances.
Nous croyons que l'auto-protection constitue une approche de conception in�evitable pour
g�erer la s�ecurit�e des syst�emes informatiques �emergents.

L'extension de notre canevas logiciel d'auto-protection est bas�ee sur une architecture �a
trois couches. Le canevas de protection a besoin d'une s�eparation claire entre l'ex�ecution
des applications, les m�ecanismes de contrôle et les fonctions autonomes a�n de r�eduire la
complexit�e. De plus, l'approche �a base de politiques permet une adaptation dynamique.
Toutes les mises �a jour des modules de s�ecurit�e peuvent être r�ealis�ees grâce �a la modi-
�cation de politiques en laissant l'infrastructure sous-jacente constante. Le contrôle en
temps r�eel est un autre d�e� de conception important. La recon�guration dynamique des
m�ecanismes de protection doit être r�ealis�ee pendant l'ex�ecution. Malheureusement, tr�es
peu de syst�emes informatiques existants fournissent des solutions de recon�guration dy-
namique. Ce verrou technique devrait être enlev�e dans le futur.

La validation de notre canevas logiciel d'auto-protection dans le contexte de cloud com-
puting est une extension d'application de notre canevas. Nos premi�eres exp�eriences mon-
trent que le canevas logiciel côt�e serveur peut être r�eutilis�e. Les politiques d'autorisation
sont personnalis�ese en fonction de chaque hyperviseur et sont d�elivr�e �a travers le cloud
pour contrôler les acc�es locaux. Toutefois, le canevas logiciel côt�e terminal est d�ependant
de la plateforme sous-jacente. Le prototype du côt�e terminal du syst�eme pervasif a �et�e
implant�e sur Fractal / Think dans lequel la recon�guration dynamique peut être facile-
ment r�ealis�ee. Malheureusement, dans une infrastructure cloud, chaque serveur est �equip�e
de son propre hyperviseur. Pour l'hyperviseur Xen, la recon�guration dynamique est im-
possible. Nous ne pouvons pas cr�eer ou supprimer dynamiquement des liaisons pour g�erer
l'autorisation d'acc�es. Une solution existante consiste �a utiliser des crochets statiques par
lesquels chaque demande d'acc�es doit être contrôl�ee. Une autre solution prometteuse est
de r�e-implanter les syst�emes informatiques existants sur une plate-forme �a base de com-
posants. Cette solution permet d'encapsuler les applications sous format de composants.

xiv

Des interfaces et des contrôleurs sp�eci�ques peuvent être ins�er�es pour chaque composant.
Cependant, cette solution n�ecessite une charge de travail �enorme.

0.1.6.2 Extensions �a d'autres aspects

Une autre extension de nos travaux est d'appliquer la même approche pour d'autres
aspects, par exemple la qualit�e de service ou l'�economie d'�energie. Nous croyons que
l'architecture �a trois couches pourra être applicable et que l'approche �a base de politiques
pourra �egalement être utilis�ee pour guider les comportements. Dans ce cas d'autres types
de politiques doivent être appliqu�ees au lieu de politiques d'autorisation.

Notre canevas d'auto-protection utilise des politiques d'autorisation pour le plan de
contrôle et les politiques d'adaptation pour le plan autonome. A�n d'�etendre le canevas
logiciel vers d'autres aspects, nous avons besoin de sp�eci�er d'autres cat�egories de poli-
tiques de contrôle. Par exemple, pour am�eliorer la qualit�e de service, certains types de
politiques de qualit�e de service seront int�egr�ees dans le plan de contrôle. Les politiques
d'adaptation du plan autonome doivent donc tenir compte d'autres aspects pour guider
l'ex�ecution du syst�eme. Ceci n�ecessite un nouveau DSL plus g�en�erique permettant de com-
biner les aspects correspondants. D'autre part, le contrôle �a l'ex�ecution reste toujours un
obstacle. Certaines adaptations ont besoin des m�ecanismes suppl�ementaires, par exemple
pour r�ealiser le changement des protocoles de communication ou le remplacement de mod-
ule de codage au niveau du mat�eriel. Toutes ces exigences n�ecessitent des m�ecanismes de
recon�guration dynamique, ce qui repr�esente actuellement un r�eel verrou technologique.

xv

Abstract

Advances in pervasive system are rapidly taking us to a novel frontier in security, revealing
a whole new landscape of threats. In open and dynamic environments, malicious termi-
nals may enter a network without being detected, and various malwares may invisibly
install themselves on a device. While roaming between heterogeneous networks which are
adjusted for their own protection requirements, a device may also take advantage of se-
curity policy conicts to gain unauthorized privileges. In an embedded setting including
limited and often unstable computing and networking resources, denial of service attacks
are somewhat easier, with little lightweight security countermeasures. Finally, these de-
centralized, large-scale systems make end-to-end security supervision di�cult, with the
risk of some sub-system security policies not being up-to-date. These threats can only be
mitigated with security mechanisms which are highly adaptable to conditions and security
requirements.

Moreover, the administration overhead of security infrastructures usually remains high.
Operations to achieve the administration become increasingly complex which would be out
of control. One promising direction initiated by IBM is to extend context-awareness to
the security mechanisms themselves in order to make them autonomic. In this approach,
protection schemes are automatically adapted at run-time according to the actual security
requirements of the environment.

Our work applies autonomic computing to conventional authorization infrastructure.
We illustrate that autonomic computing is not only useful for managing IT infrastructure
complexity, but also to mitigate continuous software evolution problems. However, its
application in pervasive systems calls for a collection of design building blocks, ranging
form overall architecture to terminal OS design. In this thesis, we propose:

� A three-layer abstract architecture: a three-layer self-protection architecture is ap-
plied to the framework. A lower execution spaceprovides running environment for
applications, a control plane controls the execution space, and an autonomic plane
guides the control behavior of thecontrol plane in taking into account system status,
context evolution, administrator strategy and user preferences.

� An attribute-based access control model: the proposed model (Generic Attribute-
Based Access Control) is an attribute-based access control model which improves
both the policy-neutrality to specify other access control policies and exibility to
enable �ne-grain manipulations on one policy.

� A policy-based framework for authorization integrating autonomic computing: the
policy-based approach has shown its advantages when handling complex and dy-
namic systems. In integrating autonomic functions into this approach, an Autonomic
Security Policy Framework provides a consistent and decentralized solution to admin-
ister G-ABAC policies in large-scale distributed pervasive systems. Moreover, the
integration of autonomic functions enhances user-friendliness and context-awareness.

� A terminal-side access control enforcement OS: the distributed authorization poli-
cies are then enforced by an OS level authorization architecture. It is an e�cient

xvi

OS kernel which controls resource access through a dynamic manner to reduce au-
thorization overhead. On the other hand, this dynamic mechanism improves the
integrability of di�erent authorization policies.

� An adaptation policy speci�cation Domain Speci�c Language (DSL): all the adapta-
tions of this end-to-end self-protection framework are controlled by some high-level
strategies called adaptation policies. A speci�cation DSL for such policies is given
which takes into account various aspects for adaptation decision.

Implementations of the terminal-side OS and the network-side server show the feasi-
bility to realize the design and ful�ll the requirements such as the exibility of run-time
control, e�ciency of protection mechanism, and integration of autonomic functions. The
results of evaluation for both a local micro-benchmark and an end-to-end global benchmark
show that such a framework provides strong and yet exible security while still achieving
good performance, making it applicable to build self-protected pervasive systems.

xvii

List of Figures

3.1 Cluster Life-cycle . 30
3.2 Node Life-cycle . 31
3.3 Smart Home Scenario . 32
3.4 Shopping Mall Scenario . 34
3.5 A military surveillance scenario . 35
3.6 3-Level Autonomic Security Architecture . 39

4.1 G-ABAC Approach . 53
4.2 Access Control List Policies in G-ABAC . 55
4.3 Multiple Security Level Policies in G-ABAC 56
4.4 Organization-Based Access Control Policies in G-ABAC 58
4.5 G-ABAC Speci�cation Model . 59

5.1 The ASPF Overall Design. 70
5.2 The Resource Model. 71
5.3 The Security Model. 72
5.4 The Self-Protection Model. 72
5.5 The Self-con�guration Model. 73
5.6 A Cluster Extended Model. 74
5.7 The Node Extended Model. 76
5.8 The Cluster Implementation Model. 77
5.9 The Node Implementation Model. 77
5.10 The Cluster-level Self-protection Control Loop. 78
5.11 The Node-level Self-protection Control Loop. 79
5.12 The Authorization Architecture. 80

6.1 VSK Architecture . 95
6.2 VSK One-time Check Sequence Diagram . 95
6.3 The ACM Request Process with MLS. 97

7.1 De�nition and Use of Security Adaptation Policies. 105
7.2 DSL Core Model. 106
7.3 Attack Taxonomy. 107
7.4 Countermeasure Taxonomy. 108

xviii LIST OF FIGURES

7.5 A GAP Sample Speci�cation. 109
7.6 Adaptation Policy Transformation. 110
7.7 A Typical Generic Adaptation Policy. 112
7.8 GAP ful�lling Property 1. 112
7.9 GAP ful�lling Properties 1 and 2. 113

8.1 Global Extension. 118
8.2 VSK-based System Overview . 119
8.3 Execution Space . 120
8.4 VSK Kernel . 122
8.5 Authorizations Overhead of ACM . 124
8.6 Authorization Validation and Enforcement Overheads of VSK 125
8.7 VSK vs Microkernel . 126
8.8 Access Control Attribute Recon�guration 127
8.9 Access Control Rule Recon�guration . 128
8.10 Access Control Policy Recon�guration . 128
8.11 Kernel Occupation Rate between Microkernel and VSK 129

9.1 The Cluster Implementation Model. 133
9.2 The Node Implementation Model. 134
9.3 A Basic ASPF Implementation. 135
9.4 an iPOJO-based ASPF Implementation . 138
9.5 ASPF Service-oriented Implementation. 139
9.6 Cluster-Level Self-protection Latencies . 139
9.7 Node-Level Self-protection Latencies . 140
9.8 Benchmarking Self-Protection Capabilities: Principles 140
9.9 Benchmarking Self-Protection Capabilities: Results 141

10.1 An Adaptable Quarantine Zone. 145
10.2 Cloud Resource Model. 146
10.3 Cloud Security Model. 146
10.4 Machine Extended Model. 148
10.5 VSB Extended Model. 149
10.6 System Extended Model. 150
10.7 The SECloud Authorization Architecture. 151

xix

List of Tables

2.1 Autonomic Frameworks Overview . 20

4.1 Access Control Models Comparison . 49

5.1 Policy-Based Frameworks Comparison . 68

6.1 The Operating Systems Comparison. 93

7.1 GAP Event Speci�cation (Attack Taxonomy). 109
7.2 GAP Reaction Speci�cation (Countermeasure Taxonomy). 109

xx LIST OF TABLES

xxi

Contents

0.1 Introduction . i
0.1.1 Emergence de l'informatique pervasive i

0.1.1.1 Syst�eme auto-prot�egeable ii
0.1.2 Approche et contributions . iv

0.1.2.1 Approche . iv
0.1.3 Organisation de la th�ese . vi
0.1.4 Contributions . vii

0.1.4.1 Architecture de s�ecurit�e autonome vii
0.1.5 Contrôle d'acc�es g�en�erique �a base d'attributs (G-ABAC) ix

0.1.5.1 Canevas logiciel autonome d'administration de politiques
de s�ecurit�e . x

0.1.5.2 Noyau de s�ecurit�e virtuel (VSK) xi
0.1.5.3 Sp�eci�cation de la politique d'adaptation xii

0.1.6 Perspectives . xiii
0.1.6.1 Auto-protection pour d'autres types de syst�emes informa-

tiques . xiii
0.1.6.2 Extensions �a d'autres aspects xiv

1 Introduction 1
1.1 Pervasive Systems . 1
1.2 Motivation For Self-protecting Systems . 2

1.2.1 Some Background on Autonomic Computing 2
1.2.2 Self-protection Challenges . 3

1.3 Approach and Contributions . 4
1.3.1 Approach . 4
1.3.2 Main Contributions . 5

1.4 Outline of the Document . 6

I Research Context 7

2 An Overview of Autonomic Computing 9
2.1 Introduction . 9

2.1.1 Research Areas . 9

xxii CONTENTS

2.1.2 Common Features of Autonomic Systems 10
2.2 A Taxonomy of Autonomic Systems . 12

2.2.1 Self-* Properties . 12
2.2.2 Autonomic Maturity . 13
2.2.3 Autonomic Architectures . 13
2.2.4 Autonomic Enforcement Paradigm 14
2.2.5 Adaptation Policy Approaches . 15
2.2.6 Dynamic Recon�guration . 17

2.3 Some Existing Frameworks . 17
2.4 Summary . 20

3 System Modeling 23
3.1 Our De�nition of Pervasive Systems . 23

3.1.1 Infrastructureless Architecture . 24
3.1.2 Dynamic Topology . 25
3.1.3 Multiple Concerns . 26

3.2 Abstract Modeling . 27
3.2.1 Architecture Model . 27
3.2.2 State Model . 27
3.2.3 Detection Model . 28
3.2.4 Evolution Scheme . 28

3.2.4.1 Initial States . 28
3.2.4.2 Transitions . 29

3.2.5 Life-cycles . 30
3.2.5.1 Cluster Life-cycle . 30
3.2.5.2 Node Life-cycle . 31

3.3 Scenarios and Countermeasures . 32
3.3.1 Malicious Node Attack in Smart Home 32
3.3.2 Malicious Application Attack in Shopping Mall 34
3.3.3 Denial of Service Attack in Military Field Surveillance 35
3.3.4 Applying Authorization as Countermeasures 36

3.4 Autonomic Security Architecture . 37
3.4.1 Policy-based Approach . 37
3.4.2 Functions vs. Autonomic Maturity 38
3.4.3 3-level Architecture . 38

3.5 Summary . 40

II Design 41

4 Generic Attribute-Based Access Control (G-ABAC) Approach 43
4.1 Access Control Requirements . 44

4.1.1 Policy-neutrality of Speci�cation and Administration 44
4.1.2 Decentralization of Access Control Validation 44

xxiii

4.1.3 E�ciency of Authorization Enforcement 45
4.1.4 Flexibility of Policy Con�guration 45
4.1.5 Other Requirements . 45

4.2 A Short Survey of Access Control Models 45
4.2.1 Discretionary Access Control (DAC) 46
4.2.2 Mandatory Access Control (MAC) 46
4.2.3 Role-based Access Control (RBAC) 47
4.2.4 Attribute-based Approach . 47
4.2.5 Summary . 48

4.3 Contribution . 49
4.4 G-ABAC De�nition . 50

4.4.1 Entities . 50
4.4.2 Attributes of Entities . 51
4.4.3 Rules . 52
4.4.4 G-ABAC Overview . 53
4.4.5 G-ABAC Policy De�nition . 54
4.4.6 Speci�cation of Existing Policies using G-ABAC 54
4.4.7 G-ABAC Speci�cation . 59

4.4.7.1 G-ABAC Speci�cation Model 59
4.4.7.2 Expression Format . 59

4.5 Administration Support . 60
4.5.1 Attribute Mutability and Revocation 61
4.5.2 Policy Customization . 61

4.6 Summary . 62

5 Autonomic Security Policy Framework 63
5.1 ASPF Design Requirements . 64

5.1.1 G-ABAC Policy Support . 64
5.1.2 Scalability . 64
5.1.3 Consistency . 64
5.1.4 User-Friendliness . 65
5.1.5 Context-awareness . 65
5.1.6 Other Requirements . 65

5.2 A Short Survey of Policy Administration Mechanisms 65
5.2.1 Access Control Administration Models 66
5.2.2 Policy-based Frameworks . 67
5.2.3 Summary . 68

5.3 ASPF Overview . 69
5.4 ASPF Design . 70

5.4.1 Overall Design . 70
5.4.2 ASPF Core Model . 71

5.4.2.1 Resource Model . 71
5.4.2.2 Security Model . 72
5.4.2.3 Autonomic Model . 72

xxiv CONTENTS

5.4.3 ASPF Extended Model . 74
5.4.3.1 Cluster Extended Model 74
5.4.3.2 Node Extended Model . 75

5.4.4 ASPF Implementation Model . 76
5.4.4.1 Cluster Implementation Model 76
5.4.4.2 Node Implementation Model 77
5.4.4.3 A Double Control Loop for Self-Protection 78

5.5 Authorization Architecture . 79
5.6 Execution Support Mechanisms . 81

5.6.1 Delegation Approach . 81
5.6.2 Dynamic Recon�guration . 81
5.6.3 Authorization Policy Enforcement 81

5.7 Summary . 82

6 Virtual Security Kernel (VSK) 83
6.1 Requirements . 84

6.1.1 G-ABAC Support . 84
6.1.2 E�ciency . 85
6.1.3 Run-time Control . 85
6.1.4 Other Requirements . 85

6.2 Related Work . 85
6.2.1 OS Architecture . 85
6.2.2 Dynamic Recon�guration . 87
6.2.3 Authorization Enforcement . 90

6.2.3.1 Single Policy Enforcement 90
6.2.3.2 Policy-neutral Architectures 91

6.2.4 Summary . 92
6.3 VSK Overview . 92
6.4 VSK Architecture . 94

6.4.1 Virtual Kernel (VK) . 95
6.4.2 Access Control Monitor (ACM) . 96

6.5 Execution Support . 98
6.5.1 Kernel Recon�guration . 98
6.5.2 Revocation . 98
6.5.3 Multiple Policy Approach . 99
6.5.4 Functionality Extensions . 99

6.6 Summary . 100

7 Adaptation Policy Speci�cation 101
7.1 Design Requirements . 102

7.1.1 Intuitive Representations . 102
7.1.2 Self-managed . 102
7.1.3 Enabling Trade-o� between Multiple Concerns 102
7.1.4 Easy for Integration . 102

xxv

7.2 Related Work . 103
7.3 Main Features . 103
7.4 DSL Design Principle . 104

7.4.1 The DSL Approach . 104
7.4.2 Main Actors of Autonomic Security Management 105

7.5 A DSL for Self-protection . 105
7.5.1 Taxonomy of Attacks . 106
7.5.2 Taxonomy of Countermeasures . 107
7.5.3 Generic Adaptation Policies (GAP) 107
7.5.4 An Example of GAP Speci�cation 108

7.6 From DSL to Run-Time Representation . 109
7.6.1 Autonomic Adaptation Policies (AAP) 110
7.6.2 A Sample Translation . 111

7.6.2.1 GAP De�nition . 111
7.6.2.2 GAP ! AAP Translation 112

7.7 Summary . 113

III Validation 115

8 VSK Validation 117
8.1 VSK Implementation . 117

8.1.1 Overview of Implementation Framework 117
8.1.2 VSK Architecture Overview . 119
8.1.3 Execution Space . 120
8.1.4 Control Plane Implementation . 121
8.1.5 Authorization Policy Implementation 123

8.2 VSK Evaluation . 124
8.2.1 Authorization Overheads of ACM 124
8.2.2 Authorization Validation and Enforcement Overheads of VSK 125
8.2.3 Comparison with Microkernel . 126
8.2.4 Recon�guration Overhead of VSK 127
8.2.5 Kernel Occupation Rate . 128
8.2.6 VSK Qualitative Evaluation . 129

8.3 Summary . 131

9 Validation of the End-to-end Framework 133
9.1 A Basic ASPF Implementation . 134

9.1.1 Cluster-side ASPF . 134
9.1.2 Node-side ASPF . 136
9.1.3 Summary . 136

9.2 Second ASPF Implementation . 136
9.2.1 Platform Overview . 136
9.2.2 ASPF Implementation . 137

xxvi CONTENTS

9.3 Evaluation of the End-to-End Framework 138
9.3.1 End-to-End Response Time . 139
9.3.2 Resilience . 140
9.3.3 Security Evaluation . 141

9.4 Summary . 142

10 Cloud Computing Validation 143
10.1 Cloud computing Environments . 143
10.2 Towards Self-Protecting Clouds . 144
10.3 Cloud Self-Protection Scenario . 144
10.4 ASPF Core Model . 145

10.4.1 Resource Model . 145
10.4.2 Security Model . 146

10.5 Extended Models . 148
10.5.1 Machine Extended Model . 148
10.5.2 VSB Extended Model . 149
10.5.3 System Extended Model . 149

10.6 Authorization Architecture . 150
10.7 Summary . 150

11 Conclusion 153
11.1 Summary of Contributions . 153
11.2 Perspectives . 154

11.2.1 Self-protection for Other Types of IT Systems 154
11.2.2 Framework Extensions to other Concerns 155

1

Chapter 1

Introduction

1.1 Pervasive Systems

Pervasive systemwas �rstly introduced in 1991 by Mark Weiser in [147] to describe inte-
gration of back-end computing and communication to daily activities. A pervasive system
is an environment in which human can ubiquitously interact with equipments embedded
with capabilities of computing and communication. Therefore, information treatment by
these equipments can guide and ameliorate daily activities of human being (e.g., usage of
Global Position System to help driving).

Advances in embedded systems and wireless communications turned pervasive systems
into a reality. Miniaturization of computing equipments, particular that of embedded sys-
tems, makes human-machine interaction more invisible. Recent innovations in chip design
and nano technology allow fewer consumption for embedded systems which facilitate their
life-cycle management. Secondly, greatly improved wireless communication capabilities
connect these embedded devices in an e�cient and hidden manner. These two major
technological advances have permitted the emergence of pervasive systems corresponding
to the design of Mark Weiser.

A pervasive system in this thesis refers to a network (consisting of terminals) which is:

� distributed and decentralized: terminals are physically distributed in one area and
are connected through wireless communication. Despite their physical localization,
wireless communication makes them logically available to others. Furthermore, the
distributed architecture usually calls for decentralized coordination of terminals to
meet execution environments.

� dynamic and open: terminals, especially mobile terminals, can join and leave perva-
sive networks at any time which characterizes openness of pervasive systems. The
openness makes system architecture dynamic, i.e., system topology highly depends
on time. The dynamic feature of system architecture calls for a highly exible system
modeling to support various conditions.

� large-scale and complex: the size of such systems may become huge with hundreds
or thousands of terminals. Coordination of these terminals arrives a high level of

2 1. Introduction

complexity. It handles with these terminals, their connections, makes a part of them
work together, etc. Instead of traditional solutions for a small number of terminals,
large-scale pervasive systems should apply an e�cient solution.

Three working scenarios as a smart home network, a shopping mall network and a
wireless sensor network are given in Chapter 3 in order to illustrate these major features.

1.2 Motivation For Self-protecting Systems

Pervasive systems are more open, dynamic, and large-scale than traditional distributed
systems. They unravel a whole new landscape of rapidly changing threats and of heteroge-
nous security requirements, calling for strong and yet highly exible security mechanisms.
Managing protection \by-hand" in such a setting becomes far too complex. Thus, the
autonomic approachto security management [47] is a major step forward to address those
issues, a system now being able to protect itself without or with minimal human interven-
tion.

In this thesis, we are interested in the setting of self-protection for pervasive systems,
addressing realizability of making a pervasive system self-protecting. Such systems should
allow their terminals and network-side servers counteracting against threats ranging from
hardware or OS attacks to network attacks. Unfortunately, ubiquitousness of threats and
dynamism of pervasive systems make self-protection hardly easy. Within the autonomic
approach, we apply autonomous control theories for conventional protection mechanisms,
extending the infrastructure towards a framework where threats can be autonomously
eliminated.

1.2.1 Some Background on Autonomic Computing

IBM �rstly initiated the principle of autonomic computing de�ning as system self-management,
freeing administrators from low-level task management while delivering more optimal sys-
tem behavior [90]. Autonomic computing constitutes an e�ective set of technologies,
models, architecture patterns, standards, and processes to mitigate the management com-
plexity of dynamic computing systems using feedback control. It meets some IT system
tendencies as:

Increasing Complexity of IT Systems IT applications together with their execution
environments seem in a dramatic growth in terms of complexity, and manual administra-
tion can no more be e�ective. A huge IT system consisting of hundreds or thousands of
applications calls for a terrible number of con�gurations for each administration which
is out of control of human. Maintainability becomes a major bottle-neck. Autonomic
computing provides tools to autonomously administer systems by enabling administrators
to focus on high-level strategies rather than low-level operational tasks.

Continuous Evolution of Software Systems Software systems are under constant
development, can never be fully speci�ed, and are subject to constant adjustment and

3

adaptation [141]. This involves two parts: evolution of design requirements which leads to
system updates; and that of executing environment which results in system adaptation.
The former asks for an extensible infrastructure to meet evolutional design requirements.
The latter illustrates the fact that the execution environment is not known a priori at
design time and, hence, the application environment cannot be statically anticipated [87].
This drives software adaptation. Autonomic computing takes care of both evolutions by
autonomously recon�guring its functionalities, architectures, and administration policies.

Increasing Overhead of Administration Administration overhead has already be-
come a crucial factor for complex IT systems. The industry spends billions of dollars to
maintain their systems. Con�guration by hand may also induce disfunctions and dramatic
loss. Autonomic computing is seen as a way of reducing total cost of ownership of complex
IT systems by allowing recon�guration and optimization driven by feedbacks on systems
behavior. Formal veri�cation and checking in autonomic computing also guarantees cor-
rectness of con�gurations and manipulations.

1.2.2 Self-protection Challenges

Self-protection was de�ned as one of the four main properties of autonomic computing [90].
It drives us to add autonomic functionalities in existing or emerging protection frameworks.
In this thesis, we de�ne a self-protection framework over which applicative systems can be
implemented. As a matter of fact, the whole execution system, ranging from the hardware
level to the application level, is protected by the framework. However, several challenges
exist in the setting of self-protection.

End-to-End Security for the Framework Such open pervasive systems become in-
creasingly vulnerable to malicious activities covering di�erent aspects from the hardware
level to the application level. This is also called ubiquitousness of threats. Therefore, an
e�ective protection framework should cover all these aspects and defend against threats
from all the levels.

Flexibility of Control over Applications A self-protection framework usually acts
as a separated framework cooperating with an applicative system. It protects applications
by applying some supplementary mechanisms. Therefore, this calls for run-time control
over applications. We need a exible platform enabling dynamic recon�guration over the
applicative system.

E�ciency of Protection Mechanisms Overhead of existing protection frameworks
remain high. This overhead includes two parts, respectively that of computing and commu-
nication. The former refers to computing resources allocation for complementary checking
control. The latter targets communication tra�cs of protection coordination. An e�cient
protection framework should thus mitigate all these two kinds of overhead.

4 1. Introduction

Feasibility for Self-management Systems In several domains such as context-aware
system or cloud computing, whole systems run in an autonomic manner without user inter-
vention. Consequently, their protection should become autonomic. We cannot manually
mitigate threats of systems which are autonomously executing.

1.3 Approach and Contributions

1.3.1 Approach

Despite recent progress in autonomic computing or security enforcement, self-protection
remains relatively little addressed. Its design as well as implementation is far from a
mature autonomic framework, lacking:

1. a generic architecture of reference for organization of building blocks;

2. a fundamental but extensible approach of security enforcement;

3. a simple design pattern to regulate and complete autonomic features;

4. an e�cient paradigm to support run-time enforcement and control.

Four main approaches are applied corresponding to these lacks:

An End-to-End Protection Architecture An end-to-end protection architecture
provides a generic structure which may be used for various systems. We call a protection
framework end-to-end if it can protect against both terminal-level and network-level at-
tacks. Terminal-level local attacks refer to threats against OS or applications of a terminal.
Network-level global attacks usually menace a whole network or a part of the network.
A conventional isolated local protection system cannot counteract against global attack
since it does not have a global view about the whole system. This asks for an end-to-end
protection architecture for pervasive systems.

An Access Control Approach Access control is chosen as fundamental meanings to
enforce security in our proposed framework. It is usually a basic security module imple-
mented in OSes which restricts access to resources by computing permissions. Addition-
ally, other security functionalities such as trusted management and privacy also depend on
access control. Access control usually involves a policy and an enforcement infrastructure.
The policy speci�es access permissions, and the infrastructure illustrates their validation.

An Autonomic Computing Deployment Autonomic computing can be built at the
hardware level (e.g., self-diagnosing hardware [12]), OS level (e.g., self-con�guration up-
grades or security management [83]), middleware level (e.g., self-healing infrastructure),
or application level (e.g., self-tuning application [102], or optimization of performance and
service levels). Our framework regulates security at two levels, using separate autonomic
feedback loops for self-protection of the network and of terminal: (1) a terminal-side

5

control loop operates settings of local security modules for protection and optimization;
(2) and a network-side control loop achieves a global counteraction and improvement in
coordinating a set of terminals in the network.

A Convenient Run-time Control One approach to cope with continuous evolutions
(see Section 1.2.1) is to break the traditional division among development phases by sus-
pending some activities from design time to run-time. That is, a software system includes
a static infrastructure is �xed at design time and a set of dynamic software components
which can be updated and replaced are used at run-time. The policy-driven approach has
successfully demonstrated its exibility and generality for this requirement [138]: �xed
system functionalities are governed by a set of variable policies. As the context changes,
other policies may be selected to activate within system functions better adapted to its
new environment. Furthermore, a run-time platform is integrated which facilitates exible
control over these policies.

1.3.2 Main Contributions

The previous design approaches identify some basic design guidelines to build a self-
protection framework. Various technologies can be selected to achieve these guidelines.
The main contributions explain developed and implemented mechanisms in our protection
framework. The proposed framework consists of:

� A three-layer abstract architecture for self-protection: a three-layer self-protection
architecture is de�ned. A lower execution spaceprovides a running environment for
applications, a control plane supervises theexecution space, and an autonomic plane
guides the control behavior of thecontrol plane in taking into account system status,
risk evolution, administrator strategy and user preferences.

� An attribute-based access control approach: the proposed approach (called Generic
Attribute-Based Access Control) applies attribute-based formulization for authoriza-
tion which improves both policy-neutrality to specify a wide range of access control
policies and exibility to enable �ne-grained manipulations on policies.

� A policy-based framework for authorization to realize autonomic security manage-
ment: the policy-based approach has shown its advantages when handling complex
and dynamic systems. An Autonomic Security Policy Framework (ASPF) provides
a consistent and decentralized solution to administer authorization policies in large-
scale distributed pervasive systems. The integration of autonomic features also en-
hances user-friendliness and context-awareness.

� A terminal-side security kernel for access control enforcement: the distributed au-
thorization policies de�ned previously are enforced by an OS-level authorization ar-
chitecture. This e�cient OS kernel called VSK controls resource access in a dynamic
manner to reduce authorization overhead. This dynamic mechanism also enables to
support di�erent authorization policies.

6 1. Introduction

� A Domain-Speci�c Language (DSL) for adaptation policy speci�cation: all adapta-
tions of our end-to-end self-protection framework are controlled by high-level strate-
gies called adaptation policies. A DSL to specify such policies is given which takes
into account several aspects for adaptation decisions.

1.4 Outline of the Document

This PhD work starts with a detailed introduction of the execution context in Part I .
The de�nition of major design choices to construct an autonomic framework is given in
Chapter 2. This also explores existing solutions to determine limitations and drawbacks.
A system modeling coping with dynamism and exibility of pervasive systems is given
in Chapter 3. Moreover, this model proposes an extensible means to describe multiple
aspects such as risk level, QoS, performance,etc. Three working scenarios as well as their
threats and corresponding countermeasures are also presented in this chapter.

Contributions are elaborated in Part II . In Chapter 4, we introduce G-ABAC, a
promising attribute-based access control approach. Although G-ABAC is not a really
formulized access control model, it explores attribute-based paradigm to specify a wide
range of authorization policies. It also shows advantages to support various administration
models. Based on G-ABAC, an administration framework (ASPF) achieving management
of distributed policies in pervasive systems is proposed. On one hand, ASPF can be rec-
ognized as a framework which realizes administration of G-ABAC access control policies.
On the other hand, it extends traditional authorization architecture in integrating auto-
nomic functionalities to simplify management. The terminal-side enforcement of G-ABAC
policies is realized by VSK which is a exible and lightweight OS-level authorization ar-
chitecture. It can support access control policies speci�ed by G-ABAC. Additionally, it
enables dynamic recon�guration of access control policies and can validate requests in
combining decisions of two access control policies. All these features make VSK an e�-
cient and e�ective terminal platform for the self-protection framework. ASPF and VSK
are main contributions of this thesis, and will be respectively elaborated in Chapter 5 and
Chapter 6. A Domain-Speci�c Language (DSL) for speci�cation of adaptation policies
is described in Chapter 7. This DSL allows to capture trade-o�s between security and
other concerns such as energy e�ciency during the decision making phase. A translation
mechanism to re�ne the DSL into a run-time representation, and to integrate adaptation
policies within legacy frameworks is also illustrated.

The framework validation is given in Part III . Based on our previous results [95] of
the E2R project, the terminal-side implementation is achieved and evaluated in Chapter 8
within the Mind project and Pronto project. The evaluations [81, 83] show the e�ciency
and exibility of the OS-level authorization architecture. Afterward, Chapter 9 realizes,
ASPF, the network-side implementation. Moreover, the evaluations of the end-to-end
framework [82, 14] are achieved within theSelfXL project. These evaluations illustrate
the e�ciency of the two autonomic loops in terms of response time and resilience. Finally,
another design validation to apply the main approaches in the �eld of cloud computing is
presented in Chapter 10. It is part of an in progress project which copes with the security
aspect of cloud computing.

7

Part I

Research Context

9

Chapter 2

An Overview of Autonomic
Computing

Autonomic computing is an e�cient paradigm to simplify complexity of IT systems and
to facilitate end-user manipulations. This chapter gives an overview, ranging from basic
concepts to implemented frameworks, of autonomic computing. In Section 2.1, we review
some research areas and describe common features of systems applying autonomic com-
puting. Section 2.2 presents some taxonomies for such systems. A short survey of some
existing autonomic frameworks is given in Section 2.3 which examines these frameworks
with regard to the de�ned taxonomies. Finally, Section 2.4 proposes concept guidelines to
design our self-protection framework.

2.1 Introduction

Autonomic computing is inspired from a biological metaphor, and is derived from the
autonomic nervous system that governs functions of human body without any conscious
perception or e�ort [90]. Its main objective is to minimize human intervention and to
enable users to concentrate on their areas of interest. Thus, the autonomic approach lets
systems self-manage themselves to execute low level operations in order to achieve high
level tasks.

2.1.1 Research Areas

Autonomic computing has been applied to di�erent domains, including IT systems (au-
tonomic systems), communication and networks (autonomic networking), and protection
(autonomic security).

Autonomic Computing: Autonomic computing was originally designed as a control
mechanism for the management of software applications. This approach [90, 86, 110]
usually consists of four steps: (1) monitoring and collecting information from a variety of
sources such as sensors or speci�c detection systems; (2) aggregating this information and

10 2. An Overview of Autonomic Computing

reasoning out a high level representation of the system context; (3) making adaptation
decisions corresponding to the environment evolution; (4) triggering a set of reactions to
perform the decisions.

Autonomic System: An autonomic systemis the application of autonomic computing
to IT systems. It is usually divided into a set of autonomic elements[148] which manage
their own behavior in accordance with administration strategies. Thus, an autonomic
element must be self-managed which establishes and maintains collaborations with other
autonomic elementsto meet execution requirements, either by adjusting their execution
settings, or by recon�guring running applications.

Autonomic Networking: Autonomic networking [66] aims to simplify the management
of communication infrastructures by minimizing manual interventions - particularly for
large-scale networks where numerous individual entities are connected and interact with
each other. It improves manageability by continuously reacting to system or context
evolutions through the use of some self-adaptive protocols or algorithms [118].

Autonomic Security Autonomic security [47] enhances user-friendliness of security en-
forcement technologies, which leads to build run-time frameworks with implicit protection.
Background self-protection frameworks usually derive and adapt security con�gurations
or protection mechanisms with respect to high-level security policies.

2.1.2 Common Features of Autonomic Systems

Control Loops: Autonomic computing applies control loops to automate infrastructure
management. A control loop consists of a set of components that work together to drive
systems towards desired states. IBM proposed a reference model called MAPE-K (Mon-
itor, Analyze, Plan, Execute, Knowledge) to model the control loop [85]. In this model,
sensors or probesmonitor the execution context to collect system state data [96]. Then,
this data is analyzedto abstract system status and predict potential evolutions. The plan-
ning step enables to decide how toexecuteadaptations on the current system and enrich
system knowledgefor later decisions [110].

This model provides a good overview of the main activities in the control loop. In
order to design anautonomic security system, we believe that the �ve activities should
be implemented through well-identi�ed building blocks. Diversity of system architectures
makes realizations of the MAPE-K loop very di�erent from one to another, e.g., distributed
sensors may cooperate with a central entity which realizes theanalyze-plan-executestep;
or distributed sensors can be controlled by decentralized entities which make decisions in
a P2P manner. Section 2.2.3 gives a detailed classi�cation of such architectures.

Complex Structure: Autonomic computing is generally applied to large-scale systems
with complex organizational structures. Therefore, complexity of these systems makes
self-management out of control. One promising and popularly accepted approach is to
divide these systems into smaller parts calledautonomic cells [90, 51]. An autonomic

11

cell ful�lls requirements concerning performance, reliability, availability and security. It
manages itself in adjusting its internal parameters, state, structure or execution behavior.
Usually, an autonomic cell is also recognized as an atomic unit that o�ers services to other
cells. They can collaborate together to achieve higher level services, and autonomously
maintain global design requirements during execution. Hence, the complexity is reduced
through the decomposition.

Separation of Autonomic Manager from Managed Resources : An autonomic
cell is also viewed as being composed of one or moremanaged elementsthat perform basic
functions with an autonomic manager to coordinate con�guration, inputs, and outputs of
the managed elements. The main activity of theautonomic manager constitutes the con-
trol loop, often referred to the MAPE-K model. It captures measurements from managed
resourcesvia sensors or probes and then if necessary tunes the resources through e�ectors.

