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Abstract

The thesis is devoted to the homogenization of singular ection-diffusion equa-
tions and spectral problems with sign-changing densitgtion. It consists of two parts.
The first one contains both qualitative and asymptotic tedal solutions of stationary
and non-stationary convection-diffusion equations inrzt@d or unbounded domains.
Among the studied problems are qualitative problem for aveotion-diffusion equation
in a semi-infinite cylinder, homogenization of convectiffusion models in thin cylin-
ders and asymptotic problems for non-stationary conveditfusion equations with large
convection term in bounded domains.

The second part of the thesis deals with the homogenizafietliptic spectral prob-
lems with sign-changing density function. We show that teynaptotic behaviour of the
spectrum depends crucially on whether the density averagetioe period is zero or not,
and construct the asymptotics of the spectrum in both thesesc

Réesume

Le but de la these est d’étudier 'homogénéisatiomgdaions de convection-diffusion
singulieres et de problemes spectraux a poids indéfiai.these se compose de deux
parties. La premiere partie contient des résultats tpidi et asymptotiques pour les
solutions d’équations de type convection-diffusionistataires et instationnaires, qui sont
définies dans des domaines bornés ou nonbornés. Legpreblexaminés comprennent
des études qualitatives pour une équation elliptiques @les termes du premier ordre
dans un cylindre semi-infini, ’lhomogénéisation de medé&le convection-diffusion dans
des cylindres minces et une analyse asymptotique d’@nstle convection-diffusion
instationnaires avec un grand terme du premier ordre gso$&ns un domaine borné.

La deuxieme partie de la these porte sur I’homogéneéisate problemes spectraux a
poids indéfini, pouvant changer de signe. On montre quertgootement asymptotique
dépend essentiellement de la moyenne du poids, notamimentn®yenne est nulle ou
non nulle. On construit alors le développement asympietidu spectre dans les deux
cas.
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Introduction

The thesis consists of several closely related papers wiaohbe divided into two
groups. The first one contains both qualitative and asynaptesults for solutions of
stationary and non-stationary convection-diffusion eigua with periodic coefficients, in
bounded or unbounded domains. This part consists of fiverpape

A l.Pankratova, A. PiatnitskQn the behaviour at infinity of solutions to stationary
convection-diffusion equation in a cyling&@CDS-B, 11 (4) (2009).

B G.Panasenko, I.Pankratova, A.Piatnitskomogenization of a Convection-Diffusion
Equation in a Thin Rod Structurg English). Integral Methods in Science and
Engineering. Vol.1. Analytic Methods, 279-290, Birkhaugz010).

C l.Pankratova, A.PiatnitskiHomogenization of convection-diffusion equation in
infinite cylinder(accepted for publication in Networks and Heterogeneous Me
dia)

D G.Allaire, I.Pankratova, A.PiatnitskHlomogenization and concentration for a
diffusion equation with large convection in a bounded damai

E G.Allaire, I.Pankratova, A.Piatnitskjomogenization of a non-stationary convection-
diffusion equation in a thin rod and in a layer

The second group of problems addressed in the thesis isrr@mtc@ith the homogeniza-
tion of spectral problems with a sigh-changing density fiomc The results presented are
the author’s contribution to the following papers:

F S.Nazarov, |.Pankratova, A.Piatnitski, Homogenizatibismectral problem for
periodic elliptic operators with sign-changing weight tion, Narvik University
College, R:D Report, No. 4/2008, ISSN 1890-923X (accepted for pulibecat
in Archive for Rational Mechanics and Analysis).

G l.Pankratova, Spectral problem for a locally periodicpit operator with sign-
changing weight function, Narvik University College{d® Report, No. 9/2009,
ISSN 1890-923X.

In paperA (see Chapter 1) we develop the qualitative theory for aptetliequation in

a semi-infinite cylinder. Papd (see Chapter 2) is devoted to homogenization problems
in a thin heterogeneous rod. Pap€rsD andE deal with the non-stationary convection-
diffusion equations with large convection term. The resaolttained in PapdD are also

1



2 INTRODUCTION

illustrated by numerical experiments. PapErandG are devoted to the homogeniza-
tion of spectral problems for elliptic operators with sigmanging density. In Pap&rwe
consider a spectral problem for an elliptic operator withiquic rapidly oscillating co-
efficients defined in a generic bounded domain, while P&ebncerns with operators
defined in a thin cylinder having a locally periodic micrestiure.

More precisely, Papeh concerns the study of the behaviour at infinity of solutions
to second order elliptic equations with first order termajest in a half-cylinder. The
coefficients of the equation are assumed to be measurabl@anded; Neumann bound-
ary condition is imposed on the lateral boundary of the ddm while on the base we
assign the Dirichlet boundary condition. Under the assionphat the coefficients of
the equation stabilize to a periodic regime exponentialth Varge axial distance, and the
functions on the right-hand side decay exponentially atityfiwe prove the existence and
the uniqueness of a bounded (in the proper sense) solutobiisastabilization to a con-
stant at the exponential rate. Also we provide a necessarguificient condition for the
uniqueness of a bounded solution. Our approach is parbakgd on the results from lo-
cal qualitative elliptic theory, such as Harnack’s ineqyaNash and De Giorgi estimates,
the maximum principle, positive operator theory and a nunolb@ontrivial a priori esti-
mates. The problems of this type appear while constructisgasymptotic expansions of
solutions to equations describing different phenomenaghly inhomogeneous media.
For instance, the results obtained in Papeare used in Papd to construct boundary
layer correctors.

The question of asymptotic behaviour at infinity for solag®f elliptic equations and
systems of equations have been addressed in many mathanvatiks. \We mention
just those of them which are closely related to the probledeuconsideration. Elliptic
equations in divergence form defined in unbounded cylindere studied in27], [51],
[2]. In [46], [47] the authors has considered a boundary value problem faxandeorder
elliptic equation with first order terms on a half-cylindetmperiodic boundary conditions
on the lateral boundary. Notice that, in contrast with therafors in divergence form, the
presence of first order terms changes crucially the quiaktaticture. In particular, a
bounded solution need not be unique. The pagdedfs [18], [21] are devoted to studying
the specific classes of semi-linear elliptic equations iral&¢tylinder. Many works deal
with the Phragmén—Lindelof type results for elliptic ®mms and elasticity problems, in
particular. Among them we mark ou2%], [39], [26], [33]. For more detailed comments
on the existing literature see Introduction in Paper

Nowadays the homogenization theory is a extensively deeeldopic. Starting from
the early 1960s it has been attracting much attention of emadicians. There is a wide
monographic literature devoted to this subject, we poirtlip[6], [7], [8], [13], [14],
[15], [30], [28], [31], [40], [43], [45], [48], [49], [50], [56].

The development of the homogenization theory has been aanerkating the rig-
orous mathematical description of the highly inhomogesemedia and, in particular,
composite materials and porous media. Equations, desgriairious physical processes
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in such media, have rapidly oscillating coefficients beeanfsthe strong heterogeneity
of the materials. Due to these oscillations, direct anedytand numerical methods of
solving boundary value problems for such equations becoaneraely difficult and often
practically unrealizable. However, in many cases it is fimdsgo derive homogenized (ef-
fective) equations which provide a good approximation fa behaviour of the original
processes. As a result, the characteristics of the origimglhly heterogeneous material
are well-approximated by those of the effective locally lbg@neous material.

Questions of the asymptotic behaviour of thin structure® fieen considered in many
works, both in mathematical and physical literature. In noases, the asymptotic analy-
sis is aimed at the dimension reduction, or, in other woreldycing the original problem
to a problem in a domain of a smaller dimension. For instaanegquation stated in a
thin three-dimensional plate is substituted by an equati@two-dimensional domain; a
problem describing some rod structure is reduced to an arglidifferential equation, an
so on. From the point of view of the numerical analysis, tlduoed problem turns out
to be much simpler. Indeed, reducing the number of variadilesnishes the amount of
computations. Naturally, dimension reduction demandsrags mathematical justifica-
tion.

PaperB is devoted to the homogenization of a stationary convedlifiosion equa-
tion in a thin cylinder being a union of two nonintersectirmgls with a junction at the
origin. It is assumed that each of these cylinders has adgiemicrostructure, and that
the microstructure period is of the same order as the cylidideneter. Under some natural
assumptions on the data we construct and justify the asymogxpansion of a solution
which consists of the interior asymptotic expansion andhibendary layer correctors,
arising both in the vicinity of the rod ends and the vicinifytiee junction. In contrast to
the divergence form operators, in the case of convectitinsion equation the asymptotic
behaviour of solutions depend crucially on the directiothefso-called effective convec-
tion. In the thesis we only consider the case when in eacheafitb cylinders (being the
constituents of the rod) the effective convection is deddrom the end of the cylinder
towards the junction.

The obtained results rely on the nontrivial analysis of avegtion-diffusion equation
in semi-infinite and infinite cylinders. The case of semiriié cylinder has been studied
in PaperA, while the case of the infinite cylinder is addressed in $eds, PapeB.

The problems stated in half-infinite cylindrical domains tioe elasticity system have
been intensively studied in the existing literature. Wetgquuere the works2{4], [25],
[32], [34], [35], [53], [52], [55]. The contact problem of two heterogeneous bars was
considered in41], [42], [44]. Elliptic equations in divergence form have been addmsse
for example, in §] and [43].

PapersC, D andE focus on the non-stationary convection-diffusion equegiwith
large convection term. In pap€& the asymptotic behaviour of a solution to a parabolic
equation defined in a thin infinite cylinder is studied. Naynele consider the following
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operator:
1

O — div(a(Z) V) + - (b(2), Vu)
with a small parameter. Assuming that the coefficients of the operator are periodic
the axial direction of the cylinder, and imposing homogerseDirichlet boundary con-
dition on the lateral boundary, we study the asymptotic bieha of the solutionu®, as
e — 0. Similar equation defined in the whole space has been caoeside [16] and [5].
In contrast with the case of solenoidal vector-figlg) with zero mean value, for general
periodic functionb(y) one cannot expect the convergence of the sequence of sutio
in the fixed spatial reference frame. It has been show6f) [5] that the convergence in
moving coordinatest, » + bt/c) takes place with the constant vectocalled the effec-
tive drift or effective convection (see alsé7). In other words, the translated sequence
uf(t, z + bt /) converges to the solution of a homogenized parabolic eguati

In the case of thin infinite cylinder, considered in PaPethe behaviour ofi© is gov-
erned by the axial component of the effective convectiois. shown that homogenization
result holds in moving coordinates, and that the solutianigglan asymptotic expansion
which consists of the interior expansion being regular nmeti and an initial layer. The
estimates for the rate of convergence are obtained.

Obviously, the convergence in moving coordinates is not-defined in a bounded
domain. The goal of PapeB andE is to study the asymptotics of a solution to a non-
stationary convection-diffusion equation in a bounded diom The case of general do-
main is considered iD. while in E we study the equation stated either in a thin rod or in
a layer. The special structure of the domain allows us to eede assumptions imposed
on the initial function and construct higher order termshaf &symptotics.

More precisely, in Papdd we study the following initial boundary value problemin a
bounded domaif:

o — div(a(2)Vee) + - (o(2), Ve) =0, in (0,7) x 9
u(t,x) =0, on (0,7") x 09,

uf(0, ) = up(x), x € S

We assume that the initial functian has a compact support fa. Intuitively, it is clear
that in a bounded domain the initial profile should move rbpid the direction of the
effective driftb until it reaches the boundary, and then dissipate due todhbgeneous
Dirichlet boundary condition, asgrows. Since the convection term is large, the dissipa-
tion increases, as— 0, so that the solution vanishes at any positive ttme0. In order

to study the behaviour of this solution fors> ¢, one should determine the rate of decay
and study the rescaled solution. It turns out that both tteeatedecay and the behaviour of
the rescaled solution can be described in terms of the fgshgiair of the cell eigenprob-
lem with an optimal exponential parameter caltedsee [L0]). We prove thatu®(t, )
concentrates in the neighbourhood of a pgirt 02 which depends of. It is interesting

to notice that in general, the point of concentration, fogéet, does not coincide with
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the point of intersection of the effective driftwith 9, which is also illustrated by the
numerical example given in the paper.

Without the assumption that, has a compact support {n, one faces the necessity
to construct boundary layer correctors in the neighbowlhaiooS2. It is well known
that this problem cannot be solved in the case of generaldemudomain. However,
it is getting feasible in some special cases when the perisiucture agrees with the
geometry of the boundary @?. In PaperG we consider two such cases. Namely, we
study a convection-diffusion models in a thin rod and in afaiyp R?. In the case of a
thin rod we impose homogeneous Neumann boundary condiotise lateral boundary
of the rod and homogeneous Dirichlet boundary conditiongobases. As was noticed
above, the solution vanishes for times> . We determine the rate of vanishing of the
solution and describe the evolution of its profile. If theeeffve axial drift is not zero (we
study only this case), the rescaled solution concentratésel vicinity of one of the rod
ends, and the choice of the end depends on the sign of théiedfeonvection. In order to
characterize the rate of decay we introduce a 1-parameteiyfaf auxiliary cell spectral
problems (se€f], [10]). The asymptotic behaviour of the solution is then govdrmgthe
first eigenpair of the said spectral problem. Among the tezhnools used in the paper,
are factorization principle (se23), [54], [56], [10], [11]), dimension reduction arguments
and qualitative results required for constructing boupdyer correctors.

In the case of a layer addressed in Section 3 of P@par addition to the factorization
principle, we also have to introduce moving coordinatesréMmecisely, we use a param-
eterized cell spectral problem and factorization prireipl suppress the component of the
effective drift which is perpendicular to the layer boundawhile, due to the presence
of the longitudinal components of the effective convectiahave to introduce moving
coordinates.

The second part of the thesis (PapgeendG) deals with the homogenization of a spe-
cial class of spectral problems. Various homogenizatiablems in spectral theory have
been extensively explored since 1970s. At present it is &aesleloped field comprising
many efficient methods and approaches.

PaperF focuses on the homogenization of a Dirichlet spectral obior an elliptic
equation in divergence form stated in a regular donfainNamely, the problem under
consideration has the form

—div <a(§)Vu€(:p)> = )\p(g) ut(z) inQ,
u=0 onos,

(0.1)

with ¢ being a small positive parameter. It is assumed that thdiciesits of the equation
a;j(y) and the spectral density functigiiy) are periodic with respect tg, and thaip(y)
changes sign. It is shown that the spectrum of problem (@a3ists of two infinite se-
quences tending téroc. The asymptotic behaviour of the eigenpairs depends ealgnt
on whether the average pfover the period is equal to zero or not. When the average of
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is zero, the effective spectral problem is that for a quacicggerator pencil, and the eigen-
values are of order—. In the second case the positive eigenvalues and the coneisyy
eigenfunctions show the same regular behaviour as in tleeatgmint-wise positive spec-
tral density. In both cases we justify the convergence oftspend present the estimates
for the rate of convergence.

The main peculiarity of the problem considered in Pdpes the fact that the spectral
density function is sign-changing. Previously, a spegrablem with sign-changing den-
sity for the Laplace operator has been considere8ah [n this work the limit behaviour
of spectrum has been studied under the assumption that tis#ydeonsists of a fixed
positive part and asymptotically vanishing negative pahe results obtained in Paper
have been generalized to spectral problems for elliptitesys in B7].

The homogenization of spectral problems in the case of puise positive weighp is
well-studied nowadays. Such problems have been first ceresidn [L9], [20] and then in
many other papers. The homogenization of spectral probiemsrforated domains has
been studied ing4] followed by many other works on the subject. The limit babav of
spectrum of elasticity system in perforated domain has bddressed ir4Q]. In [12] the
authors have generalized the results obtained@lhy making weaker the assumptions
on the regularity of the inclusions and external forces. 3ihectral problems for locally
periodic symmetric second order elliptic operators witlyéapotential have been stud-
ied in [3]. The work 4] dealt with the asymptotic behaviour of spectrum for a pdido
symmetric elliptic system with large potential.

The problem addressed in Pagemight have interesting applications in the mod-
ern theory of metamaterials, that is artificial compositearals designed to produce a
desired electromagnetic behavior with significantly erdegihperformance over "natural”
structures. For example, when the world is observed thraagiventional lenses, the
sharpness of the image is determined by and limited to theelagth of light. Meta-
materials with negative refractive index are aimed at aeadf "perfect” lenses, that is
lenses with capabilities beyond conventional (positideix) ones. It is observed that the
double negative media (i.e. metamaterials having bothtivegaermittivity and perme-
ability) could lead to a negative index of refraction. Thecatied single negative meta-
materials, where either permittivity or permeability aegative, is the next example. For
instance, many plasmas, as well as some metals (gold aed)spossess negative permit-
tivity while the permeability is positive. Double positiveaterials do occur in the nature
(dielectrics). Tunable negative index metamaterials tveceery popular due to the back-
ward wave propagation and subwavelength resolution. Swatkrmals have applications
not only in "superlenses”, but also in miniature metamatexntennas construction.

It is interesting to note that equation similar to (0.1) canderived from Maxwell’s
equations. Indeed, consider the equation for the vectdreoélectrical field in a bounded
3-dimensional domain

1 . 2F
mt<ﬁ (x>rotE(t,:p)> - —g(:p)%?(t,x), (0,T) x Q.
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Here £ is the vector of the electrical field(x) andJi(x) are the permittivity and perme-
ability, respectively. Let us consider the casdmpolarized plane wave

E = {E(x),0,0}¢™!, E(x)= E(xs,xs).

Substituting this representation into the Maxwell equaiand assuming that(z) =
p(xe, x3), E(x) = e(x, x3) ONe has
0 1 OF 0 1 OF

Oy <ﬁ(a:) 891;2) 0x3 <ﬁ(a:) O0x3
Comparing the obtained equation with (0.1) we see that ttesipihity for p to change
its sign is equivalent to the sign-changifig:). In particular, the negative index materi-
als correspond to the case when bathnd p in (0.1) are negative; the single negative
metamaterials - to the case of positivandy < 0 or A < 0 andp > 0. These simple
arguments give an idea that the problem studied in Pepeight have applications in the
theory of metamaterials.

In PaperG a homogenization problem for a second-order self-adjqetator, stated
in a thin cylinder, is considered. The homogeneous Neumanndary condition is set
on the lateral boundary, while on the bases of the cylinderhtbmogeneous Dirichlet
boundary conditions are imposed. As in Papgthe spectral density function is assumed
to change sign. Both the coefficients of the equation and pleetsal density function
are supposed to be locally periodic in the axial directiothefcylinder. The asymptotic
behaviour of the spectrum depends on whether the average spectral density function
over the period is zero or not.

For the density function having positive average the effectpectral problem happens
to be a Sturm-Liouville problem. In this case the convergeotthe positive part of
the spectrum is justified using the theory of convergenceaitable spaces with singular
measures.

In the case of zero average weight function the limit spé@rablem is that for a
guadratic operator pencil. To study this operator pencilapply the results fromZ9
combined with usual arguments used when studying SturrodMilie problems. It should
be noted that in contrast witlB§], the presence of slow variable in the coefficients makes
the limit operator pencil nontrivial, so that it can not beweed to the standard Sturm-
Liouville problem.

In contrast with the problems investigated 8v] and [38], for the model considered
in the PapelG the limit spectral problem is one-dimensional, so that disien reduc-
tion arguments are to be used. We combine the asymptotiasiqratechnique with the
singular measure approach developeddir] pnd [9]. The fact that the considered oper-
ator is defined in a thin cylinder allows us to construct barmgdayer correctors in the
neighbourhood of the cylinder bases and, as a result, iregesentially the asymptotics.
As a matter of fact, if the coefficients are sufficiently regukhen arbitrary many terms
of the asymptotic expansion can be constructed. The existeilexponentially decaying
boundary layer correctors in assured by the results oltamBaperA.

) = w*(2)E.






Bibliography

[1] (1859696) G. Allaire, Shape optimization by the homagation method, Applied Mathematical Sci-
ences, 146. Springer-Verlag, New York, 2002.

[2] (1696289) G. Allaire and M. AmaBoundary layer tails in periodic homogenizati@&SAIM: Control,
Optimisation and Calculus of Variation&(1999), 209-243.

[3] (1900560) G. Allaire and A. PiatnitskiJniform spectral asymptotics for singularly perturbedadlg
periodic operatorsComm. Partial Differential Equation®7 (2002), No. 3-4, 705—725.

[4] (2098106) G. Allaire, Y. Capdeboscq, A. Piatnitski, \fleSs, M. VanninathanHomogenization of
periodic systems with large potentialsrch. Ration. Mech. Anall74(2004), No.2, 179-220.

[5] (2324490) G. Allaire, A.-L. RaphaeHomogenization of a convection-diffusion model with rearct
in a porous mediuntC. R. Math. Acad. Sci. Paris 344 (2007), no. 8, 523-528.

[6] (0797571) N.S. Bakhvalov, G.P. Panasenko, Homogeinizafiveraging processes in periodic media,
Nauka, Moscow, 1984(Russian); English transl.,Kluwenddecht/Boston/London,1989.

[7] (0503330) A. Bensoussan, J. L. Lions, G. Papanicolaaymptotic Analysis for Periodic Structure,
Studies in Mathematics and its Applications, 5. North-od Publishing Co., Amsterdam-New York,
1978.

[8] (1684713) A. Braides, A. Defranceschi, Homogenizattbmultiple integrals, Oxford Lecture Series
in Mathematics and its Applications, 12. The Clarendon ®ré&xford University Press, New York,
1998.

[9] (1856245) G. Bouchitté, |. Fragaldlomogenization of thin structures by two-scale method veith
spect to measurg<Calc. Var. Partial Differential Equations 5 (1997), np3T-54.

[10] (1663726) Y. Capdebosctiomogenization of a diffusion equation with dri@. R. Acad. Sci. Paris
Ser. | Math. 327 (1998), no. 9, 807-812.

[11] (1912416) Y. CapdeboscHomogenization of a neutronic critical diffusion problerthwdrift. (Eng-
lish summary) Proc. Roy. Soc. Edinburgh Sect. A 132 (2002)3n567-594.

[12] G.Cardone, A. Corbo Esposito, S.A. Nazarkern’s inequality for periodic solids and convergence
rate of homogenizatiofsubmitted).

[13] (2337848) G.A. Chechkin, A.L. Piatnitski, A.S. Shamgddomogenization. Methods and applications.
American Mathematical Society, Providence, RI, 2007.

[14] (1765047) D. Cioranescu, P. Donato, An introductiorhtimogenization, Oxford Lecture Series in
Mathematics and its Applications, 17. The Clarendon P@s&rd University Press, New York, 1999.

[15] (1676922) D. Cioranescu, J. Saint Jean Paulin, Homiaggon of reticulated structures, Applied
Mathematical Sciences, 136. Springer-Verlag, New Yori9al9

[16] (2233176) Donato, P., Piatnitski, AAyeraging of nonstationary parabolic operators with laigever
order termsMulti Scale Problems and Asymptotic Analysis, GAKUTO Imtat. Ser. Math. Sci. Appl.,
24, 153-165 (2005).

[17] (1166964) J.N. Flavin and R.J. Knogssymptotic behaviour of solutions to semi-linear elligqua-
tions on the half-cylindeiZ. Angew. Math. Phys43(1992), 405-421.

[18] (1209624) J.N. Flavin, R.J. Knops and L.E. PayAgymptotics and other estimates for a semilinear
elliptic equation in a cylinderQuart. J. Mech. Appl. Math45(1992), 617-627.



10 BIBLIOGRAPHY

[19] (0533617) S. Kesavaijomogenization of Elliptic Eigenvalue Problems: PaytAppl. Math. Optim.
1979. V.5 P.153-167.

[20] (0533617) S. Kesavamomogenization of Elliptic Eigenvalue Problems: Payt&ppl. Math. Optim.
1979. V.5 P.197-216.

[21] (1420153) R.J. Knops and L.E. Payresymptotic behaviour of solutions to the equation of cantsta
mean curvature on a three-dimensional regibteccanica31 (1996), 597-606.

[22] (1600940) R.J. Knops and C. Lupdipme recent results on Saint-Venant’s pringiplenlinear anal-
ysis and continuum mechanics, Springer, New York, (199B}./8.

[23] (0737902) Kozlov, S. MReducibility of Quasiperiodic Differential Operators aAgteraging Transc.
Moscow Math. Soc. 1984, 2, 101126.

[24] (1029772) M.V. KozlovaAveraging of a three-dimensional problem in elasticitydtyefor a thin
nonhomogeneous beam. (Russiaestnik Moskov. Univ. Ser. | Mat. Mekh., no.5 (1989), 6—1@yts-
lation in Moscow Univ. Math. Bull44, no.5, (1989), 5-10.

[25] (1145231) M.V. KozlovaAveraging a three-dimensional problem of elasticity tlyeiora nonhomo-
geneous rod. (Russianh. Vychisl. Mat. i Mat. Fiz.,31, no.10, (1991), 1592-1596; translation in
Comput. Math. Math. Phy&1, no.10, (1992), 128-131.

[26] (1399131) V.A. Kondratiev and O.A. Oleinikgn asymptotics of solutions of nonlinear second order
elliptic equations in cylindrical domain$artial differential equations and functional analyBimgr.
Nonlinear Differential Equations App22 (1996), 160-173, Birkhauser Boston, Boston, MA.

[27] (0549625) E.M. Landis and G.P. Panasenkoyariant of a theorem of Phragmen-Lindelof type for
elliptic equationswith coefficients that are periodic ifl ahriables but one Trudy Sem. Petrovsk.
(1979), 105-136 (Russian).

[28] (2182441) V.A. Marchenko, E.Ya. Khruslov, Homogeriaa of partial differential equations,
Progress in Mathematical Physics, 46. Birkhauser Bostan, Boston, MA, 2006.

[29] (0971506) A.S. Markus, Introduction to the spectradty of polynomial operator pencils. Transla-
tions of Mathematical Monographs, 71. American Mathenatociety, Providence, RI, 1988.

[30] (1201152) G. Dal Maso, An introduction Io-convergence, Progress in Nonlinear Differential Equa-
tions and their Applications, 8. Birkhauser Boston, Inmsi®n, MA, 1993.

[31] (1899805) G. Milton, The theory of composites, Camgadvionographs on Applied and Computa-
tional Mathematics, 6. Cambridge University Press, Caduarj 2002.

[32] (1669058) F. Murat, A. SiliAsymptotic behavior of solutions of the anisotropic hajereeous lin-
earized elasticity system in thin cylinde@, R. Acad. Sci. Paris Sér. | Matli828(1999), 179-184.

[33] (1741662) S.A. NazarotRolynomial property of self-adjoint boundary value prabkand algebraical
description of their attributedJspekhi Mat. Nauk54 (1999), 77-142.

[34] (0664066) S.A. Nazarobtructure of the solutions of boundary value problems in tegions (Rus-
sian. English summarylestnik Leningrad. Univ. Mat. Mekh. Astronom.26(1982), 65—68.

[35] (1788230) S.A. Nazarovustification of the asymptotic theory of thin rods. Intégrad pointwise
estimates. (English summanBroblems of mathematical physics and function theory. XhM&ci.
(New York) ,97, no.4, (1999), 4245-4279.

[36] S.A. NazarovAsymptotics of negative eigenvalues of a Dirichlet probkgth sign-changing density
functionTrudy seminara I.G.Petrovskogo, Moscow, Moscow Univemitbl., V.28, 2009.

[37] S. A. Nazarov, A.L. PiatnitskiHomogenization of a spectral Dirichlet problem for a systefif-
ferential equation with highly-oscillating coefficientsthe case of the sign-changing denshkiarvik
University College, RzD Report No. 2/2009, ISSN 1890-923X.

[38] S. A. Nazarov, |.L. Pankratova and A.L. Piatnitskiomogenization of spectral problem for periodic
elliptic operators with sign-changing weight functiddarvik University College, RD Report, No.
4/2008, ISSN 1890-923X.



BIBLIOGRAPHY 11

[39] (0481412) O.A. Oleinik and G.A. YosifiaBoundary value problems for second order elliptic equa-
tions in unbounded domains and Saint-Venant'’s principlenali della Scuola Normale Superiore di
Pisa, Classe di Scienze (4)(1977), 269-290.

[40] (1195131) O.A. Oleinik, G.A. Yosifian, A.S. Shamaeyv, thlamatical problems in elasticity and ho-
mogenization, Studies in Mathematics and its Applicati@é North-Holland Publishing Co., Ams-
terdam, 1992.

[41] (1330873) G.P. Panasenksymptotic analysis of bar systems. I. (English summ&uy3sian J. Math.
Phys.2 (1994), no.3, 325-352.

[42] (1330873) G.P. Panasenkissymptotic analysis of bar systems.Riyssian J. Math. Phys<4,(1996),
no.1l, 87-116.

[43] (2133084) G. Panasenko, Multi-Scale Modelling foustures and Composites, Springer, Dordrecht,
2005.

[44] (1930104) S. Pastukhova, Averaging for nonlinear fots in the theory of elasticity on thin periodic
structures. (Russian), Dokl. Akad. Naw83(2002), 596-600.

[45] (1250833) L.-E. Persson, L. Persson, N. Svanstedt,ylle¥NThe homogenization method. An itro-
duction. Studentlitteratur, Lund; Chartwell-Bratt LtBromley, 1993.

[46] (0650786) A.L. PiatnitskiOn the behaviour at infinity of the solution of a second-oeléiptic equa-
tion given on a cylinderRuss. Math. Surv37 (1982), 249-250 (in russian).

[47] (0699735) A.L. PiatnitskiAveraging a singularly perturbed equation with rapidly tleting coeffi-
cients in a layerMath. USSR, Sh49(1984), 19-40.

[48] (0778905) E. Sanchez-Palencia, Nonhomogeneousameatti vibration theory (Russian), “Mir”,
Moscow, 1984.

[49] (0902010) E. Sanchez-Palencia, Boundary layers age effects in composites. Homogenization
techniques for composite media, Lecture Notes in Phys,, 8@fnger, Berlin, 1987.

[50] L. Tartar, The general theory of homogenization. A peedized introduction. Lecture Notes of the
Unione Matematica Italiana, 7. Springer-Verlag, BerlitilJBologna, 2009.

[51] L. Tartar, Private Communication.

[52] (902000) L. Trabucho, J.M. Viafi@erivation of generalized models for linear elastic bearsab-
ymptotic expansion methodspplications of multiple scaling in mechanis (Paris, 198%ch. Math.
Appl., 4, Masson, Paris (1987), 302—-315.

[53] (870989) Z. Tutek, l.AganoviéA justification of the one-dimensional linear model of alabeam,
Math. Methods Appl. Sci8 (1986), no.4, 502-515.

[54] (0635561) M. Vanninathatjomogenization of eigenvalue problems in perforated dam&roc. In-
dian Acad. Sci. (Math. Sci.), 1981, V. 90, N 3, P. 239-271.

[55] (1333216) M.F. VeigaAsymptotic method applied to a beam with a variable crosi@eqEnglish
summary) Asymptotic methods for elastic structures (Lisbon, 1988)Gruyter, Berlin (1995), 237—
254,

[56] (1329546) V.V. Zhikov, S.M. Kozlov, O.A. Oleinik, Hongeenization of differential operators and in-
tegral functionals, Springer-Verlag, Berlin, 1994.

[57] (1809928) V.V. ZhikovOn an extension and an application of the two-scale convergenethodSb.
Math. 191 (2000), no. 7-8, 973-1014.






PAPERA






PAPER A
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ABSTRACT. The work focuses on the behaviour at infinity of solutionse¢oond order
elliptic equation with first order terms in a semi-infinitdiogler. Neumann'’s boundary
condition is imposed on the lateral boundary of the cyliratet Dirichlet condition on
its base. Under the assumption that the coefficients steliii a periodic regime, we
prove the existence of a bounded solution, its stabiliratioa constant, and provide
necessary and sufficient condition for the uniqueness.

1. Introduction

This work deals with the behaviour at infinity of solutionssiationary convection-
diffusion equations defined in a semi-infinite cylinder. V¥s@me that Neumann boundary
condition is imposed on the lateral boundary of the cylinded that the coefficients of
the equation are periodic along the cylinder axis or stabiét the exponential rate to a
periodic regime for asymptotically large axial distanceder these assumptions we study
the existence and uniqueness of a bounded solution, anlitdization to a constant at
infinity.

The question of validity of the Saint-Venant and Phragnhémdelof principles, as
well as other questions related to the behaviour at infirfigotutions to elliptic equations
and systems of equations, received a lot of attention of ar@ctans and mathematicians
starting from the beginning of 20th century.

A number of rigorous mathematical works are devoted to thigext. Dirichlet and
Neumann boundary value problems in a cylindrical domaimsézond order linear el-
liptic equations in divergence form were studied by manyhard. Early contributions
include [LQ], [6] and [7] which contain results like Saint-Venant's principle fqegial
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classes of Neumann problems. As to the later works on this,teg mention just some
of them closely related to the present paper.

In [14] an equation in divergence form in a half-cylinder with pelic coefficients
on all variables except for one was considered, the exp@ietdbilization to a constant
was proved. The periodic boundary conditions were imposethe lateral boundary of
the cylinder. The technique used in this work relies on gmegeometrical methods. As
was communicated to the author23]), the question of the existence of a solution that
converges exponentially to a constant with large axialatis¢ was studied in 1976 for
an equation in divergence form under some natural assungptio the right-hand side.
The method relied on a variation of the Lax-Milgram lemma.isTiesult has partially
been written in 15]. Another proof of the exponential decay of the solutionlte same
equation was given inljand it is valid also for non-flat base of the cylinder.

A boundary value problem for a second order elliptic equmatidth first order terms
on a half-cylinder with periodic boundary conditions on taeeral boundary of the cylin-
der was studied in19] and [20]. In these works, under the assumption(éf regularity
and periodicity of the coefficients, the existence of a baahsblution and its exponential
stabilization to a constant at infinity was proved by meandifffision processes tech-
niques. Moreover, the necessary and sufficient conditionhé uniqueness of a bounded
solution were given. In40] the obtained results were applied to a homogenization-prob
lem for singularly perturbed operators defined in a layesaAlvithout the assumption on
periodicity in axial variable the following conditionalselt was obtained inZ0]: if the
adjoint problem has a bounded uniformly positive solutiiren the effective axial drift
can be defined and the results proved in periodic case, rerakih

In the present paper we study operators with measurabléaerfs and assume only
Lipschitz continuity of the boundary of the cross-sectitmthis case the usage of prob-
abilistic techniques is getting embarrassing and somstim@ossible, especially if the
boundary condition is not homogeneous. Our approach refigke various results from
local qualitative elliptic theory, such as Harnack’s inaliy, Nash and De Giorgi esti-
mates, the maximum principle, positive operators theoy amumber of non-trivial a
priori estimates which include as a weight the function fimgrthe kernel of the adjoint
periodic operator. We consider here not only operators petindic coefficients, but also
with coefficients which stabilize to periodic regime at itfjn Another issue addressed in
the paper is the generalization of the existence, uniquesnas stabilization results to the
case of nonhomogeneous equations with' function on the right-hand side. It should
be noted that obtaining the a priori estimates in this cagetting more complicated than
in the case of data from?.

Also we pay special attention to the asymptotic behaviouhefsolutions defined in
a growing family of finite cylinders. This gives a clear pietof how solutions defined
in finite cylinders approximate the limit bounded solutionhis analysis allows us, in
particular, to distinguish the special case when the sleda&ffective axial drift is equal
to zero.



In [3], [4] and [8] specific classes of semi-linear elliptic equations in d-bglinder
were considered. It was proved that a global solution, wheaxists, decays at least
exponentially with large axial distance. The techniquenimgs the derivation of a first
order differential inequality for the energy flux across @ss-section of the cylinder. With
the help of this technique spatial behaviour of solutionsliiptic systems, in particular
those of linearized and linear elasticity, was studied édse, for example9]).

A priori estimates similar to Saint-Venant's principle itagticity theory were dis-
cussed in 17] under some dissipativity type assumptions on the coeffisie Also in
this work interesting uniqueness results in proper clastgsowing functions were ob-
tained for Dirichlet and Neumann problems for second oroferak elliptic equations in
unbounded domains .

In [11] the authors investigated elliptic systems with complerstant coefficients,
assuming that a weighted Dirichlet integral is bounded. Jdq@er deals with finite energy
solutions for the system of linear elasticity.

The asymptotic behaviour at infinity of solutions to symnueegéiliptic systems were
treated in L6]. This work focused on the existence of solutions in weidhgpaces with
various exponentially growing or decaying weights.

In [13] the behaviour of solutions to nonlinear elliptic equatawmith a dissipative
nonlinear zero order terms was studied by means of the b&urietions techniques.

The goal of this work is to study the behaviour at infinity ofigmns to a linear
stationary convection-diffusion equation in a semi-inénecylinder. We impose Dirich-
let boundary condition on the base of the cylinder and Neumzamdition on the lateral
boundary. Under the assumptions that the coefficients oédjuation stabilize exponen-
tially to a periodic regime, and the functions on right-hamde of the equation and of the
boundary operator decays sufficiently fast at infinity, weverthe existence of a bounded
solution and its stabilization to a constant at the expdakratte. Also we provide a neces-
sary and sufficient condition for the uniqueness of a bousdéation. It should be noted
that, in contrast with the divergence form operators, ferdherators with first-order terms
the question of uniqueness of a bounded solution is gettioige momplicated. We show
that whether a solution is unique or not depends on the sigomie constant called ef-
fective axial drift (or flux), which can be determined in teymof a solution to auxiliary
periodic problem for the formally adjoint operator.

The problems of this type appear while constructing the aggtic expansions of so-
lutions to equations describing different phenomena imlgighhomogeneous medium.
For instance, such results allow one to construct boundgmsr Ifunctions in various ho-
mogenization problems. Moreover, these results are opeaddent interest in mechanics
and other applied fields and, of course, in mathematics.

The paper is organized as follows. Sections 1-6 focus ondh@beneous problem
with periodic coefficients. In these sections we start whid pproblem setup and auxiliary
results, and then proceed with the existence, the uniqaemaesthe stabilization to a con-
stant of a bounded solution to the problem under consideralin Sections 7—8 we obtain



similar results for inhomogeneous problems and equatidgtisomefficients stabilizing to
a periodic regime.

2. Problem statement

Let G = (0,00) x Q be a semi-infinite cylinder iR¢ with the axis directed along
z1, where(@ is a bounded domain iR¢~! with a Lipschitz boundary)Q. The lateral
boundary ofG is denoted by: = (0, +00) x 9Q). We study the following boundary-value
problem:

—div (a(z) Vu(x)) — (b(z),Vu(z)) =0, ze€G,

(2.1) . rEy,
on,
u(0,2") = p(2'), e Q.

Herea(x) is ad x d matrix andb(x) is a vector inR?, x = (z1,2'), p(2') € HV2(Q); (-, ")
stands for the standard scalar producRif) Ou/on, = ijzl a;;(z)n; Oju is the conor-
mal derivativep is the external unit normal. The matrix-valued functidm) and the vec-

tor field b(z) are supposed to be measurable and bounded, thati$ € L>(G), b;(z) €
L*>(G), and periodic inz; functions. Without loss of generality we assume that the pe-
riod is equal tol. For the sake of simplicity the matrixx) is supposed to be symmetric.
Moreover, we assume thatz) satisfies the uniform ellipticity condition, that is there
exists a positive constantsuch that, for almost alt € R¢,

(2.2) AP <D ay(0)&g, VEeR,

The first goal of this work is to study the behavior of boundeda proper sense)
solutions of problem (2.1).

3. Auxiliary function p(z)

Consider the following periodic problem:

—div(a(x)Vu) — (b(z),Vu) = f(z), ze€G)=(0,1)xQ,

(3.1) g“ =0, ze Xl =(0,1)xdQ,
Ng
u— x; — periodic

This problem has a unique up to an additive constant solut{af). We denote byA
an unbounded operator iB*(G}) which mapsu(z) into f(z) € L*(G}). In view of
x,-periodicity we can identify functions defined @#} with the corresponding functions
defined on the sé&t = &, x Q, whereS; is a 1-dimensional circle. Then problem (3.1)



reads

3.2
(3:2) u_y z € Y.
on,

The operator is an unbounded operator frohi(Y") into itself with dense domai(A),
that consists of the functiongx) € L?(Y) such that there exist§z) € L*(Y): Au = f
anddu/on, = 0 for z € JY. For large) > 0 the inverse operatdrd + \I)~! exists and
it is compact. Moreover, using the De Giorgi—-Nash estiméges, for exampled]) it is
easy show thatA + A1)~ is a compact operator ifi(Y").

The formally adjoint problem takes the following form:

{ —div(aVv) +div (bv) = f, z €Y,

{ —div(a(z)Vu) — (b(z),Vu) = f(z), x€Y,

v

ong
In the sequel we will need an auxiliary functipfiz) which belongs to the null space of
the adjoint operator:

—(byn)v =0, x € 0Y.

(3.3) p
on,

The goal of this section is to show that such function existsia positive.

—div(aVp) +div (bp) =0, x €Y,
— (byn)p =0, x € 9Y.

DEFINITION 3.1. We say that the operatBrfrom L(Y") (C(Y)) into itself is positive
if from the inequalityu > 0 it follows that Bu > 0.

The linear positive operatds is calledv-bounded, for some € C(Y), v > 0, if for
every positive function. € C(Y') there exists two constants= «(u) andg = (u) such
that

0<a(u)v<Bu< f(u)v.

First let us show that the operatot + A7)~ is positive. By the maximum principle,
if f > 0, thenu cannot have a negative minimum in the interior of the dom@ainThe
assumption that a negative minimum is attained on the bayritia, will also contradict
the maximum principle in view of the positiveness fof Indeed, sincé( is Lipschitz
then for every poink € 9Q there exists a neighborhoddz) c R? such that the surface
0Q NU() is represented by the equality

I = .F(l'g, ceey l‘d),
where F is a Lipschitz function. Let us make a change of variablesigitening the

boundarny(), so that the piece of the boundai§) N U(z) is mapped into the piece of the
planeé; = 0 andY N U(z) into some domain wherg > 0:

gl =T — -F(x% "'7xd)7
szl’k, kIQ,,d



One more change of the variables transfers the co—normaatiee to the normal deriva-
tive:
m = &1,
A1k
Uszk——fl, k?ZQ,,d
a1
By construction, in the vicinity of the point = F(z) the solutionu is only defined for
n > 0. We define an extension of(keeping the notation for the extended function) by
settingu(ny,n’) = u(—n1,n’) for negativer;. One can check that after inverse changing
the variables, due to the homogeneous Neumann boundarytiooreh 0@, the extended
function u(z) remains a solution of some convection-diffusion equatiait \a positive
right hand side in a neighbourhood @f Thus, in view of the maximum principle,(z)
cannot attend a negative minimumzat
Let us show that the operatod + A\1)~! is 1-bounded inC(Y). First, we note that,
in view of the boundedness of the coefficients, the follonestmate takes place (see, for
example, §]):

lulley < Clifllew
for some constan®’ independent of . Thus,

(A+A)"'f=u<C.

It remains to show that4d + M)~ f > 0if f(z) > 0,z € Y. Let us suppose that
mi31/1 u(z) = 0. In the interior ofY” the functionu(z) cannot attain a nonpositive minimum
BAS

unlessu is equal to zero. If we assume thaiachieves zero minimum on the boundary
St x 9Q, then, in the same way as above, we can extetwla larger domain so that the
extended function remains a solution of some elliptic catiea-diffusion type equation
with a positive right-hand side and, consequentlgannot achieve its zero minimum on
the boundary. Hence, we conclude th&t) > ¢(f) > 0if f(z) > 0.

Now we apply the Krein-Rutman theorem (see, for examd]) [to compact, pos-
itive, 1-bounded operatqrd + AI)~! in C(Y'). According to this theorem, there exists
a simple positive eigenvalug, of the operatof A + A\I)~! with a positive eigenvector,
and there is no others eigenvalues with positive eigenvectdoreover, if we consider
(A+ XI)~! as an operator ifi?(Y'), then there exists a nonnegative periodiejreigen-
vectorp(z) € L*(Y) of the adjoint operatofA* + A\I)~!, which corresponds to the same
eigenvalue\,. Let us note that the operatdrhas a positive eigenvector (which is equal
to 1) corresponding to zero eigenvalue. In view of the unigss of eigenvalue with posi-
tive eigenfunctior(A—lO — )\) = 0, and, thereforeyp(z) belongs to the kernel of the adjoint
operatorA*.

In order to prove the positiveness and boundedness of tratidarp(x) up to the
boundary®Y = 9Q we extend it to some bigger domain containi#ig

Sincedq is Lipschitz, for any point: € 9@ there exists a neighborhodd z) such
thatl’ = 0Q NU(z) = {z : x; = f(2’)}, with Lipschitz functionf(z’). Let us make a



change of variables which straightdris

{ & = x — f(a),
gk:l‘ka k:27"'7d7

such that the domaitt =Y N U(z) is mapped int@)*, where¢, > 0, andl" is mapped
intol" = {{: & = 0}. i
We define the "extended” coefficienis (¢) andb; () in the domain
O ={e=(€.¢): & <0, (-6,&) et}
as follows:
d(gla gl) = Sa(_gla §,> S*7
b(fbfl) = Sb(_fla gl),

where the matrixS is given by the expression

-1 0 .. O
0 1 .. 0
S = C L
0 0 .. 1

If we define the extended functignas
~ . p(ghfl)? 51 > 07
p(g) N { p(_€17€/)7 fl < 07
then it can be checked thais a solution of the equation
(3.4) —div (@) V 5(€)) + div (b(¢) p(€)) =0, Q=0T UQ.
Indeed, by definition
op
8n,~1
wheren is an external normal t+. Since by construction
ap~+ 7 ~f aﬁ_ 7 ~ ™
L T B

wherej* are limit values of the functiofi on the surfacé from different sides of it{2*
and(2~ respectively. Then

(5 - Gomit) wierde = [ (5 =G ) wie) e o,

r r

—(g,n)ﬁzo, §ef,

for any functionp(§) € C5°(€2). Keeping in mind the last equality, one can easily show
thatp is a solution of (3.4).

By construction the obtained functigii¢) is nonnegative. In view of the Harnack
inequality in any compact subs&t of ), 5 is bounded from below by some positive



constan® which depends on the poimtand the choice of a compact subset (otherwise it
is equal to zero which contradicts the definitiorpdf Moreover,p is a Holder continuous
function in(Y’ (see, e.g.41], [5]), where again the upper bound fodepends on the point

z € T and the choice of a compact subset.

Making inverse change of variables we conclude thaj is positive and bounded in
some neighborhood”’(z) of any pointz € 0@ up to the boundary(@. Let us take a
covering ofo@ which consists of these neighborhodd$z). Sinced( is a compact set,
there exist a finite subcovering of it. By means of the stath@ampactness arguments,
one can prove that(x) is a positive continuous function in the closed Bet

4. Existence of bounded solutions

In what followsG? is a finite cylinder(a, 3) x Q, X2 = (a, 8) x 9Q is its lateral
boundary and,, = {z = (z1,2) : 21 = a, 2’ € Q}.

DEFINITION 4.1. A weak solution of problem (2.1) is called bounded ifday N > 0
the following inequality holds:

HUHL2(G§\V’+1) <C,
whereC' does not depend oN.

LEMMA 4.2. A bounded solutioni(z) of problem(2.1) in terms of Definition 4.1
exists. Moreover,

(4.1) IV ullr2@ < oo, |lullpe@x) < oo
PROOF First we consider the following boundary value problem finde cylinder
—div(a(z)Vu*) — (b(z),VuF) =0, =z e G,
k
(4-2) o, z €T,
uk(%),x’) =p(2), uF(k,2") =0, z e q.

It is known that the solution to problem (4.2) exists and foy & > 0 has finite 4! and
L> norms. Obviously, in view of the maximum principle sincgk, 2’) = 0

| zoo(s) < Mufllzoe (s, z)-

Let us consider in the cylind&t] the following auxiliary problem

—div(a(z)V 2*) — (b(x),V 2¥) = 0, r € G},
2"
% = O, x € Eé,

zk(C(LJ,x’) = o(2'), zk(l,x’) = uk(l,x’), e qQ.

Since the last problem is linear, we can represénas a sun; + 2%, wherez; and
2% satisfy the homogeneous equation and lateral boundaryitemms] 2, (0, ') = ('),



21 (L, 2") = 25(0,2") = 0, 25(1,2') = w*(1,2'). Itis known that for the function, (z) as
a solution of elliptic problem in a fixed domain the followiegtimate holds:
122225100 < Cllellrirag)-
The L>(S;/2) norm of the functiores can be estimated in terms 6f°(S;) norm of
u* as follows
(4.3) 25| oe (5,) < e 1u¥]| oo sy,

where0 < a < 1, o does not depend ol Indeed,|25| < v* in G}, wherev* satisfies
the same equation and boundary conditionsiagxcept for the boundary conditions on
Sy, which reads®(1,2’) = |[u*||1~(s,). Due to the strong maximum principle <
aof[uF|| sy With 0 < a < 1, that yields (4.3). In this way we obtain

|| oo 51y < NPl (sy,0) < 121l poe(sy0) + 1251 poo (s, ,0) <

< Cllellmzg) + e lluflli=is), o<1,
and, finally

C
]| Lo (s < T—a el i), 0<a<l.

Moreover, thel.?(G}) norm of z; is bounded
1211221y < Crllellge(g)s
and, since:(1,2') € L*>(S;) then
125|261y < Call @l mre o),
whereC; andC;, do not depend oh. Also, in view of the maximum principle,

(4.4) 14"l @) < Cllellrrag),
with C' independent ok. Obviously, it follows from the last estimates that
(4.5) lu* [l 2oy < C, N 20.

Let us note that the estimate (4.4) is validlirf (G%), for anyés > 0:
(4.6) lo | ety < CONellang, 98>0,

with C'(¢) independent o.
In order to estimate th&?-norm of the gradient ofi* in G%, notice first that by the
standard elliptic estimates in the cylind&t we get

(4.7) IVutilz@z) < Clielmreg)-

Notice also, thap u* is H'(G?) function because botp(z) andu*(z) are elements of
HY(GY) N L>=(G%). Moreover, the estimate holds true

(4.8) lpe* ez < Cllellmreg)-



Sincediv(aVu*) € L*(Gg) anddiv(aVp — bp) = 0, then the normal components of
(aVu*) and (aVp — bp) on S; are well-defined elements &f ~'/?(Q) (see P]), and the

inequality holds
4.9)  lla1;00, 0" 120y < Cllellmregy,  Nar;0u;p — bipll g-112(g) < C.

If we multiply the equation in (4.2) byu* and integrate the resulting relation over the
cylinderG*, then considering (3.3) and integrating several times Inispae obtain

k
/(aV uf, Vuk) pdr = /ukpalj E;u dx' — %/(uk)2 (aljg—p —bp) dx.

Gllc S1 S1

Taking into account (4.4) and (4.7)-(4.9), we estimate thegral on the left-hand side as
follows

k k 2
@V .5 ) pde < Cllelg,
Gi
This estimate and (4.7) imply the desired bound
(4.10) IV u*|| 26y < Cllel ey,

whereC' does not depend an

Finally, using (4.5), (4.10) and compactness arguments;omelude that.(x) con-
verges weakly irf/}, (G) to a functionu(x) which is a solution of problem (2.1) such that
(4.1) holds true. Let us note that in view of the Nash—De Giesgimates (see2fl]), for
any§ > 0 a solution of problem (2.1) is a Holder-continuous funetin G3° up to the
lateral boundary of the cylinder. O

REMARK 4.3. Let us note that we did not use theperiodicity of the coefficients
a;;(z) andb,(z) to prove the estimates (4.4) and (4.5). The proof is validfiercase of
arbitrary measurable bounded coefficiemtgx) andb;(x) and uniformly elliptic matrix

a(z).
5. Stabilization of solutions

In this section we are going to show that every bounded swludf problem (2.1)
stabilizes to a constant at the exponential rate. To thidegng consider two functions of
the variabler:

M(zy) = i}gleaz?(u(xl,x') and m(z;) = gleigu(xl,x').

By the maximum principle the functiof/(z;) does not assume a local maximum point
in the open intervak; € (0, +o00). This implies that\/(z;) has at most one minimum
point on |0, +oc0), and that, starting form this minimum poinY (z,) is monotonous. If

M (x,) does not have minimum point, then it is monotonous on the &imdérval[0, +o0).
Similarly, m(x) is monotonous, possibly starting from some point.



Therefore, we have only three possibilities for the behawgiothe functionsM (z4)
andm(zy):
e M (x1) monotonously decreases amdz;) monotonously increases;
e M (x;) andm(xz;) monotonously increase (maybe starting from some point);
e M (zq) andm(z;) monotonously decrease (maybe starting from some point).

5.1. M(z,) monotonously decreases and:(z;) monotonously increases.Denote
GN™? = (N,N +2) x Q, N > 0. Our aim is to estimate the oscillation ofz) over
the cross-sectiofy,; in terms of the oscillation ofi(z) overSy. Since problem (2.1) is
linear, then we can assume without loss of generalityth@) = 0. Then inGY 2 the
functionu(z) is nonnegative. As was shown above, the solutior) can be extended to a
larger domain{ N, N +2) x Q, @ C @, insuch a way that the extended function satisfies
a convection-diffusion equation iV, N + 2) x @, and the maximum and the minimum
of the extended function over cross-sectian = k, 2/ € @} coincide withM (k) and
m(k), respectively.

Thus, the Harnack inequality holds:

m(k) > aM(k), Vk>1,
where a constant depends only o\, d and@. Then
(5.1) M(N+1)—=m(N+1) < (1 —a)M(N +1) < (1—a)M(N).
Taking into account (5.1) and the assumptio(V) = 0, we obtain
— - <
_oseu(e) = M(N +1) = m(N +1) <
<(1-a) OS(]:Vu(x), 0<(l—a)<l1l, N>O0.
1=

The last inequality implies that(z) stabilizes to a constant exponentially. Indeed, since
this inequality holds for allv > 0, then

osc u(z) < (1 —a)¥ ! osc u(x).
x1=N r1=1

Finally, taking into account the boundedness of the fumcticr) (see (4.1)) and denoting
by C« the limit of m(z;) asz; — oo, we obtain

(5.2) lu(z) — Cool < Cope ™, vy = —log(l —a) > 0.
REMARK 5.1. One can see that the constapin (5.2) in this case takes the form
Co < Ci el gy + C2 Coo < Chlloll gy + C2Cllel 12 (g)-
Indeed, taking into account the linearity of the problem astimate (4.4), we have
| osc ul < 2 ullz=cs) < Cllellie)-

Let us emphasize also that the constantlepends only on the ellipticity constafif the
space dimensiod and the domaiid).



