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Abstract

The thesis is devoted to the homogenization of singular convection-diffusion equa-
tions and spectral problems with sign-changing density function. It consists of two parts.
The first one contains both qualitative and asymptotic results for solutions of stationary
and non-stationary convection-diffusion equations in bounded or unbounded domains.
Among the studied problems are qualitative problem for a convection-diffusion equation
in a semi-infinite cylinder, homogenization of convection-diffusion models in thin cylin-
ders and asymptotic problems for non-stationary convection-diffusion equations with large
convection term in bounded domains.

The second part of the thesis deals with the homogenization of elliptic spectral prob-
lems with sign-changing density function. We show that the asymptotic behaviour of the
spectrum depends crucially on whether the density average over the period is zero or not,
and construct the asymptotics of the spectrum in both these cases.

Résuḿe

Le but de la thèse est d’étudier l’homogénéisation d’équations de convection-diffusion
singulières et de problèmes spectraux à poids indéfini.La thèse se compose de deux
parties. La première partie contient des résultats qualitatifs et asymptotiques pour les
solutions d’équations de type convection-diffusion stationnaires et instationnaires, qui sont
définies dans des domaines bornés ou nonbornés. Les problèmes examinés comprennent
des études qualitatives pour une équation elliptique avec des termes du premier ordre
dans un cylindre semi-infini, l’homogénéisation de modèles de convection-diffusion dans
des cylindres minces et une analyse asymptotique d’équations de convection-diffusion
instationnaires avec un grand terme du premier ordre, posées dans un domaine borné.

La deuxième partie de la thèse porte sur l’homogénéisation de problèmes spectraux à
poids indéfini, pouvant changer de signe. On montre que le comportement asymptotique
dépend essentiellement de la moyenne du poids, notamment si la moyenne est nulle ou
non nulle. On construit alors le développement asymptotique du spectre dans les deux
cas.
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Introduction

The thesis consists of several closely related papers whichcan be divided into two
groups. The first one contains both qualitative and asymptotic results for solutions of
stationary and non-stationary convection-diffusion equations with periodic coefficients, in
bounded or unbounded domains. This part consists of five papers:

A I.Pankratova, A. Piatnitski,On the behaviour at infinity of solutions to stationary
convection-diffusion equation in a cylinder, DCDS-B, 11 (4) (2009).

B G.Panasenko, I.Pankratova, A.Piatnitski,Homogenization of a Convection-Diffusion
Equation in a Thin Rod Structure. (English). Integral Methods in Science and
Engineering. Vol.1. Analytic Methods, 279-290, Birkhauser (2010).

C I.Pankratova, A.Piatnitski,Homogenization of convection-diffusion equation in
infinite cylinder(accepted for publication in Networks and Heterogeneous Me-
dia)

D G.Allaire, I.Pankratova, A.Piatnitski,Homogenization and concentration for a
diffusion equation with large convection in a bounded domain

E G.Allaire, I.Pankratova, A.Piatnitski,Homogenization of a non-stationary convection-
diffusion equation in a thin rod and in a layer

The second group of problems addressed in the thesis is concerned with the homogeniza-
tion of spectral problems with a sigh-changing density function. The results presented are
the author’s contribution to the following papers:

F S.Nazarov, I.Pankratova, A.Piatnitski, Homogenization of spectral problem for
periodic elliptic operators with sign-changing weight function, Narvik University
College, R&D Report, No. 4/2008, ISSN 1890-923X (accepted for publication
in Archive for Rational Mechanics and Analysis).

G I.Pankratova, Spectral problem for a locally periodic elliptic operator with sign-
changing weight function, Narvik University College, R&D Report, No. 9/2009,
ISSN 1890-923X.

In paperA (see Chapter 1) we develop the qualitative theory for an elliptic equation in
a semi-infinite cylinder. PaperB (see Chapter 2) is devoted to homogenization problems
in a thin heterogeneous rod. PapersC, D andE deal with the non-stationary convection-
diffusion equations with large convection term. The results obtained in PaperD are also
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2 INTRODUCTION

illustrated by numerical experiments. PapersF andG are devoted to the homogeniza-
tion of spectral problems for elliptic operators with sign-changing density. In PaperF we
consider a spectral problem for an elliptic operator with periodic rapidly oscillating co-
efficients defined in a generic bounded domain, while PaperG concerns with operators
defined in a thin cylinder having a locally periodic microstructure.

More precisely, PaperA concerns the study of the behaviour at infinity of solutions
to second order elliptic equations with first order terms, stated in a half-cylinder. The
coefficients of the equation are assumed to be measurable andbounded; Neumann bound-
ary condition is imposed on the lateral boundary of the cylinder, while on the base we
assign the Dirichlet boundary condition. Under the assumption that the coefficients of
the equation stabilize to a periodic regime exponentially with large axial distance, and the
functions on the right-hand side decay exponentially at infinity, we prove the existence and
the uniqueness of a bounded (in the proper sense) solution and its stabilization to a con-
stant at the exponential rate. Also we provide a necessary and sufficient condition for the
uniqueness of a bounded solution. Our approach is partiallybased on the results from lo-
cal qualitative elliptic theory, such as Harnack’s inequality, Nash and De Giorgi estimates,
the maximum principle, positive operator theory and a number of nontrivial a priori esti-
mates. The problems of this type appear while constructing the asymptotic expansions of
solutions to equations describing different phenomena in highly inhomogeneous media.
For instance, the results obtained in PaperA are used in PaperB to construct boundary
layer correctors.

The question of asymptotic behaviour at infinity for solutions of elliptic equations and
systems of equations have been addressed in many mathematical works. We mention
just those of them which are closely related to the problem under consideration. Elliptic
equations in divergence form defined in unbounded cylinderswere studied in [27], [51],
[2]. In [46], [47] the authors has considered a boundary value problem for a second order
elliptic equation with first order terms on a half-cylinder with periodic boundary conditions
on the lateral boundary. Notice that, in contrast with the operators in divergence form, the
presence of first order terms changes crucially the qualitative picture. In particular, a
bounded solution need not be unique. The papers [17], [18], [21] are devoted to studying
the specific classes of semi-linear elliptic equations in a half-cylinder. Many works deal
with the Phragmén–Lindelöf type results for elliptic systems and elasticity problems, in
particular. Among them we mark out [22], [39], [26], [33]. For more detailed comments
on the existing literature see Introduction in PaperA.

Nowadays the homogenization theory is a extensively developed topic. Starting from
the early 1960s it has been attracting much attention of mathematicians. There is a wide
monographic literature devoted to this subject, we point to[1], [6], [7], [8], [13], [14],
[15], [30], [28], [31], [40], [43], [45], [48], [49], [50], [56].

The development of the homogenization theory has been aimedat creating the rig-
orous mathematical description of the highly inhomogeneous media and, in particular,
composite materials and porous media. Equations, describing various physical processes
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in such media, have rapidly oscillating coefficients because of the strong heterogeneity
of the materials. Due to these oscillations, direct analytical and numerical methods of
solving boundary value problems for such equations become extremely difficult and often
practically unrealizable. However, in many cases it is possible to derive homogenized (ef-
fective) equations which provide a good approximation for the behaviour of the original
processes. As a result, the characteristics of the original, highly heterogeneous material
are well-approximated by those of the effective locally homogeneous material.

Questions of the asymptotic behaviour of thin structures have been considered in many
works, both in mathematical and physical literature. In most cases, the asymptotic analy-
sis is aimed at the dimension reduction, or, in other words, reducing the original problem
to a problem in a domain of a smaller dimension. For instance,an equation stated in a
thin three-dimensional plate is substituted by an equationin a two-dimensional domain; a
problem describing some rod structure is reduced to an ordinary differential equation, an
so on. From the point of view of the numerical analysis, the reduced problem turns out
to be much simpler. Indeed, reducing the number of variablesdiminishes the amount of
computations. Naturally, dimension reduction demands rigorous mathematical justifica-
tion.

PaperB is devoted to the homogenization of a stationary convection-diffusion equa-
tion in a thin cylinder being a union of two nonintersecting rods with a junction at the
origin. It is assumed that each of these cylinders has a periodic microstructure, and that
the microstructure period is of the same order as the cylinder diameter. Under some natural
assumptions on the data we construct and justify the asymptotic expansion of a solution
which consists of the interior asymptotic expansion and theboundary layer correctors,
arising both in the vicinity of the rod ends and the vicinity of the junction. In contrast to
the divergence form operators, in the case of convection-diffusion equation the asymptotic
behaviour of solutions depend crucially on the direction ofthe so-called effective convec-
tion. In the thesis we only consider the case when in each of the two cylinders (being the
constituents of the rod) the effective convection is directed from the end of the cylinder
towards the junction.

The obtained results rely on the nontrivial analysis of a convection-diffusion equation
in semi-infinite and infinite cylinders. The case of semi-infinite cylinder has been studied
in PaperA, while the case of the infinite cylinder is addressed in Section 6, PaperB.

The problems stated in half-infinite cylindrical domains for the elasticity system have
been intensively studied in the existing literature. We quote here the works [24], [25],
[32], [34], [35], [53], [52], [55]. The contact problem of two heterogeneous bars was
considered in [41], [42], [44]. Elliptic equations in divergence form have been addressed,
for example, in [6] and [43].

PapersC, D andE focus on the non-stationary convection-diffusion equations with
large convection term. In paperC the asymptotic behaviour of a solution to a parabolic
equation defined in a thin infinite cylinder is studied. Namely, we consider the following
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operator:

∂tu− div
(
a
(x
ε

)
∇u
)
+

1

ε

(
b
(x
ε

)
,∇u

)

with a small parameterε. Assuming that the coefficients of the operator are periodicin
the axial direction of the cylinder, and imposing homogeneous Dirichlet boundary con-
dition on the lateral boundary, we study the asymptotic behaviour of the solutionuε, as
ε → 0. Similar equation defined in the whole space has been considered in [16] and [5].
In contrast with the case of solenoidal vector-fieldb(y) with zero mean value, for general
periodic functionb(y) one cannot expect the convergence of the sequence of solutionsuε

in the fixed spatial reference frame. It has been shown in [16], [5] that the convergence in
moving coordinates(t, x + b̄t/ε) takes place with the constant vectorb̄ called the effec-
tive drift or effective convection (see also [47]). In other words, the translated sequence
uε(t, x+ b̄t/ε) converges to the solution of a homogenized parabolic equation.

In the case of thin infinite cylinder, considered in PaperC, the behaviour ofuε is gov-
erned by the axial component of the effective convection. Itis shown that homogenization
result holds in moving coordinates, and that the solution admits an asymptotic expansion
which consists of the interior expansion being regular in time, and an initial layer. The
estimates for the rate of convergence are obtained.

Obviously, the convergence in moving coordinates is not well-defined in a bounded
domain. The goal of PapersD andE is to study the asymptotics of a solution to a non-
stationary convection-diffusion equation in a bounded domain. The case of general do-
main is considered inD. while in E we study the equation stated either in a thin rod or in
a layer. The special structure of the domain allows us to weaken the assumptions imposed
on the initial function and construct higher order terms of the asymptotics.

More precisely, in PaperD we study the following initial boundary value problem in a
bounded domainΩ:




∂tu
ε − div

(
a
(x
ε

)
∇uε

)
+

1

ε

(
b
(x
ε

)
,∇uε

)
= 0, in (0, T )× Ω,

uε(t, x) = 0, on (0, T )× ∂Ω,

uε(0, x) = u0(x), x ∈ Ω.

We assume that the initial functionu0 has a compact support inΩ. Intuitively, it is clear
that in a bounded domain the initial profile should move rapidly in the direction of the
effective drift b̄ until it reaches the boundary, and then dissipate due to the homogeneous
Dirichlet boundary condition, ast grows. Since the convection term is large, the dissipa-
tion increases, asε → 0, so that the solution vanishes at any positive timet > 0. In order
to study the behaviour of this solution fort ≫ ε, one should determine the rate of decay
and study the rescaled solution. It turns out that both the rate of decay and the behaviour of
the rescaled solution can be described in terms of the first eigenpair of the cell eigenprob-
lem with an optimal exponential parameter calledΘ (see [10]). We prove that,uε(t, x)
concentrates in the neighbourhood of a pointξ ∈ ∂Ω which depends onΘ. It is interesting
to notice that in general, the point of concentration, for large t, does not coincide with
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the point of intersection of the effective driftb̄ with ∂Ω, which is also illustrated by the
numerical example given in the paper.

Without the assumption thatu0 has a compact support inΩ, one faces the necessity
to construct boundary layer correctors in the neighbourhood of ∂Ω. It is well known
that this problem cannot be solved in the case of general bounded domain. However,
it is getting feasible in some special cases when the periodic structure agrees with the
geometry of the boundary ofΩ. In PaperG we consider two such cases. Namely, we
study a convection-diffusion models in a thin rod and in a layer in R

d. In the case of a
thin rod we impose homogeneous Neumann boundary conditionson the lateral boundary
of the rod and homogeneous Dirichlet boundary conditions onits bases. As was noticed
above, the solution vanishes for timet ≫ ε. We determine the rate of vanishing of the
solution and describe the evolution of its profile. If the effective axial drift is not zero (we
study only this case), the rescaled solution concentrates in the vicinity of one of the rod
ends, and the choice of the end depends on the sign of the effective convection. In order to
characterize the rate of decay we introduce a 1-parameter family of auxiliary cell spectral
problems (see [7], [10]). The asymptotic behaviour of the solution is then governed by the
first eigenpair of the said spectral problem. Among the technical tools used in the paper,
are factorization principle (see [23], [54], [56], [10], [11]), dimension reduction arguments
and qualitative results required for constructing boundary layer correctors.

In the case of a layer addressed in Section 3 of PaperG, in addition to the factorization
principle, we also have to introduce moving coordinates. More precisely, we use a param-
eterized cell spectral problem and factorization principle to suppress the component of the
effective drift which is perpendicular to the layer boundary. While, due to the presence
of the longitudinal components of the effective convectionwe have to introduce moving
coordinates.

The second part of the thesis (PapersF andG) deals with the homogenization of a spe-
cial class of spectral problems. Various homogenization problems in spectral theory have
been extensively explored since 1970s. At present it is a well-developed field comprising
many efficient methods and approaches.

PaperF focuses on the homogenization of a Dirichlet spectral problem for an elliptic
equation in divergence form stated in a regular domainΩ. Namely, the problem under
consideration has the form

(0.1)
−div

(
a
(x
ε

)
∇uε(x)

)
= λ ρ

(x
ε

)
uε(x) in Ω,

u = 0 on∂Ω,

with ε being a small positive parameter. It is assumed that the coefficients of the equation
aij(y) and the spectral density functionρ(y) are periodic with respect toy, and thatρ(y)
changes sign. It is shown that the spectrum of problem (0.1) consists of two infinite se-
quences tending to±∞. The asymptotic behaviour of the eigenpairs depends essentially
on whether the average ofρ over the period is equal to zero or not. When the average ofρ



6 INTRODUCTION

is zero, the effective spectral problem is that for a quadratic operator pencil, and the eigen-
values are of orderε−1. In the second case the positive eigenvalues and the corresponding
eigenfunctions show the same regular behaviour as in the case of point-wise positive spec-
tral density. In both cases we justify the convergence of spectra and present the estimates
for the rate of convergence.

The main peculiarity of the problem considered in PaperF is the fact that the spectral
density function is sign-changing. Previously, a spectralproblem with sign-changing den-
sity for the Laplace operator has been considered in [36]; in this work the limit behaviour
of spectrum has been studied under the assumption that the density consists of a fixed
positive part and asymptotically vanishing negative part.The results obtained in PaperF
have been generalized to spectral problems for elliptic systems in [37].

The homogenization of spectral problems in the case of point-wise positive weightρ is
well-studied nowadays. Such problems have been first considered in [19], [20] and then in
many other papers. The homogenization of spectral problemsin perforated domains has
been studied in [54] followed by many other works on the subject. The limit behaviour of
spectrum of elasticity system in perforated domain has beenaddressed in [40]. In [12] the
authors have generalized the results obtained in [40] by making weaker the assumptions
on the regularity of the inclusions and external forces. Thespectral problems for locally
periodic symmetric second order elliptic operators with large potential have been stud-
ied in [3]. The work [4] dealt with the asymptotic behaviour of spectrum for a periodic
symmetric elliptic system with large potential.

The problem addressed in PaperF might have interesting applications in the mod-
ern theory of metamaterials, that is artificial composite materials designed to produce a
desired electromagnetic behavior with significantly enhanced performance over ”natural”
structures. For example, when the world is observed throughconventional lenses, the
sharpness of the image is determined by and limited to the wavelength of light. Meta-
materials with negative refractive index are aimed at creation of ”perfect” lenses, that is
lenses with capabilities beyond conventional (positive index) ones. It is observed that the
double negative media (i.e. metamaterials having both negative permittivity and perme-
ability) could lead to a negative index of refraction. The so-called single negative meta-
materials, where either permittivity or permeability are negative, is the next example. For
instance, many plasmas, as well as some metals (gold and silver), possess negative permit-
tivity while the permeability is positive. Double positivematerials do occur in the nature
(dielectrics). Tunable negative index metamaterials became very popular due to the back-
ward wave propagation and subwavelength resolution. Such materials have applications
not only in ”superlenses”, but also in miniature metamaterial antennas construction.

It is interesting to note that equation similar to (0.1) can be derived from Maxwell’s
equations. Indeed, consider the equation for the vector of the electrical field in a bounded
3-dimensional domain

rot
( 1

µ̃(x)
rot ~E(t, x)

)
= −ε̃(x)∂

2 ~E

∂t2
(t, x), (0, T )× Ω.
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Here ~E is the vector of the electrical field,̃ε(x) andµ̃(x) are the permittivity and perme-
ability, respectively. Let us consider the case ofE-polarized plane wave

~E = {E(x), 0, 0}eiωt, E(x) = E(x2, x3).

Substituting this representation into the Maxwell equations and assuming that̃µ(x) =
µ(x2, x3), ε̃(x) = ε(x2, x3) one has

− ∂

∂x2

( 1

µ̃(x)

∂E

∂x2

)
− ∂

∂x3

( 1

µ̃(x)

∂E

∂x3

)
= ω2ε̃(x)E.

Comparing the obtained equation with (0.1) we see that the possibility for ρ to change
its sign is equivalent to the sign-changingε̃(x). In particular, the negative index materi-
als correspond to the case when bothλ andρ in (0.1) are negative; the single negative
metamaterials - to the case of positiveλ andρ < 0 or λ < 0 andρ > 0. These simple
arguments give an idea that the problem studied in PaperF might have applications in the
theory of metamaterials.

In PaperG a homogenization problem for a second-order self-adjoint operator, stated
in a thin cylinder, is considered. The homogeneous Neumann boundary condition is set
on the lateral boundary, while on the bases of the cylinder the homogeneous Dirichlet
boundary conditions are imposed. As in PaperF, the spectral density function is assumed
to change sign. Both the coefficients of the equation and the spectral density function
are supposed to be locally periodic in the axial direction ofthe cylinder. The asymptotic
behaviour of the spectrum depends on whether the average of the spectral density function
over the period is zero or not.

For the density function having positive average the effective spectral problem happens
to be a Sturm-Liouville problem. In this case the convergence of the positive part of
the spectrum is justified using the theory of convergence in variable spaces with singular
measures.

In the case of zero average weight function the limit spectral problem is that for a
quadratic operator pencil. To study this operator pencil weapply the results from [29]
combined with usual arguments used when studying Sturm-Liouville problems. It should
be noted that in contrast with [38], the presence of slow variable in the coefficients makes
the limit operator pencil nontrivial, so that it can not be reduced to the standard Sturm-
Liouville problem.

In contrast with the problems investigated in [37] and [38], for the model considered
in the PaperG the limit spectral problem is one-dimensional, so that dimension reduc-
tion arguments are to be used. We combine the asymptotic expansion technique with the
singular measure approach developed in [57] and [9]. The fact that the considered oper-
ator is defined in a thin cylinder allows us to construct boundary layer correctors in the
neighbourhood of the cylinder bases and, as a result, improve essentially the asymptotics.
As a matter of fact, if the coefficients are sufficiently regular, then arbitrary many terms
of the asymptotic expansion can be constructed. The existence of exponentially decaying
boundary layer correctors in assured by the results obtained in PaperA.
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ABSTRACT. The work focuses on the behaviour at infinity of solutions tosecond order
elliptic equation with first order terms in a semi-infinite cylinder. Neumann’s boundary
condition is imposed on the lateral boundary of the cylinderand Dirichlet condition on
its base. Under the assumption that the coefficients stabilize to a periodic regime, we
prove the existence of a bounded solution, its stabilization to a constant, and provide
necessary and sufficient condition for the uniqueness.

1. Introduction

This work deals with the behaviour at infinity of solutions tostationary convection-
diffusion equations defined in a semi-infinite cylinder. We assume that Neumann boundary
condition is imposed on the lateral boundary of the cylinder, and that the coefficients of
the equation are periodic along the cylinder axis or stabilize at the exponential rate to a
periodic regime for asymptotically large axial distance. Under these assumptions we study
the existence and uniqueness of a bounded solution, and its stabilization to a constant at
infinity.

The question of validity of the Saint-Venant and Phragmén–Lindelöf principles, as
well as other questions related to the behaviour at infinity of solutions to elliptic equations
and systems of equations, received a lot of attention of mechanicians and mathematicians
starting from the beginning of 20th century.

A number of rigorous mathematical works are devoted to this subject. Dirichlet and
Neumann boundary value problems in a cylindrical domains for second order linear el-
liptic equations in divergence form were studied by many authors. Early contributions
include [10], [6] and [7] which contain results like Saint-Venant’s principle for special
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classes of Neumann problems. As to the later works on this topic, we mention just some
of them closely related to the present paper.

In [14] an equation in divergence form in a half-cylinder with periodic coefficients
on all variables except for one was considered, the exponential stabilization to a constant
was proved. The periodic boundary conditions were imposed on the lateral boundary of
the cylinder. The technique used in this work relies on specific geometrical methods. As
was communicated to the authors ([22]), the question of the existence of a solution that
converges exponentially to a constant with large axial distance was studied in 1976 for
an equation in divergence form under some natural assumptions on the right-hand side.
The method relied on a variation of the Lax-Milgram lemma. This result has partially
been written in [15]. Another proof of the exponential decay of the solution to the same
equation was given in [1]and it is valid also for non-flat base of the cylinder.

A boundary value problem for a second order elliptic equation with first order terms
on a half-cylinder with periodic boundary conditions on thelateral boundary of the cylin-
der was studied in [19] and [20]. In these works, under the assumption ofC2 regularity
and periodicity of the coefficients, the existence of a bounded solution and its exponential
stabilization to a constant at infinity was proved by means ofdiffusion processes tech-
niques. Moreover, the necessary and sufficient conditions for the uniqueness of a bounded
solution were given. In [20] the obtained results were applied to a homogenization prob-
lem for singularly perturbed operators defined in a layer. Also, without the assumption on
periodicity in axial variable the following conditional result was obtained in [20]: if the
adjoint problem has a bounded uniformly positive solution,then the effective axial drift
can be defined and the results proved in periodic case, remainvalid.

In the present paper we study operators with measurable coefficients and assume only
Lipschitz continuity of the boundary of the cross-section.In this case the usage of prob-
abilistic techniques is getting embarrassing and sometimes impossible, especially if the
boundary condition is not homogeneous. Our approach relieson the various results from
local qualitative elliptic theory, such as Harnack’s inequality, Nash and De Giorgi esti-
mates, the maximum principle, positive operators theory and a number of non-trivial a
priori estimates which include as a weight the function forming the kernel of the adjoint
periodic operator. We consider here not only operators withperiodic coefficients, but also
with coefficients which stabilize to periodic regime at infinity. Another issue addressed in
the paper is the generalization of the existence, uniqueness and stabilization results to the
case of nonhomogeneous equations withH−1 function on the right-hand side. It should
be noted that obtaining the a priori estimates in this case isgetting more complicated than
in the case of data fromL2.

Also we pay special attention to the asymptotic behaviour ofthe solutions defined in
a growing family of finite cylinders. This gives a clear picture of how solutions defined
in finite cylinders approximate the limit bounded solution.This analysis allows us, in
particular, to distinguish the special case when the so-called effective axial drift is equal
to zero.



In [3], [4] and [8] specific classes of semi-linear elliptic equations in a half-cylinder
were considered. It was proved that a global solution, when it exists, decays at least
exponentially with large axial distance. The technique involves the derivation of a first
order differential inequality for the energy flux across a cross-section of the cylinder. With
the help of this technique spatial behaviour of solutions toelliptic systems, in particular
those of linearized and linear elasticity, was studied also(see, for example, [9]).

A priori estimates similar to Saint-Venant’s principle in elasticity theory were dis-
cussed in [17] under some dissipativity type assumptions on the coefficients. Also in
this work interesting uniqueness results in proper classesof growing functions were ob-
tained for Dirichlet and Neumann problems for second order linear elliptic equations in
unbounded domains .

In [11] the authors investigated elliptic systems with complex constant coefficients,
assuming that a weighted Dirichlet integral is bounded. Thepaper deals with finite energy
solutions for the system of linear elasticity.

The asymptotic behaviour at infinity of solutions to symmetric elliptic systems were
treated in [16]. This work focused on the existence of solutions in weighted spaces with
various exponentially growing or decaying weights.

In [13] the behaviour of solutions to nonlinear elliptic equations with a dissipative
nonlinear zero order terms was studied by means of the barrier functions techniques.

The goal of this work is to study the behaviour at infinity of solutions to a linear
stationary convection-diffusion equation in a semi-infinite cylinder. We impose Dirich-
let boundary condition on the base of the cylinder and Neumann condition on the lateral
boundary. Under the assumptions that the coefficients of theequation stabilize exponen-
tially to a periodic regime, and the functions on right-handside of the equation and of the
boundary operator decays sufficiently fast at infinity, we prove the existence of a bounded
solution and its stabilization to a constant at the exponential rate. Also we provide a neces-
sary and sufficient condition for the uniqueness of a boundedsolution. It should be noted
that, in contrast with the divergence form operators, for the operators with first-order terms
the question of uniqueness of a bounded solution is getting more complicated. We show
that whether a solution is unique or not depends on the sign ofsome constant called ef-
fective axial drift (or flux), which can be determined in terms of a solution to auxiliary
periodic problem for the formally adjoint operator.

The problems of this type appear while constructing the asymptotic expansions of so-
lutions to equations describing different phenomena in highly inhomogeneous medium.
For instance, such results allow one to construct boundary layer functions in various ho-
mogenization problems. Moreover, these results are of independent interest in mechanics
and other applied fields and, of course, in mathematics.

The paper is organized as follows. Sections 1–6 focus on the homogeneous problem
with periodic coefficients. In these sections we start with the problem setup and auxiliary
results, and then proceed with the existence, the uniqueness and the stabilization to a con-
stant of a bounded solution to the problem under consideration. In Sections 7–8 we obtain



similar results for inhomogeneous problems and equations with coefficients stabilizing to
a periodic regime.

2. Problem statement

Let G = (0,∞) × Q be a semi-infinite cylinder inRd with the axis directed along
x1, whereQ is a bounded domain inRd−1 with a Lipschitz boundary∂Q. The lateral
boundary ofG is denoted byΣ = (0,+∞)×∂Q. We study the following boundary-value
problem:

(2.1)





−div (a(x)∇ u(x))− (b(x),∇ u(x)) = 0, x ∈ G,

∂u

∂na
= 0, x ∈ Σ,

u(0, x′) = ϕ(x′), x′ ∈ Q.

Herea(x) is ad×dmatrix andb(x) is a vector inRd, x = (x1, x
′), ϕ(x′) ∈ H1/2(Q); (·, ·)

stands for the standard scalar product inRd; ∂u/∂na =
∑d

i,j=1 aij(x)ni ∂ju is the conor-
mal derivative,n is the external unit normal. The matrix-valued functiona(x) and the vec-
tor fieldb(x) are supposed to be measurable and bounded, that isaij(x) ∈ L∞(G), bi(x) ∈
L∞(G), and periodic inx1 functions. Without loss of generality we assume that the pe-
riod is equal to1. For the sake of simplicity the matrixa(x) is supposed to be symmetric.
Moreover, we assume thata(x) satisfies the uniform ellipticity condition, that is there
exists a positive constantΛ such that, for almost allx ∈ Rd,

(2.2) Λ |ξ|2 ≤
∑

i,j

aij(x)ξiξj, ∀ξ ∈ R
d,

The first goal of this work is to study the behavior of bounded (in a proper sense)
solutions of problem (2.1).

3. Auxiliary function p(x)

Consider the following periodic problem:

(3.1)





−div(a(x)∇ u)− (b(x),∇ u) = f(x), x ∈ G1
0 = (0, 1)×Q,

∂u

∂na

= 0, x ∈ Σ1
0 = (0, 1)× ∂Q,

u− x1 − periodic.

This problem has a unique up to an additive constant solutionu(x). We denote byA
an unbounded operator inL2(G1

0) which mapsu(x) into f(x) ∈ L2(G1
0). In view of

x1-periodicity we can identify functions defined onG1
0 with the corresponding functions

defined on the setY = S1 × Q, whereS1 is a 1-dimensional circle. Then problem (3.1)



reads

(3.2)





−div(a(x)∇ u)− (b(x),∇ u) = f(x), x ∈ Y,

∂u

∂na
= 0, x ∈ ∂Y.

The operatorA is an unbounded operator fromL2(Y ) into itself with dense domainD(A),
that consists of the functionsu(x) ∈ L2(Y ) such that there existsf(x) ∈ L2(Y ): Au = f
and∂u/∂na = 0 for x ∈ ∂Y . For largeλ > 0 the inverse operator(A+ λI)−1 exists and
it is compact. Moreover, using the De Giorgi–Nash estimates(see, for example, [5]) it is
easy show that(A+ λI)−1 is a compact operator inC(Y ).

The formally adjoint problem takes the following form:




−div(a∇ v) + div (b v) = f, x ∈ Y,

∂v

∂na
− (b, n) v = 0, x ∈ ∂Y.

In the sequel we will need an auxiliary functionp(x) which belongs to the null space of
the adjoint operator:

(3.3)





−div(a∇ p) + div (b p) = 0, x ∈ Y,

∂p

∂na
− (b, n) p = 0, x ∈ ∂Y.

The goal of this section is to show that such function exists and is positive.

DEFINITION 3.1. We say that the operatorB fromL2(Y ) (C(Y )) into itself is positive
if from the inequalityu ≥ 0 it follows thatBu ≥ 0.

The linear positive operatorB is calledv-bounded, for somev ∈ C(Y ), v > 0, if for
every positive functionu ∈ C(Y ) there exists two constantsα = α(u) andβ = β(u) such
that

0 < α(u) v ≤ B u ≤ β(u) v.

First let us show that the operator(A+ λI)−1 is positive. By the maximum principle,
if f > 0, thenu cannot have a negative minimum in the interior of the domainY . The
assumption that a negative minimum is attained on the boundary ∂Y , will also contradict
the maximum principle in view of the positiveness off . Indeed, since∂Q is Lipschitz
then for every point̃x ∈ ∂Q there exists a neighborhoodU(x̃) ⊂ Rd such that the surface
∂Q ∩ U(x̃) is represented by the equality

x1 = F(x2, ..., xd),

whereF is a Lipschitz function. Let us make a change of variables straightening the
boundary∂Q, so that the piece of the boundary∂Q∩U(x̃) is mapped into the piece of the
planeξ1 = 0 andY ∩ U(x̃) into some domain whereξ1 > 0:

{
ξ1 = x1 −F(x2, ..., xd),
ξk = xk, k = 2, ..., d.



One more change of the variables transfers the co–normal derivative to the normal deriva-
tive: 




η1 = ξ1,

ηk = ξk −
a1k
a11

ξ1, k = 2, ..., d.

By construction, in the vicinity of the point̃η = F(x̃) the solutionu is only defined for
η1 ≥ 0. We define an extension ofu (keeping the notationu for the extended function) by
settingu(η1, η′) = u(−η1, η′) for negativeη1. One can check that after inverse changing
the variables, due to the homogeneous Neumann boundary condition on∂Q, the extended
functionu(x) remains a solution of some convection-diffusion equation with a positive
right hand side in a neighbourhood ofx̃. Thus, in view of the maximum principle,u(x)
cannot attend a negative minimum atx̃.

Let us show that the operator(A + λI)−1 is 1-bounded inC(Y ). First, we note that,
in view of the boundedness of the coefficients, the followingestimate takes place (see, for
example, [5]):

‖u‖C(Y ) ≤ C‖f‖C(Y )

for some constantC independent off . Thus,

(A+ λI)−1f = u ≤ C.

It remains to show that(A + λI)−1 f > 0 if f(x) > 0, x ∈ Y . Let us suppose that
min
x∈Y

u(x) = 0. In the interior ofY the functionu(x) cannot attain a nonpositive minimum

unlessu is equal to zero. If we assume thatu achieves zero minimum on the boundary
S

1 × ∂Q, then, in the same way as above, we can extendu to a larger domain so that the
extended function remains a solution of some elliptic convection-diffusion type equation
with a positive right-hand side and, consequently,u cannot achieve its zero minimum on
the boundary. Hence, we conclude thatu(x) ≥ c(f) > 0 if f(x) > 0.

Now we apply the Krein-Rutman theorem (see, for example, [12]) to compact, pos-
itive, 1-bounded operator(A + λI)−1 in C(Y ). According to this theorem, there exists
a simple positive eigenvalueλ0 of the operator(A + λI)−1 with a positive eigenvector,
and there is no others eigenvalues with positive eigenvectors. Moreover, if we consider
(A+ λI)−1 as an operator inL2(Y ), then there exists a nonnegative periodic inx1 eigen-
vectorp(x) ∈ L2(Y ) of the adjoint operator(A∗ + λI)−1, which corresponds to the same
eigenvalueλ0. Let us note that the operatorA has a positive eigenvector (which is equal
to 1) corresponding to zero eigenvalue. In view of the uniqueness of eigenvalue with posi-

tive eigenfunction
(

1
λ0

− λ
)
= 0, and, therefore,p(x) belongs to the kernel of the adjoint

operatorA∗.
In order to prove the positiveness and boundedness of the function p(x) up to the

boundary∂Y = ∂Q we extend it to some bigger domain containingG̃.
Since∂Q is Lipschitz, for any point̄x ∈ ∂Q there exists a neighborhoodU(x̄) such

thatΓ = ∂Q ∩ U(x̄) = {x : x1 = f(x′)}, with Lipschitz functionf(x′). Let us make a



change of variables which straightensΓ:
{
ξ1 = x1 − f(x′),
ξk = xk, k = 2, ..., d,

such that the domainΩ+ = Y ∩ U(x̄) is mapped intõΩ+, whereξ1 > 0, andΓ is mapped
into Γ̃ = {ξ : ξ1 = 0}.

We define the ”extended” coefficientsãij(ξ) andb̃j(ξ) in the domain

Ω̃− =
{
ξ = (ξ1, ξ

′) : ξ1 < 0, (−ξ1, ξ′) ∈ Ω̃+
}

as follows:
ã(ξ1, ξ

′) = S a(−ξ1, ξ′)S∗,

b̃(ξ1, ξ
′) = S b(−ξ1, ξ′),

where the matrixS is given by the expression

S =




−1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1


 .