The separation of control mechanisms (theautonomic manager) from execution oper-
ations (the managed resources) simpli�es system architecture. It also improves reusability
of control mechanisms for heterogeneous resources. The mechanisms dedicated to the or-
ganization of low-level resources with high-levelautonomic managers, to the coordination
and synchronization of autonomic managerswill be discussed in Section 2.2.4.

Policy-driven Approach for Behavior Control: Alternatively, the distributed ar-
chitecture of pervasive systems and theautonomic cell design may induce inconsistencies
or conicts. An autonomic systemshould make all its cells work towards a common goal.
A popular and e�ective solution is to apply the policy-driven approach. Locally, an auto-
nomic manager applies a policy to guide or optimize behavior of itsmanaged resources.
Globally, all local policies are derived from one abstract master policy.

We believe that this approach can simplify organization and administration of auto-
nomic systems. In a dynamic context, the whole policy enforcement infrastructure remains
constant while policies are re-evaluated. A number of existing policy classes are presented
in Section 2.2.5.

Self-description of Managed Resources: Managed resourcesshould provide a high-
level description about their states and environments (reection), i.e., based on raw data
of probes or sensors, anautonomic system should abstract high-level representations of
system and environment states. Unfortunately, non-determinism of execution and diversity
of environment [109] make it di�cult to reach such a self-description. Non-determinism
induces unforseen system states. Diversity leads to imprecise and incomplete knowledge
of context. A self-describing system should thus both capture existingmanaged resources
and be more exible and extensible to cope with uncertain events or cases and propose
deterministic descriptions.

Dynamic Recon�guration: An autonomic manager uses e�ectors to enforce deci-
sions through prede�ned interfaces for setting modi�cation, system topology evolution,
application execution control and change of execution behavior. Dynamic recon�guration

12 2. An Overview of Autonomic Computing

improves run-time control over managed resources. A classi�cation of dynamic recon�gu-
ration levels will be elaborated in Section 2.2.6.

2.2 A Taxonomy of Autonomic Systems

To build an autonomic system, several design decisions should be made. We need to clarify
application domain of such a system, if it is used for performance optimization, healing or
for protection. We need to foresee theautonomic maturity degree. We should determine
its global architecture. If the system separatesautonomic managers from managed re-
sources, enforcement paradigm byautonomic managersto managed resourcesneeds to be
determined. If the system applies the policy-based approach, we also need to determine
which kind of policies to be used. Finally,dynamic recon�guration is another choice which
enables di�erent degrees of run-time control over the system. In this section, a taxonomy
of autonomic systems is given. It clari�es main categories of design decisions for autonomic
systems and describes potential choices for each category.

2.2.1 Self-* Properties

This section presents a taxonomy for di�erent technologies to achieve autonomic comput-
ing. IBM speci�es four main properties of autonomic systems: self-con�guration, self-
optimization, self-healing and self-protection [90].

Self-con�guration: As de�ned by IBM [51], self-con�guration realizes dynamic adap-
tations in an evolutional environment. Following high-level objectives, a self-con�guring
system performs a series of elementary con�guration actions based on executing platform
requirements or user preferences. The dynamic adaptation helps ensuring continuous ef-
�ciency of the IT infrastructure, resulting in greater exibility.

Self-optimization: The objective of a self-optimizing system is to maximize perfor-
mance or Quality of Service (QoS) with respect to design requirements. Performance
improvement is realized by automatically monitoring and tuning resources which bring
the system to one of desired states. Particularly for large-scale systems, this property be-
comes a promising challenge since optimizations for such systems should take into account
di�erent concerns such as security or energy consumption.

Self-healing: A self-healing system can discover, diagnose and react to disruptions.
Since fault may occur in the system, theself-healingapproach launches reactions to failures
or early signs of potential failures. It guarantees that the functions of the system are
correctly ful�lled.

Self-protection: A self-protecting system can anticipate, detect, identify and protect
against a number of threats. It allows the whole system to consistently enforce security
and privacy policies. Especially in the pervasive context where every device may become

13

an access point to external networks, the protection should be context-aware and e�cient
given the evolution of the environment [80, 128].

2.2.2 Autonomic Maturity

A well-designed autonomic system aims at improving and automating system manage-
ment. IBM classi�es the maturity degree of autonomic management functionalities into
�ve levels: basic, managed, predictive, adaptive and autonomic [75].

Basic Level: The basic level de�nes a system which is manipulated by highly skilled
sta�s. No control or checking mechanisms is provided from, faulty operations from users
that may induce disruptions. In order to guarantee safety, user interfaces of such systems
are limited: only a set of prede�ned and veri�ed operations are permitted. IBM believes
that most of current IT systems are at this level.

Managed Level: A managed levelsystem includes a monitoring sub-system to collect
execution or context information. This information may usually be abstracted into a high-
level representation to capture the system state. Users may bene�t from this information
to achieve more relevant operations. For example, an intrusion detection system may
cooperate with an existing application. When a threat is detected, users can stop the
application to reduce risks.

Predictive Level: The predictive level provides some rules which indicate reactions in
accordance to recognized system status. It compares the state information with prede-
�ned templates, suggests corresponding con�gurations, and proposes actions which will
be carried out by users.

Adaptive Level: A system at the adaptive level takes into account not only monitor-
ing information, but also performance requirements and user preferences for adaptation
decisions. It aggregates and reasons on all this information and produces an adaptation
decision. The decision can be automatically carried out with adequate recon�guration
actions. A system at this level may also be called a self-adaptive system.

Autonomic Level: Finally, a fully autonomic system can dynamically adjust its admin-
istration strategies according to its system status and circumstances. When the system
evolves or new elements occur in the system, obsolete strategies are discarded. We believe
that an autonomic level system should update its administration strategies based on the
evolution of the system state and context.

2.2.3 Autonomic Architectures

The autonomic architecture refers to arrangement of independent and collaborativeauto-
nomic cells and realization of MAPE-K loops. It exposes organization and interactions
of the control loops. Generally, a central control loop is easier for system administration.

14 2. An Overview of Autonomic Computing

However, due to the distributed feature of pervasive systems, multiple control loops are
usually integrated. Whether to select one or several control loops is an important design
choice for anautonomic system.

Centralized Architecture: Centralized architecture features a singleautonomic man-
ager which is responsible to manage the entire system. The manager has a global view of
all managed resources, and all run-time events of resources are captured by this manager.
Therefore, processing and administration are centralized.

The centralized control ensures consistency of distributed adaptations and makes the
system easy to supervise. However, the main shortcoming of such an architecture is the
complexity of its structure and limited scalability. Particularly for large-scale systems, a
huge number of resources may be controlled by theautonomic manager which leads to a
signi�cant administration, computing and communication overhead.

Decentralized Architecture: A decentralized system delegates control of resources to
local managers. Each of these managers is attached to oneautonomic cell to realize the
MAPE-K model. They are able to communicate with each other in a P2P manner to
synchronize and reason about global coordination.

This type of architecture �lls in some limitations of the centralized design. The com-
puting and communication complexity is reduced by delegating its tasks to each decen-
tralized manager, and scalability is also enhanced. Furthermore, responsiveness of such
architecture is much higher. However, decentralization may induce inconsistency of global
properties or behaviors, since local optimizations do not necessarily optimize global be-
haviors.

Hybrid Architecture: The hybrid design combines the advantages of the centralized
and decentralized architectures while limiting their respective drawbacks. It uses local
managers for eachautonomic cell, and is equipped with a centralized manager to coordi-
nate these local managers. In this paradigm, a centralized manager is a superior authority
to local managers [51]. A local manager must always take into account adjustments im-
posed by his supervisor. The essence of this design is that high-level managers deal with
abstract strategies while low-level managers carry out operational manipulations. This ar-
chitecture reduces the complexity of higher-level managers while maintaining their global
vision.

2.2.4 Autonomic Enforcement Paradigm

The autonomic enforcement paradigm describes arrangement and implementation ofau-
tonomic managerswith their managed resources. It is an essential design choice forauto-
nomic systems.

Tight-coupling Paradigm: In the case ofautonomic systemswhich do not have a sig-
ni�cant separation between autonomic managersand managed resources, control mecha-
nisms are usually embedded in resources to realize the four autonomic steps which is called

15

tight-coupling. Typical examples are autonomic algorithm for routing tables to optimize
routing and self-organizing protocol for networking.

This paradigm is found in early autonomous systems [86] which integrate autonomic
activities into applications (resources). These applications become more complex because
they should not only carry out their functional services, but also take care of realization
of the MAPE-K model. Maintainability is a shortcoming: once the same applications are
deployed in another system, control functionalities need to be re-implemented.

Agent-based Paradigm: Autonomic computing was initially inspired from the agent-
based approach [149] where agents control behavior, actions and internal states of execut-
ing applications. They collaborate together to achieve some services or tasks with minimal
human intervention. With the agent-based paradigm, each agent implements an autonomic
control loop that is responsible for adaptation via de�ned administration interfaces.

The separation of control from execution simpli�es management of resources and im-
proves maintainability. Unfortunately, since agents are highly coupled with speci�c ap-
plications, any modi�cations of applications demand updates on the corresponding agent.
The dependency between applications and agents remains a constraint, we can hardly �nd
generic agents for heterogeneous applications.

Container-based Paradigm: With the container-based paradigm, each application
runs inside a container which is in charge of functional and non-functional control. This
paradigm is usually implemented through Component-Based Software Engineering (CBSE) [40],
where applications can be decomposed into components and their interactions are captured
through interfaces. Containers encapsulating components can provide standard recon�g-
uration interfaces for later manipulations.

This paradigm provides a complete separation between control logic and execution
logic. Various types of resources can be implemented within homogenous containers.
With the help of CBSE, back-end compilers can autonomously insert containers for each
application. One drawback is that local containers do not have an overall view, i.e., each
container only takes care of its application. However, a fullyautonomic systemwould call
for global coordination between these containers.

Plane Separation Paradigm: The plane separation paradigm goes one step further
towards a completely separated and totally controlled discipline. It regroups containers
into a dedicated plane to facilitate global control. Service Level Agreements (SLAs), user
preferences and control strategies are used in this plane, and will be translated to low-
level con�gurations for each container. Containers achieve these con�guration operations
through prede�ned interfaces of managed resources.

2.2.5 Adaptation Policy Approaches

An autonomic control loop coordinates a system using high-level goals expressed in format
of policies [91]. A policy consists of rules telling how to react, e.g., a rule determines types

16 2. An Overview of Autonomic Computing

of decisions and actions to perform. Therefore, a policy is a set of considerations that are
designed to guide the behavior of managed resources [51].

Integrated Algorithm: Initial autonomous systems do not really apply the policy-
driven approach, but they apply some algorithms or protocols which integrate autonomic
functions. For instance, in autonomic networking, routing algorithms can self-optimize
performance.

If-Then-Else (ITE) Policy: Early adaptation policies are usually in the form of if-
then-else (ITE) rules. With this approach, systems are modeled and compared with
pre-established templates to decide whether to launch reactions and which reaction to
launch. A set of reactions may be attached to each state. System adaptations are then
carried out by applying reactions according to di�erent states.

Event-Condition-Action (ECA) Policy: An ECA policy [137] applies events to
launch adaptations. A rule of an ECA policy takes the form \when event occurs and
condition holds, then executeaction". Comparing to the if-then-else rules, a rule of an
ECA policy may be applicable not only for one state, but also for a set of states. Unfortu-
nately, for a system of large-size, the ECA policy may hold a huge number of rules. Their
management, especially resolution of rule conicts is still little addressed.

Goal Policy: The goal policy approach makes systems choose con�gurations towards
desired states. It is based on graph theory where optimized state transitions are identi�ed
in order to reach desired states. However, these policies are limited to systems which have
a complete and precise view of their status, i.e., policy decisions rely on deterministic
system modeling. For open and dynamic systems which have dynamic structures, this
approach can hardly be applied.

Utility Function Policy: In order to overcome the drawback of goal policies, it is
possible to de�ne an utility function that attaches a utility value for each state. User
preferences and performance requirements which are independent from system overall
architecture can be taken into account with the function. Within one state, the policy
guides execution behavior by maximizing values of theutility function .

Ontology: Ontologies are particularly helpful to structure or characterize adaptation
policies which allow better communication and reuse of de�ned concepts. They are exten-
sible and also enable to reason on adaptations. Unfortunately, a uni�ed ontology which
takes care of di�erent aspects ofautonomic systemsis missing.

Di�erent speci�cation approaches are discussed in this section, an adaptation policy
may apply one or several approaches to specify its rules. For example, a framework which
integrates action policies, goal policies, and utility function policies is described in [91].
The framework also shows how to translateutility function policies to goals policies, utility
function policies to action policies, and goal policies to action policies.

17

2.2.6 Dynamic Recon�guration

The last step of the MAPE-K model performs reactions through e�ectors in order to en-
able recon�guration over managed resources. Dynamic recon�guration mechanisms bring
exibility to the manipulation of managed resources. This sub-section gives di�erent gran-
ularity levels of dynamic recon�guration.

Setting Update: One simple interpretation for control over running applications (man-
aged resources) is to modify their parameters. This approach is also calledparameter adap-
tation [110]. Since the execution of these applications relies on the parameters, setting
updates indirectly exercise control over application execution.

Application Con�guration: Within this approach, applications are execution units to
be manipulated. Operations such as starting or stopping application execution, enabling
or disabling some services are recognized as con�gurations. Contract to the previous
solution, the application con�guration allows a direct control over running applications.

Architecture Evolution: For a system consisting of several applications, anautonomic
manager should administer both individual applications and global architecture. The
architecture evolution recon�guration involves creation and destruction of applications as
well as creating or removing bindings between applications.

Behavior Control: Finally, non-functional aspects should also be recon�gured if an
autonomic system attempts to completely control over its managed applications. Some
aspects like security, QoS, performance can be indirectly controlled through the usage of
strategies. One applied strategy is translated into some low-level recon�gurations that can
be achieved through the previous three classes of recon�guration.

2.3 Some Existing Frameworks

An overview of some existing autonomic frameworks is given in this section which illus-
trates advantages and drawbacks for design choices.

AutoMate: AutoMate [11] is a middleware which addresses self-con�guration, self-
optimization and self-protection for grid computing. It de�nes an architecture of three
layers respectively: an autonomic system layer for fundamental functionalities and inter-
component communication mechanisms; an autonomic component layer to manage and
control components; and an autonomic application layer for the optimization of compo-
nent execution. In addition to these three layers, severalengines take care of speci�c
objectives like access control, rule reasoning, and context-awareness.

A system built on AutoMate consists of autonomic components which are units of
execution and control. The whole framework is based on a decentralized architecture
since there does not exist a central authority to control distributed components. Agents

18 2. An Overview of Autonomic Computing

of di�erent concerns are associated to each component in order to treat corresponding
objectives. This may induce some conicts between decisions taken by di�erent agents.
Separation between policy and mechanisms in AutoMate allows abstracting control over
the grid infrastructure. Based on the ECA policy, events launch adaptations to handle
various contexts. Since AutoMate aims to develop a generic framework of autonomic
computing, adaptations are setting updates. For instance, for the access control engine,
it can dynamically adjust Role Assignments and Permission Assignments to �t di�erent
environments.

Rainbow: Rainbow [46] is a generic autonomic architecture that separates a �xed part
(adaptation infrastructure) from a variable part (system-speci�c adaptation knowledge).
The adaptation infrastructure implements common functionalities for an autonomic frame-
work. The system-speci�c adaptation is based on the following knowledge: types and
properties of components, behavioral constraints, and strategies of adaptation.

Such a framework addressesself-con�guration to enhance system execution perfor-
mance and to adapt strategy modi�cation or context evolution. It divides the whole sys-
tem into three layers: a system layer, a translation layer and an architecture layer. Based
on captured information from the system layer, the translation layer abstracts information
to a formalized representation. Afterward, an adaptation decision recon�gures the running
system through e�ectors of the system layer. The centralized control in the architecture
layer maintains a complete representation of the system, and compares it with pre-de�ned
template models. This comparison can be seen as the application ofif-then-else policy
to �t di�erent execution states. Since executing systems are totally separated from the
architecture layer, it eliminates the dependency of such a general framework from various
applications. Finally, e�ectors are implemented as APIs to achieve recon�guration. To
be generic, no speci�c recon�guration platforms are de�ned in the framework. We believe
that recon�guration is of the setting update level.

Intel AES System: Intel Autonomic Enterprise Security (AES) system [12] aims at
providing an end-to-end framework to defend enterprise IT infrastructures. This system
consists of: a self-defending platform protecting individual OSes, a distributed detection
and inference system detecting network-scale attacks, and an adaptive framework deliver-
ing security policies as countermeasures to network threats. When the detection system
identi�es threats in the network, it launches an adaptive feedback to produce low-level
security policies which will be enforced by the Inter ATM [4] end-points.

Addressing the security self-protection objective,Intel AES realizesadaptive feedback
to enforce protection of IT systems. It is equipped with acentralized server at the network-
level which collects events from the detection system and delivers customized security
policies through the whole IT infrastructure including network and terminal platforms.
The adaptation feedback does not directly act overmanaged resources. Instead, it produces
security policies to guide their protection behavior. The run-time control thus corresponds
to an update of settings (security policies) in the infrastructure.

19

Jade: Jade [49, 140] is a middleware for self-management of distributed applications. It
encapsulates and administers legacy applications using theFractal component model [41]
to provide a uniform means of application deployment and con�guration. Complex envi-
ronments are managed by di�erent points of view extending the autonomic vision.

The overall architecture of Jade is divided into two layers: amanagement layerand a
legacy layer. The management layerincludes common autonomic functionalities together
with two speci�c managers addressingself-optimization and self-healing. The abstraction
of autonomic managers improves extensibility towards other application domains. The
management layerserves as acentralized server to administer managed resources modeled
as components in thelegacy layer. Jade follows theplane separation paradigmwhich puts
the control logic in a completely separated plane. Adaptation policies were �rst speci�ed
as integrated algorithms for autonomic managers. A subsequent approach is based on
Domain-Speci�c Languages (DSL) which are \ languages tailored to a speci�c application
domain" [106]. The Tune [38] framework provides highly abstracted languages for the
speci�cation of autonomic policies. The resulting framework ful�lls all requirements of
the autonomic maturity level. Finally, because of the use of Fractal, the architecture
of the legacy layer can be dynamically recon�gured by adding, removing components or
bindings, that is, the architecture evolution.

Auto-Home: Auto-Home together with H-OMEGA [37] is a run-time for residential
applications. It applies the Service-Oriented Architecture (SOA) design to facilitate man-
agement of dynamism and heterogeneity of domestic devices. These devices are modeled
as service-oriented components and administered by the underlying H-OMEGA run-time.

Auto-Home provides a self-con�guration gateway-side server to manage in-house de-
vices. By gathering context information from managed applications, it achievesadaptive
control. The framework involves a set of autonomic managers organized in a hierarchy
(the hybrid architecture). Interaction points can be dynamically inserted into existing
applications for interoperability. With the help of the underlying H-OMEGA platform,
these interaction points play the role of containers which take care of non-functional as-
pects of applications. Several types of managers of distinguished roles are identi�ed and
implemented in the framework. Each manager applies a speci�calgorithm to treat one
aspect. Since non-functional aspects can be recon�gured through the interactions points,
this framework provides the behavior control as dynamic recon�guration.

Reaction after Detection (ReD): The original framework of ReD was proposed
in [57, 64, 63] to provide countermeasures to intrusion detection alerts. Based on existing
intrusion detection systems, attacks are analyzed and abstracted in format ofIntrusion
Detection Message Exchange Format (IDMEF) [62]. Appropriate countermeasures are
then proposed with respect to di�erent attacks. A Policy Instantiation Engine (PIE)
instantiates security policies as countermeasures to eliminate reported attacks. These
policies are then enforced through recon�gurations byPolicy Enforcement Points (PEP) .

The framework was extended as aself-protection framework called Reaction after De-
tection (ReD). Three types of reaction loops are de�ned: low level reactions by PEP;

20 2. An Overview of Autonomic Computing

Self-* Properties Maturity Architecture Enforcement Policy Recon�guration

AutoMate
Self-con�guration
Self-optimization
Self-protection

Adaptive Decentralized Agent ECA Setting

Rainbow Self-con�guration Adaptive Centralized Plane If-then-else Setting
Intel AES Self-protection Adaptive Centralized Integration Goal Setting

Jade
Self-optimization
Self-healing

Autonomic Centralized Plane Ontology Architecture

Auto-Home Self-con�guration Adaptive Hybrid Container Algorithm Behavior
ReD Self-protection Autonomic Hybrid Agent ECA+Ontology Setting

Table 2.1: Autonomic Frameworks Overview

middle level reactions byReaction Decision Point; and high level reactions by PIE. This
separation of control loops enhances scalability and corresponds to thehybrid architecture.
We believe that RdD belongs to theagent-based control paradigmby which a set of ReD
nodes (agents) are deployed through the whole network. One signi�cant improvement of
ReD is the usage of ontologies to enable the mapping process between detection and re-
action [59]. It applies OrBAC-based ontologies to describe alerts and security policies. A
policy (set of rules) allows the mapping from formalized IDMEF alerts to OrBAC security
policy instances. These ontologies together with ECA rules allow reaching theautonomic
level of maturity by providing semantic description and reasoning. Finally, generated pol-
icy instances are enforced by PEPs which translate policies to low level con�gurations such
as closing a port of a �rewall. Thus, ReD belongs to thesetting update recon�guration
level.

2.4 Summary

To construct an autonomic framework, several design choices should be made. We should
determine the application domain of such a framework: whether it is designed forself-
con�guration , self-optimization, self-healing or self-protection. We should also foresee its
maturity level. Based on execution context, we should select the administration architec-
ture (centralized, decentralized, or hybrid). The enforcement paradigm is another design
decision, as the choice of the adaptation policies (if-then-else, event-condition-action, etc).
Finally, some dynamic recon�guration mechanisms should be provided.

Table 2.1 compares the designs of the previous frameworks. For theself-protection of
pervasive systems, we �gure out that existing solutions may be improved.Self-protection
is not treated by some of these framework. For the frameworks ofself-protection (Au-
toMate, Inter AES, and ReD), they address one or two aspects of security and do not
provide an end-to-end framework to cover all levels of system. Most of the frameworks
are at the adaptive level of maturity. Based on the system state or context evolution,
reactions may be triggered for adaptation. However, a framework at theautonomic level
can also adjust itself to optimize its administration. The two frameworks of the hybrid
architecture in the table (Auto-Home and ReD) illustrate an e�cient architecture for dis-
tributed systems, particularly for large-scale systems. This approach is thus selected for

21

our end-to-end self-protection framework. To be a generic framework for various types
of systems, theplane-basedapproach of the enforcement paradigmprovides a completely
separated control plane which coordinatesautonomic managersand supervisesmanaged
resources. This approach will be applied to our framework. Adaptation policy class is an-
other important design choice. Ontology can not only speci�es di�erent classed of policies,
but also provide reasoning. The adaptation policy of our framework will thus be based on
this approach. Finally, recon�guration mechanism supports di�erent levels of exibility
for run-time control. Our framework will achieve the behavior control level which has a
full control over running systems. In the later part of this thesis, we will elaborate the
concept and implementation of these design choices.

22 2. An Overview of Autonomic Computing

23

Chapter 3

System Modeling

Before starting the design of an end-to-end self-protection framework, we characterize per-
vasive systems in this chapter. A pervasive system embeds computing and communication
capabilities in daily devices and makes them transparent to end-users. Therefore, devices
can achieve some computing tasks and collaborate together to construct networks some-
times called pervasive networks, and users uses these devices with the help of computing
and communication tasks running in the background.

In this chapter, we describe pervasive systems, their execution behaviors as well as
security functionalities. An end-to-end self-protection architecture for such systems will
be built based on this modeling.

Section 3.1 gives our de�nition of pervasive systems. The system has an infrastruc-
tureless architecture, dynamic topology, and multiple concerns such as security and QoS
which should be taken into account for execution control.

Section 3.2 proposes a formulization of the de�ned systems. This contains an archi-
tecture model, a system state model, and a system detection model. It also illustrates
run-time evolutions of the systems and life-cycles of their main entities.

Section 3.3 elaborates three working scenarios in order to show application domains
of the self-protection framework. It discusses security issues, explains basic security func-
tions, and identi�es three classes of attacks such as malicious node attack, malicious com-
ponent attack and Denial of Service (DoS) attack. Subsequently, it gives some ideas about
countermeasures against these attacks.

Section 3.4 briey introduces principles of the self-protection framework, its three-layer
architecture, and organization of autonomic functions.

3.1 Our De�nition of Pervasive Systems

A security framework depends on underlying systems to be protected. This section gives
our de�nition of the working pervasive systems which permits to clearly and formally
separate its internal parts from its external environments. This section also presents a
system modeling that takes into account three aspects: system architecture, run-time
topology evolution, and multiple concerns.

24 3. System Modeling

3.1.1 Infrastructureless Architecture

The structure of pervasive systems can be dynamically modi�ed by internal evolutions
(e.g., migration of devices) or external changes (e.g., context evolution). The de�nition
of system structure should support these evolutions and changes. One approach is to
minimize essential building blocks of such an infrastructure.

De�nition 3.1 We de�ne a pervasive system architecture infrastructureless if it is built
by a minimal prede�ned infrastructure with the following principles:

� the system has a minimal pre-established infrastructure.

� the system separates network-level entities from device-level entities.

� the cluster de�nition abstracts network-level entities.

� the node de�nition abstracts device-level entities.

Our system model asks for a minimal pre-established infrastructure: a network-side
server installed with our self-protection ASPF framework (described in Chapter5) acts as
the minimal pre-established infrastructure. Di�erent kinds of devices equipped with VSK
OS (described in Chapter6) can dynamically join in the system and collaborate with other
devices.

Traditionally, two di�erent approaches, the hierarchical approach and ad-hoc approach,
are applied to organize distributed systems. The hierarchical approach divides a system
into several sets and each set into subsets, etc. This approach enforces the centralized
control over the whole system and simpli�es its management. It was proven as an e�-
cient solution for administration of large-scale systems. A typical example is theDomain
Name System (DNS) [9] which is used to bind Fully Quali�ed Domain Names (FQDN)
and network information such as IP addresses. FQDN are uniquely built as a path from a
root domain to a sub-domain and �nally a name that belongs to the sub-domain. All do-
mains are independently administered by their pre-established infrastructures. However,
this approach requires a completely hierarchical infrastructure to handle with each level.
The ad-hoc approach considers all entities in same level, there does not exist any priori-
tized entities to administer others. Selection algorithms may be used to casually choose
one entity as a temporal authority of administration. This approach avoids implementing
a complete infrastructure, but it induces supplementary computing and communication
overheads. We propose a hybrid solution that divides a system into two levels: a net-
work level and a device level. Network-level entities (clusters) administer device-level
entities (nodes) to achieve centralized control and to avoid computing and communication
overheads. To adapt large-scale systems, this architecture can be extended by adding
supplementary levels (see Assumption 3.1).

Network-level entities are modeled as clusters which consist a set of devices. By As-
sumption 3.2, service composition from the node level to the network level and decomposi-
tion from the network level to the node level are out of the scope of this thesis. Moreover,
clusters cannot directly interact with others. But they may intersect through some shared
devices (see Assumption 3.3).

25

Device-level entities are modeled as uni�ed nodes. Heterogeneous devices are ab-
stractly described as nodes and are managed interchangeably. A node can be shared by
at maximum two clusters as indicated in Assumption 3.3.

Assumption 3.1 We assume that a pervasive system is divided into the network and
node levels. Scalability can be improved by adding supplementary abstraction levels that
applies the same modeling principle. But the extension is out of the scope of this thesis.

Assumption 3.2 We assume that service composition and decomposition are not taken
into account in our framework since its main objective is security enforcement. A frame-
work is supposed to provide these functionalities, but they are not detailed in this thesis.

Assumption 3.3 We assume that a node is at least connected to a cluster, and can
at most be shared by two clusters simultaneously. The former relation guarantees the
determinism of node possession. The latter simpli�es the design and implementation of
the self-protection framework. Sharing a node by more than two clusters applies the same
design principle but is not realized.

3.1.2 Dynamic Topology

Run-time topology of a pervasive system may evolve according to availability and local-
ization of its entities (cluster or nodes). For example, if a node is destructed or removed,
the topology of the attached cluster or clusters is changed.

De�nition 3.2 We de�ne a pervasive system topology dynamic if its run-time architecture
permits the following evolutions:

� a new cluster can be created.

� an existing cluster can be destructed.

� a new node can be created and attached to one cluster.

� an existing node can be destructed.

� a node can be migrated from one cluster to another.

� a node already attached to one cluster can join a second cluster.

� a node attached to two clusters can be released from one.

A cluster can be dynamically created or destructed during execution. Once the cluster
is destructed, no more operations about this cluster will be demanded.

A new node can be created in the system and join one cluster. Otherwise, physi-
cal disappearance of one node is considered as destruction, and may be monitored by a
supervision system (see Assumption 3.4).

26 3. System Modeling

One node which is attached to a cluster can join another to enable collaboration
between these two clusters. When the collaboration is �nished, the node can be released
from one cluster.

Since this thesis only addresses security issues, these evolutions are not realized in our
proposed framework (see Assumption 3.5).

Assumption 3.4 We assume that a node supervision system is provided which monitors
availability and localization of all nodes. However, realization and administration of the
supervision system are not given in this thesis.

Assumption 3.5 We assume that a management framework is on collaboration with the
self-protection framework to achieve the speci�ed evolutions. But the realization of all
these evolutions are not described in this thesis.

3.1.3 Multiple Concerns

In an autonomic framework, execution and context information is analyzed to propose
reactions. This information should be integrated into the system modeling in order to
have an overall and complete view about system state.

De�nition 3.3 We de�ne concern as execution or context information corresponding to
one aspect. Di�erent concerns such as risk level, energy consumption, availability, and
computing capability can be integrated in the system modeling.

Corresponding monitoring systems are supposed to supervise these concerns (see As-
sumption 3.6). Following concerns may be taken into account for a pervasive system:

� risk level represents vulnerability degree. Di�erent from conventional risk level def-
inition which combines menace probability with damage loss, a simpli�ed version of
risk level addresses security e�ect of threat. In an open and dynamic environment,
threats may come from internal parts (e.g., an internal node) or external parts (e.g.,
an external attacker) which menace not only availability, but also con�dentiality and
integrity.

� energy consumption de�nes consumed energy as e�ect of security function. Di�er-
ent security functions provoke di�erent energy consumption. This concern may be
used to �nd out a trade-o� between strong security function and minimal energy
consumption.

� availability of a node declares whether it is ready for use. During the execution,
a node may disappear from the system due to physical destruction or user turn-
o�. A supervision system timely checking node availability (see Assumption 3.4) is
supposed to exist.

� computing capability shows hardware settings of devices. Because of heterogeneity,
a run-time con�guration of pervasive systems should take into account hardware

27

settings of each device. For resource-limited devices like sensors, a simple but e�cient
security enforcement needs be proposed. For devices of high computing capability
like laptops, some strongly secure functions may be applied.

As the whole system is divided into the cluster level and node level, aggregation of
concern information between these two levels is another important issue. Di�erent charac-
ters of nodes are modeled as node states. Aggregation mechanisms compute cluster level
concern values from those of the node level. As explained in Assumption 3.7, we assume
that this kind of aggregation is provided.

Assumption 3.6 We assume that a monitoring system is provided for each concern, but
their achievement and administration are not described in this thesis.

Assumption 3.7 We assume that aggregation mechanisms for concern information from
the node level to the cluster level is supported. But their realization is not presented in
this thesis.

3.2 Abstract Modeling

A pervasive system in our de�nition is organized as a set of clusters which contain several
nodes. Each cluster controls its execution settings such as its run-time topology and state
information. Nodes have a variety of characteristics, ranging from hardware performance
to software modules. In this thesis, we address the execution of a single cluster, but our
approach can be extended to multiple and concurrent clusters.

A system model is de�ned asM = (A; S; D) where A is a system architectural model,
S is a state model involving states of concerns, andD is a detection model having di�erent
types of detection elements.

3.2.1 Architecture Model

The architecture model is A = (C; N; nAss; cPos) with:

� C = f cg is a set of clusters in the system.

� N = f ng is a set of nodes in the system.

� nAss : N ! 2C nf;g represents mapping of nodes to their parent clusters.

� cPos: C ! 2N represents mappings of clusters to their attached nodes.

3.2.2 State Model

The state model monitors and abstracts di�erent concern of a running system withS =
(V; nSta; cSta):

28 3. System Modeling

� V = V1 � V2 � :::� Vn represents a combination of n concern dimensions. For example,
risk level may be one concern dimensionV1 which has four levels such asvery hostile,
hostile, neutral, and friendly with V1 = f very hostile, hostile, neutral, friendlyg.

� nSta : N ! V is a function that associates concern states to nodes.

� cSta : C ! V is a function that associates concern states to clusters.

3.2.3 Detection Model

Di�erent from the system state modeling which abstracts stable evolutions, a detection
model manages time-critical system changes which need a timely treatment. It is de�ned
as D =

S
m2 M D m :

� M is a set of detection aspects.

� D m = f dm g represents one detection aspect that includes a set of detection events.
One monitoring system is assumed to be provided for each detection aspect (see
Assumption 3.6). For instance, an intrusion detection system is used in the working
scenario for the security aspect.

3.2.4 Evolution Scheme

Evolution of a pervasive system may modify cluster-node relation. In this sub-section, we
de�ne all accepted transitions for topology evolutions.

3.2.4.1 Initial States

An initial state is hardware and software settings that should be ful�lled before any tran-
sition.

Cluster Initial State Before starting any manipulation on one cluster, we specify its
initial state as:

� concern aspects are already determined, and related monitoring systems capture and
maintain corresponding information for the self-protection framework.

� ASPF, a framework that administers self-protection (see Chapter 5), is installed on
a server which takes into account the concern aspects to coordinate self-protection.

Concern dimensions involve internal or external information that a system should take
into account for self-protection. They are usually de�ned by a system architect at the
design phase. Once di�erent concerns are determined, corresponding monitoring systems
that supervise these concerns should be provided to support the self-protection framework.

ASPF (see Chapter 5) is a framework on the server side that manages self-protection
mechanisms of clusters and their nodes. To realize manipulations on clusters and nodes,
ASPF should be installed.

29

Node Initial State A node also calls for some preparations before any transition. We
specify the initial state of a node as:

� a VSK OS is installed on the node.

� the node is categorized to one cluster.

� the node pro�le that describes its characteristics is stored in ASPF.

Within our end-to-end framework, a VSK OS should be installed in each device. VSK
protects terminals by enforcing authorization policies which are administered by server-side
ASPF. More details about VSK and ASPF will be respectively introduced in Chapter 6
and Chapter 5.

Since a node belongs to at least one cluster, each node should thus be categorized to
one cluster at the beginning.

Moreover, since any manipulations of nodes depend on their characteristics, node pro-
�les need to be installed in ASPF.

Finally, since this thesis only addresses protection mechanisms, we do not show how
to realize the cluster and node initializations (see Assumption 3.8).

Assumption 3.8 We assume that the initialization of each cluster or node is already
established.

3.2.4.2 Transitions

Cluster-level Transitions: Transitions are classi�ed into cluster-level transitions and
those of the node level. Cluster level transitions represent all actions that can occur to
each cluster. We have:

� cluster creation enabling the creation of a new cluster in the system.

� cluster destruction enabling the destruction of an existing cluster.

� cluster state evolutionenabling the cluster level state evolution driven by node aspect
evolutions. For instance, when a node is compromised, the risk level of its associated
cluster or clusters will be increased.

A cluster can be dynamically created or destroyed. Additionally, the state of a cluster
may evolve during its execution.

Node-level Transitions: Node level transitions represent all previewed actions for each
node. We have:

� node insertion enabling a new node to join the system.

� node removalenabling an existing node to leave the system.

30 3. System Modeling

Figure 3.1: Cluster Life-cycle

� node migration enabling a node to leave one cluster and joint another.

� node sharing enabling a node which is already attached to one cluster to join a
second cluster.

� node sharing removalenabling a node which is shared between two cluster to leave
one cluster.

� node state evolutionenabling states evolution of a node at run-time.

3.2.5 Life-cycles

Life-cycles illustrate di�erent phases of clusters or nodes and transitions between these
phases.

3.2.5.1 Cluster Life-cycle

As shown in Figure 3.1, a cluster may have several phases as:

� Deployment: a cluster is administered by an authority which is a software entity
residing on the server side. Once the cluster authority is created, the corresponding
cluster is thus in the deployment phase. The authority manages all nodes which are
attached to it, and maintains a pro�le for each node.

� Initialization : based on execution settings, some security modules are customized
and installed to each node of the cluster. This is theinitialization phase of the
cluster.

� Execution: after the initialization , nodes of the cluster are protected by the cus-
tomized security modules. They collaborate together to achieve some tasks, this is
the execution phase of the cluster.

� Node Integration: when a node wants to join the cluster (by the node insertion or
node sharing transition), the cluster is in the node integration phase. It checks the
node through some authenti�cation mechanisms (see Assumption 3.9).

31

� Node Removal: when one node is destructed, turned o�, or leaves the cluster, the
cluster is thus in the Node Removalphase.

� Cluster Updating: after the node integration or node removal phase, the cluster
settings may be updated. During the cluster update phase, new security modules
are customized and installed into each node of the cluster.

� Destruction: when all nodes of the cluster are removed, the cluster is thus turned
to the destruction phase, and the corresponding software entities in ASPF will be
removed.

Assumption 3.9 We assume that authenti�cation mechanisms are provided for the veri-
�cation of new nodes joining clusters. But their realizations are not detailed in this thesis.

3.2.5.2 Node Life-cycle

Figure 3.2: Node Life-cycle

As shown in Figure 3.2, a node can have various phases as:

� Deployment: a node installed with a VSK OS is in the deployment phase. Within
this phase, a node proxy is created in the ASPF framework, and the node is ready
to join in di�erent clusters.

� Joining : authenti�cation of the node is the joining phase.

� Initialization : for the integration of the node in one cluster, theinitialization phase
installs one or several security modules which depend on requirements of the cluster
and pro�le of the node.