LEMMA 5.2. There always exists a unique solutiof(x) of problem(2.1) for which
M (z,) decreases anth(x;) increases.
Moreover, the function(x) stabilizes to a constart’® at the exponential rate, as
r1 — OQ.
|U0 — O;O| < CQ ||90||H1/2(Q) 6_%“, Ty > 1.
If p(2') € L=(Q) then foruy(x) the maximum principle is valid, that is
: / < < / )
min p(z') < te(z) < maxep(s)
PROOF Indeed, such a solution can be constructed with the helpefdllowing
auxiliary problems:

—div(a(z)Vu*) — (b(z),VuF) =0, =z e G,
ou®
&%:Q k r ey
ou

k AN /
u (O,l‘) —()0(.%')7 ana

By the maximum principle)/*(z;) = max uk (21, 2') is decreasing and* (z,) = mig uk (")
x'e z'e

(k,2")y =0, 2 €Q.

is increasing function, for any. If ¢ € L>(Q) then

min p(z') < u*(r) < maxp(z’), Vk > 0.

2'€Q 2/€Q
Passing to the limit a& — oo completes the proof. Due to the maximum principle
the obtained solutiom, to problem (2.1) is unique. In view of Remark 5.1 the rate of
exponential stabilization of, to C;° depends only o\, d and@. 0J

5.2. M(z,) and m(z;) are monotonously decreasing (increasing) functionslf
M (z,) andm(x;) decrease for sufficiently largg, then)M (z;) monotonously decreases
on the whole half-lin€0, +o00), while m(z) might have at most one maximum point.
One can takéV, large enough so that on the interyal,, co) both functions are monot-
onous. Obviously, it is sufficient to prove the stabilizatia the case of monotonously
decreasing at infinity functiond/(x;) andm(z,): the case whe/(z,) andm/(x;) are
monotonously increasing functions can be considered inmélasi way. As before we
assume that(N +2) = 0.

First of all, due to monotonicity and boundedness\6fz;) andm/(z;) (we consider
only bounded solutions) the following limits exist:

lim M(xy) =M, lim m(x;) =m.

Tr1—00 Tr1—00

For arbitrary=; > 0 ande, > 0, let N > 0 be such that
M(N)—M(N+2)<e;, m(N)—m(N+2)=m(N) < e,.
Then, by the Harnack inequality, in the doma&ig,, = {N + 1} x @ the estimate holds
go>m(N+1)>aM(N+1)>aM(N+2)>aM(N)—ac;.



Thus, we have that

osc u(x) -0, N — oc.
r1=N

The last equality shows that the functialS ;) andm(x,) converge to the same constant,
that isu(x) stabilizes to the constant.

Now we are going to prove that(z) stabilizes to the constant exponentially. With-
out loss of generality we can assume that) stabilizes to zero. Instead of the original
functionu(z) we consider shifted functioia(x) = u(x; + Ny, 2’) for Ny > 0. Due to the
periodicity of the coefficients; remains a solution of the same problem but with different
boundary function at,, which we denote by (z’) = @(0,z") = u(N, 2’). Clearly,(x)
is a positive continuous function. Let us define a functi¢n) as a solution of problem
(2.1) withv(0,2') = 1 andv — 0 asxz; — oo. The existence of such a solution can
be justified as follows. As in (4.2), one can construct appnations” andv* for the
functionsa(z) andv(x). By the maximum principlé*(z) > (:Ivnelg Y)v*(z). Passing to

the limit, ask — oo, in this inequality, we obtain:

——— =0, x; — o0.

Thus, the required solutianexists. By the maximum principle

u(r) oz
maxy  M(N)

S0, settingr; = 1 and taking maximum over € () of both sides of the last inequality, we
obtain

< v(wy,2'),

M(N +1
ﬁ < max (L) <5< 1

Consequently we have:
M(N +1) < BM(N), VYN >0,

or
M(N) < eW=D18 maxu(l,2), N >1.

r’'eqQ
Denoting byy the positive constant log 8 and using estimate (4.4), we obtain

M(N) < Cy||oll g2 e N,
or, in other words,
lu] < Coe 7,y > 1.
In the general case, when a bounded soluti@r) to problem (2.1) stabilizes to a nonzero
constant’,,, one can see thdl, in the last inequality takes the form
Co = C1 el g2y + C2 O,

with constantg”; andC;, which depend only o\, d and@. In this way we have proved
the following



LEMMA 5.3. Under our standing assumptions ary(z) and b;(z), 7,5 = 1,...,d,
every bounded solution of problem (2.1) stabilizes to a st the exponential rate, as
r1 — OQ.

REMARK 5.4. It should be noted that if we replace in (2.1) the homeges Neumann
boundary condition o&x with zero-flux condition

ou
on,

then the corresponding periodic cell problem need not haven#ivial kernel; in partic-
ular, a constant need not be an eigenfunction. In this casprtblem

—div (a(x) Vu(x)) — (b(z), Vu(x)) =0, =€,

— (b,n)u =0,

ou
o (b,n)u =0, x e,
u(0,2) = p(2), reqQ

might have a bounded solution which does not stabilize torestemt at infinity. For
example, a functiom(xz, x,) = sin(y/2z, )e*? satisfies the problem

0*u  O*u ou
o2 or2 0o =0, z € (0,+00) x (0,1),
6u1 2 3u
(5, ~ W@ 0 = (5~ @)@ ) =0, @1 € (0, +oc)
U(O,l’z) — 0, To € (O, 1)7

clearly, this solution is bounded, but does not convergedorestant, ag; — oo.
The detail analysis of problem (5.3) requires quite deiGaguments of spectral the-
ory and is out of the scope of the present paper.

6. Main result

In order to formulate the main result we introduce the notati

6.1 b= [ (@~ bi@pio)) a

Go

J

where the auxiliary functiop(z) was introduced in Section 3. Let us notice that in view
of the periodicity of the coefficients, the integral on thghtrhand side of (6.1) can be
taken ovelG;; ! for anyk > 0. Moreover, this integral can be taken over arbitrary cross
sectionS; = {¢{} x Q. Indeed, integrating (3.3) oveér; we obtain the following equality

0 / 9 :
/ (—alja—f + bl p) dr' = / (—alja—5 + bl p) dx s
J J

Se Sy



for any positiveg andn. Thus, for any > 0
/ (alj (x)ﬁp—(x) — bl(l')p(l')) dz’ = Const.
81‘]‘

Se
THEOREM 6.1. Leta;;(z) € L*(G), b;(z) € L*(G) be z;-periodic functions, and
suppose that the conditiq@.2)is fulfilled. Then the following statements hold:

(1) Every bounded (in terms of Definition 4.1) solutiofx) of problem (2.1) stabi-
lizes to a constant at the exponential ratexgs— oo, that is

lu(z) — Coo| < Ce 7™, C, v>0, 21 > 1,

where the convergence ratedoes not depend apandC',.

(2) b, < 0if and only if for anyp(2’) € HY?(Q) and for anyl € R, there exists
a bounded solution(z) of problem (2.1) that converges to the constanas
xr1 — OQ,

(3) b, > 0if and only if there exists a unique bounded solutign) of problem(2.1)
and it converges to a constamt = m(y), asx; — oc.

REMARK 6.2. In the casé; > 0 for a solutionu(x) of problem (2.1), the function
M (x,) is decreasing and the functiam(x, ) is increasing.

Indeed, by virtue of Lemma 5.2, there exists a solution tdenm (2.1) such that the
corresponding/ (z; ) monotonously decreases amgz; ) monotonously increases. Since
b, > 0, the mentioned solution is unique, and the required statefoliows.

Although in the casé; < 0 a bounded solution is not unique, the solution for which
M (z,) decreases aneh(z;) increases remains unique. Such a solution depends contin-
uously on the boundary data(z’) and defines uniquely the constafif®, to which it
converges. This constant will play an important role in tegel.

REMARK 6.3. Let us note that in the case whefiz, ) andm(z,) are both decreasing
or increasing functions, the stabilization rate may depend, (cf. Remark 5.1). In
general,y may tend to zero, as, goes to zero. Indeed, let us consider the following

problem with constant coefficients:

Au+by0,,u=0, xeG,

(6.2) .
u(0,2") = 1.

It is easy to see that in this caser) = Const, b; = —b; and all the solutions of problem
(6.2) depend only on; furthermore,

(6.3) u(z) = Cy + Cye o1,

with some constants e}nd(}g. Obviously, ifb; > 0 then a solution to problem (6.2) is
unique and equal t; if b; < 0 then every bounded solution stabilizes to a constant at the
exponential rate. As follows from (6.3), the stabilizatiate goes to zero ds = —b; —

0.



PROOF OFTHEOREM6.1.
1. Stabilization of every bounded solution had been proved@boSection 5.
2. Assume that for any(z’) and for every constaritthere exists a solution that converges
to this constant. We are going to prove that in this dase 0. To this end we denote by
u(z) the solution of problem (2.1) with(z') = 1 such thati(z) — 0, asx; — oo. Letting
u(z) = 1 — u, we obtain a solution of problem (2.1) witi{0, 2’) = 0. If we multiply the
equation in (2.1) by(z)u(x) and integrate the resulting relation ov&f = (0,¢) x Q,
then we obtain

1 op 9 ou ;o
/(aVu,Vu)pdx—ké/ (8na —(b,n)p) u dx +/a1jaxjupdx =0.

G5 Se S¢
Integrating ort from N to V + 1, for someN > 0, gives:
N+1

//(aVu,Vu)p(x)dxdﬁ—l—% / <§7Z—(b,n)p) u® do+
NG

N+1
CT'N

Ju
+ a1;=—u(x) p(r)dr = 0.
| ot ate)
(e
Now, we use the facts that the integrfil.c (a V u, V u) p(z) dz is an increasing function
0

of ¢, p(z) > 0 is bounded and, due to our assumptiefy;) stabilizes tal at the exponen-
tial rate, ast; — oo. Then for sufficiently largeV the following inequality holds:

/(aVu, Vu) pdz + %bl < CHVUHH(G%“) ”U”H(G%“)
Gy
Combining standard elliptic estimates fofr) = 1 — u(x) (extended as in Section 3to a
bigger domain) with the assumption afz), one can see that
||VUHL2(G§$+1) = HV7-0HL2(G§$+1) < C||7-LHL2(G%§§) <Ce ™, v >0,
and, therefore,
/(aVu, Vu)pdx + %51 < Ce ™V,
Gy
Passing to the limit a& — oo implies thatb, < 0. The inverse implication will follow

from Lemma 6.4 below.
3.We consider the following sequence of auxiliary boundaty@g@roblems:

—div (a(2x)Vu*) — (b, Vu*) =0, =z € Gf,

k
(6.4) Ou =0, LS Zlga
)




First we show that if the sequenaé&(x) of solutions of the auxiliary problems (6.4)
converges uniformly to 1 on every compact setas oo, thenb, > 0.

Let us multiply the first equation in (6.4) by(z)u”*(z) and integrate the resulting
relation overGE. Integrating by parts and taking into account the boundanyditions
uk(k,2') = 0, we obtain

1 dp , ou® ,
/(aVuk,Vuk)pdx—ﬁ/ (alja—m’j_blp) dx —/ana—xlpdx =0.

GE So So

In view of the maximum principle:* cannot attend its maximum in the interior of the
domainG§, so

7 k k o /

by =2 [ (aVu",Vu")pdxr + aua—pdx > 0.

T
Gk So
Next we prove the following

LEMMA 6.4. The following two conditions are equivalent:

(i) For every boundary conditiop(z’) there exists a unique bounded solution of
problem (2.1) and this solution converges to a constant m(y), asz; — oo;

(i) Solutionsu*(z) of problem (6.1) with the boundary conditigiiz’) = 1 converge
uniformly on every compact sét € G§ to 1, ask — oo.

PROOF OFLEMMA 6.4. Let condition (i) be fulfilled. Then, obvioush(x) = 1 if
¢ = 1. Sinceu” — u, ask — oo in the space] .(G), then in view of De Giorgi
estimates

w=u=1, k— oo

on every compact set ifi.
Let (i) hold true. Suppose that there exjstr’), two constants”! andC? and two
bounded solutions; andu, of problem (2.1) such that

Uy —>Céo, u2—>C§o, T — 00.

Then the functiony = 1 — (u; — up)/(CL — C%), which stabilizes to zero ag — oo,
solves the following problem:

—div (a(x) Vo) — (b(z),Vv) =0, xe€aG,

ov

=0 by
on. , T e 2,
v(0,2') =1, 7 eq.

On the other hand, by the maximum principler) > u*(z) whereu® is a solution of
problem (6.4). According téii), u* converges ta uniformly on every compact set (@,
ask — oo. Thusv(z) > 1, z € G. We arrive at contradiction. Lemma 6.4 is proved.]



4. It remains to prove that there are only two possible optiamgtie behaviour of.*:
eitherv”(z) decays at the exponential rate,«dr(x) converges td uniformly on every
compact set, ak — oco.

Obviously, in view of the maximum principléy*(x)}, for anyx € G, is a monotonously
increasing sequence andk v*(z) < 1, for all x € GE. Thusu”*(z) converges uniformly
on every compact subset 6fto a functionu(z), 0 < u < 1, which is a solution of prob-
lem (2.1) withp(z') = 1. In view of the maximum principle if.(z) = 1 in some interior
point of G, thenu(z) = 1, z € G. Hence, either* converges uniformly td on every
compact subset a¥ or

lim maxu®(zy,2") <1, YV, > 0.
k—oo z'€qQ

Suppose that the latter case takes place, and dghﬁtmag:uk“(l,x’) =p < 1. Ifwe
—o00 z'Ee

introduce
uF (2 4+ 1,2)

max ubt1(1, 2/)’
r'eqQ

thenvf(0,2") < 1 and, due to the maximum principlet (z) < u*(x). This yields

vf(wl, x) =

uF (o +1,27) < uF(ag, o)) maxu (1, ) < uFTH (2, 2)) maxuF(L, ),
z’'eqQ z'eQ

thus,
Uk+1(2,l'/) S BukJrl(l,{L’/) S BQ-
Similarly, we can construct

uk*2(zy +2,2)

max uk+2(2, ')
' e€Q

Ué(l‘l, ') =

and show thalgim uk(3,2") < 3. Repeating this procedure, we obtain for axy> 0 the
inequalityu”* (N, 2') < Y which implies the exponential decay fof(z), asz; — .
Theorem 6.1 is proved. O

Although in the statement of Theorem 6.1 one does not seeitiasedce between the
cased, = 0 andb; > 0, the behaviour of the approximation$ is rather distinct in these
two cases. The lemmata below specify the difference.

LEMMA 6.5. Letb, > 0. Then the solution* to problem(6.4) satisfies the estimate
(6.5) b — 1) < Ce k=2 g e GE,

where the constarit depends on, d and@; v is a positive parameter which may depend
onb;.



PROOF Making change of variables = k — x1, 2’ = 2’ in (6.4) and denoting
a(z) =Salk — z,2")S* = Sa(—=z,7) 5%,
b(z) = sb(k — 2z, 2) = Sb(—2, 2),

with
1 0 0
0 —1 0
S - . 9
o o0 .. -1

we transform problem (6.4) to the form
—div (a(z)Va*) — (b, V") =0, ze Gk

our
e 0, z€XE
a*(0,2) =0, af(k ) =1
It is easy to see that for the obtained problem the effectiifeisl negative. As was shown
in the proof of Theorem 6.1, the functigih — @*) tends to zero exponentially, that is
I1—a"(2)| < Ce™, zeGE

Making the inverse change of variables and taking into asttati”®(z) = u*(k—z, 2'),
we obtain (6.5). O

LEMMA 6.6. b; = 0 if and only if a solution:* of the auxiliary problem (6.4) is close
to the linear function on every compact gete G, that is if we denote

Z1
1—— <k
I (z) = porEh
0, T >k

then
|u¥(z) — lk(x)HLoo(Gg) —0, k— oo.

PrRoOOF The method we use is borrowed from the homogenization yhésare, for
example, 18]). Let us denote = 1/k in 6.4) and make the change of variables

Ty €T, Tjrrxy, J=2,..,d.

If we introduce the notation
a’(zy,7') =a (E,x'> , v (r, 7)) =w <E,x'> ,
g g
then in the new variables equation (6.4) reads

52 aévl (ail aml /Ua) +e€ Z axz (afl axz UE) +e Z aﬁvk (aik aévl UE>+
£l k#1

+ 37 Oy (a5 O, v°) + €050y, v° 4+ Db 0, 05 =0, €G]
kA1 i

(6.6)



The periodicity of the coefficients suggests the followingatz
. T
(2, 1) =z, 1) +evl(z, 1), = ?1,

where the functions® andv! are1-periodic iny;. Substituting this expression into the
equality (6.6), collecting power—like terms related-foand taking into account the peri-
odicity of all the functions iny;, we obtain an equation for the functiof:

ayl (a’11<y17 .%’/) ayl Uo(xv yl)) + Z ayl (a’il axz UO>+
i#1
(6.7) + > 00, (a3 0y ) + Y B, (05 00,0+
k#1 i,k#1
+b1(y1,2") Dy v° + Zbk 0y, 0" =0, x€Gp, y €(0,1).
k#1

Sincedu/dn, = 0 for z € X}, then making simple rearrangements we obtain the bound-
ary condition for the function’:

> a(yr, ") ny Oy v° + 21 aij(y1, 2") nj O, 0° =0,
J J5t
' €0Q, y1 € (0,1).

The solution of the boundary value problem (6.7)—(6.8) dussdepend on the variables
y; andz’, that is:

(6.8)

UO(fE;yl) = Uo(ffl)-
Following the ideas of the homogenization theory, we regmes (z, y; ) as follows:
(6.9) 0% (2, 1) = 0°(21) + & xa(y1, @) By 0° (1) + % p(21, 41, 2),

where the periodic iy; scalar functions;; and¢ are to be found. For convenience let us
denote the "fast” variablegy,, ') by z = (21, /). Then, collecting the terms of ordey
one can obtain the following equation for the functigiiz):

d
(6.10) —div, (a(2) Vx1) — (b(2), V. x1) = Z@Zk air+b1, z€Y =(0,1) x Q.
k=1

The boundary conditions for the functian on the lateral boundary of the cylinder take
the form

(6.11) (a(2)V.x1,n) = — Z apni, z€0Y =(0,1) x0Q.
Due to the Fredholm Alternative, problem (6.10) — (6.11)aksable if and only if the
following equality holds:

d d
(6.12) / (Z 0., a1 + bl) p(z)dz — /Z apnipdo =0,
y k=1 gy =1



where the functiom(z) is a solution of the following problem:

(6.13) —div(a(z)Vp) +div (b(z)p) =0, z€Y,
' (a(z)Vp,n) — (b(z),n)p =0,  z€0Y,
Since we assume thét is equal to zero, then the condition (6.12) holds. Indeddgirat-
ing by parts and making simple rearrangements, it is easgetdret the left hand side of
(6.12) coincides witlb,.

Finally, collecting the terms of ordef, we obtain the following problem for the func-
tion ¢ (xy, 2):

—div(a(z), V) — (b, V.¢) =

(6.14) d d .
ai + Z 0, (a1kx1) + Z a;1 05, X1 + 01105, X1 +bix1| Opyuyv”, 2 €Y,
k=1 =1
(6.15) (a(z)Vah,n) = = annix10s,0,0°, 2 € Y.

Using one more time the Fredholm Alternative for probleni4g— (6.15) we get:
all axlzlvo(xl) = 07 T S (07 1)7

where the constanat;; is given by

ajp = / (an + 0., (a1kx1) + ai1 05, x1 + @110z, x1 + lel) p(z)dz—

Y
—/Zaimi)ﬁpdg-
oy °

Integrating by parts we obtain the following expressionthe constand:

d d
(6.16) ap; = / (an — Z a1xX10z, P+ Z a;1 05, xap+bixa P) dz.
k=1 i=1

Y

Let us show thati;; > 0. Thend,,.,,v°(z;) = 0 and, as a consequeneé(z;) is a
linear function onr;. The scheme of the proof is as follows:

(1) We construct the matri¥ such thatd,; = a;;. Namely, we set

Ay = /aik(ékj + 0., xj) pdz — /Xz‘amjazmdeJr /Xigjpdz,

Y Y Y



wherey; is defined in (6.10) and the functiong for k£ # 1 are defined by the

equations:
—div (a(2)V xx) — (b(2),V xx) = =0, ax1 — by, — b, z€Y,
0
Xk = —Q; Ny, z € 8Y,
on,

andb,, are given by the formula:

b = /(aki 0., p—brp)dz.
Y

(2) On the second step we prove thatis nonnegative definite matrix. For this
purpose we show that this matrix can be represented in the for

(6.17) A= /(I + V) a(z) (I +V x)p(2)dz,

whereB” denotes the adjoint aB.

(3) Then we show thatl + V x) e; # 0.

(4) For an arbitrary nonnegative definite mat€ix= {c;;} we state that it:;;; = 0,
thency, = 0, k = 2,d. ThusC e; = 0. We then show thatle; # 0 in our case.
Thereforea;; cannot be equal to zero.

Now we proceed with the detail proof. The fact thg = a,, readily follows from from
the definition of the matrixd. In order to prove (6.17) let us re-arrange the expression on
the right hand side:

/(5im + 0., Xi) @ik (O + 0z, Xj) pdz = /5z'm A (O + 0, X;5) pdz+

Y Y

+ / azm Xi Omk (6]€] + azk X]) de
Y

Integrating the second term by parts gives

- 1 1
A= / (aik((skj + 0 X5) P — §Xinazk (bkp))dz + 5 /Xin by, g p dz+

Y oY
- 1
+/Xibjpd2’—/><i A azmpd2+§/><i X;j Oz, (@mik O-,, p) dz—

Y
1
_§/Xinamknk8zmde+/Xiamk (Okj + 02, X5) N pdo.

oY oYy

Finally, the last equality and (6.12) lead to (6.17).



Let us show thatl + V x) e; # 0. Suppose thatl +V x) e; = 0. Thend,, x; = —1,

/@lxl le = —

Y
which contradicts the periodicity of.
Consider a nonnegative definite symmetric maffix= {c;; }¢
c11 = 0. Evaluating the quadratic form;¢;&; at the vector

={N,1,0,..,0}, N >0,

or

¢ i—1,» and suppose that

we get
;&€ = c1aN 4 cor N + o9 = 2¢12N + ca0.

If c1o # 0, then for largeN (positive if ;5 < 0, and negative, i, > 0) we obtain
¢;;&&; < 0, which contradicts the non-negativeness of the matrixThus,ci, = co is
equal to zero. Similarly we can show that = 0, k = 2, ..., d. Therefore(' e; = 0.

In our casede; = (I + V x)e; # 0, and we conclude that;; = A;; > 0. Conse-
quently,»? is a linear function om:;. Thus,(z1, ) satisfies the homogeneous problem
with respect to the variableandy) = ¢ (z4).

Let us return to problem (6.4). We have shown that the expar{6.9) takes the form:

5 = 0'(@) + e (Ta') 0o + (o)
with v%(z;) = 1 — x; andy(z) solving problem (6.10)-(6.11). Denote
of = %@n) +exa (Fha7) D

One can easily check that the differer{eé — v$) satisfies the following problem:
(—div(a®(2)V (v° —v5)) — (b5, V (v° —05)) =0, =z € Gy,

(v° —v5)(0,2") =ex1(0,2), 2’ €Q,

(v° = 05)(1,2") = —ex1(1/e,2'), 2’ €Q,

(v —vf)
\ 8”(15
We can rewrite problem for the function in the form

Zazk a/zkazZ X1 + Zl Z bk 21 X1 + 21) O z € Y,

(6.18) bk
Zaikazk (x1+21)n; =0, ze€aY.
ik

=0, z€X,.

By means of the extension techniques in the same way as alr@ean show thaty; +
z1) is a Holder-continuous function i, 1] x Q. Consequently,

[07 = vl Lee(so) < Ce



and
[v° = vil[Lee(sy) < C,
and by the maximum principle
[0° = Vil L@y < Ce.
O

The following statement characterizes in more generabsdn the asymptotic be-
haviour of solutions of auxiliary problems in finite cylingan the three casds < 0 and
b, = 0. Namely, we consider the following boundary value problerthie finite cylinder
Gt

—div (a(z) Vo*) — (b(z), Vo*) =0, z € G,
k
(6.19) 0" _y v ek,
)=o), Wka)=M 2 €Q,
wherep(z') € L>*(Q), M is a constant.

THEOREM 6.7. Let the assumptions of Theorem 6.1 be fulfilled. Then forahgien
v* of problem(6.19)the following statements hold:

(1) If b, > 0then

¥ — Col < Collellie@) (e70m 4 6_7(’“_“)) +

(6.20) O M ),
(2) If b, < 0then
(6.21) v — M| < Co |||l ne(@y e ™ +C M e ™

(3) If by = 0 then inG% the functionv* is close to a linear function:

o C’f;o(k —x1) + Mz,

(6.22) k

< Co [lollpey e ™" +

C
+tr (ellz=(@) + M) .
The constant’;’ is uniquely determined by Lemma 5.2.

PROOF Due to Lemma 5.2, ip € L>(Q) then there always exists a solutiag(x)
of problem (2.1) satisfying the maximum principle. Moregwaich a solution is unique
and stabilizes to a constafif® exponentially:

lup — C1 < Coll@llre@ e ™™, 7 >0, x> 1.
Recall thaty, depends only on, d, Q and does not depend on



We represent the solutiar of problem (6.19) as a sunf +v¥, wherev? andv’ solve
the following problems:

( —div (a(z) Vof) — (b(z), Vo) =0, z € G,

(6.23) o _,, e
on, ’ 0’
oi(0,2") = p(z)), oF(k,2') = cy ¥ € Q;

—div (a(z) Vb)) — (b(z), Vo§) =0, z€ Gy,

ovk
(6.24) o =0 z e Xk,
v5(0,2") =0, vi(k,a)=-CX+M 2 €Q.

\

One can see that, due to the maximum principle, the differémc— v¥) is of ordere =0k
everywhere inG¥, and, consequently,

(6.25) [o} — C| < |of = ol + Jug = O] < Collgllimi@ (7 +e70), z € G,
e Assume thab, > 0. By Lemma 6.%% satisfies the estimate
lvs| < CO(CZO + | M) e b2 g e GE.

Combining the last estimate and (6.25) and taking into actthe bound’>® <
||| Lo (@), We obtain (6.20).

e If b, < 0then the solutiom* of problem (6.4) decays exponentially, which leads
to the estimate fov} ()

0k — (M — C2)] < Co ([@llpe@) + |M]) e,z € GE,

which proves (6.21).
e In the case, = 0 to estimatev}(z) we make use of Lemma 6.6. Namely, is
close to a linear function in this case:

M — C® C
wal < = (lpll oo () + 1M]) -

The last estimate and (6.25) implies (6.22). Theorem 6.7agqul.

k
/UQ_

7. Equivalent definitions of a bounded solution

LEMMA 7.1. For a solution of problen2.1) the following conditions are equivalent:

whereC' does not depend oN € [0, o0);



(ii) [l Low G5y < 005

(Ill) HVUHL2(G) < oQ.

PROOF (i) — (i)
Under assumptions of uniform ellipticity of matrixz) (2.2) and boundedness of the
coefficients, for any compact st in (N, N + 1) x Q the generalized solution of problem
(2.1) satisfies the following estimate:

lulleae < Clull 2oy,
for some constantS' anda > 0 independent ofV and, consequently
[ullce@n < C,
for any compact sef’ in GX ™ with C independent ofV. Thus,
[u]|Loo(@zey < C(8) < 00, 6> 0.
(i) — (it7)
In Section 5 we proved that any bounded solutign) stabilizes to a constaut,, at the
exponential rate with large axial distance. Then the fumdi.(x) — C,) solves problem
(2.1) with boundary conditiofu — C,)(0,2") = (¢(2') — C) and vanishes at infinity

at the exponential rate. Extendingr) to a larger domain (as in Section 3) and applying
standard elliptic estimates fa(z) — C',) one deduces that

IV (u— Coo)”ﬂ(cxﬂ) < Cflu— Coo”p(g%jf) < Ce M,

where the constarit’ does not depend oN. ThusV u(z) stabilizes to zero at the expo-
nential rate, ag; — oo, and

o0

/|Vu|2dxzz / |Vu|2d:p§C’OZe_7N§C.
& 0

N= G+ N=0
(131) — (1)

Let u(x) be a solution of problem (2.1) such that
(7.1) IV ullp2q) < C.
The Friedrichs inequality gives an estimate for ftfenorm ofu(x) in the finite cylinder
G

[l er) < Cr + CoN
with constants’; = C;(y) andC, independent oV. Note that ifo0 < N < 1 then

Jull 2y < C

below we suppose that > 1.



Letv(x) be a bounded solution of problem (2.1) (it exists by Lemma. ABtice that
the differencqu — v) satisfies the estimates

”U—’U”iQ(G%H) < Cl+C2N7 HV<U_U>H%2(G) <C

If we denote
1
7.2 Wy = ——(u — v),
(72) v==lu=v)
then . .
1
lonlaym € 5 +Co IV unlizg < +-

Sincewy is a solution of problem (2.1) with zero boundary conditiontbe base of,
then the last estimates imply

[wn |l oo (aiv1y < @,
with @ independent ofV. By the maximum principléw | does not exceed the solution
vy Of the following problem:

—div(aVoy) — (b,Voy) =0, x€ Gy,

(73) aUN =0 = EN+1
on, ’ o
on(0,2) =0, uoy(N+1,2")=w, 2 €Q.

We will consider separately the cadgs> 0, b; = 0 andb; < 0.
Let firstb; > 0. From Theorem 6.7 foN large enough we conclude that the function
wy Is close to zero for; < N/2:

lwy| <oy < Coe Nz < NJ2.

Therefore, considering the definition afy (see (7.2)) one obtain the following estimate
for the differencgu — v):

lu—v] < CevVVNe™ ™ =0, N — oo,
which implies that: = v and thus

HUHH(G%“) <C

Consider the cask = 0. As was proved in Lemma 6.5, in this case a solution of
problem (7.3) is close in the cylindér) ™! to the linear function, namely

w

W o N+1
o = o1 (N +1) Iy < g @€ G
Consequently
CvN w
—v| < VN, VN >0.
s gt e v

Forz; < N%, a < 1/2, we obtain that

lu—v|—0, N — oo,



thusu(z) = v(x) is a bounded solution.

Finally, let us consider the cage < 0. As was discussed in Section 5, due to the
maximum principle, eithem(z,) increases ol (z;) decreases in the neighbourhood of
infinity. Suppose that

minu — 0o, X1 — 00,
r’eqQ

the case of decreasing(x;) can be studied in a similar way. Subtracting fraifx) a
bounded solutiom(z) of problem (2.1) withw(0, 2') = u(0, 2'), one can assume without
loss of generality that (0, 2) = 0. Thenu(N, z")/m(N) will be greater than or equal to
1. Let us introduce a functiony as a solution to the problem

—div (aVuy) — (b, Vuy) =0, z€GY,

81)]\[
(7.4) a—TLa = 07 X 6 EéV’
on(0,2') =0, oy(N,2)=1, 2 €Q.

By the maximum principle(x)/m(N) > vy. As was shown in Theorem 6.1, satisfies
the estimate

loy = 1| < Coe™ 7,z > 1.
Thus
u(z) —m(N) > —Com(N)e 7.
Letz, = %ln(QC’O), then for anyr; > 7z, the following estimate holds:

1
Coe"“<§.

Thenvy > 1/2 and, consequently,
1
u(Zy,2’) > §m(N), ' eq.
From the last estimate, using Friedrichs inequality, weiobt
1
||VU||L2(G51) Z 4—52.1m2(N) — OQ, N—>OO,
that contradictgiii). Lemma 7.1 is proved. O

8. Inhomogeneous problem with periodic coefficients

We proceed with studying the existence and the stabilizati@ constant of a solution
to the following boundary value problem:

—div (a(z)Vu) — (b(z), Vu) = f(z) +divF, z€d,
(8.1) O _ (@)= (F.), rey,
u(0,2") =0, 7 eq.




Here the assumptions on the coefficient$x), b;(x) and the cylinde¢ are the same as in
the previous sections. Concerning the functipng andg we suppose that(z) € L*(G),
F e (L*(G))4, g(x) € L*(¥), and that these functions decay exponentially agoes to
infinity, i.e.
1l 2y < Ch ey, [E | o1y < Ch e,
(8.2)
gl ey < Coe™ ™

for some positivey; .

DEFINITION 8.1. We say that(z) € H],.(G) is a weak solution to problem (8.1) if,

foranyy(x) € C5°((0,00); C*(Q)), the following integral equality holds:
/(a(w)Vu, V) dx — /g(x)@b(x) do — /(b, Vu)y(z)dr = — /(F, V) dx.

G b)) G G

We begin with the casé’ = 0. In this case we can use the integration by parts technic
in the weighted space with the weighitr), as we did above. It turns out that this technic
might fail to work if F' is not equal to zero. That is why we consider the case of nonzer
F separately and reduce it to the cdse- 0.

LEMMA 8.2. Let F = 0. Then there exists a solutiar{x) of problem (8.1), which
stabilizes to a constant at the exponential ratezas— oo, and satisfies the estimates

(83) ||Vu||L2(G) SC(H(l + (x1)1+l/) fHLQ(G) + H(l + (xl)lJrV)gHL?(E));
lull p2ievery <O+ (1)) fllze

(8.4) L&y 3 @
(14 (21)2™) gll2wy), YN >0,

wherer > 0.

PROOF Let us consider the sequence of auxiliary problems
—div (a(2)Vuy,) = (b(z), Vuy,) = fu(z), =€ Gy,

o k
uk (0,2') =0, uF(k,2')=0, ¥ eq.

Heref,.(z) = f(x)x(G™*) andg,,(z) = g(x)x(G™1), x(G?) is a characteristic func-
tion of G2. Multiplying the first equation of (8.5) by the produetr)u® (z), integrating
by parts ovel=% and using boundary conditions faf,, we obtain

(8.6) /(a(:p)Vumeufn)pdx— / gm(z)uf pdo = / fon(z)uf pda.

Gk sm+1 Gm+1



Let us estimate the integral on the right-hand side. Usiedtiundedness ¢fz) and
Schwartz inequality one has

[ ) pde] < Clfllision I sz
k
0

The Friedrichs inequality yields
(8.7) / (uf ) do < (m +1) / |V uk |2 d,

(elian Gk

and, finally,

[ fnta) s pda| < CIVA sy (14 Vi) Ul
k
0

Using analogous arguments one can estimate the integnattev&ateral boundary of the
cylinder:

(@) i p(@) dor| < C (1 +Vm) gl 2y |V il p2a)-

m—+1
m

Combining the above bounds with the integral identity (8% conclude that

(8.8) HVUﬁ”B(G’g) <C(1+vm) (||fm||L2(Gﬁ+1) + H9m||L2(zm+1)> ’

where the constartf' does not depend om, k. Estimate (8.7) implies that thg*-norm
of the functionu”, is uniformly in k£ bounded on eactiy ™ for all N < m:

bz < € (14 m) (Ifmllzzageny + Nlgmll oy -
In the cylinderG% ., | the functionu?, satisfies homogeneous equation and
”Uﬁz”Hlﬂ(SmH) < CHUanHl(Gm“) <
< O +m) (Il e + lgmll e )
Foru” (r) estimate (4.4) obtained while proving Theorem 6.1 take$dhe
) < Nub s, -

k
b e,

Consequently, the following inequality holds

(8.9) "ufR"LQ(G%+1) <C(1+m) (Hfm”L?(Gz“) + HgmHL2(zz;+1)>

for N > 0 with the constant’ independent ok andm.



Sincef(z) = S0 " f andg(z) = St " g, thenu? = 5714k is a solution of
problem

—div (a(z)V uk) — (b(z), Vuk) = f(z), =z € Gk,

ouF
a—na = (l’), T € Zg,
uF(0,2) =0, uF(k,2’) =0, 7 eqQ,

and, in view of (8.8) — (8.9), satisfies the following estigsat

34, 3.,
6.10) ety < € (10 + @) ey + 11+ @) )gllias))

(8.11) IVe* |l ey < € (1L + (21) ) fllzzey + 1L+ (20) ) gll2s))

with C independent of;, » > 0. Hence, up to a subsequeneé,converges weakly in
the spacdd, (@), ask — oo, to a functionu(z) which satisfies (8.3) and (8.4). We will
prove the exponential stabilization to a constant only m¢hsef,g = 0, F' # 0. This
proof can be extended to the case of nontriyiahdg with minor modifications. We leave
it to the reader. O

REMARK 8.3. Estimate (8.11) can be improved. To this end we recallcthssical
Hardy inequality for a nonnegative functief), v(0) = 0.

[e.9]

7(%]@(7) dT)zdt§4/v(t)2dt.

0

Then, multiplying the equation far* by p «* and integrating by parts we get

(8.12) /(aVuk,Vuk)pdx:/fukpdx+/gukpda.

Using the ellipticity of the matrix.(z), positiveness op(z) and the Hardy inequality one

gets
k 1
/fukpdng/dx'/xl\f|x—|uk\dx
1
Q 0

a4
(8.13) k

<C /dx’(/:c% |f\2dx1)1/2 (4 7\Vuk|2dx1)l/2
0

Q 0
< Cllzy fllz2en ”V’Uk”m(cﬂg)-



Then by the interpolation inequality, for amy> 0,
k—1
/gukpdg < Z ||9HL2(22+1) [BHukHL?(GZ“) + 6_1Hvuk||L2(G2+1)
& n=0
EO
< Hg||i2(215) + B_vaukH%ﬂ(Gg)
k—1

+C'p Z 2190 Loy 27 0P| 2 gamy
n=0
< gl + BNV ey + C Bllzsgllzacepy lor a¥ll o

Finally, by the Hardy inequality,

[ outpdo < lglRusy) + 521V
=8

+C Bllz19| 2y Hvuk”LQ(G’g)'

Taking into account (8.12), (8.13), (8.14) and settihg- \/2/A, one gets the estimate
for Vu*

(8.14)

Vbl 2y < Cllan fllzze + 11+ 21)gl 2w,
and, consequently,

IVullzz@e) < Cllzn fllzze) + 11+ 1) gl 2(s)-

It remains to consider problem (8.1) with a non-trivialand with f = g = 0.

LEMMA 8.4. There exists a solution of proble®.1)with f = g = 0, which satisfies
the estimates
JFV)

3
IVullze < CIIA+ 28 )Fll2@)

(8.15) .
VFll 2, YN >0,

with some positiver. This solution stabilizes to a constant at the exponenaat,ras
r1 — OQ.

3
lull gy < C N1+ 27

PROOF. Consider the sequence of auxiliary problems:
—div (a(x)Vu*) — (b(x), Vu*) = divF, z € GE,

our
(816) a—na = _(F7 n)7 T e Elga
uF(0,2") = uF(k,2’) =0, 7 eq,

Let us represent the functidnin G§ as follows:

F(z) =) x(GUFVT) F(z) = ) F(x),



wherey (G™7) () is a characteristic function of the domaiy="",

%:A4,M:{ﬁ},7 k

7 T M+l

(m+1)7
mr

Clearly,suppF™ C G . Due to the linearity of the studied problem, we can represen
a solutionu*(z) of (8.16) as the sury™_ u” (2):

—div (a(x)Vuk) — (b(z), Vut) = divF™, zeGf,

o k
(817) % — _(Fm’n), = Elg,
uf (0,2") = uf (k,2') =0, ¥ eq.

We will first assume that the coefficients, b, are smooth functions.
Our analysis is based on the properties of the Green funcifqn, y) of problem
(8.16):

—div, (a(x)V, G*(x,y)) = (b(z), Vo GH(z,y)) = 0(z —y), = € GF,

0G* (2, y)
Tna = O, T € Zg,
G*(0,2",y) = G*(k,2',y) = 0, 7 eq.

Due to our assumptions arfx) andb(x), the Green functiod* (x, y) is well-defined. If

we denote by* a solution of (8.16) with the functio;a(Gﬁ,Zi“)T) on the right-hand side

—div (a(z)Vv*) — (b(z), Vuk) = x(GItVTy, o e GE,

P
I 0, T €XE
v*(0,2") = v¥(k,2') =0, € Q,

then

v (x) = / G*(w,y) dy.
G%+1)T
As was shown in the proof of Lemma 8.2, the functiofigr) satisfy the estimate:
”UkHLoo(GEijgj) < C(m7+1),
with the constant” which depends only o, d and @, but does not depend &f In
particular for allz € S,—1)r U Sinq2)-, Sincey € GUrT,

Gk(x,y) dy < C(1 4 mr).

Gm«kl)T



Recalling the fact that:*(y, z) is the Green function of the adjoint problem, using the
mean value theorem and the Harnack inequalitydé(z, -), one can easily get the fol-
lowing inequality:

1QGH () < 0 ]Q| C*(z,0) = o / Gz, y)dy < C(1 + mr),

G(m+1)7’

mT

for all z € Syn_1)r, for ally € GI")7 and somey, € G4, Herea > 0 depends
only on the ellipticity constand, the dimensionl and the domaird). Similar inequality
is also valid for allz € S(;,,12)-. Then the standard elliptic estimates read

VUGG, M ggory < CIGHE Mg, <
SC(l"‘mT), xESm nr US(m+2

Let us emphasize that the constéhin (8.18) depends oA, d, @) and does not depend on
k.

(8.18)

Now we turn back to problem (8.17). Considering the repredim of u”, in terms
of the Green function, one can see that

@ == [ (V6w P )y
G%H)T
and, consequently, in view of (8.18),

(m—1)r) < ||vka(:L‘, ')HL2(G£$+1)T) ||FmHL2(Gm+1)T) <
< C(1+mr) ||Fm||L2(Gm+1>T

’|Ulfn”L°°(s
)
Similar estimate is valid for € Sg19)-
bl Smpor) < CA+mT) ™| aiminr.
By virtue of the maximum principle, sine€ (0, z') = u* (k,z') = 0, we have

(8.19) [ < O+ mr) [[F™]] o qmrory;

Loo(Gém—l)T) )’

)

In order to estimate thé?-norms ofuf, andVu?, in GEZJFT;T, we represent;}, as a sum
vF +wk , where

v* is a solution of homogeneous equatiofj,((m — 1)7,2') = u* ((m — 1)7,2),
vF ((m+2)7,2') = u (m + 2)7,27),

w! satisfies the nonhomogeneous equation and zero Dirichlgtdaoy conditions on
S(mfl)r andS(erQ)T

In view of (8.19), (8.20) and the maximum principle we have
ml

(8.20) |k HL00 ) <C(A+mr)[[F™|,, (G

HU LOO(G("L+2)T < O(l + mT) HFm HL2 G(m+1)7

)



Combining the last estimate with the standard ellipficestimates in the doma@(?f i

and taking into account the fact that the shape of the domz@s dot depend om, we
conclude that

To estimatew” (z) let us multlply the equation by* and integrate ove@ m+2 . Then
exploiting the Friedrichs inequality and taking into acabthe specific ch0|ce Oif one
can see that

”V"fﬁ”mo(ggzﬁ;:) < 3 HFmHLQ(G%H)T);

k
||Um||Loo(GEZit?;:) S 7 HFmHLQ(Gm-kl)T).

Consequently, one has

| < C(1+mr) HFmHLQ(G(mH

m | ’ e} (G(m+2 Ty

whereC' depends only on, d and@.

Elliptic estimates for:*, in G(m U7 vield the bound

”vumHLz(Gém*1)7) < C<1 + mT) HFm”LQ(G%H)T)-
Since inG’(“mH)T the functionu, satisfies the homogeneous equation and homogeneous

Neumann boundary conditions on the lateral bound%{?»{mﬂ then inequality (4.10)
takes the form

19kl o, ) < Clldbllinrz(snyyn) < COUAmT) ™ agimene

)

mt2)r)

Thus,

k| 2y < COAmMT)IE™| o giminry, YN 2 0;
(8.21)
’\VUML?(GQ) < C(14mT)||[F™ HL2 (rtiyr.

And, consequently,

lt ]l sy < C I+ @) )l ¥N 20,
(8.22)
962y < C L+ (@)% Fl 2y

where the constardt’ depends o\, d and@.

Using the compactness arguments, we conclude that, alargsaguence;” () con-
verges weakly inf} (G), ask — oo, to a functionu(x) which solves problem (8.1) and
(8.15) holds. This completes the proof of the existence afnbed solution in the case
of smooth coefficients.



In the general case of measurable bounded coefficignggdb; define

od)(z) = / 0 (W (@ — y) dy,

Rd

wherey? (¢) € Cg¢(R7) is such thats (€) > 0, ¥ (—¢) = ¢4 (€) and [, ¥*(¢)dé = 1. In
order to define’(z) andv’(z) we should extend(x) andb(x) outsideR x Q (onR_ x Q
the coefficients are extended by periodicity). For exampiecan set(z) = Al, I is
a unit matrix,b(z) = {0,...0} for 2’ ¢ Q. Clearly, the obtained(z) andb(z) satisfy
the same uniform ellipticity and boundedness conditionsedsre. By constructiomfj
converges ta;, andb? converges td;, asé — 0, in LF(GF), for anyk > 0 andp > 1.
For the solutions;(z) of problem (8.16) with smoothed coefficieni, 5% the following
bounds are valid:

ikl vony < C I+ (@0)2) Pl ¥N 20,

IVusllzan < C I+ (20)Y2) Fl| 2.

with C independent of. Thus, up to a subsequeneg, — «* in L?(GX™), Vut —
Vu* in L?(GE), asé — 0, whereu® solves problem (8.16) with measurable bounded
coefficients. Clearlyy* () satisfies the estimates

3/2+z/)

k _1; k
Ml ey = 1im [l ey < CUL+ (@072 Fllacay

”VukHLQ(G) < hglﬁlglf HVU'Ig”LQ(G) < C”(l -+ (,1‘1)3/2+1/)FHL2(G).

Using the compactness arguments, we conclude that, alongseguence;” converges
weakly in H. (G), ask — oo, to a functionu(z) which solves (8.1) witty = g = 0, and
estimates (8.15) are valid.

It is left to prove the stabilization af(z) at the exponential rate to a constant. It can
be easily seen that along a subsequence the functidh’ constructed above converge
weakly in H. (G), ask — oo, to a functionu,, (z) which is a solution to the problem

—div (a(x)V uy,) — (b(x), Vu,) =divF™, z€d,

(8.23) 6;“7’: = —(F™, n), reY,
um(0,2") = 0, ¥ e qQ.
It is clear thatu(z) = > *°_, u,(x). With regard to Theorem 6.1, one can see that there

exists a constant’>° such that for a solution,, (z) of problem (8.23) the following esti-
mate holds:

um — O < COHUmHHl/Q(S(erz)T) e T gy > (m+2)7.



Notice that by construction, sineg, (k,z") = 0, [Cp| < [umllmirzs,,,,,.). AS was
shown above,

ltnll 1725012y < O+ DE™ o imrne-
Thus, forz, > (m + 2)7

(8.24) [t = C | < C(LAmT) [ F™| pagmenry € 77027,

Let us check that(z) converges taC> = >~ (. To this end we estimate the
LG -norm of the differencéu — C):

o
= O o gry < ZO o = CoX Il 2gavire)-
m=

Splitting the sum into two parts and taking into account)88timates (8.15) and (8.24),
we have

[e.°]

N-3
Ju — Ooo”ﬂ(cgv]\’jl”) < (mzo—l_ 2_2) [t — C:noHLz(Gg\J,\;H)T) <

m=N
N-3
<07 S (14 mr)e 1T e/ (Nr=(mi2)m) 4.
m=0

+C Z <||um||L2(G’§VN+1)T) + |O7?10|> < CN2 e’VNT—}-

m=N-—-2

+C e WN=27/2 SN (1 4mr)e ™2 < C e N, N > 0.
m=N—-2

The case of nontriviaf andg in (8.1) can be considered analogously. It suffices to
use estimates (8.3) — (8.4) instead of (8.15) and noticebitnad (8.24) remains valid if
we replacQ\FmHLQ(GmH)T) with
1finll L2 gemsvmy + [1gml| 2 somsvry. The rest of the proof is exactly the same as above.
Lemma 8.4 is proved. O

As in Section 7 we can define a bounded solution of problem).(8.1

DEFINITION 8.5. We say that a weak solutiaifiz) of problem (8.1) is bounded if one
of the following conditions is fulfilled:

0] HUHL?(G%“) <C, VN >0,
(ii) IV ul[r2e) < C.

LEMMA 8.6. The conditiongi) and(i:) are equivalent.

PROOF In view of Lemma 8.2 there exists a solutiofx) of problem (8.1) such that
the conditions (i) and (ii) hold. Let us consider the diffece(u(z) —v(z)). It satisfies the



homogeneous problem (2.1) with= 0. But for a solution to problem (2.1) conditions
()—(ii) are equivalent. Lemma 8.6 is proved. O

The rest of this section is devoted to studying the uniquepésolution to problem
(8.1). The result similar to that of Theorem 6.1 takes pl&sebefore, we denote

by = / (au(x)ig—g) - bl(ff)p(ff)) dz,

Go
where the functiop(x) was introduced in Section 3.

THEOREM 8.7. (1) Any bounded solution(z) of problem (8.1) stabilizes to a
constant at the exponential rate ag — oo, that is

[u(z) = Coollr2ge) < Coe™™, ¥ >0,

for someC, > 0 andy > 0;

(2) b, < 0if and only if for anyyp(2') € HY2(Q) and for any constant € R, there
exists a bounded solutiarn(x) of problem (8.1) that converges to the constant
asr; — oo;

(3) by > 0 if and only if for every boundary conditiop(z’) there exists a unique
constantm(y) such that a bounded solution of problem (8.1) convergesiso th
constant as; — oc.

PROOF The existence of a bounded solution that stabilizes to asteanat the ex-
ponential rate was proved in Lemma 8.2. Denote this soluipn,(z). If u(z) is an
arbitrary boundary solution of problem (8.1), then Theoapplies to the difference
(u(x)—uo(x)) and implies the first statement of Theorem 8.7. In order taialthe second
and the third statements, it suffices to observe that theueniess of a bounded solution
to problem (8.1) is equivalent to that of problem (2.1). ledgif there are two distinct
bounded solutions, say, andu,, of problem (8.1), then the differen¢e; — uy) # Oisa
bounded solution of the homogeneous problem, and thus adledwsolution of homoge-
neous problem is not unique.

Conversely, if we assume that problem (2.1) with= 0 has two distinct bounded
solutions, say; andw,, then(uy + v;) and (ug + v2) are bounded solutions of (8.1).
Theorem is proved. OJ

9. Non-periodic coefficients

The goal of this section is to generalize the results of 8adito the case of the coef-
ficients which stabilize exponentially to a periodic regiriée will consider the following



boundary value problem:

—div (a(z) Vu(z)) — (b(z), Vu(z)) =0, zeg,

(9.1) Ou =0, x € X,
8nd
u(0, ') = p(z'), 7' € Q,

where @ is a bounded domain iRd—lA with a sufficiently smooth bounda§@. We
suppose that the matriz) and vectob(z) admit the representations

~

a(z) = a(z) +a°(z), b(z) =0b(z)+0°(z),

wherea(x) andb(z) are x,-periodic, whileag; andb; decay exponentially, that is for
almostallz € G

(9.2) lag;| < Cre ™™, [0 < Coe™ ™™ 41 > 0.

Moreover, as in the previous sections, we assumedhat is a symmetric uniformly
elliptic matrix, i.e. there exists a positive constantsuch that for almost alt ¢ R? the
following estimate holds:

A €P < ay(2) &€, € ERY,
anda,; (x),b; € L®(G).

LEMMA 9.1. Let the above conditions be fulfilled. Then a bounded salutigproblem
(9.1) exists and stabilizes to a constant at the exponential ristereover, the following
estimates hold:

(9.3) IV ullze@) < oo, [JullLeese) < oo

PROOF To prove the existence of a bounded solution we use the sequé auxiliary
problems in growing finite cylinders:
—div(a(z)V uk) — (b(z), VuF) =0, =z e GE

k
(9.4) o _y, rexk,

uk(%),x’) =p(2), uF(k,2") =0, z e q.
Let us recall that according to Remark 4.3 for measurablented coefficients;;; and

Bj, not necessary periodic, estimates (4.4) and (4.5) ho#d tdsing the standard elliptic
estimates for*, we conclude that

Hu’fHHl(G%H) <C, VN>0,

and thus, along a subsequengé&,converges weakly i (G) to some functionu €

loc
Hl.(G), ask — oo, andVu* converges weakly t&« in L2 _(G). This allows us to pass



to the limit in the integral identity and establish the esiste of a bounded solution to
problem (9.1) such that

However, these estimates do not imply the finiteness*¢6) norm of V.

We will proceed as follows. First, making use of Theorem &@&,will show that a
bounded solution to problem (9.1) stabilizes to a constard,then, with the help of this
result, we will obtain an estimate f&ruw.

Obviously, problem (9.1) can be rewritten in the form

—div(aVu) — (b, Vu) =div(a®Vu) + (b°,Vu), x€G,

ou ou

9.6) Ou __ Ou 5
on, Ongo’ TE &
u(0,2") = p(z'), ' €qQ.

Consider the following problem i&
—div(aVw) — (b, Vw) =div(a°Vu) + (b°,Vu), ze€aq,

ow ou
9.7) __Ou
371@ 8nao7 ve E’

w(0,2") = p(z'), e Q;
herew is an unknown function and is the solution of (9.6). Taking into account (9.5), it
is easy to see that under our assumptiongoand®® all the conditions of Theorem 8.7
are fulfilled, and, therefore, any bounded solutiofx) to problem (9.7) stabilizes to a
constant at the exponential rate. Sinces a solution of (9.7), it stabilizes to a constant
exponentially. Moreover, the inequality holds

[e.9] [e.9]

/\Vu|2dx = Z / |Vul? dx < COZe’V” <C.
G

n:OGzJrl n=0
Lemma 9.1 is proved. ]

One of the principal results of this section is given by thkof@eing lemma, which
states that the uniqueness property is invariant undemexj@lly decaying perturbations
of the coefficients.

LEMMA 9.2.

e by < 0iff for any p(z') € HY?(Q) and anyl € R! there exists a bounded
solution to problen{9.1) stabilizes td, asx; — oc;

e by > 0iff for any p(z') € H'/2(Q) there exists a unique bounded solution to
problem(9.1)and it stabilizes to a constant = m(y), asx; — oc.