If we define the extended functioñp as

p̃(ξ) =

{
p(ξ1, ξ

′), ξ1 > 0,
p(−ξ1, ξ′), ξ1 < 0,

then it can be checked thatp̃ is a solution of the equation

(3.4) −div (ã(ξ)∇ p̃(ξ)) + div (b̃(ξ) p̃(ξ)) = 0, Ω̃ = Ω̃+ ∪ Ω̃−.

Indeed, by definition
∂p̃

∂nã
− (b̃, n) p̃ = 0, ξ ∈ Γ̃,

wheren is an external normal tõΩ+. Since by construction

∂p̃+

∂nã
− (b̃, n) p̃+ = −

(
∂p̃−

∂nã
− (b̃, n) p̃−

)
, ξ ∈ Γ̃,

wherep̃± are limit values of the functioñp on the surfacẽΓ from different sides of it,̃Ω+

andΩ̃− respectively. Then
∫

Γ̃

(
∂p̃+

∂nã

− (b̃, n) p̃+
)
ϕ(ξ) dξ′ =

∫

Γ̃

(
∂p̃−

∂nã

− (b̃, n) p̃−
)
ϕ(ξ) dξ′ = 0,

for any functionϕ(ξ) ∈ C∞
0 (Ω̃). Keeping in mind the last equality, one can easily show

that p̃ is a solution of (3.4).
By construction the obtained functioñp(ξ) is nonnegative. In view of the Harnack

inequality in any compact subsetΩ̃′ of Ω̃, p̃ is bounded from below by some positive



constantδ which depends on the pointx̄ and the choice of a compact subset (otherwise it
is equal to zero which contradicts the definition ofp). Moreover,p̃ is a Holder continuous
function inΩ̃′ (see, e.g. [21], [5]), where again the upper bound forp̃ depends on the point
x̄ ∈ Γ̃ and the choice of a compact subset.

Making inverse change of variables we conclude thatp(x) is positive and bounded in
some neighborhoodU ′(x̄) of any pointx̄ ∈ ∂Q up to the boundary∂Q. Let us take a
covering of∂Q which consists of these neighborhoodsU ′(x̄). Since∂Q is a compact set,
there exist a finite subcovering of it. By means of the standard compactness arguments,
one can prove thatp(x) is a positive continuous function in the closed setY .

4. Existence of bounded solutions

In what followsGβ
α is a finite cylinder(α, β) × Q, Σβ

α = (α, β) × ∂Q is its lateral
boundary andSα = {x = (x1, x

′) : x1 = α, x′ ∈ Q}.

DEFINITION 4.1. A weak solution of problem (2.1) is called bounded if foranyN > 0
the following inequality holds:

‖u‖L2(GN+1
N ) ≤ C,

whereC does not depend onN .

LEMMA 4.2. A bounded solutionu(x) of problem(2.1) in terms of Definition 4.1
exists. Moreover,

(4.1) ‖∇ u‖L2(G) <∞, ‖u‖L∞(G∞
1 ) <∞.

PROOF. First we consider the following boundary value problem in afinite cylinder

(4.2)





−div(a(x)∇ uk)− (b(x),∇ uk) = 0, x ∈ Gk
0,

∂uk

∂na
= 0, x ∈ Σk

0,

uk(0, x′) = ϕ(x′), uk(k, x′) = 0, x′ ∈ Q.

It is known that the solution to problem (4.2) exists and for any k > 0 has finiteH1 and
L∞ norms. Obviously, in view of the maximum principle sinceuk(k, x′) = 0

‖uk‖L∞(S1) ≤ ‖uk‖L∞(S1/2).

Let us consider in the cylinderG1
0 the following auxiliary problem





−div(a(x)∇ zk)− (b(x),∇ zk) = 0, x ∈ G1
0,

∂zk

∂na
= 0, x ∈ Σ1

0,

zk(0, x′) = ϕ(x′), zk(1, x′) = uk(1, x′), x′ ∈ Q.

Since the last problem is linear, we can representzk as a sumz1 + zk2 , wherez1 and
zk2 satisfy the homogeneous equation and lateral boundary conditions, z1(0, x′) = ϕ(x′),



z1(1, x
′) = zk2 (0, x

′) = 0, zk2 (1, x
′) = uk(1, x′). It is known that for the functionz1(x) as

a solution of elliptic problem in a fixed domain the followingestimate holds:

‖zk1‖L∞(S1/2) ≤ C ‖ϕ‖H1/2(Q).

TheL∞(S1/2) norm of the functionzk2 can be estimated in terms ofL∞(S1) norm of
uk as follows

(4.3) ‖zk2‖L∞(S1/2) ≤ α ‖uk‖L∞(S1),

where0 < α < 1, α does not depend onk. Indeed,|zk2 | ≤ vk in G1
0, wherevk satisfies

the same equation and boundary conditions aszk2 , except for the boundary conditions on
S1, which readsvk(1, x′) = ‖uk‖L∞(S1). Due to the strong maximum principle,vk ≤
α‖uk‖L∞(S1) with 0 < α < 1, that yields (4.3). In this way we obtain

‖uk‖L∞(S1) ≤ ‖uk‖L∞(S1/2) ≤ ‖z1‖L∞(S1/2) + ‖zk2‖L∞(S1/2) ≤

≤ C‖ϕ‖H1/2(Q) + α ‖uk‖L∞(S1), α < 1,

and, finally

‖uk‖L∞(S1) ≤
C

1− α
‖ϕ‖H1/2(Q), 0 < α < 1.

Moreover, theL2(G1
0) norm ofz1 is bounded

‖z1‖L2(G1
0)
≤ C1 ‖ϕ‖H1/2(Q),

and, sinceuk(1, x′) ∈ L∞(S1) then

‖zk2‖L2(G1
0)
≤ C2 ‖ϕ‖H1/2(Q),

whereC1 andC2 do not depend onk. Also, in view of the maximum principle,

(4.4) ‖uk‖L∞(Gk
1)
≤ C ‖ϕ‖H1/2(Q),

with C independent onk. Obviously, it follows from the last estimates that

(4.5) ‖uk‖L2(GN+1
N ) ≤ C, N ≥ 0.

Let us note that the estimate (4.4) is valid inL∞(Gk
δ), for anyδ > 0:

(4.6) ‖uk‖L∞(Gk
δ )
≤ C(δ)‖ϕ‖H1/2(Q), ∀δ > 0,

with C(δ) independent onk.
In order to estimate theL2-norm of the gradient ofuk in Gk

0, notice first that by the
standard elliptic estimates in the cylinderG2

0 we get

(4.7) ‖∇uk‖L2(G2
0)
≤ C‖ϕ‖H1/2(Q).

Notice also, thatp uk is H1(G2
1) function because bothp(x) anduk(x) are elements of

H1(Gk
1) ∩ L∞(Gk

1). Moreover, the estimate holds true

(4.8) ‖puk‖H1(G2
1)
≤ C‖ϕ‖H1/2(Q).



Sincediv
(
a∇uk

)
∈ L2(Gk

0) anddiv
(
a∇p − bp

)
= 0, then the normal components of

(a∇uk
)

and
(
a∇p − bp

)
onS1 are well-defined elements ofH−1/2(Q) (see [2]), and the

inequality holds

(4.9) ‖a1j∂xj
uk‖H−1/2(Q) ≤ C‖ϕ‖H1/2(Q), ‖a1j∂xj

p− b1p‖H−1/2(Q) ≤ C.

If we multiply the equation in (4.2) bypuk and integrate the resulting relation over the
cylinderGk

1, then considering (3.3) and integrating several times by parts, we obtain
∫

Gk
1

(a∇ uk,∇ uk) p dx =

∫

S1

ukp a1j
∂uk

∂xj

dx′ − 1

2

∫

S1

(uk)2 (a1j
∂p

∂xj

− bp) dx.

Taking into account (4.4) and (4.7)-(4.9), we estimate the integral on the left-hand side as
follows ∫

Gk
1

(a∇ uk,∇ uk) p dx ≤ C‖ϕ‖2H1/2(Q).

This estimate and (4.7) imply the desired bound

(4.10) ‖∇ uk‖L2(Gk
0 )
≤ C‖ϕ‖H1/2(Q),

whereC does not depend onk.
Finally, using (4.5), (4.10) and compactness arguments, weconclude thatuk(x) con-

verges weakly inH1
loc(G) to a functionu(x) which is a solution of problem (2.1) such that

(4.1) holds true. Let us note that in view of the Nash–De Giorgi estimates (see [21]), for
any δ > 0 a solution of problem (2.1) is a Hölder-continuous function in G∞

δ up to the
lateral boundary of the cylinder. �

REMARK 4.3. Let us note that we did not use thex1-periodicity of the coefficients
aij(x) andbj(x) to prove the estimates (4.4) and (4.5). The proof is valid forthe case of
arbitrary measurable bounded coefficientsaij(x) andbj(x) and uniformly elliptic matrix
a(x).

5. Stabilization of solutions

In this section we are going to show that every bounded solution of problem (2.1)
stabilizes to a constant at the exponential rate. To this endlet us consider two functions of
the variablex1:

M(x1) = max
x′∈Q

u(x1, x
′) and m(x1) = min

x′∈Q
u(x1, x

′).

By the maximum principle the functionM(x1) does not assume a local maximum point
in the open intervalx1 ∈ (0,+∞). This implies thatM(x1) has at most one minimum
point on[0,+∞), and that, starting form this minimum point,M(x1) is monotonous. If
M(x1) does not have minimum point, then it is monotonous on the whole interval[0,+∞).
Similarly,m(x1) is monotonous, possibly starting from some point.



Therefore, we have only three possibilities for the behavior of the functionsM(x1)
andm(x1):

• M(x1) monotonously decreases andm(x1) monotonously increases;
• M(x1) andm(x1) monotonously increase (maybe starting from some point);
• M(x1) andm(x1) monotonously decrease (maybe starting from some point).

5.1. M(x1) monotonously decreases andm(x1) monotonously increases.Denote
GN+2

N = (N,N + 2) × Q, N ≥ 0. Our aim is to estimate the oscillation ofu(x) over
the cross-sectionSN+1 in terms of the oscillation ofu(x) overSN . Since problem (2.1) is
linear, then we can assume without loss of generality thatm(N) = 0. Then inGN+2

N the
functionu(x) is nonnegative. As was shown above, the solutionu(x) can be extended to a
larger domain(N,N +2)× Q̃, Q ⊂ Q̃, in such a way that the extended function satisfies
a convection-diffusion equation in(N,N + 2)× Q̃, and the maximum and the minimum
of the extended function over cross-section{x1 = k, x′ ∈ Q̃} coincide withM(k) and
m(k), respectively.

Thus, the Harnack inequality holds:

m(k) ≥ αM(k), ∀k ≥ 1,

where a constantα depends only onΛ, d andQ. Then

(5.1) M(N + 1)−m(N + 1) ≤ (1− α)M(N + 1) ≤ (1− α)M(N).

Taking into account (5.1) and the assumptionm(N) = 0, we obtain

osc
x1=N+1

u(x) =M(N + 1)−m(N + 1) ≤

≤ (1− α) osc
x1=N

u(x), 0 < (1− α) < 1, N > 0.

The last inequality implies thatu(x) stabilizes to a constant exponentially. Indeed, since
this inequality holds for allN > 0, then

osc
x1=N

u(x) ≤ (1− α)N−1 osc
x1=1

u(x).

Finally, taking into account the boundedness of the function u(x) (see (4.1)) and denoting
byC∞ the limit ofm(x1) asx1 → ∞, we obtain

(5.2) |u(x)− C∞| ≤ C0 e
−γ0 x1 , γ0 = − log(1− α) > 0.

REMARK 5.1. One can see that the constantC0 in (5.2) in this case takes the form

C0 ≤ C1 ‖ϕ‖H1/2(Q) + C2C∞ ≤ C1‖ϕ‖H1/2(Q) + C2C‖ϕ‖H1/2(Q).

Indeed, taking into account the linearity of the problem andestimate (4.4), we have

| osc
x1=1

u| ≤ 2 ‖u‖L∞(S1) ≤ C ‖ϕ‖H1/2(Q).

Let us emphasize also that the constantγ0 depends only on the ellipticity constantΛ, the
space dimensiond and the domainQ.



LEMMA 5.2. There always exists a unique solutionu0(x) of problem(2.1) for which
M(x1) decreases andm(x1) increases.

Moreover, the functionu0(x) stabilizes to a constantC∞
ϕ at the exponential rate, as

x1 → ∞:
|u0 − C∞

ϕ | ≤ C0 ‖ϕ‖H1/2(Q) e
−γ0x1 , x1 > 1.

If ϕ(x′) ∈ L∞(Q) then foru0(x) the maximum principle is valid, that is

min
x′∈Q

ϕ(x′) ≤ u0(x) ≤ max
x′∈Q

ϕ(x′).

PROOF. Indeed, such a solution can be constructed with the help of the following
auxiliary problems:





−div(a(x)∇ uk)− (b(x),∇ uk) = 0, x ∈ Gk
0,

∂uk

∂na
= 0, x ∈ Σk

0,

uk(0, x′) = ϕ(x′),
∂uk

∂na
(k, x′) = 0, x′ ∈ Q.

By the maximum principle,Mk(x1) = max
x′∈Q

uk(x1, x
′) is decreasing andmk(x1) = min

x′∈Q
uk(x′)

is increasing function, for anyk. If ϕ ∈ L∞(Q) then

min
x′∈Q

ϕ(x′) ≤ uk(x) ≤ max
x′∈Q

ϕ(x′), ∀k > 0.

Passing to the limit ask → ∞ completes the proof. Due to the maximum principle
the obtained solutionu0 to problem (2.1) is unique. In view of Remark 5.1 the rate of
exponential stabilization ofu0 toC∞

ϕ depends only onΛ, d andQ. �

5.2. M(x1) and m(x1) are monotonously decreasing (increasing) functions.If
M(x1) andm(x1) decrease for sufficiently largex1, thenM(x1) monotonously decreases
on the whole half-line[0,+∞), while m(x) might have at most one maximum point.
One can takeN0 large enough so that on the interval[N0,∞) both functions are monot-
onous. Obviously, it is sufficient to prove the stabilization in the case of monotonously
decreasing at infinity functionsM(x1) andm(x1): the case whenM(x1) andm(x1) are
monotonously increasing functions can be considered in a similar way. As before we
assume thatm(N + 2) = 0.

First of all, due to monotonicity and boundedness ofM(x1) andm(x1) (we consider
only bounded solutions) the following limits exist:

lim
x1→∞

M(x1) =M, lim
x1→∞

m(x1) = m.

For arbitraryε1 > 0 andε2 > 0, letN > 0 be such that

M(N) −M(N + 2) < ε1, m(N)−m(N + 2) = m(N) < ε2.

Then, by the Harnack inequality, in the domainSN+1 = {N + 1} ×Q the estimate holds

ε2 > m(N + 1) ≥ αM(N + 1) ≥ αM(N + 2) > αM(N)− α ε1.



Thus, we have that
osc
x1=N

ũ(x) → 0, N → ∞.

The last equality shows that the functionsM(x1) andm(x1) converge to the same constant,
that isu(x) stabilizes to the constant.

Now we are going to prove thatu(x) stabilizes to the constant exponentially. With-
out loss of generality we can assume thatu(x) stabilizes to zero. Instead of the original
functionu(x) we consider shifted functioñu(x) = u(x1 +N0, x

′) for N0 ≥ 0. Due to the
periodicity of the coefficients,̃u remains a solution of the same problem but with different
boundary function atS0, which we denote byψ(x′) = ũ(0, x′) = u(N, x′). Clearly,ψ(x′)
is a positive continuous function. Let us define a functionv(x) as a solution of problem
(2.1) with v(0, x′) = 1 andv → 0 asx1 → ∞. The existence of such a solution can
be justified as follows. As in (4.2), one can construct approximationsũk andvk for the
functionsũ(x) andv(x). By the maximum principlẽuk(x) ≥

(
min
x′∈Q

ψ
)
vk(x). Passing to

the limit, ask → ∞, in this inequality, we obtain:

v ≤ ũ(x)

min
x′∈Q

ψ
→ 0, x1 → ∞.

Thus, the required solutionv exists. By the maximum principle

ũ(x)

max
x′∈Q

ψ
=

ũ(x)

M(N)
≤ v(x1, x

′),

so, settingx1 = 1 and taking maximum overx ∈ Q of both sides of the last inequality, we
obtain

M(N + 1)

M(N)
≤ max

x′∈Q
v(1, x′) ≤ β < 1.

Consequently we have:

M(N + 1) ≤ β M(N), ∀N ≥ 0,

or
M(N) ≤ e(N−1) lnβ max

x′∈Q
u(1, x′), N ≥ 1.

Denoting byγ the positive constant− log β and using estimate (4.4), we obtain

M(N) ≤ C1 ‖ϕ‖H1/2(Q) e
−γ N ,

or, in other words,
|u| ≤ C0 e

−γ x1, x1 > 1.

In the general case, when a bounded solutionu(x) to problem (2.1) stabilizes to a nonzero
constantC∞, one can see thatC0 in the last inequality takes the form

C0 = C1 ‖ϕ‖H1/2(Q) + C2C∞,

with constantsC1 andC2 which depend only onΛ, d andQ. In this way we have proved
the following



LEMMA 5.3. Under our standing assumptions onaij(x) and bj(x), i, j = 1, ..., d,
every bounded solution of problem (2.1) stabilizes to a constant at the exponential rate, as
x1 → ∞.

REMARK 5.4. It should be noted that if we replace in (2.1) the homogeneous Neumann
boundary condition onΣ with zero-flux condition

∂u

∂na

− (b, n)u = 0,

then the corresponding periodic cell problem need not have anontrivial kernel; in partic-
ular, a constant need not be an eigenfunction. In this case the problem

(5.3)





−div (a(x)∇ u(x))− (b(x),∇ u(x)) = 0, x ∈ G,

∂u

∂na
− (b, n)u = 0, x ∈ Σ,

u(0, x′) = ϕ(x′), x′ ∈ Q

might have a bounded solution which does not stabilize to a constant at infinity. For
example, a functionu(x1, x2) = sin(

√
2x1)e

x2 satisfies the problem




−∂
2u

∂x21
− ∂2u

∂x22
− ∂u

∂x2
= 0, x ∈ (0,+∞)× (0, 1),

( ∂u
∂x2

− u
)
(x1, 0) =

( ∂u
∂x2

− u
)
(x1, 1) = 0, x1 ∈ (0,+∞),

u(0, x2) = 0, x2 ∈ (0, 1),

clearly, this solution is bounded, but does not converge to aconstant, asx1 → ∞.
The detail analysis of problem (5.3) requires quite delicate arguments of spectral the-

ory and is out of the scope of the present paper.

6. Main result

In order to formulate the main result we introduce the notation

(6.1) b̄1 =

∫

G1
0

(
a1j(x)

∂p(x)

∂xj
− b1(x)p(x)

)
dx,

where the auxiliary functionp(x) was introduced in Section 3. Let us notice that in view
of the periodicity of the coefficients, the integral on the right-hand side of (6.1) can be
taken overGk+1

k for anyk > 0. Moreover, this integral can be taken over arbitrary cross
sectionSξ = {ξ} ×Q. Indeed, integrating (3.3) overGη

ξ we obtain the following equality
∫

Sξ

(
−a1j

∂p

∂xj
+ b1 p

)
dx′ =

∫

Sη

(
−a1j

∂p

∂xj
+ b1 p

)
dx′,



for any positiveξ andη. Thus, for anyξ > 0
∫

Sξ

(
a1j(x)

∂p(x)

∂xj
− b1(x)p(x)

)
dx′ = Const.

THEOREM 6.1. Let aij(x) ∈ L∞(G), bj(x) ∈ L∞(G) bex1-periodic functions, and
suppose that the condition(2.2) is fulfilled. Then the following statements hold:

(1) Every bounded (in terms of Definition 4.1) solutionu(x) of problem (2.1) stabi-
lizes to a constant at the exponential rate asx1 → ∞, that is

|u(x)− C∞| ≤ C e−γ x1, C, γ > 0, x1 > 1,

where the convergence rateγ does not depend onϕ andC∞.
(2) b̄1 < 0 if and only if for anyϕ(x′) ∈ H1/2(Q) and for anyl ∈ R, there exists

a bounded solutionu(x) of problem (2.1) that converges to the constantl, as
x1 → ∞;

(3) b̄1 ≥ 0 if and only if there exists a unique bounded solutionu(x) of problem(2.1)
and it converges to a constantm = m(ϕ), asx1 → ∞.

REMARK 6.2. In the casēb1 ≥ 0 for a solutionu(x) of problem (2.1), the function
M(x1) is decreasing and the functionm(x1) is increasing.

Indeed, by virtue of Lemma 5.2, there exists a solution to problem (2.1) such that the
correspondingM(x1) monotonously decreases andm(x1) monotonously increases. Since
b̄1 ≥ 0, the mentioned solution is unique, and the required statement follows.

Although in the casēb1 < 0 a bounded solution is not unique, the solution for which
M(x1) decreases andm(x1) increases remains unique. Such a solution depends contin-
uously on the boundary dataϕ(x′) and defines uniquely the constantC∞

ϕ , to which it
converges. This constant will play an important role in the sequel.

REMARK 6.3. Let us note that in the case whenM(x1) andm(x1) are both decreasing
or increasing functions, the stabilization rate may dependon b̄1 (cf. Remark 5.1). In
general,γ may tend to zero, as̄b1 goes to zero. Indeed, let us consider the following
problem with constant coefficients:

(6.2)

{
∆u+ b1 ∂x1u = 0, x ∈ G,

u(0, x′) = 1.

It is easy to see that in this casep(x) = Const, b̄1 = −b1 and all the solutions of problem
(6.2) depend only onx1; furthermore,

(6.3) u(x) = C1 + C2 e
−b1x1 ,

with some constantsC1 andC2. Obviously, if b̄1 ≥ 0 then a solution to problem (6.2) is
unique and equal to1; if b̄1 < 0 then every bounded solution stabilizes to a constant at the
exponential rate. As follows from (6.3), the stabilizationrate goes to zero as̄b1 = −b1 →
0.



PROOF OFTHEOREM 6.1.
1. Stabilization of every bounded solution had been proved above in Section 5.
2. Assume that for anyϕ(x′) and for every constantk there exists a solution that converges
to this constant. We are going to prove that in this caseb̄1 < 0. To this end we denote by
ũ(x) the solution of problem (2.1) withϕ(x′) ≡ 1 such that̃u(x) → 0, asx1 → ∞. Letting
u(x) = 1− ũ, we obtain a solution of problem (2.1) withu(0, x′) = 0. If we multiply the
equation in (2.1) byp(x)u(x) and integrate the resulting relation overGξ

0 = (0, ξ) × Q,
then we obtain∫

Gξ
0

(a∇ u,∇ u) p dx+
1

2

∫

Sξ

(
∂p

∂na
− (b, n)p

)
u2 dx′ +

∫

Sξ

a1j
∂u

∂xj
u p dx′ = 0.

Integrating onξ fromN toN + 1, for someN > 0, gives:
N+1∫

N

∫

Gξ
0

(a∇ u,∇ u) p(x) dx dξ +
1

2

∫

GN+1
N

(
∂p

∂na

− (b, n)p

)
u2 dx+

+

∫

GN+1
N

a1j
∂u

∂xj
u(x) p(x) dx = 0.

Now, we use the facts that the integral
∫
Gξ

0
(a∇ u,∇ u) p(x) dx is an increasing function

of ξ, p(x) > 0 is bounded and, due to our assumption,u(x) stabilizes to1 at the exponen-
tial rate, asx1 → ∞. Then for sufficiently largeN the following inequality holds:

∫

GN
0

(a∇ u,∇u) p dx+ 1

2
b̄1 ≤ C ‖∇u‖L2(GN+1

N ) ‖u‖L2(GN+1
N )

Combining standard elliptic estimates forũ(x) = 1 − u(x) (extended as in Section 3 to a
bigger domain) with the assumption onũ(x), one can see that

‖∇u‖L2(GN+1
N ) = ‖∇ũ‖L2(GN+1

N ) ≤ C‖ũ‖L2(GN+2
N−1)

≤ C e−γN , γ > 0,

and, therefore, ∫

GN
0

(a∇ u,∇u) p dx+ 1

2
b̄1 ≤ C e−γN .

Passing to the limit asN → ∞ implies that̄b1 < 0. The inverse implication will follow
from Lemma 6.4 below.
3.We consider the following sequence of auxiliary boundary value problems:

(6.4)





−div (a(x)∇ uk)− (b,∇ uk) = 0, x ∈ Gk
0,

∂uk

∂na

= 0, x ∈ Σk
0,

uk(0, x′) = 1, uk(k, x′) = 0.



First we show that if the sequenceuk(x) of solutions of the auxiliary problems (6.4)
converges uniformly to 1 on every compact set ask → ∞, thenb̄1 ≥ 0.

Let us multiply the first equation in (6.4) byp(x)uk(x) and integrate the resulting
relation overGk

0. Integrating by parts and taking into account the boundary conditions
uk(k, x′) = 0, we obtain

∫

Gk
0

(a∇ uk,∇ uk) p dx− 1

2

∫

S0

(
a1j

∂p

∂xj
− b1 p

)
dx′ −

∫

S0

a11
∂uk

∂x1
p dx′ = 0.

In view of the maximum principleuk cannot attend its maximum in the interior of the
domainGk

0, so

b̄1 = 2

∫

Gk
0

(a∇ uk,∇ uk) p dx+

∫

S0

a11
∂uk

∂x1
p dx′ ≥ 0.

Next we prove the following

LEMMA 6.4. The following two conditions are equivalent:

(i) For every boundary conditionϕ(x′) there exists a unique bounded solution of
problem (2.1) and this solution converges to a constantm = m(ϕ), asx1 → ∞;

(ii) Solutionsuk(x) of problem (6.1) with the boundary conditionϕ(x′) = 1 converge
uniformly on every compact setK ⋐ Gk

0 to 1, ask → ∞.

PROOF OFLEMMA 6.4. Let condition (i) be fulfilled. Then, obviously,u(x) ≡ 1 if
ϕ = 1. Sinceuk → u, ask → ∞ in the spaceH1

loc(G), then in view of De Giorgi
estimates

uk ⇉ u = 1, k → ∞
on every compact set inG.

Let (ii) hold true. Suppose that there existϕ(x′), two constantsC1
∞ andC2

∞ and two
bounded solutionsu1 andu2 of problem (2.1) such that

u1 → C1
∞, u2 → C2

∞, x1 → ∞.

Then the functionv = 1 − (u1 − u2)/(C
1
∞ − C2

∞), which stabilizes to zero asx1 → ∞,
solves the following problem:





−div (a(x)∇ v)− (b(x),∇ v) = 0, x ∈ G,

∂v

∂na
= 0, x ∈ Σ,

v(0, x′) = 1, x′ ∈ Q.

On the other hand, by the maximum principlev(x) ≥ uk(x) whereuk is a solution of
problem (6.4). According to(ii), uk converges to1 uniformly on every compact set inGk

0,
ask → ∞. Thusv(x) ≥ 1, x ∈ G. We arrive at contradiction. Lemma 6.4 is proved.�



4. It remains to prove that there are only two possible options for the behaviour ofuk:
eitheruk(x) decays at the exponential rate, oruk(x) converges to1 uniformly on every
compact set, ask → ∞.

Obviously, in view of the maximum principle,{uk(x)}, for anyx ∈ G, is a monotonously
increasing sequence and0 ≤ uk(x) ≤ 1, for all x ∈ Gk

0. Thusuk(x) converges uniformly
on every compact subset ofG to a functionu(x), 0 ≤ u ≤ 1, which is a solution of prob-
lem (2.1) withϕ(x′) = 1. In view of the maximum principle ifu(x) = 1 in some interior
point ofG, thenu(x) ≡ 1, x ∈ G. Hence, eitheruk converges uniformly to1 on every
compact subset ofG or

lim
k→∞

max
x′∈Q

uk(x1, x
′) < 1, ∀x1 > 0.

Suppose that the latter case takes place, and denotelim
k→∞

max
x′∈Q

uk+1(1, x′) = β < 1. If we

introduce

vk1 (x1, x
′) =

uk+1(x1 + 1, x′)

max
x′∈Q

uk+1(1, x′)
,

thenvk1 (0, x
′) ≤ 1 and, due to the maximum principle,vk1(x) ≤ uk(x). This yields

uk+1(x1 + 1, x′) ≤ uk(x1, x
′) max

x′∈Q
uk+1(1, x′) ≤ uk+1(x1, x

′) max
x′∈Q

uk+1(1, x′);

thus,

uk+1(2, x′) ≤ β uk+1(1, x′) ≤ β2.

Similarly, we can construct

vk2(x1, x
′) =

uk+2(x1 + 2, x′)

max
x′∈Q

uk+2(2, x′)

and show thatlim
k→∞

uk(3, x′) ≤ β3. Repeating this procedure, we obtain for anyN > 0 the

inequalityuk(N, x′) ≤ βN which implies the exponential decay foruk(x), asx1 → ∞.
Theorem 6.1 is proved. �

Although in the statement of Theorem 6.1 one does not see any difference between the
cases̄b1 = 0 andb̄1 > 0, the behaviour of the approximationsuk is rather distinct in these
two cases. The lemmata below specify the difference.

LEMMA 6.5. Let b̄1 > 0. Then the solutionuk to problem(6.4)satisfies the estimate

(6.5) |uk − 1| ≤ C e−γ(k−x1), x ∈ Gk
0,

where the constantC depends onΛ, d andQ; γ is a positive parameter which may depend
on b̄1.



PROOF. Making change of variablesz1 = k − x1, z′ = x′ in (6.4) and denoting

ã(z) = S a(k − z1, z
′)S∗ = S a(−z1, z′)S∗,

b̃(z) = s b(k − z1, z
′) = S b(−z1, z′),

with

S =




1 0 ... 0
0 −1 ... 0
...

...
. . .

...
0 0 ... −1


 ,

we transform problem (6.4) to the form




−div (ã(z)∇ ũk)− (b̃,∇ ũk) = 0, z ∈ Gk
0,

∂ũk

∂nã

= 0, z ∈ Σk
0,

ũk(0, z′) = 0, ũk(k, z′) = 1.

It is easy to see that for the obtained problem the effective drift is negative. As was shown
in the proof of Theorem 6.1, the function(1− ũk) tends to zero exponentially, that is

|1− ũk(z)| ≤ C e−γz1 , z ∈ Gk
0.

Making the inverse change of variables and taking into account thatũk(z) = uk(k−z1, z′),
we obtain (6.5). �

LEMMA 6.6. b̄1 = 0 if and only if a solutionuk of the auxiliary problem (6.4) is close
to the linear function on every compact setK ⋐ G, that is if we denote

lk(x) =

{
1− x1

k
, x1 ≤ k,

0, x1 > k

then
‖uk(x)− lk(x)‖L∞(Gk

0 )
→ 0, k → ∞.

PROOF. The method we use is borrowed from the homogenization theory (see, for
example, [18]). Let us denoteε = 1/k in 6.4) and make the change of variables

x1 7→ ε x1, xj 7→ xj , j = 2, ..., d.

If we introduce the notation

aε(x1, x
′) = a

(x1
ε
, x′
)
, vε(x1, x

′) = u
(x1
ε
, x′
)
,

then in the new variables equation (6.4) reads

(6.6)
ε2 ∂x1 (a

ε
11 ∂x1 v

ε) + ε
∑
i 6=1

∂xi
(aεi1 ∂xi

vε) + ε
∑
k 6=1

∂xk
(aε1k ∂x1 v

ε)+

+
∑
i,k 6=1

∂xk
(aεik ∂xi

vε) + ε bε1 ∂x1 v
ε +

∑
k 6=1

bεk ∂xk
vε = 0, x ∈ G1

0.



The periodicity of the coefficients suggests the following ansatz

ṽε(x, y1) = v0(x, y1) + ε v1(x, y1), y1 =
x1
ε
,

where the functionsv0 andv1 are1-periodic iny1. Substituting this expression into the
equality (6.6), collecting power–like terms related toε0 and taking into account the peri-
odicity of all the functions iny1, we obtain an equation for the functionv0:

(6.7)

∂y1 (a11(y1, x
′) ∂y1 v

0(x, y1)) +
∑

i 6=1

∂y1 (ai1 ∂xi
v0)+

+
∑

k 6=1

∂xk
(aε1k ∂y1 v

0) +
∑

i,k 6=1

∂xk
(aεik ∂xi

v0)+

+b1(y1, x
′) ∂y1 v

0 +
∑

k 6=1

bk ∂xk
v0 = 0, x ∈ G1

0, y1 ∈ (0, 1).

Since∂u/∂na = 0 for x ∈ Σ1
0, then making simple rearrangements we obtain the bound-

ary condition for the functionv0:

(6.8)

∑
j

a1j(y1, x
′)nj ∂y1 v

0 +
∑
j;i 6=1

aij(y1, x
′)nj ∂xi

v0 = 0,

x′ ∈ ∂Q, y1 ∈ (0, 1).

The solution of the boundary value problem (6.7)–(6.8) doesnot depend on the variables
y1 andx′, that is:

v0(x, y1) = v0(x1).

Following the ideas of the homogenization theory, we represent ṽε(x, y1) as follows:

(6.9) ṽε(x, y1) = v0(x1) + ε χ1(y1, x
′) ∂x1 v

0(x1) + ε2 ψ(x1, y1, x
′),

where the periodic iny1 scalar functionsχ1 andψ are to be found. For convenience let us
denote the ”fast” variables(y1, x′) by z = (z1, z

′). Then, collecting the terms of orderε,
one can obtain the following equation for the functionχ1(z):

(6.10) −divz (a(z)∇χ1)− (b(z),∇z χ1) =

d∑

k=1

∂zk a1k + b1, z ∈ Y = (0, 1)×Q.

The boundary conditions for the functionχ1 on the lateral boundary of the cylinder take
the form

(6.11) (a(z)∇z χ1, n) = −
∑

i

ai1ni, z ∈ ∂Y = (0, 1)× ∂Q.

Due to the Fredholm Alternative, problem (6.10) – (6.11) is solvable if and only if the
following equality holds:

(6.12)
∫

Y

(
d∑

k=1

∂zk a1k + b1

)
p(z) dz −

∫

∂Y

d∑

i=1

ai1nip dσ = 0,



where the functionp(z) is a solution of the following problem:

(6.13)

{
−div(a(z)∇ p) + div (b(z) p) = 0, z ∈ Y,

(a(z)∇p, n)− (b(z), n) p = 0, z ∈ ∂Y,

Since we assume thatb̄1 is equal to zero, then the condition (6.12) holds. Indeed, integrat-
ing by parts and making simple rearrangements, it is easy to see that the left hand side of
(6.12) coincides withb1.

Finally, collecting the terms of orderε2, we obtain the following problem for the func-
tionψ(x1, z):

(6.14)

−div(a(z),∇zψ)− (b,∇zψ) =
[
a11 +

d∑

k=1

∂zk(a1kχ1) +

d∑

i=1

ai1 ∂ziχ1 + a11∂z1 χ1 + b1χ1

]
∂x1x1v

0, z ∈ Y ,

(6.15) (a(z)∇zψ, n) = −
∑

i

ai1niχ1∂x1x1v
0, z ∈ ∂Y.