� Execution: in the execution phase, the node can collaborate with other nodes in the
same cluster to realize tasks.

32 3. System Modeling

� Intersecting: within our framework, a node can interact with at most two clusters
at the same time by adopting simultaneously two security modules. This is the
intersection phase which indicates inter-cluster collaboration.

� Updating: when the cluster updates its settings or the context of the cluster evolves,
the node is turned into the updating phase in which it needs to update its security
modules.

� Migration : a node can migrate from one cluster to another, this procedure is the
migration phase. When the node shared between two clusters leaves one cluster, it
also returns to this phase.

� Destruction: a supervision system periodically checks availability of nodes (see As-
sumption 3.4). In the case where the node disappears by the supervision system, it
is in the destruction phase.

3.3 Scenarios and Countermeasures

Security includes three main objectives such as the con�dentiality, integrity and availabil-
ity. In this section, we �rst present three scenarios of pervasive systems together with
corresponding classes of attacks. Then, we propose some countermeasures handling with
these three classes of attacks.

3.3.1 Malicious Node Attack in Smart Home

Figure 3.3: Smart Home Scenario

Smart Home Scenario: A working scenario of smart home is �rstly analyzed. We
address a simple domestic environment where several sub-networks cooperate together:
two Small O�ce/ Home O�ce (SOHO) sub-networks for storage and process of important

33

�les, and a Body Area Network (BANet) monitoring health-care aspect of user. All these
sub-networks are connected and administered through a gateway (see Figure 3.3).

Formally, we model the smart home asM = (A; S; D). The architecture model A =
(C; N; nAss; cPos) with:

� C = f c0; c1; c2g respectively for the two SOHO sub-networks and BANet.

� N = f n0; n1; n2; n3; n4; n5; n6; n7g for all mobile terminals in these three sub-networks.

� nAss(n0) = f c0g, nAss(n1) = f c0g, and cPos(c0) = f n0; n1g: two nodes are in-
cluded in the SOHO network c0.

� nAss(n2) = f c1g, nAss(n3) = f c1g, and cPos(c1) = f n2; n3g: two nodes are in-
cluded in the SOHO network c1.

� nAss(n4) = f c2g, nAss(n5) = f c2g, nAss(n6) = f c2g, and cPos(c2) = f n4; n5; n6g:
three nodes are included in the BANetc2.

For the state model S = (V; nSta; cSta), we take into account two aspects, the risk
level V0 and energy consumptionV1 with:

� V = V0 � V1.

� V0 = f very hostile, hostile, neutral, friendlyg.

� V1 = f critical, high, normal, low g.

� for a given moment, we assume that the node states are.

{ nSta(n0) = (f riendly; low).

{ nSta(n1) = (f riendly; low).

{ nSta(n2) = (f riendly; low).

{ nSta(n3) = (f riendly; low).

{ nSta(n4) = (f riendly; low).

{ nSta(n5) = (f riendly; low).

{ nSta(n6) = (f riendly; low).

� and the cluster states are:

{ cSta(c0) = (f riendly; low).

{ cSta(c1) = (f riendly; low).

{ cSta(c2) = (f riendly; low).

An intrusion detection system consists the detection modelD = D 0 = f dattackDetected ,
dattackRecovery g. This system contains only two events: one assigning an alert of attack
dattackDetected , and the other for attack recovery dattackRecovery .

34 3. System Modeling

Malicious Node Attack Class: A malicious node attack class addresses attacks where
the control of a node in the system is gained by an attacker. Then, the attacker may access
to sensitive �les or information through this node. For example, in our working scenario,
a mobile terminal of the less-protected BANet is �rstly compromised by an attacker.
With the evolution of the system topology, this node may migrate to one SOHO sub-
network. It can thus access to sensitive �le of this SOHO sub-network. Consequently, the
con�dentiality of the SOHO is no more guaranteed.

3.3.2 Malicious Application Attack in Shopping Mall

Figure 3.4: Shopping Mall Scenario

Shopping Mall Scenario: In the second scenario, considering a shopping mall where
mobile terminals connect to Internet through di�erent access points. Each access point
calls for a speci�c security module. When one terminal moves from one WLAN to another,
the old security module may no longer be adaptable for the new WLAN. A new security
module needs to be downloaded and installed. The updated terminal can then connect to
Internet through the new access point by the new security module.

Formally, we model the shopping mall asM = (A; S; D). The architecture model
A = (C; N; nAss; cPos) with:

� C = f c0; c1; c2g for three WLANs;

� N = f n0g for one mobile terminal;

� for a given moment t0, the terminal connect to the WLAN c0 with:

nAss(n0) = f c0g, cPos(c0) = f n0g, cPos(c1) = ; , and cPos(c2) = ; ;

� for another moment t1, the terminal connect to the WLAN c1 with:

nAss(n0) = f c1g, cPos(c0) = ; , cPos(c1) = f n0g, and cPos(c2) = ; ;

Malicious Application Attack Class: Due to non-trusted access points, downloaded
security module may be compromised. Malicious security modules may be installed that
either a�ects con�dentiality by accessing sensitive �les or decreasing integrity by modifying
�les or data. This class of attacks is thus called malicious application attack class.

35

3.3.3 Denial of Service Attack in Military Field Surveillance

Figure 3.5: A military surveillance scenario

Military Field Surveillance Scenario: The third military surveillance scenario is
in the context of Wireless Sensor Network (WSN). Its objective is to track the enemy's
movements (e.g., gather information on vehicle positions and velocities) by a pre-deployed
WSN [145] (see Figure 3.5). In a war �eld, a command center aims to monitor movements
of the enemy. It sends aMonitorTroopMovements command to an Early Warning Aircraft
(EWA), which ies above the WSN and transfers this command to a WSN gateway. The
gateway then dispatches the command to all nodes in the WSN. Each sensor gathers
information on vehicles in the �eld. An aggregated result is then returned to the gateway.
In the end, the gateway sends back the result to the command center via the EWA. Since
the formal modeling of a such WSN is similar to the previous two formal modeling, we do
not present it here.

Denial of Service (DoS) Attack Class: The DoS attack class compromises avail-
ability. In the assumption that a self-protection solution has already been implemented
to the WSN, it can automatically protect itself against external attacks. The protection
is usually a series of reactions achieved by all sensors in the network. Because of energy
limitation of some sensors, an enemy can launch many blind attacks which expend en-
ergy of sensors. This is one kind of DoS attacks against the self-protection system. The
availability of the network is thus a�ected.

36 3. System Modeling

3.3.4 Applying Authorization as Countermeasures

Applicable countermeasure of our self-protection framework are selection, customization
and enforcement of access control policies to defend di�erent classes of attacks. Access
control is usually a basic security module applied not only to OSes but also to distributed
systems. It restricts access to resources by computing permissions. Other security func-
tionalities such as trusted management and privacy also depend on access control.

An access control sub-system embodies anaccess control policy speci�cation, an access
control enforcement infrastructure, an administration model of policy speci�cation and an
administration model of policy deployment. The access control policy speci�cationprovides
a formal de�nition of essential concept elements. The formalization enables proof of prop-
erties on the system being designed. An access control policy is de�ned by the speci�cation
which contains a set of authorization rules. Each rule indicates whether an active entity
(subject) is granted to perform an operation such as read, write to a passive entity (object).
Throughout this thesis, we use the termsaccess control policyand authorization policy in-
terchangeably. Theaccess control enforcement infrastructureallows low level functions to
implement controls imposed by access control policies. Theadministration model of policy
speci�cation de�nes potential con�gurations on authorization policies. The con�gurations
may change security levels of an object for a Domain Type Enforcement (DTE) policy or
add a new role to a subject for a Role-Based Access Control (RBAC) policy. Since such
con�gurations may compromise the projected system, an administration model usually re-
stricts and checks manipulations. Finally, the administration model of policy deployment
de�nes the deployment of authorization policies for distributed systems. In this thesis, we
apply the Policy-Based Access Control approach [35], where a master policy is customized,
re�ned and deployed in the distributed system. Thus, we de�ne an access control policy
speci�cation , an access control enforcement infrastructureand an administration model of
policy deployment, but we do not provide any administration model of policy speci�cation.

Authorization Policy: As the pervasive system is divided into the cluster and node
levels, proposed authorization policies have also a separation of these two levels. A cluster
level authorization policy involves potential access permissions of all nodes in the cluster. It
is initially de�ned by a security administrator. As sensitive information is shared between
di�erent nodes of a cluster, for the reason of consistency, only one authorization policy is
applied to a cluster at any moment, and each node of this cluster applies an authorization
policy which is derived from the cluster-level authorization policy.

Bodes may have di�erent capabilities such as computing capabilities or memories, a
policy of a node is a simpli�ed version of the cluster policy. The node-level authorization
policy is customized for all subjects and objects in the node. For dynamic recon�guration,
the loading, replacement and tuning of node-level authorization policies are enabled. As a
node can be shared between two clusters (see Assumption 3.3), each node is able to apply
two authorization policies (VSK can support two authorization policies simultaneously).
More details about the policy implementation will be introduced in later chapters.

The authorization of pervasive systems involves authorization of applications in one
node, authorization of applications in di�erent nodes of one cluster, and authorization of

37

applications in di�erent nodes of di�erent clusters. Our framework only addresses the �rst
type of authorization (see Assumption 3.10). An extension which takes into account the
second and the third types of authorization is given in the context of cloud computing
(see Chapter 10).

Assumption 3.10 We assume that only authorization of applications in one node is
taken into account in our framework. Authorization of applications in di�erent nodes
is not taken into account.

Countermeasures against Attack Classes: The malicious node attack class can be
defended by applying authenti�cation mechanisms, and by providing a consistent and
distributed access control administration model. With this administration model, all
applied authorization policies of sub-networks are managed by one authority.

The malicious application attack class can be counteracted by a exible and dynamic
authorization policy administration model. This model allows tuning of security parame-
ters of new applications on their execution behavior. Therefore, all access of new applica-
tions will be strictly controlled.

In terms of the availability by the DoS attack class, the separation of a detection
system from decision-making seems to be a good solution. All received events will be
�rstly analyzed by the detection system before launching an adaptation. Thus, no more
energy will be consumed by protection enforcement before decision-making. More detailed
about the detection system will be elaborated in later chapters.

3.4 Autonomic Security Architecture

With the increasing complexity of protection systems, administration of corresponding
security functions together with applied authorization policies becomes an crucial issue.
Autonomic computing [90] proposes a promising approach to simplify administration. The
protection framework manages itself without or with minimal human interventions and
can autonomously react to its state or context evolutions.

3.4.1 Policy-based Approach

One main need for such an autonomic system is to develop an e�cient but simple admin-
istration framework that supports cooperative and coherent interactions among multiple
autonomic components to satisfy a common system-wide objective. The policy-based
approach ful�lls this requirement [105]. Highly abstracted policy governs behavior of ex-
ecution where low-level operations are realized autonomically [137]. On the other hand,
access control framework also attempts to be based on policies: all resource accesses are
controlled by an authorization policy [35, 132]. Referring to the objective of this thesis,
proposing an autonomic security framework, the policy-based approach is chosen as a
principal basis which facilitates access control.

A policy of such a framework is a collection of rules that de�ne decisions for potential
conditions. Hence, it is an administrative means to deal with situations that are likely

38 3. System Modeling

to occur. The separation of policy from its enforcement infrastructure enables dynamic
change of administration strategy without modifying underlying infrastructure. Therefore,
the policy-based framework is able to dynamically control run-time behavior of pervasive
systems without a�ecting its underlying implementation. Two di�erent types of policies
are used in our framework, authorization policies serve as predictive rules to control access
and adaptation policies for context-aware adaptation over system execution.

3.4.2 Functions vs. Autonomic Maturity

From the perspective of autonomic functions, IBM divides autonomic maturity into �ve
levels: basic level, managed level, predictive level, adaptive level and autonomic level.
Within this de�nition, we can classify existing autonomic frameworks in following their
degrees of maturity. Based on underlying levels, each level provides supplementary control
functions that makes systems more autonomic. For example, a framework is classi�ed as
predictive level only if both managed leveland predictive level functions are ful�lled. In
order to achieve the autonomic level which is one of the objectives of this thesis, our
framework should realize all functions that correspond to these �ve levels.

The lowest basic levelcan be viewed as execution of applications without any control
mechanisms. Themanaged levelprovides fundamental control mechanisms and thepre-
dictive level applies some predictive rules beyond themanaged level. The adaptive level
takes into account context-awareness for execution optimization. Finally, theautonomic
level proposes some semantic autonomic strategies to guide adaptation behavior.

3.4.3 3-level Architecture

In the context of pervasive systems with our system modeling, the end-to-end autonomic
security framework realizes these �ve levels by three planes (see Figure 3.6). Theexecution
space is an execution environment of applications that plays the role of thebasic level.
The control plane regroups both themanaged leveland the predictive level which controls
the execution spaceby applying predictive rules. In our case, authorization policies are
predictive rules to control access of resources. On the top, theautonomic planecoordinates
adaptation with semantic adaptation policies. This sub-section briey describes these
three planes, and more details about realization of each layer will be introduced in later
chapters.

Execution Space: The execution spaceis an environment in which all applications can
be launched to achieve some tasks. All software systems without control mechanisms can
be seen as anexecution space. However, since upper levels will enforce control by achiev-
ing manipulations, the execution spaceshould provide a uniformed representation of all
applications with a standard manner of control. Component-Based Software Engineering
(CBSE) [40] appears as a good solution since it encapsulates all applications and resources
in format of components. Standard interfaces are de�ned and used to control these com-
ponents. Furthermore, other advantages like dynamic recon�guration are also provided
by CBSE.

39

Figure 3.6: 3-Level Autonomic Security Architecture

Control Plane: The control plane combines themanaged leveland predictive level of
the IBM autonomic maturity model. In order to realize the former one, supervision and
recon�guration should be proposed that allow both monitoring and manipulations on the
execution space. For the predictive level, some kinds of predictive rules need to be used that
indicate reactions for potential conditions. Since our framework focus on self-protection,
authorization policies are applied as a set of predictive rules. An authorization policy is
composed of several rules which represent authorization permissions about subjects on
objects with operations. Once a component in theexecution spaceattempts to access to
another component, an access request is �rstly captured by thecontrol plane. Then, a
predictive decision module makes a decision for the request. A recon�guration module
achieves a set of reactions according to the decision.

Autonomic Plane: In an access control framework, predictive authorization rules are
usually �xed at the beginning which can not be modi�ed during execution. However,
design requirements demand system to be more context-aware where the predictive rules
can evolve in accordance to context evolution [100]. For example, one access request can
be granted if the system is in a relatively secure context and should be denied in the oppo-
site case. Theadaptive levelproposes functions to perform this predictive policy update
based on context information in following an adaptation policy. At the end, to distinct
an adaptive system from an autonomic system, semantic adaptation policies should be
provided that guide adaptation behavior of the self-protection framework. In brief, the
adaptive level achieves adaptation but the autonomic level guides adaptation behaviors
on function of user preferences, execution condition, etc.

40 3. System Modeling

3.5 Summary

In this chapter, we motivated and described the model of our working pervasive systems
which is a basis for our self-protection framework. As detailed in Section 3.1, the in-
frastructureless architecture, dynamic topology and multiple concerns are the three main
features. A formal de�nition of these pervasive systems was given in Section 3.2 in which
we also speci�ed a set of recognized transitions both at the cluster and node levels. Their
life-cycles were also elaborated. In Section 3.3, three working scenarios were identi�ed with
some classic attack classes which address di�erent security objectives respectively the con-
�dentiality, integrity, and availability. Some countermeasures were also proposed against
these attack classes. Finally, an overview architecture about our self-protection frame-
work was presented in Section 3.4, it is a 3-level policy-based architecture that achieves
all necessary functions for an autonomic system. In later chapters, we will describe this
framework in detail.

41

Part II

Design

43

Chapter 4

Generic Attribute-Based Access
Control (G-ABAC) Approach

As described in the previous chapter, access control policies are in the center of the end-
to-end framework. The autonomic plane selects the most adequate access control policy
among a set of potential ones. Subsequently, it customizes and deploys the selected policy
through the whole system. Thecontrol plane enforces customized policies in all nodes. For
the administration of access control policy speci�cation, some existing access control mod-
els de�ne their own administration models [126, 113] to control or restrict manipulations.
Although some access control models are quite expressive in terms of policy speci�ca-
tion [98, 116], few models provide full support for variousadministration models of policy
speci�cation which is crucial for mobile terminals to be integrated into di�erent networks.
The conventional policy-neutral approach [24, 79, 136] should thus be extended to enhance
not only expressivity of policy speci�cation but also exibility for various administration
models of policy speci�cation.

Although the main contributions of this thesis are the deployment (see Chapter 5)
and enforcement (see Chapter 6) of access control policies, we present in this chapter
an approach called Generic Attribute-Based Access Control (G-ABAC) that can express
a wide set of existing access control policies. This approach facilitates the validation
and con�guration of access control policies at the OS level for embedded systems. Its
support of administration models of policy speci�cation is more generic: a large range
of administration models can be integrated in the ASPF framework which applies G-
ABAC. This chapter gives the description of G-ABAC together with its support for various
administration models.

Section 4.1 identi�es design requirements for access control policies in the context of
pervasive systems: policy-neutrality of speci�cation and administration, decentralization
of access control validation, e�ciency of authorization, and exibility of policy con�gura-
tion.

Section 4.2 discusses some existing access control models with regard to their structure
such as: access matrix models, multi-level security models, role-based and attribute-based
access control models. However, all these models hold one or several shortcomings given

44 4. Generic Attribute-Based Access Control (G-ABAC) Approach

the considered design requirements.
Section 4.3 reviews advantages of applying the attribute-based approach for autho-

rization in pervasive systems. It highlights the importance to separate administration
of attributes from speci�cation of access control policy. G-ABAC also enables run-time
con�guration of policies and e�cient authorization validation.

Section 4.4 de�nes G-ABAC in detail. It formulizes basic elements and their relations.
Several examples illustrate how G-ABAC achieves policy-neutrality by specifying a number
of existing access control policies.

Section 4.5 describes administration supports for G-ABAC. Dynamic recon�guration
of policy enables attribute mutability which avoids inconsistency due to attribute mod-
i�cation. Session support allows to control the whole life-cycle of authorization: before,
during and after permission validation.

Section 4.6 concludes this chapter by comparing G-ABAC features to the design re-
quirements. Afterwards, it briey motivates the need for an administration framework
described in Chapter 5.

4.1 Access Control Requirements

Within a pervasive system, di�erent access control policies may be applied depending on
the situation. One solution is to adopt a generic access control approach that can express
a variety of authorization policies in this open and dynamic environment. Since existing
access control policies [73, 89] are usually managed by heterogenousadministration models
of policy speci�cation, their diversity calls for a unique approach for such management. In
this section, some essential design requirements of a generic access control approach are
listed.

4.1.1 Policy-neutrality of Speci�cation and Administration

The use of multiple authorization policies calls for a policy-neutral paradigm in terms
of policy speci�cation and administration. Since existing policies use a large number of
concepts for access control validation (e.g., MLS [27, 32] de�nes security levels, RBAC [73]
uses the role concept), a generic approach needs to provide some basic concepts by which
di�erent authorization policies can be expressed and managed.

Requirement R 4.1 The access control approach should be policy-neutral to express and
manage a wide variety of authorization policies.

4.1.2 Decentralization of Access Control Validation

In a pervasive environment which is highly distributed, the access control validation should
be designed accordingly. Conventional centralized validation by one authority does not
seem adequate. Particularly, when the system becomes large-scale, a huge set of permis-
sions needs to be maintained with a signi�cant performance overhead for access control

45

validation, and also increasing the complexity of policy administration. Therefore, a de-
centralized paradigm for access control validation is needed.

Requirement R 4.2 The access control validation should support distributed systems
through a decentralized paradigm.

4.1.3 E�ciency of Authorization Enforcement

Within an end-to-end self-protection framework, access control policies are enforced by
OSes of terminals. Some types of models are not adequate for resource-limited terminals,
and thus should be simpli�ed to make their enforcement e�cient. For example, an access
enforcement which should invoke a monitoring system to get contextual information is not
lightweight. An e�cient access enforcement should compute access permissions based on
information stored in the kernel. Using external information for OS-level authorization
may cause a supplementary mode switch overhead and is considered as non lightweight.
Thus, a lightweight yet e�ective access control approach is needed.

Requirement R 4.3 The authorization should be e�cient for OS-level enforcement of
any kind of embedded terminals.

4.1.4 Flexibility of Policy Con�guration

As access control policies are applied to pervasive systems which are infrastructureless
and highly dynamic, context changes may lead to some updates of policies at run-time.
The exibility of policy con�guration leads to two requirements: de�nition of �ne-grained
concept elements and independence among these elements. The former calls for a �ne gran-
ularity of policies. The latter means that such concept elements should be independently
separated. Therefore, the exibility of policy con�guration should enable adjustment of
these concept elements without impacting others.

Requirement R 4.4 Policies speci�ed by the access control approach should be exible
to support con�gurations of policy concept elements.

4.1.5 Other Requirements

Other requirements such as life-cycle management of authorization, integration of context
information in access control validation are not among the main design requirements of
G-ABAC. However, some implementations described in Chapter 5 show how G-ABAC
may be extended to achieve these requirements.

4.2 A Short Survey of Access Control Models

In this section, we present an overview of some existing access control models from the
perspective of the policy speci�cation (the structured concept to describe policies), that
is, how to express access control permissions in using di�erent concepts likedomain and

46 4. Generic Attribute-Based Access Control (G-ABAC) Approach

type in DTE, role in RBAC. We believe that the adminstration of policy speci�cation is
managed by administration models and it not treated in this thesis. We notably examine
the Discretionary Access Control (DAC) models, Mandatory Access Control (MAC) mod-
els, Role-Based Access Control (RBAC) models, and �nally access control models using
the attribute-based approach.

4.2.1 Discretionary Access Control (DAC)

The access control mechanism is de�ned as DAC if an individual user can set an access
control mechanism to allow or deny access to an object [33].

Access Matrix DAC is �rstly implemented through an access matrix. The access
matrix is a subject-object-operation matrix which indicates permissions of subjects to
perform operations on objects as de�ned in the Lampson model [97]. Access Control Lists
(ACL) is most basic implementation of the access matrix in OSes. With ACL, a speci�c
access control list is attached to each resource (object). When a user wants to perform
some operations on an object, the OS checks whether the user and his operations are
included in the access control list of the object. Capability-based systems [99] are another
implementation where the access matrix is on the subject side. Lists of capabilities are
tokens containing a permission for a subject to access an object and a relevant operation.
As a category of DAC, an resource owner has complete control over all his resources and
can assign permissions of his own resources by modifying the access matrix.

The decentralization requirement (R 4.2) is partially satis�ed since some permission
tables may be attached to either subjects or objects. Due to the too basic structure
of the model, it is hardly used to express other policies as isR 4.1. The huge size of
permission tables in large-scale systems reduces e�ciency of access control validation (R
4.3): an access request needs to be validated by looking through the whole table. The
model has the same drawback for the requirementR 4.4, one update of permission calls
for modi�cations through all ACL or capability lists.

4.2.2 Mandatory Access Control (MAC)

As de�ned by M.Bishop [33]: when a system mechanism controls access to an object and
an individual user cannot alter that access, the control is a Mandatory Access Control
(MAC). Hence, all resources are controlled by the OS. Unlike DAC, it is not possible for
MAC policies non-administrator users to change access control strategy over resources.

Multi-Level Security (MLS) MAC is �rstly implemented through MLS which classi-
�es subjects and objects using lattices [125] and base access control validation on compar-
ison of security levels. In MLS models such as Bell LaPadula (BLP) [27] and Biba [32], all
subjects are classi�ed into security levels calledsecurity clearances, all objects are classi�ed
into security levels called security classi�cations. For each access request from a subject
to an object with an operation such as read or write, a comparison of the corresponding
security clearance and security classi�cation is performed.

47

Within the access matrix model described previously, subjects and objects are iden-
ti�ed by their identities. Access control validation is based on these identities. This is a
key drawback for large-scale, distributed systems, since a huge number identities should
be managed. MLS separates identities from authorization validation to improve e�ciency
(R 4.3) and exibility (R 4.4). But the use of the lattice concept limits policy-neutrality
(R 4.1).

Domain and Type Enforcement (DTE) DTE is another DAC implementation. In
the DTE model [24, 79], subjects and objects are respectively grouped to domains and
types. An authorization validation of a subject, an object and an action is performed by
checking the corresponding domain, type and action in theDomain De�nition Table (this
table contains all allowed operations between domains and types).

From the policy speci�cation perspective, DTE simpli�es the access matrix by assigning
domains and types to subjects and objects in order to improve e�ciency (R 4.3) and
exibility (R 4.4). Decentralization (R 4.2) of the DTE authorization is not described in
exiting works, but we believe that it is possible to realize.

4.2.3 Role-based Access Control (RBAC)

The RBAC category introduces the notion of role to represent a set of similar subjects
having some common access rights. Each role grants a number of permissions. Roles can
then be assigned to users on the basis of their speci�c job responsibilities and quali�ca-
tions [127, 73]. Users are assigned with roles according to their functions performed in a
company or organization to determine whether access will be granted or denied. There-
fore, a single access permission to a role can be pro�ted by all assigned subjects of the
role.

In order to avoid scalability limitation, RBAC simpli�es the access matrix model by
assigning roles to subjects. RBAC also enables dynamic assignment of roles and permis-
sions. The usage of roles presents bene�ts of decentralization (R 4.2) and exibility (R
4.4). It is thus widely applied for context-aware access control models. In such models,
the concept of condition makes authorization related to some context information like
time or location. Environmental roles are proposed to (de)activate roles of a location
in GEO-RBAC [31, 54]. Spacial Role-based Access Control (SRBAC) [114] and Dynamic
Role-based Access Control (DRBAC) [154] are extensions of RBAC that are able to dynam-
ically adjust permission and role assignments depending on context information. RBAC
enables to achieve a certain level of policy-neutrality (R 4.1) as it permits to express a
number of authorization policies [115]. But the usage of roles together with organizational
and context information may reduce e�ciency of authorization at the OS level (R 4.3).

4.2.4 Attribute-based Approach

In the attribute-based approach, an OS examines attributes of subjects and objects to
determine whether an access request is granted. Therefore, users are identi�ed by their
characteristics (attributes) rather than identities.

48 4. Generic Attribute-Based Access Control (G-ABAC) Approach

Generalized Role-based Access Control (GRBAC) GRBAC [53] is an extension
of the traditional RBAC model that applies roles not only to subjects, but also to objects
and to the environment. In this type of model, the role can also be considered as a security
attribute for subjects, objects and the environment. When a subject wants to access an
object, corresponding permissions based on their roles should be computed.

Organization-Based Access Control (OrBAC) In OrBAC [89], in order to abstract
di�erent kinds of subjects, objects, and actions, the concepts ofrole, view, and activity are
respectively introduced, which may be viewed as particular types of security attributes.
These abstractions completely separate concrete security entities from access permissions.
Modi�cation of attribute assignments is hidden from authorization validation which im-
proves exibility (R 4.4). Policy-neutrality (R 4.1) is ful�lled since OrBAC is able to
express other authorization policies like RBAC. Furthermore, its organization-oriented
concept allows to achieve decentralization (R 4.2).

Attribute-Based Multipolicy Access Control (ABMAC) In the ABMAC model [98],
access decisions are made according to attributes of requestors (subjects), resources (ob-
jects), and the environment. One advantage of ABMAC is its support of multiple policies
at the same time: various polices such as DTE, MLS, or RBAC can be simultaneously
installed and enforced by ABMAC. A combining algorithm makes a �nal decision accord-
ing to results returned by each policy. Policy-neutrality (R 4.1) and exibility (R 4.4)
are thus improved. Decentralization (R 4.2) is hardly addressed since ABMAC needs a
centralized control over multiple policies. E�ciency (R 4.3) can be hardly met because of
the complexity of ABMAC authorization validation which was initially designed for grid
computing.

Attribute-based Privacy Policy Privacy [6] restricts the usage of user information
by avoiding disclosure without explicit consent of users. The attribute-based approach is
applied for privacy. An anonymous credential system allows a user to selectively prove
statements about her identity attributes while keeping the corresponding data hidden [43].
The PrimeLife framework [21] applies privacy-aware access control in order to disclose only
limited information about users. It uses the XACML language and architecture [77] for
privacy policy speci�cation and access enforcement.

4.2.5 Summary

Di�erent authorization models have been reviewed in this section. From the policy speci-
�cation perspective, ACL- or capability-based systems implement the access matrix which
requires to maintain a large representation ofsubject-object-operationrelationships. The
management of such a matrix in distributed contexts is a challenge, with an important
management overhead. MLS models reduce this overhead by assigning security levels to
subjects and objects to compute permissions. But in large-scale systems, the partial or-
der between security levels may become complex. DTE groups subjects and objects to
domains and types for simpli�cation. Role-based models introduce the notion of role to

49

Policy-neutral Decentralization E�ciency Flexibility
Matrix (ACL/Capability) - + - -
MLS (BLP/Biba) - ? ++ +
DTE - ? ++ +
RBAC (SRBAC/DRBAC) + + - ++
GRBAC ++ + - ++
OrBAC ++ + ? ++
ABMAC ++ - - ++
PrimeLife ++ - - ++

Table 4.1: Access Control Models Comparison

separate permissions from subjects in to improve exibility. Finally, models applying the
attribute-based approach simplify subject-object relations by describing entities through
their attributes. Other promising models have also been proposed such as PBAC [132] or
RAdAC [100]. However, they are not examined in this section. We believe that their main
contributions deal not with access control speci�cation, but with administration models
of policy speci�cation.

As show in Table 4.2.5, each model has its bene�ts and drawbacks (we use the symbol
\ - " to represent no ful�lled requirements, \ +" and \ ++" for partially and fully satis�ed
requirements, and \?" for no mentioned requirements). GRBAC and OrBAC show ad-
vantages in the policy-neutral (R 4.1), decentralization (R 4.2) and exibility (R 4.4)
requirements. Since the target authorization policy will be enforced at the OS level, e�-
ciency (R 4.3) needs to be improved. What is lacking is an access control approach that
covers all the previous design requirements.

4.3 Contribution

In this chapter, a Generic Attribute-based Access Control (G-ABAC) approach is proposed
that provides a common means to express, specify and instantiate various authorization
policies such as DTE, MLS, etc. Unlike existing models, our G-ABAC combines the
following features:

1. Integrating the attribute-based approach in access control:

Di�erent concept elements like security levels in MLS or roles in RBAC can be
formulated as attributes. Authorization validation uses these attributes to compute
permissions. Separation of attributes from concrete entities like subjects or objects
ful�lls the policy-neutrality (R 4.1) and exibility (R 4.4) requirements;

2. Separating attribute administration from access control policy de�nition:

ABAC access control permissions depend on security attributes which are usually
managed by a related administration model. Our G-ABAC is generic in the sense

50 4. Generic Attribute-Based Access Control (G-ABAC) Approach

that it is independent from and transparent to administration models. This separa-
tion supports both the policy-neutrality (R 4.1) and exibility (R 4.4) requirements;

3. Enabling dynamic recon�guration of authorization policies:

G-ABAC allows modi�cation of policies and update of security attribute values at
run-time. Since a system built on G-ABAC may execute in di�erent contexts, se-
curity adaptation can be achieved by tuning applied authorization policies, e.g.,
replacing one access permission by another or just modifying security attribute val-
ues. The proposed recon�guration mechanism improves both exibility (R 4.4) and
e�ciency (R 4.3);

4. Proposing policy customization based on node pro�les:

One main distinguishing feature about pervasive systems is heterogeneity: di�erent
kinds of terminals can coexist in one system. As such, the security consistency
requires a master authorization policy to be enforced in all nodes. However, the
diversity of nodes may imply authorization policies of di�erent complexity. Our
authorization model provides a customization mechanism to generate speci�c but
consistent policies depending on pro�le of each node. This mechanism overcomes
the problem of node-level authorization e�ciency (R 4.3). Moreover, customization
also improves the decentralization requirement (R 4.2).

Other features like integration of organization hierarchy and support of sessions are also
supported by our framework, either as extensions of the main approach or as additional
speci�c modules.

4.4 G-ABAC De�nition

G-ABAC is organized into two parts: (1) a de�nition that describes basic G-ABAC el-
ements and relations between these elements; (2) some administration supports for the
G-ABAC elements and relations. A description of the G-ABAC basic elements is given
next.

4.4.1 Entities

Entities are fundamental abstractions of G-ABAC. The four main entities are:

� Subject

Subjects are active entities for access validation. They may represent processes in
a capability-based system, users in RBAC or requestors in ABMAC. We useS to
represent the set of subjects;

� Object

Objects are passive entities. They can be resources in DTE, memory in a capability-
based system or services in ABMAC. All entities on which access operations may
apply may be categorized as objects. We useO to represent the set of objects;

51

� Action

Actions represent access control operations on objects. Conventional access actions
are read, write and execute in Linux. Other operations such as insert or remove for
Database access control may also be considered as actions.A represents the set of
actions;

� Context

unlike basic access control models, emerging models apply additional information
such as organizations in OrBAC, location in SRBAC/DRBAC and user information
in ABMAC. One solution is to abstract all these types of information into one entity
called context. The context model DNG-ng proposed in [139] allows the modeling of
di�erent informations in a single model. We use C to represent the set of contexts.

4.4.2 Attributes of Entities

In the attribute-based approach, each entity has one or a set of attributes that de�ne its
characteristics. Unlike the conventional de�nition of attributes which has only one value,
our concept of attribute may hold a �nite set of values. E.g., when using G-ABAC to
specify RBAC policies, the role concept is de�ned as a subject attribute. Since one user
can be assigned several roles, a set of role values can be assigned to therole attribute.

� Subject Attribute

For each subject, a set of attributes can be associated that characterize di�erent
aspects of the subject. The attributes can be of any type such as roles in RBAC,
domains in DTE, or security clearances in MLS.

We de�ne the set of subject attribute values as: ATT S = ATT S1 � ATT S2 �
:::ATT Si ::: � ATT Sl where ATT Si represents a �nite set values of the subject
attribute si and l is the number of subject attributes. The function att s : S !
2AT T S returns attribute values for each subject;

� Object Attribute

An object can also hold one or a set of object attributes to describe its speci�c
characteristics. The attributes can be types in DTE, security classi�cations in MLS
or views in OrBAC. An object attribute may have a �nite set of values.

We de�ne the set of object attribute values as: ATT O = ATT O1 � ATT O2 �
:::ATT Oi :::� ATT Om whereATT Oi represents a �nite set of values for one object
attribute and m is the number of object attributes. The function att o : O ! 2AT T O

returns attribute values for each object;

� Action Attribute

An action attribute speci�es categories of access actions that can be performed. For
example, OS access operations as read, write, and execute can be regrouped into

52 4. Generic Attribute-Based Access Control (G-ABAC) Approach

one action attribute. In cloud computing, access actions are categorized into two at-
tributes: Virtual Machine actions which access virtualized resources and hypervisor
actions to directly access physical resources.

We de�ne the set of action attribute values as: ATT A = ATT A1 � ATT A2 �
:::ATT A i ::: � ATT An whereATT A i represents a �nite set of values for one action
attribute and n is the number of action attributes. The function att a : A ! 2AT T A

returns attribute values for each action;

� Context Attribute

Context attributes describe elements of the context of an entity. For example, loca-
tion may be viewed as a context attribute, and can be assigned with multiple values
such as city, GPS position, etc.

Formally, we de�ne the set of context attribute values as: ATT C = ATT C1 �
ATT C2 � :::ATT Ci ::: � ATT Cp where ATT Ci represents a set of values for one
context attribute and p is the number of context attributes. The function att c :
C ! 2AT T C returns attribute values for each context.

4.4.3 Rules

A key di�erence between G-ABAC and existing ABAC models is the abstraction of rules
in G-ABAC. Access permissions based on subject, object, action or context attribute
values are formulated as rules which are administered as independent entities. The rules
of G-ABAC are static since they do not evolve during execution.

In OrBAC, some context-aware constraints can be de�ned to (de)activate permissions
according to context evolutions. This allows adaptation of permissions for di�erent en-
vironments. But from the perspective of policy administration, this mechanism asks for
administration models to support run-time update for permissions. In order to ful�ll the
policy-neutrality requirement, G-ABAC should be expressive to specify di�erent policies
and be exible to support associated administration models of policy speci�cation. The
rule concept improves exibility. For context evolutions, attribute value may be updated.
Therefore, another rule will be selected based on new values. But the rules themselves
always remain unchanged.

E�ciency is another important motivation for the rule concept. For OS-level access
control, the complex structure of an access control policy is a main challenge. Low-level
authorization modules cannot enforce complex access control policies without performance
loss. For example, in SELinux [104], only three simple policies DTE, MLS, RBAC (sim-
pli�ed version) are implemented. The static and simpli�ed structure of rules reduces the
overhead of authorization administration.

Unfortunately, G-ABAC is limited in terms of performance for some access control
models. The rule concept simpli�es administration, but on the other hand it may increase
the overhead of access validation. With the static rule concept, all rules based on attribute
values are �xed. When the system state or execution context evolves, updated values may
be assigned to entities. Access validations may thus check all rules to �nd out whether its
attribute values are associated to another permission. In the case where attributes hold

53

many values, a large set of rules exist. Hence, a huge rule table should be maintained
and used. This induces a signi�cant access validation overhead which will be evaluated in
Chapter 8.

4.4.4 G-ABAC Overview

Figure 4.1: G-ABAC Approach

G-ABAC is de�ned as entity-attribute-rule relation shown in Figure 4.1. Each entity
(subject, object, action, or context) can hold several attributes. Each attribute can be
assigned with a �nite set of values. We de�ne the rules as static relations between at-
tribute values. An administration model controls assignment of values to attributes. One
advantage of the separation of attribute usage from its administration is the improve-
ment to support several administration models. Some powerful administration models
with complex and dynamic concepts (like constraint or sessions) can be easily embodied
to administer G-ABAC policies. For example, in RBAC, the session concept controls
the (de)activation of roles to users. To specify RBAC using G-ABAC, sessions may be
represented by adding or removing values to the role attribute.

