A. Appendix and .. Gas-storage-case-study, 215 A.1 Case study description, p.216

S. I. Aanonsen, G. Naevdal, D. S. Oliver, A. C. Reynolds, and B. Vallès, The Ensemble Kalman Filter in Reservoir Engineering--a Review, SPE Journal, vol.14, issue.03, pp.393-412, 2009.
DOI : 10.2118/117274-PA

J. L. Anderson, Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D: Nonlinear Phenomena, vol.230, issue.1-2, pp.1-2, 2007.
DOI : 10.1016/j.physd.2006.02.011

E. R. Arroyo-negrete, Continuous Reservoir Model Updating Using Streamline Assisted Ensemble Kalman Filter, SPE Annual Technical Conference and Exhibition, pp.24-27, 2006.
DOI : 10.2118/106518-STU

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, p.50, 2002.
DOI : 10.1109/78.978374

L. Bertino, G. Evensen, and H. Wackernagel, Sequential Data Assimilation Techniques in Oceanography, International Statistical Review, vol.12, issue.4, pp.223-241, 2003.
DOI : 10.1111/j.1751-5823.2003.tb00194.x

A. Bianco, A. Cominelli, L. Dovera, G. Naevdal, and B. Vallès, History Matching and Production Forecast Uncertainty by Means of the Ensemble Kalman Filter: A Real Field Application, EUROPEC/EAGE Conference and Exhibition, pp.11-14, 2007.
DOI : 10.2118/107161-MS

C. H. Bishop and D. Hodyss, Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.C5, pp.133-2029, 2007.
DOI : 10.1002/qj.169

R. C. Bissel, O. Dubrule, P. Lamy, P. Swaby, and O. Lepine, Combining geostatistical modeling with gradient information for history matching: The pilot point method, p.38730, 1997.

G. Burgers, . Van-leeuwen, and G. Evensen, Analysis Scheme in the Ensemble Kalman Filter, Monthly Weather Review, vol.126, issue.6, pp.1719-1724, 1998.
DOI : 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2

J. Caers, History Matching Under Training-Image-Based Geological Model Constraints, SPE Journal, issue.8, pp.218-226, 2003.
DOI : 10.2118/74716-pa

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Chavent, M. Dupuy, and P. Lemonnier, History-Matching by use of optimal control theory, SPE ATCE, vol.4627, 1973.

C. , Y. Oliver, D. S. Zhang, and D. , Efficient Ensemble-Based Closed Loop Production Optimization. Paper SPE 112873 presented at the, Improved Recovery Symposium, pp.19-23, 2008.

Y. Chen, D. S. Oliver, and D. Zhang, Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization, Journal of Petroleum Science and Engineering, vol.66, issue.1-2, pp.66-67, 2009.
DOI : 10.1016/j.petrol.2008.12.002

J. P. Chilès and P. Delfiner, Geostatistics ? Modeling Spatial Uncertainty, Wiley series in probability and statistics, 1999.

J. Choe and K. Park, Use of Ensemble Kalman Filter for 3-Dimensional Reservoir Characterization during Water flooding, Paper SPE 100178, presented at the 2006 68 th EAGE Conference and Exhibition, pp.12-15, 2006.

S. Cohn, An introduction to estimation theory, Journal of the Meteorological Society of Japan, issue.75, pp.257-288, 1997.

M. Cuypers, O. Dubrule, P. Lamy, and R. Bissel, Optima choice of inversion parameters for history matching with pilot point method, 1998.

G. De-marsily, G. Lavedan, M. Boucher, and G. Fasanino, Interpretation of Interference Tests in a Well Field Using Geostatistical Techniques to Fit the Permeability Distribution in a Reservoir Model, Geostatistics for Natural Resources Characterization, Part 2. Dordrecht: Reidel, pp.831-849, 1994.
DOI : 10.1007/978-94-009-3701-7_16

D. Devegowda, E. Arroyo-negrete, A. Datta-gupta, and S. G. Douma, Efficient and Robust Reservoir Model Updating Using Ensemble Kalman Filter with Sensitivity-Based Covariance Localization, Paper SPE 106144, presented at the 2007 Reservoir Simulation Symposium, pp.26-28, 2007.