Using one more time the Fredholm Alternative for problem (6.14) – (6.15) we get:

ā11 ∂x1x1v
0(x1) = 0, x1 ∈ (0, 1),

where the constant̄a11 is given by

ā11 =

∫

Y

(
a11 + ∂zk(a1kχ1) + ai1 ∂ziχ1 + a11∂z1χ1 + b1χ1

)
p(z)dz−

−
∫

∂Y

∑

i

ai1niχ1p dσ.

Integrating by parts we obtain the following expression forthe constant̄a11:

(6.16) ā11 =

∫

Y

(
a11 −

d∑

k=1

a1kχ1∂zk p+
d∑

i=1

ai1 ∂zi χ1 p+ b1 χ1 p

)
dz.

Let us show that̄a11 > 0. Then∂x1x1v
0(x1) = 0 and, as a consequence,v0(x1) is a

linear function onx1. The scheme of the proof is as follows:

(1) We construct the matrix̄A such thatĀ11 = ā11. Namely, we set

Āij =

∫

Y

aik(δkj + ∂zk χj) p dz −
∫

Y

χiamj∂zm p dz +

∫

Y

χib̃jp dz,



whereχ1 is defined in (6.10) and the functionsχk for k 6= 1 are defined by the
equations:




−div (a(z)∇χk)− (b(z),∇χk) = −∂zk ak1 − bk − b̄k, z ∈ Y,

∂χk

∂na
= −aki ni, z ∈ ∂Y,

andb̄k are given by the formula:

b̄k =

∫

Y

(aki ∂zi p− bk p) dz.

(2) On the second step we prove thatĀ is nonnegative definite matrix. For this
purpose we show that this matrix can be represented in the form

(6.17) Ā =

∫

Y

(I +∇χ)Ta(z)(I +∇χ) p(z) dz,

whereBT denotes the adjoint ofB.
(3) Then we show that(I +∇χ) e1 6= 0.
(4) For an arbitrary nonnegative definite matrixC = {cij} we state that ifc11 = 0,

thenc1k = 0, k = 2, d. ThusC e1 = 0. We then show that̄Ae1 6= 0 in our case.
Thereforēa11 cannot be equal to zero.

Now we proceed with the detail proof. The fact thatĀ11 = ā11 readily follows from from
the definition of the matrix̄A. In order to prove (6.17) let us re-arrange the expression on
the right hand side:

∫

Y

(δim + ∂zm χi) amk (δkj + ∂zk χj) p dz =

∫

Y

δim amk (δkj + ∂zk χj) p dz+

+

∫

Y

∂zm χi amk (δkj + ∂zk χj) p dz.

Integrating the second term by parts gives

Āij =

∫

Y

(
aik(δkj + ∂zk χj) p−

1

2
χiχj∂zk(bk p)

)
dz +

1

2

∫

∂Y

χiχj bk nk p dz+

+

∫

Y

χib̃j p dz −
∫

Y

χi amj ∂zm p dz +
1

2

∫

Y

χi χj ∂zk (amk ∂zm p) dz−

−1

2

∫

∂Y

χi χj amk nk ∂zm p dσ +

∫

∂Y

χi amk (δkj + ∂zk χj)nm p dσ.

Finally, the last equality and (6.12) lead to (6.17).



Let us show that(I +∇χ) e1 6= 0. Suppose that(I +∇χ) e1 = 0. Then∂z1χ1 = −1,
or ∫

Y

∂z1χ1 dz1 = −1,

which contradicts the periodicity ofχ.
Consider a nonnegative definite symmetric matrixC = {cij}di,j=1, and suppose that

c11 = 0. Evaluating the quadratic formcijξiξj at the vector

ξ = {N, 1, 0, ..., 0}, N > 0,

we get
cijξiξj = c12N + c21N + c22 = 2c12N + c22.

If c12 6= 0, then for largeN (positive if c12 < 0, and negative, ifc12 > 0) we obtain
cijξiξj < 0, which contradicts the non-negativeness of the matrixC. Thus,c12 = c21 is
equal to zero. Similarly we can show thatc1k = 0, k = 2, ..., d. Therefore,C e1 = 0.

In our caseĀe1 = (I + ∇χ) e1 6= 0, and we conclude that̄a11 = Ā11 > 0. Conse-
quently,v0 is a linear function onx1. Thus,ψ(x1, z) satisfies the homogeneous problem
with respect to the variablez andψ = ψ(x1).

Let us return to problem (6.4). We have shown that the expansion (6.9) takes the form:

ṽε = v0(x1) + ε χ1

(x1
ε
, x′
)
∂x1v

0 + ε2ψ(x1)

with v0(x1) = 1− x1 andχ(z) solving problem (6.10)-(6.11). Denote

vε1 = v0(x1) + ε χ1

(x1
ε
, x′
)
∂x1v

0.

One can easily check that the difference(vε − vε1) satisfies the following problem:




−div(aε(x)∇ (vε − vε1))− (bε,∇ (vε − vε1)) = 0, x ∈ G1
0,

(vε − vε1)(0, x
′) = εχ1(0, x

′), x′ ∈ Q,

(vε − vε1)(1, x
′) = −εχ1(1/ε, x

′), x′ ∈ Q,

∂(vε − vε1)

∂naε
= 0, x ∈ Σ1

0.

We can rewrite problem for the functionχ1 in the form

(6.18)





∑

i,k

∂zk (aik∂zi (χ1 + z1)) +
∑

k

bk ∂zk (χ1 + z1) = 0, z ∈ Y,

∑

i,k

aik∂zk (χ1 + z1)ni = 0, z ∈ ∂Y.

By means of the extension techniques in the same way as above,one can show that(χ1 +
z1) is a Hölder-continuous function in[0, 1]×Q. Consequently,

‖vε − vε1‖L∞(S0) ≤ Cε



and
‖vε − vε1‖L∞(S1) ≤ Cε,

and by the maximum principle

‖vε − vε1‖L∞(G1
0)

≤ Cε.

�

The following statement characterizes in more general situation the asymptotic be-
haviour of solutions of auxiliary problems in finite cylinders in the three cases̄b1 ≶ 0 and
b̄1 = 0. Namely, we consider the following boundary value problem in the finite cylinder
Gk

0:

(6.19)





−div
(
a(x)∇ vk

)
− (b(x),∇ vk) = 0, x ∈ Gk

0,

∂vk

∂na
= 0, x ∈ Σk

0,

vk(0, x′) = ϕ(x′), vk(k, x′) =M x′ ∈ Q,

whereϕ(x′) ∈ L∞(Q),M is a constant.

THEOREM 6.7. Let the assumptions of Theorem 6.1 be fulfilled. Then for the solution
vk of problem(6.19)the following statements hold:

(1) If b̄1 > 0 then

(6.20)
|vk − C∞

ϕ | ≤ C0 ‖ϕ‖L∞(Q)

(
e−γ0x1 + e−γ(k−x1)

)
+

+CM e−γ(k−x1);

(2) If b̄1 < 0 then

(6.21) |vk −M | ≤ C0 ‖ϕ‖L∞(Q) e
−γx1 + CM e−γx1 ;

(3) If b̄1 = 0 then inGk
0 the functionvk is close to a linear function:

(6.22)

∣∣∣∣v
k −

C∞
ϕ (k − x1) +Mx1

k

∣∣∣∣ ≤ C0 ‖ϕ‖L∞(Q) e
−γ0x1+

+
C

k

(
‖ϕ‖L∞(Q) +M

)
.

The constantC∞
ϕ is uniquely determined by Lemma 5.2.

PROOF. Due to Lemma 5.2, ifϕ ∈ L∞(Q) then there always exists a solutionu0(x)
of problem (2.1) satisfying the maximum principle. Moreover, such a solution is unique
and stabilizes to a constantC∞

ϕ exponentially:

|u0 − C∞
ϕ | ≤ C0 ‖ϕ‖L∞(Q) e

−γ0x1 , γ0 > 0, x1 > 1.

Recall thatγ0 depends only onΛ, d,Q and does not depend onb̄1.



We represent the solutionvk of problem (6.19) as a sumvk1+v
k
2 , wherevk1 andvk2 solve

the following problems:

(6.23)





−div
(
a(x)∇ vk1

)
− (b(x),∇ vk1 ) = 0, x ∈ Gk

0,

∂vk1
∂na

= 0, x ∈ Σk
0,

vk1 (0, x
′) = ϕ(x′), vk1(k, x

′) = C∞
ϕ x′ ∈ Q;

(6.24)





−div
(
a(x)∇ vk2

)
− (b(x),∇ vk2) = 0, x ∈ Gk

0,

∂vk2
∂na

= 0, x ∈ Σk
0,

vk2(0, x
′) = 0, vk2 (k, x

′) = −C∞
ϕ +M x′ ∈ Q.

One can see that, due to the maximum principle, the difference (u0 − vk1 ) is of ordere−γ0k

everywhere inGk
0, and, consequently,

(6.25) |vk1 − C∞
ϕ | ≤ |vk1 − u0|+ |u0 − C∞

ϕ | ≤ C0‖ϕ‖L∞(Q)

(
e−γ0k + e−γ0x1

)
, x ∈ Gk

0.

• Assume that̄b1 > 0. By Lemma 6.5vk2 satisfies the estimate

|vk2 | ≤ C0(C
∞
ϕ + |M |) e−γ(k−x1), x ∈ Gk

0.

Combining the last estimate and (6.25) and taking into account the boundC∞
ϕ ≤

‖ϕ‖L∞(Q), we obtain (6.20).
• If b̄1 < 0 then the solutionuk of problem (6.4) decays exponentially, which leads

to the estimate forvk2(x)

|vk2 − (M − C∞
ϕ )| ≤ C0

(
‖ϕ‖L∞(Q) + |M |

)
e−γ0x1 , x ∈ Gk

0,

which proves (6.21).
• In the casēb1 = 0 to estimatevk2(x) we make use of Lemma 6.6. Namely,vk2 is

close to a linear function in this case:∣∣∣∣v
k
2 −

M − C∞
ϕ

k
x1

∣∣∣∣ ≤
C

k

(
‖ϕ‖L∞(Q) + |M |

)
.

The last estimate and (6.25) implies (6.22). Theorem 6.7 is proved.
�

7. Equivalent definitions of a bounded solution

LEMMA 7.1. For a solution of problem(2.1) the following conditions are equivalent:

(i) ‖u‖L2(GN+1
N ) dx ≤ C, ∀N ≥ 0,

whereC does not depend onN ∈ [0,∞);



(ii) ‖u‖L∞(G∞
1 ) <∞;

(iii) ‖∇ u‖L2(G) <∞.

PROOF. (i) → (ii)
Under assumptions of uniform ellipticity of matrixa(x) (2.2) and boundedness of the
coefficients, for any compact setG′ in (N,N+1)×Q the generalized solution of problem
(2.1) satisfies the following estimate:

‖u‖Cα(G′) ≤ C‖u‖L2(GN+1
N ),

for some constantsC andα > 0 independent ofN and, consequently

‖u‖Cα(G′) ≤ C,

for any compact setG′ in GN+1
N with C independent ofN . Thus,

‖u‖L∞(G∞
δ ) ≤ C(δ) <∞, δ > 0.

(i) → (iii)
In Section 5 we proved that any bounded solutionu(x) stabilizes to a constantC∞ at the
exponential rate with large axial distance. Then the function (u(x)−C∞) solves problem
(2.1) with boundary condition(u − C∞)(0, x′) = (ϕ(x′) − C∞) and vanishes at infinity
at the exponential rate. Extendingu(x) to a larger domain (as in Section 3) and applying
standard elliptic estimates to(u(x)− C∞) one deduces that

‖∇(u− C∞)‖L2(GN+1
N ) ≤ C‖u− C∞‖L2(GN+2

N−1)
≤ Ce−γN ,

where the constantC does not depend onN . Thus∇ u(x) stabilizes to zero at the expo-
nential rate, asx1 → ∞, and

∫

G

|∇ u|2 dx =
∞∑

N=0

∫

GN+1
N

|∇ u|2 dx ≤ C0

∞∑

N=0

e−γ N ≤ C.

(iii) → (i)
Let u(x) be a solution of problem (2.1) such that

(7.1) ‖∇ u‖L2(G) ≤ C.

The Friedrichs inequality gives an estimate for theL2-norm ofu(x) in the finite cylinder
GN+1

N :
‖u‖2

L2(GN+1
N )

≤ C1 + C2N

with constantsC1 = C1(ϕ) andC2 independent onN . Note that if0 ≤ N ≤ 1 then

‖u‖L2(GN+1
N ) ≤ C;

below we suppose thatN ≥ 1.



Let v(x) be a bounded solution of problem (2.1) (it exists by Lemma 4.2). Notice that
the difference(u− v) satisfies the estimates

‖u− v‖2
L2(GN+1

N )
≤ C1 + C2N, ‖∇ (u− v)‖2L2(G) ≤ C.

If we denote

(7.2) wN =
1√
N
(u− v),

then

‖wN‖2L2(GN+1
N )

≤ C1

N
+ C2, ‖∇wN‖2L2(G) ≤

C

N
.

SincewN is a solution of problem (2.1) with zero boundary condition on the base ofG,
then the last estimates imply

‖wN‖L∞(GN+1
0 ) ≤ w̄,

with w̄ independent ofN . By the maximum principle|wN | does not exceed the solution
vN of the following problem:

(7.3)





−div (a∇ vN)− (b,∇ vN) = 0, x ∈ GN+1
0 ,

∂vN
∂na

= 0, x ∈ ΣN+1
0 ,

vN(0, x
′) = 0, vN(N + 1, x′) = w̄, x′ ∈ Q.

We will consider separately the casesb̄1 > 0, b̄1 = 0 andb̄1 < 0.
Let first b̄1 > 0. From Theorem 6.7 forN large enough we conclude that the function

wN is close to zero forx1 < N/2:

|wN | ≤ vN ≤ C0 e
−γ N , x1 < N/2.

Therefore, considering the definition ofwN (see (7.2)) one obtain the following estimate
for the difference(u− v):

|u− v| ≤ C0

√
Ne−γN → 0, N → ∞,

which implies thatu = v and thus

‖u‖L2(GN+1
N ) ≤ C.

Consider the casēb1 = 0. As was proved in Lemma 6.5, in this case a solution of
problem (7.3) is close in the cylinderGN+1

0 to the linear function, namely

‖vN − x1
w̄

(N + 1)
‖L∞(GN+1

0 ) ≤
C

N + 1
, x ∈ GN+1

0 .

Consequently

|u− v| ≤ C
√
N

N + 1
+ x1

w̄

(N + 1)

√
N, ∀N > 0.

Forx1 < Nα, α < 1/2, we obtain that

|u− v| → 0, N → ∞,



thusu(x) = v(x) is a bounded solution.
Finally, let us consider the casēb1 < 0. As was discussed in Section 5, due to the

maximum principle, eitherm(x1) increases orM(x1) decreases in the neighbourhood of
infinity. Suppose that

min
x′∈Q

u→ ∞, x1 → ∞,

the case of decreasingM(x1) can be studied in a similar way. Subtracting fromu(x) a
bounded solutionv(x) of problem (2.1) withv(0, x′) = u(0, x′), one can assume without
loss of generality thatu(0, x′) = 0. Thenu(N, x′)/m(N) will be greater than or equal to
1. Let us introduce a functionvN as a solution to the problem

(7.4)





−div (a∇ vN )− (b,∇ vN) = 0, x ∈ GN
0 ,

∂vN
∂na

= 0, x ∈ ΣN
0 ,

vN (0, x
′) = 0, vN(N, x

′) = 1, x′ ∈ Q.

By the maximum principleu(x)/m(N) ≥ vN . As was shown in Theorem 6.1,vN satisfies
the estimate

|vN − 1| ≤ C0 e
−γx1 , x1 > 1.

Thus
u(x)−m(N) ≥ −C0m(N)e−γx1 .

Let x̄1 = 1
γ
ln(2C0), then for anyx1 > x̄1 the following estimate holds:

C0e
−γx1 <

1

2
.

ThenvN > 1/2 and, consequently,

u(x̄1, x
′) ≥ 1

2
m(N), x′ ∈ Q.

From the last estimate, using Friedrichs inequality, we obtain

‖∇ u‖L2(G
x̄1
0 ) ≥

1

4x̄1
m2(N) → ∞, N → ∞,

that contradicts(iii). Lemma 7.1 is proved. �

8. Inhomogeneous problem with periodic coefficients

We proceed with studying the existence and the stabilization to a constant of a solution
to the following boundary value problem:

(8.1)





−div (a(x)∇ u)− (b(x), ∇ u) = f(x) + divF, x ∈ G,

∂u

∂na
= g(x)− (F, n), x ∈ Σ,

u(0, x′) = 0, x′ ∈ Q.



Here the assumptions on the coefficientsaij(x), bj(x) and the cylinderG are the same as in
the previous sections. Concerning the functionsf ,F andg we suppose thatf(x) ∈ L2(G),
F ∈ (L2(G))d, g(x) ∈ L2(Σ), and that these functions decay exponentially asx1 goes to
infinity, i.e.

(8.2)
‖f‖L2(GN+1

N ) ≤ C1 e
−γ1 N , ‖F‖L2(GN+1

N ) ≤ C1 e
−γ1 N ,

‖g‖L2(ΣN+1
N ) ≤ C2 e

−γ1 N

for some positiveγ1.

DEFINITION 8.1. We say thatu(x) ∈ H1
loc(G) is a weak solution to problem (8.1) if,

for anyψ(x) ∈ C∞
0 ((0,∞);C∞(Q̄)), the following integral equality holds:

∫

G

(a(x)∇u,∇ψ) dx−
∫

Σ

g(x)ψ(x) dσ −
∫

G

(b,∇u)ψ(x) dx = −
∫

G

(F,∇ψ) dx.

We begin with the caseF = 0. In this case we can use the integration by parts technic
in the weighted space with the weightp(x), as we did above. It turns out that this technic
might fail to work if F is not equal to zero. That is why we consider the case of nonzero
F separately and reduce it to the caseF = 0.

LEMMA 8.2. Let F = 0. Then there exists a solutionu(x) of problem (8.1), which
stabilizes to a constant at the exponential rate, asx1 → ∞, and satisfies the estimates

(8.3) ‖∇ u‖L2(G) ≤C(‖(1 + (x1)
1+ν) f‖L2(G) + ‖(1 + (x1)

1+ν) g‖L2(Σ));

(8.4)
‖u‖L2(GN+1

N ) ≤C(‖(1 + (x1)
3
2
+ν) f‖L2(G)

+‖(1 + (x1)
3
2
+ν) g‖L2(Σ)), ∀N ≥ 0,

whereν > 0.

PROOF. Let us consider the sequence of auxiliary problems

(8.5)





−div (a(x)∇ ukm)− (b(x), ∇ ukm) = fm(x), x ∈ Gk
0,

∂ukm
∂na

= gm(x), x ∈ Σk
0,

ukm(0, x
′) = 0, ukm(k, x

′) = 0, x′ ∈ Q.

Herefm(x) = f(x)χ(Gm+1
m ) andgm(x) = g(x)χ(Gm+1

m ), χ(Gβ
α) is a characteristic func-

tion of Gβ
α. Multiplying the first equation of (8.5) by the productp(x)ukm(x), integrating

by parts overGk
0 and using boundary conditions forukm, we obtain

(8.6)
∫

Gk
0

(a(x)∇ ukm,∇ ukm) p dx−
∫

Σm+1
m

gm(x) u
k
m p dσ =

∫

Gm+1
m

fm(x)u
k
m p dx.



Let us estimate the integral on the right-hand side. Using the boundedness ofp(x) and
Schwartz inequality one has

∣∣∣∣∣∣∣

∫

Gk
0

fm(x) u
k
m p dx

∣∣∣∣∣∣∣
≤ C‖fm‖L2(Gm+1

m ) ‖ukm‖L2(Gm+1
m ).

The Friedrichs inequality yields

(8.7)
∫

Gm+1
m

(ukm)
2 dx ≤ (m+ 1)

∫

Gk
0

|∇ ukm|2 dx,

and, finally,
∣∣∣∣∣∣∣

∫

Gk
0

fm(x) u
k
m p dx

∣∣∣∣∣∣∣
≤ C ‖∇ukm‖L2(Gk

0 )
(1 +

√
m) ‖fm‖L2(Gm+1

m ).

Using analogous arguments one can estimate the integral over the lateral boundary of the
cylinder:

∣∣∣∣∣∣∣

∫

Σm+1
m

gm(x) u
k
m p(x) dσ

∣∣∣∣∣∣∣
≤ C (1 +

√
m) ‖gm‖L2(Σm+1

m ) ‖∇ ukm‖L2(Gk
0 )
.

Combining the above bounds with the integral identity (8.6), we conclude that

(8.8) ‖∇ukm‖L2(Gk
0 )
≤ C (1 +

√
m)
(
‖fm‖L2(Gm+1

m ) + ‖gm‖L2(Σm+1
m )

)
,

where the constantC does not depend onm, k. Estimate (8.7) implies that theL2-norm
of the functionukm is uniformly ink bounded on eachGN+1

N for all N ≤ m:

‖ukm‖L2(GN+1
N ) ≤ C (1 +m)

(
‖fm‖L2(Gm+1

m ) + ‖gm‖L2(Σm+1
m )

)
.

In the cylinderGk
m+1 the functionukm satisfies homogeneous equation and

‖ukm‖H1/2(Sm+1) ≤ C‖ukm‖H1(Gm+1
m ) ≤

≤ C(1 +m)
(
‖fm‖L2(Gm+1

m ) + ‖gm‖L2(Σm+1
m )

)
.

Forukm(x) estimate (4.4) obtained while proving Theorem 6.1 takes theform

‖ukm‖L∞(Gk
m+1)

≤ ‖ukm‖H1/2(Sm+1).

Consequently, the following inequality holds

(8.9) ‖ukm‖L2(GN+1
N ) ≤ C (1 +m)

(
‖fm‖L2(Gm+1

m ) + ‖gm‖L2(Σm+1
m )

)

for N ≥ 0 with the constantC independent ofk andm.



Sincef(x) =
∑k−1

0 fm andg(x) =
∑k−1

0 gm, thenuk =
∑k−1

0 ukm is a solution of
problem





−div (a(x)∇ uk)− (b(x), ∇ uk) = f(x), x ∈ Gk
0,

∂uk

∂na
= g(x), x ∈ Σk

0,

uk(0, x′) = 0, uk(k, x′) = 0, x′ ∈ Q,

and, in view of (8.8) – (8.9), satisfies the following estimates:

(8.10) ‖uk‖L2(GN+1
N ) ≤ C

(
‖(1 + (x1)

3
2
+ν)f‖L2(G) + ‖(1 + (x1)

3
2
+ν)g‖L2(Σ)

)
,

(8.11) ‖∇uk‖L2(Gk
0 )
≤ C

(
‖(1 + (x1)

1+ν)f‖L2(G) + ‖(1 + (x1)
1+ν)g‖L2(Σ)

)

with C independent ofk, ν > 0. Hence, up to a subsequence,uk converges weakly in
the spaceH1

loc(G), ask → ∞, to a functionu(x) which satisfies (8.3) and (8.4). We will
prove the exponential stabilization to a constant only in the casef, g = 0, F 6= 0. This
proof can be extended to the case of nontrivialf andg with minor modifications. We leave
it to the reader. �

REMARK 8.3. Estimate (8.11) can be improved. To this end we recall the classical
Hardy inequality for a nonnegative functionv(t), v(0) = 0.

∞∫

0

(1
t

t∫

0

v(τ) dτ
)2
dt ≤ 4

∞∫

0

v(t)2 dt.

Then, multiplying the equation foruk by p uk and integrating by parts we get

(8.12)
∫

Gk
0

(a∇ uk,∇ uk) p dx =

∫

Gk
0

fuk p dx+

∫

Σk
0

g uk p dσ.

Using the ellipticity of the matrixa(x), positiveness ofp(x) and the Hardy inequality one
gets

(8.13)

∫

Gk
0

fuk p dx ≤ C

∫

Q

dx′
k∫

0

x1 |f |
1

x1
|uk| dx

≤ C

∫

Q

dx′
( k∫

0

x21 |f |2 dx1
)1/2 (

4

∞∫

0

|∇uk|2 dx1
)1/2

≤ C ‖x1 f‖L2(Gk
0 )
‖∇uk‖L2(Gk

0 )
.



Then by the interpolation inequality, for anyβ > 0,
∫

Σk
0

g uk p dσ ≤
k−1∑

n=0

‖g‖L2(Σn+1
n )

[
β‖uk‖L2(Gn+1

n ) + β−1‖∇uk‖L2(Gn+1
n )

]

≤ ‖g‖2L2(Σk
0 )
+ β−2‖∇uk‖2L2(Gk

0)

+C β

k−1∑

n=0

‖x1g‖L2(Σn+1
n ) ‖x−1

1 uk‖L2(Gn+1
n )

≤ ‖g‖2L2(Σk
0 )
+ β−2‖∇uk‖2L2(Gk

0)
+ C β‖x1g‖L2(Σk

0 )
‖x−1

1 uk‖L2(Gk
0 )
.

Finally, by the Hardy inequality,

(8.14)

∫

Σk
0

g uk p dσ ≤ ‖g‖2L2(Σk
0)
+ β−2‖∇uk‖2L2(Gk

0 )

+C β‖x1g‖L2(Σk
0)
‖∇uk‖L2(Gk

0)
.

Taking into account (8.12), (8.13), (8.14) and settingβ =
√

2/Λ, one gets the estimate
for ∇uk

‖∇uk‖L2(Gk
0 )
≤ C ‖x1 f‖L2(G) + ‖(1 + x1)g‖L2(Σ),

and, consequently,

‖∇u‖L2(G) ≤ C ‖x1 f‖L2(G) + ‖(1 + x1)g‖L2(Σ).

It remains to consider problem (8.1) with a non-trivialF and withf = g = 0.

LEMMA 8.4. There exists a solution of problem(8.1)with f = g = 0, which satisfies
the estimates

(8.15)
‖∇ u‖L2(G) ≤ C ‖(1 + x

3
2
+ν

1 )F‖L2(G),

‖u‖L2(GN+1
N ) ≤ C ‖(1 + x

3
2
+ν

1 )F‖L2(G), ∀N ≥ 0,

with some positiveν. This solution stabilizes to a constant at the exponential rate, as
x1 → ∞.

PROOF. Consider the sequence of auxiliary problems:

(8.16)





−div (a(x)∇ uk)− (b(x), ∇ uk) = divF, x ∈ Gk
0,

∂uk

∂na
= −(F, n), x ∈ Σk

0,

uk(0, x′) = uk(k, x′) = 0, x′ ∈ Q,

Let us represent the functionF in Gk
0 as follows:

F (x) =

M∑

m=0

χ(G(m+1)τ
mτ )F (x) ≡

M∑

m=0

Fm(x),



whereχ(G(m+1)τ
mτ )(x) is a characteristic function of the domainG(m+1)τ

mτ ,

τ̃ = Λ4, M =

[
k

τ̃

]
, τ =

k

M + 1
.

Clearly,suppFm ⊂ G
(m+1)τ
mτ . Due to the linearity of the studied problem, we can represent

a solutionuk(x) of (8.16) as the sum
∑M

m=0 u
k
m(x):

(8.17)





−div (a(x)∇ ukm)− (b(x), ∇ ukm) = divFm, x ∈ Gk
0,

∂ukm
∂na

= −(Fm, n), x ∈ Σk
0 ,

ukm(0, x
′) = ukm(k, x

′) = 0, x′ ∈ Q.

We will first assume that the coefficientsaij, bj are smooth functions.
Our analysis is based on the properties of the Green functionGk(x, y) of problem

(8.16):




−divx (a(x)∇xG
k(x, y))− (b(x), ∇xG

k(x, y)) = δ(x− y), x ∈ Gk
0,

∂Gk(x, y)

∂na
= 0, x ∈ Σk

0,

Gk(0, x′, y) = Gk(k, x′, y) = 0, x′ ∈ Q.

Due to our assumptions ona(x) andb(x), the Green functionGk(x, y) is well-defined. If
we denote byvk a solution of (8.16) with the functionχ(G(m+1)τ

mτ ) on the right-hand side




−div (a(x)∇ vk)− (b(x), ∇ uk) = χ(G
(m+1)τ
mτ ), x ∈ Gk

0,

∂vk

∂na

= 0, x ∈ Σk
0,

vk(0, x′) = vk(k, x′) = 0, x′ ∈ Q,

then

vk(x) =

∫

G
(m+1)τ
mτ

Gk(x, y) dy.

As was shown in the proof of Lemma 8.2, the functionsvk(x) satisfy the estimate:

‖vk‖
L∞(G

(m+2)τ
(m−1)τ

)
≤ C(mτ + 1),

with the constantC which depends only onΛ, d andQ, but does not depend ofk. In
particular for allx ∈ S(m−1)τ ∪ S(m+2)τ , sincey ∈ G

(m+1)τ
mτ ,

∫

G
(m+1)τ
mτ

Gk(x, y) dy ≤ C(1 +mτ).



Recalling the fact thatGk(y, x) is the Green function of the adjoint problem, using the
mean value theorem and the Harnack inequality forGk(x, ·), one can easily get the fol-
lowing inequality:

|Q|Gk(x, y) ≤ α |Q|Gk(x, y0) = α

∫

G
(m+1)τ
mτ

Gk(x, y) dy ≤ C(1 +mτ),

for all x ∈ S(m−1)τ , for all y ∈ G
(m+1)τ
mτ and somey0 ∈ G

(m+1)τ
mτ . Hereα > 0 depends

only on the ellipticity constantΛ, the dimensiond and the domainQ. Similar inequality
is also valid for allx ∈ S(m+2)τ . Then the standard elliptic estimates read

(8.18)
‖∇yG

k(x, ·)‖
L2(G

(m+1)τ
mτ )

≤ C‖Gk(x, ·)‖
L2(G

(m+3/2)τ
(m−1/2)τ

)
≤

≤ C(1 +mτ), x ∈ S(m−1)τ ∪ S(m+2)τ .

Let us emphasize that the constantC in (8.18) depends onΛ, d,Q and does not depend on
k.

Now we turn back to problem (8.17). Considering the representation ofukm in terms
of the Green function, one can see that

ukm(x) = −
∫

G
(m+1)τ
mτ

(∇yG
k(x, y), Fm(y)) dy,

and, consequently, in view of (8.18),

‖ukm‖L∞(S(m−1)τ ) ≤ ‖∇yG
k(x, ·)‖

L2(G
(m+1)τ
mτ )

‖Fm‖
L2(G

(m+1)τ
mτ )

≤
≤ C(1 +mτ) ‖Fm‖

L2(G
(m+1)τ
mτ )

.

Similar estimate is valid forx ∈ S(m+2)τ :

‖ukm‖L∞(S(m+2)τ ) ≤ C(1 +mτ) ‖Fm‖
L2(G

(m+1)τ
mτ )

.

By virtue of the maximum principle, sinceukm(0, x
′) = ukm(k, x

′) = 0, we have

(8.19) ‖ukm‖L∞(G
(m−1)τ
0 )

≤ C(1 +mτ) ‖Fm‖
L2(G

(m+1)τ
mτ )

;

(8.20) ‖ukm‖L∞(Gk
(m+2)τ

) ≤ C(1 +mτ) ‖Fm‖
L2(G

(m+1)τ
mτ )

.

In order to estimate theL2-norms ofukm and∇ukm in G(m+2)τ
(m−1)τ , we representukm as a sum

vkm + wk
m, where

vkm is a solution of homogeneous equation,vkm((m − 1)τ, x′) = ukm((m − 1)τ, x′),
vkm((m+ 2)τ, x′) = ukm((m+ 2)τ, x′),

wk
m satisfies the nonhomogeneous equation and zero Dirichlet boundary conditions on

S(m−1)τ andS(m+2)τ .
In view of (8.19), (8.20) and the maximum principle we have

‖vkm‖L∞(G
(m+2)τ
(m−1)τ

)
≤ C(1 +mτ)‖Fm‖

L2(G
(m+1)τ
mτ )

.



Combining the last estimate with the standard ellipticH1-estimates in the domainG(m+2)τ
(m−1)τ ,

and taking into account the fact that the shape of the domain does not depend onm, we
conclude that

‖vkm‖H1(G
(m+2)τ
(m−1)τ

)
≤ C(1 +mτ)‖Fm‖

L2(G
(m+1)τ
mτ )

.

To estimatewk
m(x) let us multiply the equation bywk

m and integrate overG(m+2)τ
(m−1)τ . Then

exploiting the Friedrichs inequality and taking into account the specific choice ofτ , one
can see that

‖∇vkm‖L∞(G
(m+2)τ
(m−1)τ

)
≤ Λ

2
‖Fm‖

L2(G
(m+1)τ
mτ )

;

‖vkm‖L∞(G
(m+2)τ
(m−1)τ

)
≤ Λ τ

2
‖Fm‖

L2(G
(m+1)τ
mτ )

.

Consequently, one has

‖ukm‖H1(G
(m+2)τ
(m−1)τ

)
≤ C(1 +mτ) ‖Fm‖

L2(G
(m+1)τ
mτ )

,

whereC depends only onΛ, d andQ.
Elliptic estimates forukm in G(m−1)τ

0 yield the bound

‖∇ukm‖L2(G
(m−1)τ
0 )

≤ C(1 +mτ) ‖Fm‖
L2(G

(m+1)τ
mτ )

.

Since inGk
(m+2)τ the functionukm satisfies the homogeneous equation and homogeneous

Neumann boundary conditions on the lateral boundaryΣk
(m+2)τ , then inequality (4.10)

takes the form

‖∇ukm‖L2(Gk
(m+2)τ

) ≤ C‖ukm‖H1/2(S(m+2)τ )
≤ C(1 +mτ) ‖Fm‖

L2(G
(m+1)τ
mτ )

.

Thus,

(8.21)
‖ukm‖L2(GN+1

N ) ≤ C(1 +mτ) ‖Fm‖
L2(G

(m+1)τ
mτ )

, ∀N ≥ 0;

‖∇ukm‖L2(Gk
0 )
≤ C(1 +mτ) ‖Fm‖

L2(G
(m+1)τ
mτ )

.

And, consequently,

(8.22)
‖uk‖L2(GN+1

N ) ≤ C ‖(1 + (x1)
3/2+ν)F‖L2(G), ∀N ≥ 0,

‖∇uk‖L2(Gk
0)
≤ C ‖(1 + (x1)

3/2+ν)F‖L2(G),

where the constantC depends onΛ, d andQ.
Using the compactness arguments, we conclude that, along a subsequence,uk(x) con-

verges weakly inH1
loc(G), ask → ∞, to a functionu(x) which solves problem (8.1) and

(8.15) holds. This completes the proof of the existence of a bounded solution in the case
of smooth coefficients.