54 4. Generic Attribute-Based Access Control (G-ABAC) Approach

4.4.5 G-ABAC Policy De�nition

De�nition 4.1 A G-ABAC policy is de�ned as:

� S; O; A, and C: the sets of subjects, objects, actions, and contexts;

� ATT S; ATT O; ATT A, and ATT C: the sets of subject attributes, object attributes,
action attributes, and context attributes;

� RULES : ATT S � ATT O � ATT A � ATT C, a permission rules table based on
values of subject attributes, object attributes, action attributes, and context attributes;

� grant (s; o; a; c) , 9 sa 2 att s(s); 9oa 2 att o(o); 9aa 2 att a; 9ca 2 att c(c); (sa; oa; aa; ca) 2
RULES : an access request (s,o,a,c) can be granted for the subject s with the action
a on the object o in the context c, if and only if there exists a permission rule for the
corresponding subject attribute values sa, object attribute values oa, action attribute
values aa and context attribute values ca.

4.4.6 Speci�cation of Existing Policies using G-ABAC

Some examples are given in order to show the expressivity of G-ABAC to describe access
control policies, ranging from the simple ACL policy, to the MLS policy and the OrBAC
policy.

ACL Policies: An ACL policy is de�ned as:

� A set of subject identities: SID;

� A set of object identities: OID;

� A set of access operations: AO;

� An assignment of subject identities to subjects:sid : S ! SID ;

� An assignment of object identities to objects: oid : O ! OID ;

� An assignment of access operations to actions:ao : A ! AO;

� For each object, an Access Control List is de�ned:acl : OID ! 2SID � AO ;

An access request (s,o,a) withs 2 S, o 2 O, a 2 A can be granted if and only if
(sid(s); ao(a)) 2 acl(oid(o)).

We translate the ACL policy in G-ABAC by:

� De�ning subject identities as subject attributes: ATT S = SID ;

� De�ning object identities as object attributes: ATT O = OID ;

� De�ning access operations as action attributes:ATT A = AO;

55

� De�ning sid assignment as subject attribute assignment:att s = sid;

� De�ning oid assignment as object attribute assignment:att o = oid;

� De�ning ao assignment as action attribute assignment:att a = ao;

� Neglecting the context attributes: ATT C = ; ;

� De�ning a set of rules RULES = f (sid; oid; ao; �)jsid 2 SID; oid 2 OID; ao 2
AO; (sid; ao) 2 acl(odi)g.

Therefore, an access request (s,o,a) withs 2 S, o 2 O, a 2 A can be granted if and
only if (att s(s); att o(o); att a(a); �) 2 RULES .

Figure 4.2: Access Control List Policies in G-ABAC

In the case of ACLs, individual identities are represented as subject and object at-
tributes. Permission rules are de�ned based on subject identities, object identities, and
access operations as shown in Figure 4.2. If the identity of a subject together with a re-
quested object identity and an operation exists in the rule list, there is thus a permission
which grants the access request.

MLS Policies: This example shows the implementation of a Bell LaPadula (BLP) policy
using G-ABAC. A BLP [27] policy is de�ned as:

� A set of security clearancesSCLEAR ;

� A set of security classi�cations SCLASS;

� A set of access operationAO = f read; write g;

� A dominance relation � between security clearances and security classi�cations;

� An assignment of security clearances to subjects:clear : S ! SCLEAR ;

� An assignment of security classi�cations to objects:class : O ! SCLASS;

� An assignment of access operations to actions:ao : A ! AO.

56 4. Generic Attribute-Based Access Control (G-ABAC) Approach

A read access request (s,o,read) withs 2 S, o 2 O can be granted if and only if
clear(s) � class(o). A write access request (s,o,write) with s 2 S, o 2 O can be granted
if and only if class(o) � clear(s).

We translate the BLP policy in G-ABAC by:

� De�ning security clearances as subject attributes: ATT S = SCLEAR ;

� De�ning security classi�cations as object attributes: ATT O = SCLASS;

� De�ning access operations as action attributes:ATT A = AO;

� Neglecting context attributes: ATT C = ; ;

� De�ning the clear assignment as the subject attribute assignment:att s = clear;

� De�ning the class assignment as the object attribute assignment:att o = class;

� De�ning the ao assignment as the action attribute assignment:att a = ao;

� De�ning a set of rules RULES = f (sClear; sClass; ao;�)jsClear 2 SCLEAR; sClass 2
SCLASS; ao 2 AO; (sClear � sClass; ao = read) or (sClass � sClear; ao =
write)g.

An access request (s,o,a) withs 2 S, o 2 O, a 2 A can be granted if and only if
(att s(s); att o(o); att a(a); �) 2 RULES .

Figure 4.3: Multiple Security Level Policies in G-ABAC

To specify MLS-BLP policies with G-ABAC, security clearances and classi�cations are
de�ned as attributes for both subjects and objects. Two access operations read and write
are speci�ed as the access operations for the action attributes. The rules are based on
the values of subject attributes, object attributes and action attributes (see Figure 4.3).
Permissions are computed by comparing the domination relationship. If the security
clearance of a subject dominates the security classi�cation of an object, a read permission
rule is identi�ed. If the security classi�cation dominates the security clearance, a write
permission rule is identi�ed.

57

OrBAC Policies: An OrBAC policy is de�ned by:

� A set of organizations: ORG;

� A set of roles: R;

� A set of views: V ;

� A set of activities: AT ;

� A set of contexts: C;

� A Employ relationship: employ : S � ORG ! R;

� A Use relationship: use : O � ORG ! V ;

� A Consider relationship: consider : A � ORG ! AT ;

� A Hold relationship: hold : S � A � O � ORG ! C;

� A Permissions relationship: permission : ORG � R � V � AT � C ! grant .

An access request (org,s,o,a) withorg 2 ORG, s 2 S, o 2 O, a 2 A can be granted if
and only if permission (org; employ(s; org); use(o; org); consider(a; org); hold(s; a; o; org)) =
f grantg.

G-ABAC cannot translate an OrBAC policy to an equivalent policy in using the
attribute-based approach. However, we propose in this paragraph a transformation to
specify an \OrBAC-like policy".

� De�ning roles as subject attributes: ATT S = R;

� De�ning views as object attributes: ATT O = V;

� De�ning activities as action attributes: ATT A = AT ;

� De�ning the organization and context as the two dimensions of context attributes:
ATT C = ORG� CX . In order to distinguish di�erent context de�nitions in OrBAC
and G-ABAC, in later part, we use the term \context (the symbol C)" to represent
that of OrBAC, and \context entity (the symbol CX)" to represent that of G-
ABAC. By G-ABAC, the organization and context of OrBAC are considered as two
dimensions of the context entity;

� De�ning the subject attribute assignment att s : S ! 2R , a function which returns
all potential roles of the subject for di�erent organizations;

� De�ning the object attribute assignment att o : O ! 2V , a function which returns
all potential views of the object for di�erent organizations;

� De�ning the action attribute assignment att a : A ! 2AT , a function which returns
all potential activities of the action for di�erent organizations;

58 4. Generic Attribute-Based Access Control (G-ABAC) Approach

� De�ning one context entity attribute assignment att c 1 : C ! ORG, a function
which returns one organization;

� De�ning another context entity attribute assignment att c 2 : C ! CX , a function
which returns one context information;

� De�ning a set of rules: RULES = f (r; v; at; org; cx)jr 2 R; v 2 V; at 2 AT; org 2
ORG; cx 2 CX; permission (org; r; v; at; cx) = grantg.

An access request (s,o,a,c) withorg 2 ORG, s 2 S, o 2 O, a 2 A, c 2 C can be granted
if and only if 9r 2 att s(s); 9v 2 att o(o); 9at 2 att a(a); (r; v; at; att c 1(c); att c 2(c)) 2
RULES .

Figure 4.4: Organization-Based Access Control Policies in G-ABAC

To describe OrBAC policies with G-ABAC, the role attribute is assigned to subjects,
views to objects, activities to actions, and the organization and context to the context
entities of G-ABAC (see Figure 4.4). For an access request (s, o, a, c), if its role, together
with its view and activity, context entity (including organization and context information)
exists in the rule table RULES, the access request can be granted. In the opposite case,
it is denied.

Unlike the de�nition of OrBAC [89], the organization concept is modeled as a context
attribute in the transformation. In fact, the relationships of OrBAC such as organization-
subject-employ-role, organization-object-use-view, organization-action-consider-activity, and
organization-subject-action-object-hold-contextare simpli�ed to subject-role, object-view,
action-activity , and context-context entity. Instead, the organization concept is de�ned as
another dimension of the context entity. This transformation simpli�es the entity-attribute
assignments. But on the other hand, the rules becomes somewhat complicated.

59

OrBAC introduces not only permissions, but also prohibition, obligation, and rec-
ommendation concepts. Since permission and prohibition are similar in terms of policy
speci�cation, we give only an example of permission in this sub-section. Obligation and
recommendation call for supplementary life-cycle management which cannot be realized
in our framework.

4.4.7 G-ABAC Speci�cation

4.4.7.1 G-ABAC Speci�cation Model

Figure 4.5: G-ABAC Speci�cation Model

The speci�cation of a G-ABAC policy consists of an entity map and a rule map (see
Figure 4.5). The entity map is a set of entities that couple system basic entities to
their attributes. Entities may be subjects, objects, actions, or contexts. Examples of
corresponding attributes include security domains, resource types, read/write operations,
localization and time information. A rule contains a target described by several attribute
values and an e�ect (grant or deny).

4.4.7.2 Expression Format

With a large number of frameworks or applications that either use XML to model their
data or to present data relations or restrictions, speci�cation of authorization policies in

60 4. Generic Attribute-Based Access Control (G-ABAC) Approach

XML becomes an important requirement. A sample DTE policy based on on our policy
model is shown below, granting write authorizations to a private �le \.bashrc" for process
\bash" which is in a trusted domain of Linux.

<?xml version ="1.0"? >
<DTEPolicy >

<EntityMap >
<Subject Name =" bash ">

<Attr ibute Name =" domain ">
<Value >Trusted </ Value >

</ Attr ibute >
</Subject >
<Object Name =". bashrc ">

<Attr ibute Name =" type " >
<Value >Private </ Value >

</ Attr ibute >
</Object >
<Action Name =" OSAccess ">

<Attr ibute Name =" operat ion ">
<Value >write </ Value >

</ Attr ibute >
</Action >

</ EntityMap >
<RuleMap >

<Rule >
<Target >

<Attr ibute name =" domain ">
<Value >Trusted </ Value >

</ Attr ibute >
<Attr ibute name =" type ">

<Value >Private </ Value >
</ Attr ibute >

<Attr ibute name =" operat ion ">
<Value >write </ Value >

</ Attr ibute >
</Target >
<Effect >grant </ Effect >

</Rule >
</RuleMap >

</ DTEPolicy >

The result is a quite expressive formalization, while still remaining policy-neutral. As
in XACML [77], speci�c authorization policies may be implemented by de�ning corre-
sponding attributes and rules. For instance, RBAC policies are implemented by de�ning
some pro�les [19]. Similarly, we think that context-aware or history-based policies may be
implemented by adding speci�c context attributes, but we do not investigate on it.

4.5 Administration Support

An administration model usually allows to specify policy management strategies. Di�erent
administration models can guide execution to various usages. This section presents some
administration supports with which various administration models can be implemented.
More details about di�erent administration models of G-ABAC will be given in the next
chapter.

61

4.5.1 Attribute Mutability and Revocation

An entity in G-ABAC is assigned with attributes which are properties that will be used for
authorization. Attribute mutability is an important issue for G-ABAC where an attribute
value is modi�able during the system execution. Unlike UCON [116] which supports mu-
table attributes as a consequence of access, G-ABAC together with revocation mechanism
of the underlying VSK OS (see Chapter 6) enable attribute mutability at any phase of
authorization. An attribute of any type (subject, object, action, or context) may be mod-
i�ed by a administration model before, during, or after access validation. Following access
decisions will then be based on the updated attributes values.

Thanks to the separation of attribute usage from attribute administration, permission
rules remains constant while attribute assignments are changed. Another rule related to
the updated attribute values will thus be selected to handle with new access requests.
Underlying system (Chapter 6) proposes some solutions to implement this feature. As the
result of attribute mutability, attribute update can be realized during the whole life-cycle
of system, not just before an authorization, but also during and after authorization.

4.5.2 Policy Customization

Policy customization enables to re�ne a master authorization policy into several decen-
tralized but consistent policies for distributed nodes. In our approach, a node pro�le is
speci�ed that characterizes the settings of each node. With the pro�le information, a
global policy can be automatically translated into local ones that are suitable for nodes.
For instance, a node pro�le in our implementation is represented as:

<?xml version = "1.0" ?>
<NodeProfi le >

<Platform reference =" MSP430F2003 ">
<CPUType >16 bit </ CPUType >
<CPUSpeed >16 MHz </ CPUSpeed >
<Flash >1kb </ Flash >
<RAM >128b </RAM >

</Platform >
<Category name =" sensor ">

<Subject > ZigBeeDriver </ Subject >
<Subject > UWBDriver </ Subject >
<Object > ProtocolStack </ Object >
<Object > UserPrivateFi le </ Object >

</Category >
</ NodeProfi le >

It consists of two parts: a platform part that describes hardware properties such as
CPU type, CPU speed, Flash size, and RAM size; and a software part which speci�es
its running applications like communication protocol, user �les, etc. With this pro�le, a
lightweight but e�ective local authorization policy can be generated based speci�c char-
acteristics of a node.

62 4. Generic Attribute-Based Access Control (G-ABAC) Approach

4.6 Summary

This chapter described G-ABAC, a generic attribute-based access control approach, which
permits to specify a wide set of existing authorization policies. In the context of pervasive
systems, policy-neutrality, decentralization, e�ciency, and exibility are listed as the key
design requirements. By applying the attribute-based approach and separating attribute
administration from policy speci�cation, G-ABAC becomes more exible for both policy
speci�cation and administration. It enables dynamic recon�guration and customization
of policies in order to overcome e�ciency and decentralization. Therefore, all the require-
ments are ful�lled with G-ABAC. This chapter also presented a de�nition of G-ABAC,
illustrating how to implement several existing authorization polices.

However, the proposed authorization approach G-ABAC does not cope with the de-
ployment for distributed systems. An Autonomic Security Policy Framework (ASPF)
which deploy G-ABAC policies through the whole pervasive system will be introduced in
the next chapter.

63

Chapter 5

Autonomic Security Policy
Framework

The previous chapter permits to use a generic access control approach, G-ABAC, which
allows to express existing access control policies. However, it lacks some deployment
supports for G-ABAC policies. In this chapter, a policy deployment framework, called
Autonomic Security Policy Framework (ASPF), is proposed which not only achieves de-
ployment of di�erent access control policies in distributed environments, but also embodies
autonomic control loops to improve self-management capabilities. Based on this frame-
work, di�erent administration models of policy speci�cation can be implemented.

Policy-based approach was originally developed to reduce the complexity of IT system
administration, and the use of authorization policy guides protection behaviors of managed
systems. Therefore, the integration of these two approaches improves administration and
deployment of authorization policies and guarantees their consistency. With the help
of autonomic computing, a policy-based framework becomes both user-friendly without
human intervention and context-aware which can react to the context evolution.

Section 5.1 presents key design requirements for such an authorization policy man-
agement framework. This framework will support authorization policies speci�ed by G-
ABAC. It must be scalable to large-size by guaranteeing policy consistency. The framework
needs to be more user-friendly for administration and can react quickly and e�ciently to
the context evolution.

Section 5.2 gives a short survey of existing access control administration models with
di�erent management solutions. With the policy-based approach, we examine existing
frameworks. A summary that reviews all these two approaches in following the design
requirements is given at the end of this section.

Section 5.3 shows main features of ASPF. ASPF applies the policy-based approach
to authorization policy administration and deployment. It decentralizes access control
validation to improve scalability. By integrating self-con�guration and self-protection
mechanisms into the framework, ASPF reduces human intervention and facilitates admin-
istration and deployment of authorization policies.

Section 5.4 describes three main models of ASPF: a core model, an extended model, and

64 5. Autonomic Security Policy Framework

an implementation model. It shows the extension of the core model to the extended model
to describe functionalities of each type of resources. The re�nement of the extended model
to the implementation model organizes functionalities as implementation components.
Finally, the realization of the autonomic vision is illustrated through these three models.

Section 5.5 compares the ASPF framework to the conventional access control archi-
tecture XACML, describes use of G-ABAC, and gives us a detailed description about
complementary autonomic functionalities.

Section 5.6 discusses in detail some supplementary mechanisms like execution support,
realization of delegation approach, and recon�guration mechanism.

Section 5.7 concludes the chapter and indicates some requirements of the underlying
OS that will be ful�lled in Chapter 6.

5.1 ASPF Design Requirements

5.1.1 G-ABAC Policy Support

Di�erent types of authorization policies may be enforced in clusters and nodes.Policy-
neutrality is thus mandatory to account for heterogeneous security domains by supporting
several classes of authorization policies. Moreover, policies should bedynamically recon-
�gured (between di�erent classes) when nodes move between security domains, or when
the context changes. G-ABAC is proposed in the previous chapter that can express a wide
set of existing authorization policies. Instead of developing a policy-neutral architecture
being able to enforce various policies, a framework supporting G-ABAC can implement
di�erent access control policies expressed by G-ABAC. Hence, the policy-neutrality and
exibility requirements of ASPF can be replaced by the requirement to apply G-ABAC.

Requirement R 5.1 As a policy-based framework, ASPF will support and administer
policies expressed by G-ABAC.

5.1.2 Scalability

Pervasive systems are highly open and dynamic: nodes can enter and leave a network at
run-time. The numbers of connected nodes may thus vary greatly in time, scaling network
capacity both up and down, while the infrastructure remains unchanged. Scalability is
thus a major challenge for the underlying protection framework, which should support
both small- and large-scale systems.

Requirement R 5.2 ASPF should enable dynamical scaling within the same infrastruc-
ture.

5.1.3 Consistency

At the device level, a single system component (e.g., the security kernel [17]) usually
controls all access to resources and enforces authorization policies. However, at the network
level, each node still applies its own policy, but some nodes may share resources. The

65

lack of a centralized module for enforcement of authorizations may lead to inconsistent
network security policies. A solution for policy administration is thus required to guarantee
consistency of distributed authorization policies.

Requirement R 5.3 ASPF should enforce decentralized and distributed policies to guar-
antee consistency.

5.1.4 User-Friendliness

Pervasive systems become increasingly complex, involving multiple users with di�erent
roles. Thus, the issue of system administration with minimal human intervention cannot
be ignored. A security policy management framework should therefore simplify adminis-
tration tasks and make system modi�cations transparent to other users.

Requirement R 5.4 ASPF should be user-friendly for system administration and make
modi�cations transparent to other users.

5.1.5 Context-awareness

Openness and dynamism of pervasive networks induce rapid changes in the system context,
calling for context-aware administration and protection. For instance, node availability
may a�ect access privileges, as in ASRBAC authorization policies [15]. A node part of
some clusters may have speci�c types of permissions that cannot be assigned to nodes
in other clusters. Node migration between clusters may thus require update of access
privileges. The management framework should thus select security functions based on
evolution of the context.

Requirement R 5.5 ASPF should be able to dynamically recon�gure its components ac-
cording to the context evolution.

5.1.6 Other Requirements

The security framework should also take into account requirements such as uni�ed mod-
eling of heterogeneous nodes, e�cient protection mechanisms compatible with embedded
constraints, or collaboration of decentralized security infrastructures.

5.2 A Short Survey of Policy Administration Mechanisms

Since the main objective of the framework is to develop a policy management framework
which can support most of existing access control policies together with their associated
administration models, an overview about access control administration models is pre-
sented in Section 5.2.1. Additionally, some existing policy-based frameworks are discussed
in Section 5.2.2.

66 5. Autonomic Security Policy Framework

5.2.1 Access Control Administration Models

Early access control models does not really de�ne a concrete administration model. Bell
LaPadula [27] is a Mandatary Access Control (MAC) which uses security clearance and
classi�cation for authorization validation. But the assignment and modi�cation of security
levels (clearance or classi�cation) in MAC are usually controlled by a central authority
which enhances consistency (R 5.3). For large-scale, distributed and dynamic systems,
the central authority does not seem adequate.

Capability-based system is of Discretionary Access Control (DAC) which delegates the
right of authorization permission assignment to owners of objects. An owner of an objects
can determine authorization privileges and is able to delegate his privileges to other users.
This paradigm improves scalability (R 5.2). In contrast, the multiple ownership which is
distributed through the whole system may provoke inconsistency of authorization policies.

ARBAC97 [126] is a popular administration model corresponding to RBAC96 [127].
It consists of three main components as URA97 for user-role assignment, PRA97 for
permission-role assignment, and RRA97 for role-role assignment which can be recognized
by the management of attributes for authorization policies (R 5.1).

As an extension of ARBAC97, Scoped Administration of Role-Based Access Control
(SARBAC) [56] proposes administration scope as paradigm to manage the assignments of
users and permissions to roles of RBAC. The administration scope [55] tags each role in
the role hierarchy with a set of roles over which it has control. Hence, the control over
complex role hierarchy can be reduced to the management of scoped administration (R
5.2).

As an improved version of ARBAC97, ARBAC02 [113] overcomes shortcomings such
as multiple assignment, redundant assignment, restricted constraints. ARBAC02 uses
an organization structure for user-permission pools, rather than roles as user-permission
pools in ARBAC97 which enables the separation of user-permission pools to roles for the
improvement of scalability (R 5.2). ARBAC02 also shows its advantages for supporting
the administration of ACL-based policies or MLS policies which improves policy-neutrality
(R 5.1) and e�ciency.

However, ARBAC02 depends on the running infrastructure and lacks exibility and
extensibility. ASRBAC [15] is designed by combining SARBAC and ARBAC02 in an
infrastructureless network. It proposes role categories as the concept of scope in SARBAC,
and assigns these categories to entities of network (R 5.2). Another advent of ASRBAC is
context-awareness by taking into account circumstance information for the administration
of role assignment (R 5.5).

Because of the abstraction of subject, action, object respectively by role, activity
and view, the administration model of OrBAC [89] should administer their assignments.
AdOrBAC [58] achieves administration by providing URA for User-Role Administration,
PRA for Permission-Role Administration, and UPA for User-Permission Administration
(R 5.1). Scalability (R 5.2) and context-awareness (R 5.5) [59] are also taken into account
in AdOrBAC.

Within a distributed, complex, and large-scale environment, decentralized management
of authorization policies is missing. Policy-Based Access Control (PBAC) [35] proposes

67

a solution to harmonize Attribute-Based Access Control (R 5.1) in a distributed manner
and provides coherent (R 5.3) and distributed access control policies (R 5.2). Rather than
the previous administration models, PBAC holds a global control over these distributed
policies.

Another access control model, RAdAC [112], advances one step by introducing en-
vironmental condition such as risk level into authorization process. Subject, object and
permission assignments may be updated according to the executing circumstances. For ex-
ample, a strong access control policy could be related upon a non-secure context. Context-
awareness enables self-management of administration model (R 5.5).

5.2.2 Policy-based Frameworks

The policy-based approach uses highly abstracted policies to control behavior of executing
systems, based on a framework to administer these policies. We believe that this kind of
frameworks can be employed to authorization policy management. In this sub-section, we
examine exiting policy-based frameworks in following our design requirements.

The IETF policy framework [152, 108] is widely accepted and consists of three main
components: aPolicy Enforcement Point (PEP) , a Policy Decision Point (PDP) , and
a policy repository. PEP is responsible for enforcement of policy by executing necessary
actions. PDP produces policy decisions and thepolicy repository is the component in which
resists de�ned policies. Within this framework, centralized PDP is the main component
for decision making which improves the consistency requirement (R 5.3).

The IETF framework was extended in the XACML [77] framework by additional Policy
Information Point (PIP) and Policy Administration Point (PAP) . Access validation is
based on information queried from PIP (R 5.1). PAP not only speci�es policies but also
manages them (R 5.3). It was implemented in the Globus Toolkit release 4 (GT4) [98].
The main di�erence of GT4 from IETF is its exibility which contains a set of policies
that may be suitable for di�erent circumstances (R 5.5).

Policy Management for Autonomic Computing (PMAC) [13] is a policy management
platform which uses Autonomic Manger (AM) to govern a set of Managed Resources
(MR) . It reads states of MR using some sensor interfaces, evaluates relevant policies, and
plans actions (R 5.4, R 5.5). When a MR receives directives from an AM, it can change
its behavior in order to achieve policy guidance. For scalability (R 5.2), large-scale IT
systems may be divided into di�erent domains over which one AM manages one domain.
Consistency of distributed policies (R 5.3) is also treated through a policy rati�cation
mechanism.

A similar Policy-Based Architecture for Autonomic Communication (PBAAC) is pro-
posed for autonomic communication [61]. A SharedInformation and Data Model enables
abstraction of both desired behavior and deduced current behavior. In addition, a com-
parison of these two models is established to develop a representation of behavioral or-
chestration (R 5.4, R 5.5). Di�erent from conventional policy-based frameworks, PBAAC
enables policy re�nement by re�ning or decomposing high-level business policies to low-
level network element policies (R 5.2). A policy conict module is in charge of consistency
of distributed policies (R 5.3).

68 5. Autonomic Security Policy Framework

G-ABAC
Support

Scalability Consistency
User
-friendlity

Context
-awareness

Administration
Models

MAC - - + - -

DAC - + - - -
ARBAC97 + - - - -
SARBAC + + - - -
ARBAC02 + + - - -
ASRBAC + + - - +
AdOrBAC + + - - +
PBAC + + ++ - +
RAdAC - - - - ++

Policy-based
Frameworks

IETF - - + - -

XACML GT4 + - + - +
PMAC - + + ++ ++
PBAAC - + + ++ ++
Ponder2 + + ++ ++ +

Table 5.1: Policy-Based Frameworks Comparison

Based on the security description language Ponder [60], an autonomic policy man-
agement framework for pervasive systems called Ponder2 [142] was proposed. With the
Ponder language, existing authorization policies may be structured to reect organiza-
tional structure (R 5.1, R 5.3). These policies are used inSelf-Managed Cells (SMCs)
to manage administrative domains of distributed pervasive systems (R 5.2). SMC also
realizes an autonomic control loop (R 5.4) and enables context-aware interaction (R 5.5).

5.2.3 Summary

As shown in Table 5.1, an overview about existing access control administration models as
well as existing policy-based frameworks is given. As the limit of administration models,
all the �ve requirements are hardly treated by one existing administration model. On the
other hand, the policy-based frameworks like PMAC or Ponder2 address policy manage-
ment in ful�lling most of the design requirements. But the integration of authorization
policies, especially G-ABAC based policies, is missing.

In conclusion, the diversity of authorization policies leads to the diversity of administra-
tion models of policy speci�cation. Most of these administration models mainly treat cre-
ation, deletion, assignment of security attributes as described in DAC, MAC, ARBAC97,
ARBAC02. Other conceptions like organizational hierarchy and context-awareness are also
integrated into administration models as described in SARBAC and ASRBAC. Therefore,
a policy management framework which is able to implement various authorization policies
must be able to integrate all administration models associated. With the attribute-based
G-ABAC approach, we believe that administration models should only handle with at-
tribute assignment. Instead, the policy management framework takes charge of manage-
ment and integration of supplementary modules like organizational hierarchy or context-
awareness for access validation. As such, the administration of authorization policies is
realized through updates of attribute values in taking into account evolution of supplemen-

69

tary concepts. For example, in order to achieve context-awareness with the BLP policy,
ASPF o�ers the possibility to dynamically update security level based on context evo-
lution. An administration model may check manipulations of security levels, and ASPF
makes the administration model collaborate with a context monitoring system. How-
ever, the realization of such checking mechanisms refers to the restriction of information
ows [42] or declassi�cation [36] which is complex. Since we focus on the feasibility of
self-protection framework, we do not cope with these checking mechanisms in this thesis.

The separation of the administration model of policy speci�cation from the policy
deployment guarantees both exibility of administration models and e�ciency for the
underlying system. The objective of ASPF is to apply the policy-based approach into the
administration and deployment of authorization policies based on G-ABAC.

5.3 ASPF Overview

Administration of authorization policies includes creation, deletion, and maintenance of
access attributes and rules, and management of run-time constraints. To achieve this goal,
ASPF applies the autonomic approach to make systems self-managed. Moreover, ASPF
is policy-driven, i.e., security behavior of systems is entirely governed by policies. Main
distinguishing features of the framework are the following:

1. Policy-based management of authorization:

The policy-based approach is well adapted for administration of systems in open and
dynamic environments: evolutions only trigger updates of applied policies, without
changing enforcement mechanisms. In our case, we use authorization policies to
control protection (R 5.1). ASPF enables to modify, deploy, and enforce them
throughout the whole system (R 5.3).

2. Decentralized validation of authorizations:

The scalability requirement (R 5.2) asks for a distributed infrastructure. A scalable
distributed system avoids using a central authority to validate authorization. Our
framework is based on a hybrid architecture using the concepts ofcluster and node.
Each node enforces a local authorization policy. Authorization policies of nodes
inside a cluster are centrally controlled by acluster authority which guarantees policy
consistency between nodes. Policy synchronization between cluster authorities may
be either centralized or decentralized (R 5.3). This architecture allows decentralized
enforcement of authorization policies, while maintaining an e�cient central control
of policy deployment (R 5.2).

3. Integration of self-protection control loops:

To satisfy the context-awareness requirement (R 5.5), ASPF regulates security using
several self-protection feedback loops to select the authorization policy best �tting
the system security context.

70 5. Autonomic Security Policy Framework

4. Integration of self-con�guration control loops for policy deployment:

To guarantee consistency of decentralized policies, and facilitate system administra-
tion, self-con�guration control loops allow a system to con�gure itself with minimal
human intervention. Modi�cation of chosen authorization policies will thus be au-
tomatically propagated through the whole network (R 5.4) to guarantee consistent
policy deployment (R 5.3).

Other contributions like extension of XACML authorization framework, usage of service-
oriented approach, and implementation and support of governance policies are also achieved
in ASPF.

5.4 ASPF Design

The policy-based framework applies policies to determine behavior of managed systems.
The end-to-end self-protection framework involves two policy-based frameworks: ASPF
is a policy-based system governed by an adaptation policy (see Chapter 7)to administer
G-ABAC policies; underlying VSK is another policy-based system governed by G-ABAC
authorization policies to control resource access. ASPF is thus a security management
framework that governs authorization policies enforced by underlying VSK mechanisms.
By the UML class diagram, this section describes the ASPF framework in an informal
manner.

5.4.1 Overall Design

Figure 5.1: The ASPF Overall Design.

The ASPF design is organized into three models:

� A core model describes system resources, security, and autonomic functionalities.

71

� An extended modelre�nes the security and autonomic models for each type of re-
source.

� An implementation modeldescribes the realization of the extended model, organizing
functionalities into components to be implemented.

Those models are de�ned in the three steps shown in Figure 5.1. The core model
consists of aresource model, a security model and an autonomic model. These models are
then re�ned into the extended modelwhich involves a cluster extended modeland a node
extended modelfor cluster and node resources. Finally, these two models are re�ned into
the corresponding implementation models.

5.4.2 ASPF Core Model

5.4.2.1 Resource Model

Figure 5.2: The Resource Model.

The resource model describes the structural organization of the system. The main
concepts are those ofSystem, Cluster, and Node, as shown in Figure 5.2:

� A Resource is the top-level concept which may be extended if the framework needs
to be re�ned. It serves as coupling point with other models to describe di�erent
system functionalities.

� The System class represents the overall system to be protected (i.e., the pervasive
network). It is organized into clusters.

� A Cluster is a coarse-grained structural unit including a set of nodes which collab-
orate to achieve some tasks, e.g., to provide a given service.

� A Node is the minimal structural unit. In pervasive networks, it represents a mobile
device able to perform several functions and communicate with other nodes.

72 5. Autonomic Security Policy Framework

Figure 5.3: The Security Model.

5.4.2.2 Security Model

The security model speci�es the authorization functionality to control access to Resources.
The main concepts are those ofAccess Control Monitor (ACM) and Authorization Policy
as shown in Figure 5.3:

� The ACM is a reference monitor which controls all access requests to resources.

� The Authorization Policy expresses conditions under which authorizations are granted
or denied. It is speci�ed according to the policy model previously described.

5.4.2.3 Autonomic Model

The autonomic model speci�es how self-con�guration and self-protection are achieved in
the system. Theself-protection modeladapts authorization policies according to evolution
of the context. The self-con�guration model customizes authorization policies according to
resource types, user preferences, or administrator-de�ned security governance strategies.

Figure 5.4: The Self-Protection Model.

The self-protection model describes how adaptations (selection of adequate security
counter-measures) are launched at run-time, driven by evolution of the security context.

73

Adaptations are performed both at the cluster level and at the node level. The main
element of the model are the following, as shown in Figure 5.4:

� The Self-Protection Manager controls and orchestrates all activities related to self-
protection. Its main role is to monitor the context and update authorization policies.

� The Self-Protection Governance Policycaptures the administration strategy for self-
protection. It drives decision-making, specifying how to select the right authorization
policy according to context information.

� The Context captures all information about the system environment which may
inuence such decisions.

� The Initial Policy is the current authorization policy, input for the context-aware
security adaptation process.

� The Resulting Policy is the authorization policy output of the security adaptation
process. This policy is generated by theSelf-Protection Manager.

Figure 5.5: The Self-con�guration Model.

Once a Resulting Policy has been generated, this new policy should be propagated
through the whole network for enforcement. Similar to the MIRAGE framework [76] which
analyzes, customizes and deploys security policies through networks, theself-con�guration
model of ASPF manages access control policies through large-scale distributed systems.
Global policies issued from theself-protection modelshould be translated into local ones to
be enforced by each node. Theself-con�guration model speci�es this translation process.
The main element of the model are the following, as shown in Figure 5.5:

� The Self-Con�guration Manager is the component in charge of the self-con�guration
process. It generates aResulting Policy based on anInitial Policy according to a
Self-Con�guration Governance Policy.

74 5. Autonomic Security Policy Framework

� The Self-Con�guration Governance Policy contains the guidelines for the translation
process. It may be speci�ed by condition-action rules.

� The Initial Policy is policy output of the self-protection model, input for the self-
con�guration process. It typically represents the new network security policy.

� The Resulting Policy is a policy derived from the Initial Policy , customized for each
resource. It typically represents the new node security policy, adapted to the node-
speci�c setting, e.g., by �ltering all network access control rules not involving directly
that node to comply with node computational limitations.

5.4.3 ASPF Extended Model

The role of the ASPF core model is to describe the security framework independently
from the type of large-scale system. However, to be useful in practice, the framework
must be described in a concrete setting. This is the purpose of theextended modelwhich
speci�es the security framework for a speci�c type of large-scale system such as pervasive
networking or cloud computing infrastructures. We now present an extended model for
the pervasive setting which was the core focus of our study. However, another extension
for cloud environments is detailed in Chapter 10.

As pervasive systems are modeled as clusters and nodes, two extended models are
de�ned to describe self-management of security at the cluster and node levels.

5.4.3.1 Cluster Extended Model

Figure 5.6: A Cluster Extended Model.

The main elements of the model are shown in Figure 5.6.

� The Cluster Self-Protection Managercaptures the overall intelligence for self-protection
of a cluster, coordinating the di�erent necessary components.

75

� The Cluster Context class captures information about the context of a cluster. It may
be speci�ed using a more detailed context model such as DEN-ng [129] describing
multiple dimensions of context.

� The Cluster Self-Protection Governance Policy captures the strategy to select the
most adequate security function based on the cluster context.

� The Cluster Initial Authorization Policy is the starting point for the security adap-
tation process. It may be initially one of a set of prede�ned policies.

� The Cluster Resulting Authorization Policy is the result of the security adaptation
process, and is generated by theCluster Self-Protection Manager according to the
current cluster status. That policy will then be applied to all nodes of the cluster.

The ASPF modular design into several models makes it more easy to select only
the features necessary for the considered setting: compared to the core model, the clus-
ter extended model only integrates the self-protection model. Authorization and self-
con�guration are left aside since: (1) policy enforcement is performed directly in the
nodes; and (2) policy propagation towards nodes will be speci�ed in the node extended
model.

5.4.3.2 Node Extended Model

The main elements of the model are shown in Figure 5.7.

� The Node Self-Con�guration Manager coordinates the components for self-con�guration
at the node level, i.e., to propagate adaptations decided at the cluster level. Such
operations will be performed according to theNode Self-Con�guration Governance
Policy.

� The Node Self-Protection Manager orchestrates the components for self-protection
of a node. Such operations will be performed according to theNode Self-Protection
Governance Policy which describes reactions (i.e., authorization policies) to apply
in security-sensitive situations, based on theNode Context.

� The Node Resulting Authorization Policy is the �nal output of the ASPF framework:
after the adaptation process, both at the cluster and node levels, this policy will be
installed inside the node for access control enforcement by theNode Access Control
Monitor .

Overall, at the node level, self-management of security is a combination of self-con�guration
and self-protection: the result of the security adaptation process at the cluster level (Clus-
ter Resulting Authorization Policy) is transformed into a Node Resulting Authorization
Policy (self-con�guration). Updates on the Node Resulting Authorization Policy will also
be performed based on the node context (self-protection).

76 5. Autonomic Security Policy Framework

Figure 5.7: The Node Extended Model.

5.4.4 ASPF Implementation Model

The previous models are now re�ned at the implementation level, di�erent implementation
architectures being possible. In the sequel, we present an implementation model which
ful�ls the requirements presented in Section 5.1.

5.4.4.1 Cluster Implementation Model

The elements of the model are shown in Figure 9.1.

� The Cluster Authority component implements theCluster Self-protection Manager
class. It coordinates all self-protection tasks in the cluster.

� The Cluster Context Monitor provides a representation of the cluster security con-
text. It aggregates low-level inputs from di�erent sources (system/network monitor-
ing probes, sensors,...), relying on context management infrastructures or intrusion
detection systems.