A. Doucet, N. Freitas, G. , and N. , Sequential Monte Carlo methods in Practice, Statistics for Engineering and Information Science, 2001.
DOI : 10.1007/978-1-4757-3437-9

L. Dovera, D. Rossa, and E. , Ensemble Kalman Filter for Gaussian Mixture Models, EAGE Conference on Petroleum Geostatistics, pp.10-14, 2007.
DOI : 10.3997/2214-4609.201403054

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, vol.109, issue.Part 4, pp.143-153, 1994.
DOI : 10.1029/94JC00572

G. Evensen and P. J. Van-leeuwen, Horizontal and Vertical Structure of the Representer Functions for Sea Structure Measurements in a Coastal Circulation Model, pp.30-2627, 1996.

G. Evensen, The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, vol.53, issue.4, pp.343-367, 2003.
DOI : 10.1007/s10236-003-0036-9

G. Evensen, Data Assimilation: The Ensemble Kalman Filter, 2007.
DOI : 10.1007/978-3-642-03711-5

F. J. Floris, M. D. Bush, M. Cuypers, F. Roggero, and A. R. Syversveen, Methods for quantifying the uncertainty of production forecasts: a comparison study, Petroleum Geoscience, pp.87-96, 2001.

R. Furrer and T. Bengtsson, Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants, Journal of Multivariate Analysis, vol.98, issue.2, pp.227-255, 2007.
DOI : 10.1016/j.jmva.2006.08.003

A. Galli, H. Beucher, L. Loc-'h, G. Doligez, B. et al., The Pros and Cons of the Truncated Gaussian Method, Geostatistical Simulations, pp.217-233, 1993.

G. Gao, M. Zafari, R. , and A. C. , Quantifying the uncertainty for the PUNQ-S3 problem in a Bayesian setting with the RML and EnKF, SPE reservoir simulation symposium, 2005.

G. Gaspari and S. E. Cohn, Construction of correlation functions in two and three dimensions, Quarterly Journal of the Royal Meteorological Society, vol.4, issue.2, pp.125-723, 1999.
DOI : 10.1002/qj.49712555417

A. Gelb, Applied Optimal Estimation, 1974.

Y. Gu and D. S. Oliver, History Matching of the PUNQ-S3 Reservoir Model Using the Ensemble Kalman Filter, Journal of Petroleum Science and Engineering, pp.147-147, 2005.

Y. Gu and D. S. Oliver, The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models, Journal of Energy Resources Technology, vol.128, issue.1, pp.79-87, 2006.
DOI : 10.1115/1.2134735

Y. Gu and D. S. Oliver, An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation, SPE Journal, vol.12, issue.04, pp.438-446, 2007.
DOI : 10.2118/108438-PA

J. P. Hacker, J. L. Anderson, and M. Pagowski, Improved Vertical Covariance Estimates for Ensemble-Filter Assimilation of Near-Surface Observations, Monthly Weather Review, vol.135, issue.3, pp.1021-1036, 2007.
DOI : 10.1175/MWR3333.1

T. M. Hamill, J. S. Whitaker, and C. Snyder, Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter, Monthly Weather Review, vol.129, issue.11, pp.2776-2790, 2001.
DOI : 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2

V. E. Haugen and G. Evensen, Assimilation of SLA and SST data into an OGCM for the Indian Ocean, Ocean Dynamics, vol.52, issue.3, pp.52-133, 2002.
DOI : 10.1007/s10236-002-0014-7

L. Heidari, V. Gervais, L. Ravalec, M. Wackernagel, and H. , History Matching of Reservoir Models by the Ensemble Kalman Filtering (EnKF): Review of the State of the Art and a Sensitivity Study, 2009.

P. L. Houtekamer, M. , and H. L. , Data Assimilation Using an Ensemble Kalman Filter Technique, Monthly Weather Review, vol.126, issue.3, pp.796-811, 1998.
DOI : 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. L. Houtekamer, M. , and H. L. , A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation, Monthly Weather Review, vol.129, issue.1, pp.123-137, 2001.
DOI : 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2

L. Hu, Gradual deformation and iterative calibration of Gaussian-related stochastic models, Mathematical Geology, vol.32, issue.1, pp.87-108, 2000.
DOI : 10.1023/A:1007506918588