PROOF First, assume that for any(x’) there exists a unique solution to problem (9.1)
which stabilizes to a constant = m(y), asx; — oco. In particular, forp = 1 a solution
u to problem (9.1) is unique and = 1. This solution can be obtained as the limit of
solutionsu” of (9.4). Sinceu = 1, thenu* converges td uniformly on each compact
subset of7, ask — oo. Let us show that in this cage > 0. Multiplying the equation in
(9.4) byu*p and integrating by parts ové¥; we obtain

/(quk,Vuk)pdx+ /(aOVuk,Vp) ub do — /(bo,Vuk)]Du]C dx—

Ge Ge G
k
(9.8) —%/ <§5 —(b,n)p) (uk)de’—k/%ukpdx’:
Se ‘ S

The integral containing®(z), admits the following upper bound

k—1
’ /(aOVuk, Vp)uF dz| < Z / (a°Vu*, Vp) uF dz| <
G¥ "=t gn
k—1
<CY e Vb p2genery-
n=¢
For anyé > 0 we can choose sufficiently largg so that for allé > &,
k—1
CY e |Vpll pignery < 6.
n=¢

Similarly, for large enougly,

< 0.

’ /(bo, Vuk) pu® dx
Gk

Taking into account the convergence «f to 1, coerciveness of the matrix and the
definition ofb;, we obtain the following inequality:

61 > —05, Yo > 0,

which implies thab; > 0.
Now let us suppose that for any constant there exists a enlofi(9.1) converging to
this constant. Then for arfy> 0 there is a solutiom(x) to problem

~

—div (a(x) Vo(z)) — (b(x),Vu(z)) =0, ze G,

(9.9) oy, ze X,
an@
v(&,2") =0, ¥ € Q,




such that
lv—1] < CE) e =9 1) > ¢
It is clear that uniformly ir¢ for anyn > 0
HUHHl(G::“) <C.
We rewrite problem (9.9) in the form
—div(a Vw) — (b, Vw) = div(a®Vv) + (b°,Vv), z€ G,

ow ov

(9.10) _ yoe
on, Ongo TE S
w(é, x') =0, ¥ € Q;

If we assume thak, > 0, then (9.10) has a unique bounded solution which coincides
with v(x) and converges to a constant. The uniqueness of solutionsalle to estimate
[v][ 2(gn+1) In terms of the norm of the right-hand side:

0]l 2@ty < CIL A+ (21)*27)a V| 2ag) <

<O N+ (@) )a Vol ey < C Y (1+ N2 e,
N=¢ )
For any positive), choosing sufficiently large, we obtain

This contradicts our assumption thatonverges td. Thereforep; < 0. Lemma 9.2 is
proved. 0

REMARK 9.3. It turns out that in the case whef)(x) andd;(z) do not decay expo-
nentially, the statements of Lemma 9.1 and 9.2 may fail tal.h@b illustrate this, let us
consider the following problem

—Au —b](z1)u=0, ze€aG,

(9.11) ou_y, )
on
u(0,2") =1, 7 eqQ,

with b9 = 2/(1 4+ x;). Observe that, in contrast with the non-perturbed probleghich
has a unique solution, problem (9.11) possesses two bowwlations: u; = 1 and
us = 1/(1 + x1). The last one stabilizes to zero, as— oo, but not at the exponential
rate.
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ABSTRACT. The paper deals with the asymptotic behaviour of solutiomasstationary
convection-diffusion equation stated in the so-calledstdcture, i.e. in a connected
open set consisting of the union of a finite number of thinmodirs. It is assumed that
each such a cylinder has a periodic microstructure and hieaticrostructure period
is of the same order as the cylinder diameter. Under thesemtons we construct
and justify the asymptotic expansion of a solution whichgists of the interior as-
ymptotic expansions and the boundary layers. The boundgey terms arise both in
the vicinity of the rod ends and the vicinity of junctions.

The results on the asymptotic behaviour rely on the quai@atudy of a convection-
diffusion operator in an infinite cylinder. This study is afliependent interest.

1. Introduction

The paper is devoted to homogenization of a stationary atiorediffusion model
problem in a thin rod structure. More precisely, we study degmptotic behaviour of
solutions to a boundary-value problem for elliptic coni@etdiffusion equation defined
in a thin cylinder being the union of two nonintersectingigiers with a junction at the
origin. We suppose that in each of these cylinders the caattic are rapidly oscillating
functions being periodic in the axial direction, and thag thicrostructure period is of the
same order as the cylinder diameter.

On the lateral boundary of the cylinder we assume Neumanmdaoy condition,
while at the cylinder bases the Dirichlet boundary condgiare posed.

Similar problems for the elasticity system have been intehgsstudied in the existing
literature. We quote here the work4],[[5], [7], [8], [9], [16], [15], [17]. The contact

1



problem of two heterogeneous bars was consideretidjy [11], [14]. Elliptic equations
in divergence form have been addressed, for examplé] enid [12].

In contrast to the divergence form operators, in the casemfection-diffusion equa-
tion the asymptotic behaviour of solutions depend crugiail the direction of the so-
called effective convection which is introduced in Sectrin the present paper we only
consider the case when in each of the two cylinders (beingdhstituents of the rod) the
effective convection is directed from the end of the cylinsvards the junction.

The asymptotic expansion of a solution includes the intexxpansion, the boundary
layers in the neighbourhood of the cylinder ends, and theriot boundary layer in the
vicinity of junction. It should be noted that the leadingtenf the asymptotics is described
in terms of a pair of first order ordinary differential equats. The construction of the
interior expansions follows the classical scheme.

The analysis of boundary layers in the neighbourhood of jfieder ends relies on
the results obtained irif].

In order to build the interior boundary layer we study a cfaéilre problem for convection-
diffusion equation in an infinite cylinder. This is done incBen 6. As far as the present
authors are aware, none has studied a convection-diffesjoation with first order terms
in an infinite cylinder. In the case under consideration, mvimeeach of the two cylinders
the effective convection is directed from the end of thermjéir towards the junction, we
prove the existence of a solution for such a problem and dssits qualitative properties.
In other cases the situation is much more difficult (espBcialthe case when effective
convections are oppositely directed) and out of the scopleegpresent work.

The paper is organized as follows. Section 1 contains thiel@mostatement. In Sec-
tion 2 we are looking for a formal asymptotic solution to peoh (2.1) satisfying the
Neumann boundary condition on the lateral boundary of tlde fithen, in Sections 3-4
we construct the boundary layer correctors. Finally, intidac we carry out the justifi-
cation of the presented formalism and derive the estimatethé difference between the
asymptotic solution and the exact one. Section 6 is deveoted quxiliary problem in an
infinite cylinder.

2. Problem statement

Let Q be a bounded?* domain in(d — 1)-dimensional Euclidean spa&¢—* with
pointsz’ = (zy,...,74). DenoteG. = [—1,1] x (¢Q) C R? a thin rod with the lateral
boundanyI'. = [—1,1] x 9(eQ); * = (x1,2’). We study the homogenization of a scalar
elliptic equation with periodically oscillating coeffigies

A*uf = —div (a*(2)Vu©) — é(ba(x), V) = éf(xl), z € G,

(2.1) Brur = 2 ), zeTl.,

8nas
(2) ui(1,2") = @*(2), 7 € eq,



where the matrix valued functiarf(x) and the vector field*(x) are given by

ande > 0 is a small parameter. In (2.1),-) stands for the standard scalar product in
R%; Ouf /Ong,- = (a*Vuf, n) is the conormal derivative af¢, n is an external unit normal.
Throughout the paper we denote

G =(—00,400) x Q, T =(—00,4+00) x IQ;

Gl=(a,8)xQ, —-co<a<pB<+oo

We suppose the following conditions to hold:

(H1)  The coefficients:;;(y) € C**(G) andb;(y) € C*(G) are periodic outside
some compact sét € G* ;. More precisely,

a’;;(y)7 Y1 > ]-7 b;r<y>’ Y1 > 17
ai(y) = aii(y), |nl <1, by) =9 bi(y), Inl <1,
a;(y), v <-—1 b7 (y), w <L

wherea™ (y) andb®(y) are periodic iny;. Without loss of generality we assume
that the period is equal tb

(H2)  The matricesi* (y) are symmetric.

(H3)  We assume that™(y) satisfy the uniform ellipticity condition, that is there
exists a positive constantsuch that, for almost alt € R¢,

d
(2.2) AP <D aiw) &g, VEER?

ij=1

(H4)  ¢*(y) € H'2(Q);
(H5) Functions f(x;) and g(z;) are supposed to be smooth, namefyz,) €
C2(G.) andg(x,) € C*(T.).

Later we will see that the obtained result can be generatize¢tie case wherf is just
L*(G.) function andg € L*(T.).

The goal of this work is to study the asymptotic behavioutdfr), ase — 0.

As was noted in the introduction, in contrast to the case af@arator in divergence
form, the situation turns out to depend crucially on the sighthe so-called effective
fluxesbf, the constants which are defined in terms of the kernel of djaira periodic
operators and coefficients of the equation. While constrgdioundary layer functions,
we consider only one casg/ < 0, b; > 0.



3. Formal asymptotic expansion

In the sequel we use the following notations:

Gr={z=(r,2)€G. 2y >¢}, G. ={x=(1,2') €G.:11 < —¢};
Afjv = —div, (a*(y)V,v) — (b5(y),V,v), y€eY;
Jv d
B;:UE = Zafj(y)ﬁijni, yey,

Ong+ byt

whereY = &; x , &, is a unit circle, denotes the cell of periodicity. In whatéos we
identify y,-periodic functions with functions defined an Notice thaY = &; x 0Q).

In each half-cylindeiG and G- we will seek a formal asymptotic expansion of a
solution to equation (2.1) as an asymptotic series (seex@ample, 1], [2])

T
(31) ufoN/UOi(xl)+8u1i(x17y>+€2u2i(x17y)+€3u3i(x17y)7 Yy = g7 xEGsia

whereu; (z1,y), k = 1,2, 3, are periodic iny, functions with period equal to 1. Substi-
tuting (3.1) into (2.1), taking into account the relation

ou(zx, x/¢e) _ ou(z,y) n 1 du(z,y) T

c%i 8IL‘Z 3 8yl ’ v= 6’

and the periodicity ofi;.(z1, v), collecting power—like terms related4o’ we obtain equa-
tions for the functions:;:

(3:2) Ay ui(eny) = (9,05 (y) + b7 (v)) (v) (w1) + f(z1), yeY, veGr.

Similarly, substituting (3.1) into the boundary condition the lateral boundary and col-
lecting power-like terms related t8, one obtains

(3.3) By ui (z1,y) = —a;; (y)ni (v5) (1) + g(z1), y €Y, x € GL.

The compatibility condition for problem (3.2)—(3.3) takée form:
[ it v+ [ @)+ 50) 080 p*0) dy-
34 + + ’ + +
- / o) m (03 (@) () oy, + [ gln) () dor, =0,

oY Y
wherep™(y) belong to the kernels of adjoint periodic operators defined o
—div (a*(y)V p*) + div (b*p*) =0, y€Y,
op*
ONg+

— (b*,n) p*t =0, y € dY.



In [13] (see Section 3) it was shown that under the assumptions aismie such functions
exist, they are positive and continuous everywherE jiand can be normalized by

[rwas=1.

Y

Integrating by parts in (3.4) gives rise an equationfp(z; )

(3.5) B () (1) = () + g(2) / P (y)do,
oY
where
it = [ (@h 000 ) — 5 W) dy

is so-called effective axial drift. Throughout the paperwikt assume that
(H6) b, >0 and bf <O0.

Notice that sincg (), g(z1) € C*([—1, 1)), themv (z;) € C3(e, 1), vy (z1) € C3(—1, —¢).
Substituting the expression fgkx;) from (3.5) into (3.2)—(3.3), we obtain

Az i (21, y) = (0,05 + bF +b7) (05 (1) —
—g(x1) / p(y)do,, yev,

[2)4
By uf = —aj (y) ni (v) (1) + g(21), y € Y.
The specific form of the right-hand side suggests the foligwepresentation of the func-
tion ui (x1,y):
(3.6) ui (z1,y) = N (y) (05) (21) + 01 (21) + 67 ()9 (1),

where functionsVi, v and¢i are to be determined. One can see that necessarily the
functionsN:* andq; satisfy the problems

3.7) AENT =003 + b7 + by, yeYy,
' Bf N = —ajj n;, y € 9Y;

Ay g = — /pi(y)day, yey,

)4
Bfgqr =1, y € OY.

(3.8)

Obviously, by definition ob:, the compatibility conditions for (3.7) and (3.8) are Sfid,
thus, these problems are uniquely (up to an additive cot)statvable. Since we assume
thata;;(y) € C*(G) andb;(y) € C*(G), thenNi(y) andgi"(y) belong toC>(Y) (see,
for example 8], [6]).



Now we return to ansatz (3.1). As before, substituting (319 (2.1), collecting
power-like terms related te” and taking into account the representation (3.6), one can
obtain an equation fars (2, y)

Ay uy = ai (y)(v)" (1) + By, (aii NT°) (v)" (1) +3yz( i4i) 9'(@1)+
(3.9) +0y,az; (vr) (1) + b N (0g)" (1) + 0 g5 g/ (1) +
+UF (1) (1) + a0, N1 (0g)" (1) + ag; 0,45 9'(21).

Similarly, we get the following boundary condition fag(z,y) on9Y

(3.10)  Byuy = —aii Ni n (vg)"(21) — aji i mi g (1) — aiymi (v7)' (1),
The compatibility condition for (3.9)—(3.10) reads
(3.11) b (v (21) = by (v5)"(@1) + ai g (1),

wherehs andf are constants given by the following expressions:

W - / (0™ — o NE@)O,p* + b NEp* + a9, N5 p*) dy;

/ a;y ¢ 0y p" + by i pT + ay; 0,6 p) dy.
Y

Let us note thati"(x,), as a solution of (3.11), has continuous derivative¥ inp to the
second order.

As before, analyzing the right-hand side of (3.9)-(3.10¢ seek a solution in the
following form:

uy (21,y) = Ny (y) (v5)" (1) + Ni(y) (07) (1) + @3 () ¢'(21) + 03 (1)
Substituting this expression into problem (3.9), (3.10) taking into account (3.11), we
obtain thatNi* (y) = Nif(y), N5° andg; satisfy the problems

(3.12) { AF NF = aii + 0,,(ai Ni) + bf Nif +ai;0,Ni — by, yev,

(3.13) A:yt G = ayi(aiil @) + 0 gy + a’lj ay]Ch —q, yev,
By i = —aii i mi, y €Y.

The compatibility conditions are satisfied and problem$ZB-- (3.13) are uniquely solv-
able. Smoothness of the coefficients and properties of thetibns N, ¢ imply that

Ny (y). a3 (y) € C*(Y).
Flnally, we obtain

(3.14)  wy (w1, y) = Ny (y) (v5)" (1) + Ni¥(y) (v1) (1) + a3 (y) 9 (1) + 03 (21).



Similarly, one can see that the problem f@fz,, y)* takes the form

Ay ug = [a; N+ 0y, (a5 Ny) + by Ny~ + a3 0, N5 ] (v5)®
—i—[aliljtayi(aﬁ]\ff) biNi—l—aljﬁ Nﬂ( )”(:cl)+
!/

(3.15) ,
+biglayy qi + 0y, (a5 43) + b7 43 + ai Oy, 4> } 9" (1)
+[0yaii + b ] (v) (901),
(3.16) By uy = —aj; Ny ni(vg)® (1) — ajy Ni¥ng (o) (1) -

—aﬁ %i n; g"(x1) — aﬁ n; (Uzi)/(xl)~

The compatibility condition for (3.15)-(3.16) gives an atjon forvy (z;)
(3.17) b (vy) (1) = By (v7) ) (1) + h3 ()" (21) + g5 9" (1),
where

b = / (H NP — aENEO,p* + UENED® + a0, N ) duy
@ = / a;1q3 Oy, 0™ + b g p™ + ai;0,,¢5p7) dy.
Y

The functionvi as a solution of (3.17) is a continuously differentiablediion inY.
The final formula forui takes the form

ui (21,y) = N3 (9) ()@ (1) + N5 (y) (v7)" (21) +
+NE () () (1) + a5 (y) 9" (1) + 05 (1)

Here N;° andg;™ satisfy the following problems:

(3.18)

AﬂENi aiy N + 0, (a5 N5) + b N+
(3.19) +ay;0, Ny —h3, yeYv,
Bf Ni = —a N n,, y € 0Y;

A;tqgc:aiqf—l—ﬁyi( ﬁ%)‘”ﬁ 92

(3.20) +a1]a 92 . yey,
B;'quiz—uqzm, y € 0Y.

The functionsNi andqgi_have continuous derivatives I up to the second order, more
preciselyNi, ¢ € C?2(Y).



In such a way we have constructed the following asymptotieséen G andG: :
Uz = vy (21) + €[N (y) (vp) (1) + o (1) + a5 (y)g(a1)] +
201 +2 [N3 (y) (v7)" (1) + Ni(y) (01) (1) +v3 (1) + a3 (y)g' (1) | +
(3:21) €% [V () () (1) + Ny (v) (o) ()] +
xr

+e' [NF() vy (1) + 05 (21) + 5 W)g"(@)], y =<

REMARK 3.1. We have built four terms of the asymptotic expansiohastually we
will use only three. The fourth term is required for derivitng equation fowy (z,) and
does not show up in the approximation.

It should be noted that the infinite number of terms in seBe®1() can be constructed.
Interested reader can find itd] the description of the general method for such a con-
struction together with some applications and examples.

4. Boundary layers near the rod ends

4.1. Leading term of the asymptotics.Asymptotic series (3.21) do not satisfy the
boundary conditions on the bases of the rod. First, let usecbthe leading term of
the asymptotics with the help of boundary layer functionarrtbe right base; with this
correction the leading term takes the form

r—1 o

(4.1) vy (m1) + (wg( =) - w;) ,

€ 9

wherew; is a solution of a homogeneous problem in a semi-infinitencigr
Afwi(y) =0, yeG’,,

(4.2) Bfwg =0, yel?,,
wy (0,y') = ot (y').:

As was proved in13] (see Theorem 6.1), under assumptiohsl ) — (H4), (H6), there

exists a unique solutiom; to problem (4.2) stabilizing to a constant at the exponential

rate, agy; — —oo. As a boundary condition forj let us choose this uniquely defined

constantug (1) = w4 . In such a way the function defined by (4.1) satisfies the bagnd

condition asr; = 1.
Similarly we correct the leading terng near the left base of the rod:

(4.3) vy (1) + <w0_(x1 * 1, i) — wo—) ,

€ €
wherewy, is a solution to the following problem:
Ajwy (y) =0, yeGg™,
(4.4) Bywy =0, yeTl§™,
w, (0,4) =~ (¥/).



Sinceb; > 0 then there exists a unique solutiafy to problem (4.4) and this solution
stabilizes to a constant, as — oo. We denote this constant iy, and set, (—1) = w0, .
One can easily see that the function defined by (4.3) sati$feeboundary condition on
the left base of the cylinde¥..

4.2. Term of order . The corrector in the asymptotic expansion (3.21) has tha for
z T
eNFE (g) (“Oi),(%) + evi (21) + 6q1i(g)g(x1).

Since the leading term satisfies the boundary conditions as +1, then our aim is to
correct the first term in such a way that the resulting coefficin front ofc is equal to
zero asr; = +1. First, we show how to construct a boundary layer functicer tiee right
base of the rod.

Take a functionu; satisfying the following problem:

Afwi(y) =0, yeG,
(4.5) Bfw{ =0, yel?,

wi (0,9) = =N (0,9/) (w5 )' (1) — 4" (6,%/) 9 (1),
for some fixedS € [0, 1). Taking into account thdt] > 0 one can see that,” stabilizes
to a uniquely defined constant which we denotedyy (see L3]). Then we take the
constant;” as a boundary condition far; () asz; = 1: v (1) = @;. Obviously,

e = (6 + N)~!, whered is the fractional anaV is the integer parts df/c. By periodicity

Ni (1/e,a'fe) = N{ (6,2 [e), ¢f (1/e,2 [) = qi (6,2 [e).
We correct the first term as follows:

(4.6) ngr(g) (vd) (z1) + aqf(g) g(x1) + ev (zy) + 5(wf($18_ 1, %/) — ).

Taking into account that (1) = w;", one can see that

1 2 , 1 2 ' )

o g) (vg)'(1) + 5ql+(g, g) g9(1) + v (1) + ¢ (wi (0, ;) —uf) =0.

Using the same arguments, we construct a boundary layetidann the neighborhood of
the left base of the rod:

&‘Nfr(

?

o+ 12 o
G ) i),

x , _
(4.7) ng(g) (vg ) (w1) + vy (21) + e (wy — 0]
wherew; (y) is a unique (due to the assumption that > 0) solution to the following
problem:
Ajwi(y) =0, ye Gy,
(4.8) B wy =0, yeTl§™,
wy (0,4") = =Ny (=0,4') (v5)'(=1) — q1 (=0, 4') g(=1),

which stabilizes to the constait,. And we assign a boundary condition for(x;) at
T, = —1: Ul(—]_) = 21]1_



4.3. Term of order 2. The term of order? of the asymptotic expansion takes the
form:

X Xz Xz
EN3 (2) (o) (@) + N (2) () (01) + €05 () 9/ (0) + 73 ().
Near the right end of the rod we correct it in the following way
Xz X
SN (2) (08)" (@) + N () (07 (1) + €5 () +
x 1 —1
+€2q;(g) g'(z1) + &% (wy ( 16 ,g) — ),
wherew; is a unique solution of the following problem in a semi-inféncylinder:
Afwy =0, yeG®,
Bfwj =0, yel?_,
w3 (0,) = =Ny (6, ¢/) (vg)" (1)
=Ny (0,9) (v)'(1) — a5 (0,9) g'(1);
wy tends to a constant;, asy; — —oo. As before, the existence, uniqueness of a
solution and the property of the exponential stabilizatiora constant are insured by
Theorem 5.1 in13. Now we can choose a boundary condition for the functignas
1’1:1’0;<1):’UAJ;
Near the left end of the rod we follow the same scheme:
T X
e Ny (Z) (09)" (1) + & Ny (2) (vr ) (1) + g (1) +

/
1+ 1 x)_w;)’

(4.9)

(4.10)

(4.11)

_ /X
+e2q; (g) g'(z1) + &% (wy (
wherew, is a unique solution of the following problem:
A jwy (y) =0, ye Ga>,
Bywy =0, yeT§™,
wy (0,y') = =Ny (=0, y) (vy)"(=1)—
=Ny (=0,9") (v ) (=1) — g3 (=0,¢) ¢'(—1),
tending to a constant, asy; — +oo. Now we set the constant, as a boundary
condition for the function, asz; = —1: vy (—1) = w5 .

Finally, we obtain the following expressions for the bounydiayer functions in the
neighbourhoods oy, = {x € G. : x1 = 1, 2’/ € eQ}:

rnF1l 2 ) = .
(4.13) o = [0 (T ) ] e[ (P ) i
. /
e wi (2,5 — ),

)
£ 9

(4.12)

) — Wy

g
wherew; are defined by (4.2) and (4.4);" - by (4.5) and (4.8)w; - by (4.10) and (4.12),
respectively. Let us recall what we assigned as the bouramgitions forvE, vi* andvi



atr, = +1;

(4.14) vE(£1) = oF; o (£1) =0 (£l = 0

5. Boundary layer in the middle of the rod

Before constructing the boundary layer functions in thedtaaf the rod, let us extend
vy (1) (keeping the same notation) te-cc, €) as a solution of equation (3.5) satisfying
the boundary conditiong (1) = g . In the same way we can extenfl, vy to (—oo, ),
andv, , v, , v, to(—¢,+00) as solutions to corresponding ordinary differential eigunet
Periodic iny; functionsN,;t and q,?f, k = 1,2,3, we regard as defined everywhere in
G=R x Q.

Obviously, it suffices to match the formal asymptotic serigs defined by (3.21) in
GZ,, with zero in the vicinity ofS§ = {x € G. : z; = 0}. Then, in the same way we
can matchu_, with zero, and, summing up the obtained expressions, aatithe final
boundary layer corrector in the neighbourhoodpf

In order to match:®, with zero in the neibourghood ¢f, we are looking for a "cor-
rected” solution in the form

v (@) = xg () v (21) + e N (y) ¢F (y) (vf ) (1) + e xT1 () (vg ) (1) +
+e g (y) oT (W) g(x1) + e xTog(1) + e X7 (y) v (21)+
(5.1) +e2 Ny (y) ¢*(y) (vg)" (1) + €% X34 (y) (vg)" (1) +
+e2 N (y) 7 (y) (v ) (1) + €% X3 (y) (v ) (1) +
+e2 4 (y) 9T ()g'(11) + €2 Xx35(y) 9 (1) + 2 x5 (y) v3 (21), ¥ =a/e.

where the functions (y), X1, (¥), X{2(¥), X31(%), X32(¥), X25(¥), X3 (y) andx; (y)
are to be determined;t (y) = ¢*(y1) is @ smooth cut-off function such that (y) = 0 if

y1 < —land¢™(y) = 1if y; > 1. Straightforward calculations show that

1 1
5.2) ATl = —an(y) %0 - Zhiy) Oz, 0 — - 01(y) O,y Oy, v —
52

1 1 . 1 T
_gﬁyi (ail &Elfuj) -3 div (a Vyvj) — 2 (b, Vyvj), y="

1
(5.3) BE'U: = a1 (y) n &cl’U: + - az’j(y) Oy, Y= g-

Yj e
Substituting (5.1) into (5.2) and (5.3) and collecting povilke terms of order==2 and
e~!, respectively, we get an equation and a boundary conditioth& functiony; (v):

(5.4) Ay xg = —div(a(y)Vxg) — (0(y), Vxg) =0, y€G,
B, x§ = (a(y)Vxg¢,n) =0, yeTl.



In the same way, collecting power-like terms of ordet and<? in (5.2) and (5.3), corre-
spondingly, gives the following equality:
Ayxia - () (1) + Ayxae - g(@1) + Ayxa - o7 (2) =
= [—Ay (N ¢) + a1;0,,x3 + 9y, (anxg) + bixg | (vg)' (1) +
—Ay (6" (¥)o" (y)) - 9(x1) + ¢ (y) f(21);
and the following equality on the lateral boundary
[ai(y) X (¥) ns + aij(y) B, (N7 &) ni + ai; 8y, x i) (vg) (1) +
+ [aw 0y, (¢ ¢") ni + ay aijl 2 ”z} g(z1)+
+ai; 0y, X1 ni - vf (21) = 6% (y) g(21).

Recalling the expression fgf(z;) in terms ofv; (x1) (see (3.5)), one can see that, (y)
XT2(y) andx; (y) satisfy the following problems:

((Ayxiy = —Ay (N (9)oT(y)) + ay;(y) 0y, xd (y)+
(5.5) +0y, (anxg () +bi(y)xg () —bf o7 (), y e G;
. ByXE = —apn X(J)r n; — Qi ayj(Nfr ¢+) ng, yel;

(

Ay = —Ay(df W)o" (y) — o () / p(y)do,, yeG,

(5.6) a
[ Buxtz = =i 9y, (af () 67 () i + 6" (9), yer;
+ —
5.7) {gyxi@—o, yeG,
yX1 =0, yel.

Problems (5.4) —(5.7) were derived by formal calculatiorscl, of course, do not im-
ply the solvability of these problems. Theorem 7.3, prove&ection 7, guarantees the
existence of solutions to problems (5.5)—(5.7) in propassés and, moreover, gives an
additional qualitative information about the solutiongvihwe claim that problems (5.4)—
(5.7) are solvable. Indeed, sine < 0 andb; > 0, by Theorem 7.3 for any two constants
there exists a weak solution to problem (5.4) which stadslito these constants at the ex-
ponential rate, agg;| — co. We chooseys which stabilizes td, asy; — +o0, and to
zero, agy; — —o<:

+ +
(5.8) Xo y1—>—+>oo L, xo y1:>00 0.
Such a choice ofy, definitions of N (y) and¢™ (y) insure the existence of solutioyy
of problem (5.5), which stabilizes to the constants at itfinFor the functionxi1 we
assign zeros at infinity:

(5.9) Xil — 0, y; — Foo0.



The motivation for such a choice will be given later. Simiataking into account (3.8)
and the definition o)™ one can see that problem (5.6) is solvable. We also chooses zer
as constants at infinity fg(fQ:

(5.10) X{2—0, y — Foo.
And, finally, Theorem 7.3 implies that there exigts(y) such that
(5.11) xi — 1, xf — 0.

Yy1—>+00 Y1—>—00
In much the same way, substituting (5.1) into (5.2) and (&r8) collecting the terms of
orderc? ande!, respectively, we see that the following equalities hold:
Ay X3 (vg)"(@1) + Ay xao(0]) (1) + Ay X359 (1) + Ay x5 v3 (21) =

(512) _ Ffr(y) (’U(J{)”(ﬁﬁ) + Fj(y) ('Ufr),(xl) + F:;r(y) g’(l‘l), Yy c G;

Byxa, (vg)" (1) + Byxa (017) (21) + Byxa ¢'(21) + Byxs vs (21) =
— laani xiy + By(NS¢%) 4+ anni N o] (vg)" (1) -
— [By(N{ ¢") + annix{] (vf ) (21)—
— [By(g5 ¢") + auni ¢f o + aini xi,) ¢'(x1), yeT,

(5.13)

where
Fi"(y) = —Ay(NJ ¢") + an1 xg + a1;0,, (N ¢7)+
0y, (@i Ny ¢) 4 by NiF ¢ + a1;0,,x7 1 + 9y, (anxiy) + b xT s

Fy (y) = —Ay(N{" ¢7) + ay;0y,x7" + 0y, (ainxy) + b xi;

Ff (y) = —Ay(q7 ¢") + a1;0,,(¢ ") + 0y, (aingi ¢7)+
+b1 a1 ¢" + 4150, X7, + 9y (anxis) + b1 X1 o

Since

bf (v1)'(21) + h3 (ve)"(21) +a" ¢'(21) = 0,

we can subtract the last expression multipliedyy) from the right-hand side of (5.12)
and obtain

Ayxzy - (vg)"(21) + Ay x3o - (0] ) (1) + Ay X35 - ¢ (1) +
(5.14) +A, X3 vy (21) = (Fi (y) — ha ¢F) (v5)" (1) +
(B () = b 0") (i) (@) + (B (y) — 4 07) ¢/(0).
One can see that in view of the specific choice of the functighsx};, xi, xi, and
definitions of ", ™, N3, ¢, ¢ , the functiong F} (y) — hy ¢™), (F5 (y) — bi ¢*) and
(F5 (y) — qf o) decay exponentially, ;| — oo. Taking into account (3.7), (3.12),



(3.8), (3.13), (5.5) and (5.6), it can be shown that the betedk expressions on the right-
hand side of (5.14) decay exponentiallygas— +oo. Theorem 7.3 states that there exist
X311 X3.2: X35 Stabilizing to zero, ag; — +o0, which solve the following problems:

Ay Xér,l = _Ay(NQJr ¢+) + ay X(JJr + ayj(]\flJr ¢+) + ayi(ail NlJr ¢+)+
(5.15) +b1 Ni™ 6" + a1 0y, Xy + Oy (an Xi 1) +bixdy — s 07, y€G,

Byx3, = =By (Ny ¢%) —annix{y —ann; Nf ¢, yeT;

Ay X2+,2 = —A,(N{ ¢T) + ayy 3ij1++

(5.16) +0y, (anxy) +bix{ —bf %, yeG,
B, Xérz = _By(Nfr ¢t) —aan Xfa yel;
Ay X;r:s =-A (q;r ¢*) + a; 0 Y; (qfr ¢F) + 9y, (ai qf ¢+) + b qu o+
(5.17) tay; ang12 _'_ayz(all X1 2) + b X12 -4 ¢+ yeG,

B, X2,3 = —B, (05 ¢F) — ainn; X1,2 aaniq ¢*, yeT.
Also, there is a solutioly; of problem
A, xd =0, € G,
(5.18) vz Y
Byx; =0, yel,
which satisfies the following conditions at infinity:

(5.19) x5 — 1, x5 — 0.

In the same way one can matel) with zero in the neighbourhood 6f:
v (2) = Xo (¥) v (21) + e Ny (y) ™ (y) (vg) (1) + € X1 () (vg ) (1) +
+eq; (y) o~ (y)g(z1) +ex129(z1) +ex7 (¥) vy (21)+
(5.20) +e2 Ny (y) ¢~ (y) (vg)" (21) + €2 X1 (1) (vg )" (1) +
+e? Ny (y) 67 (y) (v1)' (1) + €2 Xap(y) (01 ) (1) +
+eqy () 67 (y)g'(21) + € Xa5(y) 9'(21) + € x5(y) vg (21), y = /e
Here¢~ (y) =1 — ¢"(y); xo (v) is a solution of problem
Ayxo =0, yeG,
{ Byxo =0, yel,

which converges t0, asy; — +oc, and tol, asy; — —oo. Functionsy; (y), x12(y)
andy; (y) satisfy the following problems:

Ayxiy = = A (N ()97 () + a1(9) 9y, X0 (y) + Dy, (ainxo (¥))+
+b1(y)xo (y) — by &~ (), y € G;
Byxi, = —aia xg ni — ai; 0y, (NT ¢7) ny, yel;



{ Ayxia = Ay (a7 (W)o(v)) — f p (y)do,, yE€G,

ByXia = —ai; Oy, (a1 (y) ¢~ (y)) n; + cb (y ) y el
Axi(y) =0, yegG,
Byxi =0, yeT.

We choose these functions in such a way thaf(y) andx; ,(y) tend to zero, ag;, —
+o00; x; — 0, asy; — +oo, andy; — 1, asy; — —oo. By the same arguments as
above, there exist, ;, x5, X253 Stabilizing to zero, ag, — +o0, and solving problems
Ayxan = —Ay(Ny ¢7) + an xg + a1; 9y, (Ny ¢7) + 0y, (an Ny ¢7)+
+b1 Ny ¢~ + a1 Oy X1 1 + Oy (ain xin) tixyy —hy ¢, y€G,
ByXo1=—By(Ny ¢7) —annixi, —ann; Ny ¢, yel;
Ayxan = —Ay(Ny ¢7) + a1 0y x1 +
+0y,(ainxy) +bixy —by ¢, y€EG,
By X3, = —By(Ny ¢7) —ainnixy, yely
AyXaz = —Ay(qz ¢7) + a1; 0y, (a1 ¢7) + 9y (an gy ¢7) +bigr ¢+
+a15 0y, X120 + Oy (an Xi2) +hiXio— ¢ 075, Y EG,
ByXaz=—By(qy ¢7) —aaniXi, —aaniq ¢—, yel.
Similarly, there exists a functiog, being a solution of problem
Ay X2 =0, yeg,
By XQ_ = 07 y € F7
such that

— 0, x5 — L
Yy1—>+00 Y1—>—00

Finally, taking into account the constructed inner fornsiraptotic expansion and bound-
ary layer correctors in the neibourhoodssaf, andsS,, we arrive at the asymptotic solution
of problem (2.1):

(5.21) g () = v () + vy (2) + 07 (2) + vy (o),
wherev, v7 andvjl[ are defined by (5.1), (5.20) and (4.13), respectively.

REMARK 5.1. Adding the boundary layer functiom$ to the inner expansions:,
makes it possible to satisfy the boundary conditions on #se$ of the rod-. with an
accuracy up to the third order in Representing (5.21) as the sum of the inner expansions
and the boundary layer functions

use = ud(x) + (vF (2) — ul (2)) + vy (2)
Fug () + (02 () — uge(2)) + vy (2),



where

wh(2) = () + <[V (2) () (1) + o (1) + (D) )] +
SINF (D) ()" (@) + NE () (0 @) + v (@) + 057 (2)g/ (@)

we make(vE — uk ) exponentially small (but not vanishing) ¢fi, as well as;, on S,
andv,; on S< . In order to satisfy exactly the boundary conditions, onereplace (5. 21)
with

5, = ul () + (vF (2) — u(x)) ¢1(2) + vy (2) ¢ ()
Fuee (@) + (v (2) = ug(2)) ¢1(x) + vy (2) o7 (2),

whereg, (x) = 1if |z1] < 1/3 and¢;(x) = 0 otherwise;

n _ 1, 1> 2/3, _ _ 1, 1< —2/3,
o1(r) = { 0, x5 <1/3. or(w) = 0, x1>—1/3.

Substitutingzs, into (2.1), it is straightforward to check that the preseatéhe cut-off
functions results in the appearance of additional expdalgnsmall (with respect ta—1)
terms on the right-hand side. Later on we will prove a prigtiraates (6.3) and (6.4)
which ensure that the exponentially small perturbatiorhefright-hand side leads to the
exponentially small perturbation of the solution, and sthis negligible in any polynomial
in e expansion. To simplify the notations we deal with (5.21)laeting the discrepancies
on S%, which are exponentially small with respect:o'.

In order to estimate the difference between the exact swolufi(x) and the approxi-
mate one::_, we will need the following relations:

o

6(” +vbl)_§¢i( 1)f(951):
e [~an(y) N (y)¢i( 1) — a1 (y) 9y, (N5 (v) 6*=(v))] (v5)® (1) +

+e [~0y(an N%i) = b1 Ny 0% —an xiy] (05)®(e0)+

te [ A1y ng21 Oy; (ain X2,1) — b XQ,I] (v5 )(3)(:c1)+

+e [- 3y @iy Niﬁbi) arj 0y, (N &%) = bi(y) Ni¥ ¢*] ()" (1) +

+e [—an X1 — ayy aij2i,2 — 0y, (an th,z) — b X;ﬂ (1) (1) +

e [=a1;(y) 9y, x5 () — Oy (ain(v) X2 () — bi(y) X3 (v)] (v3)' (1) +
(5.22) +€ [—anfhi(ﬁ — a0y, (CI2 ¢i) yl(a11Q2 ¢i) — b1 g, ¢i] g"(x1)+

+e [—an X2i,2 - alyaij2,3 - ayi(aﬂXQ,?)) — by X2,3] g" (1) + Avy.



B (o2 +vif) 0% (T) 9(a) =
=% [an(y) ni Ny () 0™ (y) + an ni Xz, (y)] (v5)® (@1)+
(5.23) +e? [an ni Ny (y) 0F + anni xaa(y)] (07)" (21)+
+&? [aﬂ ni g3 (y) ¢* + ain n X2,3(y)} g" (1) +
+e2an n; (vE) (21) + stg%, y=x/e.
6. Justification procedure

First we obtain an a priori estimate for a solution to the prob

Afuf = f(x), =€ G,
(6.1) Buf = ¢°(z), zel,

us(+1,2) =0, 2/ €eQ
in terms of f¢(x) andg®(x) (for the moment we do not specify the particular structure of
these functions). To this end let us make a change of vagabléne last problem

€z &€ 15
oy =0 u() = e(y) = u(ey).

Then (6.1) takes the form:

Ay = &* f(ey), y € Gl_/f/g,
(6.2) Byv. = eg°(ey), (RS Fl,/f/sa

ve(—=1/e,y) =v(1/e,y") =0, vy €Q,
It will be shown in Section 7 that the following estimate hald

9l gy < C I+l £ e
O L+ D) 9N e

Making inverse change of variables, one can see that

1 €12
N €—/|Vu 2 da,

JRRCIR =—/f€

_l_

and, consequently,
_1
(6.3) IVuill2 ey < Cllf 2o + Ce72 (197l 2, -



Making use of the Friedrichs inequality for the functiohin GG. we obtain
1y .
(6.4) [wllz2c.y < C N Follr2en + Ce72 g7l 2.

Estimation of thel.?(G.)-norm of A* (v} +v;)) + (v +vy;) — v®) andL?(T'.)-norm
of B*((v + vj}) + (v + vy;) — u®) will complete the justification procedure.

REMARK 6.1. The estimates (6.3)—(6.4) actually imply that we cdw® tA(x,) €
LQ(Ga) andg(l‘l) € Lz(ra)'

There are some "typical’ terms in (5.22), (5.23) like

)  an(y) Ni () 6 () () O @)
) e a1 (1), (NS 6%) () (@), .

) cand () (o)D),

’ £ 013 0y, x5 () (1), .

) 2 aun(y) i N5 (9) 67 () () (),
) e an (y) i X341 () (vf) @ (1)),

e®an(y) ni (vF) (1)),
Let us estimate them.
1.

T T T 2
= [ @) NG 6 ()] do
g g g
GE
vy (1) is a solution of the following equation:
{ by (vg)'(21) = f(x1) + g(a1) [ p*(y)dy, =1 € (0,1),
oYy
vy (1) = g .
If f(z1) andg(x;) are two times continuously differentiable, therj ) is a continuous
function on the interval0, 1]. Taking into account the fact that;(y) are smooth and
boundedp < ¢* < 1, andN; (y) is a continuous periodic function (see (3.7)), we see
that
I} < C2 |G| < Celd D 2,
Thus,

< Celd=1/2 ¢,

Hg all(g) Nf_(g) ¢+(%)(U(—)i_)(3) (l'l) L2(G.)




b= oy (0 20, (N (D6 () ) O,

€

Making change of variableg= =/ we obtain:
2

B=cet [ [0, (N 06t w) ) )] dy

1/
Gfls/s

The L2(Y') norm of the gradient ofV," (y) is bounded and the gradient of is equal to
zero inGj/E U G}/E due to the definition of the functiopt ().

I3 <Ce?et [ Vot (y)|Pdy+Ce?e? [ VN5 (y)]Pdy <
Gl/s Gl/s
—1/e —1/e

< Ce?ed|GLy| + Ce?ele ™ < Celd D[ 4 &3).
Consequently,

o210, 05 o2 0, < 0o

L2(Ge)

B = [ean@ ) )@@

L2

( )sCeQEd / (Xt () dy.
GE

1/e
G—l/s

We assign the functioR; (y) to tend tol, asy, — +oo, and to zero, ag;, — —oo. For
X1 the following estimate holds (see Theorem 7.3):

||X1+||L2(Y) <C.

Thus,
B<Oetet 2 0t
and, finally,
Iy (EY (0 ® < el

H5a“<g)X1 (6) (vg )™ (1) L2(G.) : B

4,
T z ’
1 = [ a5 0, (a5 ) e, <

<0 / V)P dy.

1/
Gfls/s

Due to Theorem 7.3 the*(G) norm of x5, is bounded, thus

e aui(3) 0, 0o E) DD )| | < st

L2(Ge)




12 = || an (2) m N5 (2) 67(2) (o) O (@) |22y, <
<Ce Vet [ (NS (y))?do, <

1—‘17/15/5
<OVt [N () + VNS ()I7] dy.
Gl/ls/s

Since|| Ny || 2(vy and|| VN5 || .2y are bounded, then

| aaHmN O 6" (0) DD )|, < CDe

L2(T.)
6. 2
€x xr
i = P aaOmoi (O )P, <
Ceteld-b / (ng(y))2d0y<
< Cete / (o) + [Vt @

In view of Theorem 7.3, fox",(y) the following estimates are valid:
”XlQHLz 1/€E <Ce! ”X12HL2 < 05713 HVXIF,QHLQ(G) <C.

Consequently,
2, (I ot (T ()3 < Qe
Hg azl(€>n1X271(€>(UO) (71) 2w € e“.
7.
I; = H82 ail(g)m () (1) 2(r.) = 062(/d0y)1/2 < Ce?eld=2/2,
L2(T.

FE
Other terms in (5.22)—(5.23) can be analyzed similarly. diyain the same way the
L*(G.) norm of [A% (v + vy) — 2 ¢~ (&) f(x1)] and L*(T.) norm of [B= (vS + vy,;) —

¢~ (%) g(x1)] can be estimated.
Finally, the following estimates have been obtained:

(6.5) | A ((vF +vg) + (v +vy) — ) HL2(GE) < Ceeld-D/2,

(6.6) 182 (w2 + i) + (07 + vg) = 1) || oy, < C 2DV,
Taking into account (6.3) — (6.6) we get

(6.7) IV (0} +v) + V(0T +vy) — V|| 2y < Ceed D2,

(6.8) 10 +v3) + (v +vy) = @l 12y < Ceeld™V2,



The estimates (6.7) — (6.8) complete the justification pilace. In such a way we have
proved the following theorem.

THEOREM 6.2. Let the conditiongH1)—(H6) hold true. Then the approximate solu-
tion v given by formulg5.21)satisfies the estimates
HVuZO — VUEHL2(G’5) S 06 €(d_1)/2;

|uSe — vl 2y < Cee(d’l)/z,

whereu®(z) is the exact solution to proble(2.1).

7. Existence of a solution in an infinite cylinder

Given a bounded domai) ¢ R?~! with a Lipschitz boundarpQ, we denote by an
infinite cylinderR x @ with pointsz = (z;, ") and the axis directed along. The lateral
boundary of the cylinder is denoted by= R x 9Q. We study the following boundary
value problem for a stationary convection-diffusion egurat

Au = —div (a(z) Vu(z)) — (b(x),Vu(z)) = f(z), zeG,

(7.1) I

Buzana:g(x), zel.

Here the symbaq(-, -) stands for the usual scalar productify u/0n, = (aVu,n) is the
conormal derivative of a function, n is the exterior unit normal. Throughout the section
we use the notations

Go=(a,f) xQ, T =(a,pB)x0Q.
We assume that the following conditions are satisfied:
(Al)  The coefficients,;;j(xz) € L>(G), b;j(z) € L>(G) have the form

a’(z), v € GF™, bl (x), € Gg™,
al](x):{ Zj( ) 0 b](l'):{ ]( ) 0

az(x), z€ G0 ; b (x), v€ G,

Y » respectively. Without
loss of generality we assume that the period is equél to

(A2)  The matrixa(x) is symmetric and satisfies the uniform ellipticity conditjo
that is there exists a positive constansuch that, for almost alt € G,

wherea;, b anda;, b; arex;-periodic inG> andG®°

d
(7.2) AP <Y af(@) &g, VEeR

ij=1
(A3)  f(») € L*(G) andg(z) € L?*(T") decay exponentially at infinity, namely,

Hf||L2(GZ+1) S 66_71 |TL‘7 ||gHL2(Fz+1) S ée_’yl |TL‘7 ’71 > 0



Denote byp*(y) the functions from the kernels of adjoint periodic operatdefined on
Y =(0,1] x Q:

(A¥)py = —div (a*V py) +div (b*py) =0, yeY,
* +
%

7.3
(72) (B*)'p

=7 — (v*,n)pt =0, y € Y.

Each of problems (7.3) related ta*,b") and(a—, b7), respectively, has a unique up to
a multiplicative constant solution which is positive anehitouous everywhere il (see,
for example, 13], Section 3). In both half-cylinder&® . and G/ we introduce the
so-called effective drifts:

bt = / (aﬁ(w)a@(@ b (@) () d

&cj
Y

It was shown in 13] that the behaviour of solution in half-cylinder crucialigpends on
the sign of the effective drift. In the case of infinite cylerdhe situation is even more
difficult: a solution might fail to exist under proper choigtthe signs ob.

The goal of this section is to show that in the cage< 0, b; > 0 problem (7.1)
possess a bounded (in a proper sense) solution, whichiséstib constants, as, | — oo.

DEFINITION 7.1. We say that/(x) is a weak solution to problem (7.1) if, for any

Y(z) € C§°((—o0, +00); C*(Q)), the following integral inequality holds:
/(a(:c)Vu, V) de — /(b, Vu)pdr — /g(x)z/}(x) do = /f(x)w(x) dx.

DEFINITION 7.2. A weak solution:(z) of problem (7.1) is said to be bounded if
[ull 2 (gn+ry < C,
with a constant’ independent of.
The following theorem contains the main result of the sectio

~ THEOREM7.3. Let conditiong A1) — (A3) be fulfilled and suppose thaf < 0 and
by > 0. Then, for any constant& and K, there exists a bounded solutiaiz) of
problem(7.1)that converges to these constantsgas— +oo, respectively,

(7.4) lu = K[l pog=ny < My 67”; n >0,
Ju— K:oHH(G:g“’) < Mpe 7", n>0;

moreover, the following estimates hold

(7.5) lull 2y < Mai 1V ulliee) < M.

The constantd/,, M, and M3 in (7.4), (7.5) have the form

— é v é 14
My = Co (|KL|+1KL) 4+ Cr (11 + 212" flla) + 1L+ |212™) gll2y)



My = Co (|(1+ |21)2*) flliey + 111+ 212 gll2y) + Cs (KE| + | Kx)):
My = Cy (|(1+ |21]) fllzzey + 1+ |21]) gl z2my) + Cs | K — K,
whereCy, C1, Cy andC3 only depend o\, d and @, v > 0.

PROOF. The proof consists of two steps. On the first step we showtlieaé exists:
which solves nonhomogeneous problem (7.1) and decays aitynfOn the second step
we prove the existence of a solution to the homogeneousiequetich stabilizes to some
nonzero constants at infinity.

The casef = g = 0. Consider the following sequence of the auxiliary boundaaye
problems:

Auk =0, reGh,,
(7.6) Bukf =0, rel*,,
ub(£k, ') = KX, 2/ €Q
and denote* = «* — (KL + K_)/2. Themv* solves the problem
Av* =0, x € Glfk,
Bk =0, T € I"jk,

1
v (Ek, o)) = jzﬁ(K’Jr - K3), 2e€qQ.

o0 [e.9]

By the maximum principle,
1
(7.7) ¥ < §|K;—K§o|> xeGr,, Vk

Indeed, by the maximum principle, a negative minimum carbeatttained in the interior
of the domainG*,. The assumption that a negative minimum is attained on tieeala
boundaryl'®, also contradicts the maximum principle. One can prove tkisrelingvy
by reflection across the lateral boundary and using the fiattf satisfies homogeneous
Neumann boundary condition @# ,. More detailed proof can be found ibJ], Section 3.
This trick is used many times throughout the paper and allosv® apply the maximum
principle, the Harnack inequality and Nash estimates ughéolateral boundary of the
cylinder.

Consequently, we obtain the following uniform estimate.w) for the solutionu* ()
of problem (7.6):

1 —_ —
[l ey < 5 1QI (IKE = K| + K% + KZ)
< Q" (IKL| + |Kx]), VN.

It follows from estimate (7.7) that the?>-norm of the gradient of* in every finite cylinder
is also bounded (see, e.@])

IV ¥l ey = IV 0¥ sy < Cu KL — K, W,



where the constarit; depends only o, d and@.

Using the compactness arguments we conclude that, up teadguénce;” converges
to a solutionu of problem (7.1) (withf = g = 0) strongly inL? .(G) andV «v* — Vu
weakly in(L2.(G))?, ask — oo.

By the trace theorem

0¥ 125,y < CIEE — K4,
and moreover (se8], Theorem 8.24)
(7.8) Ml sy < Cllutllpze,) < C |KE — K5

with a > 0 and a constant’ depends only onl, Q and A. Here again we used the
same extension arguments as above that allowed us to olstaimaee (7.8) inS.; up to
{£1} x 0Q, not only in the interior parts of these domains.

Consider an auxiliary problem

Ak =0, r €GP
(7.9) Buf =0, reTh
*(1,2)) = max{K_, KL}, @k, o)=KL, 2 €qQ.
In view of (7.8), by the maximum principle," < @" in G}. As was proved in13] (see
Theorem 6.7), in the cagg < 0, for any constanf(, the following estimate is valid:
W — KT <o — KI| < C max{|K_|,|KL|}e ™, x> 1.

Since, up to a subsequendea’} converges ta: uniformly on every compact séf C G,
then

lu— KI| < C max{|K_|,|KL|} e ™, x> 1.
The last estimate yields
||u — K;LOHLQ(G%H) <O max{|K_|,|KL|}e ™™, N=1,.. k-1
By the standard elliptic estimates we obtain
||VUHL2(G%+1) < Cllu— K;HL?(G%jf) < C max{|KZ[, [KL[} e,
with N = 1,...,k — 1. Similarly, in G*, we have that — K andVu — 0 at the

exponential rate, as; — —oo. This implies that, for any constankst, there is a solution
u(zr) of (7.1) with f = g = 0 such thatu — K=, asxr; — 400 and

lull oy < C (1K = Kool + |KL + KLJ) < C (1K + KL,
IV ullrz@) < C|KL — K.

The casef, g # 0. Our next goal is to prove the existence of a solution of pnoble
(7.1) that decays exponentially at infinity. To this end wasider the following sequence

(7.10)



of boundary value problems:

Auk:f(gj)’ .Z’EGlik,
(7.11) Buy, = g(), zel*,

up(—=k, 2"y = ui(k,2") =0, 2’ €Q.
Without loss of generality we assume tifét) > 0 andg(x) > 0, otherwise we represent
these functions as the sums of their positive and negatikts.p&loreover, we assume
thatsupp f,suppg C G¢>. The case when the supports paindg are inG® __ can be
considered similarly.

Suppose first that the coefficients, b, and the functiong andg are smooth. Thus,

by the strong maximum principle (see, for examp8),[u*(z) > 0,z € GE UTE.

It has been proved irlB] (see Theorem 6.7) that in the semi-infinite cylinder!, the
following estimate forn,, takes place:

up(z1,2") < Col|ugl|poeos €7, o1 < —1, v >0,

whereC, depends only o\, d and@. Sinceuy, is positive, then the Harnack inequality is
valid in the fixed domaird° ; with a constant which depends only od, || andA, thus,

up(z) < e’ minug(z), € GZl..
G2,

Obviously, there exist§ > 1 such that
r .
(7.12) up(—¢€,2') < B r(r;l(i?uk(:c)

Due to the linearity of the problem i@’jg we represent,, as a sumy, + wyg, where
vy, IS a solution of the homogeneous equation with nonzero Bletdoundary conditions

Av, =0, x € Glig,
(7.13) Bu, =0, zelr,,
vp(=€,2") = up(=€,2), w(k,2") =0, 2/ €Q;
andwy, is a solution of the problem
Awy = f(x), x € Gry,
(7.14) Buwy, = g(x), zelk,,
wp(—€,2") = wp(k,2') =0, 2/ €Q.
By the maximum principle we have
1

ve(z) < 5 rélolnuk(x), x € Glig.
21



As was proved in13] (see Lemma 8.2), a solution of problem (7.14) satisfiesdhewing
estimate:

IVwell 2 o < CI+ |21]) fll 2ggoey + C A+ [21]) gll p20g<)-
Thus, by Friedrichs’ inequality
IVwill 2o,y < CE) I+ [a]) fll 2 gy + C I+ [21]) gll p2rgoe)-
Obviously,

Téloinuk(x) < urllzzeo ) < Nokllzeeo ) + llwrllz2eo )
1

1
<3 rgglrlluk(x) + [Jwll 2o -

It follows from the last inequality that
(7.15) minup() < CI1 + 1)) fllzgg=) + CNA +l21]) gl p2rg)-

With the help of the Harnack inequality and (7.15) onetads-1, z') < C. Then, in view
of the maximum principley;,(z) is bounded irG_,. It remains to apply Theorem 8.7 and
Lemma 9.2 from L3]. According to these results, fof > 0 andb; < 0, we obtain

lu(@)| < Co lluglles oy € @€ G2y
el 2y < (Co lunllzosgs ) +Cr) ™™, n > 0;
el gy < C N+ [21]3) Fll ooy + C A+ 012 ™) gl ogrgeey, VN
IVarllaer,) < C I+ [21]) fllgaigge) + C I+ [21]) gll 2 rgee),
and, consequently, for any,

S4v S4v —-yn
sl 2 ey < Co (1L + |22 fllzo@) + 1A+ 1|2 ™) gllzamy + 1) €77

For the nonsmooth data the desired estimates can be jusijffim@ans of usual smoothing
procedure (see, for instancéJ3 for details).