� The Cluster Authorization Policy Repository contains a set of initial cluster autho-
rization policies to enforce protection within di�erent potential situations.

� The Cluster Governance Policy Enginegenerates security adaptation strategies to
tune authorization policies to the environment, e.g., use DTE (resp. MLS) policies

77

Figure 5.8: The Cluster Implementation Model.

in a friendly (resp. hostile) setting. It may also de�ne new policies to cope with
unknown situations.

� The Cluster Resulting Authorization Policy is the output of the cluster-level security
adaptation process.

5.4.4.2 Node Implementation Model

Figure 5.9: The Node Implementation Model.

The main elements of the model are shown in Figure 9.2.

78 5. Autonomic Security Policy Framework

� The Self-Con�guration Manager and Self-Protection Manager functionalities are
implemented by two components, theNode Authority and the Node Adapter. The
Node Authority typically resides on a server at the cluster-level, while theNode
Adapter is a component local to each node.

The Node Authority is the main control point to administer security con�gurations
and customize authorization policies.

The Node Adapter is a local security controller in the node with two roles. It is a
proxy for the remote Node Authority, executing its decisions and installing in the
node authorization policies customized at the other endpoint. It also realizes node-
level self-protection to adapt node authorization policies based on the node context.

� The Node Pro�le re�nes the Node Self-Con�guration Governance Policy by describ-
ing the node capabilities (CPU, memory, storage...). As a cluster might contain many
nodes, a large part of cluster policy rules might not be relevant for each node and
should be �ltered. In our design, node-level self-con�guration is viewed as �ltering
the cluster authorization policy according to constraints described in this pro�le.

� Other components such as theNode Context Monitor or the Node Governance Policy
Engine play the same roles as on the cluster side, but for the node setting.

� The Node Resulting Authorization Policy is the �nal output of the node-level security
adaptation process. The corresponding access control rules may then be enforced in
the node with a lightweight authorization overhead thanks to the underlying VSK
OS.

5.4.4.3 A Double Control Loop for Self-Protection

ASPF regulates security at two levels, using separate feedback loops, both at the cluster
and node levels. The previous implementation components interact as follows.

Figure 5.10: The Cluster-level Self-protection Control Loop.

Cluster-level Self-protection: This loop shown in Figure 5.10 aims to mitigate threats
against a cluster. The Cluster Context Monitor aggregates security-relevant events to

79

reach a representation of the cluster security context. It noti�es the Cluster Authority in
case the context changes. TheCluster Authority then updates the Cluster Authorization
Policy, according to the strategy speci�ed in the Cluster Self-Protection Governance Pol-
icy. This operation may be performed by selecting a prede�ned stronger/weaker policy
from the Cluster Authorization Policy Repository.

Nodes have severe resource limitations, for instance in terms of computing capabili-
ties or power consumption. Execution must therefore be optimized. The chosen cluster
policy is further interpreted by each node according to its speci�cities (CPU, memory,
battery, etc.) captured in the Node Pro�le , generating a new node authorization policy
(Node Resulting Authorization Policy). Policy rules not relevant for each node are notably
discarded. This policy is then loaded into the node authorization sub-system for enforce-
ment. This customization improves e�ciency and scalability. It also makes the system
more manageable by reducing the number of authorization rules.

For example, a malicious node attack occurs on a cluster, and it is detected by an
intrusion detection system. With the prede�ned adaptation policy, a more secure policy
needs to be selected and implemented instead of the previous policy. A more detailed
example will be given in Chapter 7. Through the customization mechanism of the self-
con�guration, this policy will be translated into a Node Resulting Authorization Policy
based on theNode Pro�le .

Figure 5.11: The Node-level Self-protection Control Loop.

Node-level Self-protection: A simpler loop also operates at the node level to defeat
attacks on a single node as shown in Figure 5.11). Based on information about the
node security context (captured by the Node Context Monitor), this loop tunes security
attributes such as assigning a di�erent role to a subject in order to reduce his privileges
in a hostile environment, without modifying the rest of the node authorization policy. For
instance, when a node is attacked, the security level of a highly sensitive resource could be
increased fromCon�dential to Top Secret to minimize possibilities to access the resource.

5.5 Authorization Architecture

The ASPF framework integrates the self-con�guration and self-protection models into the
XACML authorization framework (see Figure 5.12). XACML de�nes four main compo-
nents for policy enforcement (PEP), decision-making (PDP), administration (PAP), and

80 5. Autonomic Security Policy Framework

Figure 5.12: The Authorization Architecture.

management of attributes (PIP) [77]. Within the VSK OS architecture which is described
in the �gure and will be elaborated in the next chapter: PEP is achieved by the kernel,
which enforces authorization on execution resources; PDP is theDecision Engine com-
ponent (see Figure 5.12); PIP is theAttribute Manager (AM) component that provides
additional information for access validation. The authorization policy is stored in the Rule
Manager (RM) component.

Access requests to resources (located in the execution space) are forwarded to the
Decision Engine and transformed to a G-ABAC compliant request. Attributes are fetched
from the AM, and the request is validated against the authorization policy. The decision
is then enforced by VSK which recon�gures the execution spaceto establish access to
requested resources.

ASPF may be seen as enhanced PDP. Pure decision-making is extended with self-
management capabilities to autonomically generate or tune the authorization policies
contained in the VSK ACM based on policy sets written by a cluster network admin-
istrator.

Figure 5.12 also shows how ASPF realizes the two self-protection control loops de-
scribed in Section 5.4.4.3. The cluster-level self-protection model together with the node-
level self-con�guration model achieve a global control loop which updates both rules and
attributes of authorization policies according to cluster context and node pro�le informa-
tion. The node-level self-protection loop tunes security attributes based on node context
information. The overall architecture not only performs access control enforcement and
decision-making. It also improves management of authorization policies, notably by en-
abling context-aware adaptations thanks to autonomic features.

81

5.6 Execution Support Mechanisms

The main design concepts are described previously. In order to perform these concepts,
some execution supports are �rstly described in this section. More details about these
supports will be elaborated in Chapter 9.

5.6.1 Delegation Approach

Delegation approach uses local representatives to control remote and distributed entities.
A local representative covers the whole life-cycle of controlled entities, ranging from their
creation, initialization, to migration or deletion. Since our working system is a dynamic
and open system, mobile nodes require a whole life-cycle control. The delegation approach
guarantees some main behavior of remote entities by using local representative, and it is
applied in the ASPF framework for node administration.

A node authority in a server can manage a remote node. The role of the server is to
create and manage authorities of remote nodes. These local representatives are able to
interact directly with the remote node to control their life-cycle. Operations of a node can
be achieved by operations on its local representative. The design requirement of hetero-
geneity of equipments is overcome because ASPF interacts only with local representatives
which have a uni�ed interface in hiding various characteristics of remote nodes.

5.6.2 Dynamic Recon�guration

In order to coordinate the life-cycle of each node, the server is able to administer the life-
cycle of its representatives. It should dynamically create or withdraw a representative upon
availability of nodes. When a new node joint the system, a representative corresponding
to the node needs to be created in the server. Future manipulations on the node will be
achieved through its representative. When this node is physically destructed or leaves the
system, the representative should be removed from the server, and no more operations
can be applied to the coupled node.

Moreover, as described in Chapter 3, manipulations as suspension or restart of appli-
cations (nodes) are needed since a node may be in several phases of life-cycle. However,
this chapter only addresses the policy management, more details about the dynamic re-
con�guration realization will be detailed in Chapter 8.

5.6.3 Authorization Policy Enforcement

Authorization policies are in the central of the ASPF framework where only policies are
updated to realize adaptation or modi�cation. Administration of policies asks for abilities
to initiate, update, or replace remote policies that are installed in each node.

Policy initialization refers to the installation of a customized authorization policy into
a node. Policy update modi�es some policy attribute values without changing access
control rules. Policy replacement changes both policy attributes and policy rules. The
achievement of the policy administration depends on underlying platforms. More details
about policy enforcement will be given in Chapter 6 and Chapter 9.

82 5. Autonomic Security Policy Framework

5.7 Summary

This chapter presented ASPF, a policy-based security management framework illustrating
the design of an autonomic security manager to control authorization policy deployment.
ASPF implements two self-protection loops, authorization policies being adapted accord-
ing to security context variations both at the cluster and node levels. Policies are expressed
with an attribute-based extension (G-ABAC) to support policies speci�ed in multiple au-
thorization models.

For such a large-scale, distributed policy management framework, the design require-
ments such as the G-ABAC based, architecture scalability, policy consistency, user-friendliness,
and context-awareness are ful�lled through the use of the policy-based approach, decen-
tralized authorization architecture, self-protection model and self-con�guration model.
Furthermore, the separation of the ASPF core model from the extended model and the
implementation model improves the exibility in applying the same models in di�erent
context.

However, the authorization policy administered and deployed by ASPF should be en-
forced by the underlying OS. The integration and implementation of G-ABAC based au-
thorization policies at the OS level will be elaborated in the next chapter. The reusability
of the ASPF model in the context of cloud computing will be described in Chapter 10.

83

Chapter 6

Virtual Security Kernel (VSK)

Based on the G-ABAC approach (Chapter 4), the policy deployment framework ASPF
(Chapter 5) administers authorization policies through the whole pervasive system. In
this chapter, a new OS authorization architecture calledVirtual Security Kernel (VSK) is
proposed which enforces G-ABAC authorization policies at the OS level. With evolution
of the context, ASPF updates G-ABAC authorization policies. The updated policies
are installed into VSK, and later access requests is thus validated in using the updated
authorization policies.

VSK completely separates a minimal kernel control (thecontrol plane) from execution
resources (theexecution space). The kernel performs e�cient run-time recon�guration
of resources. It also manages authorization through a policy-neutral reference monitor,
protection being non invasive thanks to an optimized access control strategy. The archi-
tecture is completely component-based, which allows exibility both at resource level for
customization, and in the kernel to support multiple authorization policies and enable
their run-time recon�guration.

Our architecture for self-protection framework is divided into 3 layers (see Chap-
ter 3): (1) the execution spaceprovides a run-time environment for components, either
application- or system-level; (2) theVSK Control plane controls the execution space, both
to enable application-speci�c customization and to guarantee security of resources; and
(3) the ASPF autonomic plane performs automatic adaptation of authorization policies
enforced in VSK. VSK consists of aVirtual Kernel (VK) and of an Access Control Mon-
itor (ACM) . VK provides run-time management capabilities over components and their
bindings to recon�gure the execution space. Access control to components is optimized
by enforcing ACM decisions at binding creation time only, a binding being considered
secure for subsequent access requests until the next change of authorization policy. Apart
from these operations, VK remains hidden in the background to minimize interactions
between kernel and execution space for performance optimization. ACM is a exible de-
cision engine allowing run-time selection of di�erent authorization policies. ACM design
is compliant with G-ABAC, by managing separately security attributes and rules, both
of which may be dynamically updated. Furthermore, VSK is supervised by ASPF which
triggers recon�guration of authorization policies depending on context evolution.

84 6. Virtual Security Kernel (VSK)

Section 6.1 presents some design requirements for such an OS authorization architec-
ture. We believe that a mobile terminal in our pervasive system should support G-ABAC
based policies for collaboration with ASPF and for policy-neutrality. It needs to be e�-
cient for resource-limited terminals. Finally, integration with ASPF asks for some run-time
control supports.

Section 6.2 takes into account existing OS implementations in following the design
requirements. It examines the OS architecture evolution, dynamic recon�guration mech-
anisms, and authorization validations. A short comparison at the end of this section
analyzes existing solutions of these three issues.

Section 6.3 outlines main features of VSK. VSK applies theCon�guration Manager
approach to the existing exokernel architecture. It is based on Component-Based Soft-
ware Engineering (CBSE) to enforce policies speci�ed by G-ABAC. One optimized access
control solution, One-time Check, is proposed to reduce authorization overhead of VSK.

Section 6.4 elaborates the VSK architecture which consists ofVirtual Kernel (VK)
to supervise the execution spaceand Access Control Monitor (ACM) for authorization
validation. An example illustrates functionalities of such a system.

Section 6.5 speci�es some execution supports that should be ful�lled. Thanks to dy-
namic recon�guration of the VSK kernel, authorization policies can be revocable. Dy-
namism of pervasive environments calls for co-existence of multiple authorization policies.
At the end, the VSK kernel needs to be extensible to achieve supplementary functionalities.

Section 6.6 concludes the VSK authorization architecture. It illustrates integration of
G-ABAC policies into the VSK OS and its collaboration with the ASPF policy framework.
Hence, an end-to-end self-protection framework is realized.

6.1 Requirements

In order to build an OS architecture which adapts the ASPF framework for pervasive
systems, several design requirements are listed. These requirements explain terminal-side
functionalities for the end-to-end self-protection framework.

6.1.1 G-ABAC Support

Dynamism of pervasive systems allows mobile nodes to dynamically migrate between
multiple clusters where each cluster has its own authorization policy. This calls for a
policy-neutral OS which can enforce authorization policies of di�erent classes. Because of
policy-neutrality of G-ABAC (see Chapter 4), an OS supporting G-ABAC is able to spec-
ify a variety of authorization policies. Policy-neutrality can be achieved through the use
of G-ABAC. Hence, G-ABAC is chosen as the approach to specify authorization policies
of the OS level.

Requirement R 6.1 For the reason of policy-neutrality, VSK will provide mechanisms
to support policies built on G-ABAC.

85

6.1.2 E�ciency

Since the architecture may be used for resource-constrained terminals, it should o�er
enough e�ciency. The OS needs to execute applications in some speci�c platforms to
meet resource limitations of embedded devices. This e�ciency calls for full customization
with limited performance overhead.

Requirement R 6.2 VSK should be e�cient to meet computing limitations of resource-
constrained terminals.

6.1.3 Run-time Control

Mobile devices of pervasive systems dynamically migrate between multiple environments,
each with their own security settings. Such terminals should provide run-time control that
enables dynamic OS recon�guration for di�erent environments.

Requirement R 6.3 VSK should support run-time control for dynamism of pervasive
systems.

6.1.4 Other Requirements

Other design requirements such as portability of the VSK OS for di�erent hardware plat-
forms, customizability for OS services, and adaptability in responding to the context
evolution are also taken into account in the VSK design.

6.2 Related Work

An overview of existing OS architectures together with their run-time control and au-
thorization enforcement are given in order to �nd out an appropriate solution for OS
authorization architecture of pervasive systems.

6.2.1 OS Architecture

The architecture of OSes has considerably evolved frommonolithic kernel, micro-kernel,
hybrid kernel, exokernel, to the Con�guration Manager approach. In this section, di�erent
kinds of OS architectures are examined in chronological order.

Monolithic Kernels: A unique module which contains the whole OS were �rstly pro-
posed asmonolithic kernel. The early DOS, OS/360, OS/2 and Multics are monolithic
kernels. Layeredmonolithic kernels were developed in which functionalities are organized
hierarchically, and interactions only take place between adjacent layers. A typical exam-
ple of layered monolithic kernel is the traditional UNIX OS which is divided in three
layers: kernel layer, system call interface layer, andUNIX commands and libraries and
user-written applications layer. Going one step further, each layer in the kernel was modu-
larized as libraries or components for simpli�cation. Some systems like theBSD (Berkeley

86 6. Virtual Security Kernel (VSK)

Software Distribution) series, theSVR V Release,MAC OS (up to 8.6), and Windows 9x
belongs to this category. The e�ciency is guaranteed since no mode change overhead is
introduced within one kernel space.

Micro-kernels: Because of the increasing complexity of OS, the structure of monolithic
kernel became out of hand. The micro-kernel approach improves the organization of OS
by exporting most of no essential services out of the kernel. As a solution for a smaller,
lightweight, portable, extensible kernel, the micro-kernel design features a minimal OS
kernel which does not provide most of OS services. Only necessary mechanisms such as low-
level address space management, thread management, and inter-process communications
(IPC) are implemented in the kernel.

Chorus [121] separates functions into a 3-level hierarchical OS for modularity and
portability. A minimal micro-kernel called Nucleus integrates distributed processing and
communication at the lowest level. Several sub-system servers can be implemented in
the intermediate level which extend standard OS interfaces. Application programs with
associated libraries run on the top level.

K42 [22, 93] \micro-kernelizes" Linux to achieve good performance, scalability, cus-
tomizability and maintainability. It only provides some basic services like memory and
process management, IPC infrastructure, etc. Other OS functions are implemented as
user-level services. Customizability was introduced inK42 to improve performance, a
service implementation could be customized on demand.

CAmkES [94] is a component-based implementation of theL4 micro-kernel. Its micro-
kernel architecture is used to increase reliability and simplicity. It provides support for
developing application components on top of a small micro-kernel.

Other micro-kernel systems likeMach, EROS [131] present a similar architecture: a
micro-kernel providing basic services, and other functionalities being supported in the
user mode. An invocation of a basic service (inside the micro-kernel) from a functionality
service (outside the micro-kernel) calls for the mode change (from the user mode to the
kernel mode). As a matter of fact, the performance and communication overheads of these
cross-mode invocations are not negligible.

Hybrid Kernels: The hybrid kernel concept brings together the monolithic and micro-
kernel design advantages. Based on the micro-kernel architecture, a hybrid kernel imple-
ments some applications in the kernel mode. This reduces the performance and communi-
cation overhead associated with message passing and context switching between the kernel
and user modes.

SPIN [29, 30] installs important services in the micro-kernel in a dynamic manner. It
provides an adaptable kernel that enables resources to be e�ciently and safely managed by
applications. This approach allows application-speci�c knowledge to be directly integrated
in the management of application resources. In adding the application-speci�c services into
the micro-kernel, cross-mode invocation and protection overheads are reduced.

VINO [134] focuses on the reuse and extension of kernel components. It organizes
extensions in the kernel, rather than leaving them in user space for the performance im-

87

provement. At the same time, each application ofVINO may select its own administration
policy for customizability.

Di�erent from micro-kernels, hybrid kernels reduces invocation and protection over-
heads by implementing some critical services in the kernel mode. Other hybrid systems
such as thePlan 9 kernel, NT kernel, or MAC OS (after 8.6) uses the same principle.

Exokernel: This approach eliminates the notion that an OS should provide abstraction
on which applications are built. Instead, it addresses solely on securely multiplexing
raw hardware [69]. It attempts to push the traditional abstraction into the application
level. It allows untrusted software to implement traditional OS abstraction entirely at
the application level. The only functions which remain in the kernel are devoted to OS
protection. It consists of a kernel that multiplexes physical resources securely and of some
application-level libraries that are implemented on the top of the kernel. These libraries
are customized to each application in order to meet the best performance and functionality
goals.

Virtual Machine Monitor (VMM) [135] is used to coordinate multiple guest OS envi-
ronments and protect shared resources. It applies the exokernel approach for hypervisors
with a thin layer for abstraction and access control. Xen [25] is a typical lightweight
VMM between guest OS environments and hardware that merely provides basic control
operations.

The exokernel approach provides more control to each application and features a tiny
kernel. It sticks to the design principle to combine applications with OS services (appli-
cations can choose their needed OS services) in order to increase e�ciency and security.

Con�guration Manager (CM): The CM approach does not have any prede�ned ker-
nel at all. Instead, services are implanted and managed by CM which separates the control
plane from the execution plane: all checking and control actions take place during the ini-
tialization of applications, no control is performed during execution.

DEIMOS [48] is an extensible system which enables each application to build and cus-
tomize its own execution environment. In DEIMOS, both traditional kernel functions and
application-speci�c services are encapsulated as modules which can be loaded, con�gured,
and unloaded on demand by CM. CM is also responsible for the management of interfaces
of these modules. It creates and destroys bindings between interfaces on these modules,
and manages conicts between modules. As CM is the only system component able to
establish bindings, it performs all checking actions during the binding creation. The non-
kernel architecture reduces kernel performance overhead and provides customizability and
adaptability.

6.2.2 Dynamic Recon�guration

The Con�guration Manager approach appears as a promising paradigm for future OS.
However, it calls for dynamic recon�guration which modi�es a system at run-tim. Taking
into account di�erent phases of system life-cycle and di�erent granularity of recon�gura-
tion, we divide dynamic recon�gurable systems into �ve categories: Build-Time Extensible

88 6. Virtual Security Kernel (VSK)

Systems, Library Extensible Systems, Dynamic Component Image Loading Systems, Dy-
namic Functional Code Loading Systems, and Dynamic State Variable Loading Systems.

Build-Time Extensible Systems (BTES): The �rst proposition of dynamic recon�g-
uration is BTES which have just a modular architecture during the design phase. Di�erent
modules can be chosen o�-the-shelf to build a target system.

Early releases ofLinux can be considered as belonging to BTES. Modules are a col-
lection of routines that perform system-level functions. For instance, a device module is
a non-linked driver which contains device-speci�c system routines. However, the architec-
ture of the system cannot be modi�ed once it is compiled.

eCos [2] is a component-based framework to build Real-Time OS (RTOS). Reusability
is the principal objective of eCos: most of application functionalities can be built by
reusing existing components. A developer has more control over components by selecting
reusable components for his system. He can remove unnecessary functionalities of selected
components, modi�es or con�gures components for di�erent implementations. eCos uses
compile-time control methods for its software components, along with selective linking
provided by a GNU linker.

Library Extensible Systems (LES): LES contains code to extend a kernel at run-
time. Code in format of libraries has already been compiled. Those libraries reside in
memory without being integrating into the OS image �le. This solution avoids imple-
menting unnecessary OS modules which waste memory. Whatever needed, users rebuild
and reboot the OS �le to add new libraries. Most current UNIX-like systems and exokernel
systems, can be considered as in this category.

OSKit [74] is able to construct not only OS services, but also the OS kernel without a
prede�ned basic core structure. It provides a framework and a set of modularized library
code for the construction of OS kernels, servers, and other core OS functionalities.

Dynamic Component Image Loading Systems (DCILS): One step further, DCILS
is able to load a component binary image at run-time. A component binary image con-
sists of three parts: architectural meta-data, functional code and a state variable. The
architectural meta-data describes components, their interfaces together with their internal
structure information. It is usually generated and manipulated by a component model.
In terms of the dynamic recon�guration at the OS level, since we consider general mech-
anisms, we suppose that its modi�cation is achieved by the component model, and the
update of the architectural meta-data is not included in the OS level recon�guration mech-
anisms. The functional code is unchangeable code which describes operations that can be
performed on the components. The state variable is the data structure that represents
temporary states of the components. Therefore, all the newly installed components start
with a freshly initialized state.

DYMOS [52] is an early system that enables a programmer to modify a program
dynamically. A developer should modify and re-compile the source code (functional code)

89

to be replaced and then requests the system to change the old image. Three main steps
are designed for the recon�guration: edit, compile, update (when idle).

SPIN [29] allows OS services components to be dynamically loaded into its hybrid ker-
nel to meet application requirements. For easy extension, it separates resource operations
from services by interfaces.

Think [20] is a component-based framework which implements theFractal [41] compo-
nent model. A component ofFractal is both a design and run-time entity that constitutes
a unit of encapsulation, composition and recon�guration. It provides great exibility for
OS kernel construction, and is able to be implemented on di�erent hardware platforms
such asARM , AVR , or MPS430. In Think [117], dynamic recon�guration is performed in
four steps: (1) identify the part of system to recon�gure; (2) suspend its execution; (3)
modify the system (add, remove parts of the system); and (4) transfer the state to the
new parts and resume the execution of the system.

In addition to LES, DCILS manages newly loaded component images. Other systems
like VINO , CAmkES, DEIMOS are also dynamic image loading systems. Since after each
recon�guration, the initial state variable is applied to the recon�gured part which makes
it return to an initial state. Some execution data may be lost or destroyed due to the state
variable initialization.

Dynamic Functional Code Loading Systems (DFCLS): This kind of systems may
replace the functional code without changing the state variable, that is, the state of re-
con�gured part remains the same when we modify operations which can be performed on
the variable. This approach requires a �ne grained interface for the functional code.

In MMLite [84], dynamic recon�guration can be considered as replacing an implemen-
tation object by another in supporting the same COM interfaces. This mechanism consists
in atomically changing an ordinarily constant implementation part of an object.

K42 [22, 93] uses a hot-swapping mechanism [26] for dynamic recon�guration. Hot-
swapping replaces an component instance with a new component instance that provides
the same interfaces. Internal state from the old component is transferred to the new
one and external references are re-linked. Hot-swapping allows component replacement
without disrupting the rest of the system.

Contiki [67] may load or unload individual services at run-time. A service which is
a process that implements a function can be dynamically replaced at run-time and must
therefore be dynamically linked. The service has an internal state that may need to be
transferred to the new processes. The kernel provides a way to pass a pointer to the new
service process. The service can thus produce a state description that is passed to the new
process.

Dynamic State Variable Loading Systems (DSVLS): Finally, DSTLS enables
component state recon�guration. In some cases, a component may need to tuned to
another state without touching its implementation. This can be realized by changing or
replacing the state variable. Due to the complexity of the component state variable, there
are unfortunately no systems that support the dynamic state variable loading.

90 6. Virtual Security Kernel (VSK)

6.2.3 Authorization Enforcement

Using embedded systems in mobile, dynamic, and open contexts makes them more vulner-
able. Authorization sub-system of each OS must provides strong protection for di�erent
contexts. OS authorization is usually achieved through two paradigm, either conventional
single policy enforcement, or policy-neutral architecture.

6.2.3.1 Single Policy Enforcement

The single policy enforcement paradigm implements only one authorization policy in the
system where the authorization sub-systems usually depends on the applied authorization
policy.

ACL: Access Control List model was implemented inDEIMOS [48]. As the system
evolves,DEIMOS can dynamically add or delete name-value pairs and rules in an ACL.

Capability-based: Capability-based access control policies [99] are enforced inEROS [131]
that divides both applications and OS services into cleanly separated components, each
of which resides in its own protection domain (a protection domain being the set of ca-
pabilities accessible to a sub-system).SPIN [30] implements capabilities directly using
pointers. A pointer is a reference to a block of memory whose type is declared within an
interface. There is no run-time overhead for using a pointer, passing it across an interface,
or de-referencing it, other than the overhead of memory access. A system with capabilities
removes the need for any access control list or similar mechanism by giving all entities in
the system all and only the capabilities they will actually need.

MLS: Multiple Level Security [97] is used inMultics which adopts BLP [27] policies for
OS protection. Security clearances of subjects are kept in a process-level table. Objects
security classi�cations are directly associated with each resource. To grant an access
request, security level of subjects should dominate that of objects. Some extensions of
Unix like AT&T's System V/MLS [18] and Sun's CMW [70] can also support MLS.

DTE: Domain Type Enforcement [24] has been implemented inUNIX . The DTE/UNIX
prototype implicitly maintains type associations in the kernel to reduce modi�cations to
legacyUNIX systems. Another implementation was done inLinux [79], where for instance
the DTE/Linux proof-of-concept attaches types to eachinode in the �le system. Yet, many
more enhancements would be necessary to reach a fully DTE-compliantLinux.

RBAC: Role-Based Access Controlpolicies [127] call for a more complex architecture
comparing to previous MLS and DTE policies. Hence, it is mostly applied to information
systems, Web environments, Java middleware, and federated database systems (FDBS).

91

UCON: Usage CONtrol [116] extends authorization to cover the whole software life-
cycle. In an OS, software update or dynamic recon�guration requires decision continuity
and attribute mutability. In other words, access attributes are no more constant and may
be modi�ed during execution. In [151], Xu et al. propose a UCON framework based on
VMM architecture for OS kernel integrity protection.

6.2.3.2 Policy-neutral Architectures

We present a fewPolicy-Neutral Access Control Architectures (PNACA) which specify the
organization of a system where authorization mechanisms are independent from a speci�c
authorization model.

Extensible AC/SPIN [78] implementsPNACA in the SPIN OS. It separates not only
authorization policies from enforcement, but also security mechanisms from functionali-
ties of system. These schemes both improve authorization exibility and reduce access
control overhead. When aSPIN module needs to be dynamically linked to another exten-
sion, link-time access control is launched. An enforcement manager determines the type
and operations exported by that extension, passes this information to a security policy
manager. The policy manager decides which types and operations require access control
operations and instructs the enforcement manager to inject access control operation into
the extension.

The objective of Linux Security Module (LSM) is to develop a lightweight, general
purpose, access control framework forLinux. It enables di�erent authorization policies to
be implemented as loadable kernel modules [150]. Its main principle is to insert hooks in
the kernel that check permissions before resource access by delegation to particularLSM
modules.

Although sHype [124] was designed for hypervisor architectures, it follows the same
principles as LSM. It adds hooks which control all requests before accessing to kernel
objects.

The aim of SELinux [104] is to introduce multiple security policies like DTE, MLS
and RBAC in one OS. SELinux notably inspired the development of LSM to introduce
exible access control in Linux by a set of authorization hooks along with tools to verify
the correctness of implementation.

CRACKER [95] is a component-based policy-neutral architecture for kernel-level access
control. It supports multiple authorization models by enabling a clear separation between
policy speci�cation and enforcement. A large range of policies are supported since the
chosen speci�cation language,ASL [88], is quite expressive. Run-time change of policies
is also allowed using recon�guration mechanisms.

Other systems such asAsbestos[68] or HiStar [153] enforce information ow control
policies which are out of the scope of this thesis. However, all these architectures show
the possibility to integrate di�erent access control policies into one system in a exible
manner.

92 6. Virtual Security Kernel (VSK)

6.2.4 Summary

The current trend in OS architecture is to minimize the kernel as much as possible, from
the simple monolithic kernel to the non-kernelCon�guration Manager . The Con�guration
Manager approach tends to solve problems about performance overheads, extensibility,
exibility, etc. Disappearance of kernel completely resolves performance problem and
shows a huge advantage regarding architecture exibility. We present the OS architecture
levels from1 to 5 respectively formonolithic kernel, micro-kernel, hybrid kernel, exokernel,
and Con�guration Manager .

Di�erent types of recon�guration mechanisms are divided in �ve levels. More recon-
�guration is �ned-grained, more system is exible. BTES (level 1) achieves con�guration
during the design step. LES (level2) is able to bind di�erent modules at execution time.
DCILS (level 3) allows to insert new components in systems. DFCLS (level4) can replace
functional code part without touching component state. Finally, DSVLS (level 5) is able
to tune or change component state variable. From the viewpoint of embedded systems,
DCILS seems to be the most adequate.

For a mobile terminal used in di�erent, dynamic and open environments, it should be
possible to choose between di�erent authorization policies. The policy-neutral architecture
is a good solution to reach this goal, multiple authorization policies may be selected
according to the execution context.

Table 6.1 examines existing OSes through these three aspects. Some platforms (eCos,
OSKit , Think/CRACKER , DYMOS, MMLite , Contiki) appear as an OS construction
tool set rather than speci�c OSes. With these tool sets, di�erent OS architectures can be
realized. This is the reason why multiple architectures are categorized for such platforms.

6.3 VSK Overview

The proposed VSK OS architecture brings together some existing solutions in order to
meet all the design requirements. Main features of such an architecture are:

Applying the Con�guration Manager paradigm to Exokernel : VSK is an im-
provement combining both the con�guration manager paradigm and the exokernel archi-
tecture. The con�guration manager [48] reduces OS management overhead by visualizing
the kernel. exokernel [69] demonstrated feasibility to export out of the kernel most OS
services as applications, only thread management and access control remain inside the
kernel. VSK goes one step beyond, the kernel applies theexokernel architecture in the
sense that kernel entities will be hiden in the background during most of execution for
e�ciency (R 6.2). It is of the exokernel architecture since it only handles with thread
management and access control. This design, while still guaranteeing e�ective protection,
yields signi�cant performance improvement (R 6.2), as shown by the performance evalu-
ation (see Chapter 8). Furthermore, the exokernel architecture enables exibility of OS
dynamical recon�guration (R 6.3).

93

OS Architecture Run-time Control Authorization
Multics 1 2 BLP
Unix 1 2 DTE,MLS
Linux 1 2 DTE,MLS,RBAC
Chorus 2 ? Capability-based
K42 2 4 ACL
L4/CAmkES 2 3 Capability-based
EROS 2 ? Capability-based
SPIN 3 3 PNACA
VINO 3 3 ?
Exokernel 4 2 Capability-based
Xen/ VMM 4 3 UCON
DEIMOS 5 3 ACL
eCos 1-4 1 ?
OSKit 1-5 3 ?
Think/CRACKER 1-5 3 PNACA
DYMOS 1-4 3 ?
MMLite 1-5 4 Capability-based
Contiki 1-5 4 no mechanism

Table 6.1: The Operating Systems Comparison.

94 6. Virtual Security Kernel (VSK)

Applying the Component-based Approach: Modularity has become one main trend
of OS design: di�erent services are encapsulated into components, standard interfaces
are de�ned, and communication between components are carried out through interfaces.
Component-Based Software Engineering (CBSE)[40] supports exactly this by abstracting
hardware, applications and OS services as components, viewed as units of design, man-
agement, deployment and recon�guration. The use of components enables code re-use
and reduces development life-cycle. For designs like thecon�guration manager paradigm,
CBSE is necessary since its modularity enables dynamic recon�guration during execution.
This approach provides a homogeneous view of di�erent resources and shows its advantages
on modularity, reusability and exibility. For some dynamically recon�gurable OSes 6.3,
it is an inevitable paradigm (R 6.3).

Enforcing G-ABAC: The policy management framework ASPF has been proposed
which can administer authorization policies through pervasive systems. VSK enforces
access control policies in a policy-neutral manner. Policy-neutrality is achieved by a clear
separation of access attributes from rules in using G-ABAC (R 6.1). The authorization of
VSK is achieved by computing permissions based on attribute values. A detailed example
of the G-ABAC authorization in VSK will be given in later sections.

Achieving One-time Security Check: VSK includes non-invasive protection mech-
anisms thanks to an optimized access control validation calledone-time check. Within
one-time check, the �rst time a subject attempts to access an object, it asks the VSK
kernel for authorization. If VSK grants the request, it creates the corresponding binding
between the subject and object. For later invocations, the subject can directly access the
object without any access control which improves the e�ciency (R 6.2). Only one check
is thus achieved for each subject-object pair.

Other Contributions VSK also proposes a separation of a dynamic but lightweight
control plane (realized by VSK) from execution resources which prevents a�ects from ex-
ecuting applications to the OS kernel. The realization of kernel recon�guration allows
adaptation of kernel functionalities to the context evolutions. Finally, a revocation mech-
anism is provided that guarantees consistency of authorization permissions.

6.4 VSK Architecture

A system built on VSK consists in two parts (see Figure 6.1): a run-time environment for
components (execution space) and a control plane (VSK) to supervise their execution in
an almost implicit manner. This separation not only provides customization for executing
applications (components in theexecution space) but also protects the kernel from attacks
from the execution space. Furthermore, a simple but e�ective access control mechanism
in VSK guarantees the security of sensitive resources in theexecution space.

The control plane is realized by VSK which consists ofVirtual Kernel (VK) and Ac-
cess Control Monitor (ACM). VK plays the role of a kernel when needed (e.g., during

95

Figure 6.1: VSK Architecture

the initialization and recon�guration of the execution space) and remains hidden in the
background when no more changes occur. It catches events from theexecution space, de-
cides whether a recon�guration of that space is required, and reacts accordingly. VK may
also dynamically recon�gure the kernel itself according to high-level government strate-
gies, reacting to decisions taken in theautonomic plane. ACM enforces access control on
resources in theexecution space, based on access attributes and rules of G-ABAC which
may be dynamically loaded, modi�ed, or replaced.

6.4.1 Virtual Kernel (VK)

In the execution space, functional code is encapsulated as a component, inter-component
communication being realized via bindings. VK supervises and controls theexecution
spacewith two main functions:

1. a lightweight control one-time checkover components in theexecution space;

2. run-time control mechanisms to recon�gure the execution space.

Figure 6.2: VSK One-time Check Sequence Diagram

96 6. Virtual Security Kernel (VSK)

Within one-time check, as shown in Figure 6.2, the �rst time when an OS service tries
to access a sensitive �le, it asks VSK kernel for authorization. If VSK grants the request,
it creates a corresponding binding between the OS service and the sensitive �le. For later
invocations, the service can directly access the �le without any access control.

This design allows to meet performance requirements, since the kernel overhead is min-
imized during the execution of applications by limiting interactions between the execution
spaceand VSK. From the customization viewpoint, applications can dynamically choose
their needed services which increases implementation freedom. Finally, this architecture
guarantees strong protection by strict control over creation or modi�cation of bindings.
VK consists of a dispatcher and a recon�guration manager.

Dispatcher: The dispatcher collects execution information from the execution space.
It provides an e�ective and extensible event-based communication mechanism between
threads. For instance, the execution space, VSK and a communication module for in-
teracting with external environment may work in parallel. The dispatcher also manages
concurrent access to resources by enforcing mutual exclusion. Each time when a subject
tends to access an object, an access request is captured by thedispatcher. The dispatcher
coordinates the authorization validation and access control enforcement with the help of
the recon�guration manager described in the next paragraph. Finally, this mechanism
enables to easily add new security modules in ACM or extend kernel services simply by
de�ning new event types.

Recon�guration Manager: The recon�guration manager provides run-time compo-
nent and binding management capabilities to modify the execution spacebased on deci-
sions made in the kernel. For instance, it creates a binding when an access request is
granted by ACM. It may also load and install new components in theexecution space. In
the case of permission revocation, it removes all corresponding bindings. Above all, the
recon�guration manager is a key building block for e�cient access control enforcement.
In DEIMOS [48] or sHype [124], access controls were optimized by aone-time only en-
forcement until the next change of authorization policy. In VSK, a similar mechanism is
proposed. Access control only takes place during the creation of bindings. Unlike previous
systems, all bindings are managed at run-time, and are created only when needed for use.
The �rst time an access to a resource is granted, the corresponding binding is created
by the recon�guration manager, subsequent access requests to the resource will not be
checked any more.

6.4.2 Access Control Monitor (ACM)

ACM enforces G-ABAC authorization policies. It supports multiple authorization policies
and enables dynamic recon�guration for policy management. It is basically a exible
reference monitor where di�erent authorization policies may be activated dynamically.