In the general case of measurable bounded coefficientsaij andbj define

aδij(x) =

∫

Rd

aij(y)ψ
δ(x− y) dy,

bδj(x) =

∫

Rd

bj(y)ψ
δ(x− y) dy,

whereψδ(ξ) ∈ C∞
0 (Rd) is such thatψδ(ξ) ≥ 0, ψδ(−ξ) = ψδ(ξ) and

∫
Rd ψ

δ(ξ)dξ = 1. In
order to defineaδ(x) andbδ(x) we should extenda(x) andb(x) outsideR×Q (onR−×Q
the coefficients are extended by periodicity). For example,we can seta(x) = ΛI, I is
a unit matrix,b(x) = {0, ...0} for x′ /∈ Q. Clearly, the obtaineda(x) andb(x) satisfy
the same uniform ellipticity and boundedness conditions asbefore. By construction,aδij
converges toaij , andbδj converges tobj , asδ → 0, in Lp(Gk

0), for anyk > 0 andp ≥ 1.
For the solutionukδ(x) of problem (8.16) with smoothed coefficientsaδij , b

δ
j the following

bounds are valid:

‖ukδ‖L2(GN+1
N ) ≤ C ‖(1 + (x1)

3/2+ν)F‖L2(G), ∀N ≥ 0,

‖∇ukδ‖L2(Gk
0)
≤ C ‖(1 + (x1)

3/2+ν)F‖L2(G),

with C independent ofδ. Thus, up to a subsequence,ukδ → uk in L2(GN+1
N ), ∇ukδ ⇀

∇uk in L2(Gk
0), asδ → 0, whereuk solves problem (8.16) with measurable bounded

coefficients. Clearly,uk(x) satisfies the estimates

‖uk‖L2(GN+1
N ) = lim

δ→0
‖ukδ‖L2(GN+1

N ) ≤ C‖(1 + (x1)
3/2+ν)F‖L2(G),

‖∇uk‖L2(G) ≤ lim inf
δ→0

‖∇ukδ‖L2(G) ≤ C‖(1 + (x1)
3/2+ν)F‖L2(G).

Using the compactness arguments, we conclude that, along a subsequence,uk converges
weakly inH1

loc(G), ask → ∞, to a functionu(x) which solves (8.1) withf = g = 0, and
estimates (8.15) are valid.

It is left to prove the stabilization ofu(x) at the exponential rate to a constant. It can
be easily seen that along a subsequence the functions{ukm} constructed above converge
weakly inH1

loc(G), ask → ∞, to a functionum(x) which is a solution to the problem

(8.23)





−div (a(x)∇ um)− (b(x), ∇ um) = divFm, x ∈ G,

∂um
∂na

= −(Fm, n), x ∈ Σ,

um(0, x
′) = 0, x′ ∈ Q.

It is clear thatu(x) =
∑∞

m=0 um(x). With regard to Theorem 6.1, one can see that there
exists a constantC∞

m such that for a solutionum(x) of problem (8.23) the following esti-
mate holds:

|um − C∞
m | ≤ C0‖um‖H1/2(S(m+2)τ )

e−γ(x1−(m+2)τ), x1 > (m+ 2)τ.



Notice that by construction, sinceukm(k, x
′) = 0, |C∞

m | ≤ ‖um‖H1/2(S(m+2)τ )
. As was

shown above,
‖um‖H1/2(S(m+2)τ )

≤ C(1 +mτ)‖Fm‖
L2(G

(m+1)τ
mτ )

.

Thus, forx1 > (m+ 2)τ

(8.24) |um − C∞
m | ≤ C(1 +mτ)‖Fm‖

L2(G
(m+1)τ
mτ )

e−γ(x1−(m+2)τ).

Let us check thatu(x) converges toC∞ =
∑∞

m=0C
∞
m . To this end we estimate the

L2(G
(N+1)τ
Nτ )-norm of the difference(u− C∞):

‖u− C∞‖
L2(G

(N+1)τ
Nτ )

≤
∞∑

m=0

‖um − C∞
m ‖

L2(G
(N+1)τ
Nτ )

.

Splitting the sum into two parts and taking into account (8.2), estimates (8.15) and (8.24),
we have

‖u− C∞‖
L2(G

(N+1)τ
Nτ )

≤
(

N−3∑
m=0

+
∞∑

m=N−2

)
‖um − C∞

m ‖
L2(G

(N+1)τ
Nτ )

≤

≤ Cτ
N−3∑
m=0

(1 +mτ)e−γmτ e−γ(Nτ−(m+2)τ)+

+C
∞∑

m=N−2

(
‖um‖L2(G

(N+1)τ
Nτ )

+ |C∞
m |
)
≤ C N2 e−γNτ+

+C e−γ(N−2)τ/2
∞∑

m=N−2

(1 +mτ) e−γmτ/2 ≤ C̃ e−γ̃Nτ , N ≥ 0.

The case of nontrivialf andg in (8.1) can be considered analogously. It suffices to
use estimates (8.3) – (8.4) instead of (8.15) and notice thatbound (8.24) remains valid if
we replace‖Fm‖

L2(G
(m+1)τ
mτ )

with
‖fm‖L2(G

(m+1)τ
mτ )

+ ‖gm‖L2(Σ
(m+1)τ
mτ )

. The rest of the proof is exactly the same as above.
Lemma 8.4 is proved. �

As in Section 7 we can define a bounded solution of problem (8.1).

DEFINITION 8.5. We say that a weak solutionu(x) of problem (8.1) is bounded if one
of the following conditions is fulfilled:

(i) ‖u‖L2(GN+1
N ) ≤ C, ∀N ≥ 0,

(ii) ‖∇ u‖L2(G) ≤ C.

LEMMA 8.6. The conditions(i) and(ii) are equivalent.

PROOF. In view of Lemma 8.2 there exists a solutionv(x) of problem (8.1) such that
the conditions (i) and (ii) hold. Let us consider the difference(u(x)−v(x)). It satisfies the



homogeneous problem (2.1) withϕ = 0. But for a solution to problem (2.1) conditions
(i)–(ii) are equivalent. Lemma 8.6 is proved. �

The rest of this section is devoted to studying the uniqueness of solution to problem
(8.1). The result similar to that of Theorem 6.1 takes place.As before, we denote

b̄1 =

∫

G1
0

(
a1j(x)

∂p(x)

∂xj
− b1(x)p(x)

)
dx,

where the functionp(x) was introduced in Section 3.

THEOREM 8.7. (1) Any bounded solutionu(x) of problem (8.1) stabilizes to a
constant at the exponential rate asx1 → ∞, that is

‖u(x)− C∞‖L2(G∞
n ) ≤ C0 e

−γ n, ∀n ≥ 0,

for someC0 > 0 andγ > 0;
(2) b̄1 < 0 if and only if for anyϕ(x′) ∈ H1/2(Q) and for any constantl ∈ R, there

exists a bounded solutionu(x) of problem (8.1) that converges to the constantl,
asx1 → ∞;

(3) b̄1 ≥ 0 if and only if for every boundary conditionϕ(x′) there exists a unique
constantm(ϕ) such that a bounded solution of problem (8.1) converges to this
constant asx1 → ∞.

PROOF. The existence of a bounded solution that stabilizes to a constant at the ex-
ponential rate was proved in Lemma 8.2. Denote this solutionby u0(x). If u(x) is an
arbitrary boundary solution of problem (8.1), then Theorem6.1 applies to the difference
(u(x)−u0(x)) and implies the first statement of Theorem 8.7. In order to obtain the second
and the third statements, it suffices to observe that the uniqueness of a bounded solution
to problem (8.1) is equivalent to that of problem (2.1). Indeed, if there are two distinct
bounded solutions, sayu1 andu2, of problem (8.1), then the difference(u1 − u2) 6= 0 is a
bounded solution of the homogeneous problem, and thus a bounded solution of homoge-
neous problem is not unique.

Conversely, if we assume that problem (2.1) withϕ = 0 has two distinct bounded
solutions, sayv1 andv2, then(u0 + v1) and (u0 + v2) are bounded solutions of (8.1).
Theorem is proved. �

9. Non-periodic coefficients

The goal of this section is to generalize the results of Section 6 to the case of the coef-
ficients which stabilize exponentially to a periodic regime. We will consider the following



boundary value problem:

(9.1)





−div (â(x)∇ u(x))− (b̂(x),∇ u(x)) = 0, x ∈ G,

∂u

∂nâ
= 0, x ∈ Σ,

u(0, x′) = ϕ(x′), x′ ∈ Q,

whereQ is a bounded domain inRd−1 with a sufficiently smooth boundary∂Q. We
suppose that the matrix̂a(x) and vector̂b(x) admit the representations

â(x) = a(x) + a◦(x), b̂(x) = b(x) + b◦(x),

wherea(x) and b(x) arex1-periodic, whilea◦ij and b◦j decay exponentially, that is for
almost allx ∈ G

(9.2) |a◦ij| ≤ C1 e
−γ1 x1 , |b◦j | ≤ C2 e

−γ1 x1, γ1 > 0.

Moreover, as in the previous sections, we assume thatâ(x) is a symmetric uniformly
elliptic matrix, i.e. there exists a positive constantΛ1 such that for almost allx ∈ Rd the
following estimate holds:

Λ1 |ξ|2 ≤ âij(x) ξi ξj , ξ ∈ R
d,

andâij(x), b̂j ∈ L∞(G).

LEMMA 9.1. Let the above conditions be fulfilled. Then a bounded solution to problem
(9.1) exists and stabilizes to a constant at the exponential rate.Moreover, the following
estimates hold:

(9.3) ‖∇ u‖L2(G) <∞, ‖u‖L∞(G∞
1 ) <∞.

PROOF. To prove the existence of a bounded solution we use the sequence of auxiliary
problems in growing finite cylinders:

(9.4)





−div(â(x)∇ uk)− (b̂(x),∇ uk) = 0, x ∈ Gk
0,

∂uk

∂nâ

= 0, x ∈ Σk
0,

uk(0, x′) = ϕ(x′), uk(k, x′) = 0, x′ ∈ Q.

Let us recall that according to Remark 4.3 for measurable bounded coefficientŝaij and
b̂j , not necessary periodic, estimates (4.4) and (4.5) hold true. Using the standard elliptic
estimates foruk, we conclude that

‖uk‖H1(GN+1
N ) ≤ C, ∀N > 0,

and thus, along a subsequence,uk converges weakly inL2
loc(G) to some functionu ∈

H1
loc(G), ask → ∞, and∇uk converges weakly to∇u in L2

loc(G). This allows us to pass



to the limit in the integral identity and establish the existence of a bounded solution to
problem (9.1) such that

(9.5) ‖u‖H1(GN+1
N ) ≤ C, ∀N > 0.

However, these estimates do not imply the finiteness ofL2(G) norm of∇u.
We will proceed as follows. First, making use of Theorem 8.7,we will show that a

bounded solution to problem (9.1) stabilizes to a constant,and then, with the help of this
result, we will obtain an estimate for∇u.

Obviously, problem (9.1) can be rewritten in the form

(9.6)





−div(a∇ u)− (b,∇ u) = div(a◦∇ u) + (b◦,∇ u), x ∈ G,

∂u

∂na
= − ∂u

∂na◦
, x ∈ Σ,

u(0, x′) = ϕ(x′), x′ ∈ Q.

Consider the following problem inG

(9.7)





−div(a∇w)− (b,∇w) = div(a◦∇ u) + (b◦,∇ u), x ∈ G,

∂w

∂na
= − ∂u

∂na◦
, x ∈ Σ,

w(0, x′) = ϕ(x′), x′ ∈ Q;

herew is an unknown function andu is the solution of (9.6). Taking into account (9.5), it
is easy to see that under our assumptions ona◦ andb◦ all the conditions of Theorem 8.7
are fulfilled, and, therefore, any bounded solutionw(x) to problem (9.7) stabilizes to a
constant at the exponential rate. Sinceu is a solution of (9.7), it stabilizes to a constant
exponentially. Moreover, the inequality holds

∫

G

|∇u|2 dx =
∞∑

n=0

∫

Gn+1
n

|∇u|2 dx ≤ C0

∞∑

n=0

e−γn ≤ C.

Lemma 9.1 is proved. �

One of the principal results of this section is given by the following lemma, which
states that the uniqueness property is invariant under exponentially decaying perturbations
of the coefficients.

LEMMA 9.2.

• b̄1 < 0 iff for any ϕ(x′) ∈ H1/2(Q) and anyl ∈ R1 there exists a bounded
solution to problem(9.1)stabilizes tol, asx1 → ∞;

• b̄1 ≥ 0 iff for any ϕ(x′) ∈ H1/2(Q) there exists a unique bounded solution to
problem(9.1)and it stabilizes to a constantm = m(ϕ), asx1 → ∞.



PROOF. First, assume that for anyϕ(x′) there exists a unique solution to problem (9.1)
which stabilizes to a constantm = m(ϕ), asx1 → ∞. In particular, forϕ = 1 a solution
u to problem (9.1) is unique andu ≡ 1. This solution can be obtained as the limit of
solutionsuk of (9.4). Sinceu = 1, thenuk converges to1 uniformly on each compact
subset ofG, ask → ∞. Let us show that in this casēb1 ≥ 0. Multiplying the equation in
(9.4) byukp and integrating by parts overGk

ξ we obtain
∫

Gk
ξ

(â∇uk,∇uk) p dx+
∫

Gk
ξ

(a◦∇uk,∇p) uk dx−
∫

Gk
ξ

(b◦,∇uk) p uk dx−

−1

2

∫

Sξ

(
∂p

∂na
− (b, n)p

)
(uk)2 dx′ +

∫

Sξ

∂uk

∂nâ
uk p dx′ = 0.(9.8)

The integral containinga◦(x), admits the following upper bound
∣∣∣∣
∫

Gk
ξ

(a◦∇uk,∇p) uk dx
∣∣∣∣ ≤

k−1∑

n=ξ

∣∣∣∣
∫

Gn+1
n

(a◦∇uk,∇p) uk dx
∣∣∣∣ ≤

≤ C
k−1∑

n=ξ

e−γ1n‖∇p‖L2(Gn+1
n ).

For anyδ > 0 we can choose sufficiently largeξ0 so that for allξ > ξ0

C
k−1∑

n=ξ

e−γ1n‖∇p‖L2(Gn+1
n ) < δ.

Similarly, for large enoughξ,
∣∣∣∣
∫

Gk
ξ

(b◦,∇uk) p uk dx
∣∣∣∣ < δ.

Taking into account the convergence ofuk to 1, coerciveness of the matrix̂a and the
definition of b̄1, we obtain the following inequality:

b̄1 ≥ −Cδ, ∀δ > 0,

which implies that̄b1 ≥ 0.
Now let us suppose that for any constant there exists a solution of (9.1) converging to

this constant. Then for anyξ ≥ 0 there is a solutionv(x) to problem

(9.9)





−div (â(x)∇ v(x))− (b̂(x),∇ v(x)) = 0, x ∈ G∞
ξ ,

∂v

∂nâ
= 0, x ∈ Σ∞

ξ ,

v(ξ, x′) = 0, x′ ∈ Q,



such that
|v − 1| ≤ C(ξ) e−γ(x1−ξ), x1 > ξ.

It is clear that uniformly inξ for anyn > 0

‖v‖H1(Gn+1
n ) ≤ C.

We rewrite problem (9.9) in the form

(9.10)





−div(a∇w)− (b,∇w) = div(a◦∇ v) + (b◦,∇ v), x ∈ G∞
ξ ,

∂w

∂na

= − ∂v

∂na◦
, x ∈ Σ∞

ξ ,

w(ξ, x′) = 0, x′ ∈ Q;

If we assume that̄b1 ≥ 0, then (9.10) has a unique bounded solution which coincides
with v(x) and converges to a constant. The uniqueness of solution allows us to estimate
‖v‖L2(Gn+1

n ) in terms of the norm of the right-hand side:

‖v‖L2(Gn+1
n ) ≤ C‖(1 + (x1)

3/2+ν)a◦∇v‖L2(G∞
ξ ) ≤

≤ C

∞∑

N=ξ

‖(1 + (x1)
3/2+ν)a◦∇v‖L2(Gn+1

n ) ≤ C

∞∑

N=ξ

(1 +N3/2+ν) e−γ1N .

For any positiveδ, choosing sufficiently largeξ, we obtain

‖v‖L2(Gn+1
n ) < δ, n > ξ.

This contradicts our assumption thatv converges to1. Therefore,̄b1 < 0. Lemma 9.2 is
proved. �

REMARK 9.3. It turns out that in the case whena◦ij(x) andb◦j (x) do not decay expo-
nentially, the statements of Lemma 9.1 and 9.2 may fail to hold. To illustrate this, let us
consider the following problem

(9.11)





−∆u − b◦1(x1)∂1u = 0, x ∈ G,

∂u

∂n
= 0, x ∈ Σ,

u(0, x′) = 1, x′ ∈ Q,

with b◦1 = 2/(1 + x1). Observe that, in contrast with the non-perturbed problem,which
has a unique solution, problem (9.11) possesses two boundedsolutions: u1 = 1 and
u2 = 1/(1 + x1). The last one stabilizes to zero, asx1 → ∞, but not at the exponential
rate.
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ABSTRACT. The paper deals with the asymptotic behaviour of solutionsto a stationary
convection-diffusion equation stated in the so-called rodstructure, i.e. in a connected
open set consisting of the union of a finite number of thin cylinders. It is assumed that
each such a cylinder has a periodic microstructure and that the microstructure period
is of the same order as the cylinder diameter. Under these assumptions we construct
and justify the asymptotic expansion of a solution which consists of the interior as-
ymptotic expansions and the boundary layers. The boundary layer terms arise both in
the vicinity of the rod ends and the vicinity of junctions.

The results on the asymptotic behaviour rely on the qualitative study of a convection-
diffusion operator in an infinite cylinder. This study is of independent interest.

1. Introduction

The paper is devoted to homogenization of a stationary convection-diffusion model
problem in a thin rod structure. More precisely, we study theasymptotic behaviour of
solutions to a boundary-value problem for elliptic convection-diffusion equation defined
in a thin cylinder being the union of two nonintersecting cylinders with a junction at the
origin. We suppose that in each of these cylinders the coefficients are rapidly oscillating
functions being periodic in the axial direction, and that the microstructure period is of the
same order as the cylinder diameter.

On the lateral boundary of the cylinder we assume Neumann boundary condition,
while at the cylinder bases the Dirichlet boundary conditions are posed.

Similar problems for the elasticity system have been intensively studied in the existing
literature. We quote here the works [4], [5], [7], [8], [9], [16], [15], [17]. The contact

1



problem of two heterogeneous bars was considered in [10], [11], [14]. Elliptic equations
in divergence form have been addressed, for example, in [1] and [12].

In contrast to the divergence form operators, in the case of convection-diffusion equa-
tion the asymptotic behaviour of solutions depend crucially on the direction of the so-
called effective convection which is introduced in Section2. In the present paper we only
consider the case when in each of the two cylinders (being theconstituents of the rod) the
effective convection is directed from the end of the cylinder towards the junction.

The asymptotic expansion of a solution includes the interior expansion, the boundary
layers in the neighbourhood of the cylinder ends, and the interior boundary layer in the
vicinity of junction. It should be noted that the leading term of the asymptotics is described
in terms of a pair of first order ordinary differential equations. The construction of the
interior expansions follows the classical scheme.

The analysis of boundary layers in the neighbourhood of the cylinder ends relies on
the results obtained in [13].

In order to build the interior boundary layer we study a qualitative problem for convection-
diffusion equation in an infinite cylinder. This is done in Section 6. As far as the present
authors are aware, none has studied a convection-diffusionequation with first order terms
in an infinite cylinder. In the case under consideration, when in each of the two cylinders
the effective convection is directed from the end of the cylinder towards the junction, we
prove the existence of a solution for such a problem and discuss its qualitative properties.
In other cases the situation is much more difficult (especially in the case when effective
convections are oppositely directed) and out of the scope ofthe present work.

The paper is organized as follows. Section 1 contains the problem statement. In Sec-
tion 2 we are looking for a formal asymptotic solution to problem (2.1) satisfying the
Neumann boundary condition on the lateral boundary of the rod. Then, in Sections 3-4
we construct the boundary layer correctors. Finally, in Section 5 we carry out the justifi-
cation of the presented formalism and derive the estimates for the difference between the
asymptotic solution and the exact one. Section 6 is devoted to an auxiliary problem in an
infinite cylinder.

2. Problem statement

Let Q be a boundedC2,α domain in(d − 1)-dimensional Euclidean spaceRd−1 with
pointsx′ = (x2, ..., xd). DenoteGε = [−1, 1] × (εQ) ⊂ Rd a thin rod with the lateral
boundaryΓε = [−1, 1] × ∂(εQ); x = (x1, x

′). We study the homogenization of a scalar
elliptic equation with periodically oscillating coefficients

(2.1)





Aεuε ≡ −div
(
aε(x)∇ uε

)
− 1

ε

(
bε(x),∇uε

)
=

1

ε
f(x1), x ∈ Gε,

Bεuε ≡ ∂uε

∂naε
= g(x1), x ∈ Γε,

uε(−1, x′) = ϕ−
(x′
ε

)
, uε(1, x′) = ϕ+

(x′
ε

)
, x′ ∈ εQ,



where the matrix valued functionaε(x) and the vector fieldbε(x) are given by

aε(x) = a
(x
ε

)
, bε(x) = b

(x
ε

)
,

andε > 0 is a small parameter. In (2.1)(·, ·) stands for the standard scalar product in
Rd; ∂uε/∂naε = (aε∇uε, n) is the conormal derivative ofuε, n is an external unit normal.
Throughout the paper we denote

G = (−∞,+∞)×Q, Γ = (−∞,+∞)× ∂Q;

Gβ
α = (α, β)×Q, −∞ ≤ α ≤ β ≤ +∞.

We suppose the following conditions to hold:

(H1) The coefficientsaij(y) ∈ C1,α(G) andbj(y) ∈ Cα(G) are periodic outside
some compact setK ⋐ G1

−1. More precisely,

aij(y) =





a+ij(y), y1 > 1,

ãij(y), |y1| ≤ 1,

a−ij(y), y1 < −1;

b(y) =





b+j (y), y1 > 1,

b̃j(y), |y1| ≤ 1,

b−j (y), y1 < −1;

wherea±(y) andb±(y) are periodic iny1. Without loss of generality we assume
that the period is equal to1.

(H2) The matricesa±(y) are symmetric.
(H3) We assume thata±(y) satisfy the uniform ellipticity condition, that is there

exists a positive constantΛ such that, for almost allx ∈ Rd,

(2.2) Λ |ξ|2 ≤
d∑

i,j=1

a±ij(y) ξi ξj, ∀ξ ∈ R
d.

(H4) ϕ±(y′) ∈ H1/2(Q);
(H5) Functionsf(x1) and g(x1) are supposed to be smooth, namely,f(x1) ∈

C2(Gε) andg(x1) ∈ C2(Γε).

Later we will see that the obtained result can be generalizedto the case whenf is just
L2(Gε) function andg ∈ L2(Γε).

The goal of this work is to study the asymptotic behaviour ofuε(x), asε→ 0.
As was noted in the introduction, in contrast to the case of anoperator in divergence

form, the situation turns out to depend crucially on the signs of the so-called effective
fluxes b̄±1 , the constants which are defined in terms of the kernel of the adjoint periodic
operators and coefficients of the equation. While constructing boundary layer functions,
we consider only one case:b̄+1 < 0, b̄−1 > 0.



3. Formal asymptotic expansion

In the sequel we use the following notations:

G+
ε = {x = (x1, x

′) ∈ Gε : x1 > ε}, G−
ε = {x = (x1, x

′) ∈ Gε : x1 < −ε};
A±

y v ≡ −divy (a
±(y)∇y v)− (b±(y),∇yv), y ∈ Y ;

B±
y v ≡

∂v

∂na±
=

d∑

i,j=1

a±ij(y) ∂yjv ni, y ∈ Y,

whereY = S1×Q, S1 is a unit circle, denotes the cell of periodicity. In what follows we
identify y1-periodic functions with functions defined onY . Notice that∂Y = S1 × ∂Q.

In each half-cylinderG+
ε andG−

ε we will seek a formal asymptotic expansion of a
solution to equation (2.1) as an asymptotic series (see, forexample, [1], [2])

(3.1) u±∞ ∼ v±0 (x1) + ε u±1 (x1, y) + ε2 u±2 (x1, y) + ε3 u±3 (x1, y), y =
x

ε
, x ∈ G±

ε ,

whereu±k (x1, y), k = 1, 2, 3, are periodic iny1 functions with period equal to 1. Substi-
tuting (3.1) into (2.1), taking into account the relation

∂u(x, x/ε)

∂xi
=
∂u(x, y)

∂xi
+

1

ε

∂u(x, y)

∂yi
, y =

x

ε
,

and the periodicity ofuk(x1, y), collecting power–like terms related toε−1 we obtain equa-
tions for the functionsu±1 :

(3.2) A±
y u

±
1 (x1, y) =

(
∂yia

±
i1(y) + b±1 (y)

)
(v±0 )

′(x1) + f(x1), y ∈ Y, x ∈ G±
ε .

Similarly, substituting (3.1) into the boundary conditionon the lateral boundary and col-
lecting power-like terms related toε0, one obtains

(3.3) B±
y u

±
1 (x1, y) = −a±i1(y)ni (v

±
0 )

′(x1) + g(x1), y ∈ ∂Y, x ∈ G±
ε .

The compatibility condition for problem (3.2)–(3.3) takesthe form:

(3.4)

∫

Y

f(x1)p
±(y) dy +

∫

Y

(
∂yia

±
i1(y) + b±1 (y)

)
(v±0 )

′(x1) p
±(y) dy−

−
∫

∂Y

a±i1(y)ni (v
±
0 )

′(x1)p
±(y) dσy +

∫

∂Y

g(x1) p
±(y) dσy = 0,

wherep±(y) belong to the kernels of adjoint periodic operators defined on Y :




−div (a±(y)∇ p±) + div (b± p±) = 0, y ∈ Y,

∂p±

∂na±
− (b±, n) p± = 0, y ∈ ∂Y.



In [13] (see Section 3) it was shown that under the assumptions madeabove such functions
exist, they are positive and continuous everywhere inY , and can be normalized by

∫

Y

p±(y) dy = 1.

Integrating by parts in (3.4) gives rise an equation forv±0 (x1)

(3.5) b̄±1 (v
±
0 )

′(x1) = f(x1) + g(x1)

∫

∂Y

p±(y)dσy,

where

b̄±1 =

∫

Y

(
a±i1(y)∂yip

±(y)− b±1 (y)p
±(y)

)
dy

is so-called effective axial drift. Throughout the paper wewill assume that

(H6) b̄−1 > 0 and b̄+1 < 0.

Notice that sincef(x1), g(x1) ∈ C2([−1, 1]), thenv+0 (x1) ∈ C3(ε, 1), v−0 (x1) ∈ C3(−1,−ε).
Substituting the expression forf(x1) from (3.5) into (3.2)–(3.3), we obtain





A±
y u

±
1 (x1, y) =

(
∂yia

±
i1 + b±1 + b̄±1

)
(v±0 )

′(x1)−

−g(x1)
∫

∂Y

p(y)dσy, y ∈ Y,

B±
y u

±
1 = −a±i1(y)ni (v

±
0 )

′(x1) + g(x1), y ∈ ∂Y.

The specific form of the right-hand side suggests the following representation of the func-
tion u±1 (x1, y):

(3.6) u±1 (x1, y) = N±
1 (y) (v

±
0 )

′(x1) + v±1 (x1) + q±1 (y)g(x1),

where functionsN±
1 , v±1 andq±1 are to be determined. One can see that necessarily the

functionsN±
1 andq±1 satisfy the problems

(3.7)

{
A±

y N
±
1 = ∂yia

±
i1 + b±1 + b̄±1 , y ∈ Y,

B±
y N

±
1 = −a±i1 ni, y ∈ ∂Y ;

(3.8)





A±
y q

±
1 = −

∫

∂Y

p±(y)dσy, y ∈ Y,

B±
y q

±
1 = 1, y ∈ ∂Y.

Obviously, by definition of̄b±1 , the compatibility conditions for (3.7) and (3.8) are satisfied,
thus, these problems are uniquely (up to an additive constant) solvable. Since we assume
thataij(y) ∈ C1,α(G) andbj(y) ∈ Cα(G), thenN±

1 (y) andq±1 (y) belong toC2,α(Y ) (see,
for example [3], [6]).



Now we return to ansatz (3.1). As before, substituting (3.1)into (2.1), collecting
power-like terms related toε0 and taking into account the representation (3.6), one can
obtain an equation foru±2 (x1, y)

(3.9)

A±
y u

±
2 = a±11(y)(v

±
0 )

′′(x1) + ∂yi(a
±
i1N

±
1 ) (v

±
0 )

′′(x1) + ∂yi(a
±
i1q

±
1 ) g

′(x1)+

+∂yia
±
i1 (v

±
1 )

′(x1) + b±1 N
±
1 (v±0 )

′′(x1) + b±1 q
±
1 g

′(x1)+

+b±1 (v±1 )
′(x1) + a±1j ∂yjN

±
1 (v±0 )

′′(x1) + a±1j ∂yjq
±
1 g

′(x1).

Similarly, we get the following boundary condition foru2(x1, y) on∂Y

(3.10) B±
y u

±
2 = −a±i1N±

1 ni (v
±
0 )

′′(x1)− a±i1 q
±
1 ni g

′(x1)− a±i1 ni (v
±
1 )

′(x1).

The compatibility condition for (3.9)–(3.10) reads

(3.11) b̄±1 (v±1 )
′(x1) = h±2 (v±0 )

′′(x1) + q±1 g
′(x1),

whereh±2 andq±1 are constants given by the following expressions:

h±2 =

∫

Y

(
a±11 p

± − a±i1N
±
1 (y)∂yip

± + b±1 N
±
1 p

± + a±1j ∂yjN
±
1 p

±
)
dy;

q±1 =

∫

Y

(
− a±i1 q

±
1 ∂yip

± + b±1 q
±
1 p

± + a±1j ∂yjq
±
1 p

±
)
dy.

Let us note thatv±1 (x1), as a solution of (3.11), has continuous derivatives inY up to the
second order.

As before, analyzing the right-hand side of (3.9)-(3.10), we seek a solution in the
following form:

u±2 (x1, y) = N±
2 (y) (v

±
0 )

′′(x1) + Ñ±
1 (y) (v

±
1 )

′(x1) + q±2 (y) g
′(x1) + v±2 (x1).

Substituting this expression into problem (3.9), (3.10) and taking into account (3.11), we

obtain that̃N±
1 (y) ≡ N±

1 (y),N
±
2 andq±2 satisfy the problems

(3.12)

{
A±

y N
±
2 = a±11 + ∂yi(a

±
i1N

±
1 ) + b±1 N

±
1 + a±1j∂yjN

±
1 − h±2 , y ∈ Y,

B±
y N

±
2 = −a±i1N±

1 ni, y ∈ ∂Y ;

(3.13)

{
A±

y q
±
2 = ∂yi(a

±
i1 q

±
1 ) + b±1 q

±
1 + a±1j ∂yjq

±
1 − q±1 , y ∈ Y,

B±
y q

±
1 = −a±i1 q±1 ni, y ∈ ∂Y.

The compatibility conditions are satisfied and problems (3.12) – (3.13) are uniquely solv-
able. Smoothness of the coefficients and properties of the functionsN±

1 , q±1 imply that
N±

2 (y), q
±
2 (y) ∈ C2,α(Y ).

Finally, we obtain

(3.14) u±2 (x1, y) = N±
2 (y) (v

±
0 )

′′(x1) +N±
1 (y) (v

±
1 )

′(x1) + q±2 (y) g
′(x1) + v±2 (x1).



Similarly, one can see that the problem foru3(x1, y)
± takes the form

(3.15)

A±
y u

±
3 =

[
a±11N

±
1 + ∂yi(a

±
i1N

±
2 ) + b±1 N

±
2 + a±1j ∂yjN

±
2

]
(v±0 )

(3)(x1)+

+
[
a±11 + ∂yi(a

±
i1N

±
1 ) + b±1 N

±
1 + a±1j ∂yjN

±
1

]
(v±1 )

′′(x1)+

+big[a±11 q
±
1 + ∂yi(a

±
i1 q

±
2 ) + b±1 q

±
2 + a±yj ∂yjq

±
2

]
g′′(x1)

+
[
∂yia

±
i1 + b±1

]
(v±2 )

′(x1);

(3.16)
B±

y u
±
3 = −a±i1N±

2 ni(v
±
0 )

(3)(x1)− a±i1N
±
1 ni (v

±
1 )

′′(x1)−
−a±i1 q±2 ni g

′′(x1)− a±i1 ni (v
±
2 )

′(x1).

The compatibility condition for (3.15)-(3.16) gives an equation forv±2 (x1)

(3.17) b̄±1 (v±2 )
′(x1) = h±3 (v±0 )

(3)(x1) + h±2 (v±1 )
′′(x1) + q±2 g

′′(x1),

where

h±3 =

∫

Y

(
a±11N

±
1 p

± − a±i1N
±
2 ∂yip

± + b±1 N
±
2 p

± + a±1j∂yjN
±
2 p

±
)
dy;

q±2 =

∫

Y

(
a±11 q

±
1 p

± − a±i1q
±
2 ∂yip

± + b±1 q
±
2 p

± + a±1j∂yjq
±
2 p

±
)
dy.

The functionv±2 as a solution of (3.17) is a continuously differentiable function inY .
The final formula foru±3 takes the form

(3.18)
u±3 (x1, y) = N±

3 (y)(v
±
0 )

(3)(x1) +N±
2 (y)(v

±
1 )

′′(x1)+

+N±
1 (y)(v

±
2 )

′(x1) + q±3 (y) g
′′(x1) + v±3 (x1).

HereN±
3 andq±3 satisfy the following problems:

(3.19)





A±
y N

±
3 = a±11N

±
1 + ∂yi(a

±
i1N

±
2 ) + b±1 N

±
2 +

+a±1j∂yjN
±
2 − h±3 , y ∈ Y,

B±
y N

±
3 = −a±i1N±

2 ni, y ∈ ∂Y ;

(3.20)





A±
y q

±
3 = a±11 q

±
1 + ∂yi(a

±
i1 q

±
2 ) + b±1 q

±
2 +

+a±1j∂yjq
±
2 − q±2 , y ∈ Y,

B±
y q

±
3 = −a±i1 q±2 ni, y ∈ ∂Y.

The functionsN±
3 andq±3 have continuous derivatives inY up to the second order, more

preciselyN±
3 , q

±
3 ∈ C2,α(Y ).



In such a way we have constructed the following asymptotic series inG+
ε andG−

ε :

(3.21)

u±∞ = v±0 (x1) + ε
[
N±

1 (y) (v
±
0 )

′(x1) + v±1 (x1) + q±1 (y)g(x1)
]
+

+ε2
[
N±

2 (y) (v
±
0 )

′′(x1) +N±
1 (y) (v

±
1 )

′(x1) + v±2 (x1) + q±2 (y)g
′(x1)

]
+

+ε3
[
N±

3 (y) (v
±
0 )

(3)(x1) +N±
2 (y) (v

±
1 )

′′(x1)
]
+

+ε3
[
N±

1 (y) v
±
2 (x1) + v±3 (x1) + q±3 (y)g

′′(x1)
]
, y =

x

ε
.

REMARK 3.1. We have built four terms of the asymptotic expansion, but actually we
will use only three. The fourth term is required for derivingthe equation forv±2 (x1) and
does not show up in the approximation.

It should be noted that the infinite number of terms in series (3.21) can be constructed.
Interested reader can find in [12] the description of the general method for such a con-
struction together with some applications and examples.

4. Boundary layers near the rod ends

4.1. Leading term of the asymptotics.Asymptotic series (3.21) do not satisfy the
boundary conditions on the bases of the rod. First, let us correct the leading term of
the asymptotics with the help of boundary layer functions near the right base; with this
correction the leading term takes the form

(4.1) v+0 (x1) +

(
w+

0

(x1 − 1

ε
,
x′

ε

)
− ŵ+

0

)
,

wherew+
0 is a solution of a homogeneous problem in a semi-infinite cylinder

(4.2)





A+
y w

+
0 (y) = 0, y ∈ G0

−∞,

B+
y w

+
0 = 0, y ∈ Γ0

−∞,

w+
0 (0, y

′) = ϕ+(y′).