Thus, one can see that, up to a subseque€ngé,(being extended by zero to the whole
cylinder G), converges weakly irff}, (G) to a solutionu of problem (7.1). Moreover,
by constructionu decays exponentially at infinity and estimates (7.4), (h&y with
K= =0.

As was shown above, for any constaifs, there exists a solution of homogeneous
equation, stabilizing to these constants at infinity andgang estimates (7.10). Sum-
ming up such a solution with(z), we obtain the desired solution of nonhomogeneous
problem. Theorem 7.3 is proved. OJ
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Homogenization of convection-diffusion equation in infinie cylinder
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ABSTRACT. The paper deals with a periodic homogenization problemafoion-
stationary convection-diffusion equation stated in a tinifiinite cylindrical domain
with homogeneous Neumann boundary condition on the labexahdary. It is shown
that homogenization result holds in moving coordinatesd, that the solution admits
an asymptotic expansion which consists of the interior exjman being regular in time,
and an initial layer.

Keywords: Homogenization, convection-diffusion equation, intny/linder, asymp-
totic behaviour

1. Introduction

The goal of the paper is to study the asymptotic behavioursalation to an initial
boundary problem for a convection-diffusion equation dediim a thin infinite cylinder
with homogeneous Neumann condition on its lateral bound@eyassume that the coeffi-
cients of the equation are periodic in the axial directiothefcylinder and that the period
is of the same order as the cylinder diameter. The correspgmérabolic operator takes
the form

. T 1 T
(1.2) Oyu — dlv(a(g>Vu> + B (b<g> , Vu),
heree is a small positive parameter, and we assume the standdaodrarellipticity con-

ditions ona(y) and the boundedness of the entries(@f) andb(y).
1



Notice that the scaling factdr/e is natural for the convection term. Indeed, if one
wants to consider the long-term behaviour of a convectiffugion process described by
the equation

dsu — div(a(y)Vu) + (b(y), Vu) =0
in a fixed infinite cylinder, then making the diffusive chargjevariables
r=cy, t = e?s

leads to a convection-diffusion problem for operator (In13 thin cylinder.

Closely related problems for a convection-diffusion etraidefined in the whole
space have been considered @h &nd [1]. It was proved in particular that the homog-
enization takes place in moving coordinatest) — (z — (b/)t,t) with a constant
vectorb.

Various homogenization problems for divergence form ojesaand systems in thin
bounded domains have been investigated by many authors,emgam here the works
[7], [1Q and [11]. General homogenization theory results for parabolicagigus can be
found in [5] and [12].

In the paper we first prove uniform ina priori estimates for the solution. This requires
integration in weighted spaces where the solution of theogder adjoint cell problem is
used as a weight. Then we construct the leading terms of §rapstic expansion in
moving coordinates, determine the effective speed, anairoktte estimates for the rate
of convergence. Additional difficulty appearing in the gevh under consideration is the
dimension reduction issue. Indeed, the solutions of thggrmal problem belong to variable
Sobolev spaces, which makes the convergence analysis iratbked.

The paper is organized as follows. Section 2 contains thel@mosetup. In Section 3
we deal with a priori estimates and study auxiliary parabodll problems. In Section 4
we construct formal asymptotic expansion which includesctirresponding initial layers,
the presence of the initial layer allows us to satisfy théahcondition in higher order
approximations. In Section 5 is devoted to the convergenaly/sis.

2. Problem statement

Let Q be a bounded domain iR?¢~! with the Lipschitz boundargQ. For anys > 0,
we denote by, a thin infinite cylindeiR x e ) with the axis directed along,. The lateral
boundary of the cylinde®. is denoted by.. = R x 9(e@). We study the following non-
stationary convection-diffusion equation:

owus(t,x) + A us(t,z) =0, (t,z) € (0,T) x Gq,
(2.1) B.us(t,x) =0, (t,x) € (0,T) x X,
us(0,x) = p(x1), x € G,



where
. T 1 T

2.2) A _df(a(g)vw“) + 2 0), Vau),

B.u = (a(g)vmu,n).

We suppose that the following conditions are fulfilled:

(H1) Q is a Lipschitz bounded domain R#—!;

(H2) a;(y),b;(y) € L>~(G), i, =1, ..., d, arel-periodic functions with respect 19;

(H3) The matrixa(y) satisfies the uniform ellipticity condition, that is therests a
positive constanA such that, for almost alt € R¢,

d
(2.3) AJg]? < Z ai;(y) &5, VE ERY

(H4)  o(z1) € G (R).

DEFINITION 2.1. A functionu®(¢, x) is said to be a weak solution of problem (2.1) in
(0,7 x G, if
uf € L=, T; L2 (G)] N L0, T; HL (G.)], §€(0,T)

loc

andu’ satisfies

T
// { —u® O + (a°Vus, V) + (b°, Vur) w} dx dt = /gp(xl) ¥(0,z)dx
0 6. Ge
foranyy € L?[0,T; H'(G.)] such that, € L?[0, T; L*(G.)] andy (T, x) = 0.

We are interested in the asymptotic behaviourdt, ), ase — 0. Notice that, for any
e > 0, the existence and the uniqueness of a generalized sotatproblem (2.1) is given
by classical theory (see, e.g8]).

3. Some preliminary results
3.1. A priori estimates. In what follows we denot&” = [0,1) x @,
Av = —divy(a(y)V,v) + (b(y), Vyv), Bu = (a(y)V,u,n);
A*p* = —div(aVp*) — div(bp*), B*p* = (aVp*,n)+ (b,n)p,

By the Krein-Rutman theorem and the Harnack inequalityatijeint periodic problem
A p*(y) =0, yeYy,

(3.1) B*p*(y) =0, ye€d,
p*(y) is periodic iny,

has a positive solutiop*(y) € C(Y) N H'(Y') such that

(3.2) 0<p <p(y) <p" < oo



We fix the choice op* by the normalization condition

[rwds=1.

Y

The goal of this section is to obtain a priori estimates foroa-stationary convection-
diffusion equation stated in a thin infinite cylinder. Nameke consider the following
non-homogeneous problem:

O (t,x) + A us(t,x) = f(t,z), (t,x) € (0,T) x G,
(3.3) B.us(t,xz) = e g(t, x), (t,x) € (0,T) x X¢,
u6<07 .%’) = (p(.%’), S GE7

Multiplying the equation in (3.3) by*(z/¢) u®(x) and integrating the resulting relation
by parts ovefs., we obtain

Here we use the notations

. 1.
Alq(z) = —div (a(?)Vq(x)) — = div (b(z) q(x)),
1
Biq(w) = (a(Z) Valx),m) + =
Taking into account the definition gf (y) we get

Ld
2dt

(uE)Qp*(g) dx + /(aEVUE, Vus)p*(g) dr =
Ge G

=¢ /g(t, x) us(t,x)p*(g) do + /f(t, x) us(t,x)p*(z) dzx.

9
Ye



Using the positive definiteness of the matriy ), bounds (3.2), and the Cauchy-Bunyakovsky
inequality, one can obtain

1d 2, (L - €2
oy (uf) p(g)dx—FAp /|Vu| dx <

Ge Ge

+ ! {/(f(t,x))2 dx+6/(g(t,x))2da}

2y
Ge e

+%p+5 /(uE)2 do + %p+ /(uE)2 dz
pIR Ge

for any~y > 0. By the trace theorem

€
Se Ge Ge

with constants’,, Cs independent of. Consequently, for a sufficiently smal

: L/ () p*(3) e + / / vw(s,x)?dms]
. 0 G

t
€ * x I3
< C{IflBaon) 2 loles, } + L/(u 2 (5) dx—i—//\Vu (s,x)2dxd3] |
e 0 Ge

Integrating with respect tband applying the Gronwall lemma and the positiveness of the
functionp*, one can see that

(3.4) /(us)de+0/tlVUE(5>$)2dxds<

Ge
< Ce {1 B + & Nolanrmy + ol |t € (0,]

where the constarit does not depend an and depends only of, d and@.

For the justification procedure we also need a priori esesat the case of right-hand
side being the divergence of a bounded vector-function. &gnsonsider the following
problem:

/(u5)2 do < G (uf)*dx + Cye /|Vu5|2dx

Owus(t,x) + A.ut(t,x) = div, F(t,z), (t,z) € (0,T) x G,
(3.5) B.uf(t,z) = —(F,n), (t,z) € (0,T) x X,
u®(0,x) =0, x € G,,
with F'(¢,z) such that
|F(t,2)| < fit,x) e "™l fi e L°((0,T) x G.).



Multiplying equation in (3.5) by*(Z)u®(x) and integrating by parts ové., we obtain

1d €)\2 *f € € € *f _
2 d (u)p(g)dx—i—/(aVu,Vu)p (g)dx—
Ge Ge

(3.6) = — /(F(t, x), Vus(t,x))p*(g) dx
Ge
- /(F(t, x), Vp*(g)) u (t,x)de =I5 + 1.
Ge
Exploiting the Couchy-Bunyakovsky inequality and takingpi account (3.2) one gets
15 < S F ey + 2 Va1
=95 L2(Ge) 9 L2(Ge)
n _
< Bl waryecn 4 + 5701V e, 6=
The integrall; is estimated as follows

€ 1 w(L 1 €
<5 19 )P do+ 5 I,

+o0 o T 1

<Y WPy [ 190 ()P o+ 5 e,
n=-0o0 eYn
+o00o 1

<Y WP By [ VP 0Py + 5 1,
n=-—o0o Yy,

1 1
< Ce’! - Hfl”%oo((o,T)sz) + 9 HUEH%%GE)’

whereY,, = (n,n + 1] x Q.
Finally, combining the obtained estimates ffr and /5 with (3.6), and using the
Gronwall's lemma, for € (0,7] one has
t

Cet
(3.7) /(u5)2 dx—l—//|Vu€(s,x)|2dxds < T&?d ! |]f1|]%oo((07T)XGg).
Ge 0 G.

3.2. Auxiliary results. In the sequel we will need the information about the asymp-
totic behaviour of solutions to parabolic equationst as co. Consider the initial bound-
ary value problem

Oro(r,y) + Av(r,y) =0, (7,y) € (0,00) XY,
Bu(r,y) =0, (1,9) € (0,00) X 9Y,
v(1,y) —y1 — periodic

v(0,y) = ¥(y), yey,

(3.8)



whereY = [0,1) x Q.

LEMMA 3.1. Suppose conditiond1) — (H3) are fulfilled andy'(y) € L*(Y). Then
there exists a unique weak solutiorio problem(3.8), and it stabilizes to a constamnt®
at the exponential rate, as — oo, that is

(3.9) lv(1,y) = v < Co||Y|lLevye™", yeY, 7>0,

with positive constant§, and~y depending only on\, d and(). Moreover,V v stabilizes
exponentially td), asT — oo:

T+1

(3.10) / /\Vyv(s,y)|2dyds <Ce .
T Y
The constant is defined by

vwz/w@ﬁwm%

Y
wherep*(y) solves probleng3.1).
PROOE Let us consider two functions

m(r) =mipo(r,y), M(r) = maxv(r,y)

By the maximum principle) () decreases ana(7) increases. In view of the linearity
of the problem, without loss of generality we assume thét,) = 0. Sincev > 0, then
we can use the Harnack inequality

m(ro+1) >aM(np+1), a<l
to obtain the estimate
0SCr—ry+10(T,y) = M (19 + 1) —m(m0 + 1) < (1 — a)M(79) = 08Cr—7,0(T, Y).
Consequently,
08Cr—ry110(7,y) < (1 — @)0S8Cr—ryv(T,y), 7o >0
and, obviouslyy converges to some constant, ast — oo
v(T,y) = v < Co [[¢][ 2™,

whereC' and~ depend only on\, d and(@.
Let us calculate the constawit®. To this end we multiply the equation in (3.8) by
and integrate by parts over the ¢etr) x Y. As a result we obtain the following equality:

/Mﬂwﬁ@MWj/Mwﬂ@My

Y



Sincewv converges uniformly to the constarit, asT — oo, then it follows from the last
equality that

o = / $(y) " (v) dy,

if p* is normalized by[, p*dy = 1.

Now we prove estimate (3.10). Note that the functior= v — v*>° solves the same
equation as, and satisfies the initial conditiom(0,y) = ¥ — v*>. Multiplying the
equation byw, integrating by parts and applying the Cauchy-bunyakovaquality gives

T+1

/|w(7+1,y)|2dy+/\ //|Vw|2dyds§
Y T Y

T+1 T+1

41 _
o [ et s a3 [ [ 19t Payds + [ o Pay,
T Y T Y Y

and, consequently, choosing< 2A? and using (3.9), we obtain
T+1

//\Vw\2dyds <Ce ™,
v

T

0

The next lemma generalizes the result of Lemma 3.1 to thehoomegeneous case.
Consider the boundary value problem

drv(r,y) + Av(r,y) = f(r,y) +divy F(r,y), (1,y) € (0,00) X Y,
(3.11) Bu(r,y) = g(1,y) — (F(7,y),n), (1,9) € (0,00) x 9Y,
v(0,y) =0, y €Y,

where f € L?[0,00; L*(Y)], F € L?0,00; L*(Y)? andg € L?[0,00; L*(0Y)] decay
exponentially, as — oo, that is
T+1 T+1

J 156y s 05 [ R agry s < 0o
! T+1 T

[ gt ey ds < Ce 0

LEMMA 3.2. Under the assumptions being made, a solution of prolfBfri)satisfies
the estimates

(3.12) [ 0t = 0¥l ds < 0o



T+1
(3.13) / IVo(s, )72y ds < Ce™ ™, 5> 0.

HereC' depends o\, d and@. The constant> is determined by

//ny dydT—// (1,9), Vp*(y)) dy dr
// g(7,y) p*(y) do dr,

0 9y
p* being a solution 0f3.1).

PROOF. First of all we represent the functions on the right-hami#® f (3.11) as the
sums of functions with finite supports, that is

= Z fm(T,y), F(T,y): Z Fm(Tay)v g<T7y>: Z gm<T7y>7

wheref,,(7.y) = f(7,9) Xpnm+1)s Fin(7,4) = F(T.Y) Ximm-+1),
9m(T,y) = 9(T,Y) Xpmms1)» @NAX pmt1) = Xjm,m+1)(7) iS the characteristic function of
the intervaljm, m + 1).

Due to the linearity of the problem, the solutiorof (3.11) can be represented in the

form
—+o0

o(ry)= Y valny),

m=—00

whereu,, solves the problem
OrUm, + A vy, = fr(1,y) + div, Frn(T,y),  (1,y) € (0,00) X Y,
(3.14) Bv, = gm(T,y) — (Fn(T,9),n), (t,y) € (0,00) x Y,
v (0,y) =0, yey.

Notice that, in view of the uniqueness of the solutiop(r,y) = 0 for 7 € [0, m). Then,
multiplying the equation in (3.14) by,, and integrating ovetm — 1,m + 2) x Y, we
obtain

m+1
/ (om(m + 2, )2 dy < C / 1£(5. ) 2oy dst
Y m
m+1 m+1

4 / 1905, ) 2oy ds + / |F(5, )2y ds) < C e

By Lemma 3.1p,, satisfies estimate (3.9) {mn + 2, 00) x Y, namely,
[0 (T, ) — 0| < Ce MM T=m=D < Ce™¥ 7 >m42,



for some constant?, wherey = min{~, v, }. In view of the maximum principle,
vy < Ce M,

Let us show that = " v,, stabilizes ta> = > 1v2°, asT — oo. To this end we estimate
the L?-norm of the difference — v*>

N+1 N+1 0o
,/ los. ) — 1|22y, ds = /nHEZ(wASw)—UﬁﬂﬁayyB::
N N m=0

N+1

/ { X + 3 bowls) - el ds <

m<N-—2 m>N—1
ch2 TN LGN < e N 5> 0.

The exponential decay &fv can be proved in much the same way as in the homogeneous
case. 0

4. Asymptotic expansion

4.1. Formal inner expansion. Following the ideas ing] and [1], we are looking for
an approximate solution in the form

(41) u‘gwuo(t,xl—z—:_ll_)lt)+Z€kvk(t,x1—5_1l_)1t,y), yzg7
k=1

whereuvy, k > 1, are unknown functions which ateperiodic iny,; the constanb; is to
be determined.

Substituting (4.1) into (2.1) and collecting power-likertes in front of=~! in the equa-
tion and of=" in the boundary condition, we obtain the following periodioblem for the
unknown functiory;:

Ay Ul(t, r1 — 8716175, y)
(4.2) = (9y,ai1(y) — bi(y) + b1) Onyuo(t, x1 — e bit), yey,
By Ul(ta Ty — 8_161t7 y) = _ail(y) n; axluO(ta Ty — 5_161t)7 Yy € aYv
Setting
(4.3) b= [ (@) 0" 0) + b))

Y

we guarantee that a solution to problem (4.2) exists. Theispérm of the right-hand
side of (4.2) suggests the following representation,of

Ul(ta Ty — g_lglta y) = Nl(y) aﬂ?l“O(ta €Ty — 5_16175) + ul(ta Ty — 5_16175)7



where aY -periodic function/V; solves the problem
{ Ay Ni(y) = 0y,a0(y) —bi(y) + b1, y €Y,
B, Ni(y) = —aii(y) ni, y € 9Y;

Similarly, we get the problem far,

(4.4)

e

Ayvs(t, xy —e it y) = —Oyuo(t, 11 — %7’)
+ {@11(3/) + 0y, (ain (y)N1(y)) + ayj (y)ayle (y)

@5) 51(9) Ni0) + By M)} 2oty — )

_ b
+{0y,ai1(y) — b1(y) + b1} Ooyua (t, 21 — gl t), yey,

r=t

\ By, va(y) = —ai1(y) Ni(y) n; 8§1u0(t,x1 - %t), y € JY.

The compatibility condition for (4.5) gives rise to the Chygroblem forug

4.6) { Ouo(t, x1) = al§™ 02 uo(t, 1), (t,z1) € (0,T) x R,
uo(0, 1) = (1), z1 € R,

where the constants™ is defined by

ghom — / [ (y) + a1 ()0, Ny () — by () Na ()] p*(v) dy

+ [ B M ) = aso) M) 0,0 )] .

Y

The positiveness afio™ has been proved if9].
LEMMA 4.1. The constant}o™ is strictly positive.

The form of the right-hand side of the equation in (4.5) ssggéhe following repre-
sentation for the solution,:

vo(t, m1 — e it y) = No(y) 2 uo(t, z1 — e 'bit)
+N1(y) Opyur(t, 21 — e 1bit) +ua(t, 1y — e 'bit)
with y;-periodic functionN, being a solution of the problem
A Na(y) = a11(y) + 0y, (@i (y) N1(y)) + a1 (y) 0y, Ni(y)
(4.7) =bi(y) Miy) + b Ni(y) —agg™,  yeY,
B Na(y) = —ain(y) ni N (y), y € 0Y;



Similarly, we obtain a boundary value problem igr

(

7 b
Ayvs(t, m1 =& hit, y) = =N1(y)0da,uo (1 01 — ?17“)

r=t

b
— 0y (t, T — ;17")

+ [ )N9) + 0, (aa 1) Va)
+a1;(y)8y, Na(y) — b1 (y) Na(y) + by NQ(y)i| 9 ug(t,zy — % t)

+ [an(y) + Oy, (an (y) N1(y)) + a1;(y) 0y, N1 (y)

r=t

(4.8) + bi(y) Ni(y) + by Nl(y)] 07 uq (1,01 — % t)
+ [ayiaﬂ(y) ~bi(y) + 61] Duytn (£, 1 — %t), yey.
By vs(y) = —ai (y) Na(y) ns 05, uo(t, v — %t)
—ai (y) Ni(y) n; 02 uq (t, 21 — % t)
|~ Ot — ), yeov.

From the compatibility condition for (4.8) we derive the atjon foru;:
8tu1(t, .%'1) = a}f‘fm&ilul(t, 33'1) + hg 8§1u0(t, .1'1), (t, 33'1) < (O, T) X R,
where

hs = / (= al?™Nip* + a1 Nip* — a;n N2y, p* + b1 Nop*

(4.9) J

+a1j8yjN2p* + 61 ng*) dy
Naturally,v3 can be represented as the sum

b b b
Ug(t, I — glt7 ?J) = N3(y) agluo(t’xl o ;1 t) - N2(y) a§1U1 (t’ e ét)

b b
+N1(y) Opyua (t, 21 — ;1 £) + us (t, 21 — ;1 0.

with N3 being ay;-periodic solution of the cell problem
AN;(y) = an(y)Ni(y) + Oy, (ain(y) No(y)) + a1;(y) 0y, Na(y)
(4.10) —b1(y) Na(y) + b1 No(y) — aif™Ni(y) — hs, y €Y,
B Ns(y) = —au(y) n; Na(y), y € 0Y.
Arguing as above, one can derive the equationfor

Ous(t, x1) = al§™ 02 us(t, 1)

‘|—h4 8§1u0(t, .’L’l) + h3 821u1(t, .%'1),



where the constarit, is defined by

h4:/(_a1?mN2p + a11Nop™ — ajn N30y, p* + by N3p*
Y

(4.11)
+a1;0y, N3p™ + by N3p* — hBNl) dy.
Notice that determining initial conditions far, andu, requires constructing initial layer

correctors, which is done in Section 4.2.
Finally, as an inner approximate solution we take first theems of (4.1)

uio(t,x):uo(t,xl—%t)—ksj\h( ) Oy uo(t xl—%t)
+eu(t, xl—b—t)+6 NQ( ) 02 uolt, xl—ﬁt)

by b
+€ Nl( )6$1U1(t l’l—zt)—f-é-: Ug(t l‘l—glt)

4.2. Initial layers. The leading term of the asymptotiag(¢, z;) satisfies the initial
conditionu (0, z1) = ¢(z1). We introduce the initial layer functions, which will allows
to satisfy the initial condition up to the second powetro€onsider the functiom, (7, y)
which is a solution to the problem

ar(bl + Ay(bl = 07 (7-7 3/) € (Oa OO) X Y7
(4.12) By, =0, (1,9) € (0,00) x 9Y,
$1(0,y) = —Ni(y).

By Lemma 3.1, stabilizes to a constamt;, asT — oo, at the exponential rate. The
constanty; can be calculated as follows

(4.13) P / Ny (9) " (y) dy

We use this constant to set the initial valuefigr u, (0, z;) = ¢ ¢'(x1). In this way

[uo(t l’l—b—t)—f-i-le( )amUQ(t wl—bzt)—l—gul(t xl_ﬁt)

g
+ 5(¢1(5_2’ ) =) (3:1)] =l
Similarly, we introduceb, (7, y) such that:

8ng52 + Aygbg =0, (T, y) € (0, OO) XY,
(4.14) By(bg =0, (T, y) S (O, OO) x Y,
$2(0,y) = —Na(y);



The constant to which, stabilizes, as — oo, we denote by,

(4.15) = — / No(y) 9" (y) dy.
Y

and set
uz(0,21) = @2 " (1) + d1 " (71).
In this way the boundary value problems fgrandu, take the form

it Our (t, 1) = al§™02 ur(t, x1) + hy 02 ug(t,z1),  (t,a1) € (0,T) x R,
o { ui(0,21) = o1 ¢'(21), a1 €R;

Oyus(t, 21) = al§™ 02 us(t, 1)
(4.17) +hy &%Iuo(t, x1) + hs 8§1u1(t,x1),, (t,z1) € (0,T) x R,

uz(0, 1) = by " (1) + b1 " (1)
with the constantés, i, defined in (4.9), (4.11). Then

b b
[62 Ng(g) O yuolt, o — 1) +&° Nl(g) Ouya(t, o1 — 1) +

+ +¢? 92(2) g(z1) + us(t, 1 — %t) +¢&? (¢2(é> g) — ¢2) ¢"(z1) +

+0n(D) = ) ]|, =0
Denote
€ t z D / 2 t Y o /!
ug(t,2) = e(d1(=5, =) — d1) ' (@1) + % (d2(55, =) — d2) ¢ (z1)+
(4.18) S & ¢

2 (0n(5.5) — 81) (o).

We summarize this section by writing down the formal asyrtipexpansion for a solution
u® of problem (2.1) which has been constructed above. It reads
b b
Us(t,z) = uo(t, T, — zlt) + ENl(g) Opyuo(t, 1 — zlt)
61 2 X 2 Bl
(419) +€U1(t, T, — —t) +e NQ(—) 8zlu0(t, Ty — —t)
3 g 3

b b

"‘62 N1 (g) @Clul(t, 1 — gl t) + €2U2(t, 1 — gl t) -+ U;?l(t, 33')
Hereu, is a solution of the homogenized problem (4.8); N, solve auxiliary cell prob-
lems (4.4), (4.7)u; anduy are solutions of nonhomogeneous Cauchy problems (4.16),
(4.17); the initial layen.5, is given by (4.12)-(4.15) and (4.18). Notice that the approx
mate solution satisfies the initial conditioli (0, x) = ¢(x1).



5. Justification procedure

In thin domainG. it is natural to introduce the following notion of convergen(see,
for example, 4], [13]).

DEFINITION 5.1. We say that. (¢, z) converges strongly to zero ik?[0, T; H'(G.)]
if

‘“Hfu 50, =0
L2[0,T;H(G.)]

The normalization factor—“=" appears due to the fact that the norm of a fixed non-
trivial C5°(R) function(z1) in the spacd.?[0, T'; H'(G.)] is of orders">"
The following theorem is the main result of the paper.

THEOREM5.2. Let conditiondH1) — (H4) be fulfilled. Then the difference between
the exact solution® of problem(2.1) and the approximate solutioti given by(4.19)
converges in.%[0, T; H. (G.)] to zero, ag — 0. Moreover, the following estimate holds:

loc

(5.1) /(uE — U dx +// |V (uf(s,2) — U (s,2))|* deds < Ce?e?,

Ge 0 Ge

PROOF In order to estimate the norm (in the appropriate spacehefdifference
u® — U* between the exact and the approximate solutions, we cédifst A, (u® — U?)
andB.(u® — U¢), and then make use of a priori estimates (3.4), (3.7). Sttmgvard
computations yield

A (uf(t,z) = U(t,x)) = e (Ri(t,z) + R5(t,x)) + o(e), & —0,

where

1

b
Ri(t,x):—ZN (g)ata A (R ————
k=0

€ r=t

b
"—bl ZNk 8k+1u2,k(t, r1 — zlt)

b
Zan 8k+2u1 k(t xry — ;1 t)



2 —

b
—|—Z alj(g) ayij<y> 3I;f1uH(t, Ty — ;1 t)
k=1
2 -
T x .
+§b1(g) Nk(g) O Mug_y(t, 1 — ?lt)
2

+by Z (¢k(7, y) — @) ©" (1) + an(y) ((bl(

y=z/e

L) = a) ¢ )

2’ ¢

gp”’(l‘l)

y=z/e,7=t/e?
2
() D (6055 2) = 1) @ (an).

b
Oy g (t, x — = 1)
€ €

y=z/

gp”’(l‘l).

y=x/e,7=t/e?

+ Z Oy, (ain (y)(or(T,y) — @))

k=1

Similarly,
B.(uf(t,z) — Us(t,7)) = €2 R5(t, v)
with
2 B,

Rg(t, .’L’) = — Z ;1 (g) T, Nk(g) 8fj1u2,k(t, r1 — ; t)

By a priori estimates (3.4) and (3.7),

/(uE —U®)?dx + ]/ IV (uf(s,z) — U(s, 7)) |* dods

Ge 0 Ge
1
<Ce" {||5 RSl Z2p0mr20coy + € 11€° Rall T2 memoy + Z HgR;H%OO((O,T)xGE)}'
In order to estimatér], R; and 5, we analyze properties of the solutions v; andu, of

problems (4.6), (4.16) and (4.17). Fay the well-known integral Poisson formula takes
place:

O(t 7\11*5\2
uo(t, x1) = 4(7310% /90(5)6 T de.
R



Hered is the unit step function, that &¢) = 1 for ¢t > 0, andd(t) = 0 whent < 0.
Moreover, similar formula is valid for any derivative of with respect tar;:

(¢ -t
oot ) = — 2 [ o a6 e

4mabomi J
Bearing in mind that has finite support, one can see that
(5.2) 0Wug(t, 21)] < Ce@™F Cla >0,

wherea depends off”. Similarly, the following integral representation @f”u, is valid:

0(t) -l
O uy (t, 1) = ®) &1 / O () e i de

hom
dray™t

2
|z1 —¢|

Ohug(r, &) e ™D dE =T + L.

/ \/47Ta?fm
Arguing as above we obtain
1| < Ce P a0

Let us estimatd,.

t

t
R O3TF ey —gl?
|.[2| S {/d’T / df‘l‘/dT / dg} 3 Yz U/O(Tyé) e 4‘1}11fm(t—r).
4rafom(t — 1)

0 |1 —€]<2]@1] 0 |1 —&[>2]@1]

In view of (5.2), for¢ satisfying|z; — £| < 2|x4],

_lm—e? lag —¢2
’83+k o dalom(i—r) < Ce—a\g\ " aalomr <Ce aq |z |? , ap >0,
thus,
t
3+k |1 —£|2
. hs 03 Fug (1, €) {de
drafom(t — 1)
0 |1 —€]<2]21]
t
< C|zy emm?/ L_ir < el
- Vi—-1 T
0
Noticing that

_ =y —¢?
h ey ge =1,
47m o

=



one has
t

dr
0 |z1—€|>2]21]
In this way we see that; satisfies the estimate
(5.3) |8’;1u1(t,x1)| < C’e‘allmlP, a;>0,t>0, xeR.
Arguing as above, one can see that analogous estimate botdssolving problem (4.17).
(5.4) 108 ug(t, )| < Ce P a) >0, >0, z€R.

Bearing in mind the boundedness of the coefficienfsb;, properties ofN; and N, as
the solutions of (4.4), (4.7), and bounds (5.2)-(5.4), oae check the validity of (5.1).
Note that the exponential decay of the initial layer funetias used while estimating the
corresponding terms. O

3+k ey —g?
h3 aml U0<T7 f) e 4a?fm(t,7.)d€ S Ce*al‘xl‘Q’ C(l > O
Amaiy™(t — 7)
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Homogenization and concentration for a diffusion equationwith large
convection in a bounded domain
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ABSTRACT. We consider the homogenization of a non-stationary camediffusion
equation posed in a bounded domain with periodically astaily coefficients and ho-
mogeneous Dirichlet boundary conditions. Assuming thattmvection term is large,
we give the asymptotic profile of the solution and determiseste of decay. In partic-
ular, it allows us to characterize the “hot spot”, i.e., thegise asymptotic location of
the solution maximum which lies close to the domain boundaryis also the point of
concentration. Due to the competition between convectiwhdiffusion the position
of the “hot spot” is not always intuitive as exemplified in ssmumerical tests.

Keywords: Homogenization, convection-diffusion, localization.

1. Introduction

The goal of the paper is to study the homogenization of a aiire diffusion equation
with rapidly periodically oscillating coefficients definéd a bounded domain. Namely,
we consider the following initial boundary problem:

O (t,x) + A°us(t,z) =0, in(0,7) x €,
(1.1) us(t,z) =0, on (0,T) x 09,
u(0, z) = up(x), x €,



whereQ) C R?is a bounded domain with a Lipschitz bound&¥y, u, belongs tol.?((2)
and A¢ is an operator defined by

e ol2) 50+ 0 2)

where we employ the convention of summation over repeatéd iradices. As usuat,
which denotes the period of the coefficients, is a small pestarameter intended to tend
to zero. Note the large scaling in front of the convectiventevhich corresponds to the
convective and diffusive terms having both the same orderagnitude at the small scale
e (this is a classical assumption in homogenizatisj [12], [13], [21]). We make the
following assumptions on the coefficients of the operatar

(H1) The coefficients:;;(y), b;(y) are measurable bounded functions defined on the
unit cell Y = (0,1]%, that isa;;,b; € L>(Y). Moreover,a;;(y),b;(y) areY-
periodic.

(H2) Thed x d matrixa(y) is uniformly elliptic, that is there exist& > 0 such that,
for all ¢ € RY and for almost ally € ,

ai;(y)&:&; > AJEJ.
For the large convection term we do not suppose that thetipiedrift (the weighted
average ob defined below by (2.4)) is zero, nor that the vector figglg) is divergence-
free. Some additional assumptions on the smoothness angacbisupport of the initial
dataug will be made in Section 2 after introducing auxiliary spattell problems. In
view of (H1) and(H2), for anye > 0, problem (1.1) has a unique weak solutiagh €
L>®[0,T; L*(Q)] N L2[0, T; H(Q)] (see B).

Our main goal is to describe the asymptotic behavior of thetiem (¢, x) of prob-
lem (1.1) ag goes to zero. There are of course many motivations to studyaproblem
(one of them being the transport of solutes in porous mddij.[However, if (1.1) is inter-
preted as the heat equation in a fluid domain (the fluid veldigitng given bye~'b(z /<)),
we can paraphrase the famous “hot spot” conjecture of J./lR@38, [7], [10], and ask a
simple question in plain words. If the initial temperatugghas its maximum inside the
domains2, where shall this maximum or “hot spot” go as time evolves é/jarecisely,
we want to answer this question asymptotically:ages to zero. Theorem 2.3 (and the
discussion following it) gives a complete answer to thisgjioe. The “hot spot” is a con-
centration point:., located asymptotically close to the boundéfy (see Figure 1), which
maximizes the linear functio® - = on €2 where the vector parametéris determined as
an optimal parameter in an auxiliary cell problem (see Len21i3. Surprisingly® is
not some average of the velocity field but is the result of ancate interaction between
convection and diffusion in the periodicity cell (even iretbase of constant coefficients ;
see the numerical examples of Section 7). Furthermore,réhe.3 gives the asymptotic
profile of the solution, which is localized in the vicinity d¢tie “hot spot”zx., in terms
of a homogenized equation with an initial condition thatelegs on the geometry of the
support of the initial data,.




Before we explain our results in greater details, we briedlyigw previous results in
the literature. In the case when the vector-fig{g) is solenoidal and has zero mean-
value, problem (1.1) has been studied by the classical henipation methods (see,
e.g, B], [25]). In particular, the sequence of solutions is bounded 0, T'; L*(Q2)] N
L*0,T; H'(€)] and converges, as— 0, to the solution of an effective or homogenized
problem in which there is no convective term. For generalarefieldsb(y), and if the do-
main{ is the whole spacR¢, the convection might dominate the diffusion and we cannot
expect a usual convergence of the sequence of solutighsr) in the fixed spatial refer-
ence frame. Rather, introducing a frame of moving cooréie@t = — bt /<), where the
constant vectob is the so-called effective drift (or effective convectiavhich is defined
by (2.4) as a weighted averageboft is known that the translated sequenéét, » — bt /<)
converges to the solution of an homogenized parabolic exquf], [13]. Note that the
notion of effective drift was first introduced i2]]. Of course, the convergence in moving
coordinates cannot work in a bounded domain. The purposegiresent work is to study
the asymptotic behavior of (1.1) in the case of a bounded dofha

Bearing these previous results in mind, intuitively, itlisar that in a bounded domain
the initial profile should move rapidly in the direction oktkffective drifth until it reaches
the boundary, and then dissipate due to the homogeneous Birboundary condition, as
t grows. Since the convection term is large, the dissipatianeiases, as — 0, so that
the solution asymptotically converges to zero at finite tilneeed, introducing a rescaled
(short) timer = =1 ¢, we rewrite problem (1.1) in the form

oyu’ — 5div(a5 Vua) +b°-Vuf =0, in(0,e'7T)xQ,
(1.2) ut(t,x) =0, on (0,e7'T) x 99,

u®(0, z) = up(z), x € Q.
Applying the classical two-scale asymptotic expansiorho@{8], one can show that, for
anyt > 0

/|u€(7', x) — uO(T, x)|2dx —0, —0,
Q

where the leading term of the asymptoticssatisfies the following first-order equation
0. (1,2) +b-Vu'(r,2) =0, in (0,+00) x Q,
(1.3) u(r,x) =0, on (0, +00) x 99y,
u®(0,2) = ug(x), z€Q,
with b being the vector of effective convection defined by (2.4)reH&?; is the subset
of 902 such thath - n < 0 wheren stands for the exterior unit normal @if2. One can
construct higher order terms in the asymptotic expansion:fo This expansion will

contain a boundary layer corrector in the vicinity@® \ 0. A similar problem in a
more general setting has been studied®in |



The solution of problem (1.3) can be found explicitly,

ug(x — br), for (r,z) suchthatr, (x —br) € €,
u’(r,7) = _
0, otherwise

which shows that:. vanishes after a finite timg, = O(1). In the original coordinates
(t,z) we have

/ |uf(t,z) —ug(x — e 1 bt)|*de — 0, & —0.
0

Thus, fort = O(e) the initial profile ofu® moves with the velocity ~! b until it reaches
the boundary of? and then dissipates. Furthermore, any finite number of témntise
two-scale asymptotic expansion®f(r, ) vanish forr > 7, = O(1) and thus for > ¢,
with an arbitrary smaft, > 0. On the other hand, if, is positive, then by the maximum
principle,«® > 0 for all ¢. Thus, the method of two-scale asymptotic expansion in this
short-time scaling is unable to capture the limit behavadur (¢, z) for positive time. The
goal of the present paper is therefore to perform a moreatel&nalysis and to determine
the rate of vanishing ai®, ase — 0.

The homogenization of the spectral problem correspondair{d@.tl) in a bounded do-
main for a general velocity(y) was performed in11], [12]. Interestingly enough the
effective drift does not play any role in such a case but rathe key parameter is an-
other constant vectd® € R¢ which is defined as an optimal exponential parameter in a
spectral cell problem (see Lemma 2.1). More precisely, prassed in [L1], [12] that the
first eigenfunction concentrates as a boundary laye¥oim the direction of©. We shall
prove that the same vector parameteis also crucial in the asymptotic analysis of (1.1).

Notice that for large time and after a proper rescaling tHatsm of (1.1) should
behave like the first eigenfunction of the correspondingptt! operator, and thus con-
centrates in a small neighbourhoodast in the direction of©. We prove that this guess
is correct, not only for large time but also for any tithe= O(1), namely that°(t, z)
concentrates in the neighbourhood of the “hot spot” or cotreéion pointz,. € 92 which
depends o®. The value o® can be determined in terms of some optimality property of
the first eigenvalue of an auxiliary periodic spectral peobl(see Section 2). It should be
stressed that, in generé,does not coincide with. As a consequence, it may happen that
the concentration point. does not even belong to the subse®®f consisting of points
which are attained by translation of the initial data suppdongb. This phenomenon is
illustrated by numerical examples in Section 7.

The paper is organized as follows. In Section 2 we introducdiary spectral prob-
lems in the unit cell” and impose additional conditions on the geometry of the @ahp
support ofu,. We then state our main result (see Theorem 2.3) and giveedmgtric
interpretation. In Section 3, in order to simplify the origl problem (1.1), we use a fac-
torization principle, as ing4], [18], [26], [11], based on the first eigenfunctions of the



auxiliary spectral problems. As a result, we obtain a redyreblem, where the new con-
vection is divergence-free and has zero mean-value. Stgdlye asymptotic behaviour of
the Green function of the reduced problem, performed ini@edt, is an important part of
the proof. Itis based on the result obtainedlihfpr a fundamental solution of a parabolic
operator with lower order terms. Asymptoticswfis derived in Section 5. In Section 6
we study the case when the boundary of the suppott,dfas a flat part. To illustrate
the main result of the paper, in Section 7 we present dirauipeations ofuc using the
software FreeFEM++15. A number of basic facts from the theory of almost periodic
functions is given in Section 8.

2. Auxiliary spectral problems and main result
We define an operatot and its adjoint4d* by
Au = —div(aVu) + b-Vu, A% = —div(a’ Vv) — div(bv),

wherea” is the transposed matrix of Following [8], for § € R, we introduce two
parameterized families of spectral problems (direct andia) in the periodicity cell
Y =[0,1)%

(2.1) e A poly) = AO) poly), Y-
' y — pe(y) Y-periodic

02 Y A o0y pi(y) = NO)p;(y), Y,
' y — py(y) Y-periodic

The next result, based on the Krein-Rutman theorem, wasdriovl11], [12)].

LEMMA 2.1. For eachf € R, the first eigenvalue\; (0) of problem(2.1) is real,
simple, and the corresponding eigenfunctigpsand p; can be chosen positive. More-
over,d — A\(0) is twice differentiable, strictly concave and admits a maxn which is
obtained for a uniqué = ©.

The eigenfunctionp, andp; defined by Lemma 2.1, can be normalized by

[Py =1 and [ )it dy =1

Y Y
Differentiating equation (2.1) with respect g integrating againsgt; and writing down
the compatibility condition for the obtained equation giel

O\
06;

(2.3) = / (bi o Py + aij(po By, 0 — P Oy,p0) — 20; aij po py) dy.

Y



Obviously,py—o = 1, and, thus,

O\ . * 7
801 (0 = 0) = / (bz Po—o + Qi ay].pezo) dy = bi,

Y

(2.4)

which defines the componeriisof the so-called effective drift. In the present paper we
assume thati # 0 (or, equivalently® # 0). The casé = 0 can be studied by classical
methods (see, for exampleq]). The equivalence of = 0 and® = 0 is obvious since
A1(0) is strictly concave with a unique maximum.

We need to make some assumptions on the geometry of the supf@rclosed set
as usual) of the initial data, with respect to the direction gd. One possible set of
conditions is the following.

(H3) The initial datauy(x) is a continuous function if?, has a compact supparte 2
and belongs t@?(w). Moreoverw is aC?-class domain.

(H4) The “source” pointt € dw, at which the minimum innin,c,, © - x is achieved,
is unique (see Figure 1(a)). In other words

© - (r—2)>0, zew{z}

(H5) The pointz is elliptic andow is locally convex at, that is the principal curvatures
atz have the same sign. More precisely, in local coordinatebthmdary ofv
in some neighborhootls(z) of the pointz can be defined by

20 = (82, 2) +o(|2']*)
for some positive definitéd — 1) x (d — 1) matrix.S. Herez' = (z1,---24-1)
are the orthonormal coordinates in the tangential hypeep&z, andz, is the

coordinate in the normal direction.
(H6) Vug(z)-© #0.

REMARK 2.2. In assumptioiiH3) it is essential that the suppartis a strict subset
of ©, i.e., does not touch the boundar$2 (see Remark 5.5 for further comments on this
issue). However, the continuity assumption on the initimlidtion, is not necessary. It
will be relaxed in Theorem 5.6 wheig () still belongs toC?(w) but is discontinuous
throughow. Of course, assuming continuity or not will change the ofezonvergence
and the multiplicative constant in front of the asymptottusion.

Note that assumptiofH{4) implies that© # 0 is a normal vector tow at z.

Eventually, assumptio(H6) is required because, being continuous if2, we have

To avoid excessive technicalities for the moment, we statenmin result in a loose
way (see Theorem 5.1 for a precise statement).

THEOREM 2.3. Suppose conditiond 1) — (H6) are satisfied an® # 0. If v° is a
solution of problen{l1.1), then, for anyt, > 0 andt > t,

d—1 _M©O)¢t o (z—7) xT

u(t,x)mefez e 2 e = Mpe

— t —0
6)’&(,1’), € )



(@) (b)

FIGURE 1. Definition of the source point and of the concentration point.

where(\;(0), po) is the first eigenpair defined by Lemma 2.1 arid =) solves the ho-
mogenized problem

Owu = div(a*® Vu),  (t,z) € (0,T) x €,

u(t,z) =0, (t,x) € (0,T) x 09,

)
=0
O]
Herea" is a positive definite matrix, defined by (4.7), is a constant, defined in Theo-

rem 5.1, depending opy, on the geometry alw at z and on the relative position af in
eY (see Remark 5.2 and Figure 2), afid: — ) is the Dirac delta-function at the point

(2.5)

u(0, ) = Vuy(z) (x—2Z), xe€

The interpretation of Theorem 2.3 in terms of concentratiofinding the “hot spot”
is the following. Up to a multiplicative constant z—:%Ma, the solutionu® is asymptot-
ically equal to the product of two exponential terms, a paidally oscillating function
pe (%) (which is uniformly positive and bounded) and the homogesitunctionu(t, z)

t

(which is independent of). The first exponential terra” -z~ indicates a fast decay in

time, uniform in space. The second exponential terrt— is the root of a localization
phenomenon. Indeed, it is maximum at those points on thedayne. € 0f), which
have a maximal coordinat® - =, independently of the position af (see Figure 1(b)).
These (possibly multiple) points. are the “hot spots”. Everywhere else(inthe solu-
tion is exponentially smaller, for any positive time. TheHaviour can clearly be checked
on the numerical examples of Section 7. It is of course smtdahe behavior of the
corresponding first eigenfunction as studiedlié][

The proof of Theorem 2.3 consists of several steps. Firsigusfactorization princi-
ple (see, for example2f], [18], [26], [11]) in Section 3 we make a change of unknown



function in such a way that the resulting equation is amengibhomogenization. After
that, the new unknown functiari(¢, z) is represented in terms of the corresponding Green
function K¢(¢, z, £). Studying the asymptotic behaviour &F is performed in Section 4.
Finally, we turn back to the original problem and write dove tasymptotics for in
Section 5 which finishes the proof of Theorem 2.3.

REMARK 2.4. Theorem 2.3 holds true even if we add a singular zererdetm of
the types—2c(%)u® in the equation (1.1). This zero-order term will be removgdtie
factorization principle and the rest of the proof is ideakicWith some additional work
Theorem 2.3 can be generalized to the case of so-called @meesystems for which a
maximum principle holds. Such systems of diffusion equetiarise in nuclear reactor
physics and their homogenization (for the spectral probleas studied in12].

3. Factorization
We represent a solutiaif of the original problem (1.1) in the form
_ MOt e(z—=a) c
— t
o) (),

(3.1) u (t,x) =e < e = p@(

where® andpe are defined in Lemma 2.1. Notice that the change of unknowwelis
defined sincey is positive and continuous. Substituting (3.1) into (1riyltiplying the
resulting equation by*@(f) and using (2.2), one obtains the following problemdér

X

g@(g) O° + AS0° =0, (t,a) € (0,T)x Q,

(3.2) ve(t,z) =0, (t,xz) € (0,T) x 09,
v°(0,x) = Uo(»’i) e‘w, x €,
pe (%)
wherege (y) = pe(y) p5(y) and
0 r, Ov 1 r, Ov
Ay = —— (a®(2) =) + 29 (=
ov 8xi(a”(€)8xj)+5bz(6)895@-’
and the coefficients of the operatdg are given by
ag)(y) = ce(y) aii(y);
(3.3) b7 (y) = 0o (y) bi(y) — 2 00(y) ai;(y) ©;

+ai;(y) [pe(y) 0,06 (y) — P65 () dy,pe(y)].

Obviously, the matrix® is positive definite since bothy andp}, are positive functions.
Moreover, it has been shown ih]] that, for anyd € R?, the vector-field? is divergence-
free and that, fof = O, it has zero mean-value

(3.4) /b@(y) dy=0; divt! =0, V6.
Y



REMARK 3.1. This computation leading to the simple problem (3.2)fodoes not
work if the coefficients are merely locally periodic, namefyhe typea(x, z/<), b(z, x/<).
Indeed there would be additional terms in (3.2) due to th&gaterivatives with respect
to the slow variable: because\; (©) andpe would depend on:.

Although problem (3.2) is not self-adjoint, the classigapeoach of homogenization
(based on energy estimates in Sobolev spaces) would apphkd to (3.4), if the initial
condition were not singular (the limit af° Is 0 or +00 almost everywhere). This
singular behavior of the initial data (WhICh formally hasimit merely in the sense of
distributions) requires a different methodology for horaoging (3.2). In order to over-
come this difficulty, we use the representatiornvdin terms of the corresponding Green
function

3.5 v (t,x) = | K. (t,z, (&) e‘wd,
(3.5) (t.2) ! ) 2 ¢

where, for any gived, K, as a function of¢, =), solves the problem
(6)& S(tyx, &) + A Ko(t,x,&) =0, (t,z) € (0,T) x Q,
(3.6) K.(t,z,§) =0, (t,x) € (0,T) x 09,
K.(0,2,€) = 6(z — €), req,

The strategy is now to replace the Green funciiqrby an ansatz in (3.5) and to study the
limit, ase — 0, of the resulting singular integral. The next section isaded to the study
of the asymptotic behavior df..

4. Asymptotics of the Green functionk.
The main goal of this section is to prove the following statain

LEMMA 4.1. Assume that conditiorid11) — (H2) are satisfied. LeK. be the Green
function of problen(3.2). Then, for anyt, > 0 and any compact subsét € 2, there
exists a constar@’ such that, for alt > ¢, > 0, £ € B,

/\Ks(t,x,g) ~ Ko(t, 7, €)[2dn < O,

Q
|Ke(t,2,§) — Ko(t, 2, )| < Ce”, w el

where the constant’ depends ort, dist(B, 02),2, A, d and is independent af, v =
v(22, A, d) > 0, and K, is the Green function of the homogenized problem (2.5) asea
function of(¢, x), it solves

O Ko(t,x,&) = div(a®*VEKy(t, z,£)), (t,z)€ (0,T)xQ,
(4.1) Ko(t,x, &) =0, (t,x) € (0,T) x 09,
Ko(0,2,8) = d(x — &), x € Q,



with the constant positive definite matriX' defined by (4.7).

PrROOF The main difficulty in studying the asymptotics of the Grdanction K,
defined as a solution of (3.6), is the presence of the delt@ifumin the initial condition.
To overcome this difficulty, we consider the difference

V;(t,l’,f) = q)s(tax7€> - KE(t7x7§)7

whered. is the Green function of the same parabolic equation in th@levbpace, that is,
for £ € R?, &, as a function oft, z), is a solution of the problem

wy | @) 20ta 9+ ARtae) =0, (L)€ OT) xR
' .(0,2,) = 6(z — £), r € R
In this way, for all¢ € Q, V., as a function oft, =), solves the problem

06(2) AVt 2,€) + A Valt,,) =0, (t,2) € (0.7) x &,
(43)  Q Vilt.w) = 01,20, (t.7) € (0.7) x 99,
‘/;(071'7&) = 07 T &€ Q

We emphasize thdt, in contrast with/K, is Holder continuous for al > 0 provided
thaté ¢ o9,

Notice that, by a proper rescaling in time and spakecan be identified with the
fundamental solution of an operator which is independent aideed,

(4.4) O.(t,,€) = g*dcp(i f,§),

g2’ e’ e
where®(r, y,n) is defined, fon € R?, as the solution iri7, i) of

{ Q@(y) aTCI)(T7y777) + A@@(T, Y, 77) = 07 T > 07 Yy e Rda
é(ouyvn) :5(y_77)7 yeRd
Here, for brevity, we denote hytg the rescaled version ofg
Ae®(7,y,1) = —div,(a®(y)V, (7, y,7)) + 0°(y) - V, (7, ,7).
We also introduce the fundamental solutid(¢, x, &) for the effective operator
0,80 = div,(a"V,do), (t,2) € (0,T) x R?,
®0(0,$,€):5($’—€)7 xeRd
The homogenized matrix™ is classically 8], [25] given by

it = [ (@) + a5 W) ~ 1) Nw) dy
4.7) v
= [ (a0 + 200, N5 )+ 420) N; )

Y

(4.5)

(4.6)



where the vector-valued functiod$ = (N;)1<;<q aNdN* = (N;)1<;<q SOlve the direct
and adjoint cell problems, respectively,

. ~div(a®VN;) +b° - VN, = 9,,ad(y) — 09 (y), Y,
4.8 '

y— N; Y — periodig
w9 —div((a®)"VN;) = b° - VN; = 8,,a5(y) + b9 (y), Y,
4.9 |

y— N Y — periodic

The matrixa®® is positive definite (see, for examples],[[20], [25]) and is exactly the
same homogenized matrix as in the homogenization of thergp@coblem [L1]. Note
that N and N* are Holder continuous functions (sek]). The solution of problem (4.6)
can be written explicitly:

1 1 (z =" (a) "z~ &)
(47t)4/2 det a°® exp{ 4t }

The first-order approximation for the Green functidn solution of (4.5), is defined as
follows

(410) @1(7', Y, 77) = @0(7'7 Y, 77) + N(y) : Vz®0(7—7 Y, 77) + N*(n) : qu)O(Tv Y, 77)
By means of Bloch wave analysis it has been showrijrHat, under assumption (3.4),
there exists a consta6t such that, for any > 1 andy, n € R¢,

C
D7, y,m) = o,y 1) < —Gyzms

qDO(tv xz, 5) =

(4.11) o
2(ry,m) = Pu(my )l < G-

Thus, in view of the rescaling (4.4), there exists a constant 0, which does not depend
oneg, such that, for any > ¢2, z, ¢ € R,

Ce
|¢)a(t7$7§) - @O(t,l‘,fﬂ S t(d+1)/2;

E C &
(8, 2,6) = 2i(t, 2, O] < Tamm-

Hereds (t,z,&) = e 4@ (4, 2,£), namely

(4.12)

g) - Vedo(t, 7, §).
Next, we study the asymptotic behaviordf, solution of (4.3). The (formal) two-scale
asymptotic expansion method suggests to approxiviaty a first-order ansatz defined

by

(4.13) 5 (t,2,€) = Bo(t, 2,€) + ¢ N(g) Vo Do(t,x, €) + £ N*(

(@.14) Vi(t,2,€) = Vi(t,2,€) + < N(2) - Vali(t, 2,€) N (S - VeVi(t, 2, €),

3



whereN and N* are the solutions of cell problems (4.8) and (4.9), respelsti and, for
fixed ¢, V, as a function oft, x), is the solution of the effective problem

O Vo(t,x, &) = div (a"V, Vo (t, x,€)), (t,x) € (0,T) x Q,
(4.15) Vo(t,z, &) = Po(t, @, §), (t,z) € (0,T) x O,
%(O,l’,f) = 07 T € Q.

Due to the maximum principle and to the explicit formuladgy, there exists a constaft,
which depends only o andd, such that, for any compact subdete 2, ¢ € B, (t,z) €
[0,7] x €,

C

(4.16) 0=Voltw ) < max  @olt.2,8) < gm0

T (tx)€[0,T)x 00
Moreover, combining (4.16) with the local estimates of tee\dtives ofl, gives

C

kol am
(417) at aa:j agj ‘/O(t7 L, 5) S dlSt(B, aQ)d—l—Zk-‘rH—m’ (

t,x, ) €[0,T] x Q x B.