In our architecture, active components (subjects) try to access passive components
(objects). Flask/SELinux [136, 104] has shown its exibility in separating policy from
enforcement mechanisms, with a clear distinction between abstract security identi�ers

97

(SIDs) and dedicated security modules which can process those SIDs. Our ACM goes one
step forward in exibility by separating access attributesfrom rules within the G-ABAC
model. One SID may be assigned with di�erent security attributes (e.g., role, type, security
level, domain, etc.), some of which can be used to compute permissions. When a subject
requests to access an object, ACM �rst gets subject and object attributes, computes
permissions via authorization rules, and makes an access decision.

The separation of attributes from rules improves the access control exibility. It also
helps capturing the diversity of security requirements in a mobile context: a device moving
to another environment may only require updating access attributes. Thanks to the VSK
component-based design, the change of security attributes and rules can be simply realized
by replacing components.

Figure 6.3: The ACM Request Process with MLS.

ACM contains three sub-components:Decision Engine (DE) for decision-making, At-
tribute Manager (AM) and Rule Manager (RM) for manipulations on attributes and rules
respectively. As shown in Figure 6.3, to request access to an object, a subject �rst is-
sues a requestgetPermission(subject,object,operation)to RM via DE. RM then asks AM
for access attributes corresponding to the concerned subject and object. For example,
in the case of MLS, the needed attribute for the subject would be its security clearance
{ a subject-securityClearance table being maintained in the MLS AM sub-component.
For the object, a similar object-securityClassi�cation table also resisting in the MLS AM.
Once the subject, object attributes are retrieved, RM can then compute permission by
examining the dominance between the security clearance of the subject and the security
classi�cation of the object for a requested operation { a rule table being maintained in the
RM sub-component.

98 6. Virtual Security Kernel (VSK)

6.5 Execution Support

Upon the VSK design, supplementary functionalities should also be supported.

6.5.1 Kernel Recon�guration

Mobile terminal systems built on VSK join a pervasive system in a dynamic and open
manner. Di�erent execution environments call for di�erent security functions of kernel.
The dynamic recon�guration of OS kernel allows run-time modi�cation of kernel modules
to adapt the context evolution.

VSK enables dynamic recon�guration of its ACM including access attribute and rule
replacement together with access attribute modi�cation. New authorization policies may
be loaded and installed into ACM which constructs a global self-protection control loop
against network level attacks as described in Chapter 5. Attribute value modi�cation
realizes a local self-protection control loop as an e�ective reaction against local attacks.
With a revocation mechanism described in the next section, access decision continuity and
attribute mutability can be guaranteed.

6.5.2 Revocation

While modifying dynamically access control policies, to avoid privilege abuse, OS should
revoke outdated authorization policies. This task is generally out of hands for conventional
OS since made decisions may be decentralized throughout the whole system. With VSK,
a revocation management is whatever e�cient: as authorization is enforced by therecon-
�guration manager , once there is an update of policy or modi�cation of attribute values,
this manager removes all related bindings it created in theexecution spaceto guarantee
authorization policy consistency. When new access requests are issued for which some
authorization is revoked, VSK will rebuild corresponding bindings based on the updated
authorization policy.

To illustrate how the revocation is performed in practice with VSK, we consider a
mobile terminal connected either to an outdoor, public, insecure network or to a domestic,
private, secure network. When the terminal is part of the public network, drivers are
installed on the terminal for its communication capabilities of radio access technology. In
case of a data connection, these drivers may request access both to sensitive and public
�les. The driver represents a potential risk for system security which should be mitigated
dynamically. Therefore, an OS service such as the wireless driver may only access public
�les (e.g., user documents) but not sensitive �les (e.g., system security settings). When the
terminal joins the domestic network, a new authorization policy is installed to adapt this
secure environment, the access to sensitive �les are granted. The update of authorization
policies �rst removes all existing bindings of the outdated policy. Afterwards, it redirects
new access requests to the updated policy.

99

6.5.3 Multiple Policy Approach

Multiple policy approach activates several policies for authorization validation at the same
time. Particularly in highly heterogeneous systems like pervasive systems, this is an
promising issue. Since nodes in di�erent environments should respect their own secu-
rity requirements, the multiple policy approach combines all requirements in validating
various authorization policies.

Conventional authorization policies implemented in OS kernels like BLP [27] or Biba [32]
lack expressivity. This is the reason why some combined policies like Lipner [101] was pro-
posed which adopts with both the BLP and Biba labels. Furthermore, the combination of
existing access control policies can also provide more functionalities. For example, within
a context-aware authorization policy, location is taken into account for validation. Within
UCON [116], life-cycle of authorization policy is covered. In using these two policies at
the same time, context-awareness and life-cycle are embodied together that enrich au-
thorization. Finally, dynamism of pervasive systems allows a node to be shared between
multiple clusters which may use di�erent authorization policies. The multiple policy ap-
proach enables collaboration of clusters in assuring consistency. In our implementation,
for an access of a node shared between two clusters which adopts with their own policies,
the request can be granted if and only if both of these two policies grant it.

Inspiring from the XACML [77] framework, VSK achieves the multiple policy approach
by simultaneously implementing two access control policies in ACM along with a policy
combining algorithm. These two policies need to be checked in parallel for a request,
and the decisions of each policy are combined into a �nal decision by a policy combining
algorithm.

6.5.4 Functionality Extensions

VSK is a kernel architecture which applies the exokernel architecture to export most of
OS services. These services are achieved in the user mode which is called extensions of the
VSK kernel. Di�erent from components in the kernel, extensions cannot be dynamically
recon�gured, it resists in the system.

Context-aware Extension: Beyond the VSK kernel, a context-aware extension is de-
veloped that provides context information to the kernel. It may collaborate with some
monitoring systems like detection intrusion systems in order to supervise execution cir-
cumstances. A proof-of-concept prototype of the context-aware extension is implemented
and will be elaborated in Chapter 8.

History-based Extension: History-based authorization captures history information
to ameliorate access control decision making. For instance, by monitoring a menacing
communication, it can block access instead of granting to mitigate threat. However,
VSK applies the one time checkmechanism for authorization which does not provide any
monitoring support, history is no more supervised once an access is granted. One solution
is to insert interceptors for each binding. The interceptors mediate each communication

100 6. Virtual Security Kernel (VSK)

and capture history information. However, this technology is not implemented in our
framework. More details about interceptors can be found in [117].

6.6 Summary

Within the 3-level policy-based architecture proposed in Chapter 3, theexecution space
is separated from thecontrol plane. This chapter focuses on the OS architecture enabling
the realization of the control plane at the terminal side. A dynamic but lightweight
management plane VSK is introduced to enable applications to fully control their execution
environment at run-time.

This chapter presented the VSK component-based OS authorization architecture which
provides strong and yet exible security while still achieving good performance, making
it applicable to make pervasive devices self-protected. The de�nition of a dynamic but
lightweight management planeseparate from execution resources allows applications to
control and customize their execution environment at run-time, yielding a highly adaptable
OS architecture. Including protection mechanisms in this plane also reduces authorization
overhead without compromising overall security, thanks to one-time check only during
creation of bindings until the next change of authorization policy. The use of G-ABAC to
specify authorization policies making the OS authorization architecture policy-neutral to
support multiple authorization policies. The clear separation of authorization attributes
from rules in G-ABAC also improves access control granularity. The component-based
structure of the VSK control plane allows to recon�gure at run-time kernel access control
modules, yielding a exible and dynamic security architecture.

From the viewpoint of implementing an autonomic framework, an adaptation policy
is missing which guides dynamic recon�guration of the VSK kernel. The speci�cation of
such a policy will be given in the next chapter.

101

Chapter 7

Adaptation Policy Speci�cation

The proposed end-to-end self-protection framework (Chapter 4, Chapter 5, and Chapter 6)
so far hardly addressed speci�cation of adaptation strategies which guides risk-aware selec-
tion or recon�guration of authorization policies. Adaptation strategies are usually speci�ed
in ad hoc formalisms such asif-then-else rules, which are not intuitive for users, and lack
error-checking mechanisms. Another aspect also missing is how to easily integrate such
policies into the existing security management framework.

Domain-Speci�c Languages (DSLs) present many bene�ts to achieve these goals in
terms of simplicity, automated strategy veri�cation, and run-time integration. This chap-
ter presents a DSL to describe security adaptation policies. The DSL is based onEvent-
Condition-Action (ECA) approach and on taxonomies of attack and countermeasure. It
allows to capture trade-o�s between security and other concerns such as energy e�ciency
during the decision-making phase. A translation mechanism to re�ne the DSL into a
run-time representation, and to integrate adaptation policies within legacy self-protection
frameworks is also illustrated.

Section 7.1 outlines design requirements about such an adaptation policy speci�cation
language. The DSL should make speci�cation intuitive. It should self-manage various con-
cerns, and make trade-o�s between these concerns. Finally, easy integration of adaptation
policies should also be taken into account.

Section 7.2 overviews existing works on self-protection frameworks, ontologies of secu-
rity, and DSLs.

Section 7.3 describes main features of our proposition. The self-protection DSL sep-
arates roles of di�erent actors. It applies the Event-Condition-Action approach for the
speci�cation of policies. The DSL models systems into multiple dimensions of concerns
and is able to dynamically generate a run-time representation.

Section 7.4 explains design principles which use the DSL approach for the speci�ca-
tion of adaptation policies. It also introduces the whole processus of adaptation policy
speci�cation.

Section 7.5 de�nes a core DSL model, General Adaptation Policies (GAPs) together
with associated attack and countermeasure taxonomies to specify adaptation policies for
self-protection.

102 7. Adaptation Policy Specification

Section 7.6 shows procedure and mechanisms to translate GAPs to a more e�cient
and robust run-time representation through Autonomic Adaptation Policies (AAPs).

7.1 Design Requirements

A Domain-Speci�c Language (DSL) is a high-level language devoted to explicit di�erent
perspectives of a given domain, providing speci�c language support to describe several
types of policies [65]. Compared to administration APIs, the major requirements of using
a DSL are:

7.1.1 Intuitive Representations

The speci�cation of adaptation policies should be intuitive. Conventional if-then-else
rules seems no adequate since dependance between di�erent rules cannot be explicitly
illustrated.

Requirement R 7.1 The self-protection DSL should be intuitive for speci�cation.

7.1.2 Self-managed

Adaptation policy speci�cation are manipulated by various actors where each one works on
their domain of interest. Thus, adaptation policy becomes complex and unmanageable.
Self-management paradigm which makes policy speci�cation autonomous appears as a
promising solution.

Requirement R 7.2 The self-protection DSL should be self-managed to weave actors of
di�erent domains.

7.1.3 Enabling Trade-o� between Multiple Concerns

Diversity of pervasive systems calls for trades-o�s between concern dimensions. With
some resource limitation, adaptations should take into account other concerns than se-
curity (e.g., in wireless sensor networks, energy-e�ciency may limit the use of sensors.
Adaptation of security functions of a sensor should accord with its physical settings). The
self-protection DSL should enable trade-o�s between concerns.

Requirement R 7.3 The self-protection DSL should take into account di�erent concerns
to make trade-o�s.

7.1.4 Easy for Integration

The self-protection framework acts as an execution environment to run applications with
protection mechanisms. Adaptation policies which guide execution of running systems
need to be easily integrated into the framework at any moment. One solution is to dy-
namically transform adaptation policies into run-time representations.

103

Requirement R 7.4 The self-protection DSL should be easily translated into run-time
representations to be integrated into the legacy self-protection framework.

7.2 Related Work

Self-protection frameworks apply the autonomic vision to the security domain [47]. Frame-
works like Jade [49, 140] or the self-defending platforms of Intel [12] enables recon�guration
of protection functionalities based on evolution of the security context, but generally with-
out addressing the speci�cation of the autonomic security management strategy.

In more generic policy-based management frameworks [13, 142], system execution is
governed by applying prede�ned policies to respond to context changes { adaptation strat-
egy speci�cation was for instance discussed in [91, 144]. Unfortunately, these frameworks
hardly considered security, with the notable exception of [142]. The speci�cation and im-
plementation of adaptation policies taking into account di�erent concerns, such as trade-
o�s between security and other dimensions, remains an open issue.

Advances in security context modeling also provide useful inputs for security adapta-
tion decisions, abstracting security-related data into a formal model [10]. Ontologies are
particularly helpful to structure or characterize security information [92], for instance to
classify attacks [133], intrusions [143] or security context [50]. They allow better commu-
nication and reuse of the de�ned concepts, are extensible, and also enable to reason about
some security enforcements. Unfortunately, because of the diversity of targeted domains,
a uni�ed security ontology, generic but still able to describe in depth and reason about
practical aspects of security still remains to be found [34].

DSLs are another modeling approach based on speci�cation languages addressing a
particular domain. A DSL o�ers primitives to describe a given domain and some imple-
mentation mechanisms such as annotations for integration into a run-time [65]. Platforms
like Tune [45] and Kermeta [111] provide tools to generate various DSLs and their corre-
sponding IDEs. However, a DSL for describing security adaptations seems to be missing,
along with language mechanisms for integration into autonomic frameworks.

Like our approach, the ReD (Reaction after Detection) framework enables to choose
new authorization policies to counteract network intrusions [64, 59]. Based on OrBAC
ontologies, ReD may support multiple types of authorization policies (e.g., integrating
information ow requirements [23]) by mapping OrBAC to a security model through the
de�nition of the corresponding ontology [50].

7.3 Main Features

To tackle the de�nition of security adaptation policies, the approach followed in [45, 111],
where adaptation policies are speci�ed using DSLs, is applied to the security domain,
resulting in a DSL for self-protection. Di�erent from traditional policy speci�cation lan-
guage, this DSL performs:

104 7. Adaptation Policy Specification

Separation of Roles of Di�erent Actors Since various actors collaborate together
in sharing this DSL, the separation of roles in the DSL improves self-management. DSL
speci�cation by an actor can be autonomically updated, and it is transparent to actors
working on other aspects. Therefore, the self-management requirement (R 7.2) is achieved.

Application of the Event-Condition-Action Approach Conventional if-then-else
approach models systems into conditions and proposes corresponding reactions. The
Event-Condition-Action approach separates real-time events from relatively stable sys-
tem states. Hence, time-critical requirements can be ful�lled through real-time events.
And the Event-Condition-Actions approach is represented by a transition diagram which
makes the system modeling intuitive (R 7.1).

Modeling of Multiple Dimensions for System States An extensible system state
model V = V1 � V2 � ::: � Vn) is given in Chapter 3, various state dimensions can be easily
instantiated in this model (R 7.3). Adaptation policies by the DSL is based on it to make
trade-o�s of these dimensions for �nal adaptation decision making.

Generation of Run-time Representation Some transformation mechanisms are pro-
posed to the DSL which generate run-time representations relying on adaptation policies.
These transformations check compatibility of policies and generate robust rules which can
autonomically guide self-protection (R 7.4).

7.4 DSL Design Principle

7.4.1 The DSL Approach

A Domain-Speci�c Language (DSL) may be de�ned as \a language tailored to a spe-
ci�c application domain " [106]. DSLs present many bene�ts in terms of expressivity and
simplicity, which led [45, 111] to specify adaptation policies using DSLs in autonomous
systems. To tackle de�nition of security adaptation strategy, we follow the same approach,
but applying it to the security domain, resulting in a DSL for self-protection.

Several elements led us to express self-protection policies with a DSL, instead for
instance of a simple management API. A self-protection framework should be able to
react to security-relevant events occurring at run-time, either in the system itself or in its
environment. Specifying corresponding adaptation policies is a non-intuitive and error-
prompt task which may be facilitated with a security-oriented DSL. The DSL may serve
to specify adaptation policies. It may also come with some transformation mechanisms
for easy integration of policies into running frameworks.

Moreover, in our current self-protection framework, adaptation strategies are purely
action-based. However, higher-level strategies using objective or utility function policies
are also desirable [91]. By enabling speci�cation of governance strategies with richer types
of policies, the DSL approach should allow describing self-managed security at di�erent
levels of granularity which can be re�ned (e.g., with notions of policy continuum [130]),
and thus evolve towards greater autonomic maturity in corresponding systems.

105

Figure 7.1: De�nition and Use of Security Adaptation Policies.

7.4.2 Main Actors of Autonomic Security Management

Security adaptation policies should be viewed as high-level protection strategies that af-
fect and guide execution, usually expressed as rules de�ning reactions to speci�c security
events. Several stakeholders with clearly-separated roles may cooperate to de�ne and use
such policies (see Figure 7.1):

� The system architect is a designer of overall system. He implements a set of appli-
cations, con�gures the underlying protection framework, and de�nes the adaptation
policy language with which the system administrator may specify security adapta-
tion policies.

� The system administrator is in charge of the execution phase of systems. He has
general knowledge about the system architecture and state, and speci�es adaptation
policies to guide behavior of the protection framework.

� Applications are software entities the security of which is regulated by the self-
protection framework.

� Users specify their preferences about adaptations of system behavior from a usability
perspective.

Security adaptation policies thus plays a central role in autonomic security management
since they: (1) are described in a language (the DSL) designed by the system architect; (2)
are speci�ed by the system administrator; (3) may be customized by users; and (4) guide
behavior of the self-protection framework. The DSL design should thus meet requirements
from all stakeholders.

7.5 A DSL for Self-protection

We now describe the DSL itself which is based on the notion ofGeneric Adaptation
Policy (GAP) . GAPs may be applied to di�erent concerns such as security or energy
e�ciency, with possible trade-o�s between them [14]. In the security case, GAPs are
complemented with two taxonomies of attacks and countermeasures to specify security
adaptation policies.

106 7. Adaptation Policy Specification

Figure 7.2: DSL Core Model.

As shown in the core model of Figure 7.2, the main concepts of our DSL are the fol-
lowing: the State class captures the status of the running system viewed from di�erent
concerns (risk level, energy e�ciency, QoS, etc.); theEvent class describes external sig-
nals which may trigger adaptations (this class may be specialized for each concern); the
Transition class indicates the start and target states in an adaptation; and the operations
to perform { captured by the Reaction class.

For each concern, di�erent concern modelsabstract system features from the concern
perspective by re�ning those classes. As our adaptation policies for self-protection specif-
ically address the security concern, events and reactions are respectively speci�ed by the
attack and countermeasure taxonomies(described next). However, other concerns like en-
ergy e�ciency may also be integrated into the adaptation policy using speci�c taxonomies.

7.5.1 Taxonomy of Attacks

This taxonomy classi�es potential attacks or security-relevant events calling for a modi�-
cation of system protection settings. A sample attack taxonomy is shown in Figure 7.3,
but others may also be used as well [133], the DSL not being tied to a speci�c taxonomy
or ontology. Attacks may be classi�ed according to con�dentiality, integrity, and avail-
ability (CIA) security objectives. In turn, each class of attacks contains a set of speci�c
potential attacks that may occur in the system. For instance, the Packet Flooding attack
that disturbs network by sending a large number of packets may be part of theDoS attack
class threatening availability. To specify the adaptation policy, the system administrator
identi�es the most relevant attacks in the taxonomy. The corresponding security events
may then be used in the GAP to trigger adequate reactions.

107

Figure 7.3: Attack Taxonomy.

7.5.2 Taxonomy of Countermeasures

The countermeasure taxonomy classi�es reactions applicable to respond to security-sensitive
events. A sample taxonomy is shown in Figure 7.4. As for the attack taxonomy, secu-
rity functions are structured according to the CIA security objectives. For example, the
Strengthen Encryption countermeasure class is classi�ed as a reaction improving con�-
dentiality. To specify the adaptation policy, based on the identi�ed attack and security
objective to guarantee, the system administrator will select from the taxonomy the most
appropriate countermeasure to trigger { a more automated approach is for instance de-
scribed in [57].

7.5.3 Generic Adaptation Policies (GAP)

Security adaptation policies should be intuitive for user-friendly speci�cation, which is
not the case of hard-codedif-then-else rules. We thus prefer to useevent-condition-
action policies, instantiating the core model presented previously to specify states, events,
transitions, and reactions to describe possible adaptations. The result is captured by the
notion of GAP, formally de�ned as a tuple [V; E; AT; gap] where:

� V � V1::: � Vi � ::: � Vm is the state spaceof running systems. EachVi represents a
system state dimension which has a �nite set of values and is identi�ed by the system
architect, e.g., energy e�ciency, risk level, etc. The system state is then given by a

108 7. Adaptation Policy Specification

Figure 7.4: Countermeasure Taxonomy.

tuple [v1; :::; vi ; :::; vm] of that space, wherevi 2 Vi is the value of a state.

� E is a �nite set of eventse that may occur in the system according to system evolu-
tion or context change. Eventse are mainly related to monitoring infrastructures like
intrusion detection systems, and will trigger adaptations. The events are partially
derived from the attacks de�ned in the attack taxonomy.

� AT is a �nite set of adaptation reactions at that can be applied to the running
system. Di�erent types of reactions may be performed, and are described by the
system administrator. In the context of self-protection, the reactions are derived
from the countermeasure taxonomy.

� The gap : V � E ! 2V � AT function maps a current state v and received evente to
a set gap(v; e) of proposed reactions and foreseen destination states.

Specifying a GAP then amounts to describing transitions in terms of adaptation reac-
tions and destination states from a set of initial states and events. Such a speci�cation may
be compactly represented using transition diagrams, as shown in the following example.

7.5.4 An Example of GAP Speci�cation

We consider a system with only one state dimension, the risk level, which represents the
vulnerability of the system, classi�ed in the following 4 levels: V = V1 = f very hostile ,
hostile , neutral , friendly g.

Two attacks are considered from the attack taxonomy,Packet Flooding and Privilege
Escalation: E = f e0; e1g (see Table 7.1). ThePacket Flooding attack belongs to the DoS
class compromising availability. ThePrivilege Escalation attack is part of the Unauthorized
Accessattack class weakening con�dentiality and integrity.

109

Event ID Event Name Event Type

e0 Packet Flooding DoS
e1 Privilege Escalation Unauthorized Access

Table 7.1: GAP Event Speci�cation (Attack Taxonomy).

Reaction ID Reaction Name Reaction Type Protection E�ect

r0 Close Channel Disable Communication Link +++
r1 Apply DTE Policy Apply Authorization Policy ++
r2 Use RSA Strengthen Encryption +

Table 7.2: GAP Reaction Speci�cation (Countermeasure Taxonomy).

We consider three reactions from the countermeasure taxonomy,Close Channel (r0)
for the availability security objective, and Apply Domain Type Enforcement (DTE) au-
thorization policy (r1) and Use RSA (r2) for the con�dentiality and integrity objectives:
AT = f r0; r1; r2g (see Table 7.2). The table also indicates a subjective assessment of the
protection strength of each countermeasure, to give an idea of its e�ectiveness to decrease
the risk level.

Figure 7.5: A GAP Sample Speci�cation.

The system administrator then may de�ne the gap function using the transition dia-
gram shown in Figure 7.5. For instance, transition (e1; r2) from state (risk = very hostile)
to state (risk = hostile) means that if a Privilege Escalation attack is detected in an al-
ready very hostile environment, encrypting communications may help decrease somewhat
system vulnerability.

7.6 From DSL to Run-Time Representation

In this section, we show how the adaptation policies may be converted into high-level
autonomic guidelines executable within a self-protection framework.

GAPs describe adaptation policies using events, states, etc. But from an implemen-
tation perspective, GAP policies are neither dependable nor e�cient for run-time control
since: (1) for each situation, more than one adaptation path may be proposed, making

110 7. Adaptation Policy Specification

selection di�cult and time-consuming; and (2) speci�ed policies could be incomplete by
construction, automated policy checking being complex and CPU-intensive due to the di-
mension of the state space. A more compact representation of adaptation policies called
Autonomic Adaptation Policies (AAP) is thus de�ned to improve both dependability and
e�ciency. Some mechanisms are also proposed to translate GAPs to AAPs.

Figure 7.6: Adaptation Policy Transformation.

As shown in Figure 7.6, the main steps of the DSL life-cycle are the following:

1. A security expert of intrusions de�nes the attack taxonomy;

2. A security expert of reactions de�nes the countermeasure taxonomy;

3. The system architect de�nes the syntax and semantics of the DSL in specifying the
set of statesV, the set of eventsE and the set of reactionsAT ;

4. The system administrator speci�es the set of transitions of the GAP based on the
previous sets of states, events, and reactions;

5. Users de�ne their preferences for security adaptations, e.g., prefer security over en-
ergy e�ciency;

6. The translation mechanisms integrate the user preferences into the GAP, generate an
AAP, and transform the AAP to a state transition table as run-time representation
of the security adaptation policy.

In this process, each actor works in his own domain, translation mechanisms weaving
together their di�erent inputs into a run-time representation. Roles are clearly separated,
policy speci�cation and checking becoming independent tasks.

7.6.1 Autonomic Adaptation Policies (AAP)

For proper autonomic decision-making, a run-time adaptation policy should be bothcom-
plete and deterministic. For any execution situation, at least one adaptation should be
proposed to maintain execution continuity. A GAP should thus satisfy:

De�nition 7.1 (Completeness) A GAP is complete if it leaves no situation unspeci�ed,
so that at least one adaptation reaction is associated to each event-state pair, i.e.,8(v; e) 2
V � E; jgap(v; e)j � 1.

111

Besides, to avoid the ambiguity of adaptation decisions, di�erent adaptations for the
same conditions should not be possible. This property makes the security adaptation
strategy highly sensitive information: knowledge how the system will react upon attacks
could be used by intruders to defeat counter-measures more easily. We thus assume
security adaptation strategies to be well protected. A GAP should thus satisfy:

De�nition 7.2 (Determinism) A GAP is deterministic if no more than one adaptation
may be realized in a given situation, so that at most one reaction is proposed for each
event-state pair, i.e., 8(v; e) 2 V � E; jgap(v; e)j � 1.

We de�ne an AAP as a GAP ful�lling the two previous properties. The separation of
roles of the di�erent stakeholders is thus e�ectively achieved since the system administra-
tor only has to de�ne the GAP speci�cation, while property veri�cation and GAP-AAP
translation will be performed by DSL compile-time and run-time mechanisms.

7.6.2 A Sample Translation

The following example illustrates how the translation from GAP to AAP may be per-
formed.

7.6.2.1 GAP De�nition

We consider a pervasive system where security adaptation policiesGAP = (V; E; AT; gap)
are de�ned as follows:

� V � V1 � V2 represents the state of the system with 2 dimensions: the risk level
(V1) and the energy consumption (V2). The risk level captures the vulnerability of
the whole system, classi�ed into 4 levels. Theenergy consumptionis related to the
device energy e�ciency, with also 4 levels. ThusV1 = f very hostile , hostile ,
neutral , friendly g, and V2= f critical , high , normal, lowg. We consider only 5
states as detailed in Figure 7.7.

� E is the set of alarms raised by an intrusion detection system. To simplify, we only
consider two events:eattackDetected when an attack is detected, andereturnSafe
indicating the return to a safe state after application of a countermeasure. Then
E = f eattackDetected ; ereturnSafe g.

� The reactionsAT are de�ned as applying authorization policies into the system. Four
policiesp1; p2; p3; p4 are used as countermeasures. In usingPermission (pi) to repre-
sent the set of all permissions of the policypi for a �xed set of subjects and objects,
we de�ne pi � pj in terms of security strength which means that Permission (pi) �
Permission (pj). We then make the assumption that the policies are ordered asp4

� p3 � p2 � p1 in terms of the security strength which means that Permission (p4)
� Permission (p3) � Permission (p2) � Permission (p1). We also assume that the
policies are ordered asp2 � p4 � p3 � p1 in terms of the energy consumption.

112 7. Adaptation Policy Specification

� gap speci�es the allowed adaptations, captured as transitions between states based
on received events. Adaptation rules include the initial state, upcoming events,
actions to perform, and destination state for each adaptation. Possible evolutions of
the system may be represented by a transition diagram as shown in Figure 7.7.

Figure 7.7: A Typical Generic Adaptation Policy.

For instance, the transition from state s2 (risk = neutral ; energy= high) to state s2

(risk = friendly ; energy= critical) on event eattackDetected , with reaction p4 means that
if the risk level is moderate, the energy consumption alreadyhigh , and that an attack
is detected, the authorization policy p4 will be applied, driving the system in a state
where the risk is decreased tofriendly , but the energy consumption being increased to
critical .

7.6.2.2 GAP ! AAP Translation

Figure 7.8: GAP ful�lling Property 1.

Note that there are no adaptations associated to the states4 (risk = neutral ; energy =
normal) as shown in Figure 7.7, i.e., system execution will be blocked upon entering this
state. Such states and the corresponding transitions should be eliminated from the GAP
in order for Property 1 to hold. The system is then thus described only by the 4 states
shown in Figure 7.8, at least one adaptation being associated to each state-event pair.

The speci�ed policy may be initially non-deterministic, as for same state-event pair
several adaptations may be proposed bringing the system to di�erent destination states.
For instance, in state s1, on event eattackDetected , the system may apply either p3 or p4

policies, respectively driving the system to statess2 and s3. This makes adaptation
decisions di�cult.

113

Figure 7.9: GAP ful�lling Properties 1 and 2.

To retrieve a deterministic policy, we use a utility function uFun to assess the utility
of each destination state, and trim the states with low utilities. A utility value is thus
attached to each state based on the user preferences. In the example, sample utilities of the
4 considered states areuFun(s0) = 0 :1, uFun(s1) = 0 :2, uFun(s2) = 0 :4, uFun(s3) = 0 :3.
Only transitions with the highest utility values are kept, yielding the policy shown in
Figure 7.9, which now also satis�es the determinism property. In the case where several
transitions lead to the same highest utility value, one transition will be randomly selected.

The resulting GAP satis�es the two properties de�ned in the previous section, thus
is as an AAP (see Figure 7.9). Astate transition table, directly executable in a self-
protection framework, can be derived from this AAP. This table has been integrated in
our self-protection framework in order to propose run-time unique adaptation reactions.

7.7 Summary

This chapter illustrated a DSL to describe security adaptation policies for the self-protection
framework. The DSL is based on the ECA approach, and on two taxonomies respectively
of attack and countermeasure. Di�erent actors are separated in the policy speci�cation
process: the system administrator uses GAPs to specify policies intuitively. GAPs are
then checked to guarantee run-time dependability, and translated into AAPs, suitable for
integration at run-time into legacy self-protection frameworks (trade-o�s between security
and other concerns may notably guide the re�nement process).

Currently, a DSL framework called yTune is under development, including an editor
and a parser for speci�cation and checking of di�erent DSLs. yTune is a meta-language
for DSL de�nition and implementation. Ongoing work is focused around implementing
the described re�nement mechanisms for the self-protection DSL in the yTune parser, and
coupling the DSL toolchain with the ASPF self-protection framework. In the future, we
also plan to enhance the DSL with more complete and realistic taxonomies for security
attacks and countermeasures, for instance through dedicated security ontologies which may
be coupled with the corresponding security components to detect intrusions and perform
reactions.

114 7. Adaptation Policy Specification

115

Part III

Validation

117

Chapter 8

VSK Validation

The implementation of the VSK design is described in this chapter. VSK is implemented
as an emulator under Linux by means of the Think/Fractal framework. Evaluation of
the implementation illustrates performance improvement of VSK comparing to other OS
architectures.

8.1 VSK Implementation

As described in Chapter 6, a terminal-side system of the end-to-end self-protection frame-
work is built on the VSK OS. In order to apply the component-based approach and
accomplish the described dynamical recon�guration functionalities of VSK, the terminal-
side system is speci�ed in using theFractal component model [41] and implemented in
using the Think framework [72, 20].

8.1.1 Overview of Implementation Framework

Fractal: A hierarchical and reective component model, Fractal [41], is used to design,
implement, deploy, and manage software system of the VSK design.Fractal components
are both design- and run-time entities: acting as unit of encapsulation, composition, and
recon�guration. They implement server interfaces as access points to services, while func-
tional requirements are expressed by client interfaces. Components interact through bind-
ings between client and server interfaces.Fractal also de�nes standard interfaces to control
internal structure of a component at run-time, e.g., adding or removing sub-components
or bindings. The software architecture of VSK is then given by its hierarchy of bound
components.

Think: A framework of Fractal on the C language is provided which is calledThink [72,
20]. Using this framework, an OS architect can build a system from components without
being forced into a prede�ned kernel design. This exibility makes it particularly easy
to implement di�erent components of the VSK architecture. The Think recon�guration
framework [117] is particularly helpful to implement dynamic recon�guration mechanisms.

118 8. VSK Validation

nupse [103], the compiler of the Think framework, is a cross-compiler by which we can
compile, test or debug an OS kernel on one hardware platform and install it into another
platform.

Dynamic Recon�guration: The Think/Fractal framework also de�nes standard con-
trol interfaces (called controllers) to observe and manipulate internal structure of a com-
ponent at run-time. In particular, a component may implement: a Component Identity
(CI) to give access to its server interfaces; aBinding Controller (BC) to bind its client in-
terfaces; aAttribute Controller (AC) to query and change attribute values; and aContent
Controller (CC) controller to list, add, and remove sub-components.

Creating a binding from a client interface i of a componentMto a server interfacej
of a componentN can be achieved through the following steps:

1. �nding the CI controller of Mthrough the CCcontroller of the parent component of
M;

2. getting the interface i of Mthrough its CI controller;

3. getting BCof Mthrough its CI controller;

4. unbinding existing binding to the interface M.i (the interface i of the componentM);

5. getting the CI controller of N through the CCcontroller of its parent component;

6. getting the interface N.j through its CI controller;

7. creating the binding from M.i to N.j through M.BC.

Global Extension: An Architecture Description Language (ADL) of the Fractal com-
ponent model de�nes the architecture of the component-based system to build. With the
global extension mechanism,Think allows de�ning a component type by extending an
existing de�nition. A global extension is simply an ADL de�nition where the original
de�nition is automatically extended, the de�nition matching some expressions is replaced
by another. This mechanism makes it possible to transform an architecture in a global
way, by abstracting some aspects of concern (into extensions) from system architecture
de�nition.

component <main.executionSpace.*> component * {
provides Fractal.API.ComponentIdentity ci

}

Figure 8.1: Global Extension.

119

For example, for a given ADL description, it is easy to generate a system where all the
components implement aComponent Identity (CI) controller. In Figure 8.1, the global
exension inserts this controller to all the sub-components inmain.executionSpace .

Implementation and Evaluation Context: In the purpose of simplifying the imple-
mentation and evaluation, our VSK prototype is realized as an emulator by the Frac-
tal/Think framework based on aLinux Ubuntu 9.04. This implementation is a proof-
of-concept to illustrate its feasibility, it can be easily exported to other platforms with
the help of the nuptse cross-compiler. Several existing functionalities (communication or
multi-thread) in Linux can be pro�ted for implementation and evaluation rather than
developing platform-speci�c functionalities. Alternatively, since performance benchmark
for embedded mobile terminals is not easy to realize, we uses existing tools ofLinux for
the performance evaluation of VSK.

In the case where we want to implement VSK on other hardware platforms such as
ARM or AVR , we only need to develop a thread management component and a �le system
component for the speci�c platform and replacepthread.h, stdio.h function invocations by
interface invocations to these components. Platform-speci�c communication mechanisms
should also be developed if communication functions are needed. Several experiments, such
as WiFLY [146] on 8bits � C ATM128L and Sense&Sensitivity onMSP430 for wireless
sensors,CRACKER [95] on Nokia 800 Internet Tablet of ARM9 in the context of Smart
Home, have already shown the possibility and e�ciency of code exportation from an
emulator to a speci�c platform.

8.1.2 VSK Architecture Overview

Figure 8.2: VSK-based System Overview

120 8. VSK Validation

Figure 8.2 shows the overview implementation architecture of VSK based on theFrac-
tal/Think framework. The main components are:

� a boot component that installs VSK and launches theexecution space;

� the execution spacein which applicative components are installed;

� the VSK component which is the kernel to manage theexecution space;

� a component loaderwhich enables to dynamically load new components;

� some extension modulesthat extend VSK with additional functionalities such as
context-awareness and session management.

Therefore, an OS consists of VSK together with acomponent loaderand several exten-
sion modules. Components in theexecution spaceare applications which run above this
OS.

8.1.3 Execution Space

Figure 8.3: Execution Space

The execution space(see Figure 8.3) can be considered as a running environment
for applicative components. Behind the execution of these components, access control
is performed through an authorization check interface calledaccess authorization (aa).
Moreover, anexecution membraneis automatically implemented in the execution spaceto
administer run-time behaviors of these applicative components.

121

Applicative Components: All applications are encapsulated as components in the
Think framework, these components are thus called applicative components. Inter-components
communication is realized via interfaces and bindings between components. With the help
of the global extension, some speci�c interfaces or controllers can be inserted automat-
ically to a part of applicative components during the compilation. A launch execution
(LaunchExe) server interface is used to start the execution of an applicative component.
An authorization access (aa)client interface serves for access request validation with VSK.
A binding controller (bc) and a component identity (ci) are used to achieve dynamic re-
con�guration. Since an applicative component in the execution spaceneeds to realize all
these functions, aLaunchExe, an aa, a bc and a ci interfaces are automatically added to
each applicative component of theexecution spaceduring the compilation by the global
extension mechanism.

Execution Membrane: In the purpose of dynamic recon�guration of the execution
spacewhich is a composite containing several sub-components, a speci�c component,exe-
cution membrane (exeMbr), is used to manipulate the internal structure of the composite
execution spaceat run-time. The membrane mediates external invocations to its sub-
components through interfaces and controllers. Furthermore, the membrane can start or
stop its sub-components and create or remove bindings between them. For the membrane
of the execution space, it not only mediates access requests from theexecution spaceto
VSK for access validation but also transmits and realizes kernel commands likecreating a
binding or removing a component. The same membrane concept is also applied to other
composites such asAttribute Manager and Rule Manager in the kernel to cope with the
dynamic recon�guration of these two composites.