As was proved in [13] (see Theorem 6.1), under assumptions(H1) − (H4), (H6), there
exists a unique solutionw+

0 to problem (4.2) stabilizing to a constantŵ+
0 at the exponential

rate, asy1 → −∞. As a boundary condition forv+0 let us choose this uniquely defined
constant:v+0 (1) = ŵ+

0 . In such a way the function defined by (4.1) satisfies the boundary
condition asx1 = 1.

Similarly we correct the leading termv−0 near the left base of the rod:

(4.3) v−0 (x1) +

(
w−

0

(x1 + 1

ε
,
x′

ε

)
− ŵ−

0

)
,

wherew−
0 is a solution to the following problem:

(4.4)





A−
y w

−
0 (y) = 0, y ∈ G+∞

0 ,

B−
y w

−
0 = 0, y ∈ Γ+∞

0 ,

w−
0 (0, y

′) = ϕ−(y′).



Sinceb̄−1 > 0 then there exists a unique solutionw−
0 to problem (4.4) and this solution

stabilizes to a constant, asy1 → ∞. We denote this constant bŷw−
0 and setv−0 (−1) = ŵ−

0 .
One can easily see that the function defined by (4.3) satisfiesthe boundary condition on
the left base of the cylinderGε.

4.2. Term of order ε. The corrector in the asymptotic expansion (3.21) has the form

εN±
1

(x
ε

)
(v±0 )

′(x1) + εv±1 (x1) + εq±1
(x
ε

)
g(x1).

Since the leading term satisfies the boundary conditions asx1 = ±1, then our aim is to
correct the first term in such a way that the resulting coefficient in front ofε is equal to
zero asx1 = ±1. First, we show how to construct a boundary layer function near the right
base of the rod.

Take a functionw+
1 satisfying the following problem:

(4.5)





A+
y w

+
1 (y) = 0, y ∈ G0

−∞,

B+
y w

+
1 = 0, y ∈ Γ0

−∞,

w+
1 (0, y

′) = −N+
1 (δ, y

′) (v+0 )
′(1)− q+1 (δ, y

′) g(1),

for some fixedδ ∈ [0, 1). Taking into account that̄b+1 > 0 one can see thatw+
1 stabilizes

to a uniquely defined constant which we denote byŵ+
1 (see [13]). Then we take the

constantŵ+
1 as a boundary condition forv+1 (x1) asx1 = 1: v+1 (1) = ŵ+

1 . Obviously,
ε = (δ +N)−1, whereδ is the fractional andN is the integer parts of1/ε. By periodicity
N+

1 (1/ε, x
′/ε) = N+

1 (δ, x
′/ε), q+1 (1/ε, x

′/ε) = q+1 (δ, x
′/ε).

We correct the first term as follows:

(4.6) εN+
1

(x
ε

)
(v+0 )

′(x1) + εq+1
(x
ε

)
g(x1) + εv+1 (x1) + ε

(
w+

1

(x1 − 1

ε
,
x′

ε

)
− ŵ+

1

)
.

Taking into account thatv+1 (1) = ŵ+
1 , one can see that

εN+
1

(1
ε
,
x′

ε

)
(v+0 )

′(1) + εq+1
(1
ε
,
x′

ε

)
g(1) + εv+1 (1) + ε

(
w+

1

(
0,
x′

ε

)
− ŵ+

1

)
= 0.

Using the same arguments, we construct a boundary layer function in the neighborhood of
the left base of the rod:

(4.7) εN−
1

(x
ε

)
(v−0 )

′(x1) + εv−1 (x1) + ε
(
w−

1

(x1 + 1

ε
,
x′

ε

)
− ŵ−

1

)
,

wherew−
1 (y) is a unique (due to the assumption thatb̄−1 > 0) solution to the following

problem:

(4.8)





A−
y w

−
1 (y) = 0, y ∈ G+∞

0 ,

B−
y w

−
1 = 0, y ∈ Γ+∞

0 ,

w−
1 (0, y

′) = −N−
1 (−δ, y′) (v−0 )′(−1)− q−1 (−δ, y′) g(−1),

which stabilizes to the constant̂w−
1 . And we assign a boundary condition forv1(x1) at

x1 = −1: v1(−1) = ŵ−
1 .



4.3. Term of order ε2. The term of orderε2 of the asymptotic expansion takes the
form:

ε2N±
2

(x
ε

)
(v±0 )

′′(x1) + ε2N±
1

(x
ε

)
(v±1 )

′(x1) + ε2q±2
(x
ε

)
g′(x1) + ε2v±2 (x1).

Near the right end of the rod we correct it in the following way:

(4.9)
ε2N+

2

(x
ε

)
(v+0 )

′′(x1) + ε2N+
1

(x
ε

)
(v+1 )

′(x1) + ε2v+2 (x1)+

+ε2q+2
(x
ε

)
g′(x1) + ε2

(
w+

2

(x1 − 1

ε
,
x′

ε

)
− ŵ+

2

)
,

wherew+
2 is a unique solution of the following problem in a semi-infinite cylinder:

(4.10)





A+
y w

+
2 = 0, y ∈ G0

−∞,

B+
y w

+
2 = 0, y ∈ Γ0

−∞,

w+
2 (0, y

′) = −N+
2 (δ, y

′) (v+0 )
′′(1)

−N+
1 (δ, y

′) (v+1 )
′(1)− q+2 (δ, y

′) g′(1);

w+
2 tends to a constant̂w+

2 , asy1 → −∞. As before, the existence, uniqueness of a
solution and the property of the exponential stabilizationto a constant are insured by
Theorem 5.1 in [13]. Now we can choose a boundary condition for the functionv+2 as
x1 = 1: v+2 (1) = ŵ+

2 .
Near the left end of the rod we follow the same scheme:

(4.11)
ε2N−

2

(x
ε

)
(v−0 )

′′(x1) + ε2N−
1

(x
ε

)
(v−1 )

′(x1) + ε2 v−2 (x1)+

+ε2q−2
(x
ε

)
g′(x1) + ε2

(
w−

2

(x1 + 1

ε
,
x′

ε

)
− ŵ−

2

)
,

wherew−
2 is a unique solution of the following problem:

(4.12)





A−
y w

−
2 (y) = 0, y ∈ G+∞

0 ,

B−
y w

−
2 = 0, y ∈ Γ+∞

0 ,

w−
2 (0, y

′) = −N−
2 (−δ, y′) (v−0 )′′(−1)−

−N−
1 (−δ, y′) (v−1 )′(−1)− q−2 (−δ, y′) g′(−1),

tending to a constant̂w−
2 as y1 → +∞. Now we set the constant̂w−

2 as a boundary
condition for the functionv−2 asx1 = −1: v−2 (−1) = ŵ−

2 .
Finally, we obtain the following expressions for the boundary layer functions in the

neighbourhoods ofS±1 = {x ∈ Gε : x1 = ±1, x′ ∈ εQ}:

(4.13)
v±bl ≡

[
w±

0

(x1 ∓ 1

ε
,
x′

ε

)
− ŵ±

0

]
+ ε
[
w±

1

(x1 ∓ 1

ε
,
x′

ε

)
− ŵ±

1

]
+

+ε2
[
w±

2

(x1 ∓ 1

ε
,
x′

ε

)
− ŵ±

2

]
,

wherew±
0 are defined by (4.2) and (4.4),w±

1 - by (4.5) and (4.8),w±
2 - by (4.10) and (4.12),

respectively. Let us recall what we assigned as the boundaryconditions forv±0 , v±1 andv±2



atx1 = ±1:

(4.14) v±0 (±1) = ŵ±
0 ; v±1 (±1) = ŵ±

1 ; v±2 (±1) = ŵ±
2 .

5. Boundary layer in the middle of the rod

Before constructing the boundary layer functions in the middle of the rod, let us extend
v+0 (x1) (keeping the same notation) to(−∞, ε) as a solution of equation (3.5) satisfying
the boundary conditionv+0 (1) = ŵ+

0 . In the same way we can extendv+1 , v+2 to (−∞, ε),
andv−0 , v−1 , v−2 to (−ε,+∞) as solutions to corresponding ordinary differential equations.
Periodic iny1 functionsN±

k and q±k , k = 1, 2, 3, we regard as defined everywhere in
G = R×Q.

Obviously, it suffices to match the formal asymptotic seriesu+∞, defined by (3.21) in
G+

∞, with zero in the vicinity ofSε
0 = {x ∈ Gε : x1 = 0}. Then, in the same way we

can matchu−∞ with zero, and, summing up the obtained expressions, arriveat the final
boundary layer corrector in the neighbourhood ofSε

0.
In order to matchu+∞ with zero in the neibourghood ofSε

0, we are looking for a ”cor-
rected” solution in the form

(5.1)

v+ε (x) = χ+
0 (y) v

+
0 (x1) + εN+

1 (y)φ
+(y) (v+0 )

′(x1) + ε χ+
1,1(y) (v

+
0 )

′(x1)+

+ε q+1 (y)φ
+(y)g(x1) + ε χ+

1,2 g(x1) + ε χ+
1 (y) v

+
1 (x1)+

+ε2N+
2 (y)φ

+(y) (v+0 )
′′(x1) + ε2 χ+

2,1(y) (v
+
0 )

′′(x1)+

+ε2N+
1 (y)φ

+(y) (v+1 )
′(x1) + ε2 χ+

2,2(y) (v
+
1 )

′(x1)+

+ε2 q+2 (y)φ
+(y)g′(x1) + ε2 χ+

2,3(y) g
′(x1) + ε2 χ+

2 (y) v
+
2 (x1), y = x/ε.

where the functionsχ+
1 (y), χ

+
1,1(y), χ

+
1,2(y), χ

+
2,1(y), χ

+
2,2(y), χ

+
2,3(y), χ

+
2 (y) andχ+

3 (y)
are to be determined;φ+(y) = φ+(y1) is a smooth cut-off function such thatφ+(y) = 0 if
y1 < −1 andφ+(y) = 1 if y1 > 1. Straightforward calculations show that

(5.2)
Aεv+ε = −a11(y) ∂2x1

v+ε − 1

ε
b1(y) ∂x1v

+
ε − 1

ε
a1j(y) ∂x1 ∂yjv

+
ε −

−1

ε
∂yi
(
ai1 ∂x1v

+
ε

)
− 1

ε2
div
(
a∇yv

+
ε

)
− 1

ε

(
b,∇yv

+
ε

)
, y =

x

ε
;

(5.3) Bεv+ε = ai1(y)ni ∂x1v
+
ε +

1

ε
aij(y) ∂yjv

+
ε ni, y =

x

ε
.

Substituting (5.1) into (5.2) and (5.3) and collecting power-like terms of orderε−2 and
ε−1, respectively, we get an equation and a boundary condition for the functionχ+

0 (y):

(5.4)

{
Ay χ

+
0 ≡ −div(a(y)∇χ+

0 )− (b(y),∇χ+
0 ) = 0, y ∈ G,

By χ
+
0 ≡ (a(y)∇χ+

0 , n) = 0, y ∈ Γ.



In the same way, collecting power-like terms of orderε−1 andε0 in (5.2) and (5.3), corre-
spondingly, gives the following equality:

Ayχ1,1 · (v+0 )′(x1) + Ayχ1,2 · g(x1) + Ayχ1 · v+1 (x1) =
=
[
−Ay(N

+
1 φ

+) + a1j∂yjχ
+
0 + ∂yi(ai1χ

+
0 ) + b1χ

+
0

]
(v+0 )

′(x1)+

−Ay

(
q+1 (y)φ

+(y)
)
· g(x1) + φ+(y) f(x1);

and the following equality on the lateral boundaryΓ:
[
ai1(y)χ

+
0 (y)ni + aij(y) ∂yj(N

+
1 φ

+)ni + aij ∂yjχ
+
1,1ni

]
(v+0 )

′(x1)+

+
[
aij ∂yj (q

+
1 φ

+)ni + aij ∂yjχ
+
1,2 ni

]
g(x1)+

+aij ∂yjχ
+
1 ni · v+1 (x1) = φ+(y) g(x1).

Recalling the expression forf(x1) in terms ofv+0 (x1) (see (3.5)), one can see thatχ+
1,1(y),

χ+
1,2(y) andχ+

1 (y) satisfy the following problems:

(5.5)





Ayχ
+
1,1 = −Ay(N

+
1 (y)φ

+(y)) + a1j(y)∂yjχ
+
0 (y)+

+∂yi
(
ai1χ

+
0 (y)

)
+ b1(y)χ

+
0 (y)− b̄+1 φ

+(y), y ∈ G;

Byχ
+
1,1 = −ai1 χ+

0 ni − aij ∂yj (N
+
1 φ

+)ni, y ∈ Γ;

(5.6)





Ayχ
+
1,2 = −Ay

(
q+1 (y)φ

+(y)
)
− φ+(y)

∫

∂Y

p+(y) dσy, y ∈ G,

Byχ
+
1,2 = −aij ∂yj

(
q+1 (y)φ

+(y)
)
ni + φ+(y), y ∈ Γ;

(5.7)

{
Ayχ

+
1 (y) = 0, y ∈ G,

Byχ
+
1 = 0, y ∈ Γ.

Problems (5.4) –(5.7) were derived by formal calculations which, of course, do not im-
ply the solvability of these problems. Theorem 7.3, proved in Section 7, guarantees the
existence of solutions to problems (5.5)–(5.7) in proper classes and, moreover, gives an
additional qualitative information about the solutions. Now we claim that problems (5.4)–
(5.7) are solvable. Indeed, sinceb̄−1 < 0 andb̄+1 > 0, by Theorem 7.3 for any two constants
there exists a weak solution to problem (5.4) which stabilizes to these constants at the ex-
ponential rate, as|y1| → ∞. We chooseχ+

0 which stabilizes to1, asy1 → +∞, and to
zero, asy1 → −∞:

(5.8) χ+
0 −→

y1→+∞
1, χ+

0 −→
y1→−∞

0.

Such a choice ofχ+
0 , definitions ofN+

1 (y) andφ+(y) insure the existence of solutionχ+
1,1

of problem (5.5), which stabilizes to the constants at infinity. For the functionχ+
1,1 we

assign zeros at infinity:

(5.9) χ+
1,1 → 0, y1 → ±∞.



The motivation for such a choice will be given later. Similarly, taking into account (3.8)
and the definition ofφ+ one can see that problem (5.6) is solvable. We also choose zeros
as constants at infinity forχ+

1,2:

(5.10) χ+
1,2 → 0, y1 → ±∞.

And, finally, Theorem 7.3 implies that there existsχ+
1 (y) such that

(5.11) χ+
1 −→

y1→+∞
1, χ+

1 −→
y1→−∞

0.

In much the same way, substituting (5.1) into (5.2) and (5.3)and collecting the terms of
orderε0 andε1, respectively, we see that the following equalities hold:

(5.12)
Ay χ

+
2,1(v

+
0 )

′′(x1) + Ay χ
+
2,2(v

+
1 )

′(x1) + Ay χ
+
2,3g

′(x1) + Ay χ
+
2 v

+
2 (x1) =

= F+
1 (y) (v+0 )

′′(x1) + F+
2 (y) (v+1 )

′(x1) + F+
3 (y) g′(x1), y ∈ G;

(5.13)

Byχ2,1 (v
+
0 )

′′(x1) +Byχ
+
2,2 (v

+
1 )

′(x1) +Byχ2,3 g
′(x1) +Byχ

+
2 v

+
2 (x1) =

−
[
ai1ni χ

+
1,1 +By(N

+
2 φ

+) + ai1niN
+
1 φ

+
]
(v+0 )

′′(x1)−
−
[
By(N

+
1 φ

+) + ai1niχ
+
1

]
(v+1 )

′(x1)−
−
[
By(q

+
2 φ

+) + ai1ni q
+
1 φ

+ + ai1ni χ
+
1,2

]
g′(x1), y ∈ Γ,

where

F+
1 (y) ≡ −Ay(N

+
2 φ

+) + a11 χ
+
0 + a1j∂yj (N

+
1 φ

+)+

+∂yi(ai1N
+
1 φ

+) + b1N
+
1 φ

+ + a1j∂yjχ
+
1,1 + ∂yi(ai1χ

+
1,1) + b1 χ

+
1,1;

F+
2 (y) ≡ −Ay(N

+
1 φ

+) + a1j∂yjχ
+
1 + ∂yi(ai1χ

+
1 ) + b1 χ

+
1 ;

F+
3 (y) ≡ −Ay(q

+
2 φ

+) + a1j∂yj (q
+
1 φ

+) + ∂yi(ai1q
+
1 φ

+)+

+b1 q
+
1 φ

+ + a1j∂yjχ
+
1,2 + ∂yi(ai1χ

+
1,2) + b1 χ

+
1,2.

Since

b̄+1 (v+1 )
′(x1) + h+2 (v+0 )

′′(x1) + q+1 g
′(x1) = 0,

we can subtract the last expression multiplied byφ+(y) from the right-hand side of (5.12)
and obtain

(5.14)

Ay χ
+
2,1 · (v+0 )′′(x1) + Ay χ

+
2,2 · (v+1 )′(x1) + Ay χ

+
2,3 · g′(x1)+

+Ay χ
+
2 · v+2 (x1) =

(
F+
1 (y)− h2 φ

+
)
(v+0 )

′′(x1)+
(
F+
2 (y)− b̄+1 φ

+
)
(v+1 )

′(x1) +
(
F+
3 (y)− q+1 φ

+
)
g′(x1).

One can see that in view of the specific choice of the functionsχ+
0 , χ+

1,1, χ
+
1 , χ+

1,2 and
definitions ofN+

1 , φ+,N+
2 , q+1 , q+2 , the functions(F+

1 (y)− h2 φ
+), (F+

2 (y)− b̄+1 φ
+) and

(F+
3 (y) − q+1 φ

+) decay exponentially, as|y1| → ∞. Taking into account (3.7), (3.12),



(3.8), (3.13), (5.5) and (5.6), it can be shown that the bracketed expressions on the right-
hand side of (5.14) decay exponentially, asy1 → ±∞. Theorem 7.3 states that there exist
χ+
2,1, χ

+
2,2, χ

+
2,3 stabilizing to zero, asy1 → ±∞, which solve the following problems:

(5.15)





Ay χ
+
2,1 = −Ay(N

+
2 φ

+) + a11 χ
+
0 + a1j ∂yj (N

+
1 φ

+) + ∂yi(ai1N
+
1 φ

+)+

+b1N
+
1 φ

+ + a1j ∂yjχ
+
1,1 + ∂yi(ai1 χ

+
1,1) + b1 χ

+
1,1 − h+2 φ

+, y ∈ G,

By χ
+
2,1 = −By (N

+
2 φ

+)− ai1 ni χ
+
1,1 − ai1 niN

+
1 φ

+, y ∈ Γ;

(5.16)





Ay χ
+
2,2 = −Ay(N

+
1 φ

+) + a1j ∂yjχ
+
1 +

+∂yi(ai1χ
+
1 ) + b1 χ

+
1 − b̄+1 φ

+, y ∈ G,

By χ
+
22 = −By(N

+
1 φ

+)− ai1 ni χ
+
1 , y ∈ Γ;

(5.17)





Ay χ
+
2,3 = −Ay(q

+
2 φ

+) + a1j ∂yj (q
+
1 φ

+) + ∂yi(ai1 q
+
1 φ

+) + b1 q
+
1 φ

++

+a1j ∂yjχ
+
1,2 + ∂yi(ai1 χ

+
1,2) + b1 χ

+
1,2 − q+1 φ

+, y ∈ G,

By χ
+
2,3 = −By (q

+
2 φ

+)− ai1 ni χ
+
1,2 − ai1 ni q

+
1 φ

+, y ∈ Γ.

Also, there is a solutionχ+
2 of problem

(5.18)

{
Ay χ

+
2 = 0, y ∈ G,

By χ
+
2 = 0, y ∈ Γ,

which satisfies the following conditions at infinity:

(5.19) χ+
2 −→

y1→+∞
1, χ+

2 −→
y1→−∞

0.

In the same way one can matchu−∞ with zero in the neighbourhood ofS0:

(5.20)

v−ε (x) = χ−
0 (y) v

−
0 (x1) + εN−

1 (y)φ
−(y) (v−0 )

′(x1) + ε χ−
1,1(y) (v

−
0 )

′(x1)+

+ε q−1 (y)φ
−(y)g(x1) + ε χ−

1,2 g(x1) + ε χ−
1 (y) v

−
1 (x1)+

+ε2N−
2 (y)φ

−(y) (v−0 )
′′(x1) + ε2 χ−

2,1(y) (v
−
0 )

′′(x1)+

+ε2N−
1 (y)φ

−(y) (v−1 )
′(x1) + ε2 χ−

2,2(y) (v
−
1 )

′(x1)+

+ε2 q−2 (y)φ
−(y)g′(x1) + ε2 χ−

2,3(y) g
′(x1) + ε2 χ3(y) v

−
2 (x1), y = x/ε.

Hereφ−(y) ≡ 1− φ+(y); χ−
0 (y) is a solution of problem
{
Ay χ

−
0 = 0, y ∈ G,

By χ
−
0 = 0, y ∈ Γ,

which converges to0, asy1 → +∞, and to1, asy1 → −∞. Functionsχ−
1,1(y), χ

−
1,2(y)

andχ−
1 (y) satisfy the following problems:




Ayχ
−
1,1 = −Ay(N

−
1 (y)φ

−(y)) + a1j(y)∂yjχ
−
0 (y) + ∂yi

(
ai1χ

−
0 (y)

)
+

+b1(y)χ
−
0 (y)− b̄−1 φ

−(y), y ∈ G;

Byχ
+
1,1 = −ai1 χ−

0 ni − aij ∂yj (N
−
1 φ

−)ni, y ∈ Γ;



{
Ayχ

−
1,2 = −Ay

(
q−1 (y)φ

−(y)
)
− φ−(y)

∫
∂Y

p−(y) dσy, y ∈ G,

Byχ
−
1,2 = −aij ∂yj

(
q−1 (y)φ

−(y)
)
ni + φ−(y), y ∈ Γ;

{
Ayχ

−
1 (y) = 0, y ∈ G,

Byχ
−
1 = 0, y ∈ Γ.

We choose these functions in such a way thatχ−
1,1(y) andχ−

1,2(y) tend to zero, asy1 →
±∞; χ−

1 → 0, asy1 → +∞, andχ−
1 → 1, asy1 → −∞. By the same arguments as

above, there existχ−
2,1, χ

−
2,2, χ

−
2,3 stabilizing to zero, asy1 → ±∞, and solving problems





Ay χ
−
2,1 = −Ay(N

−
2 φ

−) + a11 χ
−
0 + a1j ∂yj (N

−
1 φ

−) + ∂yi(ai1N
−
1 φ

−)+

+b1N
−
1 φ

− + a1j ∂yjχ
−
1,1 + ∂yi(ai1 χ

−
1,1) + b1 χ

−
1,1 − h−2 φ

−, y ∈ G,

By χ
−
2,1 = −By (N

−
2 φ

−)− ai1 ni χ
−
1,1 − ai1 niN

−
1 φ

−, y ∈ Γ;




Ay χ
−
2,2 = −Ay(N

−
1 φ

−) + a1j ∂yjχ
−
1 +

+∂yi(ai1χ
−
1 ) + b1 χ

−
1 − b̄−1 φ

−, y ∈ G,

By χ
−
22 = −By(N

−
1 φ

−)− ai1 ni χ
−
1 , y ∈ Γ;





Ay χ
−
2,3 = −Ay(q

−
2 φ

−) + a1j ∂yj (q
−
1 φ

−) + ∂yi(ai1 q
−
1 φ

−) + b1 q
−
1 φ

−+

+a1j ∂yjχ
−
1,2 + ∂yi(ai1 χ

−
1,2) + b1 χ

−
1,2 − q−1 φ

−, y ∈ G,

By χ
−
2,3 = −By (q

−
2 φ

−)− ai1 ni χ
−
1,2 − ai1 ni q

−
1 φ

−, y ∈ Γ.

Similarly, there exists a functionχ−
2 being a solution of problem

{
Ay χ

−
2 = 0, y ∈ G,

By χ
−
2 = 0, y ∈ Γ,

such that
χ−
2 −→

y1→+∞
0, χ−

2 −→
y1→−∞

1.

Finally, taking into account the constructed inner formal asymptotic expansion and bound-
ary layer correctors in the neibourhoods ofS±1 andS0, we arrive at the asymptotic solution
of problem (2.1):

(5.21) uε∞(x) ≡ v+ε (x) + v+bl(x) + v−ε (x) + v−bl (x),

wherev+ε , v−ε andv±bl are defined by (5.1), (5.20) and (4.13), respectively.

REMARK 5.1. Adding the boundary layer functionsv±bl to the inner expansionsu±∞
makes it possible to satisfy the boundary conditions on the bases of the rodGε with an
accuracy up to the third order inε. Representing (5.21) as the sum of the inner expansions
and the boundary layer functions

uε∞ = u+∞(x) + (v+ε (x)− u+∞(x)) + v+bl (x)

+u−∞(x) + (v−ε (x)− u−∞(x)) + v−bl (x),



where

u±∞(x) = v±0 (x1) + ε
[
N±

1

(x
ε

)
(v±0 )

′(x1) + v±1 (x1) + q±1
(x
ε

)
g(x1)

]
+

+ε2
[
N±

2

(x
ε

)
(v±0 )

′′(x1) +N±
1

(x
ε

)
(v±1 )

′(x1) + v±2 (x1) + q±2
(x
ε

)
g′(x1)

]
,

we make(v±ε − u±∞) exponentially small (but not vanishing) onSε
±, as well asv+bl onSε

−1

andv−bl onSε
+1. In order to satisfy exactly the boundary conditions, one can replace (5.21)

with

ũε∞ = u+∞(x) + (v+ε (x)− u+∞(x))φ1(x) + v+bl (x)φ
+
1 (x)

+u−∞(x) + (v−ε (x)− u−∞(x)) φ1(x) + v−bl (x)φ
−
1 (x),

whereφ1(x) = 1 if |x1| < 1/3 andφ1(x) = 0 otherwise;

φ+
1 (x) =

{
1, x1 > 2/3,

0, x1 < 1/3.
φ−
1 (x) =

{
1, x1 < −2/3,

0, x1 > −1/3.

Substitutingũε∞ into (2.1), it is straightforward to check that the presenceof the cut-off
functions results in the appearance of additional exponentially small (with respect toε−1)
terms on the right-hand side. Later on we will prove a priori estimates (6.3) and (6.4)
which ensure that the exponentially small perturbation of the right-hand side leads to the
exponentially small perturbation of the solution, and, thus, is negligible in any polynomial
in ε expansion. To simplify the notations we deal with (5.21) neglecting the discrepancies
onSε

±1 which are exponentially small with respect toε−1.

In order to estimate the difference between the exact solutionuε(x) and the approxi-
mate oneuε∞, we will need the following relations:

Aε
(
v±ε + v±bl

)
− 1

ε
φ±(

x1
ε
) f(x1) =

= ε
[
−a11(y)N±

1 (y)φ
±(y1)− a1j(y) ∂yj(N

±
2 (y)φ

±(y))
]
(v±0 )

(3)(x1)+

+ε
[
−∂yi(ai1N±

2 φ
±)− b1N

±
2 φ

± − a11 χ
±
1,1

]
(v±0 )

(3)(x1)+

+ε
[
−a1j ∂yjχ±

2,1 − ∂yi(ai1 χ
±
2,1)− b1 χ

±
2,1

]
(v±0 )

(3)(x1)+

+ε
[
−∂yi(ai1N±

1 φ
±)− a1j ∂yj (N

±
1 φ

±)− b1(y)N
±
1 φ

±
]
(v±1 )

′′(x1)+

+ε
[
−a11 χ±

1 (y)− a1j ∂yjχ
±
2,2 − ∂yi(ai1 χ

±
2,2)− b1 χ

±
2,2

]
(v±1 )

′′(x1)+

+ε
[
−a1j(y) ∂yjχ±

2 (y)− ∂yi(ai1(y)χ
±
2 (y))− b1(y)χ

±
2 (y)

]
(v±2 )

′(x1)+

(5.22)
+ε
[
−a11q±1 φ± − a1j∂yj (q

±
2 φ

±)− ∂yi(ai1q
±
2 φ

±)− b1 q
±
2 φ

±
]
g′′(x1)+

+ε
[
−a11 χ±

2,2 − a1j∂yjχ
±
2,3 − ∂yi(ai1χ

±
2,3)− b1 χ

±
2,3

]
g′′(x1) + Aεv±bl .



(5.23)

Bε
(
v±ε + v±bl

)
− φ±

(x1
ε

)
g(x1) =

= ε2
[
ai1(y)niN

±
2 (y)φ

±(y) + ai1 ni χ
±
2,1(y)

]
(v±0 )

(3)(x1)+

+ε2
[
ai1 niN

±
1 (y)φ

± + ai1 ni χ
±
2,2(y)

]
(v±1 )

′′(x1)+

+ε2
[
ai1 ni q

±
2 (y)φ

± + ai1 ni χ
±
2,3(y)

]
g′′(x1)+

+ε2 ai1 ni (v
±
2 )

′(x1) +Bεv±bl , y = x/ε.

6. Justification procedure

First we obtain an a priori estimate for a solution to the problem

(6.1)





Aεuε = f ε(x), x ∈ Gε,

Bεuε = gε(x), x ∈ Γε,

uε(±1, x′) = 0, x′ ∈ εQ

in terms off ε(x) andgε(x) (for the moment we do not specify the particular structure of
these functions). To this end let us make a change of variables in the last problem

x 7→ y =
x

ε
; uε(x) 7→ vε(y) = uε(εy).

Then (6.1) takes the form:

(6.2)





Ayvε = ε2 f ε(εy), y ∈ G
1/ε
−1/ε,

Byvε = εgε(εy), y ∈ Γ
1/ε
−1/ε,

vε(−1/ε, y′) = vε(1/ε, y
′) = 0, y′ ∈ Q.

It will be shown in Section 7 that the following estimate holds:

‖∇vε‖L2(G
1/ε
−1/ε

)
≤ C ε2‖(1 + |y1|) f ε(ε·)‖

L2(G
1/ε
−1/ε

)
+

+C ε‖(1 + |y1|) g(ε·)‖L2(Γ
1/ε
−1/ε

)
;

Making inverse change of variables, one can see that

‖∇vε‖2L2(G
1/ε
−1/ε

)
=

1

εd−2

∫

Gε

|∇uε|2 dx,

∫

G
1/ε
−1/ε

(f ε(εy))2 dy =
1

εd

∫

Gε

(f ε(x))2 dx,

∫

Γ
1/ε
−1/ε

(gε(εy))2 dy =
1

εd−1

∫

Γε

(gε(x))2 dx,

and, consequently,

(6.3) ‖∇uε‖L2(Gε) ≤ C ‖f ε‖L2(Gε) + Cε−
1
2 ‖gε‖L2(Γε).



Making use of the Friedrichs inequality for the functionuε in Gε we obtain

(6.4) ‖uε‖L2(Gε) ≤ C ‖f ε‖L2(Gε) + Cε−
1
2 ‖gε‖L2(Γε).

Estimation of theL2(Gε)-norm ofAε
(
(v+ε + v+bl ) + (v−ε + v−bl )− uε

)
andL2(Γε)-norm

of Bε
(
(v+ε + v+bl ) + (v−ε + v−bl)− uε

)
will complete the justification procedure.

REMARK 6.1. The estimates (6.3)–(6.4) actually imply that we can take f(x1) ∈
L2(Gε) andg(x1) ∈ L2(Γε).

There are some ”typical” terms in (5.22), (5.23) like

•
ε a11(y)N

+
1 (y)φ

+(y1)(v
+
0 )

(3)(x1)|y=x/ε

•
ε a1j(y)∂yj(N

+
2 φ

+) (v+0 )
(3)(x1)|y=x/ε

•
ε a11 χ

+
1 (y) (v

+
0 )

(3)(x1)|y=x/ε

•
ε a1j ∂yjχ

+
2,2 (v

+
0 )

(3)(x1)|y=x/ε

•
ε2 ai1(y)niN

+
2 (y)φ

+(y) (v+0 )
(3)(x1)|y=x/ε

•
ε2 ai1(y)ni χ

+
2,1(y) (v

+
0 )

(3)(x1)|y=x/ε

•
ε2 ai1(y)ni (v

+
2 )

′(x1)|y=x/ε

Let us estimate them.
1.

I21 =

∫

Gε

ε2
[
a11(

x

ε
)N+

1 (
x

ε
)φ+(

x1
ε
)(v+0 )

(3)(x1)
]2
dx.

v+0 (x1) is a solution of the following equation:
{
b̄+1 (v

+
0 )

′(x1) = f(x1) + g(x1)
∫
∂Y

p+(y)dy, x1 ∈ (0, 1),

v+0 (1) = ŵ+
0 .

If f(x1) andg(x1) are two times continuously differentiable, then(v+0 )
(3) is a continuous

function on the interval[0, 1]. Taking into account the fact thataij(y) are smooth and
bounded,0 ≤ φ+ ≤ 1, andN+

1 (y) is a continuous periodic function (see (3.7)), we see
that

I21 ≤ Cε2 |Gε| ≤ Cε(d−1) ε2.

Thus, ∥∥∥ε a11(
x

ε
)N+

1 (
x

ε
)φ+(

x1
ε
)(v+0 )

(3)(x1)
∥∥∥
L2(Gε)

≤ Cε(d−1)/2 ε.



2.

I2 =
∥∥∥ε2 a1j(

x

ε
) ∂xj

(
N+

2 (
x

ε
)φ+(

x

ε
)
)
(v+0 )

(3)(x1)
∥∥∥
L2(Gε)

.

Making change of variablesy = x/ε we obtain:

I22 = ε2 εd
∫

G
1/ε
−1/ε

[
a1j(y)∂yj

(
N+

2 (y)φ
+(y)

)
(v+0 )

(3)(εy1)
]2
dy.

TheL2(Y ) norm of the gradient ofN+
2 (y) is bounded and the gradient ofφ+ is equal to

zero inG−1
−1/ε ∪G

1/ε
1 due to the definition of the functionφ+(y).

I22 ≤ Cε2 εd
∫

G
1/ε
−1/ε

|∇yφ
+(y)|2 dy + Cε2 εd

∫

G
1/ε
−1/ε

|∇yN
+
2 (y)|2 dy ≤

≤ Cε2 εd |G1
−1|+ Cε2 εd ε−1 ≤ Cε(d−1)

[
ε2 + ε3

]
.

Consequently,
∥∥∥ε2 a1j(

x

ε
) ∂xj

(
N+

2 (
x

ε
)φ+(

x

ε
)
)
(v+0 )

(3)(x1)
∥∥∥
L2(Gε)

≤ Cε(d−1)/2ε.

3.

I23 =
∥∥∥ε a11(

x

ε
)χ+

1 (
x

ε
) (v+0 )

(3)(x1)
∥∥∥
2

L2(Gε)
≤ C ε2 εd

∫

G
1/ε
−1/ε

(
χ+
1 (y)

)2
dy.