To finish the proof of Lemma 4.1 we need the following intermaésresult.

LEMMA 4.2. Let V. and 1, be solutions of problem@&.3) and (4.15), respectively.
Then, for any compact subsBt € (2, there exists a positive constafit only depending
ondist(B,00N), 2, d, A, such that, for anyt, &) € [0, 7] x B,

/|‘/€(t7x7§) - %(t7$,f)‘2d$ < 082.
Q

PROOF Let V" be the first-order approximation &t defined by (4.14). Evaluating
the remainder after substituting the difference= Vy — V. into problem (4.3), we get

;

T ~E g NE T 5
Q@(g) 8tV —|—A@V = F(t,l’,f, g, E)

(4.18) +e f(t, 2, §§) (t,x) € (0,T) x €,

Ve = Ga(t,x,f; g,g), (t,z) € (0,T) x 09,

L ‘75(0,3:,&) =0, x €,




with F, f andG defined by
F(t,2,&y,m) = 0o(y) Vo — divy (a®(y) V(N (y) V. Vo(t, 2,€)))

—div, (a®(y)Vo(N*(n) VVo(t, 2,€))) — diva(a®(y) VaVo(t, 2, €))
—div, (a®(y) V(N () Vi Vot 7,€))) + 6°(y) - Va(N(y) VaValt, 2,€)))
+0%(y) - Va(N*(n) VeVo(t, 2, €)):

ftz,&y,m) = N(y) - 0V Volt, 2, §) + N*(n) - 0:VVo(t, z, )

—div, (a®(y)Va(N(y) - Vo Vo(t, 7, 6)))

(a®(y)V
—div,(a®(y)V(N*(y) - VeVo(t, z,6)));
G€<t,l’,€;y,77) = (I)()(t,.%’,f) - @E(t,x,f)
+e N(y) : Vz‘/O(twra 5) + 5N*(77) : Vﬁ%(twra 5)

By linearity, we represenit® as a sum/’s = V¢ + V5, whereVs and Vs are solutions of
the follwoing problems

( xr ~ ~
00(2) 75 + 4575 = F(t,0,6 2.5
z £
(4.19) +e f(te.6 2 2), (o) €(0,T) x O,
Vi =0, (t,2) € (0,T) x 99,
‘ZE<O7x7€) = 07 T € Q,

0o (Z) Vs + A5Vs =0, (ta) € (0.T) x 2,

(4.20) Vs = G.(t,2,& g g)

‘72€<07x7€>207 Z'EQ.

. (t,z) € (0,T) x 09,

The trick is to estimat®y by standard energy estimates afcby the maximum principle.
First, we estimaté/F. Taking into account (4.17) and the boundednesa/oN*, after
integration by parts one has, forc B & (),

/ Ft, 2.y, nyuly) dy

Y

where H}, (Y') stands for the closure af-periodic smooth functions with respect to the
H'(Y) norm. Thus, as a function gf F' belongs to the dual spaa,‘é;(Y) uniformly in



(t,z,&,n). Asis usual in the method of two-scale asymptotic expansiqoating thé’-
average off’ to zero yields the homogenized equation (4.15). Therefbi®no surprise
that, in view of (3.4), (4.15) and the periodicity @, N, N*, we compute

YRl

/F(t,x,f;y,n)dyZO'

Y

Thus, for anyt, x, ¢ there exists & -periodic with respect tg; vector functiony =
x(t,z,&y,n), which belongs td’%, (Y; R?), such that

F(t,x,&y,m) = divyx(t, 2, & y,n)

(4.21) /wwaa%m&wsafeB@ﬂ.
Y

By rescaling we obtain
(4.22) F(t,x,&y,8/e) = ediv, (X(t, r,&1/e, 77)) —€ (diVxX) (t,x,&w/e,m).

Sinceb® is divergence-free, the a priori estimates are then otddiméhe classical way.
Multiplying the equation in (4.19) by, integrating by parts and using (4.21), (4.22)
yield

(4.23) /|17f(t,x,§)\2dx <Ce, (t,x) €0, T|xQ, £E€ Be.
0

Second, we estimaﬁéj, solution of (4.20), by using the maximum principle. Our hex
goal is to prove that

(4.24) G (t, 2, &; g §)| <Ce (La)e|0,T]x 09, € Be.

By (4.12), for anys < 2 andt > &7,
(4.25) @ (t, @, €) — D5 (1,2, §)] < O > IO,

In (4.25) we find2 — (d + 2)3/2 > 1ifand only if 3 < (1 + d/2)~! which is always
smaller thar2. Forz € 09, ¢ € B € 2, uniformly with respect ta > 0, we have

Cle—¢&| _colz—e?
— ¢ ¢

(Vo @o(t,z,€)] < F+d/2

<C

and a similar bound fo¥®,. Thus, from (4.13) we deduce

(4.26) DS (t,,8&) — Do(t,2,6)| < Ce, t>0, 2€00, E€ BEN.
Combining (4.25) and (4.26) yields, for afy 3 < (1 +d/2)7!,

(4.27) |B.(t,2,6) — Do(t,z,6)| < Ce, t>e’,x€c0NE€Be



To estimated. — ®, for smallt € [0,¢”) we make use of the Aronson estimatég [
Taking into account (3.4) and (4.4), we see thatadmits the following bound

I R 3 C Colz — &
0<d.(tz,8) =¢ CD(g—Qa = g) < WGXP{ - f}
with the constant€’y, C independent of. Thus, for sufficiently smalt, we obtain
‘q)s(tax7€> - ®0(t7x7§)‘ < ‘q)i(t7x7§)‘ + ‘q)o(t,l”f”
(4.28) 2 2
gﬂmg_wfﬂ}<oem{ﬁw a}

t - 8d6/2 56

Thus, fort € [0,€°),z € 9Q and¢ € B € (), the differencg®. (¢, x, &) — (¢, x, )| is
exponentially small if5 > 0. Combining (4.27) and (4.28) yields

(429) |®E(t7x7§) - q)o<t,$‘,€)| < 067 (t,.l’) € [O7T] X 897 f €EBE Qu

with the constan€’ depending onlist(B, 2), A, d. The boundedness of, N*, estimates
(4.17) and (4.29) imply (4.24).
Then, we use the maximum principle in (4.20) to deduce fror24}that

(4.30) Vit z,8)| <Ce, (t,,€)€[0,T)xQx B.
In view of (4.23) and (4.30), we conclude

[IVita ) -Vt P de <02 tepT) ceBen
Q

Recalling the definition oV’ and using estimate (4.17) complete the proof of Lemma 4.2.
O

Turning back to the proof of Lemma 4.1, the Green functiéf(¢, =, £), which is
defined as the solution of (4.1), satisfieg = V, — ®,. Similarly, by definition,K, =
V. — ®.. Taking into account (4.12), Lemma 4.2 implies

[ 1K 0,9) - Koft.n, 0P dr <02, 1216050, ceBen
Q

We would like to emphasize that the constéahin the last estimate only depends Gn
dist(B,09), A,d, ). Due to the Nash-De Giorgi estimates for the parabolic egosit
(see, for example,1R]), K. is Holder continuous (of coursk) is), and, thus, one can
deduce a uniform estimate

(4.31) |Ke(t,x, &) — Ko(t,z,8)| < Ce?, t>t>0,2€Q, £€BeEN

for somey > 0 depending orf2, A andd. We emphasize that the constaatsy do not
depend orz. Indeed, due to condition (3.4), problem (3.2) can be ré¢emiin divergence
form, without any convective term and without amfactor in front of the coefficients.
The proof of Lemma 4.1 is complete. O



REMARK 4.3. Estimate (4.31) is enough for our purpose, but we enipi#sat it can
be improved. Namely, constructing sufficiently many termshie asymptotic expansion
for V_, one can show that

|Ke(t,x, &) — Ko(t,z,8)| <Ce, t>1t >0, x€Q, £€ BeE.

5. Asymptotics ofu or v*

The goal of this section is to prove our main result TheoreBnald actually to give
a more precise statement of it in Theorem 5.1. By the faatdn principle (3.1) it
is equivalent to find a precise asymptotic expansion<ofRecall thatv, as a solution
of (3.2), can be represented in terms of the correspondirgriSfunctionk’, by using
formula (3.5). Bearing in mind Lemma 4.1, we rearrange (85ipllows

(5.1) vi(t,z) =17 + 15

with
Q

I = / (Ks(t,x,f) _ Ko(t,x,f)) ug(€) et i

J pe(3)

Of course, because of (4.31), the second integral in (549iisg to be, at least;” times
smaller that the first one. Recall that, by assumpfidi®), «, has a compact suppaste 2
so we are able to use the previous estimates of Lemma 4.1slostmpute approximately
the first integrallf. Since® - (z — ) > 0for z € w \ {z}, itis clear that the main
contribution is given by integrating over a neighborhoodhef pointz. We consider the
case of general position, when conditigtb) is fulfilled, that is, in local coordinates in a
neighborhood/s(z) of the pointz, dw can be defined by

zqa = (S7,2) +o(|Z|)

for some positive definitél — 1) x (d — 1) matrix S. Here(z, - - - , z4) is an orthonormal
basis such that the coordinatés= (zy,--- ,z,_1) are tangential t&dw and the axisy
Is the interior normal at. Note that, by assumptiofiH4), © is directed along,;. The
neighborhood of is defined by

Us(t) = {z €w: || <8, 0< 2 < 8S]|},

where||S|| = max‘x/‘ 1|S2'|. Choosings = £!/* guaranties that the integral over the
complement td/s(z) is negligible. Indeed,

/ Ko(t to(€) e~ T dé” = O(eiﬁ).

w\Us (%) ( )




Let us now compute the integral ovE§(z), § = /. ExpandingK, andu, (which is
of classC? in w) into Taylor series abouit and taking into account assumpti6), for
t >ty > 0, we obtain

8u — O-(6-7) 1
I = Kolt, z,7) =——( / Ch £—1) p@(g)) Lo d§+0( )
Us(z)
= Ko(t,z,T) 8u0 / |@| p@ )) e € (835%).
Us(0)

wheredu, /00 := Vu, - ©/|0)| is the directional derivative af, along© (the tangential
derivative ofu, vanishes aft because, is continuous and equal to O outsid¢ Note

that we have anticipated the precise order of the remaieder which will be clear once
we compute the leading integral. Let us introduce the ratathatrix )R which defines

the local coordinate syste(a, zo, - - - , z4) = (2, z4) previously defined. By definition it
satisfies = R~ z and© - ¢ = |0 z,4. Applying this change of variables we get

T
52) po(C + {21 =pe (' (C 4+ x{1}) = Po(C + =),

where{z/c} is the fractional part of /= andz® = R {z/c}. Inthe case whe®,,0,,--- , O,
are rationally dependent in paiBy remains periodic with another period. Otherwiis
is merely almost periodic. It happens, for example, whe®allk = 1, ..., d are rationally
independent in pairs.

We turn to the computation of the integral ovg(0). By the above change of variables
we get

If = Ko(t,z,7) ‘?g( )
(5.3) 32|51l
X / dz / 24 Py ( +ZE)

lz'|[<6 (82,27)

(e 5%).

To blow-up the integral in (5.3) we make a (parabolic) rescabf the space variables

/

r Z_ ﬁ
="z Q=7
and recalling thad = <'/%, we arrive at the following integral
T ou
]E = 2 (d2 ) Ko (t _ _0 _
g€ o(t,z, T) e (z)
) / “ / “he (7 + (2), Ca+ 75) e 10 dgy + (2™,

Rd—1 (SC’ /



where the reaminder term takes into account the fact thatdh®in of integration is now
infinite. Changing the order of integration we have

Oug , _
%(l’)

(d—1) _
I =c%*c 2 Kyt z,7)

+oo
/
0 (5¢/.¢")<Ca

The functionPg" (1, 74) is uniformly continuous; moreover, it is almost periodicttwi
respect to the first variable. Thus, for any bounded Borelset R? !, the following
limit exists

_ . 1 _
(5.4) M{P@1(~, Td)} = tlg?o @ /Pgl(”/ + 7, Td) dn'.
B

We emphasize that the convergence is uniform with respectaindr,;, and the limit does
not depend on’. Therefore, by Lemma 8.2, as— 0, we eventually deduce

d—1 au
]f = 628T K0<t7 xz, _) a—(ao(i‘)

(5.5) +oo o
x/dg’ / Cae 1 M{PG! (-, Ca+ 25) Y dCa + o(e? ™),

Re-1 (5¢",¢")

where the remainder term is asymptotically smaller thamgdeing order term (uniformly
int > 0,z € Q) but we cannot say how much since there is no precise speahoéic
gence for averages of almost periodic functions in Lemma 8.2

The case of the second integrdlis then very similar. Taking into account the posi-
tiveness opg, and Lemma 4.1, fot > ¢, > 0, we obtain

512 0 [ fule) e =5 e

w



whereC' does not depend an The same computation as above (but without the necessity
of considering almost periodic functions) yields

8u0 _ © _
%@)'/'@'(f—w)
ow | o
%(:ﬁ)’ / dz' / 24 o dzq
Rd—1 SO|Z,‘2
0 Lo
Go@| [ sl

Rd-1

€ _9:(=-2)
|1I5|] < C¢& e~ = d¢

< (C¢g

_lelsol'?
z

< C €2+’Y

a1
<Ce*™em

for some constant, > 0 andC = C(Sy,©). Finally, we have derived the following
asymptotics of°, ase — 0,

(1 ot x))Ko(t, z, ) %(x)

ve(t, x) = & e

+o0
X /dg’ / Cae 1% M{Pg* (-, Ca+ 73) } dCa,

Ra—1 (5¢',¢")

wherer.(t, ) converges to zero uniformly with respecttoz) € [t,, T] x Q with any
to > 0.

We summarize the result, just obtained, by formulating aenpoecise version of The-
orem 2.3, describing the asymptoticsi6tt, x).

THEOREM 5.1. Suppose conditiond 1) — (H6) are satisfied an® # 0. Letu® be
the solution of problen(l.1). Then, fort > t, > 0,

MOt e (z—=a)

u‘e(t,x):ng%(l—kre(t,x))e 2 e = Mgpg(z)u(t,x),
€

where(\,(0), po) is the first eigenpair defined by Lemma 2.1 apd, ) — 0, ase — 0,
uniformly with respect tét, z) € [to, T] x Q. The functionu(t, z) solves the homogenized
problem

Owu = div(a*® Vu),  (t,z) € (0,T) x Q,
u(t,x) =0, (t,z) € (0,T) x 0,
o
O]

(5.6)

u(0,2) = Vuy(z) - oz —x), z€,



with a*" being a positive definite matrix given B4.7), (x — ) is the Dirac delta-function
at the pointz. The constani/, is defined by

+oo
(57) ME = / dCI / Cd €—|®‘CdM{P@_1(.’Cd + 22)}dgd7
Rd-1 (S¢',¢")

where M {Pg* (-, Td)} is the mean-value of the almost periodic functipn+ Py (7', 74)
(see(5.4)), Po is given by(5.2)and z5 = R{z/c} - %

7
.

(@) (b) (c)

FIGURE 2. Position ofz in €Y for different values ot

REMARK 5.2. The constant/. defined by (5.7) depends af = R{z/c} - %, that
is on the component, parallel &, of the fractional part of /<, or, in other words, on the
relative position ofr inside the celEY (see Figure 2). Notice that/. is bounded, thus,
up to a subsequence, it converges to sdiie asc — 0. The choice of the converging
subsequence is only a matter of the geometric definition efpiériodic medium. For
example, ifz is known, we may decide to make it the origin and to define theogie
microstructure relative to this origin. Than= 0, z° = 0 is fixed in the periodicity cell,
andM. = M is independent of.

It might happen that the vectér is such that its componen®; and©,, are rationally
independent for alt # d. In such a case, it turns out that the constehidoes not depend
one and, moreover, can be explicitly computed. This is the topite following result.

COROLLARY 5.3. Let conditions of Theorem 5.1 be satisfied. And assume that th
vector© is such tha®, and©y, foranyk = 1,--- | (d — 1), are rationally independent.



Then). is independent of and is given by

—1

M= Eo D (5) T s[5y

Y

In other words, fort > t, > 0,
e \2+%5t _M(O)N e(a-m)
) e

wit) = (g = pe(D)ulta) (14 r(t0),

wherer.(t, z) — 0, ase — 0, uniformly with respect t¢t, z) € [to, 7] x Q; u(t, z) solves
the homogenized proble{®.6). The constank is given by

K= (-7 @) [ 5g'(s)dy
Y

PROOEF It is sufficient to notice that in the case wh@pand©,, k =1,2,---(d—1),
are rationally independent, the mean value of the almogigierfunctionP5 ' (¢’, 7,) with
respect to the first variablg, for any,, coincides with its volume average

M{P3 ()} = / ps! () dy.

Thus, the constant/. given by (5.7) does not depend em@nd has the following form

—+o00
Maz(/pél(y)dy> /dC’ / Cae™ 191 dg,.
v RI-1(SCQ)

Evaluating the last integral we obtain

M= C () s [as'ay

Y
that implies the desired result. O

REMARK 5.4. Theorem 5.1 does not provide any rate of convergenceéodseveral
reasons. First of all, without specifying the remainder ypdthesis(H5), one cannot
expect any estimate in (5.3). One possible option would lEssome that in local coordi-
nates, in the neighbourhood of the pain®w is defined by

2= (82,2 + O(2P).
Then in (5.3) one would obtain the errOr(e® £(4-1)/2),
The second reason for the lack of estimates is concealednmmze8.2. In contrast
with the classical mean value theorem for periodic fundjiremma 8.2 does not provide

any rate of convergence. However, if all the components efvéctor© are rationally
dependent, theRs remains periodic (maybe with another period), and one catydpe



mean value theorem for smooth periodic functions that garesrrorO(¢), and, conse-
quently,0(e? £(4=1/2) in (5.5).

Finally, estimate (4.31) guaranties that the second iategr(5.1) iss” smaller than
the first one, wheré < v < 1 depends om\, €2, d.

REMARK 5.5. We stress that if conditiqii3) is violated and the support of, touches
the boundary of?, then the two integrals in (5.1) are of the same order, andamaat
neglect the second integral any more. In this case it is sacg$o construct not only the
leading term of the asymptotics féf., but also a corrector term together with a boundary
layer corrector. It is possible in some particular casesekample, wherx belongs to a
flat part of the boundary d®, or when the coefficients of the equation are constant. But
it is well known that boundary layers in homogenization aeendifficult to build in the
case of a non flat boundary. Simple cases (flat boundariaaddglal domains) will be
considered in our forthcoming pap& [

Another typical situation arises when we do not assume angthat the initial data,
is continuous o) but merely that it has compact support and’fsinside its support. In
particular, in this new situation we may hamg ) # 0. The next theorem, characterizing
the asymptotic behaviour af in this case, can be proved in exactly the same way as
Theorem 5.1.

THEOREM5.6. Suppose conditiond1), (H2), (H4), (H5) are satisfied an® # 0.
Assume that, has compact suppoit € €2, uy € C*(w) anduy(z) # 0. If u is a solution
of problem(1.1), then, fort > t, > 0

(Ot ©-(z—7)

us(t,z) = e’ <1 + (¢, x))e 2 e = M. pe (g) u(t, x),
wherer,(t, ) — 0, ase — 0, uniformly with respect tét, x) € [to, T|] x Q. Here,u(t, z)
solves the effective problem

Owu = div(a® Vu), (t,z) € (0,T) x Q,

u(t,x) =0, (t,z) € (0,T) x 09,

u(0, ) = up(Z) 6(x — T), x €.
The constanf//, is now given by

+oo

M= [ [P (Gt ) G
Ra-1 (5¢',¢")

with the same definitions of the mean-valug of the almost periodic functioRg and of

z5 as in Theorem 5.1.

REMARK 5.7. Yet another possible situation is thgt= du,/00© = 0 in the neigh-
borhood ofz. If we assume that, € C3(w) and replace conditio(H6) by

gy, 0 /0ug\ ,_
s (1) = 25 (55 ) (@) £ 0.




wheredu, /00 is the directional derivative afy in the direction of©, then we can prove
in this case that, for > t, > 0,

_ M) O-(z—7)

uf(t,z) = ¢ ER <1 + (¢, x)) T2 e e Map@(g) u(t, x),

wherer.(t, z) — 0, ase — 0, uniformly with respect tdt, z) € [to, 7] x Q andu(t, z) is
a solution of
Owu = div(a® Vu), (t,z) € (0,T) x Q,

u(t,z) =0, (t,xz) € (0,T) x 09,
(0, 7) = ;g(g;()é(x—f), req

The constani//, is now given by

+oo
M= [ [ G Mpsak 5)
Rd=1 (5¢',¢")
The case when, vanishes on the boundary oftogether with its derivatives up to order
k, can be treated similarly.

It should be noticed that a statement similar to that of Gargl5.3 remains valid for
Theorem 5.6 and Remark 5.7.

6. The case of a flat boundary ofv

In the previous sections we analyzed the case when the dicafdiran of the surface
Ow is non-degenerate at the pointThe asymptotics of the solution of problem (1.1) can
also be constructed whanbelongs to a flat patt of dw and the vecto® is orthogonal
to 2.

More precisely, we replace the previous assumpt{dt®y, (H5), (H6) with the fol-
lowing ones.

(H4’) The set of pointg which provide the minimum imin,.,, © - x is a subsek of
Ow which is included in an hyperplane Bf and¥: has a positivéd—1)-measure.

OJuyg
(H5) uo(y) = 0forally € ¥. There exists € ¥ such that—( ) # 0.
REMARK 6.1. AssumptiorfH4’") implies that
O -(x—z)>0forallz cw\ X, 7eX,

ando is orthogonal t&> and directed inside (see Figure 3). Furthermorgg = 7 - 2
is the same for alt € 3.

In this case we prove the following result.



FIGURE 3. The case of a flat part of the boundary

THEOREM 6.2. Assume that condition$11)-(H3) and (H4')-(H5’) are fulfilled, and
© # 0. Then, fort > ¢, > 0, the asymptotic behaviour of the solutiohof problem(1.1)
is described by

A (©)t O (z—z)

u(t,z) =e’e "2 e = (1+r€(t,x))M€p9(£)u(t,x),
£

wherer(t, ) — 0, ase — 0, uniformly with respect tdt, z) € [to, T] x Q, (A1(0), po)
is the first eigenpair defined by Lemma 2:1s an arbitrary point on® andu(¢, ) solves
the homogenized problem

Owu = div(a® Vu), (t,z) € (0,T) x 9,

(6.1) u(t,x) =0, (t,x) € (0,T) x 99,
u(0,2) = T 1) b, req.

Herea" is still defined by(4.7), Jx, is the Dirac delta-function ot and the constant/,
IS given by
o0 B
M= [ G AP (G 2) Y
0
with M{Pg"(-,7,)} being the mean value of the almost periodic functiyl (-, 7,) (see

(5.4)), Po(z) being the rotation opg in the local coordinates af: Po(¢) = pe(R (),
whereR is the rotation matrix.

PROOF The proof starts, like that of Theorem 5.1, by using theesentation formula
(3.5) for the solution© of (3.2) in terms of the Green functiaid.. Writing K. = K, +
(K. — Ky) we arrive at (5.1), namely

vi(t,x) = I7 + 5.



By Lemma 4.1, we can estimalg, passing to local coordinates, as in the proof of Theo-
rem>5.1,
_©- (&

) < 0e /|uo<§>\ 2 e

+o0

Qug , , _ ) I
ch’y/la—@o(Z,fL'@)}dZ /Zde € dZd
2

0

for somey = (A, €2, d) > 0 defined in (4.31). Making the change of variabjgs= z,/¢,
we see that

+oo
|I5| < Ce*t /}% (2, 70)|d? / Cae 1Pl de, < €.

0

In order to compute approximately, we again pass to the local coordinates. Namely, we
rotate coordinates = fR £ in such a way tha® is directed along,. It is obvious that
only the neighborhood ot contributes in/{. ExpandingK, andu, into a Taylor series
with respect to;; and making the change of variablgs= z,/< leads to

Z/

[ =22 /Cde |e<ddgd/[(0tx Z x@)a (7, x@)Pgl(?

E_@ / 2
70 Ca+ 8)dz + o(e7).
wherePg(¢) = po(R™1¢) with R being the rotation matrix.
SinceP; ' (¢’, 74) is uniformly continuous, and, moreover, almost perioditwispect
to (', by Lemma 8.1, we have

8’&0

It =&* M, /Ko(t,x,z',x@) )

(7, %) dz' 4 o(c?),

where
“+o0o B
M= [ G AP (G 2 Y
0

Here M{Pg'(-,74)} is the mean value of the almost periodic functiBg (-, ;) (see

(5.4)).

Consequently, as — 0,

vE(t, ) = 2 M, /Ko(t,x,z',i’@) Ouo °(¢, To) dZ’ + o(£?).

00

Recalling thati(,, is the Green function of the effective problem (4.1) comgddhe proof.
0



COROLLARY 6.3. Let conditions of Theorem 6.2 be fulfilled. Assume that titove
© is such tha®, and©y, foranyk = 1,--- ,(d — 1), are rationally independent. Then,
fort >ty >0,

€\2 _M@Ot e(-a
e

us(t,z) = <@ 2 e e (1+7’E(t,x))p@(§) (/Yp@1 dy) u(t, ),

wherer.(t,z) — 0, ase — 0, uniformly with respect tét, z) € [ty, T] x Q andu(t, z)
solves the homogenized problédnl).

Corollary 6.3 is proved in the same way as Corollary 5.3.

7. Numerical examples

In this section we illustrate the results obtained in thejoes sections by direct com-
putations performed with the free software FreeFEM--5]])]

When studying convection-diffusion equation, the soezhkffective convection (ef-
fective drift) defined by (2.4) plays an important role. Assnaready noticed, condition
b; # 0yields©,; # 0. The question arises, If coincide with® or not. The answer is
negative, and the corresponding example is given below.

Example 1. Let Q C R? be a bounded domain. Consider the following boundary
value problem with constant coefficients:

. 0%uf 0*uf v 1 ouf .
O = 03 - % 01,019 03 + c b@xg =0, in (0,T) x £,
(7.1) w(t,z) =0, on (0,7) x 9,
u®(0, z) = up(z), x €.

Hereb > 0 is a real parameter and it is obvious that the effective &ift= {0,b}. To
find ©, one should consider the spectral problem (2.1) on the gierig cell. Since the
coefficients of the equation are constant,#) can be found easily:

The maximum of\, is attained a® = {—b/2,b/2} # b.

For the numerical computations, we cho6sm® be the unit circlé) = {z : |z; — 1>+
|zo—1]* < 1}, ug being the characteristic function of the smaller circle: |2, —1|*+|zo—
1|2 < 0.5} (see Figure 4(a)) = 1 ande = 0.03. Theorem 2.3 predicts that the “hot spot”
or concentration point of the solutian will be at the pointr, = (1 — v/2/2,1 +v/2/2)
where© is orthogonal ta@s.

The presence of the large parameter in front of the conveati¢l.1) suggests to use
Characteristics-Galerkin Method (se®], [22]). As a finite element space, a space of
piecewise linear continuous functions has been chosenndimber of triangles i81192.
The result of the direct computations at different timespesented on Figure 4.

Splitting each triangle of the mesh #nwe have compared two solutions, defined
on the original mesh and, on the refined one, and computed the relati¥eerror for



(b) ¥=0.01 (c) t=0.02

fﬂéj) @

(d) t=0.03 () t=0.0 (f) t=0.05

FIGURE 4. Isolines ofu® for small values of

smallt

sup o = u2”L2(Q) ~ 0.002.

£ w2

Itis small enough so we can conclude that convergence unelgn nefinement is attained.
It can be seen from Figure 4 that the solution profile, vanighvith time, moves first in
the vertical direction (along the effective drift) and thenthe left. Because of the very
fast decay, it is not possible to plot the solution itselfeagk time. Thus, instead of we
consideri® = u®/ maxq u®. On Figure 5 the isolines af are presented. One can see that
indeed the concentration occurs at the pgint- v/2/2,1 4+ 1/2/2), not the point(1, 2)
whereb is normal toox).

We perform another numerical test in a nonconvex domain@isame values of the
parameters in (7.1). The isolines of the rescaled solutioare ploted on Figure 6. It is
interesting to see how the initial profile first moves in theediion of the effective drift,
then vanishes and reappear afterwards to concentrate ‘dathgpot” whereO - x attains
its maximum, as predicted by Theorem 2.3. Such an exampleasly non-intuitive (at
least to the authors).

8. Some results from the theory of almost periodic functions

Denote byTrig(R?) the set of all trigonometric polynomials

Trig(RY) = {P(z)| P(z) = Y cee™¢},

£€Rd



(d)t=0.3 (e)t=0.4 =05

FIGURE 5. Isolines of rescaled® for different values of

where in the sum only finite number of # 0. We designate b AP(R?) (set of almost
periodic functions) a closure dfrig(R?) with respect to the nornsup |P(z)|. For any
R4

almost periodic functiog € CAP(RR?), there exists a mean value

(8.1) M{g} = lim

1
tB

whereB C R? is a Borel set|B] - its volume. The mean-value theorem takes place for
almost periodic functions 18]).

LEMMA 8.1. Giveng € CAP(R?) andv € L*(Q), Q C RY, the following equality
holds true:

e—0

Q
where M{g} is given by formuld8.1).

lim g(g) v(x)dr = M{g} /v(x) dx,
Q

Lemma 8.1 can be formulated also in more general form.

LEMMA 8.2. Given a functiony(z,y) € C[Q; CAP(R?Y)], Q C RY, the following
equality holds:

e—0

lim g(x,g) dx://\/l{g(:c,-)}dx,
Q Q
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where

M{g(z,-)} = lim 1 /g(w,y) dy.

tB

The last statement can be proved combining the approximatig(z,y) by finite
sums of the typ&_ fi(x) f2(y) and the result of Lemma 8.1.
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ABSTRACT. The paper deals with a homogenization problem for a naieatry
convection-diffusion equation defined in a thin rod or inyela Under the assumption
that the convection term is large, we describe the evolutiothe solution’s profile
and determine the rate of its decay. Due to the specific gegmokthe domains under
consideration, it is possible to construct the boundargiaprrectors.

Keywords: Homogenization, convection-diffusion, localization.

1. Introduction

The paper deals with the homogenization of a nonstatioranyexction-diffusion equa-
tion with large convection stated either in a thin rod or irager. In the previous work
[4] the authors addressed a similar homogenization problerarfequation defined in a
general bounded domain. Namely, the following initial-boundary value problem has
been considered:

1 ,
oyu® — div(a(g)VuE) + B b(g) -Vu® =0, in(0,7) x €,
(1.1) us(t,z) =0, on (0,7) x 09,
u®(0,z) = up(z), x €,

with periodic coefficientsz;;, b; and a small parameter. Notice that in the case of
solenoidal vector-field(y) with zero mean-value the problem can be studied by the clas-
sical homogenization methods (see, for exam@g [[L5]). In particular, the sequence of
solutions is bounded i [0, T; L*(Q)] N L?[0,T; H'(Q)] and converges, as— 0, to

1



a solution of an effective or homogenized problem in whigéréhis no convective term.
A similar behaviour of.® is observed if the so-called effective drift is equal to zeFbe
behaviour of the solution changes essentially if the effeddrift is nontrivial. Problem
(1.1) with nonzero effective drift has been considered}jruhder the crucial assumption
that the initial functiony has a compact support§ In this case the initial profile moves
towards the boundary during the time of orderand then, upon reaching the boundary,
starts dissipating. As a result, the solution is asympaditicmall for timet > <. Paper
[4] focuses on the asymptotics of for such times.

Without the assumption that, has a compact support i, one faces the necessity to
construct boundary layer correctors in the neighbourhda It is well known that this
problem cannot be solved in the case of general bounded domdawever, it is getting
feasible if the periodic structure agrees with the geometrthe boundary of. In the
present paper we consider two types of domains which po#ssgzoperty. Namely, we
study a convection-diffusion models in a thin rod and in a&tap R

In the case of a thin rod (Section 2) we impose homogeneousmbien boundary
conditions on the lateral boundary of the rod and homogem&urichlet boundary con-
ditions on its bases. As was noticed above, the solutionshasifor timet > . We
determine the rate of vanishing of the solution and desdhkeevolution of its profile
(see Theorem 2.2). If the effective axial drift is not zerce(study only this case), the
rescaled solution concentrates in the vicinity of one ofrtieeends, and the choice of the
end depends on the sign of the effective convection. In damleharacterize the rate of
decay we introduce a 1-parameter family of auxiliary ceficpal problems (se], [6]).
The asymptotic behaviour of the solution is then governethbyirst eigenpair of the said
family of spectral problems.

Among the technical tools used in the paper, are factoamatrinciple (seel0], [14],
[15], [6]), dimension reduction arguments and qualitative resatisiired for constructing
boundary layer correctors.

In the case of a layer addressed in Section 3, in additionetdetttorization principle,
we also have to introduce moving coordinates. More pregiset use a parameterized
cell spectral problem and factorization principle to suggsrthe component of the effec-
tive drift which is perpendicular to the layer boundary. Whidue to the presence of
the longitudinal components of the effective convectionhaee to introduce the moving
coordinates (sed], [3]). The main result in this case is given by Theorem 3.5.

2. Convection-diffusion equation in a thin rod

The section concerns the homogenization of a nonstati@oaryection-diffusion equa-
tion stated in a thin rodi, = (—1,1) x Q. HereQ) C R¢"! is a bounded domain with the
Lipschitz boundary)Q, > 0 is a small parameter. Throughout the paper the poirksin
are denoted = (z, 2’). The lateral boundary of the ra@el is denoted:. = (—1, 1) x0Q.
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FIGURE 1. The rodG,

ForT > 0, we consider the following model:

(O (t,x) + A.u(t,z) =0, in(0,T)x G.,
B.uf(t,z) =0, on (0,7) x ¥,
(2.1)
us(t,£1,2") =0, on (0,7) x Q,
([ ©*(0,7) = up(z1), r € G,
with

1
A’ = —div(a*Vu) + =0 - Vu'; B =a’Vu© - n.
£

The coefficients of the equation are given by
15 T £ T
ajj = aij(g)v b; = b;(=).
We assume that:

(H1) The coefficients ofi. are measurable bounded functions, thatish; € L= (Rx
Q). Moreovera;;(y1,y'), bj(y1,y") are periodic with respect g .

(H2) Thed x d matrixa(y) is symmetric and satisfies the uniform ellipticity conditjo
that is there existd > 0 such that

aij(y)&& > AEP?, Vo, & e RY

(H3) The initial functionu,(z,) € C[—1,1].

For simplicity, in what follows we assume that= 1/N, N € Z,.
Under the stated assumptions we study the asymptotic bmiravii solutionsu©(¢, x)
of problem (2.1), as — 0.

2.1. Auxiliary spectral problems and main result. In what follows we denote

Au = —div(aVu) +b-Vu, Bu=aVu-n;

A*u = —div(aVu) — div(bu), B*u=aVu-n+ (b-n)u.



Following [5], for # € R, we introduce two parameterized families of spectral protd
(direct and adjoint).

€—9y1 A69y1 pe(y) e A(Q) pe(y)’ Y — 61 % Q7
(2.2) e~ B et po(y) =0, Y =6&; x 0Q,
y1 — pe(y) 1-periodic

e A* e~ pr(y) = N0) pi(y), Y,
™ B* e~ pi(y) =0, 0Y,

y1 — py(y) 1-periodic
Here &, is the 1-dimensional unit circle. Note that the exponeritehsform is applied
with respect to only one variablg. Next result, based on the Krein-Rutman theorem, has
been proved inqg].

LEMMA 2.1. Foreach¥ € R, the first eigenvalug, (9) of problem(2.2)is real, simple,
and the corresponding eigenfunctiopsand p; can be chosen positive. Moreovér—
A1(0) is twice differentiable, strictly concave and admits a maxin which is obtained for
a uniquef = ©.

The eigenfunctiong, andp; defined by Lemma 2.1, can be normalized by

[ mwri)ay=1.
Y
Differentiating equation (2.2) with respect &0 integrating against; and writing down
the compatibility condition for the resulting equationelyl
A\,

(2.3) =

/ (b1 po Py + aij(po By, 0y — P Oy, p0) — 20 po Py arr) dy.
Y
Noticing thatA; (0) = 0 andps(y)|s=0 = 1, One obtains

Ay R
% 0—0 - / (aij 8yjp + blp )dy = bl;
Y

(2.4)
wherep*(y) = p;(y)|o=o- The last expression is the so-called effective axial drift

In what follows we assume that > 0 that yields© > 0. The casé; < 0 can be
considered in the same way.

To avoid the technicalities, we formulate, first, the masuteof the section in a loose
way.

THEOREM 2.2. Let conditiong H1) — (H3) be fulfilled andb, > 0 (see(2.4)). Sup-
poseu, € C'[—1,1] is such thatuy(—1) # 0. Then there exist constants’ and M/ such



that, fort > 0 andz € G,, the asymptotics of the solutien of problem(2.1) takes the

form

A (Ot  O(xq+1
d+1 _15—2 (z1+1) X

u(t,z) =e""e e - p@(g) [u(t, z1) + re(t, )],
whereu is a solution of the one-dimensional effective problem
du = a*" 92 u, (t,z1) € (0,T) x (—1,1),
u(t,+1) =0, t e (0,7),
w(0,21) = Mug(—1) 0" (z1 + 1), x1 € (—1,1).

Herer.(t,z) is such thatr.(¢,)| < Cy/efort > t, > 0, z € G., and the constant’
depends omin{(z; + 1), (1 — z1)}.

The proof of Theorem 2.2 is perform is several steps. Firstnvake use of the fac-
torization principle in order to simplify the original prtm. Then, we represent new
unknown function in terms of the corresponding Green'’s fiomc And, finally, we study
the asymptotic behaviour of the mentioned Green’s funcéga — 0.

2.2. Proof of Theorem 2.2.
2.2.1. Factorization. In order to simplify the original problem we perform the clgan
of unknowns, as was suggested 1 [3].

M (Ot O(zq+1)

(2.5) u(t,x) =e 2 e = p@(x

E) ve(t, x).

Substituting (2.5) into (2.1) yields the problem for the nawknown function®

;

1
po(x) O — div(a@(g)va) + B b@(g) -Vo® =0, (0,T) x G,
ot €

a” (—)Vv®-n =0, 0,7) x X,
06 &) (0.7)

/UE(t7 :i:]_)l‘/) = 07 (07 T) >< Q7

v¥(0,2) = uofar) pat (2) T veG..
Here

pol) = pe (D) po(2): a®(y) = pe(y) Poly) aly):
2.7) b°(y) = pe(y) P6(y) b(y) — 20 pe(y) Po(y) ar.(y)

+a(y) [pe(y) Vyps(y) — v (y) Vype(y)].
For brevity, in what follows we denote

Agv = —div(a@(g)V’U) + é b@(g) -Vv, Bgv = a@(g)VU “n;

Aov = —div(a®Vv) +b° - Vv, Bev =a®°Vuv-n.



A5 = ~div(a®(2) Vo) - %b@(g) Vo,

Ay = —div(a®Vv) — b° - V.
Straightforward calculations yield
(2.8) VO eR: div,t’(y)=0; ¥-n=0 onX..

Taking into account the fact th& is the maximum point of\; and equality (2.3), we
obtain that the first component 8? has zero mean:

(2.9) [¥way=o

Y

Due to (2.8), (2.9), problem (2.6) admits homogenizatiomwklver, the presence of an
asymptotically singular initial condition in (2.6) bringeme difficulties into the homog-
enization procedure. In order to study the asymptotic bielawof v<, we will use its
representation in terms of the corresponding Green'’s fomét. (¢, =, £)

210) i) = [ Kt ufe)pg! () e g
Ge

Here K., for eacht € G., solves the problem

[ p5 O, K. + ASK. =0, (0,7)x G.,
ByK. =0, (0,7) x %,
(2.11)
K€<t7x7€) e = 07 (O7T) X Q?
| K(0,2,8) =d(z — &), x € Ge.

Note thatK. with respect tq(t, {) is a solution of the formally adjoint problem, which
differs from (2.11) in the sign in front of the first-order es.

Because of the presence of the delta-function in the irgtaldition, it is difficult to
construct the asymptotics fdf, directly. Let us introduce a function

Ve(t, 2, &) = @c(t, 2, &) — K(t, 7, 6),
where®, is Green’s function in the thin infinite cylindéf, = R x Q)
Po(&) 0P, + A5 ®. =0, (t,€) €(0,T) xG.,
Bg®. =0, (t,€) € (0,T) x I,
0:(0,2,8) = 0(x = §), £ €G..



By I'. we denote the lateral bounda® x 0(¢Q) of the cylinderG.. Thus, for each
x € G., V. solves the problem

( Pz)(i') atVe + Agg‘/a = 07 (tu 5) € (07 T) X GE:
BE@‘/E = 07 (t7 f) € (O7T) X ZE)
(2.12)
Vihad)| | =e(tnf)| . (1€ 0.T)xQ.
Ve(0,2,8) =0, € Ge..

\

2.2.2. Asymptotics ford.(t, z, ). Denote by®, a fundamental solution of the 1-
dimensional homogenized problem

{ 6t®0 :a'effa?q)o(t)'rlagl)7 5 GR,
Do(0,21,&1) = d(z1 — &1).-
Here the effective coefficient” is given by

at = /(a?1 + a?jayj]\f — b9 N)dy
(2.13) ¥
— [(a%+ a8, N+ 80 N dy
Y

1-periodic iny; functions N and N* solve the standard cell problems (direct and adjoint,
respectively):

(2.14) AoN = 0,,a5(y) — b7 (y), Y,
| BgN =0, 0Y;

(2.15) AGN™ = 0y,a5 +17, Y,
| BgN* =0, 0Y.

It can be shown that*®™ > 0 (see, for example1p]). Note thatN and N* are Holder
continuous functions (se8j).
The fundamental solutiof, admits the explicit formula

1 1 Jei-g)?
e  4dacff¢ |
2v/mt a®

We also introduce the first- and second-order approximatian by

it 2, &) = Po(t, 21,&1) + 5N(§) O, Po(t, 71,&1)

(2.16) Do(t, 21,61) =

(2.17) :
+e N*( ) 851q)0(t, Xy, fl)

3



@;(t,l’,g} = q)i(t,l',f) + 62 NZ(;) agquO(taxlagl)
§ §

S £

(2.18)
T
+€2 NQ*( ) 8521@0(75, Xy, 51) + 62 N(g) N*( ) 8951851@0(75, Xy, 51)
Next result, which concerns the asymptotic behavioubgfis similar to one announced

in [15] (see Chapter II) and then proved rigorously 1. [

LEMMA 2.3. Foranyz, £ € G, andt > &2,

gk:—f—l
(219) |¢)€(t,$,§)—¢)k(t,l‘1,£1)| SCW’ k:0a172
2.2.3. Asymptotics fol.(¢, z,£). The formal asymptotic expansion fot takes the
form

Welt,2,6) = Volt,01,6) + & N (2) e Voll, 0, €1)
(220) +e N*(g) a&l%<t7 thl) + 8‘/1<t7 thl) + 8‘/;3@,1', f)
+ Wyt x,€),

+&* Va(t, 21, 15y,
2( bty 77) y=x/en=E/¢e

where
Va(t, 21, €13y, m) = Na(y) 02, Vo(t, 21, &1)

(2.21) +N;(n) 02 Vo(t, 21, &) + N(y) N*(1) 00,06, Vo (t, 21, &1)
+N(y) Ou, Vi(t, 21, &1) + N7 (n) O, Vi(t, 21, &)

In (2.20) the terms of orderwill be used as an approximation &f, while V, andW;; are
constructed to guarantee the required accuracy.
In the expansion (2.20), the functidi, for eachz; € (—1,1), is a solution of the
homogenized problem
WVo=a"0Z Vo, (,&)€(0,T)x (—1,1),
(222) ‘/Q(t,l'l,:tl) = éo(t,l'l,j:]_), t e (O,T),
‘/0(0,33'1,§1> 207 fl S (_171)

The effective coefficient°™ is defined by (2.13)V and N* are solutions of (2.14) and
(2.15), respectively. Far, # +1, the functionl belongs ta”> ([0, 7] x(—1, 1) x[—1, 1])
andfort € [0,T], z € I € (—1,1) we have

C

min{(xl _ 1)’ (Qfl + 1)}2k+l+m+1’

(223)  0< D, I Volt,21,6) <



In order to defind/; and the boundary layer correctd, we introduce functions® stated
in semi-infinite cylinders>" = (0, +00) x Q andG~ = (—o0,0) X @:

Agvt =0, neGT,
(2.24) Begvt =0, 1neXT,
Ui(oa 77,) = —N* (0’ 77,)’

whereX* are the lateral boundaries 6f*. It has been proved inlp] that bounded
solutionsv® exist, they are uniquely defined and stabilize to some catssta at the
exponential rate, ag — +oo:

‘Ui(nhn/) - @i| S C(O e*"/|771|’ 007'7 > 07
(2.25) VO | 2t yxg) < C e ™, ¥n >0,
VU™ [z (i), —myx@) S Ce 7", Vn > 0.

Then,Vy, for z; € (—1, 1), satisfies the problem

at% = G/EH 8521‘/1 + F(t7 33'1,51), (t7 fl) S (OaT) X <_17 1)7

(2.26) Vi(t, 21, 1) = 0% 9, (Vo — Pq) - te (0,7),
‘/i(oaxlagl) :07 51 S (_171)7
where
F(tal‘hgl) a&% t xl)fl / (l j 77)
(2.27) J

+an (M N* (1) + b7 () N5 (1) — a* pe(n) N*(1)] dn,
and N solves the problem
AGN; = 0,,(ag N*) + ag;0,, N*
+ap + b7 N* —a pe, Y,
BoN; = —aln; N*, Y.

In the definition ofl;, the 1-periodic (w.r.ty;) function N, (y) solves the following prob-
lem:

AoNy = 0, (a N) + af;0,, N
+a9 — 09 N —a* pg, Y,
BoNy = —al n; N, Y.



Notice thatV; is a smooth function of its variables forc I € (—1,1), andN; is Holder
continuous. The first boundary layer corrector is given by

Vit 2,6 = [0 (2

€
ot (L) 0] 00 - o)

) %) - @7] a&l (VO - CI)O)

§1=—1

(2.28)

&1=1
Due to the above constructions,

{‘/()(t>$1, 1) + 5N(§) O, Vo(t, w1, 61) + 5N(§) 0, Vo(t, 21, &1)

= O5(t
1 1(7:575)

+€ ‘/l(twrlagl) + 8‘/1)61(t,$17§1)} ¢

where®j is defined by (2.17).
The second boundary layer correcttf, is designed to compensate the time derivative
of V; and is defined by

Wy (t,x, &) = [w’(

(LS o] o, (- )

The functionsw* solve nonhomogeneous problems
Agw* = (0 —v*(n)) po(n), nedT,
Bew* =0, next,
w*(0,7') = 0.

Bounded solutions* exist, they are uniquely defined and stabilize to some cotsia
at the exponential rate, s — +oo (see [L2)).

b
1= &1==1

& +1 é;')

£ 9

— 0| 9,0, (Vo — @)

§1=—1

£1=1.

LEMMA 2.4. Denote by the first-order approximation df

X

‘/15(15’ z, f) = %(ta T, fl) +€ N(g) 811‘/0(t7 I, gl)

+e N* (g) afl‘/()(t7 T, 51) +e %(t7 T, 51) +e ‘/;)El(t7 T, f)
Then, forz € G. andt > 0, the following estimate is valid:
(2.29) V= vipag < cetet

GE
with the constan€’ depending omin((z; — 1), (z1 + 1)), A, d and independent af.
PROOF The proof of Lemma 2.4 consists of several steps. First, aleutate the

discrepancy appearing on the right-hand side of the equatid boundary condition when
substituting the differenc®’. — V. into (2.12). Then, by linearity, by represént — V.



as a suni/F + Vg, whereVf is estimated using standard a priori estimates,&ndwith
the help of the maximum principle. Finally, combining theaibed estimates fdr¢, Vs
with an estimate for the differend&. — V5, we end up with the estimate fét — V.

1. Auxiliary a priori estimates

Consider the following problem:

50w + Agtw® = f(t,x) + divF(t,z), (0,T) x G-,

Bgw® =¢eqg(t,x) — (F,n), 0,7T) x X,
230 §u” = eglt,a) - (Fun) 0.7)

we(t, £1,2") =0, (t,2') € (0,T) x Q,

we(0,z) =0, z € Ge.

Sincediv by = 0, a priori estimates are obtained in the standard way. Muitig the
equation in (2.30) by® and integrating by parts and exploiting the Cauchy-Bunyakyp
inequality and Gronwall’s lemma, we obtain

t

(2.31) /(ws)zdl’Jr//\Vwﬂzdxdr

Ge 0 G:
< C et (Hf”%%(o,T)sz) +ellgllz2omyxzo) + ”FHLQ((O,T)XGE))’

where the constants, C; are independent af.

2. To estimate thé?(G.) norm of W, — V., we calculate first the discrepancy appear-
ing on the right-hand side in the equation and lateral boryncandition.

pe O (We — Vo) + Ag (W. — V2)

= e Ry(t, 21,8159, m) + € Ro(t, 21, €159, m) :
y=z/en=E/¢e

B%(WE - ‘/€> = 82 a’?l(n) n; 851‘/2@73;17&1;3/777)

y=a/e,n=E/e

where
Ri(t,21,&59,m) = pe(mN(y)0:0:, Vo(t, 1, &1)
+po(N)N*(7)0,0¢, Vo + po(n) Vi — afy (n)N (y) 9z, 0a, Vo(t, 1, &1)
—afy () N*(n)0¢ Vo(t, x1,&1) — agy (n)9F, Va(t, w1, &)
—a; (1) 0e, 0y, Va(t, w1, €13y, m) — Oy, (a5 ()06, Va(t, 1, &5y, 1))
—bY (1)8e, Valt, 1, €15y, ).

RQ(tv xl)fl; 1%77) = Pe 8t‘/é(t7 xl)fl; 1%77) - a?l(n)agl%(twrl? 51) y?”)



By linearity, we represenit/. — V. as a suniV. — V. = V¢ + Vg, whereVe and Vs,
for eachz € G, solve the following problems:

( Lo 3t‘7f + A*@E‘if = €R1<t7 thl; y777)

"‘52 RQ(t,fEb&;yﬂ?) (t>£) € (O’T) X GE’

y=z/en=¢/e’
B%‘;is = 52 a?l(n) n; 351‘/2(t>$1a§1§ya77) / ¢/ ) (t7£) € (O7T) X EEa
y=x/e,n=E§/e
Vet =0 te(0,T
1(’$>£)§1:i1 ) ( )
L VE(0,2,€) =0, e G
(P OV + A5V =0, (t,€) € (0,T) x G-,
BgVs =0, (t,€) € (0,T) x %,
€ = —Vo)(t te (0,T
Vit Q)| =W Vme 0| . te )
[ V5(0,2,8) =0, £ eq..

3. We estimate firsts using a priori estimates (2.31). To this end, we notice tinat,
view of (2.22) and (2.26),

/Rl(taxhél;yan)dn_}_/ag(n)a&%(t,l’hfl;y,?’])da:0’
Y oy

thus, there exists &periodic with respect tg, vector-functiony = x(¢, x1, &1;y, 1) such
that

_diVT]X = Rl(t>$1>§1§y>77)> n € Y7
(X7n) :a’z’®1<77>nia§1%(t7xl7€1;y7n>7 7768Y
Obviously,
Ri(t,71,&159,m) = —6div§x(t,x1,§1;y, §)
n=§/e €
_'_ga&Xl (t7x17€1;y777)‘ ;
n=E/e
and
2 RS 2 RS
X (t7x1a§1ay7g)d£§0 Rl(t,$1,£1,y,g)d£.
Ge Ge
Then, in view of (2.23), we have
@32) [ Clanbinde <O ne (<L), e

Ge
with the constan€' depending omnin{(z; — 1), (x; + 1)}, A, d.



Taking into account (2.21) and (2.23), we see that

@3) [ Bt <Ce me (L), 7 eeQ
GE

whereC' depends omin{(z; — 1), (z1 + 1)}, A, d. Thus, forz € G. suchthatr; € I €
(_L 1>’

(2.34) /|Vf(t,x,§)|2d§ < Cetedl >0,
GE

with the constan€ which depends omin{(z; — 1), (z1 + 1)}, A, d.
4. We proceed by estimatirigs. Due to the presence of the boundary layer corrector
Vit
We(t,z, &, £1) — (t,z, & £1)
= (52‘/2(157 T, glv Y, g) + €3Wb€l<t7 €, f)) + ((I)i(t7 €z, f) - ®E(t7 Z, g))

Taking into account (2.23) and the fact thef N*, N,, N5 are Holder continuous func-
tions, we see that

62‘/2<t,$'1,€1;y, §> +83W§l(t7x7§)’ S 0827 t Z 07 f € Gsa

whereC depends omin{(z; — 1), (z; + 1)}, A, d.
To estimatg®s — ®.| for t < &, 3 > 0, we use Aronson’s estimates. Namely, thanks
t0 (2.8)-(2.9), forg, = £1, 2, € I € (—1,1) andt < &°

w1112
|¢)€| S Qe_Co\ 1t &1 :O(e_cl/aﬁ)

Vit

with some constants, C, C;.
Similarly, ®, is exponentially small if; = +1, 2, € I € (—1,1) andt < &, 8 > 0.
To estimatg®s — ®.| for t > °, we make use of Lemma 2.3. Namely, for 7, the
following estimate holds true:

|Pe(t, @, ) — ®5(t,2,6)| < O, WG >0,
with the constan€’ independent of. Then, by (2.16),
DS (t,z, £1,&) — @ (t,z, £1,6)| < Ce?, 2, €le(—-1,1),

with some constant’ depending on the distance fronto the rod ends.
Finally, we obtain that

D (t, 2, £1,¢') — 5 (t, 2, £1,¢)| < C &2,
whereC depends omin{(z; — 1), (z; + 1)}, A, d.



Combining the last estimate with the estimatesdorand®, for ¢t < €%, 3 > 0, we
obtain that the boundary conditions on the bases of the mdatisfied up to the second
order ine:

(2.35) (W.(t,x,£1,&) — D (t,x,£1,¢)| < Ce?, t>0, v €l € (~1,1)

whereC depends omin{(z; — 1), (z; + 1)}, A, d. Thus, by the maximum principle, for
r € Gesuchthat, € I € (—1,1),

(2.36) Vi(t,x,€)| < Ce?, t>0, € €.,
whereC depends omin{(z; — 1), (z;1 + 1)}, A, d.
5. Finally, recalling thatV. — V. = V¢ + Vg, by (2.34), (2.36), for any € [0, 7], we
obtain the following estimate:
/|V6 —W.2de < Ce*e®™t, zyele(-1,1),2 €cqQ.
Ge
Itis easy to see thatfar, € I € (—1,1),2" € €@,

/‘%(t7x17§1;y777>|2‘n:§/€d§+/|W[fl|2 S Cé“dil.
Ge G.