L. Hu, G. Blanc, and B. Noetinger, Gradual Deformation and Iterative Calibration of Sequantial Stochastic Simulations, Mathematical Geology, vol.33, issue.4, pp.475-489, 2001.
DOI : 10.1023/A:1011088913233

L. Hu, History Matching of Object-Based Stochastic Reservoir Models, Middle East Oil Show, pp.9-12, 2003.

P. Indelman and G. Dagan, Upscaling of permeability of anisotropic heterogeneous formations: 1. The general framework, Water Resources Research, vol.29, issue.4, pp.917-923, 1993.
DOI : 10.1029/92WR02446

B. Jafarpour and D. B. Mclaughlin, History Matching with an Ensemble Kalman Filter and Discrete Cosine Parameterization, SPE Annual Technical Conference and Exhibition, 2007.
DOI : 10.2118/108761-MS

A. H. Jazwinski, Stochastic Processes and Filtering Theory, 1970.

R. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

L. Gallo, Y. , L. Ravalec-dupin, and M. , History Matching Geostatistical Reservoir Models with Gradual Deformation Method, SPE Annual Technical Conference and Exhibition, pp.1-4, 2000.
DOI : 10.2118/62922-MS

L. Loc-'h, G. , and G. , Truncated pluriGaussian method: Theoretical and practical points of view, Geostatistics Wollogong'96, pp.211-222, 1997.

L. Ravalec, M. Noetinger, B. Hu, and L. Y. , The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulation, Mathematical Geology, issue.6, pp.32-701, 2000.

L. Ravalec-dupin, M. Noetinger, B. Hu, L. Blanc, and G. , Conditioning to dynamic data: an improved zonation approach, Petroleum Geosciences, pp.9-16, 2001.

L. Ravalec-dupin and M. , Inverse Stochastic Modeling of Flow in Porous Media, 2005.

L. Ravalec-dupin, M. Hu, and L. Y. , Combining the Pilot Point and the Gradual Deformation Methods for Calibrating Permeability Models to Dynamic Data, Oil and Gas Science and Technology, Rev. IFP Energies nouvells, pp.62-169, 2007.

L. Venue, A. M. Pickens, and J. F. , Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model, Water Resources Research, issue.6, pp.28-1543, 1992.

L. Venue, A. M. Ramarao, B. S. De-marsily, G. , M. et al., Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 2. Application, Water Resources Research, issue.3, pp.31495-516, 1995.

G. Li and A. C. Reynolds, An Iterative Ensemble Kalman Filter for Data Assimilation, Paper SPE 109808 presented at the 2007 Annual Technical Conference Exhibition, California, pp.11-14, 2007.
DOI : 10.2118/109808-ms

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Liang, F. O. Alpak, K. Sepehrnoori, and M. Delshad, A Singular Evolutive Interpolated Kalman Filter for Rapid Uncertainty Quantification, Paper SPE 106170, presented at the, Reservoir Simulation Symposium, pp.26-28, 2007.

N. Liu and D. S. Oliver, Critical Evaluation of the Ensemble Kalman Filter on History Matching of Geologic Facies, Journal of Petroleum Science and Engineering, issue.6, pp.47-470, 2005.

A. Lorenc, Analysis methods for numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, vol.108, issue.474, pp.1177-1194, 1986.
DOI : 10.1002/qj.49711247414

A. C. Lorenc, The potential of the ensemble Kalman filter for NWP???a comparison with 4D-Var, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.595, pp.129-3183, 2003.
DOI : 10.1256/qj.02.132

R. J. Lorentzen, K. K. Fjelde, J. Frøyen, A. C. Lage, G. Naevdal et al., Underbalanced and Low-head Drilling Operations: Real Time Interpretation of Measured Data and Operational Support, SPE Annual Technical Conference and Exhibition, 2001.
DOI : 10.2118/71384-MS

R. J. Lorentzen, G. Naevdal, and A. C. Lage, Tuning of parameters in a two-phase flow model using an ensemble Kalman filter, International Journal of Multiphase Flow, vol.29, issue.8, pp.29-1283, 2003.
DOI : 10.1016/S0301-9322(03)00088-0

R. J. Lorentzen, G. Naevdal, B. Valles, A. N. Berg, and A. A. Grimstad, Analysis of the Ensemble Kalman Filter for Estimation of Permeability and Porosity in Reservoir Models, SPE Annual Technical Conference and Exhibition, 2005.
DOI : 10.2118/96375-MS