8.1.4 Control Plane Implementation

As described in Chapter 3, the execution spaceis controlled by a control plane. VSK
achieves thiscontrol plane which mainly performs two functionalities as: the management
of tasks and validation of access requests (see Figure 8.4). VSK includes aVirtual Kernel
(VK) and an Access Control Monitor (ACM) . VK contains a dispatcher that supervises
the execution spaceand transmits requests to di�erent modules in VSK. VK also has a
recon�guration manager which recon�gures the execution spacebased on decision taken
in ACM. ACM achieves attribute-based authorization validation (see Chapter 6)

Dispatcher: For the task management, the dispatcher changes the kernel from user
mode to kernel mode, organizes all received requests, and transmits requests one by one
to ACM. When the dispatcher treats a request, it runs to completion for the request.
Therefore, no concurrence may be induces by thedispatcher. If a transmitted request is
validated by ACM, the dispatcher invokes therecon�guration manager to create a binding
for requested access in theexecution space. Otherwise, it returns the negative response
and starts another request.

122 8. VSK Validation

Figure 8.4: VSK Kernel

ACM: The ACM component plays the role of the security kernel [17] mainly contain-
ing four modules: an Access Control Attribute Manager (acAttMgr) from which access
attributes can be queried; an Access Control Rule Manager (acRuleMgr) to get access
rules depending on attributes; a Decision Engine that makes access decision based on
attributes and rules; and a VSK Kernel Manager (vskMgr) that makes ACM dynamically
recon�gurable.

� the Access Control Attribute Manager (acAttMgr) returns attribute values in the
response to access requests. As di�erent authorization policies can be implemented
in the kernel, a policy-neutral interface is proposed for acAttMgr;

� the Access Control Rule Manager (acRuleMgr)contains authorization rules. An ac-
cess control request with associated attribute values is transmitted to this component
in order to �nd out whether a corresponding rule exits;

� the Decision Engine makes a �nal decision based on attributes and rules. Since
our prototype simultaneously supports two authorization policies, this component is
adopted with two access control channels. One policy is said to be \installed" if it
is bound to one channel. One channel is considered as suspended if anull policy is

123

attached to it. If two policies are used in the kernel, a policy-combining algorithm is
applied for the combination of two access decisions. We implement adeny-override
algorithm where an access permission should be granted by both two policies;

� the VSK Kernel Manager (vskMgr) dynamically administers ACM. Various autho-
rization policies can be loaded (by thecomponent loader) and installed in ACM.
vskMgr can enable or disable one access channel or replace one authorization policy
by another on one access channel.

Six basic authorization policies (ACL, capability-based, DTE, MLS-BLP, RBAC, Or-
BAC) and a null policy which represents the absence of authorization policy are imple-
mented. Corresponding attribute component and rule component of each policy are main-
tained in acAttMgr and acRuleMgr. New policies including attributes and rules can be
loaded and installed into ACM by the component loader. In the prototype, we implement
two channels to VSK which means that two access control policies can be simultaneously
installed. The �nal decision combines the decisions of these two policies in using and
policy-combining algorithm (in fact the deny-override algorithm) which is embedded in
the decision enginecomponent.

Recon�guration Manager: When an access request is validated by ACM, therecon-
�guration manager creates the corresponding binding in theexecution space. Moreover, it
registers created bindings. For the access control model revocation, all associated bindings
are removed by therecon�guration manager component.

8.1.5 Authorization Policy Implementation

In terms of authorization policies, we assume that a simple embedded OS has at maximum
10 threads as subjects and 60 system calls as objects. In order to introduce the same
evaluation conditions for di�erent authorization models, we choose as authorization policy,
a policy where all access are authorized for the 10 subjects to the 60 objects withread
and write access operations. The six basic authorization models (ACL, Capability-based,
DTE, MLS, RBAC, ORBAC) and a combined models (Lipner - BellLapadula with Biba)
are used to specify all these permissions (that is, using di�erent access control models to
specify the same policy) with G-ABAC and implemented asThink components for VSK.

However, the chosen \all granted" policy is a speci�c case. A complete evaluation
should take into account all possible authorization policies for each access control model.
Since the evaluations are realized on theThink platform which compiles each policy in
forme of component and loads it into the VSK OS, such a complete evaluation seems
complicated.

124 8. VSK Validation

8.2 VSK Evaluation

8.2.1 Authorization Overheads of ACM

We evaluate the terminal-side system built on VSK in this chapter and provide an end-
to-end benchmark of the self-protection framework which integrates VSK with ASPF in
the next chapter. All measurements were performed on a 2.7GHzDELL OptiPlex 740
desktop PC with Linux/Ubuntu 9.04 and 1GB of RAM. We start the evaluation on the
ACM module in order to �nd out the authorization overhead with di�erent access control
policies installed in VSK. An authorization permission is computed on four steps:

1. getting subject and object attributes;

2. getting context information if the authorization policy is context-aware;

3. �nding access rules and computing authorization permissions;

Figure 8.5: Authorizations Overhead of ACM

In sending all the 1200 di�erent access requests (we have 10 subjects, 60 objects with
2 operations) to the ACM module, we measure average permission computing duration
as the overhead of authorization for the nine access control policies. Since ACL and
capability-based policies directly use their identities for authorization, a huge subject-
object-operation table is maintained in ACM which should contain permissions of all
subjects to all objects with read and write operations (we build all the permissions to create
an equivalent evaluation environment for di�erent authorization policies as described in
Section 8.1.5). Their authorization overheads are respectively1273us for ACL and 1271us
for the capability-based policy which are signi�cantly higher than others and do not appear
in Figure 8.5.

Among the other authorization policies, as shown in Figure 8.5, the authorization
overheads are in the order of10us since DTE regroups subjects and objects to domains

125

and types and it requires to go through the rule table to �nd the permission for a given
domain-type pair; MLS needs security levels of both subjects and objects to perform
a domination comparison; RBAC uses roles to represent users' privileges of access; Or-
BAC integrates context information into authorization rules with an overhead of context
information acquirement. Furthermore, in the purpose of expressivity, Lipner [101], a
BLP-Biba combined policy, is proposed to apply two authorization policies at the same
time (thanks to the two channels of VSK) in order to express policies which can not be
described by one policy.

Results show that the authorization overheads of the combined policies are bigger
than a basic policy since two validations should be achieved through two access channels.
But all these overheads are much smaller than the conventional ACL or capability-based
policies thanks to the separation of access attributes from basic access elements (subject,
object, action, and context).

8.2.2 Authorization Validation and Enforcement Overheads of VSK

VSK contains not only ACM but also VK which manages the switch of modes (user mode
and kernel mode) and the recon�guration of the execution spaceto enforcement an access
decision. Once an access request is issued from theexecution space, the dispatcher �rstly
copes with concurrency and then passes control to ACM for authorization validation. If
ACM grants the request, the recon�guration manager is launched to create the binding
for the requested access in theexecution space. In order to construct the same evaluation
condition for di�erent access control policies, we build granted permissions for all the
subjects to all the objects.

Figure 8.6: Authorization Validation and Enforcement Overheads of VSK

In sending 1200 di�erent access requests to VSK which ensures binding creation for
each request, the average overheads are shown in Figure 8.6 which are in the order of10us.
We �gure out that the mode switch overheads depend on the complexity of authorization
policies, e.g., OrBAC has supplementary context module for the acquirement of context

126 8. VSK Validation

information. In terms of the combined policies, themode switchoverheads are the sum of
individual overheads. The authorization overheads are explained in the previous section.
At the end, the execution space recon�guration (exeReconf)overheads may be ignored
comparing to the mode switch or authorization overheads since the recon�guration mech-
anism by Think is signi�cantly e�cient. The overheads by the di�erent policies illustrate
the fact that the structure of authorization policies may a�ects its access validation and
enforcement. But all these overheads remain acceptable for the kernel level authorization.

8.2.3 Comparison with Microkernel

Since VSK is designed as an OS kernel, it is compared to the microkernel architecture in
this section. The philosophy underlying the microkernel architecture is to maintain only
absolutely essential core OS functions in the kernel and remove less essential services and
applications to the user mode. An extreme example is exokernel which contains only the
access control and concurrency management services in the kernel. Within our case, since
the access control function is implemented in the kernel, microkernel or exokernel does
not make any di�erence.

Figure 8.7: VSK vs Microkernel

Three prototypes respectively: raw invocation without kernel control, microkernel
equipped with a DTE policy, and our VSK with the same DTE policy are implemented by
the Think framework. We measure average invocation durations in order to �nd out the
kernel overheads in various OS architectures. As shown in Figure 8.7, the duration of a raw
invocation without protection is about 12.5us . With the microkernel, since each access
needs to be controlled by the kernel, its duration is risen to39us. The main di�erence
between VSK and the microkernel architecture is run-time support for system recon�gu-
ration. In a microkernel, authorization hooks are statically bound into a reference monitor
to intercept each access request, inducing high access control overheads. But VSK applies

127

the one-time checkmechanism where once an access is checked, no more control will be
realized until the next kernel update. In the �gure, VSK-DTE has one access overhead
for its �rst invocation and remains as raw invocations after.

This performance gain might be explained by the more lightweight and dynamic VSK
architecture which enforces access decisions in a dynamic manner. Additionally, this
kernel also brings bene�ts like dynamic authorization policy recon�guration or permission
revocation management introduced in the next section.

8.2.4 Recon�guration Overhead of VSK

With this benchmark, we compute the recon�guration overhead for changing attributes
(e.g., assignment of a new role), rules, and authorization policies. A recon�guration in
VSK is composed on three steps:

1. recon�guring authorization components in the kernel like replacing one access at-
tribute component by another;

2. initializing the recon�gured components;

3. revoking outdated access decisions by removing some existing bindings in theexe-
cution space.

Figure 8.8: Access Control Attribute Recon�guration

For the six basic authorization policies, their average overheads of 1000 recon�gurations
are calculated. The overhead of a combined policy is the sum of two individual policies.
As shown in Figure 8.8, for the recon�guration of attributes, the recon�guration overheads
of replacing an attribute component by another seem to be identic. But the initialization
overheads depend on the complexity of each policy, and the revocation overhead is much
lower. The total overheads of attribute recon�guration remain similar among di�erent
policies which are approximately300us.

128 8. VSK Validation

Figure 8.9: Access Control Rule Recon�guration

In terms of the rule recon�guration, since the ACL and capability-based policies contain
a huge subject-object-operation rule table, their rule initialization durations are respec-
tively 22439usand 22521uswhich are much higher than the other policies and are not pre-
sented in Figure 8.9. Within the other policies, RBAC has a complexity of role-permission
relation and OrBAC has a possibility of multiple organization/context. Therefore, their
initialization overhead are signi�cantly higher than others which are respectively 1800us
and 1120us. Other policies (DTE and MLS) have a simple structure which thus result in
lower overheads about160us.

Figure 8.10: Access Control Policy Recon�guration

The policy recon�guration takes into account the recon�guration for both attributes
and rules. Its overhead can be viewed as the sum of the two overheads.

8.2.5 Kernel Occupation Rate

Our proposed architecture is named as avirtual security kernel in the sense that it remains
hidden during most of the execution time with the help of the one-time checkmechanism.

129

In order to show the e�ciency of the virtual architecture, we de�ne a matric - Kernel
Occupation Rate (KOR) - which is the rate of kernel executing time over total running
duration.

Figure 8.11: Kernel Occupation Rate between Microkernel and VSK

In repeating an invocation of 12.5us , the microkernel occupation rate is �xed to 68.4%
as en average there is a kernel access control overhead of39.5us by invocation. For VSK
with the one-time check mechanism, once the binding is created, no more controls are
needed. Its kernel occupation rate depends on the binding life-time. A binding will be
removed when the access decision is revoked due to the authorization policy update. As
shown in Figure 8.11, with the same invocation, VSK KOR remains100%until 800us of
binding life-time and begins to fall. For binding life-time greater than 1000us, its KOR is
always less than10%and its KOR is under 2%for all binding life-time bigger than 10000us.
As in our working scenario, the authorization policy update frequency is estimated in the
order of minutes, this rate can always be considered as less than1%comparing to 68.4%
of microkernel.

8.2.6 VSK Qualitative Evaluation

Security Analysis: For a software system based on VSK, three main threats exit:

1. an applicative component can violently gain access right through an existing binding.
For the created binding, the current Think framework cannot distinguish the read
and write actions, i.e., a binding for a read access action can be used to perform
a write invocation. Thus, a malicious component can violently gain supplemen-
tary access permissions through existing binding, there does not exist any checking
mechanism inThink or VSK to prevent from it;

2. an applicative component can illegally access to another applicative component by
bypassing VSK protection. VSK serves as a kernel which checks and validates access

130 8. VSK Validation

requests. Unfortunately, a malicious applicative component may access to another
component by bypassing the kernel. In theThink framework, an invocation can
directly access to a physical address without any control;

3. an applicative component can illegally access to VSK. Since VSK is also built by
Think, the same threat of the previous threat may menace the kernel. A malicious
applicative component in the execution spacecan illegally access to the kernel. That
is, the kernel itself is not secure.

The �rst threat can be coped by extending the de�nition of interfaces of the Fractal/-
Think framework. Rather that de�ning an interface, we should determine its associated
access action type. During the compilation, checking should be achieved which veri�es
invocation methods with its access action type.

The second and third threats refer to thebypassattack. A Memory Management Unit
(MMU) hardware mechanism is usually used to avoid circumventing thereference monitor.
This mechanism prevents bypass of VSK authorization checks. One MMU solution for
component-based OS was implemented inCRACKER [95]. The MMU patent [71] applied
in CRACKER organizes components of di�erent security levels into di�erent memory
pages, and provides supplementary checking enforcement for inter-page invocation. For
some hardware platforms likeAVR or ARM which do not support MMU, Rippert [119]
proposed a tool for code checking which replaces memory access by a pointer to a manager
for security policy validation. We believe that isolation between applicative components
and between theexecution spaceand VSK can be achieved through these two categories
of solutions.

Consequently, for a system build on VSK, traditional integrity and con�dentiality
attacks are taken into account: all access should be granted by VSK. But availability is
not dealt, e.g., a kind of Denial of Service attack which continuously sends fault access
requests will induce VSK to recon�gure itself all the time and block it from commodity
requests. The availability has not been handled by VSK.

VSK as a Security Kernel: We argue that the VSK architecture has all the dis-
tinguishing features of a security kernel { or minimal implementation in an OS of the
security-relevant features that mediates all accesses, is protected from modi�cation, and
is veri�able as correct. Indeed, our VSK intercepts all access requests (completeness), and
cannot be modi�ed from the execution space(isolation). Moreover, its simple architecture
should facilitate proof of correctness (veri�ability). VSK also provides additional features
like: support of multiple authorization policies (exibility), dynamic choice of the most ad-
equate security con�guration (manageability), and easy introduction of new authorization
policies in the kernel (extensibility). Hence, VSK enables strong and yet exible protection
for applications running in the execution spaceduring their whole life-cycle { from design,
deployment, execution, maintenance, to un-installation.

131

8.3 Summary

The implementation (see Section 8.1) showed the realization of such a OS. Our prototype
applies the component-based approach to organize all its software modules, it achieves
dynamic recon�guration to enable run-time controls over executing applications and its
kernel. The evaluations (see Section 8.2) illustrated simpli�cation of the authorization
sub-system and performance improvement comparing to other OS architectures. Finally,
a qualitative evaluation analyzed hardware support for such an OS.

132 8. VSK Validation

133

Chapter 9

Validation of the End-to-end
Framework

We have implemented and evaluated a terminal-side system built on VSK in the previous
chapter. In this chapter, we describe two implementations of ASPF. We also present an
end-to-end evaluation of the self-protection framework which involves VSK and ASPF
implementations. Performance and security evaluations show that our approach for self-
protection of pervasive systems achieves strong security with reasonable overhead.

Figure 9.1: The Cluster Implementation Model.

In Chapter 5, two implementation models (the cluster implementation model and the
node implementation model) are de�ned which indicate building blocks. As shown in
Figure 9.1, the cluster implementation model consists of aCluster Authority component
for self-protection coordination, a Cluster Context Monitor for global context supervision;
a Cluster Authorization Policy Repository for potential authorization policy storage; a
Cluster Governance Policy Engineto generate security adaptation strategies; and aCluster
Resulting Authorization Policy which is output of the cluster-level security adaptation

134 9. Validation of the End-to-end Framework

process.

Figure 9.2: The Node Implementation Model.

The main elements of thenode implementation model(see Figure 9.2) are aNode Au-
thority and a Node Adapter for self-con�guration and self-protection coordination; a Node
Pro�le for policy customization; a Node Context Monitor for local context supervision;
a Node Governance Policy Enginefor local security adaptation strategies; and aNode
Resulting Authorization Policy which is �nal output of the node-level security adaptation
process.

9.1 A Basic ASPF Implementation

A �rst ASPF implementation consists of two parts: cluster-side ASPF components which
play the role of a centralized monitor managing distributed terminals and node-side ASPF
components which serve as a local controller to be installed in each node for synchroniza-
tion with the cluster-side and for local resource administration. This implementation was
realized as a standard JAVA application for the cluster-side. The node-side controller was
developed using theThink framework [20] (see Figure 9.3).

9.1.1 Cluster-side ASPF

To simplify evaluation, we take into account a simple pervasive system which contains
one cluster with several nodes. The cluster-side ASPF has only two software components:
a cluster implementation which manages and updates settings of the cluster, and anode
implementation which is a generic controller of all nodes in the cluster. In a general case

135

Figure 9.3: A Basic ASPF Implementation.

with several clusters, a set ofcluster implementation and node implementationcomponents
will be de�ned in the cluster-side.

Cluster Implementation: As presented in Chapter 5, an implementation of ASPF
cluster should contain four main components: acluster authority, a cluster context moni-
tor, a cluster authorization policy repository, and a cluster governance policy engine.

These four components yield four implementation components respectively: acluster
authority ; a cluster context monitor; a set of cluster-level authorization policies; and a
policy-combining algorithm.

When the cluster context monitor recognizes some security-related events in the en-
vironment, it abstracts them into a high-level representation such as an attack report.
The reported attack triggers a cluster-level self-protection loop. Among a set of autho-
rization policies (in the implementation, a DTE policy, a MLS policy and a RBAC policy
are provided), the cluster authority selects one relevant policy using thepolicy-combining
algorithm.

In our implementation, we give a simple example where the cluster context is modeled
as three security levels (low, middle and high). Since we have not implemented a real
intrusion detection system, we simulate attacks by manually changing the security levels
which launches self-protection control loops. If the security level is tuned from the middle
level to the low level, the DTE policy is applied. In the case of transition from the high
security level to the middle level, the MLS policy is enforced. If the system is recovered

136 9. Validation of the End-to-end Framework

to the high level from an attack, it calls for the RBAC policy. The selected policy is then
sent to the node implementation for further customization for all nodes of the cluster.

Node Implementation: The node implementation involves a node authority and a set
of node pro�les corresponding to each node of the cluster. Thenode authority realizes
customization of authorization policies for each node. Thenode pro�le expresses node
characteristics. To simplify the implementation, functionality of the node governance
policy engine is achieved by �ltering the cluster resulting authorization policy based on
the node pro�le : when anode authority receives an updatedcluster resulting authorization
policy, it customizes it by removing irrelevant rules based on itspro�le . This customization
generates anode resulting authorization policy which is speci�c for this node.

9.1.2 Node-side ASPF

The node-side ASPF implementation in the Think framework [20] contains two compo-
nents: a node adapter and a node context monitor. The node adapter is a terminal-side
entity that manages self-protection of nodes. Thenode context monitor collects local
context information. When a node resulting authorization policy is customized by anode
authority , it is then forwarded to a local node adapter on the terminal side. The node
adaptor installs the policy into the VSK OS to realize a self-con�guration loop. It also
collaborates with the node context monitor to realized a node-level self-protection control
loop.

9.1.3 Summary

This implementation realizes a middleware to administer authorization policies. It cus-
tomizes thecluster resulting authorization policy into node resulting authorization policies,
broadcasts them to each terminal and installs these policies.

Unfortunately, dynamical recon�guration can be hardly achieved within the JAVA
platform. This implementation is not fully adequate for dynamic pervasive systems since
only a �xed number of nodes are permitted for each cluster; and additionalcluster imple-
mentation and node implementation modules cannot be dynamically added. Therefore, a
second ASPF implementation based on theOSGi/iPOJO platform is realized to include
dynamic recon�guration features.

9.2 Second ASPF Implementation

9.2.1 Platform Overview

OSGi: OSGi is a speci�cation produced by theOpen Services Gateway initiative (OSGi)
alliance [5]. Its main objective is to enable modular assembly of software built with JAVA
technology. It takes into account whole life-cycle of an application, from development,
packaging, to uninstallation. Its ease of deployment is a principal reason why we choose it
as the framework to develop server-side ASPF components. Applications can be packaged

137

into a deployment unit called bundle to be dynamically loaded or unloaded. Several
implementations of the OSGi speci�cation exist such asSpring Dynamic Modules [8],
Equinox [3], and Apache Felix [1].

iPOJO - Service-oriented Component Model: Apache Felix was selected to im-
plement server-side ASPF components. We apply iPOJO [37] which is a service-oriented
component model based onFelix. Service-oriented architecture [107] allows to coordi-
nate heterogeneous resources or applications, and it mitigates dependency between dif-
ferent modules. Component-based design[40] improves manageability (at both design
and deployment phases) by encapsulating resources and applications into components,
and enabling dynamic recon�guration of such components. Aservice-oriented component
model [44] combines these two approaches: (1) components implement service speci�ca-
tions; (2) interactions between components are achieved through service publication and
usage, the underlying platform managing dependencies.

iPOJO is a service-oriented component model implemented onFelix. In iPOJO [37],
component instances implement interfaces which describe provided services. A set of
component instances can be packaged into abundle as a deployment unit. Underlying
iPOJO platform manages service publication and usage. Once a service becomes available,
it automatically creates dependencies between this component instance and all others that
call for the service. Therefore, users only address functionality development and leave
iPOJO to manage non-functional aspects.

9.2.2 ASPF Implementation

As shown in Figure 9.4, unlike the �rst ASPF implementation, a node implementation is
associated to one node instead of onenode implementation component for all nodes of one
cluster. With this design choice, when a new node joins a cluster, a correspondingnode
implementation component instance is dynamically created in thecluster-side ASPF. The
node authority sub-component customizes acluster resulting authorization policy into a
node resulting authorization policy based on its ownnode pro�le.

With the iPOJO platform, we apply the service-oriented approach where each com-
ponent provides a service to be used by another components (see Figure 9.5). Thepolicy
set controller provides a set of potential authorization policies to be selected. Theclus-
ter context monitor provides real-time context information. The adaptation policy engine
uses these information and chooses a most adequate policy �tting the context. This policy
is then broadcasted by thecluster authority to all the node implementation component
instances whose corresponding node is in the cluster. Coordination of these instances
are performed by anode coordinator. All the described modules are implemented in one
OSGi bundle calledcore bundle. Once the core bundle is installed in execution platform,
all these services become available.

To simulate the execution of this framework, we add two supplementary bundles: a
node life-cycle manager bundleand a cluster-level self-protection manager. The node
life-cycle manager bundlemonitors availability of nodes in one cluster. To simplify the
implementation, we use an interface to manually add nodes which simulate node joining in

138 9. Validation of the End-to-end Framework

Figure 9.4: an iPOJO-based ASPF Implementation

the pervasive system. With this simulation, ASPF is able to create newnode implemen-
tation component instances. Thecluster-level self-protection managerserves to launcher
cluster-level self-protection control loop.

9.3 Evaluation of the End-to-End Framework

The self-protection capabilities of the framework (including both ASPF and VSK) were
evaluated in terms of overall response time and resiliency to attacks. All measurements
were performed on a 2.7GHzDELL OptiPlex 740 desktop PC with Linux/Ubuntu 9.04
and 1GB of RAM, on which are run the �rst version of the ASPF implementation and the
VSK emulator described in the previous chapter.

Three authorization policies, DTE, MLS and RBAC, are currently supported, with 10
subjects (threads) and 60 objects (system calls) to model a typical real-time OS environ-
ment, and 3 security levels for the cluster security context. Thenode authority �lters the
cluster resulting authorization policy according to active subjects or objects described in
its node pro�le. Corresponding attribute mappings and rules are loaded inside VSK via a
dedicated recon�guration interface ReconfVSKbeing able to dynamically change security
attributes and rules in the ACM component of VSK.

139

Figure 9.5: ASPF Service-oriented Implementation.

9.3.1 End-to-End Response Time

We measure overall latency to complete a full self-protection loop at the cluster and node
levels. Evaluation results for each step of the loop are shown in Figures 9.6 and 9.7 for
di�erent types of authorization policies.

Figure 9.6: Cluster-Level Self-protection Latencies

In the �rst benchmark, detection of an attack on a cluster of 100 nodes in a steady
state is simulated by a direct update of the cluster security context. In practice, this
step would be performed by an Intrusion Detection System (IDS) such as Snort [7], with
1ms as typical order of magnitude for attack detection and countermeasure initiation.
The next steps are generation of a node-speci�c policy (given times are averaged on the
number of nodes), invoking the node VSK to load a policy, kernel recon�guration with
the new policy, and return to the steady state. Overall latency averaged over di�erent
authorization policies is 33.92ms.

In the second benchmark, attacks are detected by anode context monitor. The next
steps include invoking the VSK, tuning security attributes to adapt to the new security

140 9. Validation of the End-to-end Framework

Figure 9.7: Node-Level Self-protection Latencies

context, and returning to a steady state. Measured overall latency for this adaptation
loop is 1.134ms.

Overall, the adaptation response times seem reasonable, since time between two policy
recon�gurations is typically from a few seconds to one minute, for instance when switching
between wireless networks in di�erent locations. As expected, node-level adaptations are
much lighter than cluster-level recon�gurations. This is in part due to the attribute-based
approach: same authorization rules may be applied, only attributes values being tuned.
For highly dynamic environments, this design makes self-protection more exible, allowing
to follow small variations of context, without regenerating a full authorization policy.

9.3.2 Resilience

Figure 9.8: Benchmarking Self-Protection Capabilities: Principles

To measure e�ectiveness of self-protection, we use a methodology for benchmarking
self-* capabilities of autonomic systems proposed in [39] based on injection of disturbances
(see Figure 9.8). The idea, coming from dependability benchmarks, is to introduce in a
System Under Test (SUT) disturbances in the form of attacks or faults, and to measure
impact on performance workload. This type of benchmark, already used to assess self-
healing abilities, measures how well theSUT adapts to the injected changes in terms of
speed of recovery, impact on performance, etc.

In our case, theSUT is the end-to-end self-protection framework including VSK and
ASPF on which is applied a workload to validate access requests from theexecution space.
We measure impact on throughput (number of requests per second validated by VSK,

141

Figure 9.9: Benchmarking Self-Protection Capabilities: Results

averaged over a sliding sampling time window�) of updating authorization policies to
respond to injected attacks. An attack from a malicious node is simulated by directly
changing the cluster security context at the beginning of an injection slot, and waiting
from the SUT to come back to a steady state. The results are shown in Figure 9.9 for
� = 1ms and � = 0 :16ms, which are about latency value for an end-to-end recon�guration.
The decrease in throughput due to security adaptations depends on the sampling slot
value: 89% for � = 0 :16ms (worst case), but only 15% for � = 1ms (standard situation).
These results show that the system is able to protect itself e�ectively with a reasonable
performance cost. The recovery time is almost immediate for� = 0 :16ms, and about
2msfor � = 1ms. Thus, the system is able to complete successfully its recon�guration
in time which are largely acceptable. These metrics tend to show that ASPF provides
self-protection with minimal impact on system resources.

9.3.3 Security Evaluation

A assessment of security of the framework is also given. Evaluating the quality of the
autonomic response is harder: does a system remain secure after a security recon�guration?
To avoid rogue third parties to directly update node authorization policies inside VSK, a
single recon�guration interface (ReconfVSK) is introduced as unique entry point to control
VSK. This interface remains internal to a node, to avoid policy update requests coming
from network aiming to lower node security settings.

ASPF behaves as a distributed authorization management plane which guarantees
complete mediation over this interface: all authorization policy modi�cations may only
be issued byNode Authority, Node Coordinator, and Cluster Authority components along
a trusted path. Links between node-side and cluster-side ASPF components are also
assumed to be secure, authenticated channels to avoidman-in-the-middle attacks or rogue
cluster authorities.

Finally, a MMU hardware mechanism in the node (see Chapter 8) prevents circumvent-

142 9. Validation of the End-to-end Framework

ing the Node Adapter component. These features qualify ASPF as a strongly protected
management plane over VSK authorization mechanisms.

9.4 Summary

Two implementations of the Autonomic Security Policy Framework (ASPF) are �rstly
elaborated in this chapter. Section 9.1 presents an implementation based on JAVA, and
Section 9.2 describes an ASPF implementation realized by theOSGi/iPOJO platform
which enables a more exible and dynamic control. Section 9.3 illustrates e�ciency and
resilience of the �rst implementation.

143

Chapter 10

Cloud Computing Validation

10.1 Cloud computing Environments

In cloud computing, computing services is migrating away from local machines. Compu-
tation and storage are concentrated in remote data centers. Hardware and software of
infrastructure are self-organized to achieve cloud services which o�er both end-users ad-
vantages in terms of mobility and collaboration, and improve scalability and availability
of asked services. Principle behind is computing capability allocation for IT systems.

Since such a system consists of a collection of interconnectedVirtual Machines (VMs)
which are distributed and dynamically provisioned, protection of cloud infrastructure for
con�dentiality, privacy or availability becomes an open issue. As various cloud services
may be built on the same infrastructure and each one is adopted with its own protection
mechanisms, a customized and recon�gurable security framework is demanded for diversity
of security requirements. During construction of a service, an end-user should �rst declare
his security requirements such as data con�dentiality, user privacy and system availability.
Furthermore, each service has its own security policy depending on their settings, some
data sensitive cloud services need additional protection supports. Based on all these
requirements, a security model is needed to realize self-protection through all the levels
from hardware, OS, middleware to application. Once a service is constructed, it needs to
be monitored at run-time and can be self-adapted in following its context evolution.

In this chapter, we validate the framework design by showing through a short case
study that ASPF is generic enough to be applicable to the cloud computing infrastructure,
other types of large-scale systems than simply pervasive networks. In the sequel, we
focus on cloud computing infrastructures. We �rst recall some main security issues of
those environments (Section 10.2), highlighting need for self-protection mechanisms. We
then present the targeted self-protection scenarios (Section 10.3). We �nally show how
the ASPF core model (Section 10.4), extended model (Section 10.5), and authorization
architecture (Section 10.6) may be re�ned to realize and coordinate several self-protection
loops in the cloud setting.

144 10. Cloud Computing Validation

10.2 Towards Self-Protecting Clouds

Cloud computing raises many security challenges [16], notably due to vulnerabilities in-
troduced by virtualization of computing resources, and unclear e�ectiveness of traditional
security architectures in fully virtualized networks. One of the main issues is how to
guarantee strong resource isolation, both on the computing and networking sides in a
multi-tenant environment.

Few solutions are available, usually addressing only one of the two aspects [28, 122].
The extremely short response times required to activate system defenses e�ciently, and the
impossibility of manual security maintenance call for a exible, dynamic, and automated
security management of cloud infrastructures, which is clearly lacking today. A framework
enabling self-protection of a cloud infrastructure could provide answers to some of those
challenges, making ASPF an interesting candidate to reach this objective.

In the cloud, virtualization has two facets:

� Computing resourcesare abstracted away from the hardware in the form of VMs
isolated by a hypervisor on each server of a data center. Threats come at two levels
of granularity: at the host level, through weaknesses either in the VM (guest OS) or
the hypervisor; and at the cloud-level, mainly in the form of network-level attacks
found in traditional security environments (e.g., DoS). An autonomous security man-
agement framework for the cloud should thus put in place self-protection loops at
each of those two levels.

� Network resources(routers, �rewalls,...) themselves become virtualized, e.g., as vir-
tual appliances. Network zones where tra�c could be separated physically or logi-
cally using VLANs or VPNs are replaced bylogical security domainswhich may have
exible boundaries. It is thus critical to be able to manage security autonomously
in such \islands". The security management framework should thus also provide
self-protection abilities in logical security domains, calledVSBs (Virtual Security
Domains) in the sequel.

10.3 Cloud Self-Protection Scenario

We explore the realization ofadaptable quarantine zones: a number of VMs considered as
compromised are isolated from the data center temporarily. Con�nement may be lifted
when the risk has decreased, and the VMs not considered hostile any more.

We assume that on each physical machine of the data center is installed a �rewall com-
ponent which allows to control strictly communications between VMs: an authorization
policy speci�es which interactions are allowed/forbidden. This virtual �rewall may for
instance be located in the domain 0 of a Xen hypervisor. Additional �rewalls may also be
placed at the cloud level to control inter-machine communications. The authorization pol-
icy is dynamically recon�gurable according to the estimated level of risk. Self-protection of
the virtualized infrastructure then consists in adapting this set of policies according to the
execution context of the data center, more or less hostile. Depending on alerts generated

145

Figure 10.1: An Adaptable Quarantine Zone.

from an IDS (local or distributed in the data center), the most adequate authorization
policy is autonomously selected, and installed in the di�erent �rewalls to realize hardened
control over VM communications, and enforce the quarantine zone (see Figure 10.1).

In what follows, the quarantine zone is implemented at three levels of granularity: (1)
within in physical server (machine-level self-protection); (2) within a VSB (logical self-
protection); and (3) at the cloud level (system-level self-protection). The next sections
describe how the ASPF core and extended models may be re�ned to realize those 3 self-
protection loops.

10.4 ASPF Core Model

10.4.1 Resource Model

This model describes the organization of a cloud infrastructure (see Figure 10.2). As for
the pervasive case, entities derive from a genericResourceclass.

� The System class represents the overall cloud infrastructure to be protected, physi-
cally composed of a set of machines and logically divided into severalVSBs. Both
physical and logical isolation are realized throughAuthorization Policies.

� A Machine is a server in the data center. It hosts several VMs, isolated by an
hypervisor, which may create, destroy, or migrate VMs on demand.

� VM is the �rst-class architectural component of the cloud. It runs a guest OS on
top of the hypervisor, which manages VM resources.

� VSB is a logical unit of VM isolation, e.g. to compartimentalize di�erent services.
VMs belonging to a VSB may be distributed on several machines. VSBs may be
strictly isolated between each other using network-level mechanisms.

146 10. Cloud Computing Validation

Figure 10.2: Cloud Resource Model.

� Local VSB contains all VMs of a VSB which reside on a given machine. It realizes
local isolation from VMs of other VSBs in the machine. VM isolation at the VSB
level is achieved by collaboration between all the corresponding Local VSBs.

10.4.2 Security Model

Figure 10.3: Cloud Security Model.

As for the pervasive case, access to resources is controlled by authorization policies.
However, in the cloud, the security model features several types of policies since the
resource model is richer (see Figure 10.3).

147

� The system authorization policy contains all access permissions to cloud resources.
It will be enforced by the system ACM component at the cloud level.

� The VSB authorization policy contains access permissions in the scope of a VSB: it
controls VM access at a logical level (the VSB security domain), regardless of the VM
physical location. If we assume that access between two VMs belonging to di�erent
VSBs is always denied (strict isolation between VSBs), thesystem authorization
policy may be viewed as the collection ofVSB authorization policies. Policies in
each VSB may be speci�ed in di�erent authorization models (e.g., DTE, MLS, or
RBAC), as each VSB is a security island where policies may be administrated in a
speci�c manner.

� The local VSB authorization policy is the projection of the VSB authorization policy
inside a machine, and thus corresponds to two types of situations: VMs are co-
located on the same machine; or VMs reside in di�erent machines. In the former
situation, access may be directly validated by at the machine-level. The latter calls
for inter-machine collaboration.

� The machine authorization policy is the collection of local VSB authorization policies
for all Local VSBs in the machine. Due to possible heterogeneity of authorization
models between VSBs, in the general case, themachine authorization policy will be
a set of local VSB authorization policies speci�ed in di�erent models. This policy
will be enforced by the machine ACM component residing on each machine.

In our cloud model, to control inter-VM communications, policy enforcement is per-
formed both at the machine level and the system level. We describe next a simple solution,
other alternatives being possible.

If the VMs reside on the same machine, themachine ACM applies themachine autho-
rization policy to validate the request. Since by default the VMs reside in the same VSB,
validation is straightforward by enforcing the corresponding local VSB authorization pol-
icy. However, sincelocal VSB authorization policies may be described in di�erent models,
a policy-neutral solution is required for access control enforcement at the machine level.
Using G-ABAC for policy speci�cation allows to achieve that goal as in the pervasive case.

If the VMs reside in di�erent machines, the machine ACM of the requesting VM
checks in its machine authorization policy whether this VM has permission to access an
external machine. Control is then transferred to the system ACM which checks in the
System Authorization Policy whether inter-machine communication to the target VM is
allowed. Finally, the machine ACM of the target VM checks that requests to this VM
coming from a remote machine are allowed. Such a three-step validation of requests allows
authorization to be more e�cient and scalable (local policies do not deal with inter-machine
communications) and to check consistency of distributed policies at the system level.

148 10. Cloud Computing Validation

10.5 Extended Models

The extended models describe the realization of several self-protection loops at di�erent
levels of granularity in the cloud, to address threats targeted at a machine, a logical security
domain (i.e., a VSB), or the cloud itself by updating the corresponding authorization
policies.

10.5.1 Machine Extended Model

Figure 10.4: Machine Extended Model.

If a malicious VM compromises the hypervisor [123, 120], the threat may spread to all
the VMs residing on the machine, which may need to be con�ned. Defeating such attacks
is the objective of this self-protection loop (Figure 10.4).

When an attack is detected by themachine context monitor, the machine self-protection
manager applies amachine self-protection governance policyto adapt the machine autho-
rization policy to the current situation, policy which will be propagated to the authoriza-
tion policies of eachlocal VSB on the machine. At the same time, the manager collaborates
with the system self-protection managerto determine whether further counter-measures
should be triggered at the cloud level.

149

10.5.2 VSB Extended Model

Figure 10.5: VSB Extended Model.