Consequently, last two estimates yield (2.29). Lemma 2p4ased. O

2.2.4. Asymptotics for°. Recalling the definition o¥/., we obtain the following ap-
proximation for Green’s functioi. :

Kf(t,l‘,f) = KO(taxhgl) + €N(§) aleO(tathl)

g) O Ko(t,x1,61) +e Ki(t,21,61) — e Vig(t, 2, §),

whereK is the Green function of the one-dimensional effective b
O Ko = a" 0F Ko, (t,&) € (0,T) x (=1,1),
(2.38) Ko(t,x1,£1) =0, te(0,7),
Ko(0,21,&1) = d(z1 — &), &€ (—1,1),
K, is a solution of the nonhomogeneous problem
K, =a™ 8§1K1 — F(t,z,&), (t,&)€(0,T) x (—1,1),

(2.37)
+e N*(

Kl(t,l'l,j:]_) = f)i 851 KQ =it s t e (O,T),
1==%1

K1<07x17€1) 207 fl S (_171)
with the right-hand sidé” given by (2.27). The boundary layer correctgyis defined by
(2.24) and (2.28), respectively. Taking into account Leran?a4 and 2.3, we obtain the
following statement.



LEMMA 2.5. For eachzx € G. andt > 0, the following estimates hold true:

1K — Kol 2y < Cee?
(2.39) 3

1K — K{|| 2. < C e,
where the constartt’ depends omin{(1 — ), (1+z;)}, A, d and does not depend an

Now we turn to analyzing the asymptoticswfwhich is given by (2.10) in terms of
the corresponding Green functidf.. Obviously, (2.10) can be rewritten in the following
form:

vt z) = /Kf(t,:c,g) uo(&)p@l(g) g2
(2.40) G- .
+/(Ke(t,x,§) - Ki(t@vf))uo(&)pél(g) GRS

GE
Thanks to (2.39) we have

&y e+

’/(Ka(t7x7§) - Kf(t,l‘,f)) UO(gl)pél(g) € c df’ < 051/2 5d+17
Ge

where the constarit depends omin{(1 — 1), (1 +z1)}, A, d and does not depend en
We proceed with analyzing the second integral in (2.40). Wfamute separately the
contributions of each summand in (2.37).
ExpandingK, andu, into the Teylor series in the neighbourhoodpf= —1, we see
that, fort > ¢, > 0,

/ Ko(t, 1, &) uo(&1) po' (g) e ET dg

Ge

= ug(—1) D, Ko(t, x1, —1) /(& + 1)p@1(§) e de £ O(e2), £ 5 0.
Ge

Making change of variables
_ fl +1 / fl

21 y BT T,
g g

and using the periodicity gfg, one gets

£ e+

/Ko(tﬁlafl)uo(fl)l?él(_)6 :
&

3

(2 41) = 8d+1 Uo(—1> 851[(0(75,91;1,—1)

+oo
X / /21 po(2) e O ddz + O(e%).
0 @



Recall that, for simplicity, we assume= 1/N, N € Z,..
Similarly we have that fot > t, > 0,

€/N*(§) aﬁlKO(tax,S) UO(gl) e_wdg
Ge

pe(&/e)
(242) = €d+1 Uo(—l) 851[(0(75,91;1,—1)

+oo
X / /N*(z) po(2) e O ddz + O(e%).
0 @

Taking into account thal,, Ky (¢, z;, £1) = 0, we obtain

X O(&+1)
5/N(g) 8x1Ko(t,fE1,§1)Uo(&)pél(g) e dE = O(e4),
GE
thus, this term can be neglected.
By the same argument, sinég (¢, x1, —1) = 0~ 0, Ko(t, 21, —1),

£, _e&+y

6/(K1(t,l’1,§1) —@_aglKQ(t,lL‘l,—l)) Uo(gl)pél(g) e € df = O(€d+2).
GE
Performing change of variables as above and using the peitiodf po, we get

5/0(51 1 5)aglKo@,xl,—1>uo<£1>p<51(§)e

e ¢
Ge

= €d+1 UQ(—l) 8§1K0(t, Xy, —1)

O +1)
1>

(2.43)
+o0
X / /’U(Z) pel(2) e ® dZdz + O(e™).
0 @

Thanks to (2.25), the term containing the boundary layerector near the right base of
the rod is exponentially small. Combining (2.41)—(2.43)\gs

v (t, ) = e Mug(—1) ¢, Ko(t, 21, —1) +1o(t, @), t > t5 >0,

where|r.(t, )| < Cye'/? %! with the constant’, depending omin{(z; + 1), (1 —
x1)}, A, d; the constand// is defined by

M = 0/ Q/(zl + N*(2) + v (2)) pg'(2) e ®* d2'dz,.

In this way we have proved the following theorem.

THEOREM 2.6. Let conditiong H1) — (H3) be fulfilled andh;, > 0.



(1) Suppose,, € C'[—1,1]is such that,(—1) # 0. The asymptotics of the solution
u® of problem(2.1), fort > t, > 0 andx € G, takes the form

g1 MOt ew+n

u(t,z) =’ lem 2 e - p@(g) [u(t, x) + re(t, x)},
whereu is a solution of the effective problem
Oyu = a** 07 u, (t,z1) € (0,T) x (—1,1),
u(t,£1) =0, te (0,7),
w(0,21) = Muo(—1) 8 (xy + 1), z € (—1,1).

Here the effective coefficiest' is defined by2.13) r.(¢, x) is such thatr. (¢, z)| <
C'y/e, and the estimate is uniform far> t, > 0, x; € I € (—1,1), with
C = C(min{(1 — z1), (1 + z1)}, A, d). The constand/ is given by

M = 0/ Q/(zl + N*(2) + v (2)) pg'(2) e ®* d2'dz,

wherep, is defined by Lemma 2.®,is the maximum point of; (¢); the functions
N* andv~ solve(2.15)and (2.24) respectively.

(2) If ug € C¥1(—1,1)is suchthat’ (=1) = 0,1 =0,--- ,k—1, andul” (~1) #
0, then

A1 (©)t O(xq+1) €T
2

u(t,z) =Pt rem = e = pe(5) [ult,x) +7°(L 3)],

€
whereu is a solution of the homogenized problem
Ot = a** 07 1, (t,r1) € (0,T) x (—1,1),
u(t,+1) =0, te (0,7),
W(0,21) = Mul?(=1)6'(x1 + 1), ;€ (=1,1).

Here the constant/ is given by
1 +o00
M= / /<Zl)k (21 + N*(2) + v (2)) pg' () e 9% d2'dzy.
0 Q

7(t, ) is such thatr (¢, z)| < C4/e, and the estimate is uniform for for>
to>0,zy €l & (—1,1),2 € eQ,withC = C(min{(1 — 1), (1 + 1)}, A, d).

The second statement of Theorem 2.6 can be proved in exhetlyame way as the
first one.



3. Problem in a layer

Denote by the layer{z € R? : 2/ = (z1, -+ ,24.1) € R —1 < 24 < 1} (se€
Figure 2). Then the boundary 6fconsists of two planeE* = {z € R?: 24 = +1}. We
study a homogenization problem for a non-stationary camwediffusion equation stated
in €2

o+ A uf =0, (t,x)e (0,T)xQ,
(3.1) u® =0, (t,z) eTT NI,
uf(0, ) = up(x), x € (),
where
1
Au = —div(aEVuE) + =b° - Vus,
g
and the coefficients of the equation are given by
15 T £ T
ag; = %’(g)% b; = bj(g)-
In the sequel we assume that the following conditions arsfet:
(Al) The coefficients of the equatian;,b; € L>°(Q2) areY-periodic,Y = (0,1]
being the periodicity cell.
(A2) Thedxd matrixa(y) satisfies the uniform ellipticity condition, that is thepests
A > 0 such that

ai;(y)&&; > AJE)?, Va, & € R

(A3) ug(z) € Cy(R41;C[—1,1)), that is the initial functionu, has compact support
with respect tac’ = (xq, -+, 24-1).

(A4) For simplicity we assume that= 1/N, so that the periodic structure agrees with
the thickness of the layé?.

REMARK 3.1. Instead of the function, having compact support i, one can con-
sider a more general situation, whene C(Q) N L'(Q) N L*(Q).

As in the case of a thin rod, we study the asymptotic behavabsolutionsu (¢, z) of
problem (3.1), as — 0. Note that if the effective convection in the directiopis zero,
the homogenization in moving coordinates takes place @ef]).

3.1. Auxiliary spectral problems. For brevity, in what follows we denote
Au = —=div(aVu) + b- Vu, A*v = —div(aVv) — div(bv).

In order to simplify the original problem, we make use of thetbrization principle, as
in Section 2, with respect to;, and then construct the asymptotics of the new unknown
function in moving coordinates.



€3

=Y
=

I T2

FIGURE 2. The layer?

Ford € R, we introduce two parameterized families of spectral protd:

e v Ae¥i po(y) = AO) po(y), Y,
(3.2) iodi
y — po(y) Y-periodic

e A* e~ pi(y) = MO) pi(y), Y,
y — py(y) Y-periodic

By the Krein-Rutman theorem, for eaélhe R, the first eigenvalue (¢) of problem (3.2)

is real, simple, and the corresponding eigenfuncti@gnandp; can be chosen positive.

Moreover, as was proved iB]f ¢ — \;(0) is twice differentiable, strictly concave and

admits a maximum which is obtained for a unigue- ©. The eigenfunctiong, andp;
can be normalized by

/ Po(y) Pi(y) dy = 1.

Y
Arguments similar to those in Section 2 yield
d\ . . -
(3.3) d—Hl‘ezo = / (ba pp + aqj 0y, 05) dy = by,

Y

whereb, is the last component of the effective drift. Henceyif= 0, then© = 0. As was
noticed already, we assume tlbat=~ 0 (or, equivalently® ## 0). In the casé, = 0 the
method of homogenization in moving coordinates can be aegplirectly.

3.2. Factorization. If b; > 0, then we perform the change of unknown function as
follows

AL ©(zg+1)

(3.4) u(t,z) =e 2 e = p@(g) ve(t, x).



If by < 0, then instead ofxp ( 2“1 ) we takeexp w> Substituting (3.4) into

(3.1), one obtains that the new unknown functiorsatisfies the problem which reads
P50 + A50v° =0, (t,2) € (0,T) x Q,
(3.5) v* =0, (t, .%’) el U r-,
X _ O (zg+1)

v°(0,2) = up(z) pél(g) e = , zef,

where
Ag = —div(a®(2)Vv) + -17(2) - Vo, 0e(y) = re(y) r(v)

and the coefficients of the operator are given by

ad(y) = oo(y) ai;(y);
(3.6) by (y) = 0e(y) bi(y) — 2 00 (y) aia(y) ©

+ai;(y) [pe(y) 0,05 (y) — P65 () dy,pe(y)].

The matrixa® is positive definite since bothy andpy, are positive functions. The vector-
field b, for eachd € R, is divergence-free angf has zero mean, that is

(3.7) /bf;)(y) dy=0; divt! =0, V6.
Y
Notice that if the average @f, k = 1,--- ,d — 1, is not equal to zero, then, in contrast

with the case of a thin rod, the classical homogenizatiorhodsg do not apply to problem
(3.5). To overcome this difficulty, we use of the homogenaatn moving coordinates.
Denoting the Green function of problem (3.5) B¥(t, =, £), we represent® in the form

(3.8) vi(t,z) = /Ka(t7 2, €) uo(€) pél(g) 6_®(£g+1)
Q
For anyz, K. solves the adjoint problem
00 (%) K1, 2,6) + AT K1, =0, (1) € (0.T) x 0,
(3.9) K.(t,2,€) =0, (t,§) € (0,T) x (- UIT),
KE(07x7§) :(5(.1'—5), 5 € Q)

Agfv = —div(ae(g)Vv) — é be(g) - Vo.

Sincebe is divergence-freedg" differs from A by the sign in front of the first-order
term. For any € , K. solves the direct problem with respect(tox), but since we are
interested in the asymptotics A w.r.t£, we prefer to interpret it from the very beginning
as a solution of adjoint problem (3.9).



We study the asymptotic behaviour &t, ase — 0, and then from (3.8) derive the
asymptotics fon=.

3.3. Asymptotic behaviour of K.(¢, z, ). As in the proof of Theorem 2.2, instead
of analyzing directlyK., we consider the difference

‘/E(t7 x? 5) = @a(t, x? 5) - KE(t7 x? 5)7
whered, is the fundamental solution iR?, that is, for anyz € R?, ®, solves the problem

00(2) 00 + AFR =0, (1,€) € (0.T) x R
®.(0,2,8) = d(z — &), £ e R
In this way, for allx € 2, V. satisfies the problem

00 () V(1,26 + AT Vi, =0, (16 € (0.7) x 0,
(3.10) Vit €) = B(t,,6), (t.€) € (0,T) x (I UT™),
V.(0,2,8) = 0, £eq.

We would like to emphasize th&t is a smooth function of, for z such thatr, # +1.
To describe the asymoptotics®f, we introduceb (¢, x, &), the fundamental solution
of the effective problem

0, @y = dive(a"Ve ), (t,€) € (0,T) x R,
@0(0,1‘75) :(5(1'—5), geRd
with a°" given by

5t = / (@8 () + aS(1)By Ny () — B2(5) N; () + B2 po N; () dy

Y

— [ @S+ a0, )+ 420) N; (1) = 57 o N; (1)
Y
The constant

Y

is the jth component of the effective convectioi = 0); vector functionsV and N*
solve the following cell problems (direct and adjoint, resvely):

(3.11) ~div(a®VN;) +b° - VN; = 0,,a5(y) — b (y) + 8°, Y,
| y— N; Y — periodig

(3.12) —div(a®VN?) = b° - VN = %af} (y) + b9 (y) — B°, Y,
| y— N} Y — periodic



Note that, in view of the definition g®, the compatibility conditions for (3.11) and (3.12)
are satisfied. It can be seen that the mattixs positive definite, and the functioié and
N* are Holder continuous functions (seég)[

The following important result characterizing the asyntigtbehaviour of®,. can be
proved in the same way as if][

LEMMA 3.2. Assume that condition(#1)-(A2) are fulfilled. Then, for, ¢ € R¢ and
t > £2, the estimate holds

q)s(t7x7§) ®5tx§+—t ’— d+2/2’

where® = Iy v°(y) dy, the constan€ does not depend an and the first-order approx-
imation®7 is given by
B3 8° 3
5 (t, x §+—t) <I>0(t,x,§+?t) +5N( ) Vao®ol(t, z §+—t)
3 B3
+e N (g) Vedo(t,z, &+ - t).

Turning back toV;, for eachz € €2, we denote by, a solution of the homogenized

problem

0V = dive (a*"V V), (t,€) € (0,T) x Q,
Vo(t, @, &) = ®o(t, 2,£),  (t,€) € (0,T) x (I™ULT),
%(0,1‘,5)20, & e

Note that, forr ¢ (I- UTY), Vp € C([0,T] x Q x Q) and for(t, &) € [0,T] x © one
has
0<0FOL O Volt,,€) < ¢ reK e
= dist(K, (- UTH+))2k+m+d—1" '

The formal asymptotic expansion fbr takes the form
We(t,2,8) = Vo(t,2,8) +e N(2) - VWi (t,2,€)

eV () - Vet 0.8) + e Vi(n 0, )
+eVE(t 2, 8) + 2 Vi (3, €) + 225 (¢, 7, €)

3,/€ @
+e ¢bl(t>xa§)a 5 5"‘ t

(3.13)

where
Vi(t ) = { Qi (9) 92,02, Valt, 2. )
(3.14) +Q;;(n) 0.0, Vo (t, ., €) + Nily) Ny () 02,0, Vo (£, 21, €)
+Ni(y) 0u, Vit 71, €) + Ny () 06 Vit 1, ) §

_z &
Yy=2"N=z



The functiong);;, Q;; solve the problems

y)

AoQij = 0y, (agNy) + a0, N; + a

y — Q5 is periodic

A5Q3 = 0y (agN7) + a0, NT + af)
+bY Ny — B9 pe Nj — a5 pe, Y,
y — Q;; is periodic

Here for brevity we denote
Agv = —div,(a(y) V) +b(y) - Vo,
Ayv = —divy(a(y)Vyv) — b(y) - Vyo.

In order to definel; and the first boundary layer correctdf;, we consider auxiliary
problems in semi-infinite cylindei6™ = (0, 1]%~! x (0, Foo):

Agv* =0, neGt,
(3.15) v, 0) = =Ny (11, 0),
0 — vE(n',ng) is (0, 1]t — periodic

Sincef,; = 0, then such functions™ exist, they are uniquely defined and stabilize to some
constantg* at the exponential rate, s — oo (see [L3)):

0= (0, na) — 0F| < Coe™ Ml Co,y > 0;
(3.16) Vot || 2 (ne1mxg) < Ce™ ™™, ¥n <0,

IVU™ || L2 (i) < Ce 7™, ¥n > 0.
The first boundary layer corrector is given by

§ &+l
e’ €

(C]
) = 07| 0, (Vo — @o) (1,6 + %t)

§a=—1

Vilt,,€) = [v7(
(S}

+[U+(% de_l) _ A+} e, (Vo — ®o) (t, 2, & + ?t)

(3.17)

5d=1.

Then, V1, for x € (), satisfies the problem
0Vi = dive(a™ VeWi) + F(t, z, §), (t,€) € (0,T) x Q,
(3.18) ¢ Vi(t,x, &, +1) =0T 0, (Vo — ®o)(t,x, &, 1), (t,&) € (0,T) x R,
Vi(0,z,8) =0, §eq,



where
F(t,2,€) = g, 06,06, Valt, 2, €) / [0, Q,

Y
+agN* + b Qy; — By pe@Q;; — a5y pe Ni] dn.
The second boundary layer correctgy is defined as follows

@Zl(tv%g)
' 1 ©
= [90];(%7 fd:‘ ) - 9512] 8§k (8&1(% - @0)(75,?5, £+ %t) §d—1>
¢ €1 °

+|:S02—(€’ c ) _952—] aﬁk <a§d(%_®0)(t7x7§+?t)

§d=1>.

The functions,oj solve nonhomogeneous problems

AZ)‘P% = &H(ag(vi - @i)) + az'GI)c 8mvi

+(bF — BPpe) (vt —0F),  neGT,

o (n,0) =0,

n — (', n4) is (0,1]" — periodic
The right-hand side of the last equation, due to (3.16), iexgonentially decaying func-
tion. Sinces? = 0, the functionsy" exist, they are uniquely defined and stabilize to some
constantsi; at the exponential rate, gs — 4-oo (see [L3)). The correctory;, has been
introduced to compensate the terms of ordewhich will appear on the right-hand side

after substitutind/;; into the original equation.
The last boundary layer correctof, is defined by

wlfl(thag)
IR N ©
= [d}m(%, S . ) - i/iug} ¢, 0k, (%(Vo — @) (t, 2z, & + %t) gd:1>
! _ 1 R ©
+[ ;Z(% fdg ) - zﬂ e, O, (%(Vo — Qo) (t .6+ %t) fdl)-

The functions);; solve nonhomogeneous problems
Agvy = (af, — agipe) (v — %) + 9y, (agj (o — ¥))
+a50y, ok + (07 = B7)(r — b)), n e G¥,
w(',0) =0,
n = (' ng) is (0,1]" — periodic
The right-hand side of the last equation is an exponentd®lyaying function. Thus, the

functions«: exist, they are uniquely defined and stabilize to some cntﬁsﬁ%}t at the
exponential rate, ag; — +oo. The boundary layer correctar;, has been designed in



order to compensate the terms of ordesn the right-hand side of the equation, which
come fromV}; andyy;, being substituted into the equation.

Now the formal expansion is defined and we can proceed withyjungy the obtained
formal asymptotics fo#.. We would like to emphasize that the functiorisandV; are
introduced to satisfy the boundary conditionsIoh up to the second order i while
Vs, ¢r, andi;, serve to guarantee the required accuracy and will not show the final
expansion (see Proposition 3.3 below).

Our next goal is to prove the following statement.

PrRoOPOSITION3.3. Denote by the first-order approximation df.

B@
‘/1€(t7$7§) = ‘/O(twrag—'_ -
(3.19) €

© ©
e N (S) 0 Vit €+ ) + VAt @, E+ 1) e Vi, €).

€
Then, forz such thatr;, € I € (—1, 1) and fort > 0, the following estimate is valid:

(3.20) /|VE VR < Ce
Q

with the constant’ depends orist(x, ' UT™), A, d and is independent af

PROOF Let us substitute ansatz (3.13) into (3.10) and computdideeepancy.
PO (We = Vo) + Ag"(W. = V)

321) =Rt &yn) +edivy(@®)Vea(t e & y.m) .

~ - . :%@
+52R2(t,x,§;n)+53R3(t,x,§;77)‘ Lo §=§+%t,
Yy=2n=z

where

Ri(t,x,&y.n) = —pe(m)dVi(t, z,£) — po(n) N (n)dde, Vo(t, ,€)
—po () N;(4)9:0:, Volt, ., €) — pe(n) B0 Valt, x, & y,m)
+dive (a® () V, Va(t, 2, & y,m)) + dive (a® () Ve(N* () - VeVa(t, 2,€))
+dive(a® () Ve(N(y) - VaVo(t, 7€) + dive (a® (n) VeVa (L, 2, )

~ ~ (C]



Ra(t,2,&m) = { (@ — aSn)(enm) — &)
—0, (@5 () (Wi () — bix)) — a$)(1) Dy ()
(82 = B2 () (warln) — i) |

ﬂ@

Xagjaéiagk (afd(‘/o - (I)O) (t7 z, f + ?t)

§d1>7

Rs(t, z, ; n) = (pe(n)as; — a?z)(%‘k(ﬁ) — i)

ﬂ@
Xa&lafja&afk <8§d(% - @0) (t’ z,§ + ?t) §d1>’
Notice that, in view of (3.14) and (3.18),

/Rl(t,x,g;y,n) dn = 0.

Y
Thus, there existg (¢, =, £; y, 1), periodic iny, such that

—div,x = Ri(t,z,&y,7).
Consequently,

© ©

Rl (ta :L‘7£ + %ta Y, g) = _€d1V§X(t7 z, 5 + %t Y, g)

66
—|—€diV§X(t, X, f + ?t Y, 77)

o |

n=

It is easy to see that, for sufficiently small

(S
/[x(t,x,§+%t;y,§)}2d£§0//[Rl(t,:c,f;y,n)fdn%
QY

Q

with the constanC independent of. To estimate the norm on the right-hand side of the
last inequality, we notice that each termin is a product of the form
B@
Fy,m) 905 Volt, 2, € + 1)
with a bounded periodic functiof(y, ). Hence, itis sufficient to estimate the derivatives
of the functionVj,.

Since the effective operator has constant coefficiebgds given by the explicit for-
mula




Denote byK(t, z, £) the Green function of the effective problem
Oww(t,z) = div(a”"Vw(t,x)), (t,z) € (0,T) x Q,
(3.23) w(t,z) =0, (t,z) € (0,T) x ([- UTH),
w(0, ) = wp(x), x € S
By the maximum principle,

(z —¢) )7

t

C
Ko(t,2,€) < o(t,2,€) < 775 exp( =70
and, thus,

C _ )2
Volt @, €) = o(t, 2, &) — Ko(t, 2. €) < Wexp(—%(x tg) ).

The last estimate together with the local estimates for énevakives ofl, (see, for exam-
ple, [11]) imply

(3.24) OO Vo(t, 2,8 < Ce " >4 >0.
t¥¢

Consequently,

6@
[ e+ o HPac<c
Q
Multiplying equation (3.21) byV. — V,, integrating by parts and taking into account (3.7),
exponential decay of the boundary layer correctors, (3a#)(3.24), we obtain

(3.25) /|W€ —V.|Pde < Cet, t>0.
Q

Note that due to the presence of the boundary layer coredtor boundary conditions on
' NI~ in (3.10) are satisfied up to the second order.it is left to notice that for > 0
andz € Qsuchthatry, € I € (—1,1)

[ Wt = Vit )P < €

Q
whereV7 is the first-order approximation éf defined by (3.19). Combining the last two
estimates yields the desired result. Proposition 3.3 igqato O

We turn back to the asymptotics éf. (¢, z, £). Let us recall that

Ko(t,z,&) = Po(t,x, &) — Vo(t, x,§)

is the Green function of the effective problem (3.23). THfeing lemma constitutes the
main result of the section.



LEMMA 3.4. Assume that conditionsA1) — (A2) are satisfied. IfK. is a Green
function solving(3.9), then, fort > t, > 0 andz € Q such thatz; € I € (—1,1), the
following estimate holds:

[1ketta.0) - KiGn+ T aypag < o
Q

where the constant' depends orlist(x, '~ UT'") and is independent af K is a first-
order approximation of<, given by

= ~ T

Kf (t7 xz, 5) = KO(ta L, 5) +e N(_) vaO(ta L, 5)
(3.26) ¢ N ° L o

+€ N(g) V§K0(t, xz, f) +€ Kl<t7 xz, f) — € ‘/bi(t? xz, 5)7 g = f =+ ? t7
Ky is the Green function of the effective probl&®3) N, N* are the solutions 0{3.11)
(3.12) respectively. The effective convectithh= [, b2 (y)dy with 57 = 0. The function

K, (t, x, &) satisfies the problem
O K (t,x,&) = dive(a Ve Ky (¢, 2,6)) — F(t,x,6), (1,§) €(0,T) x Q,
Ki(t, 2, &, +1) = 9% 0, Ko(t,z, &, £1), (t,&) € (0,T) x R,
K(0,2,8) =0, £e
where
F(t,x,8) = 0¢,06,0¢,Vo(t, x,€) / (a0, Q5

Y
+apgN* + b Q;; — By pe@Q;; — a5y pe Ni] dn.
The boundary layer correctdr; is defined by3.17)

3.4. Asymptotics ofu®(t,z). Recall thato® as a solution of (3.4), is represented in
terms of the Green functiofi, as follows

O (§4+1)
vltn) = [ Ko uf@ gt (E) e
Q
Obviously,
O (§q+1)
ve(t, x) :/Kf(t,x,f) uo(f)pél(g) e e dE
(3.27) @ o (egt1)
+ [ - KD e (£) = e
Q
where K5 is the first order approximation df. given by (3.26). Suppose that the initial
function is such thatg(z/, £1) # 0. The caseu (', £1) = -+ = 9 up(a’, £1) = 0,

9¢ ug(x', 1) # 0 can be considered similarly. With the help of Lemma 3.4 wareste



the second integral in (3.27). Taking into account the bednéss opg, and expanding
ug into Teylor series in the neighbourhoodgf= —1, we have

[ = K pe! () e
Q

+oo
<Cé / uo(é’,—l)dé’/e‘ezddzd§053.
0

Rd-1

Our next goal is to derive the asymptotics for the first indéégr (3.27). Denote

’Ug(f) — Uo(f)pél(g) €_®(E§l+l) .
Then, by (3.26),
B@
1= [ i@ ds = [ Koo - Trg) vice) de
¢ 5
+e N;(E) 8§jK0(t, i ?t, §) v5(§) d¢
/ S)
+e [ v (%, gd: 1) 85dK0(t,x — %t, f) o v5(&) d€
(3.28) N g0
Nj(g) O, Ko (t,x — ?ta &) v5(€) dg

Ki(t,z — ?t, §) — 0 O, Ko(t,x — ?t, 3)

+
™

e de

U+(§’ de_l) — 0" O, Ko(t,x — ?t,ﬁ)

/N N

+
™M

+
S e P T P P P~

£d:l) v (€) de.

Notice thatk, (¢, z — ?t, §) = Ko(t,z, &+ ?t) sinces? = 0 andz’ live in R4-1,



ExpandingK, andu into the Teylor series with respect §g, fort > t, > 0, we
obtain

B@
[ Boltir = g (e ag

Q ﬁ@
= / Uo(gl, —]_) 8§dK0 (t,l‘ — ?t,f) gd:_1d£/
]Rdl—l
< [l e (G e " g+ 0
-1
(S}
= ¢? / uo(€ _1)8§dK0(t,:zc — %t,f) éd:—1d£/
Rd-1
+oo

The integral

é‘/
/ Za Do (g, Zd) e 9%z,

is £(0, 1]~ 1-periodic with respect tg’. By the classical mean-value theorem (see, for
example, 1)),

ﬁ@
[ Boltir = e vi(e) ag

Q
(S
= &2 / up(&', —1) g, Ko (t, x — %t, 3) . de¢’
a=—1
Rd—1
+o00
X / / zapg (2, 2a) €O dzg d2 + O(e%).
(O,l]d_l 0
By similar arguments,
(€ 8° .
NG (2) O, Ko (0 = —,€) v5(€) dg
Q
B@
=¢? / uo(€', —1) g, Ko (t, x — ?ta £) ; dg’
a=—1

/ /N* e 9% dzyd2 4+ O(e%);

Ol]d 10



and

’ ©
/0(27 gd;‘ 1) agdKo(t,l' - %taf) US(&) df
Q

©
"o [ vt g

Rd—1
+oo

X / / v (2) pe'(2) e ®%dzydz’ + O(%).
(0,1)4=1 0
Noticing that/,|, | =0~ 8, Ko|, __,, andd,, Kol __, = 0, one can see that the last
two integrals in (3.28) are of ordet. We would like to emphasize that, in view of (3.16),

the terms containing boundary layer correctors agaare negligible.
Finally,

dg’

&a=—1

vi(t,x) =e* M / up(&', —1) O, Ko (t, x — ?t,g) o 1d§' +0(e?),
Ri-1
where the constant/ is given by
+o0o
M = / / (20 + Nj(z) + v (2)] po' (2) e O*dzg d2'.
(0,1j4=1 0

To summarize, we formulate the following theorem.

THEOREM 3.5. Suppose that conditiorfg1)-(A4) are fulfilled,b; # 0 (see(3.3)) and
uo(2’,—1) # 0. Then, fort > t, > 0, the asymptotics of the solutien of problem(3.1),
ase — 0, takes the form

e
g) [u(t, T — %t) + Te(t,l‘)],

wherer.(t,z) < Ce, fort > t, > 0 andz € Q such thatr, € I € (—1,1), and the
constantC' depends owist(x, '~ UT™T).

S S)
u(t, z — %t} =M / up(&',—1) 9, Ko (t, = — %t,f)

Rd—

_ MOt Og+l)

ui(t,r) =e*e "= e ¢ p@(:c

¢’

Ea=—1

and the constant/ is given by

+o00
M= [ [ [t N+ @] M) O,
(01]4-1 0

A1(©),pe have been defined in Section 3.Kj is the Green function of the effective
problem(3.23) N is a solution of the cell probler8.12) v~ is defined by3.15) The



effective convectiofi® is defined by
80 = [ s, 5 =0,
Y
with b given in(3.6).

REMARK 3.6. Inthe casey(z', —1) = - - - = 9 'up(a’, —1) = 0anddt ug(a’, —1) #
0 for somek, the asymptotics oi° takes the form

_ MOt Oyt x

ﬁ@
e < p@(g) [u(t,x — ?t) +r5(t,x)],
wherer.(t,z) < Ce,fort > t, > 0 andx € Q such thatr, € I € (-1,1); C =
C(dist(xz, - UTT)).
3° M , 3°
u(t, z — ?t) =2 8’;du0(£ ,—1) 85dK0(t,x - ?t,g)

Rd—1
and the constant/ is given by

ut(t,x) = e* e

dg’

&a=—1

M = / /(zd)k (24 + Nj(2) + v (2)] pg'(2) e @ dzy d2'.

(071}d—1
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Homogenization of spectral problem for periodic elliptic gperators
with sign-changing density function
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ABSTRACT. The work deals with the asymptotic behaviour of spectraaobad order
self-adjoint elliptic operators with periodic rapidly a@i¢ating coefficients in the case
when the density function (the factor on the spectral patarpehanges sign. We study
the Dirichlet problem in a regular bounded domain and shawttie spectrum of this
problem is discrete and consists of two series, one of thewmistéowardst+oco and
another towards-oco. The asymptotic behaviour of positive and negative eigeiesa
and the corresponding eigenfunctions depends cruciallylether the average of the
weight function is equal to zero or not. We construct the gsipitics of eigenpairs in
both cases.

Keywords: Spectral problem, sign-changing density, homogeninatio

1. Introduction

The paper focuses on the homogenization of the Dirichlattsplgoroblem

, x T :
1.1) —div (a(g)Vu> = p(g) Au in,
u=0 onos,

stated in a regular bounded domd&mnC R" for a second order symmetric uniformly
elliptic operator
L° = div <a(f)v>

g
with periodic rapidly oscillating coefficients,being a small positive parameter.
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Regarding the density functignwe assume that it is periodic and changes sign, that is
both the set§x € Q : p(z/e) < 0} and{z € Q : p(x/e) > 0} are of positive measure.
The last assumption makes the problem under consideratiostandard.

It is shown that for each > 0 the spectrum of (1.1) is discrete and consists of the
following two infinite sequences

0<ATT <A< <X < lim A5 = 400,
j—0o0
and
0> A >N > >\ > lim A\ = —o0.
J joyoo

The asymptotic behaviour of the eigenpairs depends ctyaalwhether the average pf
IS positive, or negative, or equal to zero.

Previously, a spectral problem with sign-changing denfgitythe Laplace operator
has been considered ih(); in this work the limit behaviour of spectrum has been stddi
under the assumption that the density consists of a fixediyp®giart and asymptotically
vanishing negative part.

There is a vast literature on homogenization of spectrdilpros in the case of point-
wise positive weighp. These problems have been studied] [8] and then in many
other papers. The homogenization of spectral problemsriofaéed domains has been
studied in [L3] followed by many other works on the subject. The limit bebav of
spectrum of elasticity system in perforated domain has beasidered in12]. In [4] the
authors have generalized the results obtained Zhljy making weaker the assumptions
on the regularity of the inclusions and external forces.

The spectral problems for locally periodic symmetric setorder elliptic operators
with large potential have been studied it].[ The work [2] dealt with the asymptotic
behaviour of spectrum for a periodic symmetric ellipticteys with large potential.

As was noticed above, the asymptotic behaviour of the spacttepends crucially
on the sign of the average pf In the present paper we construct the asymptotics in the
following cases.

I. 1f the average op is strictly positive, then the positive eigenvalues andctbreesponding
eigenfunctions show the same regular limit behaviour asercase of point-wise positive
spectral density. Namely, for any> 1 the eigenvalué\j’+ converges, as — 0, to the
j-th eigenvalue of the limit spectral problem. The correspog eigenfunctions converge
along subsequences.

I1. If the mean value op is equal to zero, then the limit spectral problem generates a
quadratic operator pencil, and the eigenvam}eé,j =1,2,..., are of order /¢ so that

the normalized quantiti&s\j’+ converge to eigenvalues of the limit spectral problem.



2. Problem setup

Let) be aC?° bounded domain iiR? with a boundary)). We consider the following
spectral problem:

2.1) { Louf(x) = —diV((LE(x)VUE(x)> — F@) N u(z), zEQ,
u*(z) =0, x € 082,
where i )
a*(2) =a(2), p()=p(), >0

Herea(y) is a symmetriel x d matrix satisfying the uniform ellipticity condition
d
D ai(y)&g; > Mg, € eRY,
i,j=1

for someA > 0. We assume that;;(y) € L*(Y) are periodic functions (from this
time onwardY” denotes the periodicity cellj(y) € L>*(Y') is Y-periodic and changes
sign, that is the setéy € Y : p(y) < 0} and{y € Y : p(y) > 0} have positive
Lebesgue measures. The weak formulation of spectral profdlel) reads: to find® € C
(eigenvalues) and® € H}(Q), u® # 0, (eigenfunctions) such that

(2.2) a-(uf,v) = X (p°us,v)q, v € Hy(S),

wherea.(u,v) = (a°*Vu, Vv)gq is a bilinear quadratic forny;, ), is a scalar product in
L?(2). Since functiorp® changes sign, problem (2.2) is not a standard spectralgambl
and the existing results on the spectrum of semi-boundéa@dglint operators with com-
pact resolvent do not apply. To overcome this difficulty, wduce the studied problem
(2.2) to an equivalent spectral problem for a compact sgjthtat operator.

Denote byH a space?} () equipped with the norm

(2.3) |l = (u, u) = ac(u,u).

The bilinear form(p°u, v), on ‘H defines a bounded linear operatét : H — H such
that

(pPu,v)q = (Ku,v).
By definition, the operatoiC® is symmetric and its domai® (k) coincides with the

whole spacé, thus it is self-adjoint. Using the representatiorkéi, as a solution of the
boundary value problem

—div <a5(:p)V(lC5u(:p))> = p(2)u(z), =€,
Keu(z) =0, x € 08,

(2.4)

and the compactness of the imbeddf§)(?) in L?($2), one can see th#t* is a compact
operator.



In terms of the operatd€® problem (2.2) takes the form
(2.5) Keu® = pfu®, pf=1/)M.

REMARK 2.1. Note that in the casg(y) > 0 the operator* is positive and its
spectrumo (K¢) belongs to the segmeffii, k°] C R, k¢ = ||K¢||. Moreover,u = 0
belongs to the essential spectrapi/Ce).

Recall that the essential spectrum of a self-adjoint operais by definition
0.(A) = 0,°(A)Uo.(A),

whereo°(A) is a set of eigenvalues of infinite multiplicity and(A) is the continuous
spectrum (see, e.g3]).
The spectrum of the operattiF is described by the following statement.

LEMMA 2.2. Let p(y) be such that the Lebesgue’s measure of the sets whese
positive and negative is greater than zero, in other words

(2.6) Hy: ply) s 0} >0.

Theno(K?) C [—k%, k%], k¢ = ||K¢]|; the pointu = 0 is the only element of the essential
spectrunv, (K<) (see, for exampld3]). Moreover, the discrete spectrum of the operator
K¢ consists of two infinite monotone sequences

Mi7+ZM§7+Z"'ZM;7+Z"'_)+O7

£,— £,— £,—
py Spy << <-ee = =0

Proof. Since the operatoK® is compact and self-adjoint, its spectrunikc) is a
countable set of points IR which does not have any accumulation points except maybe
for ;o = 0. Every nonzero eigenvalue has finite multiplicity.

Let us show that the familie@pj’i} are infinite, and, thus, convergetoWe make use
of the minimum principle (se€3]) which implies that the eigenvalu¢$i can be found
from the formula

,u;’i = max +(K° u, u),
(u,u)=1

where the minimum is taken over vectarss ‘H which are orthogonal to the linear span

of {u "}, anduji is a point on the unit sphere # at which the minimum is attained.

In particular, for the first negative eigenvalug™ we have
e 1 ]CE — 1 € .
T e = i (e
Due to our assumption, the measure of theldet= {z € Q : p°(x) < 0} is positive.

Denote byy(M7) the characteristic function df/;, and lety be aC§°(R™) function such
thate > 0, p(z) = 0if [z| > 1; [, e(x)de = 1. We setps(z) = § "¢(x/d). Then



Xs(M) = x(M§) * @5 converges to¢(Ms) in L(2) asé — 0. As usually, the sigrf * 7
indicates the convolution of two functions, that is

Xs(M7) = /x(Mf)(:z: — 2) ps(2) dz.

Rd
If we choose a constang such that

ca(xs(M7), xs(MF)) = 1,
then the functioryys(M<) can be used as a test function in the expressionfor, and
thus
T < (o X (M), xo(M7))a —— cop™X(M), x(M]))a

Hence, in view of definition oft/¢, the last expression implieg™ < 0.

The second eigenvalue can be found from the formula

py = <mi)r}1 (Kfu,u) = (mi>gl (P u, u)gq.
<u,u’i’7):0 (u,u’i’7>:0
It is not difficult to see that the set
O={we H;(Q): (w,ui”") =0, (p°w,w)q < 0}

is not empty. Indeed, it suffices to consider two function&j{<), says(z) andys(z),
with disjoint supports such thgp*1, 7)o < 0 and(p°¢3, ¥5)q < 0. Choosing a suitable
linear combinationy; 1§ + .15, one readily gets an element®f This yieldsu; ™ < 0.

In the same way one proves that for any> 1 the set

{we Hy(Q): (p°w,w)q <0, (w,uy™) =0, k=1,...,m}

Is not empty. Thus, we have shown th@t‘ < 0 for anyj.
Due to the compactness &Ff, for anye > 0 we have

lim ;" = 0.

J—00

Similar arguments for positive eigenvaluejs* give the desired statement. Lemma 2.2 is
proved.OJ
Taking into account the relatiqlmj’i = 1/)\?*, we obtain the following theorem.
THEOREM 2.3. Under the assumptioR.6) the operatorL® has a discreet spectrum
which consists of two sequences
27 0<AF <A < ST < oo,
' 0>A 7 >A7 > >\ > o0,

The corresponding eigenfunctioajs,i satisfy the orthogonality and normalization condi-
tion

(2.8) WS usF) = 6,5,

i Yy



3. The casep) > 0

We represent a solutign\®, ) of problem (2.2) in the form
w (1) = u’(x) + £ N(y)" Va'la) + wle,y) -,y ==,
AE — )\O + e 7

hereN(y) andw(z,y) areY -periodic iny. Let us substitute ansatze (3.1) into (2.1) and
collect power-like with respect te terms. This yields the following problems on the
periodicity cellY":
(3.2) —div,(a(y)VyNi(y)) = divyar(y), k=1,...,d, yeY,

' Ny € HL(Y),

(3.1)

wherea.;, is akth column of the matrixi(y),

~div,(a(y) Vyw(z,y)) = dive(aly) Vo (2)) + Xp(y)u’()
+div, [a(y) V(N (y)" Vou'(z))
tdiv, [a(y) Vo (N ()" Voul(2))

w(zx,y) is periodic iny.

~—

(3.3)

If the mean-value of the right-hand side in (3.3) is equaki@zthen a solution of periodic
problem (3.3) exists and is unique up to an additive congsaat, for example, Section 1.1
in [15]). The compatibility condition in problem (3.3) reads

[ fdiva(a() V(@) + Xply)a(o)
Y
+div, [a(y)V, (N (y)" Vau'(2))]+
+div, [a(y) Vo (N(y)" Vou'(2))] } dy = 0.
From the last equality one derives the following equatianftiz):
(3.4) L£romyd(z) = —div(a®™Vul(z)) = X2 (p) u(z), =€,
' u(z) =0, xe€d,
where the constant matri®°™ has the form
(35) o = [ fa) + aly)V,N )] do

Y
in other words,

agam / [aij (y) + azk(y)aykNJ(y)] dy7 Za] = 17 sy d.

Y

This matrixa"™ is symmetric and positive definite (see, for instarics)|



In view of Remark 2.1, Dirichlet problem (3.4) has the digtrgpectrum
(36) 0< AT <A< <N < oo

Note that the first eigenvaluléf”r is simple (see, for exampleg]). The corresponding
eigenfunctions can be chosen to satisfy the orthogonaidiyrermalization condition

(3.7) (ahomVu?’Jr, VU?7+)Q = (p) |)\?’+| (u?’+, u0’+)Q =0, t,j=1,..4d

j
REMARK 3.1. SinceQ is aC?’ domain, thenu)™ are C2°(Q2) functions (seef]).
Moreover, in the interior of the domain the eigenfunctiona?”r areC'* functions (see

[6]).

The next statement characterizes the asymptotic behavfdbe positive part of the
spectrunv (L°) ase — 0.

THEOREM 3.2. Assume that,;;, p € L>(Y) are periodic functions, andp) > 0.

Then the following statements hold true:
(1) Let A?’* be an eigenvalue of the limit spectral problem (3.4), andiassthat the
multiplicity of \? is equal tos¢], 57 > 1, so that\)} < A0+ = A2 = ... =

A%* < \”F .. Then there exist; > 0 and a constant; such that fors

J4s —1 4
eigenvalues\s'™, - - - | Aj’jﬁ_l of problem (2.1) and only for them the inequality
holds ’

AT — )\?’+| <c;et? e (0,¢).
Moreover, forg ¢ {j,j +1,...,j + %j — 1} the inequality holds
Aot =X >, ee(0,gy),

with somez; > 0.
(2) There exists an unitary;” x »;” matrix 3° such that

s —1
@8  |ut- D 8, U7 <G’ p=j e -1
h= H(©)
where
(3.9) U (z) = ud™(2) + e N°(2)T Vaul T ().

Here N°(x) = N(x/¢), the vector-functionV(y) is a solution of problen{3.2);
the eigenfunctionﬁsg’+ of limit spectral problen{3.4) satisfy normalization con-
dition (3.7). N

"Almost eigenfunctions” U; "} are "almost” orthogonal and normalized in
the sense of the following inequality:

(3.10) (UF USTY = 6| < C V2,



REMARK 3.3. Since/\(f’+ is simple, then by Theorem 3.2, for sufficiently smathe
eigenvalue\; " is simple as well.

Theorem 3.2 can be also reformulated as a convergence.result

COROLLARY 3.4. For the positive eigenvalug?.7) and (3.6) the following conver-
gence result holds:

AT AT, e

07+ - . €7+ - - - . . .
If A Tis simple, then\>"" is also simple and the corresponding eigenfunctions getiief
relations:
e, +

o u; — uOJr strongly in L*();
e—0

o W —e(N)' VUt — W strongly in H'(Q);

o aVui" — atom Vu“ weakly in L*(92), where(-) denotes the mean
e—

value overy'.

The proofs of Theorem 3.2, as well as Corollary 3.4, are simd the proofs of the
corresponding statements in the case= 0 but a little bit less technical, that is why we
omit them here.

REMARK 3.5. Theorem 3.2 also applies to the negative part of thetspedn the
case(p) < 0. Indeed, it suffices to replagewith —p in (2.1).

4. The asymptotics of spectrum in the casép) = 0

4.1. Preliminary notes. We begin by estimatingki’ﬂ from below. Multiplying the
equalityCeus " = X" p7ust by u" and integrating the result ovex, we obtain

(4.1) /(Vui’Jr)TaE(Vui’Jr)d:c = )\i’Jr/p (us ") du.
0 0

Since(p) = 0, there is a periodic vector-functioh € (L3 (Y))" N (H,(Y))" such that
p(y) = divJ(y) and(J) = 0. This yields

e, + g,+ e, + f T e, +

D Vdr =2¢e )y uy (x) J . Vui ™ (z)de <
Q Q
<05AE+/|U D) [V 15+ (@) do < Ce Xt [V oy

Combining this inequality with (4.1), we conclude that™ > ce 1, ¢ > 0. Similarly,
AT > e



Let us show that if p) = 0, then|\5*| < Ce~'. To this end we use the variational
principle (see, e.g.3]):

(4.2) AoF =+ min /VTU(ZL‘) a®(z) Vu(z) dz.

Denote
vi(z) = () [+ e p(2)],
with ¢ € C§°(2), ¢ # 0. We choose the constaritsuch that

1= (05)2//)5(«%’) (e(@))* [1+ 28 p*(2) + & (p°(2))] da.

Q

Using again the representatigiy) = div.J(y), neglecting the terms of orde?, and
integrating by parts, we obtain

1= (e [ {divd () (pl@))? + 206" (@) (¢())? + O(e)} do =
(4.3) Y
——@{= [ (1) Ve de 42 [ (@)t + 0 |
Q Q

€

Since(J) = 0, each component of this vector-function admits the reprtesien ./, =

divJ,,, whereJ,, are periodic vectror-functions. This allows us to integray parts in
(4.3) once more and to derive

1= (c)*(2e (p°) [l¢ll72(@) + O(?)).
Therefore,
e -1
(€)= (2 (p°) l@lZ2)  +O(e)
Takingv© as a test function in (4.2), one sees that
AT < /VTva(x) af(z)Vo(z)de < Ce .
Q
The negative eigenvalug’~ can be estimated in the same way.
4.2. Formal asymptotic expansion.Bearing in mind the estimates from the previous
subsection, we are looking for a solution of problem (2. lthiform
u (@) = u(@) + e wi(m,y) + P un(wy) £, Y=

9
)\628—11/_'_'."

I

(4.4)

wherev, u°(x), ui(z,y) andus(x,y) are to be determined. We suppose thdt:, y) and
us(x, y) areY -periodic iny. Substituting asymptotic ansatze (4.4) into (2.1) antecting



terms of ordee~!, we obtain the following equation for the unknown functioriz, v):
—div, (a(y)Vyu (2,y)) = divy (aly) Vou'(2)) + v p(y) u’(z), y €Y,
uy(z,-) € Hy(Y).

Note that, since(y) is periodic andp) = 0, the compatibility condition is satisfied and
the last problem has a unique solution of zero average. Téwfapform of the right-hand
side of the equation suggests the following representétiotine solution:

ui(z,y) = N(y)T Vou(2) + v N(y) u’(2).
Thus, the unknown vector-functiaki and the functionV® solve the problems
@5 { —div,(a(y)VyNi(y)) = divyar(y). k=1,..d, yeY,

N € H#(Y),

wherea.;, is akth column in the matrix:(y),

{ —div,(a(y)V,N°(y)) = p(y), y€Y,

N e HL(Y).

Notice that the compatibility conditions in problems (4ab)d (4.6) are satisfied.

Then, collecting the terms of ordet, we get an equation for the functien(x, y) on
the periodicity cellY’, namely

( —divy(a(y)Vyus(z,y)) = div, (a(y) V(N (y )TV u (
+vdiv, (a(y)qu (x )NO ) + div, (a(y)

(4.7) +vdiv, (a(y) VyN(y) u’(z)) + div, (a(y) V )
+vp(y) N(y)" Vou'(2) + 12 ply) NO(y) u’(z )7 yey,

[ ua(z,-) € Hy(Y).

Owing to the periodicity of the matrix(y), the vector functionV(y) and the function
N°(y), we have

/divy (a(y)Va(N(y)"Vu(2))) + vdivy (a(y) V,u' (z) NO(y)) dy = 0.
Y
Thus, the compatibility condition in problem (4.7) reads

v, { [ () + atn) TN ) dy Vi)

(4.6)

)+

)
() +

(4.8) -l—l/lez{}[a ) VyN( )dyuo(w)}+

/ ply) N ()T dy V,u(x) + 2 / ply) N(y) dyu(z) = 0.

Y Y



Let us rearrange (4.8) using equationsfoand N°:

/ p(y) N(y)" dy = — / div, (a(y)VyN°(y)) N(y)" dy
(4.9) Y Y
~ [ VIN'W)an) VN )" dy,

Y

divx{ / a(y) V,N°(y) dyuo(«%’)}

Y

(4.10) — divz{ / div, (a(y)V,N(y)") N°(y) dy uo(x)} =
- — / V}No(y) a(y) VyN(y)" dy,
v / ply) NO(y) dy u’(z) = =17 / divy (a(y) VN (y)) N (y) dy () =
@ [ Vi at) v,80) Iye) = 7 0(),
where we have set
(4.12) K? = / V, V() aly) V,N°(y) dy.

Y
Notice that the sum of the right-hand sides in (4.9) and (Mid@qual to zero. Conse-
quently, (4.8) (supplemented with an appropriate boundanglition) takes the form
L£romy0(z) = —div, (a"V,u(z)) =12 k2 u%(z), €,
u(z) =0, =€,

with a positive definite symmetric homogenized matrix™ defined by the formula

(4.19) o = [ (aly) + (o) VN ) dy

Y
Although (4.13) is a spectral problem for a quadratic ogerpéencil with respect to, it
is not difficult to characterize its spectrum introducing trew spectral parameter= 1.
Indeed, the spectrum of (4.13) consists of two sequences

(4.13)

0<F <yt <o <l < oo,
(4.15)

O>I/§J’7>yg’*2~'21/?’7>-~-—>—oo.



with )"~ = =", j = 1,2,..., and with the corresponding eigenfunctiar)s” = v~

In what follows, omitting the indices:, we will denote themu. The notatiors; will be
used for the multiplicity of/)"*.

For the eigenfunctions we choose the following orthogonality and normalization
condition:

(4.16) (a"™Vul, Vu

Although, at first sight, such a choice seems to be odd, itressthe convergence of
energies. It should be noted that the first positive and hegeigenvalues!* are simple.

?)Q + 900 K2 (), u?)g = 0; ;.

REMARK 4.1. Since) is aC*°-domain, then, as in the cage) > 0, u areC*°(Q)-
functions (seef]). Moreover, in the interior of the domai the eigenfunctionﬂ? are
C*°-functions (seeq]).

4.3. Justification procedure in the casép) = 0. Let V?’i be eigenvalues of the oper-

ator pencil (4.13) of multiplicitye; thatis+1)"" < £1)* =+ = = 0l | <
j:u?f%j, and{u)},p=j,---,j+ »; — 1, be the eigenfunctions of the limit spectral prob-

lem (4.13) corresponding tg"*. We denote, = {z € Q : dist(z,0Q) > 7}. Letx.

be a cut-off function which is equal ®in Q2 \ Q., h > Vd, equal tol in Q,., and is
such that

(4.17) 0<xe(z) <1, |Vxe(z) < Ce 1,

The justification procedure will rely on the lemma about "abteigenvalues and
eigenfunctions” (see, for exampléd 4, [12] and [9]).

LEMMA 4.2. Given a self-adjoint operatok® : H — H, letv € Randv € H be
such that

[olle =1, 6= [IK v —volly <y
Then there exists an eigenvalugof the operatorC* such that
i — vl <.
Moreover, for any, € (4, |v|) there exist coefficientds} € R satisfying

c, & 5
lv— ijuj”?-l < 25—17

where the sum is taken over all the eigenvalues of the opeféton the segmeniy —
61,v + 61], and {u5} are the corresponding orthonormalized # eigenfunctions. The
coefficientd; are normalized by [b5|* = 1.

For an arbitrary € {j,...,j + »; — 1}, denote

(4.18) Us*(2) = ud(@) + € xe(2) N(g)T Vul(z) +ev)" N° (g) uy (),



where N(y) and N°(y) solve problems (4.5) and (4.6), respectively. The norredliz
functionsi/;* = ||U;§v+||;[1 Uy and the numberzs(yjo.’*)*1 will play the role ofv € H
andv € Rin Lemma 4.2. Notice thaWug need not be equal to zero on the bounday
the cut-off function has been introduced in order to makeagyyoximate solution (4.18)
an element of the spaGé.

We are going to estimate

0,+\— , . , 0,+\— , o

|2 U™ — (™) U=, = sup (U™ — () U™ 0)| =
(v,v)=1

0,+\— , — — 0,+ , , .