S. Margulis, A. Mclaughlin, D. Entekhabi, D. Dunne, and S. , Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment, Water Resources Research, vol.22, issue.8, pp.38-50, 2002.
DOI : 10.1029/2001WR001114

D. Mclaughlin and L. R. Townley, A Reassessment of the Groundwater Inverse Problem, Water Resources Research, vol.3, issue.3, pp.1131-1161, 1996.
DOI : 10.1029/96WR00160

D. Moreno and S. I. Aanonsen, Stochastic Facies Modeling Using the Level Set Method, In Petroleum Geostatistics, pp.10-14, 2007.

G. Naevdal, T. Mannseth, and E. H. Vefring, Near-well reservoir monitoring through Ensemble Kalman filter, SPE/DOE Improved Oil Recovery Symposium, 2002.

D. S. Oliver, N. He, A. C. Reynolds, S. A. Teufolsky, W. T. Vetterling et al., Conditioning Permeability Fileds to Pressure Data , European Conference for Mathematics of Oil Recovery 77, 1996.

B. S. Ramarao, L. Venue, A. M. De-marsily, G. , M. et al., Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments, Water Resources Research, vol.22, issue.2, pp.31-475, 1995.
DOI : 10.1029/94WR02258

A. C. Reynolds, M. Zafari, L. , and G. , Iterative Forms of the Ensemble Kalman Filter, ECMOR X, 10th European Conference on the Mathematics of Oil Recovery, pp.4-7, 2006.
DOI : 10.3997/2214-4609.201402496

F. Roggero, D. Y. Ding, P. Berthet, O. Lerat, J. Cap et al., Matching of Production History and 4D Seismic Data ? Application to the Girassol Field, Offshore Angola, pp.11-14, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00735121

Y. Rubin and J. Gomez-hernandez, A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations, Water Resources Research, vol.26, issue.19, pp.691-701, 1990.
DOI : 10.1029/WR026i004p00691

A. Seiler, G. Evensen, J. Skjervheim, J. Hove, and J. G. Vabø, Advanced Reservoir Management Workflow Using an EnKF Based Assisted History Matching Method, SPE 118906. This paper was prepared for presentation at the 2009 SPE Reservoir Simulation Symposium held in The Woodlands, pp.2-4, 2009.
DOI : 10.2118/118906-ms

N. Sun, Inverse problems in groundwater modeling, 1994.
DOI : 10.1007/978-94-017-1970-4

A. Tarantola, Inverse problem theory ? Methods for data fitting and model parameter estimation, 1987.

K. Thulin, G. Naevdal, and S. I. Aanonsen, Quantifying Monte Carlo Uncertainty in the Ensemble Kalman Filter, 11th European Conference on the Mathematics of Oil Recovery, pp.8-11, 2008.
DOI : 10.3997/2214-4609.20146415

C. Wang, G. Li, R. , and A. C. , Production optimization in Closed Loop Reservoir Management, Paper SPE 109805, presented at the 2007 Annual Technical Conference and Exhibition, California, pp.11-14, 2007.

X. Wen, C. , and W. H. , Some Practical Issues on Real Time Reservoir Model Updating Using Ensemble Kalman Filter, 2005.

C. Wunsch, The Ocean Circulation Inverse Problem, 1996.
DOI : 10.1017/CBO9780511629570

G. Xue and A. Datta-gupta, Structure Preserving Inversion: An Efficient Approach to Conditioning Stochastic Reservoir Models to Dynamic Data, SPE Annual Technical Conference and Exhibition, 1997.
DOI : 10.2118/38727-MS

M. Zafari, R. , and A. C. , Assessing the Uncertainty in Reservoir Description and Performance Prediction with the Ensemble Kalman Filter, Paper SPE 95750, presented at the 2005 Annual Technical Conference and Exhibition, Texas, pp.9-12, 2005.

I. Zabalza-mezghani, M. Mezghani, and G. Blanc, Constraining Reservoir Facies Models to Dynamic Data - Impact of Spatial Distribution Uncertainty on Production Forecasts, SPE Annual Technical Conference and Exhibition, 2001.
DOI : 10.2118/71335-MS