We assign the functionχ+
1 (y) to tend to1, asy1 → +∞, and to zero, asy1 → −∞. For

χ+
1 the following estimate holds (see Theorem 7.3):

‖χ+
1 ‖L2(Y ) ≤ C.

Thus,
I23 ≤ C ε2 εd ε−1 = C ε2 ε(d−1),

and, finally, ∥∥∥ε a11(
x

ε
)χ+

1 (
x

ε
) (v+0 )

(3)(x1)
∥∥∥
L2(Gε)

≤ C ε(d−1)/2 ε.

4.

I24 =
∥∥∥ε2 a1j(

x

ε
) ∂xj

(χ+
2,2(

x

ε
)) (v+0 )

(3)(x1)
∥∥∥
2

L2(Gε)
≤

≤ C ε2 εd
∫

G
1/ε
−1/ε

|∇yχ
+
2,2(y)|2 dy.

Due to Theorem 7.3 theL2(G) norm ofχ+
2,2 is bounded, thus

∥∥∥ε2 a1j(
x

ε
) ∂xj

(χ+
2,2(

x

ε
)) (v+0 )

(3)(x1)
∥∥∥
L2(Gε)

≤ C ε(d−1)/2 ε3/2.



5.
I25 =

∥∥ε2 ai1(xε )niN
+
2 (

x
ε
)φ+(x

ε
) (v+0 )

(3)(x1)
∥∥2
L2(Γε)

≤
≤ C ε(d−1) ε4

∫

Γ
1/ε
−1/ε

(N+
2 (y))

2 dσy ≤

≤ C ε(d−1) ε4
∫

G
1/ε
−1/ε

[
(N+

2 (y))
2 + |∇yN

+
2 (y)|2

]
dy.

Since‖N+
2 ‖L2(Y ) and‖∇N+

2 ‖L2(Y ) are bounded, then
∥∥∥ε2 ai1(

x

ε
)niN

+
2 (
x

ε
)φ+(

x

ε
) (v+0 )

(3)(x1)
∥∥∥
L2(Γε)

≤ C ε(d−2)/2 ε2.

6.

I26 =
∥∥∥ε2 ai1(

x

ε
)ni χ

+
2,1(

x

ε
) (v+0 )

(3)(x1)
∥∥∥
2

L2(Γε)
≤

C ε4 ε(d−1)

∫

Γ
1/ε
−1/ε

(
χ+
1,2(y)

)2
dσy ≤

≤ C ε4 ε(d−1)

∫

G
1/ε
−1/ε

[(
χ+
1,2(y)

)2
+
∣∣∇χ+

1,2

∣∣2
]
dy

In view of Theorem 7.3, forχ+
1,2(y) the following estimates are valid:

‖χ+
1,2‖L2(G

1/ε
−1/ε

)
≤ C ε−1 ‖χ+

1,2‖L2(Y ) ≤ C ε−1; ‖∇χ+
1,2‖L2(G) ≤ C.

Consequently,
∥∥∥ε2 ai1(

x

ε
)ni χ

+
2,1(

x

ε
) (v+0 )

(3)(x1)
∥∥∥
L2(Γε)

≤ C ε(d−2)/2 ε2.

7.

I7 =
∥∥∥ε2 ai1(

x

ε
)ni (v

+
2 )

′(x1)
∥∥∥
L2(Γε)

≤ Cε2
( ∫

Γε

dσy
)1/2 ≤ Cε2 ε(d−2)/2.

Other terms in (5.22)–(5.23) can be analyzed similarly. Exactly in the same way the
L2(Gε) norm of [Aε

(
v−ε + v−bl

)
− 1

ε
φ−(x1

ε
) f(x1)] andL2(Γε) norm of [Bε

(
v−ε + v−bl

)
−

φ−(x1

ε
) g(x1)] can be estimated.

Finally, the following estimates have been obtained:

(6.5)
∥∥Aε

(
(v+ε + v+bl ) + (v−ε + v−bl )− uε

)∥∥
L2(Gε)

≤ C ε ε(d−1)/2;

(6.6)
∥∥Bε

(
(v+ε + v+bl ) + (v−ε + v−bl )− uε

)∥∥
L2(Γε)

≤ C ε2 ε(d−2)/2;

Taking into account (6.3) – (6.6) we get

(6.7) ‖∇(v+ε + v+bl ) +∇(v−ε + v−bl)−∇uε‖L2(Gε) ≤ C ε ε(d−1)/2;

(6.8) ‖(v+ε + v+bl ) + (v−ε + v−bl )− uε‖L2(Gε) ≤ C ε ε(d−1)/2.



The estimates (6.7) – (6.8) complete the justification procedure. In such a way we have
proved the following theorem.

THEOREM 6.2. Let the conditions(H1)–(H6) hold true. Then the approximate solu-
tion uε∞ given by formula(5.21)satisfies the estimates

‖∇uε∞ −∇uε‖L2(Gε) ≤ C ε ε(d−1)/2;

‖uε∞ − uε‖L2(Gε) ≤ C ε ε(d−1)/2,

whereuε(x) is the exact solution to problem(2.1).

7. Existence of a solution in an infinite cylinder

Given a bounded domainQ ⊂ Rd−1 with a Lipschitz boundary∂Q, we denote byG an
infinite cylinderR×Q with pointsx = (x1, x

′) and the axis directed alongx1. The lateral
boundary of the cylinder is denoted byΓ = R × ∂Q. We study the following boundary
value problem for a stationary convection-diffusion equation:

(7.1)





Au ≡ −div (a(x)∇ u(x))− (b(x),∇ u(x)) = f(x), x ∈ G,

B u ≡ ∂ u

∂ na
= g(x), x ∈ Γ.

Here the symbol(·, ·) stands for the usual scalar product inRd; ∂u/∂ na = (a∇u, n) is the
conormal derivative of a functionu, n is the exterior unit normal. Throughout the section
we use the notations

Gβ
α = (α, β)×Q, Γβ

α = (α, β)× ∂Q.

We assume that the following conditions are satisfied:

(A1) The coefficientsaij(x) ∈ L∞(G), bj(x) ∈ L∞(G) have the form

aij(x) =

{
a+ij(x), x ∈ G+∞

0 ,

a−ij(x), x ∈ G0
−∞;

bj(x) =

{
b+j (x), x ∈ G+∞

0 ,

b−j (x), x ∈ G0
−∞,

wherea+ij , b
+
j anda−ij , b

−
j arex1-periodic inG+∞

0 andG0
−∞, respectively. Without

loss of generality we assume that the period is equal to1.
(A2) The matrixa(x) is symmetric and satisfies the uniform ellipticity condition,

that is there exists a positive constantΛ such that, for almost allx ∈ G,

(7.2) Λ |ξ|2 ≤
d∑

i,j=1

a±ij(x) ξi ξj , ∀ξ ∈ R
d.

(A3) f(x) ∈ L2(G) andg(x) ∈ L2(Γ) decay exponentially at infinity, namely,

‖f‖L2(Gn+1
n ) ≤ C̃ e−γ1 |n|, ‖g‖L2(Γn+1

n ) ≤ C̃ e−γ1 |n|, γ1 > 0.



Denote byp±(y) the functions from the kernels of adjoint periodic operators defined on
Y = (0, 1]×Q:

(7.3)





(A±)∗p±# ≡ −div (a±∇ p±#) + div (b± p±#) = 0, y ∈ Y,

(B±)∗p±# ≡
∂p±#
∂na±

− (b±, n) p±# = 0, y ∈ ∂Y.

Each of problems (7.3) related to(a+, b+) and(a−, b−), respectively, has a unique up to
a multiplicative constant solution which is positive and continuous everywhere inY (see,
for example, [13], Section 3). In both half-cylindersG0

−∞ andG+∞
0 we introduce the

so-called effective drifts:

b̄±1 =

∫

Y

(
a+1j(x)

∂p±#(x)

∂xj
− b±1 (x) p

±
#(x)

)
dx.

It was shown in [13] that the behaviour of solution in half-cylinder cruciallydepends on
the sign of the effective drift. In the case of infinite cylinder the situation is even more
difficult: a solution might fail to exist under proper choiceof the signs of̄b±1 .

The goal of this section is to show that in the caseb̄+1 < 0, b̄−1 > 0 problem (7.1)
possess a bounded (in a proper sense) solution, which stabilizes to constants, as|x1| → ∞.

DEFINITION 7.1. We say thatu(x) is a weak solution to problem (7.1) if, for any
ψ(x) ∈ C∞

0 ((−∞,+∞);C∞(Q)), the following integral inequality holds:
∫

G

(a(x)∇u,∇ψ) dx−
∫

G

(b,∇u)ψ dx−
∫

Γ

g(x)ψ(x) dσ =

∫

G

f(x)ψ(x) dx.

DEFINITION 7.2. A weak solutionu(x) of problem (7.1) is said to be bounded if

‖u‖L2(Gn+1
n ) ≤ C,

with a constantC independent ofn.

The following theorem contains the main result of the section.

THEOREM 7.3. Let conditions(A1)− (A3) be fulfilled and suppose thatb̄+1 < 0 and
b̄−1 > 0. Then, for any constantsK+

∞ andK−
∞, there exists a bounded solutionu(x) of

problem(7.1) that converges to these constants, asx1 → ±∞, respectively,

(7.4)
‖u−K−

∞‖L2(G−n
−∞) ≤M1 e

−γ n, n > 0,

‖u−K+
∞‖L2(G+∞

n ) ≤M1 e
−γ n, n > 0;

moreover, the following estimates hold

(7.5) ‖u‖L2(GN+1
N ) ≤M2; ‖∇ u‖L2(G) ≤M3.

The constantsM1,M2 andM3 in (7.4), (7.5)have the form

M1 = C0 (|K+
∞|+ |K−

∞|) + C1

(
‖(1 + |x1|

3
2
+ν) f‖L2(G) + ‖(1 + |x1|

3
2
+ν) g‖L2(Γ)

)
;



M2 = C2

(
‖(1 + |x1|

3
2
+ν) f‖L2(G) + ‖(1 + |x1|

3
2
+ν) g‖L2(Γ)

)
+ C3

(
|K+

∞|+ |K−
∞|
)
;

M3 = C2

(
‖(1 + |x1|) f‖L2(G) + ‖(1 + |x1|) g‖L2(Γ)

)
+ C3 |K+

∞ −K−
∞|,

whereC0, C1, C2 andC3 only depend onΛ, d andQ, ν > 0.

PROOF. The proof consists of two steps. On the first step we show thatthere existsu
which solves nonhomogeneous problem (7.1) and decays at infinity. On the second step
we prove the existence of a solution to the homogeneous equation which stabilizes to some
nonzero constants at infinity.
The casef = g = 0. Consider the following sequence of the auxiliary boundary value
problems:

(7.6)





Auk = 0, x ∈ Gk
−k,

B uk = 0, x ∈ Γk
−k,

uk(±k, x′) = K±
∞, x′ ∈ Q

and denotevk = uk − (K+
∞ +K−

∞)/2. Thenvk solves the problem




Avk = 0, x ∈ Gk
−k,

B vk = 0, x ∈ Γk
−k,

vk(±k, x′) = ± 1

2
(K+

∞ −K−
∞), x′ ∈ Q.

By the maximum principle,

(7.7) |vk| ≤ 1

2
|K+

∞ −K−
∞|, x ∈ Gk

−k, ∀k.

Indeed, by the maximum principle, a negative minimum can notbe attained in the interior
of the domainGk

−k. The assumption that a negative minimum is attained on the lateral
boundaryΓk

−k also contradicts the maximum principle. One can prove this extendingvk
by reflection across the lateral boundary and using the fact thatvk satisfies homogeneous
Neumann boundary condition onΓk

−k. More detailed proof can be found in [13], Section 3.
This trick is used many times throughout the paper and allowsus to apply the maximum
principle, the Harnack inequality and Nash estimates up to the lateral boundary of the
cylinder.

Consequently, we obtain the following uniform estimate (w.r.t k) for the solutionuk(x)
of problem (7.6):

‖uk‖L2(GN+1
N ) ≤

1

2
|Q|1/2

(
|K+

∞ −K−
∞|+ |K+

∞ +K−
∞|
)

≤ |Q|1/2
(
|K+

∞|+ |K−
∞|
)
, ∀N.

It follows from estimate (7.7) that theL2-norm of the gradient ofuk in every finite cylinder
is also bounded (see, e.g. [3]):

‖∇ uk‖L2(GN+1
N ) = ‖∇ vk‖L2(GN+1

N ) ≤ C1 |K+
∞ −K−

∞|, ∀N,



where the constantC1 depends only onΛ, d andQ.
Using the compactness arguments we conclude that, up to a subsequence,uk converges

to a solutionu of problem (7.1) (withf = g = 0) strongly inL2
loc(G) and∇ uk ⇀ ∇ u

weakly in(L2
loc(G))d, ask → ∞.

By the trace theorem

‖uk‖H1/2(S±1) ≤ C |K+
∞ −K−

∞|,
and moreover (see [3], Theorem 8.24)

(7.8) ‖uk‖Cα(S±1) ≤ C‖uk‖L2(G2
−2)

≤ C |K+
∞ −K−

∞|

with α > 0 and a constantC depends only ond, Q andΛ. Here again we used the
same extension arguments as above that allowed us to obtain estimate (7.8) inS±1 up to
{±1} × ∂Q, not only in the interior parts of these domains.

Consider an auxiliary problem

(7.9)





A ûk = 0, x ∈ Gk
1,

B ûk = 0, x ∈ Γk
1,

ûk(1, x′) = max{K−
∞, K

+
∞}, ûk(k, x′) = K+

∞, x′ ∈ Q.

In view of (7.8), by the maximum principle,uk ≤ ûk in Gk
1. As was proved in [13] (see

Theorem 6.7), in the casēb+1 < 0, for any constantK+
∞, the following estimate is valid:

|uk −K+
∞| ≤ |ûk −K+

∞| ≤ C max{|K−
∞|, |K+

∞|} e−γx1, x1 > 1.

Since, up to a subsequence,{uk} converges tou uniformly on every compact setK ⊂ G,
then

|u−K+
∞| ≤ C max{|K−

∞|, |K+
∞|} e−γx1, x1 > 1.

The last estimate yields

‖u−K+
∞‖L2(GN+1

N ) ≤ C max{|K−
∞|, |K+

∞|} e−γN , N = 1, ..., k − 1.

By the standard elliptic estimates we obtain

‖∇u‖L2(GN+1
N ) ≤ C‖u−K+

∞‖L2(GN+2
N−1)

≤ C max{|K−
∞|, |K+

∞|} e−γN ,

with N = 1, ..., k − 1. Similarly, in G1
−k we have thatu → K−

∞ and∇u → 0 at the
exponential rate, asx1 → −∞. This implies that, for any constantsK±

∞, there is a solution
u(x) of (7.1) withf = g = 0 such thatu→ K±

∞, asx1 → ±∞ and

(7.10)
‖u‖L2(GN+1

N ) ≤ C
(
|K+

∞ −K−
∞|+ |K+

∞ +K−
∞|
)
≤ C

(
|K+

∞|+ |K−
∞|
)
,

‖∇ u‖L2(G) ≤ C |K+
∞ −K−

∞|.
The casef, g 6= 0. Our next goal is to prove the existence of a solution of problem

(7.1) that decays exponentially at infinity. To this end we consider the following sequence



of boundary value problems:

(7.11)





Auk = f(x), x ∈ Gk
−k,

B uk = g(x), x ∈ Γk
−k,

uk(−k, x′) = uk(k, x
′) = 0, x′ ∈ Q.

Without loss of generality we assume thatf(x) > 0 andg(x) > 0, otherwise we represent
these functions as the sums of their positive and negative parts. Moreover, we assume
that supp f, supp g ⊂ G+∞

0 . The case when the supports off andg are inG0
−∞ can be

considered similarly.
Suppose first that the coefficientsaij , bj and the functionsf andg are smooth. Thus,

by the strong maximum principle (see, for example, [3]), uk(x) > 0, x ∈ Gk
0 ∪ Γk

0.
It has been proved in [13] (see Theorem 6.7) that in the semi-infinite cylinderG−1

−∞ the
following estimate foruk takes place:

uk(x1, x
′) ≤ C0 ‖uk‖L∞(S−1) e

γ x1, x1 < −1, γ > 0,

whereC0 depends only onΛ, d andQ. Sinceuk is positive, then the Harnack inequality is
valid in the fixed domainG0

−1 with a constantα which depends only ond, |Q| andΛ, thus,

uk(x) ≤ α eγ x1 min
G0

−1

uk(x), x ∈ G−1
−∞.

Obviously, there existsξ > 1 such that

(7.12) uk(−ξ, x′) <
1

2
min
G0

−1

uk(x).

Due to the linearity of the problem inGk
−ξ we representuk as a sumvk + wk, where

vk is a solution of the homogeneous equation with nonzero Dirichlet boundary conditions

(7.13)





Avk = 0, x ∈ Gk
−ξ,

B vk = 0, x ∈ Γk
−ξ,

vk(−ξ, x′) = uk(−ξ, x′), vk(k, x′) = 0, x′ ∈ Q;

andwk is a solution of the problem

(7.14)





Awk = f(x), x ∈ Gk
−ξ,

B wk = g(x), x ∈ Γk
−ξ,

wk(−ξ, x′) = wk(k, x
′) = 0, x′ ∈ Q.

By the maximum principle we have

vk(x) ≤
1

2
min
G0

−1

uk(x), x ∈ Gk
−ξ.



As was proved in [13] (see Lemma 8.2), a solution of problem (7.14) satisfies the following
estimate:

‖∇wk‖L2(Gk
−ξ)

≤ C ‖(1 + |x1|) f‖L2(G+∞
0 ) + C ‖(1 + |x1|) g‖L2(Γ+∞

0 ).

Thus, by Friedrichs’ inequality

‖∇wk‖L2(G0
−1)

≤ C(ξ) ‖(1 + |x1|) f‖L2(G+∞
0 ) + C ‖(1 + |x1|) g‖L2(Γ+∞

0 ).

Obviously,

min
G0

−1

uk(x) ≤ ‖uk‖L2(G0
−1)

≤ ‖vk‖L2(G0
−1)

+ ‖wk‖L2(G0
−1)

≤ 1

2
min
G0

−1

uk(x) + ‖wk‖L2(G0
−1)
.

It follows from the last inequality that

(7.15) min
G0

−1

uk(x) ≤ C ‖(1 + |x1|) f‖L2(G+∞
0 ) + C ‖(1 + |x1|) g‖L2(Γ+∞

0 ).

With the help of the Harnack inequality and (7.15) one hasuk(−1, x′) ≤ C. Then, in view
of the maximum principle,uk(x) is bounded inG−1

−k. It remains to apply Theorem 8.7 and
Lemma 9.2 from [13]. According to these results, forb̄−1 > 0 andb̄+1 < 0, we obtain

|uk(x)| ≤ C0 ‖uk‖L∞(S−1) e
γx1 , x ∈ G−1

−k;

‖uk‖L2(G+∞
n ) ≤ (C0 ‖uk‖L∞(S−1) + C1) e

−γn, n > 0;

‖uk‖L2(GN+1
N ) ≤ C ‖(1 + |x1|

3
2
+ν) f‖L2(G+∞

0 ) + C ‖(1 + |x1|
3
2
+ν) g‖L2(Γ+∞

0 ), ∀N ;

‖∇uk‖L2(Gk
−k)

≤ C ‖(1 + |x1|) f‖L2(G+∞
0 ) + C ‖(1 + |x1|) g‖L2(Γ+∞

0 ),

and, consequently, for anyn,

‖uk‖L2(Gn+1
n ) ≤ C1

(
‖(1 + |x1|

3
2
+ν) f‖L2(G) + ‖(1 + |x1|

3
2
+ν) g‖L2(Γ) + 1

)
e−γ n.

For the nonsmooth data the desired estimates can be justifiedby means of usual smoothing
procedure (see, for instance, [13] for details).

Thus, one can see that, up to a subsequence,{uk} (being extended by zero to the whole
cylinderG), converges weakly inH1

loc(G) to a solutionu of problem (7.1). Moreover,
by construction,u decays exponentially at infinity and estimates (7.4), (7.5)hold with
K±

∞ = 0.
As was shown above, for any constantsK±

∞, there exists a solution of homogeneous
equation, stabilizing to these constants at infinity and satisfying estimates (7.10). Sum-
ming up such a solution withu(x), we obtain the desired solution of nonhomogeneous
problem. Theorem 7.3 is proved. �
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ABSTRACT. The paper deals with a periodic homogenization problem fora non-
stationary convection-diffusion equation stated in a thininfinite cylindrical domain
with homogeneous Neumann boundary condition on the lateralboundary. It is shown
that homogenization result holds in moving coordinates, and that the solution admits
an asymptotic expansion which consists of the interior expansion being regular in time,
and an initial layer.

Keywords: Homogenization, convection-diffusion equation, infinite cylinder, asymp-
totic behaviour

1. Introduction

The goal of the paper is to study the asymptotic behaviour of asolution to an initial
boundary problem for a convection-diffusion equation defined in a thin infinite cylinder
with homogeneous Neumann condition on its lateral boundary. We assume that the coeffi-
cients of the equation are periodic in the axial direction ofthe cylinder and that the period
is of the same order as the cylinder diameter. The corresponding parabolic operator takes
the form

(1.1) ∂tu− div
(
a
(x
ε

)
∇u
)
+

1

ε

(
b
(x
ε

)
,∇u

)
;

hereε is a small positive parameter, and we assume the standard uniform ellipticity con-
ditions ona(y) and the boundedness of the entries ofa(y) andb(y).

1



Notice that the scaling factor1/ε is natural for the convection term. Indeed, if one
wants to consider the long-term behaviour of a convection-diffusion process described by
the equation

∂su− div
(
a(y)∇u

)
+
(
b(y),∇u

)
= 0

in a fixed infinite cylinder, then making the diffusive changeof variables

x = εy, t = ε2s

leads to a convection-diffusion problem for operator (1.1)in a thin cylinder.
Closely related problems for a convection-diffusion equation defined in the whole

space have been considered in [6] and [1]. It was proved in particular that the homog-
enization takes place in moving coordinates(x, t) −→

(
x − (b̄/ε)t, t

)
with a constant

vectorb̄.
Various homogenization problems for divergence form operators and systems in thin

bounded domains have been investigated by many authors, we mention here the works
[7], [10] and [11]. General homogenization theory results for parabolic equations can be
found in [5] and [12].

In the paper we first prove uniform inε a priori estimates for the solution. This requires
integration in weighted spaces where the solution of the periodic adjoint cell problem is
used as a weight. Then we construct the leading terms of the asymptotic expansion in
moving coordinates, determine the effective speed, and obtain the estimates for the rate
of convergence. Additional difficulty appearing in the problem under consideration is the
dimension reduction issue. Indeed, the solutions of the original problem belong to variable
Sobolev spaces, which makes the convergence analysis rather involved.

The paper is organized as follows. Section 2 contains the problem setup. In Section 3
we deal with a priori estimates and study auxiliary parabolic cell problems. In Section 4
we construct formal asymptotic expansion which includes the corresponding initial layers,
the presence of the initial layer allows us to satisfy the initial condition in higher order
approximations. In Section 5 is devoted to the convergence analysis.

2. Problem statement

LetQ be a bounded domain inRd−1 with the Lipschitz boundary∂Q. For anyε > 0,
we denote byGε a thin infinite cylinderR×εQwith the axis directed alongx1. The lateral
boundary of the cylinderGε is denoted byΣε = R× ∂(εQ). We study the following non-
stationary convection-diffusion equation:

(2.1)





∂tu
ε(t, x) +Aε u

ε(t, x) = 0, (t, x) ∈ (0, T )×Gε,

Bε u
ε(t, x) = 0, (t, x) ∈ (0, T )× Σε,

uε(0, x) = ϕ(x1), x ∈ Gε,



where

(2.2)
Aεu = −div

(
a
(x
ε

)
∇xu

)
+

1

ε
(b
(x
ε

)
,∇xu),

Bεu = (a
(x
ε

)
∇xu, n).

We suppose that the following conditions are fulfilled:

(H1) Q is a Lipschitz bounded domain inRd−1;
(H2) aij(y), bj(y) ∈ L∞(G), i, j = 1, ..., d, are1-periodic functions with respect toy1;
(H3) The matrixa(y) satisfies the uniform ellipticity condition, that is there exists a

positive constantΛ such that, for almost allx ∈ Rd,

(2.3) Λ |ξ|2 ≤
d∑

i,j=1

aij(y) ξi ξj, ∀ξ ∈ R
d.

(H4) ϕ(x1) ∈ C∞
0 (R).

DEFINITION 2.1. A functionuε(t, x) is said to be a weak solution of problem (2.1) in
(0, T ]×Gε if

uε ∈ L∞[δ, T ;L2
loc(Gε)] ∩ L2[0, T ;H1

loc(Gε)], δ ∈ (0, T )

anduε satisfies
T∫

0

∫

Gε

{
− uε ∂tψ + (aε∇uε,∇ψ) + (bε,∇uε)ψ

}
dx dt =

∫

Gε

ϕ(x1)ψ(0, x) dx

for anyψ ∈ L2[0, T ;H1(Gε)] such that∂tψ ∈ L2[0, T ;L2(Gε)] andψ(T, x) = 0.

We are interested in the asymptotic behaviour ofuε(t, x), asε → 0. Notice that, for any
ε > 0, the existence and the uniqueness of a generalized solutionto problem (2.1) is given
by classical theory (see, e.g., [8]).

3. Some preliminary results

3.1. A priori estimates. In what follows we denoteY = [0, 1)×Q,

Av = −divy(a(y)∇yv) + (b(y),∇yv), Bv = (a(y)∇yv, n);

A∗p∗ = −div(a∇p∗)− div(bp∗), B∗p∗ = (a∇p∗, n) + (b, n)p∗,

By the Krein-Rutman theorem and the Harnack inequality, theadjoint periodic problem

(3.1)





A∗ p∗(y) = 0, y ∈ Y,

B∗ p∗(y) = 0, y ∈ ∂Y,

p∗(y) is periodic iny1,

has a positive solutionp∗(y) ∈ C(Y ) ∩H1(Y ) such that

(3.2) 0 < p− ≤ p∗(y) ≤ p+ <∞.



We fix the choice ofp∗ by the normalization condition

∫

Y

p∗(y) dy = 1.

The goal of this section is to obtain a priori estimates for a non-stationary convection-
diffusion equation stated in a thin infinite cylinder. Namely, we consider the following
non-homogeneous problem:

(3.3)





∂tu
ε(t, x) +Aε u

ε(t, x) = f(t, x), (t, x) ∈ (0, T )×Gε,

Bε u
ε(t, x) = ε g(t, x), (t, x) ∈ (0, T )× Σε,

uε(0, x) = ϕ(x), x ∈ Gε,

Multiplying the equation in (3.3) byp∗(x/ε) uε(x) and integrating the resulting relation
by parts overGε, we obtain

1

2

∫

Gε

∂(uε)2

∂t
p∗
(x
ε

)
dx+

1

2

∫

Gε

(uε(t, x))2 A∗
εp

∗
(x
ε

)
dx+

+
1

2

∫

Σε

(uε(t, x))2 B∗
εp

∗
(x
ε

)
dσ +

∫

Gε

(aε∇uε,∇uε) p∗
(x
ε

)
dx =

= ε

∫

Σε

g(t, x) uε(t, x) p∗
(x
ε

)
dσ +

∫

Gε

f(t, x) uε(t, x) p∗
(x
ε

)
dx.

Here we use the notations

A∗
εq(x) = −div

(
a
(x
ε

)
∇q(x)

)
− 1

ε
div
(
b
(x
ε

)
q(x)

)
,

B∗
εq(x) = (a

(x
ε

)
∇q(x), n) + 1

ε
(b
(x
ε

)
, n) q(x).

Taking into account the definition ofp∗(y) we get

1

2

d

dt

∫

Gε

(uε)2 p∗
(x
ε

)
dx+

∫

Gε

(aε∇uε,∇uε) p∗
(x
ε

)
dx =

= ε

∫

Σε

g(t, x) uε(t, x) p∗
(x
ε

)
dσ +

∫

Gε

f(t, x) uε(t, x) p∗
(x
ε

)
dx.



Using the positive definiteness of the matrixa(y), bounds (3.2), and the Cauchy-Bunyakovsky
inequality, one can obtain

1

2

d

dt

∫

Gε

(uε)2 p∗
(x
ε

)
dx+ Λ p−

∫

Gε

|∇uε|2 dx ≤

+
1

2γ

{∫

Gε

(f(t, x))2 dx+ ε

∫

Σε

(g(t, x))2 dσ
}

+
γ

2
p+ ε

∫

Σε

(uε)2 dσ +
γ

2
p+
∫

Gε

(uε)2 dx

for anyγ > 0. By the trace theorem
∫

Σε

(uε)2 dσ ≤ C1

ε

∫

Gε

(uε)2 dx+ C2 ε

∫

Gε

|∇uε|2 dx

with constantsC1, C2 independent ofε. Consequently, for a sufficiently smallγ,

d

dt



∫

Gε

(uε)2 p∗
(x
ε

)
dx+

t∫

0

∫

Gε

|∇uε(s, x)|2 dxds




≤ C
{
‖f‖2L2(Gε) + ε ‖g‖2L2(Σε)

}
+



∫

Gε

(uε)2 p∗
(x
ε

)
dx+

t∫

0

∫

Gε

|∇uε(s, x)|2 dxds


 .

Integrating with respect tot and applying the Grönwall lemma and the positiveness of the
functionp∗, one can see that

(3.4)

∫

Gε

(uε)2 dx+

t∫

0

∫

Gε

|∇uε(s, x)|2 dxds ≤

≤ C et
{
‖f‖2L2[0,T ;L2(Gε)]

+ ε ‖g‖2L2[0,T ;L2(Σε)]
+ ‖ϕ‖2L2(Gε)

}
, t ∈ (0, T ]

where the constantC does not depend onε, and depends only onΛ, d andQ.
For the justification procedure we also need a priori estimates in the case of right-hand

side being the divergence of a bounded vector-function. Namely, consider the following
problem:

(3.5)





∂tu
ε(t, x) +Aε u

ε(t, x) = divxF (t, x), (t, x) ∈ (0, T )×Gε,

Bε u
ε(t, x) = −(F, n), (t, x) ∈ (0, T )× Σε,

uε(0, x) = 0, x ∈ Gε,

with F (t, x) such that

|F (t, x)| ≤ f1(t, x) e
−γ |x1|, f1 ∈ L∞((0, T )×Gε).



Multiplying equation in (3.5) byp∗(x
ε
)uε(x) and integrating by parts overGε, we obtain

(3.6)

1

2

d

dt

∫

Gε

(uε)2 p∗
(x
ε

)
dx+

∫

Gε

(aε∇uε,∇uε) p∗
(x
ε

)
dx =

= −
∫

Gε

(F (t, x), ∇uε(t, x)) p∗
(x
ε

)
dx

−
∫

Gε

(F (t, x), ∇p∗
(x
ε

)
) uε(t, x) dx ≡ Iε1 + Iε2 .

Exploiting the Couchy-Bunyakovsky inequality and taking into account (3.2) one gets

|Iε1 | ≤
p+

2δ
‖F‖2L2(Gε)

+
p+ δ

2
‖∇uε‖L2(Gε)

≤ p+

δ
‖f1‖2L∞((0,T )×Gε) ε

d−1 + p+ δ ‖∇uε‖L2(Gε), δ =
p−Λ

p+
.

The integralIε2 is estimated as follows

|Iε2 | ≤
1

2

∫

Gε

|
(
F,∇p∗

(x
ε

))
|2 dx+ 1

2
‖uε‖2L2(Gε)

≤
+∞∑

n=−∞

‖F‖2L∞(εYn)

∫

εYn

|∇p∗
(x
ε

)
|2 dx+ 1

2
‖uε‖2L2(Gε)

≤
+∞∑

n=−∞

‖F‖2L∞(εYn) ε
d−2

∫

Yn

|∇p∗(y)|2 dy + 1

2
‖uε‖2L2(Gε)

≤ C εd−1 1

ε
‖f1‖2L∞((0,T )×Gε) +

1

2
‖uε‖2L2(Gε),

whereYn = (n, n+ 1]×Q.
Finally, combining the obtained estimates forIε1 and Iε2 with (3.6), and using the

Grönwall’s lemma, fort ∈ (0, T ] one has

(3.7)
∫

Gε

(uε)2 dx+

t∫

0

∫

Gε

|∇uε(s, x)|2 dxds ≤ C et

ε
εd−1 ‖f1‖2L∞((0,T )×Gε).

3.2. Auxiliary results. In the sequel we will need the information about the asymp-
totic behaviour of solutions to parabolic equations, ast→ ∞. Consider the initial bound-
ary value problem

(3.8)





∂τv(τ, y) +A v(τ, y) = 0, (τ, y) ∈ (0,∞)× Y,

B v(τ, y) = 0, (τ, y) ∈ (0,∞)× ∂Y,

v(τ, y)− y1 − periodic,

v(0, y) = ψ(y), y ∈ Y,



whereY = [0, 1)×Q.

LEMMA 3.1. Suppose conditions(H1)− (H3) are fulfilled andψ(y) ∈ L2(Y ). Then
there exists a unique weak solutionv to problem(3.8), and it stabilizes to a constantv∞

at the exponential rate, asτ → ∞, that is

(3.9) |v(τ, y)− v∞| ≤ C0 ‖ψ‖L2(Y )e
−γ τ , y ∈ Y, τ > 0,

with positive constantsC0 andγ depending only onΛ, d andQ. Moreover,∇yv stabilizes
exponentially to0, asτ → ∞:

(3.10)

τ+1∫

τ

∫

Y

|∇yv(s, y)|2 dyds ≤ C e−2γ τ .

The constantv∞ is defined by

v∞ =

∫

Y

ψ(y) p∗(y) dy,

wherep∗(y) solves problem(3.1).

PROOF. Let us consider two functions

m(τ) = min
y∈Y

v(τ, y), M(τ) = max
y∈Y

v(τ, y).

By the maximum principle,M(τ) decreases andm(τ) increases. In view of the linearity
of the problem, without loss of generality we assume thatm(τ0) = 0. Sincev ≥ 0, then
we can use the Harnack inequality

m(τ0 + 1) ≥ αM(τ0 + 1), α < 1

to obtain the estimate

oscτ=τ0+1v(τ, y) ≡M(τ0 + 1)−m(τ0 + 1) ≤ (1− α)M(τ0) ≡ oscτ=τ0v(τ, y).

Consequently,

oscτ=τ0+1v(τ, y) ≤ (1− α)oscτ=τ0v(τ, y), τ0 ≥ 0

and, obviously,v converges to some constantv∞, asτ → ∞
|v(τ, y)− v∞| ≤ C0 ‖ψ‖L2(Y )e

−γτ ,

whereC andγ depend only onΛ, d andQ.
Let us calculate the constantv∞. To this end we multiply the equation in (3.8) byp∗

and integrate by parts over the set(0, τ)×Y . As a result we obtain the following equality:
∫

Y

v(τ, y) p∗(y) dy =

∫

Y

ψ(y) p∗(y) dy.



Sincev converges uniformly to the constantv∞, asτ → ∞, then it follows from the last
equality that

v∞ =

∫

Y

ψ(y) p∗(y) dy,

if p∗ is normalized by
∫
Y
p∗dy = 1.