= () THUSE 15, sup (e LEKTUSE - USE )| =

(v,v)=1

= s(yjq’i)_l ||U§’jc||;[1 81615 ’aE(U;’i,v) — ! I/](-)’:t (,05 U;’i,v)Q’ =
(v,v)=1
0,4

= ()OSR s [(£°U5F — e o)t U w)
v

ol

(v,v)=1

= g(yjqi)il ||U;7i||’;—[1 Slel}_[) }671(13 U)Q + go(IQEa U)Q + 51(I§a U)Q )

(v,v)=1

where
i (2) = { = div, [a(y) V,N (9) V()] xe(a) = div, [a(y) Vou)(a)] -
_ ,,joi div, [a(y)V,N°(y) ug(x)} - I/jq’i p(y) ug(:v)} ’y:x/s =
= —divya.i(y) dpud(x) (1 — x-(2))

)
y=z/e

I5(w) = { = div, [a(y) V, N (y) Vu(@)] x-(2)
—Vox=(x) ay) VyN(y) Vuy(z) —
— 2% div, [a(y) V, N (y) ul(@)] — div, [aly) Vul(a)] -

— 1) p(y) xo(2) N ()" V(@) — (0 5)? p(y) N(y) ug(a) | —e

E@) = { - [div, + £ div,] (ay)V. (- () V@) Vib(@))) —
— I/](-)’:t [divm + 6_1divy} (a(y) N(y) quo(x))}

p

y=x/e



Integrating by parts, and considering the regularityag)fwe obtain

et (I, v)o| =7

/6 V;((l — xe(2)) v(x)) a.i(g) O, up () dx’ <

<c / {o(@)] + [Va0(@)]} (1 - xe(2)) da
N\ Qpe
e / 0(@)] | Vxe()] da.

Q\Qh,s
By (4.17), Lemma 4.3 formulated below, and the Cauchy-Blaysky inequality we get
(4.19) et |(I5,v)a| < CV5;

here we have also used the fact that the measure é1,.. is of orders. The proofs of the
following auxiliary inequalities of Hardy’s type can be fodi for example, in9].

LEMMA 4.3. Letv € H}(2). Then

[Vl 200,) < C V7Vl 2

[v][L2@0,) < Cy IVl L2
Denote byW#oo(Y) a space of periodic functionswith the norm
[Vl ooy = Wl ooy + VOl ooy
LEMMA 4.4. Let (g) be the mean value gf over the periodicity celt’, f € H'(Q)

andg € L*(Y) (or, alternatively,f € W,>(Y) andg € L'(Y)). Then the following
inequality is valid:

< Cellfllgll

[x@i@aE)de =g [ s

Q

with the corresponding norms of the functighandg, the constan€' does not depend on
e, fandg.

The proof of Lemma 4.4 can be found, for example Shdnd [11].



In order to estimaté/s, v), we rearrangé; as follows:

I5(w) = —{div, [a(y) V,N(y) Vol (2)] + dive [a(y) Voud ()] +
+ vy dive [a(y) Vy, N (y) up(@)] + 175 p(y) N(y)" Veup(a) +

H(45)? ply) NO(y) ul() |
— | div, [a(y) T, N (y) ud(@)] + dive [a(y) Vaud(@)] +
O o) N@) )] | (0= xelo)

—Vix:(z) a(y)VyN(y) Vaup(z)

Xe ()~

y=z/e

y=x/e

= fi(@) xe(2) + f3(2) (1 = xe()) + f3(2);

Since the expression in the braces has zero mean (see “e8))y Lemma 4.4, have

(4.20) |(fl5 Xa>U)Q| <Ce.

Taking into account the boundedness of the coefficients,aRem 1, formula (4.17) and
the properties ofV° as a solution of (4.6), one can check up that

[(f5 (1= xe), 0) | < CVEVyNl2@an) 0220020+
+CI0\ Qe ([0l 20e) < C [0 ()

Here|Q2\ Q.| is the Lebesgue measure of theQ&t),,.. By similar arguments, we derive
the estimate

1/2
y=a/e dl‘) ||U’|L2(Q\th)

(5 Vxe) | < O ( / VN )T
Q\th
< CVellvllm).

Consequently,

(4.21) (I3, v)al < C VE.



In view of (4.17) integrating by parts yields

e (IE, v)a| < & / V7o(x) a* () Vxe(e) N7 (%) Vi) da| +

0
+e /VT'U(x) a(2) V(N (y)* Vug(x))}y:x/s Xe(2) dx| +
Q
+e /VT'U(x) a* (z) Vug () No(g)dx <
Q
S C |Q \ Qh5|1/2||VU||L2(Q) + O€||VU||L2(Q).
Finally,
(4.22) le (I5,v)al < C'Ve.
LEMMA 4.5. "Almost eigenfunctions?s* = |US*||;, Us*, p = j,--- ,j + 2 —

1, WhereU;;i is defined by(4.18) are "almost orthonormal”. Namely, the following
inequality holds true:

(4.23) (U UT) = 6,0l <Ce, pg=3,-+ i+ —1.

Proof. 1. First, we calculate the gradient of the funct[@pi:

VU (z) = {qug(x) +V,N(y) Vol (z)

p

Xe () +

y=x/e

F N y) u()

e { V(N () Toud(@) + ¥V, N () ) ], xe ()
+[{ Zaud@) + )V, N ) ) b1 - xo(2)
e N(y) Vaud(@) Voxe(@)|],_, . =
= Xe(2) Ji, (%) + exe(2) 3, () + J5,(2).

Then(Us*, Us*) takes the form
(a/é‘ VU;’i7 VU57i)Q = (a’€X€J16p7 XE‘]laq)Q + €<a€X€J1€p7 XEJ2€(1)Q
+(a’6X€J16p7 ng)ﬂ + 8(a€X€JQEp7 ijlaq)ﬂ + 52(a6X€J26p7 X5J2€q)9
+e(axe S5y, J5,)a + (a°J5,, x=J5,)a + €(a”J5,, x=J5,)a
+(a5J§p, J§q)g.

2. Let us proceed with proving that

(4.24) }(aEXEpr, Xedig)o — 5p,q} < (Ce.



We have

(m%%%ﬁ%:/ﬁ@vﬁwwﬂmWFﬂFWW@M+
Q
+ [ (VI @) aly) + VENW) alo) VN0
y=xz/e

Q
xug(x) Vyud(z) de+

_'_/ VTO {CL T

+(VyN(y)T)T a(y) VyN(y)T} } qug(x) da+

y=z/e
+/X§( ) O:I:vT 0 {(I VTNO
Q
SYING) al) VN0 bl des

+ / () (V)5 VN () aly) VyNO(y)‘ » up(7) uy(x) da

Notice that the mean value of the expression in square bisckencides with the homog-
enized matrix (see (4.14)). Integrating by parts one cawshat all expressions in braces
have zero mean, and, by definition,

/ Vy N°(y) aly) V,N°(y) dy = #*.
Y
Thus, by Lemma 4.4,
(ae ijlapa ijlaq)ﬂ - (a’hom vu27 VUS)Q - (Vjo'd:) K (ug7 Uq) < Ce.
Taking into account the orthogonality and normalizationdition (4.16), we obtain
(a'E X6J1€p7 Xa‘]lsq)ﬂ - 5p,q S Ce.

In particular, theL?(€2)-norm of x..J5, is bounded for a smail > 0:

(4.25) x5 ll72) <1+ Ce < C.
3. At this step we show that
(4.26) (@ VU, VU )q — (a°xe 5y Xe 5 )a| < Ce.

Combining (4.25) with the evident estimate

52/ 2(z) (J5, () da;]<og

Q

(4.27)




we obtain

(4.28) 2| (0 e S5y xe J5, o] < O

From (4.17), Remark 4.1 and the bougtl\ €2;.| < cz, it follows that
175,720 < /(1 — Xe(2))? ([Vaup(z)[?

Q
+V§)’i|VyN°(y)l2’ (up(x))?) d

p
y=z/e

w2 [ IV (N /o) Vo)
Q
<O\ Qe| +e 42722\ Qe]) < Ce.

The last estimate together with (4.27) gives
(4.29) e|(a® Xe 5,0 e < C 2
As regards to the terfu®x. J5,, J3, ), it is not difficult to show that

(4.30) )(aEXEpr, ng)ﬂj < Ce.
Now (4.27)—(4.30) imply (4.26) which, in turn, together w{d.24) leads to the inequality
(4.31) (a°VU;*, VU )q — 6,4| < Ce.
In particular, the last estimate yields
(4.32) U545, > 5. < € (0,c0).
Sincel(s* = ||US*|;! Us*, we have
U ™) = 8y = U512 [(U, U ) = WU 1, 8| <

< U132

(U=, Ug™) = Opa| + 110513 Opg
The last inequality, (4.31) and (4.32) resultin (4.23). lneans proved

Taking into account (4.19), (4.21), (4.22) and (4.32), weaobthe estimate
(4.33) KUy ™ — e ) us*||, < C ¥

By Lemma 4.2, there exists an eigenvap.g]é of the operatok’¢, whereg; might depend
oneg, such that

(4.34) gt — ()57 < C M2

J

L= U515

Since); ™ = (u;*)~", there exist; > 0 and a constant; such that

\)\fl;i - 5’11/?’i\ <cie V2 e (0,¢g).



Moreover, lettingd; in Lemma 4.2 be equal t6, 32 (the constan®; will be chosen
below), we conclude that there exist&a(c) x s; constant matrixy® such that

Jj+KJ(5) 053/2
P@i— > aput|| <2 <O p=je it L
k:Jj H

=+ . . .
her_euf,j(s), ,,uJ (6)+K;(=)—1 A€ all the eigenvalues of the operaktr which satisfy the
estimate

(4.35) ™ — () < 0;2%

Since the eigenvalue1§i do not depend om, one can choose the constaa;s>
0 such that the interval$s(z/?’i)*1 — 0;e%2, (V) )t + ©;e%2) and (e ( +)-1
Or??, (V)™ + ©,%?) do not intersect under the condltmﬁi # v>F ande <

mm{gj,gk}. Then the eigenvalue sefg;*} related to different"* in (4.35) do not
intersect for a smah.
Thus, we conclude that, for anv)?’i of multiplicity »;, there existi ;(<) eigenvalues

Ao of problem (2.1) such that
(4.36) leXT =) <962 2 e (0,gy),
and the functions/:* admit the approximation

Jj(e)+K ()1

e,+ e &%
up - Z akp Up
H

k=1J;(e)

(437) ‘ SCj@j_la p:ja"'7j+%j_17

Denote.J(j) = min{i € Z* : )* = V?’i}. The main result of this section is given
in the following theorem.

THEOREM 4.6. Assume that,;;, p € L>(Y") are periodic functions, and the function
p has zero mean. L@l?’i be an eigenvalue of the Dirichlet problgi.13)of multiplicity
»;. Then the following statements hold true:

(1) For eachj = 1,2,..., there exist; > 0 and a constant; such that only the
eigenvalues\y . -- Aj(f 45,1 Of problem(2.1) satisfy the inequality

e Ao* — V?’i‘ <cie'? e (0,¢).
(2) There exists a unitary; x %j matrix 5° such that

J(G) 42—

e,+ § : e,+
Up - /ka U

wherep = J(j),- - J(])+%j—1and
(4.39) ﬁ;i( ) = ul(z )+€N( ) Vug(x)—l—au?’iNo(g) ug (z).

(4.38) < Cjel/?

H(Q)




Here the functionsV, N° solve problemg¢4.5)and(4.6), respectively; eigenfunc-
tionsw? of the limit problem(4.13) satisfy the orthogonality and normalization
condition(4.16) N

"Almost eigenfunctions”{U;*} are "almost” orthogonal and normalized in
the following sense:

(4.40) (U™, Up*) = 6| < C V2

REMARK 4.7. Since both?" and."~ are simple, foe € (0,¢,), eigenvalues\;™
are simple owing to Theorem 4.6.

Proof of Theorem 4.6. The proof consists of the several steps. First, we show that
columns of the matrix,® are "almost” orthonormal, and from this deduce tht(c) >
»;. Then we prove thaf;(¢) = J(j) andK;(¢) = »;. Finally, using properties of the
matrix o© we derive (4.38). 1. A simple transformation gives

Ji+K;(e)-1 n
e,+ e,+ = e ,,6 e,+
Ut Uy = (U =S agut Ut
k=J;
Ji+Kj()—1 Ji+K()—1 JitE (€)1
£ E,:l: 57i g, + € I3
+< Z akpuk ) uq - Z akquk > + E : akp akq'
k=J; k=J; k—J.
=Jj

Taking estimates (4.23) and (4.37) into account, we obtain

Ji+K (e)-1
Z A Vg — Opg
k=J;
and, in other words,
(4.41) (a5,)" o, — 0pq| < C O,
wherea?, denotes ath column in the matrix, andp,q = J(), -, () + 2 — 1L

The last mequallty means that the vectfss, }J(] 1 are asymptotically orthonormal.

This property implies the linear mdependence of the vectof,}. Indeed, assume that
{af } U+~ are not linearly independent. Then there exist CONSBNLS - - - , Cr(j)+s;—1

p=J(j)
such that
J(j)+s;—1
Z cras, = 0.
k=J(5)

Without loss of generality we assume that;) = 1 > max;, [c;|. Then

ol D way =0
k>70)

Multiplying the last equality byyij(j) and using (4.41) we obtain the inequality
|(aS)" o] < €505,



that contradicts (4.41) ®, is small. Thus, the vectm{smf} }(”fl of lengthK;(¢) are

linearly independent. Obwously, it is possible only in thaeseKJ( ) > ;.
2. Our next goal is to prove that any accumulating point ofstbquence/\j’i, as
e — 0, is an eigenvalue of problem (4.13).

LEMMA 4.8. Assume that, for an infinitesimal positive sequefigg, there exists a
sequencd j(k)} such that

Ek,t k™
/\J(k k—>_>006 or &pA

Theng is an eigenvalue of the limit proble(.13)
Furthermore, for anyj, perhaps along a subsequenee,; =* does converge to an
eigenvalue of the Dirichlet probled.13)

i 52 P

Proof of Lemma 4.8 Note first that due to the inequalitl;(¢) > »; and (4.36),
the sequencséa)\j’i} is bounded for any. Therefore, the second statement of Lemma
follows from the first one.

Since the eigenpai{r)f’“ i, j’(“ki} solves problem (2.2), integrating by parts yields
(4.42) (WSt s £FV = Xt o7 V), =0, V € Hy().

In view of the normalization condition (2.6), up to a submu converges weakly
in H}(2) to some functiori®:

(4.43) uSty — ut weakly in Hy(9), 5 — 0.

In order to show that is an eigenvalue of problem (4.13), for anyg C5°(2) we substi-
tute into (4.42) a test function in the form

VE(x) = v(x) + eN(g)T Vou(z) + &> A5 No(g) v(x)

whereN and N° solve problems (4.5) and (4.6), respectively. Let us cateuthe expres-
SioNLEVE — A Ve

LVE(z) — N5 pf () Ve ()
— { = diva (ay) Vo0(2)) ~ diva (aly) V,N(y) Veo(2)

— e A Fdive (a(y) VN (y) v(@)) — e A7 ply) N(y)" Vao()
(X ) N o) |

—e [div, + ¢ div,] (a(y) Vo (N (y)" Vio(2)))
—e2\™ [div, + e 'div,] (a(y) N°(y) Voo (2)))

= Ii(z,y)

y=x/e

y=x/e

+ I5(z) + I5(x).

y=z/e



Recalling the definition ofi">™ andx, one sees that the mean value of the expression in
braces takes the form

/If(x, y) dy = —div(a™™Vv) — (e /\j’i)Q/f2 v(z).
v
In view of (4.43), we have

(u jl(ck;;t /If( y) dy),, - HO( u*, —div(a"™ Vo) — g% v(x)),,.
Considering (4.43) and the smoothness,diemma 4.4 provides that
€ € € < _ 1e Xz
( uSt s I — Lfl(-,y)dy>ﬂ =0, =0, Ii(x) =L (:c,g).

Then, integrating by parts and using the boundednes§yofand regularity properties of
N andN°, we estimatéust;, I5)q and(usly, I5)q as follows

(567 15)al| = \ek / VU ot (x) Vx(N(y)Tva(x))’
Q
< Cé‘kHvu HL2(Q < Cey

dx’ <

y=z/ey,

(565 I)al =

£ AL / VI % (@) N°(2) Vaole) de| <
< Capl|Vustiy 2 < (Jgk.
In such a way passing to the limit in the integral identity}@).leads to the equality
(a*, L™ — (B)* K® v), =0, velF ).
Integrating by parts gives
(£romat — (B)* K ut,v), =0, veCP(Q).
Since the spac€°(Q) is dense i} (2), the last equality holds for anye H] (), that
means{ 3, u*} to be an eigenpair of problem (4.13)if # 0. Let us assume thallj’g,j
converges weakly if/1(Q2) to u* = 0, ase, — 0. By the definition of the eigenpair
{)\Ekk) UG i} and normalization condition (2.6) we have

+ + + A+ ept
L= a™ (i witi) = Aty (P u3iy» ity Do

In the same way as in the proof of Lemma 4. 4 one shows that

+ £ £
(a5 o < Carllus el Vit ez

Combining the last two relations and taking into accountetbﬂnatq&)\f(k)\ < C,we
conclude that
,E
Huj’(“k) ”LQ(Q) > C > 0.

Thus,||a*|| > C > 0. We arrive at contradiction. Lemma 4.8 is proved.



Assume thaf{;(ej) > »; for some sequencg — 0. It means that there exist > 0
and at leastr; + 1 eigenvalues}\ek’i of problem (2.1) such that

A = < e U= dilen) o TileR) + 54
Then by Lemma 4.8 the corresponding eigenfunctimj‘is’t converge to eigenfunctions
{uF}77*" of the Dirichlet problem (4.13):
LchomgE = (u?’i)2 KPar, r=1,2,...,+1

It is straightforward to check that the functiofia=}”“*" are linearly independent In
order to prove the linear mdependence of the obtained kigetionsu;~ we consider a

linear combinatior®* = ;’gj”ﬂ au;™, * where the constants are chosen in such a way
thatZ;] *”J lc;|*> = 1. Thena®* is an eigenfunction of*. By Lemma 4.8 it converges
{0 the functioni* — ;]'7'7’ auf # 0, which implies the linear independence of the

eigenfunctions functlon$ul }l’+”7 corresponding to the eigenvalu;—:‘. Therefore, the

multiplicity of v j * is greater than or equal te; + 1 which contradicts our assumption.
Thus, K,(¢) = »;. Combining this relation with the fact that for eaghe Z*, any
accumulating point of the sequem:lej’i, ase — 0, is an eigenvalue of the homogenized
problem, we conclude that

+ 0+
lim 6)\6 =v, ",
e—0 J

This completes the proof of the first statement of Theorem 4.6

3. In order to prove the second statement in the theorem, we dzack to bound
(4.33) and apply the estimate in Lemma 4.2 with= c;¢, c; being a sufficiently small
constant. In our case this estimate reads

e+
up Z akp

keS(j.e)

083/2

1

1/2
§0j8/7

herep =j,--- ,j+;—1; 5(j, ) is the set of eigenvalue,u:‘,;’i of the operatoik’® which
satisfy the estimate

(4.44) g™ = e )Y < ¢je
the constant matrix® is such that
(445) ‘(Q?p)TO[.Eq_ép,q‘ Sngl/Qu puq:J<j)7 7‘]<])+%j—17

From the first statement of the theorem we deduce that focgritly smalls > 0 the set
S(j, ) coincides with the setJ(j), ..., J(j)+s;—1}. Hence, fop = j,- -+, j+¢—1,
we have
J(G)+32-1
U}f’i — Z ag, uzi
k=J(j)

3/2
< 2(]5

H 1

(4.46) ’ < Oyet/?




with s¢; x s¢; matrix o which meets (4.45). It remains to use the following simpégest
ment.

LEMMA 4.9. For anyn x n matrix A satisfying an equality
|ATA-LR" - R"[| =~ € (0,1),
there exists a unitary matri® such that
|AB = LR — R"|| <
herel is a unit matrix and
ID;R" = R[] = sup |[D& R
lesRm =1

We omit the proof of this lemma which can be found % [
According to (4.45) and Lemma 4.9, there exists a unitary. s¢; matrix 5° such that

(4.47) lo® 8° — ;R — R*|| < Ce'/?.
If we denote by/;*, U™ aLndaLﬁi the vectors{us’i,), U )T
€,+ €, :I: ==
U3y Uiy a@nd(ws J(j) USG5y, 1) Tespectively, then
‘ u—:t . BEU?:I: < 2‘ ofuafi 565(];,:&}
H* I M5
e &, e,+ e,+ e,+
<ot~ + o5 -]
ot —acsuzE| <ot
HZ
here we have also used (4.31), (4.47) and (4.46). The lagtatigy implies that
J+%]
Z By U;ﬁ < Cye'l?.

In order to replace her&:* given by formula (4.18) Witl’ﬁﬁ{i defined by (4.39), we
estimate thé?'(2) norm of the difference

U= = Uil = € (1 = xe) (N9 Vg, |
with N¢(x) = N¢(x/¢). Considering the properties @f and N (y), it is straightforward
to check that
(4.48) |USE — US| iy < Ce'2,

which, in turn, results in (4.38).
Lemma 4.5 states that the functioftg;’ i}ﬁ”f corresponding to the same eigen-

valuez/j are almost orthonormal. Lef) be an eigenfunction of the limit problem (4.13)



which corresponds to);*. Using formula (4.4) we construet* = ||Us*|;! Us*. By
(4.33), we have

U™ = (V) U™ + 032, (105l < C=%

KU = (™) U™ +6;5(x), (1651 < C*2

Multiplying the last two relations by/:* andi/>* in H, respectively, and subtracting
them from each other, we obtain

0,+ 0+
1 Y Vm e 7 /€, e 7 /€,
(4.49) Uy Uy*) = S [0, Uz ) — (65, Uz )] < Ce'/2.
J m

This completes the proof of Theorem 4(8.
From Theorem 4.6 we obtain the following convergence result

COROLLARY 4.10. For the sequences of eigenvaly@s7) and (4.15) the following
convergence result holds:
5)\§’i — V?’i, e— 0.
Moreover, ifz/j(»Ji is a simple eigenvalue, the\ii is also simple, for a sma#, and the
corresponding eigenfunctions satisfy the relations:

e,
J

uj’i —5N(E)TVUO €V](~)’:t NO(E) uw) —— u¥  strongly in H'(Q);
5 5

ui* — W) strongly inZ?(Q);
E—

j
i T es0 J
@ Vuit — ghom Vu?+u?’i (a VN ud  wWeakly in L*(%),

J e—0 J
where(-) denotes the mean value ovér
Proof. All the statements, except for the last one, are immediatseguences of

Theorem 4.6. In order to prove the convergence of fluxes, wmate, for an arbitrary
functionv € C5°(€2), the following expression

a <

(chu;’i — ghom Vu? — V?’i (a VN°) u? , v)

< CIVEST = 07 agay 10l 2

+|(a® Vﬁ;’i —a""™ Vu§ — 1/?’i (aVN)ul , v),|-

By Theorem 4.6,

< CheV?,
@)~ 7

HV(uj’i — U5




A straightforward calculation gives
a(y) VU (x) — a*™ Vud(z) — )™ (a VNO) u(z) =

= {(a( y)VyN(y)) —a""} Vauj(z)+

y=z/e

Oi {a(y)V,N°(y) — (a VN°)} u)(z)+

y=x/e

+ea(y) Vo(N(y)" Vaouj(@)) +evyaly) NO(y) Vauj (o)

y=z/e y:z/e'
The first two items on the right-hand side have zero mean, byusemma 4.4

' / {(a(y) + a(y)V,N(y)) — a""}

) / {a(y)V,N°(y) — (a TN%))

< Cg;

v(x) Vu)(x) de

y=z/e

< Cs;

u?(x) v(z)dx

y=z/e

Finally, using the boundednesswf(y), properties ofV°(y) and the smoothness of ()

we have

5 v(x) dx

< Csg;
y=z/e

/ aly) Va(N () Vol (2))

[ o ¥

Summing up the obtained estimates, we arrive at the lagtnstatt in the corollary.]

0,£
€ l/j

qu?(x) v(x)dz| < Ce.

y=z/e
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Homogenization of spectral problem for locally periodic eliptic
operators with sign-changing density function
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ABSTRACT. The paper deals with homogenization of a spectral probtera second
order self-adjoint elliptic operator stated in a thin cgdér with homogeneous Neu-
mann boundary condition on the lateral boundary and Dieictbndition on the bases

of the cylinder. We assume that the operator coefficientstamdpectral density func-
tion are locally periodic in the axial direction of the cydier, and that the spectral
density function changes sign. We show that the behaviothie@gpectrum depends
essentially on whether the average of the density functi@efo or not. In both cases
we construct the effective-dimensional spectral problem and prove the convergence
of spectra.

Keywords: Spectral problem, sign-changing density, homogeninattan cylinder.

1. Introduction

The paper is aimed at homogenization of a spectral problem $econd order diver-
gence form elliptic operator defined in a thin cylinder ofteniength with homogeneous
Neumann boundary condition on the lateral boundary of thi@agr and Dirichlet con-
ditions on the cylinder bases. We make a crucial assumphianthe spectral weight
function changes sign and assume that both operator ceetficand the weight function
are locally periodic in the axial direction of the cylinder.

Under the said conditions we show that the asymptotic bebawf the spectrum
depends essentially on whether the average of the weigtiiumover the period is equal
to zero or not. In both cases we construct an effective mautlpgove the convergence
result; the estimates for the rate of convergence are atsoneol.

1



The studied spectral problem might have interesting anaitapt applications in the
modern theory of metamaterials, that is artificial composiaterials engineered to pro-
duce a desired electromagnetic behavior with significaatigjanced performance over
"natural” structures. For example, when the world is obsdrthrough conventional
lenses, the sharpness of the image is determined by anddimaithe wavelength of light.
Metamaterials with negative refractive index aimed at tooeeof "perfect” lenses, that is
lenses with capabilities beyond conventional (positivceik) ones.

First initiated by L.S. Pontrgyagin irlp], the qualitative theory of spectral problems
in spaces with indefinite metric was further developed by MK&in ([7]), I.S. lokhvidov
([4]) and other mathematicians. The detailed presentationi®theory can be found, for
example, in books]], [16].

The homogenization of spectral problems in the case ofigesiteight functions was
considered ing], [6], [17], then in [L3] for elasticity system and then in many other works.
However, the presence of sign-changing weight functionesake problem nonstandard
and leads to new interesting phenomena. For operators with periodic coefficients
defined in a fixed (not asymptotically thin) domains similestdems have been studied in
the recent works1[1], [12]. In contrast with problems investigated in these workstle
model considered in the present paper the limit spectrdlleno is one-dimensional, so
that dimension reduction arguments are to be used. We certtirasymptotic expansion
technique with the singular measure approach develop&fjand [2].

For the density function having positive average the effectpectral problem happens
to be a Sturm-Liouville problem. In this case the convergeoicthe positive part of the
spectrum is justified by means of convergence in variableespaith singular measures.

In the case of zero average weight function the limit spégrablem is that for a
guadratic operator pencil. To study this operator pencilapply the results fromg]
combined with usual arguments used when studying SturrodMilie problems. It should
be noted that in contrast witi 2], the presence of slow variable in the coefficients makes
the limit operator pencil nontrivial, so that it can not belweed to the standard Sturm-
Liouville problem.

The fact that the considered operator is defined in a thimdgl allows us to build
boundary layer correctors in the neighbourhood of the dginbases and, as a result,
improve essentially the asymptotics. As a matter of fachefcoefficients are sufficiently
regular, then arbitrary many terms in the asymptotic exjpansan be constructed. The
existence of exponentially decaying boundary layer coorscis assured by the results
obtained in [L4].

In the last section we address the case when the local avefdlge weight function
changes sign. In this case the convergence of both, positidenegative parts of the
spectrum is justified.

The asymptotics of negative part of the spectrum in the chgesitive average of the
density function will be treated in a separate publication.



The paper is organized as follows. Section 2 contains therstnt of the problem
together with some preliminary results concerning thecstime of the spectrum of the
original operator. In Section 3.1 we construct the formghgstotic expansion in the case
when the average of the weight function over the period igipes The justification of the
homogenization procedure is given in Section 3.2. Sectimndévoted to the case when
the average of the weight function is equal to zero. In Sadithe case when the average
of the weight function changes sign is considered.

2. Problem setup and main results

Let Q be a bounded?* domain inR¢~! with a boundaryQ. The points inR? are
denotedr = (z1,2'), wherez’ = z,, ..., z4. Denote byG. a thin rod[—1, 1] x eQ with the
lateral boundary, = (—1,1) x 8(6@) and the baseS,; = {£1} x 5Q In the cylinder
G. we consider the foIIowmg spectral problem:

AuE () = —dw( (@Vui(e)) = N (@) uile), T e,
(2.1) Buf(z) = (a® Vu',n) =0, x € X,
u(—=1,2") =u®(1,2") = 0, x € 0(eQ).

with
&€ T (3 T
a (x):a(xhg)a P (l’) :p(xhg)u
wherea(z,y) is a symmetriel x d matrix andp(z;,y) is a scalar function(-, -) is the
inner product inR<¢. We assume the following conditions to hold:
(HO) ai;(x1,y), p(z1,y) € C¥([—1,1];C*(Y)) for somea > 0. HereY = S; x Q
denotes the periodicity celf; is a unit circle;
(H1) Functionsa;;(z,y) andp(zy, y), arel-periodic iny;
(H2) The matrixa(z,,y) satisfies the uniform ellipticity condition, that is for any €
[—1,1]andy € Y
d
> (e y)€& > AP, € €RY A >0;
ij=1
(H3) The weight functiorp(xy, y) changes sign, that is for amy € [—1, 1] the sets
{y €Y : p(x1,y) < 0}and{y € Y : p(z1,y) > 0} have positive Lebesgue
measures, i.e.
{y €Y : p(z1,y) S0} >0.

Also, for presentation simplicity we assume that
(2.2) e=1/L, L=12....

The general case can be treated in the same way, see RemankSéetion 3 for further
discussion.



REMARK 2.1. It follows from condition(H3) that, for sufficiently smalk, the sets
{r € G. : p(x1,%) < 0} and{z € G. : p(x,%) > 0} have positive Lebesgue
measures.

The weak formulation of problem (2.1) is as follows: find € C (eigenvalues) and
u® € HY(G,) \ {0} (eiegenfunctions) such that(+1,2’) = 0 and

(2.3) (a® Vus, V) 2qy = X (p7 U5, v) 12(q.),
wherev € C*(G.) such that(+1,2") = 0, (-,-)12(c.) denotes the usual scalar product
in L*(G.).

First we study the qualitative properties of problem (2at)d fixed value of. For this
aim, following the ideas in12], we are going to reduce the problem under consideration
to an equivalent spectral problem for a compact self-atjgperator. To this end let us
introduce the space

HE = {uec H'(G.): u}sﬂ =0}
equipped with the norm

?{E = (u,u)ye = (a® Vu, Vu)Lz(Gs).

[l
Thanks to the Friedrischs inequality
[0llz26e) < 2 VVllr2c.), v e H,

the quadratic forn(a® Vu, Vu)2(¢.) defines a norm iri{*, which is equivalent to the
standard? ' (G.) norm.

In view of condition(HO), the bilinear form(p°u, v) 2., defines or#{* a bounded
linear operatokCe : H¢ — H° by the following rule:

(Kfu, v)pe = (p°u, ) 2(6.)-

By definition, the operatok*® is symmetric and, since it is bounded, it is self-adjoint.
Notice thatK?u can be also introduced as a solution of the boundary valuggro

A (Kfu(z)) = p(z) u(x), =€ G,
(2.4) B (Kfu(x)) =0, T € X,
Kfu(z) =0, x € Siq.

Considering this representation and the compactness ohtheddingH ! (G.) in L*(G.),
one can see th#t° is a compact operator, both #° and inL*(G.).

REMARK 2.2. Since for any. € L?(G.) the functionK*u belongs toH, then the
spectrum ofKCe in L?(G.) coincides with that ir{¢. We prefer to study the spectrum of
K¢ in the spacé{® because in this spad€ is self-adjoint.

In terms of the operatd€* problem (2.1) takes the form
(2.5) Keu® = pfu®, pf =1/)M.



Exactly in the same way as id?] (see Lemma 2.1) one can show that the discrete spec-
trum of the operatok’® consists of two infinite sequences. The following staterheids.

LEMMA 2.3. Suppose that conditiol#10) — (H3) are fulfilled. Then the spectrum
o (K<) of the operatoiC® belongs to the intervgl-£°, k°|, k= = ||K¢||; the pointy = 0 is
the only element of the essential spectutiC*). Moreover, the discrete spectrum of the
operatorkc consists of two infinite sequences
e s

pyT <pym <<y <o 0.

Taking into account (2.5), we conclude that problem (2.19 haliscrete spectrum
which consists also of two infinite sequences. More pregised have proved the follow-
ing result.

THEOREM 2.4. Under the assumptiond10) — (H3) spectral problen(2.1) has a
discrete spectrum which consists of two sequences
0<ATF <A <o AT < oo,
0> > A7 > > X7 > = —o0.
Under proper normalization, the corresponding eigenfiomct uj’i satisfy the orthogo-
nality condition
(2.6) T Y (L
where|(Q)| is the Lebesgue measure@fandd;; is the Kronecker delta.
The goal of the present work is to study the asymptotic behaaf the spectrum of
problem (2.1), ag — 0. As was already pointed out, the asymptotic behaviour of the
spectrum depends crucially on whether the local averaggqf -) is zero on[—1, 1] or

not. To avoid the technicalities for the moment, we formeikiie main result of the paper
in a loose way.

THEOREM 2.5. Let conditiong HO) — (H3) be fulfilled. IfA>™ (A7) stands for the
jth positive (negative) eigenvalue of problénl), anduj”r (uj") for the corresponding
eigenfunction, then the following convergence results:hol

(1) If (p(x1,-)) > 0forall z; € [-1, 1], then, for anyj,
AT AT e
5 HujJr = u?’JrHLz(GE) -0, —0,
where(\)", u)™") is thejjth eigenpair of the effective Sturm-Liouville problem

on | a0 ) <X e ). e (L)

u’(£1) =0,




with some strictly positive continuous functiafi (z,) (see(3.3)).
(2) If (p(x1,-)) = 0forall z; € [-1, 1], then, for anyj,

ekj’i - V?’i —0, &—0;
d—1
ez Huji — ’U?’i”LQ(GE) —0, ¢—0,

where("*, v}"*) are thejth eigenpairs of the following quadratic operator pen-
cil:

(@) ) 4 Bl o)

_d—ﬂh dz,
—(°)? C(z1)°(21) =0, 2, € (—1,1),
v?(—1) =%(1) =0,
with the function®8(z;), C(x;) > 0 defined by4.8)and (4.7), respectively.
(3) If (p(z1,-)) changes sign , then, for any

Aj’i — )\?’i, £ —0;

(2.8)

e [lus* — u)F |2y = 0, €0,
where(A)™, u*) are thejth eigenpairs of the effective spectral problem

d eff duo(l‘l)
(2.9) g, =
u’(£1) =0,
with the function:*(z,) > 0 defined by3.3).

) = A (a1, ) u’(z1), @ € (=1,1),

Notice that in the casép(z,,-)) > 0 the eigenvalues of the effective problem form
a monotone sequen@éj’+ — 400, @sj — +oo, While in the casesgp(z1,-)) = 0 and
when(p(z1,-)) changes sign the spectra of the effective spectral prob(2r@sand (2.9)
consist of two infinite sequences, tendingH#oc and —oco (see Theorems 3.2, 4.1 and
Section 5). Thus, one cannot characterize the asymptatiavioeur of the negative part
of the spectrum in the casg(x1,-)) > 0 in terms of the effective problem (2.7). The
negative part of the spectrum will be considered elsewhere.

Theorem 2.5 follows from stronger results given in Secti@ias(see Theorem 3.6, 4.3,
5.1). In all cases we construct interior correctors, bountigyer correctors in the vicinity
of the cylinder bases, and obtain estimates for the raterofergence.

3. The cas€(p(zy,-)) >0

3.1. Formal asymptotic expansion.In what follows we denot¥,, = {9,,,--- ,9,,}",
(oo ) = [ plar.w)
Y

Ay u = —divy(a(zy,y)Vyu); Byu = (a(z,y)Vyu,n).



We are looking for a solutiof\®, «) of problem (2.1) in the form

ua(l‘) = uo(xl) + {-:ul(l‘l’y) + 82 U2([E17y) + 63 ug(l‘hy) oy
Aaz)\o—l—g)\l—'—...’ y:z’
£

(3.1)

where unknown functions*(z, y) are 1-periodic iny;. Let us substitute ansatze (3.1)
into (2.1) and collect power-like with respectdaderms. Equating the coefficient in front
of e~! to 0, we obtain an equation far (z1, ), x; € (—1,1):

0

. u
Ayul(l‘lay) = dlvya-l(‘rla y) %7 Yy e Y7
1
du®
Byul(l‘hy) = _(a"l(xhy))n) %a Yy e 8K
1

u'(z1,-) — y1 — periodig

wherea ;. is akth column of the matrix:.(y). Note thatdyY = &; x 9Q. Particular form
of the right-hand side in the last equation suggests theseptation for:!

du®(zy)

X1

ul(l‘l)y) :NLl(:L‘l)y) +U1(x1)a

with N1! being, for anyz; € (—1, 1), a solution of the problem

AyNLl(xla y) = divya“l(l‘h y)? ) € K
(3.2) ByN"!(z1,y) = —(a1(z1,y),n), y €Y,
Nz, ) — y, — periodic

Under assumptiofHO), N'!(zy,y) € CH([-1,1]; C*(Y)).
Similarly, collecting the terms of ordef we obtain the problem for?:

( ) du®(x
AyUQ(l"l,Z/) = —(al-(l’lay)vle’l(xhy) ( 1))
9 8951 0 adxl
d .
oo de:fjj”l)) iy (04(01,9) - (V01,9 00)
tivyas () 2 N0 gl ) (@), w1 € (-11), ye Y.
1
0
B, (1) = —(aa(w1,9).m) 5 ~(N" (@1, y)u’(1))
1
d 1
(a1 y).n) T € (-1,1), y €Y,
1
| w?(z1,-) — y1 — periodic




The compatibility condition for the last problem reads

d du®(x
d—.fL'l (afll(xla y) + a1~(x15 y)vyNLl(l‘l) y)) dy%
Y
+A° /p(xl,y) dyu’(x1) =0, € (—1,1).
Y
Denoting
(3.3) aeﬂ(fﬁ) = /alj(xla y)(51j + 6y‘7-N171(:L‘17y)) dy,

Y

we derive the following problem fa®:

A’ u’(z)) = —dim(ae‘f(xl)dudifl))
(3.4) =\ (p(x1,)) u’(z1), @1 € (=1,1),

u’(£1) = 0.

LEMMA 3.1. The effective coefficient(z,) € C**[-1,1] is positive for allz; €
[—1,1].

PROOF Obviously,a®(z,) is an elemenf A*(x1)};; of the matrixA*®(x;) given by

Ajj (1) Z/(az‘j(%y)+az‘k5’ykN;§’l(w1,y))dy,

Y

where functionsV,"" solve the problems

AyN,};’l(xl,y) =divyar(z1,y), k=2,..,d, yeYy,
ByN/i’l(l’l’y) = —(a.x(z1,y),n), y € 9Y,
N — g, — periodic

Let us show that the matri®*®(x,) is positive definite. Notice that

0= /8ym(aiji1’l) dy — /aijil’lnm do.

Y 5)4



Reorganizing the last expression yields

0= /8ym(aiji1’1) dy — /aijil’lnm do
y

5)4

= / (ajmﬁymNil’l + 0y, Qmj Nil’l) dy — /aijil’lnm do
oY
= (ajmﬁymNil’l — Oy, (amk 8ykNj1’1)NZ-1’1) dy — /aijil’lnm do

oYy

= (ajmﬁymNil’l + Ak aykle’l 0, Nl’l) dy.

Ym* g

S — — <

Consequently,

A (1) = / (aij(x17y> + Qi aykN;i’l(l“l, y)) dy

Y
+ / (@jm 0y Ni™* + G 0y Nj* 0y, N*) dy
Y
= / (5zm + aymNiLl) Amk (5@' + aykleJ) dy’
Y

thus, the matrixA“" is nonnegative. Let us show that > 0. For an arbitrary nonnegative
matrix C' we state that ifC}; = 0, thenCy, = 0,k = 2,---,d, and, consequently,
Ce; = 0. Assuming thats;;+9,, N;"') = 0 we arrive at contradiction with the periodicity
of N"" iny,. Thus,a*® > 0. O

For the reader’s convenience we formulate here the cldssmat on Sturm-Liouville
spectral problem (see, for instanc&q]).

THEOREM 3.2. The eigenvalues of the Sturm-Liouville probl€dm) are real and
form a monotone sequence

0< AT < AT <o < AP oo,
Moreover, all the eigenvalues are simple.

REMARK 3.3. The corresponding eigenfunctiafs”™ € C>*[—1, 1] of problem (3.4)
can be normalized by

du®t dult
(35) /CLGH(ZL‘l) Ui u] dl’l = 5”




Our next goal is to derive the equation for the unknown fioreti' (1 ). To this end we
analyze the right-hand side of the equationdéfz,, y). The structure of the right-hand
side suggests the following representation:

2,,0 0
U2([L‘1,y) = N272($1ay) @u <;j1) + NQ’I(:L‘hy) du (x1>
(36) d.l’l p . dl‘l
FNZ @y, y) ud(a1) + NV (2, y) dv (1) +v*(m1),

whereN%2, N2 and N2° arey, -periodic solutions of the problems
Ay N> (21, y) = divy(alzr, y) N (21,7))

(3.7) +ay;(z1,y) (01 + Oy, NV (21,9)) — a**(z1), yeY,
B,N*?(x1,y) = —(a.1(z1,y),n)N" (z1,y), y€IY;

(

i 0
AyN271(:L‘17 y) = dlvy(a-l(xla y)a—Nl’l(xla y))
) . da** (z1)
(3.8) +——[a1;(z1,9) (01 + 0, N (a1,9))] — ———, y €Y,
al’l a dl’l
ByNz’l(l’l’y) = —(a.1(z1,),n) %Nl’l(l‘l, Y), y € 9Y;
\ 1

(3.9)

AN (@1,y) = X (p(x1,9) = (p(z1,-))), Y €Y,
B,N*"(z1,y) =0, veor

Equating the coefficients in front ef, we get the equation far®:

. ou? 0 ou'
Ayug(l’hy) = div, (a-l(l'lay)a—xl) + a—xl(an(ﬂfl, y)a—xl)
+A p(zr,y) ul (21, y) + A p(z,y) u’ (1), yey,
3 ou?
Byu (71,y) = —(a1(21,y),n) 8—3:1
The compatibility condition for the last equation reads
d dvt
(310)  ———(a""(x1)5—) — A’ (plar, ) v (@) = F(a1) + A {p(ar, ),
d.l’l d.l’l
where
2
d Fud(xy)
Fa) = Y g [ oo )V, ) S ay
(3.11) =0Ty




Determining the boundary conditions fof(z;) at the points; = +1 requires construct-
ing boundary layer correctors in the vicinity of these psint

LetG™ = (0,400)xQ andG* = (—o0, 0) xQ be semi-infinite cylinders with the axis
directed alongy; and lateral boundaries™ = (0, +00) x 0Q and¥Xt = (—o00,0) x 0Q.
We denote byv*(y) solutions to the following boundary value problems:

~divy(a(£1, 3 £ 0,9y)V,w*) =0, y e GF,

(a(£1, 41 0,y )Vyw*,n) =0, y € X7,
+ / 1,1 / duo /
w(0,y") = —N" (il,ié,y)—dx (£1), ¥ € Q.
1

(3.12)

whered = 4(¢) is the fractional part of ~!. Due to our assumption (2.2) we have= 0
so that problem (3.12) reads

—div,(a(£1,y)V,wF) = 0, y € GF,

(a(il,y)vywi,n) =0, y € ¥F,

(3.13) )

du

+ ! 1,1 !
0 =-—-N"(£1,0 —_—
w=(0,y) (£1, ’y)dxl

According to [L4] there exists a unique bounded solutiof € H. (GF) N C1*(G#) of
problem (3.13). It stabilizes to some constafit, as|y;| — +oo:

lwE(y1,y) — ¥ < Coe "l o,y > 0;
(3.14) VW™ L2((nntyx0) < Ce ™, ¥ >0,
VW™ || L2~ (nt1),—m)x@) < Ce” ™", ¥n >0,

(£1), ¥’ € @,

for somey > 0. As a boundary condition for'(z;) we choose the uniquely defined
constantsi™: v!(£1) = w*. Thus, the problem fos' takes the form

d | .« dot 0 1
o (@ @) =) = A (e, )) v ()
(3.15) = F(z1) + A (p(ay, N u®, = € (~1,1),
vl(£1) = 0,

whereF'(z,) is defined by (3.11).

Due to the Fredholm alternative, problem (3.15) is solvablg'(—1, 1) if and only if
the right-hand side is orthogonal to the kernel of the adjoprerator, that is to the function
u®(z1) (see (3.4)). Thus, taking into account the normalizatiamdétion (3.5), we have

1

A= )0 /F(xl)uo(xl) iy

+A%(a (1) Z—Zl(n wt —a(—1) di(—l) o).

(3.16)



Under our standing assumptions € C*%[—1,1]. Notice thatv!(z,) is defined up to a
function of the formC «°(z), whereC'is a constant. We fix the choice of setting
1

/ o ) (@) day = 0.

In this way the function

u’(xy) +¢ [val (1, g)%jjl) + Ul(xl)}

—1 2 1 2
te [wt (P, D) i) e [ (P2, 2) — ]
3 3 g 3
satisfies the homogeneous Dirichlet boundary conditionS.qgnWe denote

Y

. . rnF1 o .
(3.17) U i(:1:) =1 ’i(y)’y£ = wi(lT, g) —

€

where .
i (y) = wt (n F 2 y) —o®
REMARK 3.4. If assumption (2.2) does not hold, then problem (3.Epetids on a
parametep = d(¢) € [0, 1) being the fractional part of /<. In this case the boundary
layer functionsw®(y) also depend on, so dow*, v! and\'. Nevertheless, all the re-
sults of Theorem 2.5 remain valid. We assume (2.2) just fes@mtation simplicity. The
dependence o#(¢) does not create any additional technical difficulties.

REMARK 3.5. We succeeded in constructing exponential boundasr legrrectors
us™ owing to the special structure of the domain. This allowed us to define!, A! and
other higher order terms of the asymptotic expansion (Blthe case of a generic smooth
bounded domain one is unable to construct such a boundaydane to the disagreement
between the periodic structure and the domain boundaryhByr¢ason in11] and [12]
only two leading terms of the expansion have been constiucte

3.2. Justification procedure in the casép(zy,-)) > 0.
Let /\?’+ be thejth eigenvalue amd?’+ the corresponding eigenfunction of problem (3.4).
For anyj € N we denote

0,+
et 0t 11 x, du; ™" (z)
(3.18) U; (x) = u; (1) +eN (xl, g) JdT
tevy T (2) + e (uf () + ug (7)),
Whereu?v-f" AL andvjlﬂ‘ solve problems (3.4), (3.2) and (3.15), respectively (with=
uj " andA® = A}"). The boundary layer functions;™ are defined by (3.17) and (3.13).

Let us emphasize that, due to the presence of the boundaytiyns, the functioﬂj/]‘?’+
satisfies the homogeneous Dirichlet boundary conditionS.gnand, as a consequence,
belong to the spach®.



The goal of this section is to prove the following result.
THEOREM 3.6. Let conditiongHO) — (H3) be fulfilled, and suppose thgt(z, -)) >
0 foranyz; € [—1,1]. If Aj’* is the jth positive eigenvalue of proble(@.1) and uj’* is
the corresponding eigenfunction, then the following stedets hold:
(¢) Foranyj € N, there exist; andC; > 0 such that

|/\§’Jr - )\2’+| < Cje, Vee(0,¢].
(17) Foranyj € N

d—1
”U;’Jr — U;’JFHHI(GE) < Cj€€ 2

whereU: ™ is defined by3.18) and (A}, u)") is the jth eigenpair of the limit
problem(3.4). Moreover, the "almost eigenfunctions” are almost orthomal,
that is
g_(d_l)
Q|

(731) Foranyj € N, /\j’+ Is simple, for sufficiently smadl > 0.

(a° VU, VUj*)LQ(GE) — 0y < Cje.

REMARK 3.7. The estimates of Theorem 3.6 rely on the presence ofdbedary
layer correctors in the asymptoticsmjf*. The estimates obtained i&]] and [12] for a
generic smooth domain are of ordgk.

PROOF OFTHEOREM 3.6. We make use of the following statement about "almosreig
values and eigenfunctions” (seH, [19]).

LEMMA 3.8. Given a compact self-adjoint operatéic : H* — He, letrv € R and
v € H° be such that

we=1 d=|K°v—vv
Then there exists an eigenvalugof the operatorC* such that
i —v| <0

He < |7/|

0]

Moreover, for any; € (9, |v|) there exist coefficient®} € R satisfying

£, & 5
|lv — ijujHHs < 25—1,

where the sum is taken over all the eigenvalues of the opeféton the segmeny —
1,v + 61], and {5} are the corresponding orthonormalized#F eigenfunctions. The
coefficientd; are normalized by [b5|* = 1.

Aswv € HF andv € R in Lemma 3.8 we use the normalized ansatz (3.18)
Ut
et j

LU e



and the number§\}" + eA>*) 7L, respectively. Here\'* is defined by formula (3.16)
with u° = 9"

i
LEMMA 3.9. For anyj € N there ise; > 0 such that
(3.19) IKFU™ — (N + ey ) U e < Cje, e <y,
for some constant’; that does not depend an
PROOF. Letting
= ||KUT = (AT + e 7 U e,

after straightforward rearrangements we have

e [(E -0t g )

weHE HeE
llwll3e =1
o ||U]€’+|7_-[1 ()\O,Jr_'_ )\1,4*) KCe UE,Jr _U€,+
T T e I\ T R
J J llwllpe =1
. HU;#H?? AOF 4oLt (EUE,-i- )
=00 ey s [T e )
J J

—(a* VU™, vw)LQ(Gs)’.

Integrating by parts and using the boundary conditions\fot yield

e ||U_]€’+| ’}_-ti sup ’(As U€,+ . ()\O,Jr + 6)\1’+) pz-: U€,+ w)
= 0F L g j j j i
A7+ eXT) e,

L2(Ge)

atraawsvo i B R R R
[lwll3e =1
0 du" ()

+£ /(aal(x)’n) a—xl(Nl’l(xlay) JCZT + U}7+(x1))}y:m/a do

+e / (a°Vy (a5 +a;),n) wda’.

e



Here

0 du*
I5(z) = Io(xhy)}y:m/a = _8—x1<a1'vle’l j )

0 du;“ 0 0
__Z — 20t 50
axl (all dl’l ) J pu]

) 1. 0 du®™
Ii(z) = I\ (z) — {div, + gdlvy} (a'l - ’
duO,Jr

By

1,+ ¢ 0,+
)\j Py

I () = A% (ugy + ™) = AP 07 (ugy + ™),

1 du™
[28('];> = )\jHr p(xla y) Nl’l(xl’ y> d—;;l ’y:x/e
A plany) vy ()], AT (g (@) + gt (@)

PROPOSITION3.10. The boundary layer functions;™ satisfy the
estimate

e(ATuET, v) 120y + (@ VUSGT v, n) o) — € )\2’+ (p° ™, v) 26
< Ogg(d_l)/Q ||/UHH1(Gg)’ v € HE.
PROOF We prove the proposition far;;~, a similar proof can be performed faf;".
Due to the definition ofi;;~, up to the terms of higher order,
oa

1
e A uy (2) = —(div, + =divy) (21 + 1) m—(21,9) Vyii5;~ (y))
€ o0xy

y:x/el
Integrating by parts yields

(A% g, v) 26y +e(a®Vyus™ v,n) s

. / (v1 + 1/e) 5—51(—1, ) (V5 (9), Vo(@)|_, . da.
Ge

Schwartz inequality and the exponential decay,pgive
’6(./45 ug V)2 T (@ VyugT v, n) e, ’ < CeeldV/2 ]| 1

with the constan depending only o\ and@. Then, due to the boundednesspadind
the Schwartz inequality,

’5 )\?Hr (p° Uf,;i,’U)L?(Gs)’ <(Ce¢ / ’uiﬂ lv| dx.
Ge



By the exponential decay property af,
_ d—1
lui 2y < CVee ™.
The last estimate completes the proof. O
Further analysis essentially relies on the following stegat.

LEMMA 3.11. Letg(zy,y) € C2([—1,1];C*(Y)) be such that

(gan,-)) = / o(n.y) dy = 0.

Then, for anyw € H'(G.), the following estimate is valid:

’/ xl, dx‘ <C€5 EN 1wl m1(a.)

with a constant” independent of.

PROOF Since(g(z1,-)) = 0, then there exists g;-periodic functiony(z;,y) €
Ch([~1,1]; C**(Y)) being a solution of the problem

_Ayw(l'l,y):g(l‘l,y), yEY)
(qu’<xl7y>7n> = 07 Y € aY.
Then we have

/g(xl,y) w(x) dr=¢ /(vyw(l‘l’ y) ’ vw(l‘))}y:z/e dx

Ge Ge

+e /w(x) diVm(Vyw(acl,y))}y:m/6 dx

Ge
d-1
SOZ‘:g 2 Hw||H1(GE)

O

Let us turn back to the proof of Lemma 3.9. Sim@’e+ is a solution of problem (3.4),
thenly(zy,y) € CY*([-1,1];C*(Y)) and

/Io(xl,y) dy = 0.

Y
Thus, by Lemma 3.11,

(3.20) ’/Ig(x)w(x) dx’ <Cec'r |w]| 1.y



The terms containing:, have been estimated in Proposition 3.10. Integrating big plae
remaining terms of I7, w) 2.y, using(HO) and the regularity properties m?’*,val
andv;"", one can show that

0 anduit +
]5 € N’ J Ly d ‘
(3.21) eI, w2y +€ /(a,l,n) 891:1( o + v; )‘y:m/aw o

e
d—1
<(Cee2 Hw||H1(GE).

The quantity(/5, w)2(q.) is estimated in a similar way:
(3.22) & |(I5, w) 2| < C €™ Jwllmia).