This self-protection loop (Figure 10.5) addresses a wider scope: it aims to defeat at-
tacks which have spread into a logical security domain, e.g., by isolating compromised
VMs. The VSB authorization policy is updated to �t the evolving VSB security context {
those modi�cations are propagated to the system authorization policy to maintain policy
consistency. A self-con�guration loop is then launched to re�ne this policy into corre-
sponding local VSB authorization policies { the modi�cations being propagated to the
machine authorization policies.

10.5.3 System Extended Model

Two events may launch the system self-protection loop (Figure 10.6): detection of a cloud-
level attack through system context monitoring; or a request from amachine self-protection
manager for increased counter-measures, faced with an anomaly which cannot be handled
at the machine level alone. Regarding self-protection, thesystem self-protection manager
tunes the system authorization policy following the run-time adaptation strategy de�ned
in the system self-protection governance policy. This update is propagated towards the
relevant VSB authorization policies. As in a pervasive case, on each machine, a self-
con�guration mechanism then translates eachVSB authorization policy into a local VSB
authorization policy, �nally updating the machine authorization policy.

150 10. Cloud Computing Validation

Figure 10.6: System Extended Model.

10.6 Authorization Architecture

An authorization architecture called SECloud was de�ned to implement the previous self-
protection models. SECloud re�nes the ASPF authorization architecture. As shown in
Figure 10.7, authorization validation is the result of a collaboration betweenSystem and
Machine ACMs. SECloud consists of a number of server-side components to controlsys-
tem, VSB, and local VSB functionalities, while some machine-side components essentially
apply authorization policy adaptation decisions taken at the other end-point, and control
access among local VMs. Such an architecture is currently under implementation.

10.7 Summary

This chapter applies the same design approach in the setting of cloud computing. The
Cloud Resourcemodel featured a cloud infrastructure and the Cloud Security model de-
scribed authorization validation of such an infrastructure. The extended models showed
the organization of software components. Finally, theSECloud authorization architecture
illustrated the collaboration of such components to realize self-protection.

151

Figure 10.7: The SECloud Authorization Architecture.

152 10. Cloud Computing Validation

153

Chapter 11

Conclusion

11.1 Summary of Contributions

This thesis applies autonomic computing to conventional authorization infrastructures.
We illustrate that autonomic computing is not only useful for managing security infras-
tructure complexity, but also to mitigate continuous evolution threats. However, its appli-
cation to pervasive systems is identi�ed by a collection of design building blocks, ranging
from an overall security architecture to the design of the OS embedded on the device. In
this thesis, we propose:

� A three-layer abstract architecture for self-protection: a three-layer self-protection
architecture is de�ned. A lower execution spaceprovides a running environment for
applications, a control plane supervises theexecution space, and an autonomic plane
guides the control behavior of thecontrol plane in taking into account system status,
risk evolution, administrator strategy and user preferences.

� An attribute-based access control approach: the proposed approach (called Generic
Attribute-Based Access Control) applies attribute-based formulization for authoriza-
tion which improves both policy-neutrality to specify a wide range of access control
policies and exibility to enable �ne-grained manipulations on policies.

� A policy-based framework for authorization to realize autonomic security manage-
ment: the policy-based approach has shown its advantages when handling complex
and dynamic systems. An Autonomic Security Policy Framework (ASPF) provides
a consistent and decentralized solution to administer authorization policies in large-
scale distributed pervasive systems. The integration of autonomic features also en-
hances user-friendliness and context-awareness.

� A terminal-side security kernel for access control enforcement: the distributed au-
thorization policies de�ned previously are enforced by an OS-level authorization ar-
chitecture. This e�cient OS kernel called VSK controls resource access in a dynamic
manner to reduce authorization overhead. This dynamic mechanism also enables to
support di�erent authorization policies.

154 11. Conclusion

� A Domain-Speci�c Language (DSL) for adaptation policy speci�cation: all adapta-
tions of our end-to-end self-protection framework are controlled by high-level strate-
gies called adaptation policies. A DSL to specify such policies is given which takes
into account several aspects for adaptation decisions.

Implementations of the terminal-side OS and of the network-side server show the fea-
sibility to realize the proposed design for self-protection and ful�ll requirements such as
exibility of run-time control, e�ciency of protection mechanism, and integration of au-
tonomic functions. The results of evaluations (both in terms of local micro-benchmarks
and end-to-end macro-benchmarks) show that such a framework provides strong and yet
exible security while still achieving good performance, making it applicable to build self-
protected pervasive systems.

Such a framework achieves self-protection by adapting authorization policies accord-
ing to the context evolution, system status, administrator strategies, and user preferences.
However, the implementation of the DSL for policy adaptation is still missing. Currently,
a DSL framework called yTune is under development, including an editor and a parser
for speci�cation and checking of di�erent DSLs. Ongoing work is focused around imple-
menting the described re�nement mechanisms for the self-protection DSL in the yTune
parser, and coupling the DSL toolchain with the ASPF self-protection framework. In the
future, we also plan to enhance the DSL with more complete and realistic taxonomies for
security attacks and countermeasures, for instance through dedicated security ontologies
which may be coupled with the corresponding security components to detect intrusions
and perform reactions.

From the security perspective, the memory isolation is assumed to be achieved by
some MMU-like mechanisms. Existing MMU solutions guarantee strict isolation for a
closed system where no new applications are dynamically added. For highly open systems
such as pervasive systems, a exible and dynamically recon�gurable MMU solution is still
lacking.

11.2 Perspectives

The initial objective of this thesis was to realize an end-to-end self-protection framework
for pervasive systems. The evaluation results show the feasibility and e�ciency of our
proposition. Future works address applications of our framework to other types of IT
systems or extend the framework to other concerns than security.

11.2.1 Self-protection for Other Types of IT Systems

A pending question is whether this self-protection framework can be used to protect other
types of IT systems than simply pervasive systems. Current IT systems have several
tendencies like increasing complexity, continuous evolution and high administration over-
head. Existing security solutions usually focus on one speci�c aspect without a global
control over the whole system. Moreover, administrators need to manually con�gure the
protection mechanisms which leads to a high overhead and may induce disfunctions and
dramatic losses. We believe self-protection should be an inevitable design approach to
manage security in future emerging IT systems.

155

To extend our framework to such IT systems, the three layer self-protection architec-
ture should be applied. The protection system needs a clear separation between executing
applications, control mechanisms, and autonomic functions to mitigate complexity. Fur-
thermore, the policy-based approach improves the enforcement of adaptation decisions. All
security updates can be achieved through policies leaving the infrastructure unchanged.
Run-time control is another important design challenge since the adaptation decision af-
fects control mechanisms. This modi�cation of control mechanisms need to be propagated
to running applications. Unfortunately, existing IT systems hardly provide dynamic re-
con�guration solutions. This roadblock will need to be overcome in the future.

For example, the cloud computing validation is a �rst step towards applying the same
framework to cloud infrastructures. Our �rst experiments show that the server-side policy-
based framework can be reused. Authorization policies are customized according to each
hypervisor and are delivered through the cloud infrastructure to control local access. How-
ever, the terminal-side framework has a dependency on the underlying platforms. The
terminal-side prototype of the initial framework was implemented on the Fractal/Think
framework in which dynamic recon�guration can be easily achieved. Unfortunately, in a
cloud infrastructure, each service is equipped with its own platform. For the testedXen
platform, dynamic recon�guration is hardly addressed, and we cannot dynamically create
or remove bindings to manage access permissions. One solution is to use static hooks by
which each access request should be checked. This framework is currently under implemen-
tation. Another promising solution of dynamic recon�guration is to re-implement existing
IT systems on a component-based platform. Component-based software engineering has
proven as a valuable approach to increase manageability and dynamic recon�guration.
The re-implementation of legacy IT systems enables encapsulation of applications into
components. Interfaces and controllers treating speci�c functionalities may be inserted to
each component. However, this solution calls for huge workload.

11.2.2 Framework Extensions to other Concerns

Another possible extension of this work is to apply the same approach for other aspects
than security, e.g., QoS or energy e�ciency management. We believe that a three-level
architecture should still be applicable and that the policy-based approach may also be
used to guide behaviors. Instead of authorization policies, other types of policies need to
be applied.

Our current self-protection prototype uses authorization polices for thecontrol plane
and self-protection adaptation policies for the autonomic plane. In order to extend the
framework to other aspects, we need to specify other classes of control policies. For
instance, for QoS improvement, some kinds of QoS policies will be integrated in thecontrol
plane. The adaptation policies of theautonomic plane should thus take into account other
aspects to produce adaptation guidelines. This asks for a generic DSL combining multiple
aspects. On the other hand, run-time control always remains as a roadblock. Some
adaptations call for supplementary mechanisms, e.g., changing communication protocols,
or replacing coding module at the hardware level. All these require coarse- or �ne-grained
recon�guration mechanisms which is missing.

156 11. Conclusion

157

Bibliography

[1] Apache Felix. http://felix.apache.org/site/index.html.

[2] eCos. http://ecos.sourceware.org/.

[3] Equinox. http://www.eclipse.org/equinox/.

[4] Intel Active Management Technology white paper. http://www.intel.com/go/iamt .

[5] Open Services Gateway initiative. http://www.osgi.org/.

[6] Privacy and Identity Management for Europe (PRIME). http:://www.prime-
project.eu/.

[7] Snort: a Network Intrusion Prevention and Detection System.
http://www.snort.org/.

[8] Spring Dynamic Modules for OSGi Service Platforms.
http://www.springsource.org/osgi.

[9] RFC1035: Domain Names - Implementation and Speci�cation. 1987.
http://tools.ietf.org/html/rfc1035.

[10] Workshop on Logical Foundations of an Adaptive Security Infrastructure (WOL-
FASI). In In conjunction with Workshop on Foundations on Computer Security
(FCS), 2004.

[11] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang,
L. Zhen, and M. Parashar. AutoMate Enabling Autonomic Applications on the
Grid. In Autonomic Computing Workshop, pages 48{57, 2003.

[12] J-M. Agosta, J. Chandrashekar, D-H. Dash, M. Dave, D. Durham, H. Khosravi,
H. Li, S. Purcell, S. Rungta, R. Sahita, U. Savagaonkar, and E-M. Schooler. Towards
Autonomic Enterprise Security: Self-defending Platforms, Distributed Detection,
and Adaptive Feedback. Intel Technology Journal, 10(4), 2006.

[13] D. Agrawal, K-W. Lee, and J. Lobo. Policy-based Management of Networked Com-
puting Systems. Communication Magazine, IEEE, 43(10):69{75, 2005.

158 BIBLIOGRAPHY

[14] M. Alia, M. Lacoste, R. He, and F. Eliassen. Putting Together QoS and Security in
Autonomic Pervasive Systems. InInternational Symposium on QoS and Security in
Autonomic Pervasive Systems (Q2SWinet), 2010.

[15] M. Aljnidi and J. Leneutre. ASRBAC: A Security Administration Model for Mobile
Autonomic Networks (MAutoNets). In Data Privacy Management and Autonomous
Spontaneous Security, volume 5939/2010, pages 163{177. 2010.

[16] Cloud Security Alliance. Top Threats to Cloud Computing.
http://www.cloudsecurityalliance.org/topthreats.html .

[17] S-R-J. Ames, M. Gasser.M, and R-R. Schell. Security Kernel Design and Implemen-
tation: An Introduction. Computer, 16(7):14{22, 1983.

[18] E. Amoroso. Fundamentals of Computer Security Technology.Prentice-Hall, Engle-
wood Cli�s, New Jersey, 1994.

[19] A. Anderson. XACML pro�le for role based access control (RBAC). OASIS Access
Control TC committee, 2004.

[20] M. Anne, R. He, T. Jarboui, M. Lacoste, O. Lobry, G. Lorant, M. Louvel, J. Navas,
V. Olive, J. Polakovic, M. Poulhies, J. Pulou, S. Seyvoz, J. Tous, and T. Watteyne.
Think: View-Based Support of Non-Functional Properties in Embedded Systems.
In 6the IEEE International Conference on Embedded Software and Systems, 2009.

[21] C-A. Ardagna, S-D. Capitani di Vimercati, S. Paraboschi, E. Pedrini, and P. Sama-
rati. An XACML-based Privacy-centered Access Control System. In 1st ACM
workshop on Information security governance, pages 49{58, 2009.

[22] M. Auslander, D. Dasilva, D. Edelsohn, O. Krieger, M. Ostrowski, B. Rosenburg,
R-W. Wisniewski, and J. Xenidis. K42 Overview. Technical report, 2002.

[23] S. Ayed and N. Cuppens. An Integrated Model for Access Control and Information
Flow Requirements. In Asian Computing Science Conference Focusing on Secure
Software and Related Issues (ASIAN), 2007.

[24] L. Badger, D-F. Sterne, D-L. Sherman, K-M. Walker, and S-A. Haghighat. Practical
Domain and Type Enforcement for Unix. In IEEE Symposium on Security and
Privacy, page 66, 1995.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. War�eld. Xen and the Art of Virtualization. In 9th ACM symposium
on Operating Systems Principles, pages 164{177, 2003.

[26] A. Baumann, J. Kerr, D-D. Silva, O. Krieger, and R-W. Wisniewski. Module Hot
Swapping for Dynamic Update and Recon�guration in K42. In 6th Linux Conference
Au, 2005.

159

[27] B-E. Bell and L. Lapadula. Secure Computer System Uni�ed Exposition and Multics
Interpretation. Technical report, 1976.

[28] S. Berger, R. Caceres, D. Pendarakis, R. Sailer, E. Valdez, R. Perez, W. Schildhauer,
and D. Srinivasan. TVDc Managing Security in the Trusted Virtual Datacenter.
ACM SIGOPS Operating Systems Review, 42(1):40{47, 2008.

[29] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. Mcnamee, S. Savage, and E.G.
Sirer. SPIN: An Extensible Microkernel for Application Speci�c Operating System
Services. Technical report, 1994.

[30] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M.E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility Safety and Performance in the SPIN
Operating System. In 5th ACM Symporium on Operating Systems Principles, pages
267{283, 1995.

[31] E. Bertino, B. Catania, M-L. Damiani, and P. Perlasca. GEO-RBAC: A Spatially
Aware RBAC. ACM Transactions on Information and System Security (TISSEC),
10, 2007.

[32] K-J. Biba. Integrity Considerations for Secure Computer System. Technical report,
1977.

[33] M. Bishop. Introduction to Computer Security. Addison-Wesley Professional, 2004.

[34] C. Blanco, J. Lasheras, R. Valencia-Garcia, E. Fernandew-Medina, A. Toval, and
M. Piattini. A Systematic Review and Comparison of Security Ontologies. In 3rd
International Conference on Availability, Reliability and Security , pages 813{820,
2008.

[35] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In1996
IEEE Symposium on Security and Privacy, page 164, 1996.

[36] G. Boudol and M. Kolundzija. Access Control and Declassi�cation. COMPUTER
NETWORK SECURITY Communications in Computer and Information Science ,
1:85{98, 2007.

[37] J. Bourcier. Auto-Home: A Framework for Autonomic Pervasive Applications. PhD
thesis, University JOSEPH FOURIER - Ecole Doctorale Mathematiques, Sciences
et Technologies de l'Information, Informatique, 2008.

[38] L. Broto, D. Hagimont, P. Stolf, N. Depalma, and S. Temate. Autonomic Man-
agement Policy Speci�cation in Tune. In Symposium on Applied Computing, pages
1658{1663, 2008.

[39] A-B. Brown and C. Redlin. Measuring the E�ectiveness of Self-Healing Autonomic
Systems. In2nd International Conference on Autonomic Computing, pages 328{329,
2005.

160 BIBLIOGRAPHY

[40] A-W. Brown and K-C-V. Wallnau. Engineering of Component-Based Systems. In
Engineering of Complex Computer System, pages 414{422, Montreal, Canada, 1996.

[41] E. Bruneton, T. Coupaye, M. Leclercq, and V. Quema. The Fractal Component
Model and its Support in Java. In Software: Practice and Experience, volume 36,
pages 1257{1284. 2006. Special Issue: Experiences with Auto-adaptive and Recon-
�gurable Systems.

[42] A. C-Myers. JFlow: Practical Mostly-Static Information Flow Control. In 26th ACM
Symp. on Principles of Programming Languages (POPL), pages 228{241, 1999.

[43] J. Camenisch and T. Grob. E�cient Attributes for Anonymous Credentials. In 15th
ACM conference on Computer and Communications Security, pages 345{356, 2008.

[44] H. Cervantes and R-S. Hall. Autonomous Adaptation to Dynamic Availability Using
a Service-Oriented Component Model. In26th International Conference on Software
Engineering, pages 614{623, 2004.

[45] O. Chebaro, L. Broto, J-P. Bahsoun, and D. Hagimont. Self-TUNe-ing of a J2EE
Clustered Application. In 6th IEEE Conference and Workshops on Engineering of
Autonomic and Autonomous Systems, pages 23{31, 2009.

[46] S-W. Cheng, A-C. Huang, D. Garlan, B. Schmerl, and P. Steenkiste. Rainbow
Architecture-based Self-adaptation with Reusable Infrastructure. In 1st Interna-
tional Conference on Autonomic Computing, volume 0, pages 276{277, 2004.

[47] D-M. Chess, C-C. Palmer, and S-R. White. Security in an Autonomic Computing
Environment. IBM Systems Journal, 42(1):107{118, 2003.

[48] M. Clarke and G. Coulson. An Architecture for Dynamically Extensible Operating
Systems. In4th International Conference on Con�gurable Distributed Systems, page
145, 1998.

[49] B. Claudel, N. DePalma, R. Lachaize, and D. Hagimont. Self-protection for Dis-
tributed Component-Based Applications. In Stabilization, Safety, and Security
of Distributed Systems, volume 4280/2006 ofLecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2007.

[50] C. Coma, N. Cuppens, F. Cuppens, and A.R. Cavalli. Context Ontology for Secure
Interoperability. In 3rd International Conference on Availability, Reliability and
Security, 2008.

[51] IBM Autonomic Computing. An Architectural Blueprint for Autonomic Computing.
White Paper, 2004.

[52] R-P. Cook and I. Lee. DYMOS: A Dynamic Modi�cation System. In Symposium
on High-level debugging, pages 201{202, Paci�c Grove, Calfornia, 1983.

161

[53] M-J. Covington, M-J. Moyer, and M. Ahamad. Generalized Role-Based Access
Control for Securing Future Applications. In National Information Systems Security
Conference, 2000.

[54] M.J. Covington, V. Long, S. Srinivasan, A.K. Dev, M. Ahamad, and G.D. Abowd.
Securing Context-Aware Applications Using Environment Roles. In 6th ACM Sym-
posium on Access Control Models and Technologies, pages 10{20, 2001.

[55] J. Crampton and G. Loizou. Administrative Scope and Role Hierarchy Operations.
In 7th ACM symposium on Access control models and technologies, pages 145{154,
2002.

[56] J. Crampton and G. Loizou. Administrative Scope A Foundation for Role-based
Administrative Models. ACM Transactions on Information and System Security
(TISSEC) , 6(2):201{231, 2003.

[57] F. Cuppens, S. Gombault, and T. Sans. Selecting Appropriate Counter-Measures in
an Intrusion Detection Framework. In 17th IEEE Workshop on Computer Security
Foundations, page 78, 2004.

[58] F. Cuppens and A. Miege. AdOrBAC An Administration Model for Or-BAC. Com-
puter Systems Science and Engineering (CSSE'04), 19, 2004.

[59] N. Cuppens, F. Cuppens, J-E. Lopew de Vergara, E. Vazquez, J. Guerra, and H. De-
bar. An Ontology-based Approach to React to Network Attacks. International
Journal of Information and Computer Security, 3(3/4):280{305, 2009.

[60] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Speci�cation
Language. In Workshop on Policies for Distributed Systems and Networks, 2001.

[61] S. Davy, K. Barrett, S. Balasubramaniam, S. Meer, and J. Strassner. Policy-based
Architecture to Enable Autonomic Communications: A Position Paper. In Interna-
tional Conference On Emerging Networking Experiments And Technologies, 2006.

[62] H. Debar, D. Curry, and B. Feinstein. The Intrusion Detection Message Exchange
Format. RFC 4765, 2006.

[63] H. Debar, Y. Thomas, F. Cuppens, and N. Cuppens. Enabling Automated Threat
Response through the Use of a Dynamic Security Policy. Journal in Computer
Virology, 3(3):195{210, 2007.

[64] H. Debar, Y. Thomas, N. Cuppens, and F. Cuppens. Using Contextual Security
Policies for Threat Response. In3rd International Conference on Detection of In-
trusions and Malware Vulnerability Assessment, 2006.

[65] A-V. Deursen, P. Klint, and J. Visser. Domain-Speci�c Languages: An Annotated
Bibliography. ACM SIGPLAN Notices , 35(6):26{36, 2000.

162 BIBLIOGRAPHY

[66] S. Dobson, S. Denazis, A. Femandez, D. Gaiti, F. Massacci, P. Nixon, F. Sa�re,
N. Schmidt, and F. Zambonelli. A Survey of Autonomic Communication. ACM
Transaction on Autonomous and Adaptive Systems, 1(2):223{259, 2006.

[67] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-Time Dynamic Linking for
Reprogramming Wireless Sensor Networks. In4th international Conference on Em-
bedded Networked Sensor Systems, pages 15{28, 2006.

[68] P. Efstathopoulos, M. Krohn, S. Vanebogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazieres, F. Kaashoek, and R. Mrris. Labels and Event Processes in the Asbestos
Operating System. In 20th ACM Symposium on Operating Systems Principles, vol-
ume 17-30, 2005.

[69] D-R. Engler, M-F. Kaashoek, and J. O'Toole. Exokernel: an Operating System Ar-
chitecture for Application-level. In 15th ACM Symposium Operating System Prin-
ciples, pages 251{268, 1995.

[70] G. Faden. Reconciling CMW Requirements with Those of X11Applications. In14th
Annual National Computer Security Conference, 1991.

[71] J-P. Fassino, T. Jarboui, and M. Lacoste. An Access Control System and Method,
A Component-Based Kernel Including It, and Its Use. US Patent Application n
11/792,900, 2008.

[72] J-P. Fassino, J-B. Stefani, J. Lawall, and G. Muller. Think: A Software Framework
for Component-Based Operating System Kernels. InUSENIX Annual Technical
Conference, pages 73{86. USENIX Association, 2002.

[73] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed
NIST Standard for Role-Based Access Control.ACM Transactions on Information
and System Security, 4(3):224{274, 2001.

[74] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The Flux OSKit A
Substrate for Kernel and Language Research. In16th ACM symposium on Operating
systems principles, pages 38{51, 1997.

[75] A-G. Ganek and T-A. Corbi. The Dawning of the Autonomic Computing Era. IBM
Systems Journal, 41(1):5{18, 2003.

[76] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and S. Preda. MIRAGE: A
Management Tool for the Analysis and Deployment of Network Security Policies. In
3rd International Workshop on Autonomous and Spontaneous Security, 2010.

[77] S. Godik and T. Moses. OASIS eXtensible Access Control Markup Language
(XACML) Version 2.0 OASIS Standard. OASIS Standard, 2005.

[78] R. Grimm and B.N. Bershad. Separating Access Control Policy, Enforcement, and
Functionality in Extensible Systems. ACM Transactions on Computer Systems,
19(1):36{70, 2001.

163

[79] S-E. Hallyn and P. Kearns. Domain and Type Enforcement for Linux. In4th annual
Linux Showcase Conference, volume 4, pages 15{15, 2000.

[80] Z. Hayat, J. Reeve, and C. Boutle. Ubiquitous Security for Ubiquitous Computing.
Information Security Tech. Report , 12(3):172{178, 2007.

[81] R. He, M. Lacoste, and J. Leneutre. An OS Architecture for Device Self-protection.
In 11th International Symposium on Stabilization, Safety, and Security of Distributed
Systems, Lyon, 2009.

[82] R. He, M. Lacoste, and J. Leneutre. A Policy Management Framework for Self-
protection of Pervasive Systems. In6th International Conference on Autonomic and
Autonomous Systems, pages 104{109, 2010.

[83] R. He, M. Lacoste, and J. Leneutre. Virtual Security Kernel: A Component-Based
OS Architecture for Self-Protection. In 3rd IEEE International Symposium on Trust,
Security and Privacy for Emerging Applications, 2010.

[84] J. Helander and A. Forin. MMLite: A Highly Componentized System Architecture.
In 8th ACM SIGOPS European workshop on Support for Composing Distributed
Applications, pages 96{103, 1998.

[85] J-J. Hellerstein. Self-Managing Systems: A Control Theory Foundation. In29th
Annual IEEE International Conference on Local Computer Networks, 2004.

[86] M-C. Huebscher and J-A. McCann. A Survey of Autonomic Computing{Degrees,
Models, and Applications. ACM Computing Surveys (CSUR), 40(3), 2008.

[87] P. Inverardi and M. Tivoli. The Future of Software Adaptation and Dependability.
Software Engineering, 5413/2009:1{31, 2009.

[88] S. Jajodia, P. Samarati, and V-S. Subrahmanian. A Logical Language for Expressing
Authorizations. IEEE Symposium on Security and Privacy, 0:31{42, 1997.

[89] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miege, C. Saurel, and G. Trouessin. Organization Based Access Control. In4th
IEEE International Workshop on Policies for Distributed Systems and Networks,
2003.

[90] J-O. Kephart and D-M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41{50, 2003.

[91] J-O. Kephart and W-E. Walsh. An Arti�cial Intelligence Perspective on Autonomic
Computing Policies. In 5th IEEE International Workshop on Policies for Distributed
Systems and Networks, pages 3{12, 2004.

[92] A. Kim, J. Luo, and M. Kang. Security Ontology for Annotating Resources. In
International Conference on Ontologies, Databases, and Application of Semantics
(ODBASE) , 2005.

164 BIBLIOGRAPHY

[93] O. Krieger, M. Auslander, B. Rosenburg, R-W. Wisniewski, J. Xenidis, D. Da, S-M.
Ostrowski, M. Butrico, M. Mergen, A. Waterland, and V. Uhlig. K42: Building a
Complete Operating System. InEuroSys Conference, pages 133{145, 2006.

[94] I. Kuz, Y. Liu, I. Gorton, and G. Heiser. CAmkES: A Component Model for Secure
Microkernel-Based Embedded Systems.Journal of Systems and Software, 80(5):687{
699, 2006.

[95] M. Lacoste, T. Jarboui, and R. He. A Component-Based Policy-Neutral Architecture
for Kernel-Level Access Control. Annals of Telecommunications, 64:121{146, 2009.

[96] M. Lacoste, G. Privat, and F. Ramparany. Evaluating Con�dence in Context for
Context-Aware Security. In Ambient Intelligence, volume 4794/2007 ofLecture Notes
in Computer Science, pages 211{229. Springer Berlin / Heidelberg, 2007.

[97] B-W. Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18{24,
1974.

[98] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnam, and T. Freeman. A Flexi-
ble Attribute Based Access Control Method for Grid Computing. Journal of Grid
Computing, 7:169{180, 2009.

[99] H-M. Levy. Capability- and Object-based System Concepts. InCapability-based
Computer System, page 250. 1984.

[100] Y-T. Lim, P-C. Cheng, J-A. Clark, and P. Rohatgi. Policy Evolution with Gram-
matical Evolution . In Simulated Evolution and Learning, volume 5361, pages 71{80.
2008.

[101] S-B. Lipner. Non-discretionary Controls for Commercial Applications. In IEEE
Symposium on Security and Privacy, pages 2{10, 1982.

[102] M. Litoiu, M. Woodside, and T. Zheng. Hierarchical Model-based Autonomic Con-
trol of Software Systems. In Workshop on the Design and Evolution of Autonomic
Application Software, pages 1{7, 2005.

[103] O. Lobry, J. Navas, and J-P. Babau. Optimizing Component-Based Embedded
Software. In 33rd Annual IEEE International Computer Software and Applications
Conference, volume 02, pages 491{496, 2009.

[104] P. Loscocco and S. Smalley. Integrating Flexible Support for Security Policies into
the Linux Operating System. In USENIX Annual Technical Conference, pages 29{
42, 2001.

[105] D-A. Menasce and J-O. Kephart. Guest Editors' Introduction: Autonomic Com-
puting. IEEE Internet Computing , 11(1):18{21, 2007.

[106] M. Mernik, J. Heering, and A. Sloane. When and How to Develop Domain-Speci�c
Languages.ACM Computing Surveys (CSUR), 37(4):316{344, 2005.

165

[107] N. Milanovic and M. Malek. Service-Oriented Operating System: A Key Element
in Improving Service Availability. In 4th International Symposium on Service Avail-
ability , pages 31{42, 2007.

[108] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy Core Information
Model Version 1 Speci�cation. RFC3060, 2001.

[109] H. Muller, M. Pezze, and M. Shaw. Visibility of Control in Adaptive Systems. In
2nd International Workshop on Ultra-Large-Scale Software-Intensive Systems, pages
23{26, 2008.

[110] H-A. Muller, H-M. Kienle, and U. Stege. Autonomic Computing Now You See
It, Now you Don't. In Software Engineering/ Design and Evolution of Autonomic
Software Science, volume 5413, pages 32{54. 2009.

[111] P-A. Muller, F. Fleurey, and J-M. Jezequel. Weaving Executability into Object-
Oriented Meta-Languages. In8th International Conference on Medel Driven Engi-
neering Languages and Systems, pages 264{278, 2005.

[112] NIST. A Survey of Access Control Models. InNIST Privilege (Access) Manage-
ment Workshop, 2009. Available at: http://csrc.nist.gov/news events/privilege-
management-workshop.

[113] S. OH, R-S. Sandhu, and X-W. Zhang. An E�ective Role Administration Model Us-
ing Organization Structure. ACM Transactions on Information and System Security
(TISSEC) , 9(2):113{137, 2006.

[114] F. Hnsen V. Oleshchuk. SRBAC: A Spatial Role-Based Access Control Model for
Mobile Systems. In 7th Nordic Workshop on Secure IT Systems, pages 129{141,
2003.

[115] S. Osborn, R-S. Sandhu, and Q. Munawer. Con�guring Role-Based Access Control
to Enforce Mandatory and Discretionary Access Control Policies.ACM Transactions
on Information and System Security (TISSEC), 3(2):85{106, 2000.

[116] J. Park and R-S. Sandhu. Towards Usage Control Models Beyond Traditional Access
Control. 7th ACM Symposium on Access Control Models and Technologies, pages
57{64, 2002.

[117] J. Polakovic and J-B. Stefani. Architecting Recon�gurable Component-Based Op-
erating Systems. Journal of Systems Architecture: the EUROMICRRO Journal,
54(6), 2008.

[118] C. Prehofer and C. Bettstetter. Self-organization in Communication Networks Prin-
ciples and Design Paradigms.IEEE Communication Magazine, 43(7):78{85, 2005.

[119] C. Rippert. Protection dans les architectures de systmes exibles. PhD thesis, 2004.

166 BIBLIOGRAPHY

[120] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get O� of My
Cloud Exploring Information Leakage in Third-Party Compute Clouds.pdf. In 16th
ACM conference on Computer and Communications Security, pages 199{212, 2009.

[121] M. Rozier, V. Abrossimov, F. Arm, I. Boule, M. Gien, M. Guillemont, F. Herrmann,
C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. Overview of the CHORUS
Distributed Operating Systems. Computing Systems, 1:39{69, 1988.

[122] P. Ruth, J. Rhee, D-Y. Xu, R. Kennell, and S. Goasguen. Autonomic Live Adapta-
tion of Virtual Computational Environments in a Multi-Domain Infrastructure. In
IEEE International Conference on Autonomic Computing, pages 5{14, 2006.

[123] J. Rutkowska and R. Wojtczuk. The Qubes OS Architecture. Invisible Things Lab
Tech Rep, 2010.

[124] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J-L. Gri�n, and
L-V. Doorn. Building a MAC-Based Security Architecture for the Xen Open-Source
Hypervisor. In 21st Annual Computer Security Applications Conference, pages 276{
285, 2005.

[125] R-S. Sandhu. Lattice-based Access Control Models.Computer, IEEE, 26(1):9{19,
1993.

[126] R-S. Sandhu, V. Bhamidipati, and A-Q. Munawer. The ARBAC97 Model for Role-
Based Administration of Roles. ACM Transactions on Information and System
Security (TISSEC), 2(1):105{135, 1999.

[127] R-S. Sandhu, E-J. Goyne, H-L. Feinstein, and G-E. Youman. Role-Based Access
Control Models. IEEE Computer, 29(2):38{47, 1996.

[128] A. Saxena, M. Lacoste, T. Jarboui, U. Lucking, and B. Steinke. A Software Frame-
work for Autonomic Security in Pervasive Environments. In Information System
Security, volume 4812, pages 91{109. Springer Berlin/ Heidelberg, 2007.

[129] M. Serrano, S. Meer, J. Strassner, S. Paoli, A. Kerr, and C. Storni. Trust and Repu-
tation Policy-based Mechanisms for Self-protection in Autonomic Communications.
In 6th Internation Confernece on Autonomic and Trusted Computing, volume 5586,
pages 249{267, 2009.

[130] M. Serrano, S. Van der Meer, J. Strassner, S. De Paoli, A. Kerr, and C. Storni. Trust
and Reputation Poicy-based Mechanisms for Self-protection in Autonomic Commu-
nications. In 6th International Conference on Autonomic and Trusted Computing,
volume 5586, pages 249{267, 2009.

[131] J-S. Shapiro, J-M. Smith, and D-J. Farber. EROS: a Fast Capability System.ACM
SIGOPS Operating Systems Review, 33(5):170{185, 1999.

167

[132] J-F. Da Silva, L-P. Gaspary, M-P. Barcellos, and A. Detsch. Policy-based Access
Control in Peer-to-Peer Grid Systems. In 6th IEEE/ACM International Workshop
on Grid Computing, pages 107{113, 2005.

[133] A. Simmonds, P. Sandilands, and L. van Ekert. An Ontology for Network Security
Attacks. In 2nd Asian Applied Computing Conference, pages 317{323, 2004.

[134] C. Small and M. Seltzer. Structuring the Kernel as a Toolkit of Extensible Reusable
Components. In 4th International Workshop on Object-Orientation in Operating
Systems, pages 134{137, 1995.

[135] J-E. Smith and R. Nair. An Overview of Virtual Machine Architectures. Technical
report, 2004.

[136] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The
Flask Security Architecture System Support for Diverse Security Policies. In8th
USENIX Security Symposium, pages 123{139, 1999.

[137] R. Sterritt, M-G. Hinchey, J-L. Rash, W. Truszkowski, G-A. Rou�, and D. Gracanin.
Towards Formal Speci�cation and Generation of Autonomic Policies. In Embedded
and Ubiquitous Computing, volume 3823, pages 1245{1254. 2005.

[138] J. Strassner.Policy-based Network Management: Solutions for the Next Generation.
Morgan Kaufman, 2003.

[139] J. Strassner, S. Samudrala, G. Cox, Y. Liu, M. Jiang, and J. Zhang. The Design
of a New Context-Aware Policy Model for Autonomic Networking. In International
Conference on Autonomic Computing (ICAC), 2008.

[140] M. Toure, G. Berhe, P. Stolf, L. Broto, N. Depalma, and D. Hagimont. Autonomic
Management for Grid Applications. In 16th Euromicro Conference, pages 79{86,
2008.

[141] D. Truex, R. Baskerville, and H. Klein. Growing Systems in Emergent Organizations.
Communications of the ACM, 42(8):117{123, 1999.

[142] K. Twidle, N. Dulay, E. Lupu, and M. Sloman. Ponder2: A Policy System for Au-
tonomous Pervasive Environments. In5th International Conference on Autonomic
and Autonomous Systems, 2009.

[143] J. Underco�er, A. Joshi, and J. Pinkston. Modeling Computer Attacks: An Ontology
for Intrusion Detection. In 6th International Symposium on Recent Advances in
Intrusion Detection , pages 113{135, 2003.

[144] D.C. Verma, S.B. Calo, and G. Cirincione. A State Transition Model for Policy
Speci�cation. IBM Research Repport, 2009.

168 BIBLIOGRAPHY

[145] J-P. Walters, Z-Q. Liang, W-S. Shi, and V. Chaudhary. Wireless Sensor Network
Security: A Survey. In Security in Distributed, Grid, and Pervasive Computing.
CRC Press, 2006.

[146] T. Watteyne, D. Barthel, M. Dohler, and I. Auge-Blum. WiFly: Experimenting
with Wireless Sensor Networks and Virtual Coordinates. Research Report RR-6471,
INRIA, 2008.

[147] M. Weiser. The Computer for the 21st Century. ACM SIGMOBILE Mobile Com-
puting and Communications Review, 3(3):3{11, 1999.

[148] S-R. White, J-E. Hanson, I. Whalley, D-M. Chess, and J-O. Kephart. An Archi-
tectural Approach to Autonomic Computing. In 1st International Conference on
Autonomic Computing, 2004.

[149] M. Wooldridge. Agent-Based Software Engineering. InIEEE Proceedings on Soft-
ware Engineering, volume 144, pages 26{37, 1997.

[150] C. Wright, C. Cowan, and J. Morris. Linux Security Modules General Security
Support for the Linux Kernel. In 11th USENIX Security Symposium, pages 17{31,
2002.

[151] M. Xu, X-X. Jiang, R-S. Sandhu, and X-W. Zhang. Towards a VMM-based Usage
Control Framework for OS Kernel Integrity Protection. In 12th ACM Symposium
on Access Control Models and Technologies, pages 71{80, 2007.

[152] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Admis-
sion Control. International RFC , 2000.

[153] N. Zeldovich, S. Boyd-wichizer, E. Kohler, and D. Mazieres. Making Information
Flow Explicit in HiStar. In 7th USENIX Symposium on Operating Systems Design
and Implementation, volume 7, page 19, 2006.

[154] G. Zhang and M. Parashar. Dynamic Context-aware Access Control for Grid Ap-
plications. In 4th International Workshop on Grid Computing, page 101, 2003.