Now we prove estimate (3.10). Note that the functionw = v − v∞ solves the same
equation asv, and satisfies the initial conditionw(0, y) = ψ − v∞. Multiplying the
equation byw, integrating by parts and applying the Cauchy-bunyakovskiinequality gives

∫

Y

|w(τ + 1, y)|2 dy + Λ

τ+1∫

τ

∫

Y

|∇w|2 dyds ≤

Λ−1 1

2η

τ+1∫

τ

∫

Y

|w(s, y)|2 dyds+ Λ−1 η

2

τ+1∫

τ

∫

Y

|∇yw(s, y)|2 dyds+
∫

Y

|w(τ, y)|2 dy,

and, consequently, choosingη < 2Λ2 and using (3.9), we obtain
τ+1∫

τ

∫

Y

|∇w|2 dyds ≤ C e−2γτ .

�

The next lemma generalizes the result of Lemma 3.1 to the non-homogeneous case.
Consider the boundary value problem

(3.11)





∂τv(τ, y) +A v(τ, y) = f(τ, y) + divyF (τ, y), (τ, y) ∈ (0,∞)× Y,

B v(τ, y) = g(τ, y)− (F (τ, y), n), (τ, y) ∈ (0,∞)× ∂Y,

v(0, y) = 0, y ∈ Y,

wheref ∈ L2[0,∞;L2(Y )], F ∈ L2[0,∞;L2(Y )d] andg ∈ L2[0,∞;L2(∂Y )] decay
exponentially, asτ → ∞, that is

τ+1∫

τ

‖f(s, ·)‖2L2(Y ) ds ≤ C e−γ1τ ;

τ+1∫

τ

‖F (s, ·)‖2L2(Y )d ds ≤ C e−γ1τ ;

τ+1∫

τ

‖g(s, ·)‖2L2(∂Y ) ds ≤ C e−γ1τ , γ1 > 0.

LEMMA 3.2. Under the assumptions being made, a solution of problem(3.11)satisfies
the estimates

(3.12)

τ+1∫

τ

‖v(s, ·)− v∞‖2L2(Y ) ds ≤ C e−γ̃τ ,



(3.13)

τ+1∫

τ

‖∇v(s, ·)‖2L2(Y ) ds ≤ C e−γ̃τ , γ̃ > 0.

HereC depends onΛ, d andQ. The constantv∞ is determined by

v∞ =

∞∫

0

∫

Y

f(τ, y) p∗(y) dy dτ −
∞∫

0

∫

Y

(F (τ, y),∇p∗(y)) dy dτ

+

∞∫

0

∫

∂Y

g(τ, y) p∗(y) dσ dτ,

p∗ being a solution of(3.1).

PROOF. First of all we represent the functions on the right-hand side of (3.11) as the
sums of functions with finite supports, that is

f(τ, y) =

+∞∑

m=−∞

fm(τ, y), F (τ, y) =

+∞∑

m=−∞

Fm(τ, y), g(τ, y) =

+∞∑

m=−∞

gm(τ, y),

wherefm(τ, y) = f(τ, y)χ[m,m+1), Fm(τ, y) = F (τ, y)χ[m,m+1),
gm(τ, y) = g(τ, y)χ[m,m+1), andχ[m,m+1) = χ[m,m+1)(τ) is the characteristic function of
the interval[m,m+ 1).

Due to the linearity of the problem, the solutionv of (3.11) can be represented in the
form

v(τ, y) =
+∞∑

m=−∞

vm(τ, y),

wherevm solves the problem

(3.14)





∂τvm +A vm = fm(τ, y) + divyFm(τ, y), (τ, y) ∈ (0,∞)× Y,

B vm = gm(τ, y)− (Fm(τ, y), n), (τ, y) ∈ (0,∞)× ∂Y,

vm(0, y) = 0, y ∈ Y.

Notice that, in view of the uniqueness of the solution,vm(τ, y) = 0 for τ ∈ [0, m). Then,
multiplying the equation in (3.14) byvm and integrating over(m − 1, m + 2) × Y , we
obtain

∫

Y

(vm(m+ 2, y))2 dy ≤ C(

m+1∫

m

‖f(s, ·)‖2L2(Y ) ds+

+

m+1∫

m

‖g(s, ·)‖2L2(∂Y ) ds+

m+1∫

m

‖F (s, ·)‖2L2(Y ) ds) ≤ C e−γ1 m.

By Lemma 3.1,vm satisfies estimate (3.9) in(m+ 2,∞)× Y , namely,

|vm(τ, y)− v∞m | ≤ C e−γ1m e−γ (τ−m−2) ≤ C e−γ̃τ , τ > m+ 2,



for some constantv∞m , whereγ̃ = min{γ, γ1}. In view of the maximum principle,

v∞m ≤ Ce−γ1m.

Let us show thatv =
∑
vm stabilizes tov∞ =

∑
v∞m , asτ → ∞. To this end we estimate

theL2-norm of the differencev − v∞.

N+1∫

N

‖v(s, ·)− v∞‖2L2(Y ) ds =

N+1∫

N

‖
+∞∑

m=0

(vm(s, ·)− v∞m )‖2L2(Y ) ds =

=

N+1∫

N

‖
{ ∑

m≤N−2

+
∑

m≥N−1

}
(vm(s, ·)− v∞m )‖2L2(Y ) ds ≤

≤ C1N
2 e−2γN + C2 e

−2γ1N ≤ C e−γ̃N , γ̃ > 0.

The exponential decay of∇v can be proved in much the same way as in the homogeneous
case. �

4. Asymptotic expansion

4.1. Formal inner expansion.Following the ideas in [6] and [1], we are looking for
an approximate solution in the form

(4.1) uε ∼ u0
(
t , x1 − ε−1 b̄1t

)
+

∞∑

k=1

εk vk
(
t , x1 − ε−1 b̄1t , y

)
, y =

x

ε
,

wherevk, k ≥ 1, are unknown functions which are1-periodic iny1; the constant̄b1 is to
be determined.

Substituting (4.1) into (2.1) and collecting power-like terms in front ofε−1 in the equa-
tion and ofε0 in the boundary condition, we obtain the following periodicproblem for the
unknown functionv1:

(4.2)





Ay v1(t , x1 − ε−1b̄1t , y)

=
(
∂yiai1(y)− b1(y) + b̄1

)
∂x1u0(t , x1 − ε−1b̄1t), y ∈ Y,

By v1(t , x1 − ε−1b̄1t , y) = −ai1(y)ni ∂x1u0(t , x1 − ε−1b̄1t), y ∈ ∂Y ;

Setting

(4.3) b̄1 =

∫

Y

(ai1(y) ∂yip
∗(y) + b1(y) p

∗(y)) dy,

we guarantee that a solution to problem (4.2) exists. The specific form of the right-hand
side of (4.2) suggests the following representation ofv1:

v1(t , x1 − ε−1b̄1t , y) = N1(y) ∂x1u0(t , x1 − ε−1b̄1t) + u1(t , x1 − ε−1b̄1t),



where aY -periodic functionN1 solves the problem

(4.4)

{
AyN1(y) = ∂yiai1(y)− b1(y) + b̄1, y ∈ Y,

By N1(y) = −ai1(y)ni, y ∈ ∂Y ;

Similarly, we get the problem forv2

(4.5)





Ay v2(t , x1 − ε−1b̄1t , y) = −∂tu0
(
t, x1 −

b̄1
ε
r
)∣∣∣

r=t

+
{
a11(y) + ∂yi(ai1(y)N1(y)) + a1j(y)∂yjN1(y)

−b1(y)N1(y) + b̄1N1(y)
}
∂2x1

u0
(
t, x1 −

b̄1
ε
t
)

+
{
∂yiai1(y)− b1(y) + b̄1

}
∂x1u1

(
t, x1 −

b̄1
ε
t
)
, y ∈ Y,

By v2(y) = −ai1(y)N1(y)ni ∂
2
x1
u0
(
t, x1 −

b̄1
ε
t
)
, y ∈ ∂Y.

The compatibility condition for (4.5) gives rise to the Cauchy problem foru0

(4.6)

{
∂tu0(t, x1) = ahom11 ∂2x1

u0(t, x1), (t, x1) ∈ (0, T )× R,

u0(0, x1) = ϕ(x1), x1 ∈ R,

where the constantahom11 is defined by

ahom11 =

∫

Y

[
a11(y) + a1j(y)∂yjN1(y)− b1(y)N1(y)

]
p∗(y) dy

+

∫

Y

[
b̄1N1(y)p

∗(y)− ai1(y)N1(y) ∂yip
∗(y)

]
dy.

The positiveness ofahom11 has been proved in [9].

LEMMA 4.1. The constantahom11 is strictly positive.

The form of the right-hand side of the equation in (4.5) suggests the following repre-
sentation for the solutionv2:

v2(t , x1 − ε−1b̄1t , y) = N2(y) ∂
2
x1
u0(t , x1 − ε−1b̄1t)

+N1(y) ∂x1u1(t , x1 − ε−1b̄1t) + u2(t , x1 − ε−1b̄1t)

with y1-periodic functionN2 being a solution of the problem

(4.7)





AN2(y) = a11(y) + ∂yi(ai1(y)N1(y)) + a1j(y)∂yjN1(y)

−b1(y)N1(y) + b̄1N1(y)− ahom11 , y ∈ Y,

BN2(y) = −ai1(y)niN1(y), y ∈ ∂Y ;



Similarly, we obtain a boundary value problem forv3

(4.8)





Ay v3(t , x1 − ε−1b̄1t , y) = −N1(y)∂t∂x1u0
(
t, x1 −

b̄1
ε
r
)∣∣∣

r=t

−∂tu1
(
t, x1 −

b̄1
ε
r
)∣∣∣

r=t
+
[
a11(y)N1(y) + ∂yi(ai1(y)N2(y))

+a1j(y)∂yjN2(y)− b1(y)N2(y) + b̄1N2(y)
]
∂3x1

u0
(
t, x1 −

b̄1
ε
t
)

+
[
a11(y) + ∂yi(ai1(y)N1(y)) + a1j(y)∂yjN1(y)

+ b1(y)N1(y) + b̄1N1(y)
]
∂2x1

u1
(
t, x1 −

b̄1
ε
t
)

+
[
∂yiai1(y)− b1(y) + b̄1

]
∂x1u2

(
t, x1 −

b̄1
ε
t
)
, y ∈ Y,

By v3(y) = −ai1(y)N2(y)ni ∂
3
x1
u0
(
t, x1 −

b̄1
ε
t
)

−ai1(y)N1(y)ni ∂
2
x1
u1
(
t, x1 −

b̄1
ε
t
)

−ai1(y)ni ∂x1u2
(
t, x1 −

b̄1
ε
t
)
, y ∈ ∂Y.

From the compatibility condition for (4.8) we derive the equation foru1:

∂tu1(t, x1) = ahom11 ∂2x1
u1(t, x1) + h3 ∂

3
x1
u0(t, x1), (t, x1) ∈ (0, T )× R,

where

(4.9)
h3 =

∫

Y

(
− ahom11 N1p

∗ + a11N1p
∗ − ai1N2∂yip

∗ + b1N2p
∗

+a1j∂yjN2p
∗ + b̄1N2p

∗
)
dy.

Naturally,v3 can be represented as the sum

v3
(
t, x1 −

b̄1
ε
t , y

)
= N3(y) ∂

3
x1
u0
(
t, x1 −

b̄1
ε
t
)
+N2(y) ∂

2
x1
u1
(
t, x1 −

b̄1
ε
t
)

+N1(y) ∂x1u2
(
t, x1 −

b̄1
ε
t
)
+ u3

(
t, x1 −

b̄1
ε
t
)
,

with N3 being ay1-periodic solution of the cell problem

(4.10)





AN3(y) = a11(y)N1(y) + ∂yi(ai1(y)N2(y)) + a1j(y)∂yjN2(y)

−b1(y)N2(y) + b̄1N2(y)− ahom11 N1(y)− h3, y ∈ Y,

BN3(y) = −ai1(y)niN2(y), y ∈ ∂Y.

Arguing as above, one can derive the equation foru2

∂tu2(t, x1) = ahom11 ∂2x1
u2(t, x1)

+h4 ∂
4
x1
u0(t, x1) + h3 ∂

3
x1
u1(t, x1),



where the constanth4 is defined by

(4.11)
h4 =

∫

Y

(
− ahom11 N2p

∗ + a11N2p
∗ − ai1N3∂yip

∗ + b1N3p
∗

+a1j∂yjN3p
∗ + b̄1N3p

∗ − h3N1

)
dy.

Notice that determining initial conditions foru1 andu2 requires constructing initial layer
correctors, which is done in Section 4.2.

Finally, as an inner approximate solution we take first threeterms of (4.1)

uε∞(t, x) = u0
(
t , x1 −

b̄1
ε
t
)
+ εN1

(x
ε

)
∂x1u0(t , x1 −

b̄1
ε
t)

+ε u1
(
t , x1 −

b̄1
ε
t
)
+ ε2N2

(x
ε

)
∂2x1

u0(t , x1 −
b̄1
ε
t)

+ε2N1

(x
ε

)
∂x1u1(t , x1 −

b̄1
ε
t) + ε2u2(t , x1 −

b̄1
ε
t).

4.2. Initial layers. The leading term of the asymptoticsu0(t, x1) satisfies the initial
conditionu0(0, x1) = ϕ(x1). We introduce the initial layer functions, which will allowus
to satisfy the initial condition up to the second power ofε. Consider the functionφ1(τ, y)
which is a solution to the problem

(4.12)





∂τφ1 +Ayφ1 = 0, (τ, y) ∈ (0,∞)× Y,

Byφ1 = 0, (τ, y) ∈ (0,∞)× ∂Y,

φ1(0, y) = −N1(y).

By Lemma 3.1,φ1 stabilizes to a constantφ1, asτ → ∞, at the exponential rate. The
constantφ1 can be calculated as follows

(4.13) φ1 = −
∫

Y

N1(y) p
∗(y) dy.

We use this constant to set the initial value foru1: u1(0, x1) = φ1 ϕ
′(x1). In this way

[
u0
(
t , x1 −

b̄1
ε
t
)
+ εN1

(x
ε

)
∂x1u0(t , x1 −

b̄1
ε
t) + ε u1

(
t , x1 −

b̄1
ε
t
)

+ ε
(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′(x1)

]∣∣∣
t=0

= ϕ(x1).

Similarly, we introduceφ2(τ, y) such that:

(4.14)





∂τφ2 +Ayφ2 = 0, (τ, y) ∈ (0,∞)× Y,

Byφ2 = 0, (τ, y) ∈ (0,∞)× ∂Y,

φ2(0, y) = −N2(y);



The constant to whichφ2 stabilizes, asτ → ∞, we denote byφ2

(4.15) φ2 = −
∫

Y

N2(y) p
∗(y) dy,

and set
u2(0, x1) = φ2 ϕ

′′(x1) + φ1 ϕ
′′(x1).

In this way the boundary value problems foru1 andu2 take the form

(4.16)

{
∂tu1(t, x1) = ahom11 ∂2x1

u1(t, x1) + h3 ∂
3
x1
u0(t, x1), (t, x1) ∈ (0, T )× R,

u1(0, x1) = φ1 ϕ
′(x1), x1 ∈ R;

(4.17)





∂tu2(t, x1) = ahom11 ∂2x1
u2(t, x1)

+h4 ∂
4
x1
u0(t, x1) + h3 ∂

3
x1
u1(t, x1), , (t, x1) ∈ (0, T )× R,

u2(0, x1) = φ2 ϕ
′′(x1) + φ1 ϕ

′′(x1)

with the constantsh3, h4 defined in (4.9), (4.11). Then
[
ε2N2

(x
ε

)
∂2x1

u0(t , x1 −
b̄1
ε
t) + ε2N1

(x
ε

)
∂x1u1(t , x1 −

b̄1
ε
t) +

+ +ε2 q2
(x
ε

)
g(x1) + ε2u2(t , x1 −

b̄1
ε
t) + ε2

(
φ2

( t
ε2
,
x

ε

)
− φ2

)
ϕ′′(x1) +

+ε2
(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′′(x1)

]∣∣∣
t=0

= 0.

Denote

(4.18)
uεil(t, x) = ε

(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′(x1) + ε2

(
φ2

( t
ε2
,
x

ε

)
− φ2

)
ϕ′′(x1)+

+ε2
(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′′(x1).

We summarize this section by writing down the formal asymptotic expansion for a solution
uε of problem (2.1) which has been constructed above. It reads

(4.19)

Uε(t, x) = u0
(
t , x1 −

b̄1
ε
t
)
+ εN1

(x
ε

)
∂x1u0(t , x1 −

b̄1
ε
t)

+ε u1
(
t , x1 −

b̄1
ε
t
)
+ ε2N2

(x
ε

)
∂2x1

u0(t , x1 −
b̄1
ε
t)

+ε2N1

(x
ε

)
∂x1u1(t , x1 −

b̄1
ε
t) + ε2u2(t , x1 −

b̄1
ε
t) + uεil(t, x).

Hereu0 is a solution of the homogenized problem (4.6);N1, N2 solve auxiliary cell prob-
lems (4.4), (4.7);u1 andu2 are solutions of nonhomogeneous Cauchy problems (4.16),
(4.17); the initial layeruεil is given by (4.12)-(4.15) and (4.18). Notice that the approxi-
mate solution satisfies the initial condition:Uε(0, x) = ϕ(x1).



5. Justification procedure

In thin domainGε it is natural to introduce the following notion of convergence (see,
for example, [4], [13]).

DEFINITION 5.1. We say thatfε(t, x) converges strongly to zero inL2[0, T ;H1(Gε)]
if

ε−
(d−1)

2 ‖fε‖
L2[0,T ;H1(Gε)]

−→ 0, ε → 0.

The normalization factorε−
(d−1)

2 appears due to the fact that the norm of a fixed non-
trivial C∞

0 (R) functionϕ(x1) in the spaceL2[0, T ;H1(Gε)] is of orderε
(d−1)

2 .
The following theorem is the main result of the paper.

THEOREM 5.2. Let conditions(H1)− (H4) be fulfilled. Then the difference between
the exact solutionuε of problem(2.1) and the approximate solutionUε given by(4.19),
converges inL2[0, T ;H1

loc(Gε)] to zero, asε→ 0. Moreover, the following estimate holds:

(5.1)
∫

Gε

(uε − Uε)2 dx+

t∫

0

∫

Gε

|∇(uε(s, x)− Uε(s, x))|2 dxds ≤ C ε2 εd−1.

PROOF. In order to estimate the norm (in the appropriate space) of the difference
uε − Uε between the exact and the approximate solutions, we calculate firstAε(u

ε − Uε)
andBε(u

ε − Uε), and then make use of a priori estimates (3.4), (3.7). Straightforward
computations yield

Aε(u
ε(t, x)− Uε(t, x)) = ε (Rε

1(t, x) +Rε
2(t, x)) + o(ε), ε → 0,

where

Rε
1(t, x) = −

1∑

k=0

Nk

(x
ε

)
∂t∂

k
x1
u1−k(t , x1 −

b̄1
ε
r)
∣∣∣
r=t

+b̄1

2∑

k=0

Nk

(x
ε

)
∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

1∑

k=0

a11
(x
ε

)
Nk

(x
ε

)
∂k+2
x1

u1−k(t , x1 −
b̄1
ε
t)



+
2∑

k=1

a1j
(x
ε

)
∂yjNk(y)

∣∣∣
y=x/ε

∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

+

2∑

k=0

b1
(x
ε

)
Nk

(x
ε

)
∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

+b̄1

2∑

k=1

(
φk(τ, y)− φk

)
ϕ′′′(x1) + a11(y)

(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′′′(x1)

+
2∑

k=1

a1j(y)∇yφk(τ, y)
∣∣∣
y=x/ε,τ=t/ε2

ϕ′′′(x1)

+b1(y)
2∑

k=1

(
φk

( t
ε2
,
x

ε

)
− φk

)
ϕ′′′(x1).

Rε
2(t, x) =

2∑

k=0

∂yi(ai1(y)Nk(y))
∣∣∣
y=x/ε

∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

+
2∑

k=1

∂yi(ai1(y)(φk(τ, y)− φk))
∣∣∣
y=x/ε,τ=t/ε2

ϕ′′′(x1).

Similarly,

Bε(u
ε(t, x)− Uε(t, x)) = ε2Rε

3(t, x)

with

Rε
3(t, x) = −

2∑

k=0

ai1
(x
ε

)
niNk

(x
ε

)
∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

ai1(y)ni

2∑

k=1

(
φk

( t
ε2
,
x

ε

)
− φk

)
ϕ′′′(x1).

By a priori estimates (3.4) and (3.7),

∫

Gε

(uε − Uε)2 dx+

t∫

0

∫

Gε

|∇(uε(s, x)− Uε(s, x))|2 dxds

≤ C eT
{
‖εRε

1‖2L2[0,T ;L2(Gε)]
+ ε ‖ε2Rε

3‖2L2[0,T ;L2(Σε)]
+

1

ε
‖εRε

2‖2L∞((0,T )×Gε)

}
.

In order to estimateRε
1, R

ε
2 andRε

3, we analyze properties of the solutionsu0, u1 andu2 of
problems (4.6), (4.16) and (4.17). Foru0 the well-known integral Poisson formula takes
place:

u0(t, x1) =
θ(t)√
4πahom11 t

∫

R

ϕ(ξ) e
−

|x1−ξ|2

4ahom
11

t dξ.



Hereθ is the unit step function, that isθ(t) = 1 for t ≥ 0, andθ(t) = 0 whent < 0.
Moreover, similar formula is valid for any derivative ofu0 with respect tox1:

∂(k)x1
u0(t, x1) =

θ(t)√
4πahom11 t

∫

R

∂
(k)
ξ ϕ(ξ) e

−
|x1−ξ|2

4ahom11 t dξ.

Bearing in mind thatϕ has finite support, one can see that

(5.2) |∂(k)x1
u0(t, x1)| ≤ C e−α|x1|2, C, α > 0,

whereα depends onT . Similarly, the following integral representation of∂(k)x1 u1 is valid:

∂(k)x1
u1(t, x1) =

θ(t) φ̄1√
4πahom11 t

∫

R

∂
(k+1)
ξ ϕ(ξ) e

−
|x1−ξ|2

4ahom
11

t dξ

+

t∫

0

h3√
4πahom11 (t− τ)

dτ

∫

R

∂3+k
x1

u0(τ, ξ) e
−

|x1−ξ|2

4ahom11 (t−τ) dξ = I1 + I2.

Arguing as above we obtain

|I1| ≤ C e−α|x1|2, α > 0.

Let us estimateI2.

|I2| ≤
{ t∫

0

dτ

∫

|x1−ξ|≤2|x1|

dξ +

t∫

0

dτ

∫

|x1−ξ|>2|x1|

dξ
} h3 ∂

3+k
x1

u0(τ, ξ)√
4πahom11 (t− τ)

e
−

|x1−ξ|2

4ahom
11

(t−τ) .

In view of (5.2), forξ satisfying|x1 − ξ| ≤ 2|x1|,

∣∣∂3+k
x1

u0(τ, ξ) e
−

|x1−ξ|2

4ahom11 (t−τ)
∣∣ ≤ C e−α|ξ|2 e

−
|x1−ξ|2

4ahom11 T ≤ C e−α1|x1|2, α1 > 0,

thus,
t∫

0

dτ

∫

|x1−ξ|≤2|x1|

h3 ∂
3+k
x1

u0(τ, ξ)√
4πahom11 (t− τ)

e
−

|x1−ξ|2

4ahom11 (t−τ)dξ

≤ C |x1| e−α1|x1|2

t∫

0

1√
t− τ

dτ ≤ C e−α1|x1|2.

Noticing that

1√
4πahom11 t

∫

R

e
−

|x1−ξ|2

4ahom
11

t dξ = 1,



one has
t∫

0

dτ

∫

|x1−ξ|>2|x1|

h3 ∂
3+k
x1

u0(τ, ξ)√
4πahom11 (t− τ)

e
−

|x1−ξ|2

4ahom
11

(t−τ)dξ ≤ C e−α1|x1|2 , α1 > 0.

In this way we see thatu1 satisfies the estimate

(5.3) |∂kx1
u1(t, x1)| ≤ C e−α1|x1|2 , α1 > 0, t ≥ 0, x ∈ R.

Arguing as above, one can see that analogous estimate holds foru2 solving problem (4.17).

(5.4) |∂kx1
u2(t, x1)| ≤ C e−α1|x1|2 , α1 > 0, t ≥ 0, x ∈ R.

Bearing in mind the boundedness of the coefficientsaij , bj , properties ofN1 andN2 as
the solutions of (4.4), (4.7), and bounds (5.2)-(5.4), one can check the validity of (5.1).
Note that the exponential decay of the initial layer functions is used while estimating the
corresponding terms. �
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Homogenization and concentration for a diffusion equationwith large
convection in a bounded domain
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ABSTRACT. We consider the homogenization of a non-stationary convection-diffusion
equation posed in a bounded domain with periodically oscillating coefficients and ho-
mogeneous Dirichlet boundary conditions. Assuming that the convection term is large,
we give the asymptotic profile of the solution and determine its rate of decay. In partic-
ular, it allows us to characterize the “hot spot”, i.e., the precise asymptotic location of
the solution maximum which lies close to the domain boundaryand is also the point of
concentration. Due to the competition between convection and diffusion the position
of the “hot spot” is not always intuitive as exemplified in some numerical tests.

Keywords: Homogenization, convection-diffusion, localization.

1. Introduction

The goal of the paper is to study the homogenization of a convection-diffusion equation
with rapidly periodically oscillating coefficients definedin a bounded domain. Namely,
we consider the following initial boundary problem:

(1.1)





∂tu
ε(t, x) + Aε uε(t, x) = 0, in (0, T )× Ω,

uε(t, x) = 0, on (0, T )× ∂Ω,

uε(0, x) = u0(x), x ∈ Ω,

1



whereΩ ⊂ Rd is a bounded domain with a Lipschitz boundary∂Ω, u0 belongs toL2(Ω)
andAε is an operator defined by

Aεuε = − ∂

∂xi

(
aij

(x
ε

) ∂uε
∂xj

)
+

1

ε
bj

(x
ε

) ∂uε
∂xj

,

where we employ the convention of summation over repeated Latin indices. As usualε,
which denotes the period of the coefficients, is a small positive parameter intended to tend
to zero. Note the large scaling in front of the convective term which corresponds to the
convective and diffusive terms having both the same order ofmagnitude at the small scale
ε (this is a classical assumption in homogenization [5], [12], [13], [21]). We make the
following assumptions on the coefficients of the operatorAε.

(H1) The coefficientsaij(y), bj(y) are measurable bounded functions defined on the
unit cell Y = (0, 1]d, that isaij , bj ∈ L∞(Y ). Moreover,aij(y), bj(y) areY -
periodic.

(H2) Thed × d matrix a(y) is uniformly elliptic, that is there existsΛ > 0 such that,
for all ξ ∈ Rd and for almost ally ∈ Ω,

aij(y)ξiξj ≥ Λ|ξ|2.
For the large convection term we do not suppose that the effective drift (the weighted
average ofb defined below by (2.4)) is zero, nor that the vector fieldb(y) is divergence-
free. Some additional assumptions on the smoothness and compact support of the initial
datau0 will be made in Section 2 after introducing auxiliary spectral cell problems. In
view of (H1) and (H2), for anyε > 0, problem (1.1) has a unique weak solutionuε ∈
L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] (see [6]).

Our main goal is to describe the asymptotic behavior of the solution uε(t, x) of prob-
lem (1.1) asε goes to zero. There are of course many motivations to study such a problem
(one of them being the transport of solutes in porous media [17]). However, if (1.1) is inter-
preted as the heat equation in a fluid domain (the fluid velocity being given byε−1b(x/ε)),
we can paraphrase the famous “hot spot” conjecture of J. Rauch [23], [7], [10], and ask a
simple question in plain words. If the initial temperatureu0 has its maximum inside the
domainΩ, where shall this maximum or “hot spot” go as time evolves ? More precisely,
we want to answer this question asymptotically asε goes to zero. Theorem 2.3 (and the
discussion following it) gives a complete answer to this question. The “hot spot” is a con-
centration pointxc, located asymptotically close to the boundary∂Ω (see Figure 1), which
maximizes the linear functionΘ · x onΩ where the vector parameterΘ is determined as
an optimal parameter in an auxiliary cell problem (see Lemma2.1). SurprisinglyΘ is
not some average of the velocity field but is the result of an intricate interaction between
convection and diffusion in the periodicity cell (even in the case of constant coefficients ;
see the numerical examples of Section 7). Furthermore, Theorem 2.3 gives the asymptotic
profile of the solution, which is localized in the vicinity ofthe “hot spot”xc, in terms
of a homogenized equation with an initial condition that depends on the geometry of the
support of the initial datau0.



Before we explain our results in greater details, we briefly review previous results in
the literature. In the case when the vector-fieldb(y) is solenoidal and has zero mean-
value, problem (1.1) has been studied by the classical homogenization methods (see,
e.g, [8], [25]). In particular, the sequence of solutions is bounded inL∞[0, T ;L2(Ω)] ∩
L2[0, T ;H1(Ω)] and converges, asε → 0, to the solution of an effective or homogenized
problem in which there is no convective term. For general vector-fieldsb(y), and if the do-
mainΩ is the whole spaceRd, the convection might dominate the diffusion and we cannot
expect a usual convergence of the sequence of solutionsuε(t, x) in the fixed spatial refer-
ence frame. Rather, introducing a frame of moving coordinates(t, x − b̄t/ε), where the
constant vector̄b is the so-called effective drift (or effective convection)which is defined
by (2.4) as a weighted average ofb, it is known that the translated sequenceuε(t, x− b̄t/ε)
converges to the solution of an homogenized parabolic equation [5], [13]. Note that the
notion of effective drift was first introduced in [21]. Of course, the convergence in moving
coordinates cannot work in a bounded domain. The purpose of the present work is to study
the asymptotic behavior of (1.1) in the case of a bounded domain Ω.

Bearing these previous results in mind, intuitively, it is clear that in a bounded domain
the initial profile should move rapidly in the direction of the effective drift̄b until it reaches
the boundary, and then dissipate due to the homogeneous Dirichlet boundary condition, as
t grows. Since the convection term is large, the dissipation increases, asε → 0, so that
the solution asymptotically converges to zero at finite time. Indeed, introducing a rescaled
(short) timeτ = ε−1 t, we rewrite problem (1.1) in the form

(1.2)





∂τu
ε − ε div

(
aε∇uε

)
+ bε · ∇uε = 0, in (0, ε−1 T )× Ω,

uε(τ, x) = 0, on (0, ε−1 T )× ∂Ω,

uε(0, x) = u0(x), x ∈ Ω.

Applying the classical two-scale asymptotic expansion method [8], one can show that, for
anyτ ≥ 0 ∫

Ω

|uε(τ, x)− u0(τ, x)|2 dx→ 0, ε→ 0,

where the leading term of the asymptoticsu0 satisfies the following first-order equation

(1.3)





∂τu
0(τ, x) + b̄ · ∇u0(τ, x) = 0, in (0,+∞)× Ω,

u0(τ, x) = 0, on (0,+∞)× ∂Ωb̄,

u0(0, x) = u0(x), x ∈ Ω,

with b̄ being the vector of effective convection defined by (2.4). Here ∂Ωb̄ is the subset
of ∂Ω such that̄b · n < 0 wheren stands for the exterior unit normal on∂Ω. One can
construct higher order terms in the asymptotic expansion for uε. This expansion will
contain a boundary layer corrector in the vicinity of∂Ω \ ∂Ωb̄. A similar problem in a
more general setting has been studied in [9].



The solution of problem (1.3) can be found explicitly,

u0(τ, x) =

{
u0(x− b̄τ), for (τ, x) such thatx, (x− b̄τ) ∈ Ω,

0, otherwise,

which shows thatu0 vanishes after a finite timeτ0 = O(1). In the original coordinates
(t, x) we have

∫

Ω

|uε(t, x)− u0(x− ε−1 b̄ t)|2 dx→ 0, ε → 0.

Thus, fort = O(ε) the initial profile ofuε moves with the velocityε−1 b̄ until it reaches
the boundary ofΩ and then dissipates. Furthermore, any finite number of termsin the
two-scale asymptotic expansion ofuε(τ, x) vanish forτ ≥ τ0 = O(1) and thus fort ≥ t0
with an arbitrary smallt0 > 0. On the other hand, ifu0 is positive, then by the maximum
principle,uε > 0 for all t. Thus, the method of two-scale asymptotic expansion in this
short-time scaling is unable to capture the limit behaviourof uε(t, x) for positive time. The
goal of the present paper is therefore to perform a more delicate analysis and to determine
the rate of vanishing ofuε, asε→ 0.

The homogenization of the spectral problem corresponding to (1.1) in a bounded do-
main for a general velocityb(y) was performed in [11], [12]. Interestingly enough the
effective drift does not play any role in such a case but rather the key parameter is an-
other constant vectorΘ ∈ Rd which is defined as an optimal exponential parameter in a
spectral cell problem (see Lemma 2.1). More precisely, it isproved in [11], [12] that the
first eigenfunction concentrates as a boundary layer on∂Ω in the direction ofΘ. We shall
prove that the same vector parameterΘ is also crucial in the asymptotic analysis of (1.1).

Notice that for large time and after a proper rescaling the solution of (1.1) should
behave like the first eigenfunction of the corresponding elliptic operator, and thus con-
centrates in a small neighbourhood of∂Ω in the direction ofΘ. We prove that this guess
is correct, not only for large time but also for any timet = O(1), namely thatuε(t, x)
concentrates in the neighbourhood of the “hot spot” or concentration pointxc ∈ ∂Ω which
depends onΘ. The value ofΘ can be determined in terms of some optimality property of
the first eigenvalue of an auxiliary periodic spectral problem (see Section 2). It should be
stressed that, in general,Θ does not coincide with̄b. As a consequence, it may happen that
the concentration pointxc does not even belong to the subset of∂Ω consisting of points
which are attained by translation of the initial data support alongb̄. This phenomenon is
illustrated by numerical examples in Section 7.

The paper is organized as follows. In Section 2 we introduce auxiliary spectral prob-
lems in the unit cellY and impose additional conditions on the geometry of the compact
support ofu0. We then state our main result (see Theorem 2.3) and give its geometric
interpretation. In Section 3, in order to simplify the original problem (1.1), we use a fac-
torization principle, as in [24], [18], [26], [11], based on the first eigenfunctions of the



auxiliary spectral problems. As a result, we obtain a reduced problem, where the new con-
vection is divergence-free and has zero mean-value. Studying the asymptotic behaviour of
the Green function of the reduced problem, performed in Section 4, is an important part of
the proof. It is based on the result obtained in [1] for a fundamental solution of a parabolic
operator with lower order terms. Asymptotics ofuε is derived in Section 5. In Section 6
we study the case when the boundary of the support ofu0 has a flat part. To illustrate
the main result of the paper, in Section 7 we present direct computations ofuε using the
software FreeFEM++ [15]. A number of basic facts from the theory of almost periodic
functions is given in Section 8.

2. Auxiliary spectral problems and main result

We define an operatorA and its adjointA∗ by

Au = −div(a∇u) + b · ∇u, A∗v = −div(aT∇v)− div(b v),

whereaT is the transposed matrix ofa. Following [8], for θ ∈ Rd, we introduce two
parameterized families of spectral problems (direct and adjoint) in the periodicity cell
Y = [0, 1)d.