It remains to estimate the norﬁUj*HHs. To this end we compute first the gradient of
Ust:
J

o .. du? (1) 8uj1 *

a—xl i dr, t+e 01, (33'1, y)
0 dul(z1) 9

Y Nt J Y et ~e )
+ay1 (:L‘la y) dl’l ayl (ubl (y) + Uy, (y)) y:§’

9 0 du)t(x) 0
_UE + _Nl,l J _ = (et ~E,— k 1.
axk J B B (xl,y) dl‘l + 8yk (ubl (y) + Uy (y)) y=§’ 7£

where
du" ()
uj (@) = N y) == o (o)

It is easy to see that

duQ,-l— duo.’+
7 J
de‘l de‘l
0
du?,-ﬁ- dujH‘

de‘l de‘l

(@VU; ", VU7 = Jau (21, y) + aa(a,y) VNV (21, y)

+ a1~(xla y) + a(:El) y)Vle’l(xla y):| vyNLl(xla y)
xXr
+J:§x(x1ay)+‘]§y($17y)+‘]§y($lay)7 Y= g
where

17 07
du®t dust oult du ™
. J +ean L J
d.l’l d.l’l &cl dl‘l

J;a:(xlv y) =é&dan

8u1’+ dUO-’Jr 8u1-’+ duQ’Jr
J: ,y) =cea, V,NH —— 7 ca). V,NW L — .
my(l‘l y) @1 Vy 8261 de‘l tem v al‘l de‘l




- - du(-)’+ 5 B aul’—‘_
Joy(1,y) = aq V(U5 + a5)7) d; +eaq Vy(agt +ag7) 8;1
~e,+ ~&,— aujl"—’— 1,1 ~e,+ ~&,— du?’—’—
+ear Vy (" + ) +(aVy N>, Vy (i)™ + a57))
al’l 0+ de‘l
\V4 Nl,l \V/ ~e,+ ~e,— du]7 \V4 €, + v ~e,+ g —
+(CL Yy ’ y(ubl + ubl )) d.fll'l ((l ( + U )7 y(um + ub1 ))

Using the regularity properties @f’* andN'! one can easily see that

’/Jix(l’hg)dl" < COe|G < Cee™

Then, by the periodicity oN ! in y,, we have

}/Jiy(xl,g)dx} <Ce /|vyN171|“/5dx
G

€ GE
:C’ea15d/|VyN1’1\dy§C€5dl.

Taking into account the exponential decay:gf° (see Proposition 3.10) we obtain the
estimate

’/J xl, d:E‘<C€6 -1

Thus,
5 3 £ du?Jr duQer
(a VUZ 7+7VU]'7+)L2(GE) —/{CLH —i—a.lVle’l}y:x/E d, d{i’l dx
G-
dud™ u0+
— _ N''1 v, N —— L _dr| < Cee® .
/{a1 +aV, }Vy ‘y:x/s T x o
Ge
Considering (3.3) and Lemma 3.11, we get
dult duOJr
}( VU, vU; IAIER —/aeﬁ(xl) ;; dx} < Cee®l.
1

Ge
Consequently, in view of the normalization condition (3d)e has

(3.23) ‘( VU VU)o — Qe 65| < Ceet!

?

and, for sufficiently smaklt

_ 1/2
(3.24) CEE U5 | 30e > |Q|2 € < ¢

)



Combining estimates (3.20), (3.21), (3.22), (4.35) angBsdion 3.10 yields the desired
bound (3.19). Lemma 3.9 is proved. O

Combining Lemma 3.9 and Lemma 3.8, we conclude that for a@eyn&/ialueA?f+ of
problem (3.4) there exists an eigenvalije” of the operatok’* such that

et — (AF Fen ) < de.
i H + €, —1
Considering the fact that; ™ = (u2*)~", we have
(3.25) Aot =X <ge, e<ey

Generally speaking, there might be more than one eigenaéline operatord® (problem
(2.1)) satisfying inequality (5.14), but we will show thatthe case under consideration
such an eigenvalug " is unique ife < ¢;.

LEMMA 3.12. For anyq, the estimate holds
O<m§)\2’+§Mq.
PROOEF Let us first estimate the norm of the operattr

KNl = sup (Ku,u)us = sup (p7u,u)r2c.) < Cllullr2c.)
llullse=1 lullne=1
whereC does not depend an Thus,u;* < C, for anyq, and, consequently;* > m
with m independent of.
In order to show that the inverse inequality is valid, we Heitet for any)\?’+ there is
an eigenvalue okc such that

pe ) = A e—o.

It implies thatu(e, j) > c¢; and, moreovery;™ > ¢; for all k > j. Lemma 3.12 is
proved. O

It follows from Lemma 3.12 that, up to a subsequenxgef converges to somg,, as
e — 0.

LEMMA 3.13. Suppose that (perhaps for a subsequence)
XT =, e—0.
Then), is an eigenvalue of proble(3.4).

There are several different ways of proving Lemma 3.13. hereexpose the proof
based on the technique of convergence in variable spaceswgular measures.

Introduce the "universal domaink; = [—1, 1]¢. Fore small enough(z. C K,. In
what follows, for arbitrary Borel seB C K,, we denote

—(d—1)
x(G.) dz,
Q| B/

3

(3.26) ne(B) =



wherex(G.) is the characteristic function @f.; dx is a usuakl-dimensional Lebesgue
measure. Thep. converges weakly to a measure= dx; x §(z'), ase — 0. For anye,
the space of Borel measurable functigtis) such that

Jto@) dnta) < o0
Kq
is denoted.? (K4, i.)-
Let us also recall the definition of the Sobolev space withsuea

DEFINITION 3.14. We say that a functiane L?*( Ky, i) belongs to the spadé’ (K, p.)
if there exists a vector functione L2(K,, p.) and a sequencg, € C*°(K,) such that

Y — g in L2(Kd7:u€)7 k— 0,
Vor — 2z in L2(Kgpe)?, k= oo
In this case: is called the gradient af and is denoted by/#<g.

Since in our case the measureis a weighted Lebesgue measure, théhg = Vg
and the spacé/' (K, i) coincides with the usual Sobolev spaéé(G.).

DEFINITION 3.15.
We say that a sequence of functiqné(z)} C L?( Ky, 1) weakly converges ihi?( Ky, i)
to a functiong(z,) € L*(Ky, j14), ase — 0, if
() 97N 2y < C5
(27) for anyy € C*°(R) the following limit relation holds:

ity [ °(2) () dicla) = [ 9o ) )

e—0
Ky Ky
A sequence{g°} is said to converge strongly t@(z1) in L*(Kgy, u.), ase — 0, if it
converges weakly and

tim [ ¢°(2) 05(2) duc () = / o) ¥ (er) dyus(2)

e—0
Ky Ky

for any sequencéy©(x)} weakly converging ta)(z,) in L*(Kgy, p.).

Notice that the property of weak compactness of a boundedeseg in a separable
Hilbert space remains valid with respect to the converg@ameariable spaces.

In order to prove Lemma 3.13 we use the technique of two-sxaleergence in vari-
able spaces with measure, so for the reader’s conveniencecakkthe relevant definition.

DEFINITION 3.16. We say thaj® € L?( Ky, p1.) two-scale converges ib?( Ky, p.) to
a functiong(xy,y) € L*(Kq x Y, ju, x dy), ase — 0, if
(4)

19N L2k gy < C, € > 0;



(¢4) The following limit relation holds:

tim [ 7)) 92 )dpe(a / / e1.9) () () dy dy. (2)
Ky
foranyy € C=(Ky), ¢|, _,, =0, andi(y) € C>(Y) periodic iny;.
PROOF OFLEMMA 3.13 By the normalization condition (2.6)
(3.27) 15 22 (ki) + 11V | L2y iy < €

thus,uptoa subsequenm§ ) converges weakly ih?( K, . ) to a functionu,(z;) €
L*(Kg4, i1+), ase — 0. Let us show that in fact the convergence is strong. Denote

u5(z1) = /uEJr(xl,x’) dr’.
Q
Then, due to the Poincaré inequality,

/(u§+(x) —U5(21))* da’ < C&” /|V (x) — u5(x1))]* da’.
eQ
Integrating with respect to;, and taking into account (3.27), we get

[ @) = ) du. < =

Kq

On the other handi; (1) is uniformly bounded irff' (—1, 1), thus there existg(x;) such

that
1
gf(dfl)

. _e 2 o _
ti o [ (@) de = (i)
Ge -1
The strong convergence mnj’*(x) to u(zy) = wi(xy) in L*(Ky, p.) is the immediate
consequence of the last two formulae.
By Lemma 3.11p°(z) converges weakly t¢p(z1, -)) in L?(Ky, uc). Thus,

X () u () —> A {plan, ) wa(an)  weakly in L2(Kq, i), € = 0.

Denoting
fola) = N7 P (@) ui (2),  fOlan) = A (plan, ) ualan),
we arrive at the following boundary value problem:
AU (z) = f(x), w€G.,
(3.28) BuiT(x) =0, wzeX,
uT(£1,4) =0, 2’ €eQ.



The homogenization theorem for locally periodic elliptgu@ations in variable spaces (see
[2], [20])) implies that

&,+

;@) — (1) wealky in L*(Kg,pe), €—0,

u

du, .
a®(x) Vu§’+(x) — {aeﬁ(xl)dzl (21),0,---0}"  wealky in L*(Kq,p)?, € —0,

whereu, (z1) € Hi(—1,1) is a solution of problem (3.4).
It follows from the normalization condition (2.6), boundex$s ofp(z;,y) and Aj’*
that
5_(d_1) € €+ &+ €+ e [, ,E1T)\2 e, +12
1= 1] (@ Vu; ™, Vui " )2,y = A; /,0 (w5 )" de < Oy l[ug ™ 200

Kq

Considering the strong convergence@f* to u, in L?( Ky, 1), we conclude that, # 0.
Thus, ()., u,) is an eigenpair of the effective problem (3.4). Lemma 3.j&dved.

Turning back to the proof of Theorem 3.6, suppose that thast tevo different eigen-
values);™" # A5 satisfying inequality (5.14) with>* being an eigenvalue of the op-
eratorA°. As was proved in Lemma 3.13, in this case the correspondgenfinctions
u™ andu$™ converge strongly irL? (K, 1i.) to the eigenfunctions) ™ andu)* of A°,
which correspond ta%*. Let us show tham?’+ andu?’+ are linearly independent. By the
normalization condition

e, + e &+ &+ _
AT (P y U )LQ(Kd,uE)—éij-

Notice that, by Lemma 3.1%¢ converges weakly ih?( K, ) to its averagép(xy, -)).
Thus, passing to the limit in the last identity, we obtain

A0+ / (o, ) 0 (@2) o (a1) dps = B,

Ky

that implies the linear independencedf” andu; ™. But \’* as an eigenvalue o’ is
simple by Theorem 3.2. We arrive at contradiction, thusaioy j there exists a unique
Aj’* satisfying (5.14). In particular, it means that for suffidlg smalls the eigenvalues
X" are simple.

Combining Lemma 3.8, Lemma 3.12 and Lemma 3.13 one obtagnfrh statement
of Theorem 3.6.

The second statemefit) of Theorem 3.6 follows immediately from Lemma 3.8 and
(7). This completes the proofl]

Theorem 3.6 might be formulated in terms of convergence malke spaces with
measure.

COROLLARY 3.17. Suppose that conditiori$10) — (H3) hold true andp(z1, -)) > 0.
Let (A", u5") and (1], u)™) be eigenpairs of problem@.1) and (3.4), respectively.
Then



(a) Foranyj € N, A5* — A}*, ase — 0, and

e, +
J

in terms of Definition 3.15.
(b) The convergence of fluxes takes place, that is
du®*

de‘l

uy " () — u?’Jr(xl) strongly in L*(Kg,pe), €—0

a®(x) Vu§’+(x) — {a" (1) (21),0,---0}7

weakly inL?( Ky, u1.)?, ase — 0.

PROOF. The first statement follows from the normalization coratit{2.6) (see proof
of Lemma 3.13). The convergence of fluxes is a consequenbe bibimogenization result
used while proving Lemma 3.13. O

4. The cas€/p(zy,-)) =0

4.1. Formal asymptotic expansion.Using the arguments similar to those in Sec-
tion 3.4.1, [L2], yields
ce < Xi’i <Cel,
for some constantsandC.
Considering the last estimate, we look for a solution of peob(2.1) in the form

X

UE(I'):UO([L‘l)+€U1([E17y)+62u2($‘17y)+--- ) y:g7
)\826—1”0_'_”1_'_'.' ,

wherer?, vt u®(xy), u'(zy,y) andu?(z,,y) are to be determined. We suppose that

u!(zy,y) andu?(z, y) are 1-periodic iny;. Substituting asymptotic ansatze (4.1) into

(2.1) and collecting terms of order*, we obtain the following equation for the unknown
functionu! (xy, y):

(4.1)

. du®(x
At eay) = divga (o) DD L0 e ) i),y e,
1
du®(z
Byul(fflay) = —a;(T1,Y) N di; 1), y € Y,
1

u'(zy,y) is1— periodiciny;.
Note that, sincép(zy,-)) = 0, the compatibility condition is satisfied. The structure of
the right-hand side of the last equation suggests the fallgvepresentation far' (z;, y):
du®(xy)
T
Then the functionsv!! and N1° arel-periodic iny; solutions of the problems
A NV (21, y) = divyaq(z1,y), y €Y,
(4.3) B,N''(21,y) = —an(z1,y)ns,  y € 0Y,
NU(zy,y) is 1 — periodic iny;

(4.2) u'(z1,y) = NV (21, ) + O NY (2, y) u®(ay) + 0 (21).



AN (2, y) = plar,y), yeY,
(4.4) B,N"(z1,y) =0, ye€ oY,
N1O(zy,y) is 1 — periodic iny;.
Under assumptio(HO0) the functionsV'!(z, y), N*°(x, y) belong to the spad@’*([—1, 1] x

Y).
Similarly, substituting (4.1) into (2.1) and collectingetterms in front o£?, we have

( ) out
A (4 (xla ) = dlvy(a-l(xlay) a?(xlay)
1
0
+—(a1~(x1ay)vyul(l‘l7y))

8261
0 du®(xy)
(4.5) +a—xl(a11(l‘1, y) 4 )+ v p(ay, y)u’ ()

+V0p(l‘17y)u1(l‘l)’ er)

0
Byu2<3§'1,y) = _aﬁ(xlay) n; %ul(l‘hy% Y € 8Y7
1

| v?(21,y) is 1 — periodic iny;.

The compatibility condition for the last problem reads

du® (1)
d.l’l

d
—/ a11+a1.(:}c1, )V N1’1($1,y)) dy

/ (21, ) VyN"(21,9)) 1) dy

(4.6) Y 0
o / (21,9) N (1, dy 2
V0)2 p T,y xlay) uo(xl)dy =0
/

Rearranging the last three terms in (4.6) gives

d
I/Od—/al 1,y Nz, y)) u’(z1) dy
du®(zy)
Nll d
/ 1,y 1,Y) dy s
Y
1/0) /p 1,9y $1,y) Uo(xl)dy

— () / (a1, 5) V, N, 7, N10) dy



d
+10u° (1) T /(a(wl, y) V,N" v, NY0) dy.
1
Y

Denote
(4.7) / a(xy,y Nl’o, Vle’O) dy;

Y

0 1,1 1,0
(4.8) B(z,) = 8—201 (a(z1,y) VN, V,N"") dy.

Y

In view of the regularity properties df ! and N, C € C**[-1, 1] andB € C*[-1,1].
Thus, (4.6) supplemented with an appropriate boundary itondakes the form of a
quadratic operator pencil

(")’ (x,) = _ 4 aeﬂ(:pl)du (21) + VO B(z1) u’(z1)
d dl’l

(4.9) (W) Clay) () =0, r € (-1,1)
u’(—1) = u’(1) = 0.

The variational formulation of problem (4.9) reads: fidle Hj(—1,1), u’ # 0, such
that

1

1 1
0
(4.10) /aeﬁdlﬁdxl%—u /Buovdxl—(yo)Q/Cuovdxl:O,
dl’l dl’l
—1 —1 —1
foranyv € Hj(-1,1).
The next theorem characterizes the spectrum of the quadyagrator pencil (4.9).

THEOREM 4.1. The spectrum of probleid.9) is discrete. The eigenvalues are real,
algebraically and geometrically simple, and form two irntrsequences

O<I/:(L)7+<Vg7+<'.'V?F‘F'.'_)_i_oo’

O>V?’7>1/g’7>~-~1/?’7~-~—>—oo.

The corresponding eigenfunctions can be normalized by

1

(4.11) a” % du?’i dry + 05 00F [ Cud* udF day = 0y
' dl‘l dl‘l ! j : J P

wherea*™ andC are defined by3.3)and(4.7), respectively.

PROOF The existence of infinite number of eigenvalues is given H® following
classical theorem (se8][ [8]).



THEOREM4.2. Keldysh Theorem
Given compact operatofE and H, such thatH is a normal operator withiKer H = {0}
(HH* = H*H) and H? is self-adjoint. Consider the Keldysh operator pencil

B(A\)=1d— T H — )\ H?,
whereld is the identity operator. The following statements hold:
(1) Foranyé > 0, there is only finite number of eigenvalues outside the angle

{\: ’arg)\—%} <d}, k=02

(2) DenoteN, (r) the number of eigenvalues counted according to their nidiip
of the operator//? in the interval(1/r?, +o00). Let Ni(r, B(\)) be a number of
eigenvalues of the operator penéil \) contained in the sector

km T
{A: ‘argA—;’ <7 ANl <r}, k=0,1,2,3.

log V.
(4.12) lim inf LJF(T) < 00,
r—00 log r

then
lim inf —Nzk(ﬁ B())
r—00 Ny(r)

In our case the operator pencil has the form
M(°) = A’ + " B(2y) Id — (V°)* C(x,) Id.

Since(A%) ! is a self-adjoint compact positive operator frdih(—1, 1) into itself, then
there exists a self-adjoint positive operator= (.A°)~1/2. It is compact as an operator
from L?(—1,1) into itself, bounded if we consider it as an operator frofi—1, 1) into
H;(—1,1), and compact if it acts of/j (—1, 1) with values infAj(—1,1). We apply the
operatorsS to both sides of the operator penEl|(+°). As a result we obtain

(4.13) I1(1°) = Id + 1° SB(z1) S — (1°)2 S C(a1) S.
One can check thatf? = SC(z;) S : L*(—1,1) — L*(—1,1) is a self-adjoint compact

positive operator. TheH = (S C(z,) S)"/? is also compact positive and self-adjoint with
KerH = {0}. Introducing

T = SB(z1) S (SC(x1) S) V2,

we see thal’ is a compact operator froi? (—1, 1) into itself. IndeedS B(z;) S is a com-
pact operator frond?(—1,1) into H} (—1,1),andH ! = (S C(x1) S)"Y? : H}(—1,1) —
L*(—1,1) is bounded.

The spectrum of the quadratic operator pencil (4.13) isrdisand consists of eigen-
values of finite multiplicity possibly accumulating &t.

—1=0, k=0,1.



Let us estimate the number of eigenvaluegidfin the interval(1/r?, +o0). Let L be
a subspace af?(—1, 1). Then due to the minimax principle, tt¢h eigenvalue ofi? can
be found from the formula

(H2.’L’, .I)LQ(_LU

y,j = min max
L zeL\{0} (913737)L2(71,1)

Sx, S -
< Cmin max (57, 50) 1211
L zeL\{0} (er)LQ(*lvl)

L — oyt

wherey; is thekth eigenvalue of the operat@A®)~'. Similarly, sinceC(z;) is bounded
from below, we get the lower bound fof, and, consequently,

Cuf <vi <Cuy.

Thus, we conclude that the number of eigenvalues of the tper&? and (A°)~! in
(1/r?, +00) is asymptotically equivalent. The following inequalityascterizes the growth
of the eigenvalues of the Sturm-Liouville problem for theeogior.A° (see, for example,

[9], [10]):

where the constants, andC, are lower and upper bounds fet (x;), respectively.
Thus, we conclude that the number of eigenvalued din the interval(1/r?, +o00) is
proportional tar, and, consequently, condition (4.12) is satisfied. By thiely&h theorem,
No(r, II(?)), as well asVy(r, I1(Y)), goes to infinity, ag — oo, thus, it is true also for
I1(°).
Let us show that the eigenvalues of problem (4.9) are regp&se

V0 = RO +iS(0),

whereR(+°) and3(1°) represent the real and imaginary parts/tfrespectively. Substi-
tuting the last expression in (4.10) and setting «° we obtain

4 1 1
du? |2
/aeﬁ d—zl dx1+%(yo)/B|u0|2dx1
- 1
[0 - (307 [ €l da =0,

-1
1 1

I(Y) /B [u’)? dzy — 23(0Y) R(V) /C |u®|? dzy = 0.

\ -1 —1




By our assumptiofs(+°) # 0. Thus, it follows from the last equation that

1 1
/B [u°? dzy = 2R(VY) /C [u? dary,
—1 -1

and, therefore,

W e+ (RO + (S())] /C|u0|2d:p1 —0

-1 -1

that contradicts the positivenessof andC, and, consequently? is real. In this way
the existence of two infinite sequences of eigenvaluesngridi+oo is proved.

Let us show that the algebraic multiplicity of is equal tol. Suppose there exists
o' € Hi(—1,1) such that

() (z1) = —B(z1) u’(21) + 20°C(21) u®(21),

wherell is defined by (4.9). Using! as a test function in (4.10) and substituting the
resulting equality into the last formula yields

1 1

20° / C (u°)*dx; — /B (u")? dzy = 0.

In view of (4.9),

1 1

0= 20 / C ()2 dary — 1 / B (u")2 dary

1
= (1/0)2/C(U0)2 dxy —k/aeff 31@

X1
-1 -1

2
dl’l > 0.

We arrive at contradiction. Thus, the eigenvalues of prol{4 9) are algebraically simple.

Suppose the geometric multiplicity of is greater than, in other words, there exist
two linearly independent eigenfunction$ andu corresponding to the samé. Choos-
ing C; andC, in such a way that the functioi’® = C,u? + Cyu satisfies the boundary
conditions

di®
(=)= —(=1)=0
i(=1) = 5 (=1 =0,

we see that, by the uniqueness result for ordinary diffeabeguations;z’° = 0, that
contradicts the linear independence:ffanduy. O



We turn back to constructing the asymptotic expansion. peeific form of the right-
hand side of (3.6) suggests the following representationor,, ):

d*u® (1) du®(zy)
dx?
du®(zy)
dl‘l
—|—(V0)27’2(33'1, y)u()(xl) + N171<x17 y)
+V0N1’O(x1a y)vl(xl) + 1)2(1‘1)7
whereN?2, N*! and N2 arey,-periodic solutions of the problems
(AN (21,y) = divy(a(z1, y) N (21, 9))
(415) +a1j(:p1,y)(51j + 8 Nl 1(1’1, )) — aeﬁ(xl), Yy - Y,
( By N*2(21,y) = —(a-l(xl,y),n)Nl’l(wl,y), y € 0Y;

u(z1,y) = N**(z1,y) + N> (21,y)

+ON2O (g,

d
(4.14) () () + VNI
dvt(zy)

dl‘l

, 0
AN (1, ) = divy (a1 (21, y) 5 — N (21, 9))

891:1
a d eff
(4.16) - ary (o0, )6 + 0y, N g, )] - 25 ey,
al’l a dl’l
B,N*!(w1,y) = —(aa(w1,),n) 5=N"H(21,y),  y €9V
\ L1
( 2,0 . d 1o
AyN’ ($1,y) = ley(a-l(%,y)aTN’ ($1,y)
0
+87(a1~(x1a )VN (:L‘17 ))
1
4.17 d
( ) _d— ai (:L‘la )v N (:El)y) dy7 ) S Y7
X1
oYy 9
ByNQ’O(l"l,y) = (a1(z1,y),n) %Nl’o(l’l’y)’ y € 9Y.
\ 1

They;-periodic functionsy(z1, y) andry(z1, y) solve the problems
Ayga (21, y) = divy(as (1, y) N (21,y))

(4.18) +ar.(z1,y) VN (21, y) + p(z1, y) NV (21,y), y €Y,
Byago(x1,y) = —(aq(z1,y),n) N (21, y), y € 0Y;
Ayra(z1,y) = p(z1, y) NY(z1,y) — C(xy), €y,
(4.19) yra(21,y) = p(r, y) N7 (21, y) — Clx1), ¥
Byra(z1,y) =0, y € Y.

Bearing in mind (4.3) and (4.4), we see that the compatytslindition for (4.18) is satis-
fied. Similarly, by (4.7), problem (4.19) is solvable.



Our next goal is to obtain an equation fo¥(x;). To this end we substitute (4.1)
into (2.1) and collect terms of ordet in the equation and of ordef in the boundary
condition. In this way we get the problem fot(x,, y).

r U2
Ayug(x17y> = divy(a.1(71,y) %(xhy)
1
0
+a—m(a1.(:c1,y)vyu2(x1,y))
0 dut (1)
(4.20) +8—:1:1<a11(x1’y> dz, )
vt p(ey, y)ut (@) + 00 p(e, y)ud(n1), y ey,

0
Byug(l’l’y) = —@ﬁ(ﬂfl,y) n; %UQ(%y)a y € 0Y,
1

AHETRN) is 1 — periodic iny;.

The compatibility condition for the last problem reads

d dv!
(4.21) — (aeﬁdi) +1'Bo' — (V°)?’Cot = I} — v'Bu’ 4+ 201°Cul®,
L1 T

whereB(x;) andC(x;) are defined by (4.8) and (4.7), respectively, and

d .
F1($1) = d—/al.(xl,y)vyug(xhy) dy
T1
(4.22) d Yoo
er—gc1 an(:vl,y)a—xi(xl,y) dy+v0/p(:v1,y)ﬂz(x1,y) dy.
Y Y

Here for brevity we denote

. du®(z
() = N ) PO 0 N y) ()
1
~ d*u®(xy) du®(xy)
Ug(ry,y) = Nz’Q(xla Y) d:p% * NQJ(xl’y) dxq
du®(x
0 o, ) D) Ny ()

de‘l
+ () ra(21, y)u’(z1)

with the functionsV?2 N2! N20 ¢, r, defined in (3.7), (3.8), (3.9), (4.18), (4.19).

As in Section 3, determining the boundary conditionsifdrr; ) requires constructing
the boundary layer correctors in the neighbourhood of thetpo = +1.

Denote, as before;~ = (0,+00) x Q andG*T = (—o0,0) x Q the semi-infinite
cylinders with the axis directed along and lateral boundariés— = (0, +o00) x 0@ and



Yt = (—00,0) x Q. Consider the following boundary value problem:

(—div,(a(£1,y +0,¥)V,w¥) =0, yeG*,
(a(£1,51 + 6,5)Vyw*,n) =0, y € X7,
(4.23) I
w:l:(o) y,) = _NLI(:E]-) 57 y,) d—(j:]')
X1
LN 6, y) (1),

\

with § being the fractional part of !, which is equal to zero in view of condition (2.2).
There exists a unique bounded solutioh € C1*(G*) of problem (4.23) stabilizing to
some constant®, as|y;| — +oo (see [14]):

lw*(y1,y) — 0*| < Coe W Cyy >0
(4.24) ||vw+HL2((n,n+1)><Q) <Ce " ¥n>0,
IVw™ |2 (- a1y, -mxq) < Ce ™™, Yn 20,

for somey > 0. As a boundary condition for'(z,) we choose the uniquely defined
constantsi™: v!(£1) = w*. Thus, the problem fos' takes the form

() (1) = Fy — v'Bu’ + 201°Cu’, 2y € (—1,1),
(4.25)
vl (£1) = .

SinceII(v°)u® = 0, problem (4.25) is solvable if the right-hand side is ortbiogl tou°,
that is

1 1 1

/F1 udr; = v /B(uo)2 dxy — 200! / C(u")?dx, + F,

where the constanf is given by

0 0
(4.26) F= (ae“(1)3—;(1)w+ - aeﬁ(—1)di(—1)w—).

It follows easily from (4.9) that

1 1

/B(:cl)(uo(xl))Q day — 2 /C(xl)(uo(xl))Q day 4 0.

Thus,~! can be defined in such a way that (4.25) possesses a solutomeliy

1 1

4.27) = {/Fl 0 day _F} {/ [B(z1) — 20°C(z1)] (UO(xl))wxl}

-1 -1

-1



We fix the choice of the function' by setting
1
/vl(xl) u’(x1) dry = 0.
—1
Note that, in view of the regularity assumptiofd0), v* € C?%[—1,1], a > 0. In this
way the function
du®(xy)
dxq
+e v N0 (2, g) u’(z1) + e v (zy) + e vl (),

u(z1) +& N (ay, g)

with

ui(@) = )|
1

= (=2 =) (L) =)

satisfies the homogeneous Dirichlet boundary conditions at +1.

(4.28)

7
y=x/e

4.2. Justification procedure in the casép(z,-)) = 0.
Let yjq’i be the eigenvalues atm?’i the corresponding eigenfunctions of problem (4.9).
For any; € N we denote
du?’i(xl)
dl‘l
(1) +ev, " (21) + e uf, (2),

c X
Uﬁ(z) — u?’i(xl) +e NV (2, g)

(4.29) .

+e I/]Q’:t N (24, g) u?’i
Whereu?’i, NUL NLO andvjlfi solve problems (4.9), (4.3), (4.4) and (4.25), respegtivel
Ewig;)uo = u)™" and® = 1)"*). The boundary layer correctef, is defined by (4.28) and
4.23).

Let us emphasize that, due to the presence of the boundaytiEyns, the function
Uj’i satisfies the homogeneous Dirichlet boundary conditionsgn and, as a conse-
qguence, belong to the spat£.

We denote by, a constant defined by (4.27) with = u]™ and® = 1/"*. For the
readers convenience we recall its definition.

1 1
1

430 = / Fug® de — F} { / B - 2/"C] (u)*)?dm |

where(v)"*, u]™) are eigenpairs of problem (4.9), the functid®ge; ), C(x;) are defined
by (4.8) and (4.7), respectively; the functiéi(z; ) and the constant are given by (4.22)
and (4.26) withu® = u™* andy® = 1]

The goal of this section is to prove the following result.



THEOREM4.3. Let condition§HO) — (H3) be fulfilled, and supposeth@ﬁ(xl, y)) =
0foranyz; € [—1,1]. If (A5, u5™) are eigenpairs of probler(®.1), and ()", u)"*) are

eigenpairs of the operator penc(rl 9), then
(¢) Foranyj, there exist; andC; > 0 such that

XF = (T ) < G, Ve € (0,5].

Herev;* is defined in(4.30)
(77) Foranyj

e,x

da—1
[ —Uji”Hl(Gs) < Cjee’m,

Wherer’i is defined by4.29) Moreover, the "almost eigenfunctions” satisfy
the almost orthogonality and normalization condition

gf(dfl)
Q|

(17i) Foranyj € N, )\j’i are simple, for sufficiently smadl> 0.

(a° VU, VU ) 2.y — 65| < Cje.

PROOF OFTHEOREM 3.6. As in Section 3, we make use of Lemma 3.8. Denote
=+ - =+
U™ = ||U |5 U™

LEMMA 4.4. For any;j € N there ise; > 0 such that

. < g2, e < gy,

(4.31) U™ — (7)™ +v)F)
where the constart; depends only op.

PROOF After straightforward rearrangements and integratiopdmts we have

IEEHICEZ/{;’i—( -1 Oi_'_y

7i -
105 Ml

<AE U;’i,w>

1, :I:} wEHE L2(G:)

}z—:—lu + v;
llwllzge =1

—(»3_11/]0-’i + V;’i) <pE U;’i, w)LQ(GE) + / (aEVU;’i,n) wdo|.

S.
It is convenient to use the notation

Uy (x) = uj™(21) + e uy™(21,y)],_, . +ui(2).

y=x/e



Recall thatu) " (z,) € C%°[—1,1] andu]™ (z1,y) € C**([-1,1] x Y). In this way we
obtain

01 )
"= }eluoj’i + VEl’i} e A (“?’i(ﬁ) + 5“;7i($1, g)) w(x) dx
7 T =t g,

—(»3_11/]0-’i + I/;’:t) /,os(x) (u?’i(xl) + 5u;’i(x1, y)}y:m/a) w(z) dx
Ga

&€ au;’i 15 &€
v [(@hm) T, wdo + = (405 0)
1

L2(Ge)

0,+ 1+ N
—(v; " +ev;™) <p€ ufﬂ)w) L) + /(ai,n) Vyuil(y)‘y:m/awda )
e

The last three terms containing, can be estimated exactly like in Lemma 3.10.

(A ugy, w) 2 a.y + (@ Vug, w,n) 2,
(4.32) —(I/J(.)’i —|—€V;’i) (p° u;,w)p(GE)

< Cee" V2 wlme.), weH.

Then

Ge
(e 11/§]i + ujl ) /ps(:c) (u;™ (1) + Eu;’ (xl,y)}y:x/s) w(x) dz
Ge
dub™
€ J —
+e /(a~1a TL) axl (1'1, y)‘y:z/e wdo =
e

= 50 (187 w)LQ(GE) + 51 (If’ w)LQ(GE)

1+
+e [ (af n)au—J(x y)| w do;
1 8201 1 y=z/e ’

e



here
. 0
Ij(z) = [0(9517y)}y:x/5 = _a—x1<al-(xlay)vyu}i(xlay)
0 du®*

_a—xl(a,ll(l'l,y) d;l (.’,L'l)) —V;’ip(xl,y)u?’i(xl)
0,+£ 1,+
-, u (X s Zy, 3
2Ty (21,y) p(21,y) _—
I div. + 1d' ( 8uj1,,i )
1(l‘)— Wy c 1vy &.1([L‘1,y) 8:701 (xhy
1,+ 1,+
-’ X1, u.(x s .
e, y) ug (1y)y:m/€

By (4.9), the average df(x1,y) € C1*([-1,1]; C*(Y)) overY is equal to zero, thus, by
Lemma 3.11

(5, @) 2| < Cee lwllme.

Integrating by parts and bearing in mind the regularity préips Ofu;’i and assumption
(HO), one can see that

1,4
ou;’

)(Ileyw) L2(Ge) +/(a.€1,n)a—;1(a€1,y)}ym/awda‘

1,+

_ Ou’ o+ e Lk, L
’/ ), Vw) 8901 - x/sdx Z /p (z) u; (xl,g)w(x)dx
Ge
< C€ 2 ”U}HHl
Thus,
UE:l: ! .
(4.33) F<C ” |H R

Let us estimate|U; |
yields

w:. Rearranging the terms in the expression (of*, U:™)

HE

(U055 = Jo + oy + Jou +

vy’
where

J: ——/ du OidUOid +5/ du; Oi UHE(:E ) dz
a a a
v u dr;  dxg u dxl 0r LY
Ge

Ge

dOﬂ:alj: alﬂ:auli

+€/a11 dil e (xl,y)dx+€2/a11 e 8;1 (71,y) dx.
Ge Ge




0,£
du?’i duj’ d
I X

y=a/e dl‘l dl‘l

:iy = /(a?l,Vle’l)}

Ge

+ /(ai, Vy'&il)}

Ge

du)*

y=a/e dzq
0, e 1,0 duj™ o

+v,7" [ (a5, V, N> )’ ;' dx

J y=x/e dl’l J

dx

G ; oyl
v [0, 9,0, e o) da

1+
ou;’

v [0 9,5, ) do

it
— X

y=a/e dr; dxy

i, = / (a0, ¥, N

Ge

0,£
e e du;
+ (a-laum)}y:x/s d.’L’l dzx
Ge

du®*
0,+ € 1,0 J 0,+
+v; /(a.pVyN )‘y:m/e i u;~ dr+
G 1,4+
ou;”’
E,V 1+ J ’ d
b [0, 9,0, g o) da

Ge

€ ~€ aujl"i
+e /(a-lavyum)}y:x/s 83:1 (xl,y) dx.

Ge

it du
i

y=a/e dry dxy

Ty = / (a°V, N VN

Ge

0,+
du;
0,+ € 1,0 1,1 0,£ °7J
+V; / (a*Vy,NY, VN[ 9
Ge
0.4+ duo’i

U,
J y=x/e J dzq

0.+ 1, 1,1
+1/] /(aEVyN 0, V,N"1)
Ge
0,4+ 0,+ € 1,0 1,0 0+ 0.+
+v; v /(a V,N*" V,N )’y:z/sui u;™ d.
Ge



There are several "typical” terms in the expressionsjfgr, J. Zy, Zac andJ;, to be esti-
mated. For example, using the regularity properties(of, ), v’ u; andujl.’i we get

O:I: au
) / (z1,9) dx‘ < Ce|G|=Cee®.

“n dl’l 8x1

Then, taking into account the exponential decayobne can see that

du():l:
’ /a,l,v ubl)}y x/e dl‘l dl"

Ge
1/e
<Cet / dx1/|Vy'&il\dy' < Ceet,
—1/e Q

In view of boundedness cﬂu}’i/axl and periodicity of V1.1, N1.0

1,4 Ou}™
- [ V), ) da]
Ge

y=z/e

<Ce [ [V )| + 1V, (e
GE
< Ce? max [/|VyN1’1(x1,y)|dy+/|VyN1’0(x1,y)|dy] < Ceed

z1€[—1,1]

Notice that

{(a1(@1.9). VN (@1, 9)

<—

(a1 (w1,9)V, N (a1, ), VN (w1,)) | dy = 0.

and, thus, by Lemma 3.11

@{/“%@M>VN’WMD

GE
+(ar (o1, 9) VN1, ), VN 0,) |

< Cee®




Similarly,

% [ { (@000, 9,8 000)

Ge

dud™*
(o (21, ) VN (1,9), T, N (21,9) } ) () da
< Ceed .
Consequently,
dupﬁt dUQ:t
e,+ e,+ o 5 € s ?
G-
duqi duqi
€ 1,1 € 1,1 1,1 7 J
+/ {65, 9,N™) + (a°V, N, W, N )}}M/E—d%1 e
G-
0,+  0,+ € , , 0,+ 0.+
+VZ' Vj / (a Vle 0’ vle 0) }y:z/eui U/J dl‘ + Rg,

Ge

where|R.| < Ceegdt,
Recalling the definition of the effective coefficiant and of the functiorC(z,) (see
(3.3) and (4.7), respectively), by Lemma 3.11, we have

1

dO:l: du():t
€,& €,& d—1 e 7
U U5 e = Q] [ @) T S da

In view of the normalization condition (4.11),

c—(d-1) R
(4.34) ’ (U5, U )y — 65| < Ce.
@
Estimate (4.34) implies the lower bound for the ndfef = |-
1/2 .
(4.35) U= |3 > |Q‘2 eT, e<e

Combining (4.33) and (4.35) yields the desired estimat&l{4 Lemma 4.4 is proved.[]
We turn back to the proof of Theorem 4.3. By Lemma 3.8, in viéwstimate (4.31),
for anyj there exists an eigenval;u@i of the operatok’s such that

et -1, 0,+ 1,+£\-1 2
ot — (e Zae | < Cje®, e<ej.



. . iAanEE 6t —
Considering the relation}™ = (u;7)~", we get
(4.36) })\Z’i — (z—:_luj(.)’i + V}’i)} < Cje, e<eg;.
Our next goal is to prove that, for anythere is a uniquaji satisfying inequality (4.36).
The proof consists of three steps presented below. Lemmgives the lower and upper
bounds for)\j’i. Lemma 4.6 claims that, up to a subsequem@g;i converges to an

eigenvalue of the operator pencil (4.9). Then we show tlettkxists a unique eigenvalue
X5 satisfying (4.36).

LEMMA 4.5. For anyj, the estimate holds true
(4.37) 0<m<e|ATF| < M;
with some constants and /;.

PROOF. By the definition of the operatdc®,

IK?|| = sup (Kv,v)u== sup (p°v,v)r2(c.)-

(U,U)’HE =1 (’U,’U)HE =1

Arguments similar to those in Lemma 3.11 yield
| /ps (v do| < Ce olidn e
Ge

Thus,

1K < Ce, |u5*| < Ce, Vj.
Considering the equality;™ = (1), we obtain the lower bound in (4.37). The upper
bound in (4.37) follows easily from estimate (4.36). Lemniaid proved. O

LEMMA 4.6. Foranyj, up to a subsequence),\ji converges to an eigenvalue of
problem(4.9).

PROOEF In view of Lemma 4.5;—:/\?i converges to some, € R\ {0}. Let us show
that v, is an eigenvalue of the operator pencil (4.9). The weak féatran of problem
(2.1) has the form

(Aauf’i — XoE s w) =0, weH.
L2(Ge)

Integrating by parts leads to the equality
e,+ I I € e,k — €
(4.38) <uZ , ATw — A7 p w)LQ(GE) + /(a Vw,n)u;>do =0, w e H.
ZE

By the normalization condition (2.6)*(z) € L2(K,, 1) converges strongly in the vari-
able spacé? (K, ui.) to a functionu, (x,) € L*(Kg, i), K4 = [—1,1]¢ (see Lemma 3.13



for the details). Thus, showing thalfw — A= p°w converges weakly ith?( Ky, yi.) will
allow us to pass to the limit in (4.38). For this purpose westarctt a test function

x dv(z
Ve(w) = w(wn) +e N (@, ) d(xll)

2 ATE N (g, f) o(zy), wveC[-1,1).

We would like to emphasize that, in contrast with anzatsqy e do not add the bound-
ary layer corrector here. The reason is that;) is equal to zero at point&1 together
with all its derivatives, that yield&=(+1, z') = 0.

Simple transformations yield

ATVE = N7 VE = i () + S5 (11.y)

y:z/e’
where
0 dv(z
Ji(x1,y) = —a—xl(al-(%’y)vle’l(xl,y) d(xll))
0 dv(zy)

_3—1’1 (@11(x17 Y) iy )

s 0
—e XF (. (w1, ) VN (21, ) v(r)

¢ &cl
. dv(x
2 o, NP (a1, 9)
T1

—(e X2 p(1, y) N0 (1, ) 0(2y);

J5(z1,y) = —5{divx + édivy} [a.l(xl, )
_52)\Z?,i{divx + édivy} [a.l(xl, y>8ixl

In view of (3.3), (4.8) and (4.7),

&€ _ a eff )
/J1(«7f17y) dy = _8—.7;1(a (1) Txl)
Y
+e AN B(21) v(21) — (€ ATF) 2 C(xy) v(1).
Using Lemma 3.11 and normalization condition (2.6), we wbta
[ @)t @de [ [ K@) dyds
GE GE Y

< Ceg@“uf’iﬂm(gs) < Cee™



Then, integrating by parts one gets

[ B,y i)+ [ @OV 0 do

Ge Ye

0 dv(x R
= 5/@.1(:101, )a—(Nll(:pl,y) dEml)) e Vui = (x) d
GE a
+€2X§’i/a.l(xl,y)T(Nl’o(xl,y)v(xl)) ) Vi (z) d.
1 y=x/e
Ge

Estimating the terms on the right-hand side of the last etyuaklds

’/ (x1,y y e Ui “E(x )dx+/(a€VV€ n)us* do

< Cel|G|V? HVuaiHLa(GE < Cee®l.

Consequently,

0= <u§’i, Aw — /\f’ipew> + /( Vw,n) uS* do

L2(Ge)
EE
= <uf’i, II(eXSF) v) +7r5, |rf| < Cee?
L2(G:)

By definition of the measurg. (see Section 3)

e, e, re
= () TI(e NS dpe + ——— =0,
K/uZ () IL(eX; ™) v(z1) dp +5d*1|Q|
d

Passing to the limit in the last equality, taking into acddihie strong convergence oj’i
in L?(Kgy, p1.), yields

/u*(xl) II(v.) v(z1) dpse(z) = 0.
Kq
Integration by parts gives

/v(xl) II(v,) us(z1) dus(z) =0, v e C°[—1,1].

Thus,u, satisfies the equation

d du,
(4.39) II(v,) us(xy) = _d—xl(a d:pl) + v, Bu, — (1/*)2 Cu, =0.
By the definition ofu®* and\>* we have
5™ 13 = A (07 ui™ w5 ™) 12y




Since(p(zy,-)) = 0, then

| [ (i da] < €t *aan e
Ge
and, consequently,

+ L et £
=1 < Ce X g Mz i e

Taking into account estimate (4.37) and the defintion of teasuare:., we have

14 | L2k g oy > € > 0.
Considering the strong convergence@ft in L?( Ky, p.) leads to the inequality
sl 2(—1,1) > ¢ >0,
which means, together with (4.39), th{at, «..) is an eigenpair of the operator pencil (4.9).

Lemma 4.6 is proved. OJ
Assume that
5)\§’i — V?’i, e — 0,
»5/\2’i — V?’i, e — 0.

Then necessarily= k. Indeed, by Lemma 4.6 the eigenfuncticu‘js]t andu;i converge
to the eigenfunctions; ™ andu,™ of (4.9) corresponding to}"*, and, as was proved
aboveu;™ # 0 anduy™ # 0. Since the eigenvalue™* is simple, we have

wE 4 quyT = 0.

for somec; # 0. Assume that # k, and consider the expression

1 _ _
T° = g (pE(u?ﬂ: + Cluzi% (u?i + Cluz7i))L2(Kd7Ms)
Considering (2.6), (4.37) and (3.26), we obtain
TE — 1 (u?i7 u?i)'ﬂa C% (uzi7 u;i)HE
B TV ]
1 c? 1 c? 1+ c?
(4.40) =—z+—2x — ozt ox= oz #0
N EAY 2 vy vy

It was shown in the proof of Lemma 3.13 thgt™ andu; ™ converges strongly in
L*(Kg4, 11°), therefore,
5™ + crvg™ (|2 s ie) — 0,
ase — 0. Denote byS(z, y) a solution to the following problem
—A,S(x1,y) = pler,y),  y e G,
vys(xlvy) ’ n(y) = 07 Yy S Ei7
S(z1,y) is 1-periodic iny;.



Since(p(x1, -)) = 0, this problem is solvable. Setting(z,y) = V,S(x1,y) we have

ép(:cl, g) = diVR(l’1, g) - %R(‘rl’yﬂ

y=x/e’

DenotingR5(x) = iR(fL’l,y)\

T Oz

_andRe(z) = R(a:l, 2) we rewrite7* as follows
y=a/e e

T = (divRE(uf’i + Cluzi)v (Ufi + Cluzi))H(Kd,m)

—(R5(ug™ + crug™), (ug™ + Cl“i’i))ﬂ(mug)'

Clearly, R is uniformly in e bounded. Therefore, the second term on the right-hand side
tends to zero, as — 0. Integration by parts in the first term yields

(divR (uS™ + cruy™), (uf™ + cruy™

))LQ(Kd“uE)

—2 (RE (U?i =+ Clu;i)v v(,u?,:l: + Clu;i))Lg(Kd#E)'

Since|| Vs ™ || sz, ue) @and || Vud ™| 12k, ey @re uniformly ine bounded, the first term
also tends to zero, as— 0, which implies thagi_r)% T¢ = 0. This contradicts (4.40). We
conclude that = k.

Finally, we conclude that for anythere is only onekj’i satisfying inequality (4.36),
and thus, it is simple for sufficiently small In view of the geometric simplicity oij(.)’i
and Lemma 3.8, the corresponding eigenfuncﬂ'@ﬁ can be approximated by the "almost
eigenfunctionU;"*:

5™ = U5
The proof of Theorem 4.3 is complete. O

He < cje, € <Egj.

5. The case of sign-changingp(z, -))
In the case of sign-changing(x1, -)) the limit spectral problem takes the form
d du®(x
A’ u¥(z)) = ~ e (aeﬂ(:pl)idil 1))
(51) = )\O (p(x1,~)>u0(x1), T € (_171)7
u’(£1) = 0.
Here the effective coefficient” is defined by (3.3). By Lemma 3.1 the coefficient(-)
isaCt*[—1, 1] function such that**(z,) > 0 for all z; € [-1,1].
Since(p(z1, -)) changes sign, one can see in the same way as in Theorem 2tlethat
spectrum of problem (5.1) is discrete and consists of twaitefisequences

0< AT <A < < AT = too,

0> A7 > A7 > > A0 = —c0.



Moreover, since problem (5.1) is one-dimensional, all thpﬂema/aluesA?’i are simple.
The corresponding eigenfunctiou%i € C**[—1,1] of problem (5.1) can be normalized
by

1

du®* du’*
(5.2) /aeﬁ(xl) pr d;,*l dxy = 0y
-1
For anyj € N we denote
du®=(zy)
e, + 0% 1,1 _J v
(5.3) Up=(z) = u;™(v1) + e N (21, 9) da ‘y:m/g

tevr(a1) + e (u (2) + uf (@),

whereu*, N andv;™ solve problems (5.1), (3.2) and (3.15), respectively, with-=
uy™ and\? = A\}*. The boundary layer functions;* are defined by (3.17) and (3.13)
0,+

with «° = u;

THEOREM 5.1. Let conditiong HO) — (H3) be fulfilled, and suppose thgp(z;

) ))
changes its sign of-1, 1]. If (A5, u5™) are eigenpairs of probler(2.1), and (A}, u]™)

are those of probler(b.1), then the following statements hold:
(¢) Foranyj € N, there exist; andC; > 0 such that
|)\§’i — )\?’i| < Cje, Vee(0,g].
(17) Foranyj € N
£, €, a-1
5™ — U5 * ey < Ciee™

wherer’i is defined by5.3). Moreover, the "almost eigenfunctions” satisfy the
almost orthogonality and normalization condition

g_(d_l)
Q|

(zi1) Forj € N, )\j’i are simple, for sufficiently smadl> 0.

(CLE VUiE’i, VU;’i)LQ(GE) — 5@']’ S Cj g.

PROOF Since the proof of Theorem 5.1 is similar to that of Theoreé) &e give here
just a sketch of this proof.

First, we construct a formal asymptotic expansion for atsmhu A, v¢) of problem
(2.1). In the case under consideration it takes the same dsrim the cas€p(z4,-)) > 0
(see (3.1)). Namely,

u(x) = u’(x)) +eu' (@, y) + 2 uP(z1,y) + 0’ (x,y) + -
)\EI)\O+€)\1+...’ y:z’
€

(5.4)



where unknown functions®(z, y) are1-periodic iny,. We substitute these ansatze for
u® and A® in (2.1), collect power-like terms, and repeat the compoatof Section 3.1.
At the first step we obtain that

du®(zy)
T1

with N1! defined in (3.2). At the second step this yields problem (3l is the pair
(A%, u?) solves problem (5.1).
Notice that, sinc® does not belong to the spectrum of (5.1), for eatht 0 we have

u'(z1,y) = N" (a1, y) + o' (21)

1

(5.5) X #0, /(p(xl, ) (@ (21))* day # 0.
-1
In order to determine the functiart(z,) we set, like in (3.6),
d*u®(xy) du® (1)
Uz(l‘hy) :N2’2(.I'1,y) de‘% +N271(l‘17y) dl’l
d 1
+N* (g, y) u(y) + NV (2, y) % + v (1),

whereN?2, N2 and N*° arey,-periodic functions defined in (3.7)—(3.9). Recalling the
definition of the boundary layer functions®(y;, ') (see (3.13)) and the corresponding
constantsy®, and repeating once again the computations of Section lavive at
problem (3.15) that reads

d dv?

o (@ @) =) = A (o)) v ()
(5.6) = F(z1) + X (p(ar, N u®, a1 € (—1,1),
vl(£1) = oF

with F'(z;) defined by (3.11).
In view of (5.5), normalization condition (5.2), and by thee&holm theorem, the
solvability condition of the last problem reads

1

A= )0 / F(z) u®(x1) da:

+X%(a*(1) 3—2(1) Wt —a(—1) di(—l) ).

Imposing the normalization condition

(5.7)

1

/’Ul(l’l) u’(zy) doy = 0

-1



and letting

. rnF1l o )
(5.8) ui (o) = wt (5o o) -

we finally obtain a formal asymptotic expansionof

/ d 0
Us(x) = uo(xl) —|—€N1’1(3317%) W)

+ev'(z1) + e (uit(2) + uf ™ (2)).

Let A7 (A7) be thejth positive (negative) eigenvalue of problem (3.4). We sitiite
the corresponding eigenfunctiaff ™ (u;™ ) for «° in (5.9) and denote

€,+ 0,4 1.1 dug‘)i(xl)
(5.10) U;y=(z) = uy™ (v1) + e N (21, ) “dn, ’y:x/g

ooy () + e (i () + (@),

Whereu?’i, Nt andv}’i solve problems (5.1), (3.2) and (5.6), respectively, with=
uy™ and\? = AY*. The boundary layer functions;* are defined by (3.17) and (3.13)
again withu® = u™.

Notice that by construction the functidir“;?’i are elements of the spagg.
Consider the normalized ansatz (5.10)

e (e

and the number&\)* + £A;*)~! with A;* defined by formula (5.7) with® = «)** and
A0 = \0%,
J
The statement of Lemma 3.9 remains valid in the case undeaidmnation both for
positive and negative parts of the spectrum.

LEMMA 5.2. Foranyj € N there ares; > 0 andC; > 0 that only depend o, such
that

(5.11) 12U — (A + e ) U e < Cje foralle <e.
PROOF As in the proof of Lemma 3.9 we set

% = KU — (A5 +eA) ™) U e,



and after straightforward rearrangements get

et £ 7 /€, 0,+ 1,£\—17s¢,%
I~ = sup (IC U™ — (N7 +eX7) U, ,w)

ol gpe =1 v
_ HUJE;‘:H;[l su <<)\0,:|: _'_ 6)\1,:&) ICE UE,:l: _ UE,:l: w)
T ER ok [ J AR
: J llwllgge=1
HU;’i’ﬁl 0,4 Lty (e et
TOE faE ik 055+ 20 (7 U7 0)
lwllzge =1

—(a* VUS*, vw)LQ(GE)’.

Estimate (4.35)) justified in the proof of Lemma 3.9 did ndyren the positiveness of
(p(z1,+)). Thus it also holds in the case of sign-changipgri,-)). Namely, for all
sufficiently smalk > 0 we have

1/2 1
(5.12) [losad |Q|2 S

Analogously, in the same way as in the proof of Lemma 3.9, wainb
(5.13) sup (NS F+eX ) (07 U™ w) o, — (02 VU™, V)

w
lwllge=1

Since)™ # 0, then for sufficiently smalt > 0 we have| A} + e\;*| > C with some
C' > 0. Combining this estimate with (5.12) and (5.13) yields §§.1 O

From Lemma 5.2 and Lemma 3.8 it follows that for ang N there are=; > 0 and
g* such that

(5.14) |/\2ii — )\g’i| <c¢je, £ <€

By the same arguments as in Lemmata 3.12 and 3.13 it is eagdtwxd that for any
qeN

He >

(d—1)

)’ < (Cee 2

L2(Ge) L2(G.

0<m < [AF| < M,
and that any limit point\, of a sequence{A?*} or {\;"} is an eigenvalue of problem
(5.1).
In the same way as in the proof of Theorem 3.6 this readily iespll the statements
of Theorem 5.1. OJ
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