(2.1)

{
e−θ·y Aeθ·y pθ(y) = λ(θ) pθ(y), Y,

y → pθ(y) Y-periodic.

(2.2)

{
eθ·y A∗ e−θ·y p∗θ(y) = λ(θ) p∗θ(y), Y,

y → p∗θ(y) Y-periodic.

The next result, based on the Krein-Rutman theorem, was proved in [11], [12].

LEMMA 2.1. For eachθ ∈ Rd, the first eigenvalueλ1(θ) of problem(2.1) is real,
simple, and the corresponding eigenfunctionspθ and p∗θ can be chosen positive. More-
over,θ → λ1(θ) is twice differentiable, strictly concave and admits a maximum which is
obtained for a uniqueθ = Θ.

The eigenfunctionspθ andp∗θ defined by Lemma 2.1, can be normalized by
∫

Y

|pθ(y)|2dy = 1 and
∫

Y

pθ(y) p
∗
θ(y) dy = 1.

Differentiating equation (2.1) with respect toθi, integrating againstp∗θ and writing down
the compatibility condition for the obtained equation yield

(2.3)
∂λ1
∂θi

=

∫

Y

(
bi pθ p

∗
θ + aij(pθ ∂yjp

∗
θ − p∗θ ∂yjpθ)− 2 θj aij pθ p

∗
θ

)
dy.



Obviously,pθ=0 = 1, and, thus,

(2.4)
∂λ1
∂θi

(θ = 0) =

∫

Y

(
bi p

∗
θ=0 + aij ∂yjp

∗
θ=0

)
dy := b̄i,

which defines the componentsb̄i of the so-called effective drift. In the present paper we
assume that̄b 6= 0 (or, equivalently,Θ 6= 0). The casēb = 0 can be studied by classical
methods (see, for example, [25]). The equivalence of̄b = 0 andΘ = 0 is obvious since
λ1(θ) is strictly concave with a unique maximum.

We need to make some assumptions on the geometry of the support ω (a closed set
as usual) of the initial datau0 with respect to the direction ofΘ. One possible set of
conditions is the following.

(H3) The initial datau0(x) is a continuous function inΩ, has a compact supportω ⋐ Ω
and belongs toC2(ω). Moreover,ω is aC2-class domain.

(H4) The “source” point̄x ∈ ∂ω, at which the minimum inminx∈ω Θ · x is achieved,
is unique (see Figure 1(a)). In other words

Θ · (x− x̄) > 0, x ∈ ω \ {x̄}.
(H5) The pointx̄ is elliptic and∂ω is locally convex at̄x, that is the principal curvatures

at x̄ have the same sign. More precisely, in local coordinates theboundary ofω
in some neighborhoodUδ(x̄) of the pointx̄ can be defined by

zd = (Sz′, z′) + o(|z′|2)
for some positive definite(d − 1) × (d − 1) matrix S. Herez′ = (z1, · · · zd−1)
are the orthonormal coordinates in the tangential hyperplane atx̄, andzd is the
coordinate in the normal direction.

(H6) ∇u0(x̄) ·Θ 6= 0.

REMARK 2.2. In assumption(H3) it is essential that the supportω is a strict subset
of Ω, i.e., does not touch the boundary∂Ω (see Remark 5.5 for further comments on this
issue). However, the continuity assumption on the initial functionu0 is not necessary. It
will be relaxed in Theorem 5.6 whereu0(x) still belongs toC2(ω) but is discontinuous
through∂ω. Of course, assuming continuity or not will change the orderof convergence
and the multiplicative constant in front of the asymptotic solution.

Note that assumption(H4) implies thatΘ 6= 0 is a normal vector to∂ω at x̄.
Eventually, assumption(H6) is required because,u0 being continuous inΩ, we have

u0(x̄) = 0.

To avoid excessive technicalities for the moment, we state our main result in a loose
way (see Theorem 5.1 for a precise statement).

THEOREM 2.3. Suppose conditions(H1)− (H6) are satisfied andΘ 6= 0. If uε is a
solution of problem(1.1), then, for anyt0 > 0 andt ≥ t0

uε(t, x) ≈ ε2 ε
d−1
2 e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ
(x
ε

)
u(t, x), ε → 0,



ω

Ω

Θ
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xc

b

b

(a)

Θ
ω

Ω

b
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b

xc
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FIGURE 1. Definition of the source point̄x and of the concentration pointxc.

where(λ1(Θ), pΘ) is the first eigenpair defined by Lemma 2.1 andu(t, x) solves the ho-
mogenized problem

(2.5)





∂tu = div(aeff ∇u), (t, x) ∈ (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = ∇u0(x̄) ·
Θ

|Θ| δ(x− x̄), x ∈ Ω.

Hereaeff is a positive definite matrix, defined by (4.7),Mε is a constant, defined in Theo-
rem 5.1, depending onpΘ, on the geometry of∂ω at x̄ and on the relative position of̄x in
εY (see Remark 5.2 and Figure 2), andδ(x− x̄) is the Dirac delta-function at the point̄x.

The interpretation of Theorem 2.3 in terms of concentrationor finding the “hot spot”
is the following. Up to a multiplicative constantε2 ε

d−1
2 Mε, the solutionuε is asymptot-

ically equal to the product of two exponential terms, a periodically oscillating function
pΘ
(
x
ε

)
(which is uniformly positive and bounded) and the homogenized functionu(t, x)

(which is independent ofε). The first exponential terme−
λ1(Θ)t

ε2 indicates a fast decay in
time, uniform in space. The second exponential terme

Θ·(x−x̄)
ε is the root of a localization

phenomenon. Indeed, it is maximum at those points on the boundary,xc ∈ ∂Ω, which
have a maximal coordinateΘ · x, independently of the position of̄x (see Figure 1(b)).
These (possibly multiple) pointsxc are the “hot spots”. Everywhere else inΩ the solu-
tion is exponentially smaller, for any positive time. This behaviour can clearly be checked
on the numerical examples of Section 7. It is of course similar to the behavior of the
corresponding first eigenfunction as studied in [12].

The proof of Theorem 2.3 consists of several steps. First, using a factorization princi-
ple (see, for example, [24], [18], [26], [11]) in Section 3 we make a change of unknown



function in such a way that the resulting equation is amenable to homogenization. After
that, the new unknown functionvε(t, x) is represented in terms of the corresponding Green
functionKε(t, x, ξ). Studying the asymptotic behaviour ofKε is performed in Section 4.
Finally, we turn back to the original problem and write down the asymptotics foruε in
Section 5 which finishes the proof of Theorem 2.3.

REMARK 2.4. Theorem 2.3 holds true even if we add a singular zero-order term of
the typeε−2c(x

ε
)uε in the equation (1.1). This zero-order term will be removed by the

factorization principle and the rest of the proof is identical. With some additional work
Theorem 2.3 can be generalized to the case of so-called cooperative systems for which a
maximum principle holds. Such systems of diffusion equations arise in nuclear reactor
physics and their homogenization (for the spectral problem) was studied in [12].

3. Factorization

We represent a solutionuε of the original problem (1.1) in the form

(3.1) uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε pΘ
(x
ε

)
vε(t, x),

whereΘ andpΘ are defined in Lemma 2.1. Notice that the change of unknowns iswell-
defined sincepΘ is positive and continuous. Substituting (3.1) into (1.1),multiplying the
resulting equation byp∗Θ

(
x
ε

)
and using (2.2), one obtains the following problem forvε:

(3.2)





̺Θ
(x
ε

)
∂tv

ε + Aε
Θ v

ε = 0, (t, x) ∈ (0, T )× Ω,

vε(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

vε(0, x) =
u0(x)

pΘ
(
x
ε

) e−
Θ·(x−x̄)

ε , x ∈ Ω,

where̺Θ(y) = pΘ(y) p
∗
Θ(y) and

Aε
Θv = − ∂

∂xi

(
aΘij
(x
ε

) ∂v
∂xj

)
+

1

ε
bΘi
(x
ε

) ∂v
∂xi

,

and the coefficients of the operatorAε
Θ are given by

(3.3)

aΘij(y) = ̺Θ(y) aij(y);

bΘi (y) = ̺Θ(y) bj(y)− 2 ̺Θ(y) aij(y) Θj

+aij(y)
[
pΘ(y) ∂yjp

∗
Θ(y)− p∗Θ(y) ∂yjpΘ(y)

]
.

Obviously, the matrixaΘ is positive definite since bothpΘ andp∗Θ are positive functions.
Moreover, it has been shown in [11] that, for anyθ ∈ Rd, the vector-fieldbθ is divergence-
free and that, forθ = Θ, it has zero mean-value

(3.4)
∫

Y

bΘ(y) dy = 0; div bθ = 0, ∀ θ.



REMARK 3.1. This computation leading to the simple problem (3.2) for vε does not
work if the coefficients are merely locally periodic, namelyof the typea(x, x/ε), b(x, x/ε).
Indeed there would be additional terms in (3.2) due to the partial derivatives with respect
to the slow variablex becauseλ1(Θ) andpΘ would depend onx.

Although problem (3.2) is not self-adjoint, the classical approach of homogenization
(based on energy estimates in Sobolev spaces) would apply, thanks to (3.4), if the initial
condition were not singular (the limit ofe−

Θ·(x−x̄)
ε is 0 or +∞ almost everywhere). This

singular behavior of the initial data (which formally has a limit merely in the sense of
distributions) requires a different methodology for homogenizing (3.2). In order to over-
come this difficulty, we use the representation ofvε in terms of the corresponding Green
function

(3.5) vε(t, x) =

∫

Ω

Kε(t, x, ξ)
u0(ξ)

pΘ
(
ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ,

where, for any givenξ,Kε, as a function of(t, x), solves the problem

(3.6)





̺Θ
(x
ε

)
∂tKε(t, x, ξ) + Aε

ΘKε(t, x, ξ) = 0, (t, x) ∈ (0, T )× Ω,

Kε(t, x, ξ) = 0, (t, x) ∈ (0, T )× ∂Ω,

Kε(0, x, ξ) = δ(x− ξ), x ∈ Ω,

The strategy is now to replace the Green functionKε by an ansatz in (3.5) and to study the
limit, asε → 0, of the resulting singular integral. The next section is devoted to the study
of the asymptotic behavior ofKε.

4. Asymptotics of the Green functionKε

The main goal of this section is to prove the following statement.

LEMMA 4.1. Assume that conditions(H1)− (H2) are satisfied. LetKε be the Green
function of problem(3.2). Then, for anyt0 > 0 and any compact subsetB ⋐ Ω, there
exists a constantC such that, for allt ≥ t0 > 0, ξ ∈ B,∫

Ω

|Kε(t, x, ξ)−K0(t, x, ξ)|2 dx ≤ C ε2,

|Kε(t, x, ξ)−K0(t, x, ξ)| ≤ C εγ, x ∈ Ω,

where the constantC depends ont0, dist(B, ∂Ω),Ω,Λ, d and is independent ofε, γ =
γ(Ω,Λ, d) > 0, andK0 is the Green function of the homogenized problem (2.5), i.e., as a
function of(t, x), it solves

(4.1)





∂tK0(t, x, ξ) = div(aeff∇K0(t, x, ξ)), (t, x) ∈ (0, T )× Ω,

K0(t, x, ξ) = 0, (t, x) ∈ (0, T )× ∂Ω,

K0(0, x, ξ) = δ(x− ξ), x ∈ Ω,



with the constant positive definite matrixaeff defined by (4.7).

PROOF. The main difficulty in studying the asymptotics of the GreenfunctionKε,
defined as a solution of (3.6), is the presence of the delta function in the initial condition.
To overcome this difficulty, we consider the difference

Vε(t, x, ξ) = Φε(t, x, ξ)−Kε(t, x, ξ),

whereΦε is the Green function of the same parabolic equation in the whole space, that is,
for ξ ∈ Rd, Φε, as a function of(t, x), is a solution of the problem

(4.2)





̺Θ
(x
ε

)
∂tΦε(t, x, ξ) + Aε

ΘΦε(t, x, ξ) = 0, (t, x) ∈ (0, T )× R
d,

Φε(0, x, ξ) = δ(x− ξ), x ∈ R
d.

In this way, for allξ ∈ Ω, Vε, as a function of(t, x), solves the problem

(4.3)





̺Θ
(x
ε

)
∂tVε(t, x, ξ) + Aε

Θ Vε(t, x, ξ) = 0, (t, x) ∈ (0, T )× Ω,

Vε(t, x, ξ) = Φε(t, x, ξ), (t, x) ∈ (0, T )× ∂Ω,

Vε(0, x, ξ) = 0, x ∈ Ω.

We emphasize thatVε, in contrast withKε, is Hölder continuous for allt ≥ 0 provided
thatξ /∈ ∂Ω.

Notice that, by a proper rescaling in time and space,Φε can be identified with the
fundamental solution of an operator which is independent ofε. Indeed,

(4.4) Φε(t, x, ξ) = ε−dΦ
( t
ε2
,
x

ε
,
ξ

ε

)
,

whereΦ(τ, y, η) is defined, forη ∈ Rd, as the solution in(τ, y) of

(4.5)

{
̺Θ(y) ∂τΦ(τ, y, η) + AΘΦ(τ, y, η) = 0, τ > 0, y ∈ R

d,

Φ(0, y, η) = δ(y − η), y ∈ R
d.

Here, for brevity, we denote byAΘ the rescaled version ofAε
Θ

AΘΦ(τ, y, η) = −divy(a
Θ(y)∇yΦ(τ, y, η)) + bΘ(y) · ∇yΦ(τ, y, η).

We also introduce the fundamental solutionΦ0(t, x, ξ) for the effective operator

(4.6)

{
∂tΦ0 = divx(a

eff∇xΦ0), (t, x) ∈ (0, T )× R
d,

Φ0(0, x, ξ) = δ(x− ξ), x ∈ R
d.

The homogenized matrixaeff is classically [8], [25] given by

(4.7)

aeff

ij =

∫

Y

(
aΘij(y) + aΘik(y)∂ykNj(y)− bΘi (y)Nj(y)

)
dy

=

∫

Y

(
aΘji(η) + aΘki(η)∂ykN

∗
j (η) + bΘi (η)N

∗
j (η)

)
dη,



where the vector-valued functionsN = (Ni)1≤i≤d andN∗ = (N∗
i )1≤i≤d solve the direct

and adjoint cell problems, respectively,

(4.8)

{
−div(aΘ∇Ni) + bΘ · ∇Ni = ∂yja

Θ
ij(y)− bΘi (y), Y,

y 7→ Ni Y − periodic;

(4.9)

{
−div((aΘ)T∇N∗

i )− bΘ · ∇N∗
i = ∂yja

Θ
ji(y) + bΘi (y), Y,

y 7→ N∗
i Y − periodic.

The matrixaeff is positive definite (see, for example, [8], [20], [25]) and is exactly the
same homogenized matrix as in the homogenization of the spectral problem [11]. Note
thatN andN∗ are Hölder continuous functions (see [16]). The solution of problem (4.6)
can be written explicitly:

Φ0(t, x, ξ) =
1

(4πt)d/2
1

det aeff
exp
{
− (x− ξ)T (aeff)−1(x− ξ)

4t

}
.

The first-order approximation for the Green functionΦ, solution of (4.5), is defined as
follows

(4.10) Φ1(τ, y, η) = Φ0(τ, y, η) +N(y) · ∇xΦ0(τ, y, η) +N∗(η) · ∇ξΦ0(τ, y, η).

By means of Bloch wave analysis it has been shown in [1] that, under assumption (3.4),
there exists a constantC such that, for anyτ ≥ 1 andy, η ∈ Rd,

(4.11)
|Φ(τ, y, η)− Φ0(τ, y, η)| ≤

C

τ (d+1)/2
,

|Φ(τ, y, η)− Φ1(τ, y, η)| ≤
C

τ (d+2)/2
.

Thus, in view of the rescaling (4.4), there exists a constantC > 0, which does not depend
onε, such that, for anyt ≥ ε2, x, ξ ∈ Rd,

(4.12)
|Φε(t, x, ξ)− Φ0(t, x, ξ)| ≤

C ε

t(d+1)/2
;

|Φε(t, x, ξ)− Φε
1(t, x, ξ)| ≤

C ε2

t(d+2)/2
.

HereΦε
1(t, x, ξ) = ε−dΦ1

(
t
ε2
, x
ε
, ξ
ε

)
, namely

(4.13) Φε
1(t, x, ξ) = Φ0(t, x, ξ) + εN

(x
ε

)
· ∇xΦ0(t, x, ξ) + εN∗

(ξ
ε

)
· ∇ξΦ0(t, x, ξ).

Next, we study the asymptotic behavior ofVε, solution of (4.3). The (formal) two-scale
asymptotic expansion method suggests to approximateVε by a first-order ansatz defined
by

(4.14) V ε
1 (t, x, ξ) = V0(t, x, ξ) + εN

(x
ε

)
· ∇xV0(t, x, ξ) + εN∗

(ξ
ε

)
· ∇ξV0(t, x, ξ),



whereN andN∗ are the solutions of cell problems (4.8) and (4.9), respectively, and, for
fixed ξ, V0, as a function of(t, x), is the solution of the effective problem

(4.15)





∂tV0(t, x, ξ) = divx(a
eff∇xV0(t, x, ξ)), (t, x) ∈ (0, T )× Ω,

V0(t, x, ξ) = Φ0(t, x, ξ), (t, x) ∈ (0, T )× ∂Ω,

V0(0, x, ξ) = 0, x ∈ Ω.

Due to the maximum principle and to the explicit formula forΦ0, there exists a constantC,
which depends only onΛ andd, such that, for any compact subsetB ⋐ Ω, ξ ∈ B, (t, x) ∈
[0, T ]× Ω,

(4.16) 0 ≤ V0(t, x, ξ) ≤ max
(t,x)∈[0,T )×∂Ω

Φ0(t, x, ξ) ≤
C

dist(B, ∂Ω)d
.

Moreover, combining (4.16) with the local estimates of the derivatives ofV0 gives

(4.17)
∣∣∣∂kt ∂lxj

∂mξjV0(t, x, ξ)
∣∣∣ ≤ C

dist(B, ∂Ω)d+2k+l+m
, (t, x, ξ) ∈ [0, T ]× Ω×B.

To finish the proof of Lemma 4.1 we need the following intermediate result.

LEMMA 4.2. Let Vε and V0 be solutions of problems(4.3) and (4.15), respectively.
Then, for any compact subsetB ⋐ Ω, there exists a positive constantC, only depending
ondist(B, ∂Ω),Ω, d,Λ, such that, for any(t, ξ) ∈ [0, T ]× B,

∫

Ω

|Vε(t, x, ξ)− V0(t, x, ξ)|2 dx ≤ C ε2.

PROOF. Let V ε
1 be the first-order approximation ofVε defined by (4.14). Evaluating

the remainder after substituting the differenceṼ ε = V ε
1 − Vε into problem (4.3), we get

(4.18)





̺Θ
(x
ε

)
∂tṼ

ε + Aε
ΘṼ

ε = F
(
t, x, ξ;

x

ε
,
ξ

ε

)

+ε f
(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T )× Ω,

Ṽ ε = Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T )× ∂Ω,

Ṽ ε(0, x, ξ) = 0, x ∈ Ω,



with F, f andG defined by

F (t, x, ξ; y, η) = ̺Θ(y) ∂tV0 − divy(a
Θ(y)∇x(N(y)∇xV0(t, x, ξ)))

−divy(a
Θ(y)∇x(N

∗(η)∇ξV0(t, x, ξ)))− divx(a
Θ(y)∇xV0(t, x, ξ))

−divx(a
Θ(y)∇y(N(y)∇xV0(t, x, ξ))) + bΘ(y) · ∇x(N(y)∇xV0(t, x, ξ)))

+bΘ(y) · ∇x(N
∗(η)∇ξV0(t, x, ξ));

f(t, x, ξ; y, η) = N(y) · ∂t∇xV0(t, x, ξ) +N∗(η) · ∂t∇ξV0(t, x, ξ)

−divx(a
Θ(y)∇x(N(y) · ∇xV0(t, x, ξ)))

−divx(a
Θ(y)∇x(N

∗(y) · ∇ξV0(t, x, ξ)));

Gε(t, x, ξ; y, η) = Φ0(t, x, ξ)− Φε(t, x, ξ)

+εN(y) · ∇xV0(t, x, ξ) + εN∗(η) · ∇ξV0(t, x, ξ).

By linearity, we represent̃V ε as a sum̃V ε = Ṽ ε
1 + Ṽ ε

2 , whereṼ ε
1 andṼ ε

2 are solutions of
the follwoing problems

(4.19)





̺Θ
(x
ε

)
∂tṼ

ε
1 + Aε

ΘṼ
ε
1 = F

(
t, x, ξ;

x

ε
,
ξ

ε

)

+ε f
(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T )× Ω,

Ṽ ε
1 = 0, (t, x) ∈ (0, T )× ∂Ω,

Ṽ ε
1 (0, x, ξ) = 0, x ∈ Ω;

(4.20)





̺Θ
(x
ε

)
∂tṼ

ε
2 + Aε

ΘṼ
ε
2 = 0, (t, x) ∈ (0, T )× Ω,

Ṽ ε
2 = Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T )× ∂Ω,

Ṽ ε
2 (0, x, ξ) = 0, x ∈ Ω.

The trick is to estimatẽV ε
1 by standard energy estimates andṼ ε

2 by the maximum principle.
First, we estimatẽV ε

1 . Taking into account (4.17) and the boundedness ofN,N∗, after
integration by parts one has, forξ ∈ B ⋐ Ω,

∣∣∣∣∣∣

∫

Y

F (t, x, ξ; y, η)w(y) dy

∣∣∣∣∣∣
≤ C‖w‖H1

#(Y ), ∀w ∈ H1
#(Y ),

whereH1
#(Y ) stands for the closure ofY -periodic smooth functions with respect to the

H1(Y ) norm. Thus, as a function ofy, F belongs to the dual spaceH−1
# (Y ) uniformly in



(t, x, ξ, η). As is usual in the method of two-scale asymptotic expansion, equating theY -
average ofF to zero yields the homogenized equation (4.15). Therefore,it is no surprise
that, in view of (3.4), (4.15) and the periodicity ofaΘij, N,N

∗, we compute
∫

Y

F (t, x, ξ; y, η) dy = 0.

Thus, for anyt, x, ξ there exists aY -periodic with respect toy vector functionχ =
χ(t, x, ξ; y, η), which belongs toL2

#(Y ;R
d), such that

(4.21)

F (t, x, ξ; y, η) = divyχ(t, x, ξ; y, η)
∫

Y

|χ(t, x, ξ; y, η)|2 dy ≤ C, ξ ∈ B ⋐ Ω.

By rescaling we obtain

(4.22) F (t, x, ξ; y, ξ/ε) = ε divx

(
χ(t, x, ξ; x/ε, η)

)
− ε

(
divxχ

)
(t, x, ξ; x/ε, η).

SincebΘ is divergence-free, the a priori estimates are then obtained in the classical way.
Multiplying the equation in (4.19) bỹV ε

1 , integrating by parts and using (4.21), (4.22)
yield

(4.23)
∫

Ω

|Ṽ ε
1 (t, x, ξ)|2 dx ≤ C ε2, (t, x) ∈ [0, T ]× Ω, ξ ∈ B ⋐ Ω.

Second, we estimatẽV ε
2 , solution of (4.20), by using the maximum principle. Our next

goal is to prove that

(4.24) |Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
| ≤ C ε, (t, x) ∈ [0, T ]× ∂Ω, ξ ∈ B ⋐ Ω.

By (4.12), for anyβ ≤ 2 andt ≥ εβ,

(4.25) |Φε(t, x, ξ)− Φε
1(t, x, ξ)| ≤ C ε2−(d+2)β/2.

In (4.25) we find2 − (d + 2)β/2 ≥ 1 if and only if β ≤ (1 + d/2)−1 which is always
smaller than2. Forx ∈ ∂Ω, ξ ∈ B ⋐ Ω, uniformly with respect tot ≥ 0, we have

|∇xΦ0(t, x, ξ)| ≤
C |x− ξ|
t1+d/2

e−
C0|x−ξ|2

t ≤ C

and a similar bound for∇ξΦ0. Thus, from (4.13) we deduce

(4.26) |Φε
1(t, x, ξ)− Φ0(t, x, ξ)| ≤ C ε, t ≥ 0, x ∈ ∂Ω, ξ ∈ B ⋐ Ω.

Combining (4.25) and (4.26) yields, for any0 < β ≤ (1 + d/2)−1,

(4.27) |Φε(t, x, ξ)− Φ0(t, x, ξ)| ≤ C ε, t ≥ εβ, x ∈ ∂Ω, ξ ∈ B ⋐ Ω.



To estimateΦε − Φ0 for small t ∈ [0, εβ) we make use of the Aronson estimates [6].
Taking into account (3.4) and (4.4), we see thatΦε admits the following bound

0 ≤ Φε(t, x, ξ) = ε−dΦ
( t
ε2
,
x

ε
,
ξ

ε

)
≤ C

td/2
exp
{
− C0|x− ξ|2

t

}

with the constantsC0, C independent ofε. Thus, for sufficiently smallε, we obtain

(4.28)

|Φε(t, x, ξ)− Φ0(t, x, ξ)| ≤ |Φε(t, x, ξ)|+ |Φ0(t, x, ξ)|

≤ C

td/2
exp
{
− C0|x− ξ|2

t

}
≤ C

εdβ/2
exp
{
− C0|x− ξ|2

εβ

}
.

Thus, fort ∈ [0, εβ), x ∈ ∂Ω andξ ∈ B ⋐ Ω, the difference|Φε(t, x, ξ)− Φ0(t, x, ξ)| is
exponentially small ifβ > 0. Combining (4.27) and (4.28) yields

(4.29) |Φε(t, x, ξ)− Φ0(t, x, ξ)| ≤ C ε, (t, x) ∈ [0, T ]× ∂Ω, ξ ∈ B ⋐ Ω,

with the constantC depending ondist(B,Ω),Λ, d. The boundedness ofN,N∗, estimates
(4.17) and (4.29) imply (4.24).

Then, we use the maximum principle in (4.20) to deduce from (4.24) that

(4.30) |Ṽ ε
2 (t, x, ξ)| ≤ C ε, (t, x, ξ) ∈ [0, T )× Ω×B.

In view of (4.23) and (4.30), we conclude
∫

Ω

|Vε(t, x, ξ)− V ε
1 (t, x, ξ)|2 dx ≤ C ε2, t ∈ [0, T ], ξ ∈ B ⋐ Ω.

Recalling the definition ofV ε
1 and using estimate (4.17) complete the proof of Lemma 4.2.

�

Turning back to the proof of Lemma 4.1, the Green functionK0(t, x, ξ), which is
defined as the solution of (4.1), satisfiesK0 = V0 − Φ0. Similarly, by definition,Kε =
Vε − Φε. Taking into account (4.12), Lemma 4.2 implies

∫

Ω

|Kε(t, x, ξ)−K0(t, x, ξ)|2 dx ≤ C ε2, t ≥ t0 > 0, ξ ∈ B ⋐ Ω.

We would like to emphasize that the constantC in the last estimate only depends ont0,
dist(B, ∂Ω), Λ, d,Ω. Due to the Nash-De Giorgi estimates for the parabolic equations
(see, for example, [19]), Kε is Hölder continuous (of courseK0 is), and, thus, one can
deduce a uniform estimate

(4.31) |Kε(t, x, ξ)−K0(t, x, ξ)| ≤ C εγ, t ≥ t0 > 0, x ∈ Ω, ξ ∈ B ⋐ Ω

for someγ > 0 depending onΩ,Λ andd. We emphasize that the constantsC, γ do not
depend onε. Indeed, due to condition (3.4), problem (3.2) can be rewritten in divergence
form, without any convective term and without anyε-factor in front of the coefficients.
The proof of Lemma 4.1 is complete. �



REMARK 4.3. Estimate (4.31) is enough for our purpose, but we emphasize that it can
be improved. Namely, constructing sufficiently many terms in the asymptotic expansion
for Vε, one can show that

|Kε(t, x, ξ)−K0(t, x, ξ)| ≤ C ε, t ≥ t0 > 0, x ∈ Ω, ξ ∈ B ⋐ Ω.

5. Asymptotics ofuε or vε

The goal of this section is to prove our main result Theorem 2.3 and actually to give
a more precise statement of it in Theorem 5.1. By the factorization principle (3.1) it
is equivalent to find a precise asymptotic expansion ofvε. Recall thatvε, as a solution
of (3.2), can be represented in terms of the corresponding Green functionKε by using
formula (3.5). Bearing in mind Lemma 4.1, we rearrange (3.5)as follows

(5.1) vε(t, x) = Iε1 + Iε2

with

Iε1 =

∫

Ω

K0(t, x, ξ)
u0(ξ)

pΘ
(
ξ
ε

) e−Θ·(ξ−x̄)
ε dξ,

Iε2 =

∫

Ω

(
Kε(t, x, ξ)−K0(t, x, ξ)

) u0(ξ)
pΘ
(
ξ
ε

) e−Θ·(ξ−x̄)
ε dξ.

Of course, because of (4.31), the second integral in (5.1) isgoing to be, at least,εγ times
smaller that the first one. Recall that, by assumption(H3),u0 has a compact supportω ⋐ Ω
so we are able to use the previous estimates of Lemma 4.1. Let us compute approximately
the first integralIε1 . SinceΘ · (x − x̄) > 0 for x ∈ ω \ {x̄}, it is clear that the main
contribution is given by integrating over a neighborhood ofthe pointx̄. We consider the
case of general position, when condition(H5) is fulfilled, that is, in local coordinates in a
neighborhoodUδ(x̄) of the pointx̄, ∂ω can be defined by

zd = (Sz′, z′) + o(|z′|2)

for some positive definite(d− 1)× (d− 1) matrixS. Here(z1, · · · , zd) is an orthonormal
basis such that the coordinatesz′ = (z1, · · · , zd−1) are tangential to∂ω and the axiszd
is the interior normal at̄x. Note that, by assumption(H4), Θ is directed alongzd. The
neighborhood of̄x is defined by

Uδ(x̄) = {z ∈ ω : |z′| ≤ δ, 0 ≤ zd ≤ δ2‖S‖},

where‖S‖ = max|x′|=1 |Sx′|. Choosingδ = ε1/4 guaranties that the integral over the
complement toUδ(x̄) is negligible. Indeed,

∣∣∣
∫

ω\Uδ(x̄)

K0(t, x, ξ)
u0(ξ)

pΘ
(
ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ
∣∣∣ = O(e

− 1√
ε ).



Let us now compute the integral overUδ(x̄), δ = ε1/4. ExpandingK0 andu0 (which is
of classC2 in ω) into Taylor series about̄x and taking into account assumption(H6), for
t ≥ t0 > 0, we obtain

Iε1 = K0(t, x, x̄)
∂u0
∂Θ

(x̄)

∫

Uδ(x̄)

Θ

|Θ| · (ξ − x̄)
(
pΘ
(ξ
ε

))−1
e−

Θ·(ξ−x̄)
ε dξ +O(ε3 ε

d−1
2 )

= K0(t, x, x̄)
∂u0
∂Θ

(x̄)

∫

Uδ(0)

Θ

|Θ| · ξ
(
pΘ
(ξ
ε
+
x̄

ε

))−1
e−

Θ·ξ
ε dξ +O(ε3 ε

d−1
2 ).

where∂u0/∂Θ := ∇u0 · Θ/|Θ| is the directional derivative ofu0 alongΘ (the tangential
derivative ofu0 vanishes at̄x becauseu0 is continuous and equal to 0 outsideω). Note
that we have anticipated the precise order of the remainder term which will be clear once
we compute the leading integral. Let us introduce the rotation matrixR which defines
the local coordinate system(z1, z2, · · · , zd) = (z′, zd) previously defined. By definition it
satisfiesξ = R

−1 z andΘ · ξ = |Θ| zd. Applying this change of variables we get

(5.2) pΘ
(ξ
ε
+
{ x̄
ε

})
= pΘ

(
R

−1
(z
ε
+R

{ x̄
ε

}))
≡ PΘ

(z
ε
+ z̄ε

)
,

where{x̄/ε} is the fractional part of̄x/ε andz̄ε = R {x̄/ε}. In the case whenΘ1,Θ2, · · · ,Θd

are rationally dependent in pairs,PΘ remains periodic with another period. OtherwisePΘ

is merely almost periodic. It happens, for example, when allΘk, k = 1, ..., d are rationally
independent in pairs.

We turn to the computation of the integral overUδ(0). By the above change of variables
we get

(5.3)

Iε1 = K0(t, x, x̄)
∂u0
∂Θ

(x̄)

×
∫

|z′|≤δ

dz′
δ2‖S‖∫

(Sz′,z′)

zd P
−1
Θ

(z
ε
+ z̄ε

)
e−

|Θ|zd
ε dzd + o(ε2 ε

d−1
2 ).

To blow-up the integral in (5.3) we make a (parabolic) rescaling of the space variables

ζ ′ =
z′√
ε
, ζd =

zd
ε
,

and recalling thatδ = ε1/4, we arrive at the following integral

Iε1 = ε2 ε
(d−1)

2 K0(t, x, x̄)
∂u0
∂Θ

(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd P
−1
Θ

( ζ ′√
ε
+ (z̄ε)′, ζd + z̄εd

)
e−|Θ|ζd dζd + o(ε2 ε

d−1
2 ),



where the reaminder term takes into account the fact that thedomain of integration is now
infinite. Changing the order of integration we have

Iε1 = ε2 ε
(d−1)

2 K0(t, x, x̄)
∂u0
∂Θ

(x̄)

×
+∞∫

0

ζd e
−|Θ|ζd dζd

∫

(Sζ′,ζ′)≤ζd

P−1
Θ

( ζ ′√
ε
+ (z̄ε)′, ζd + z̄εd

)
dζ ′ + o(ε2 ε

d−1
2 ).

The functionP−1
Θ

(
η′, τd

)
is uniformly continuous; moreover, it is almost periodic with

respect to the first variable. Thus, for any bounded Borel setB ⊂ Rd−1, the following
limit exists

(5.4) M{P−1
Θ

(
·, τd
)
} = lim

t→∞

1

|tB|

∫

tB

P−1
Θ

(
η′ + τ ′, τd

)
dη′.

We emphasize that the convergence is uniform with respect toτ ′ andτd, and the limit does
not depend onτ ′. Therefore, by Lemma 8.2, asε → 0, we eventually deduce

(5.5)

Iε1 = ε2 ε
d−1
2 K0(t, x, x̄)

∂u0
∂Θ

(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e
−|Θ|ζd M{P−1

Θ

(
·, ζd + z̄εd

)
} dζd + o(ε2 ε

d−1
2 ),

where the remainder term is asymptotically smaller than theleading order term (uniformly
in t ≥ 0, x ∈ Ω) but we cannot say how much since there is no precise speed of conver-
gence for averages of almost periodic functions in Lemma 8.2.

The case of the second integralIε2 is then very similar. Taking into account the posi-
tiveness ofpΘ, and Lemma 4.1, fort ≥ t0 > 0, we obtain

|Iε2 | ≤ C εγ
∫

ω

|u0(x)| e−
Θ·(ξ−x̄)

ε dξ,



whereC does not depend onε. The same computation as above (but without the necessity
of considering almost periodic functions) yields

|Iε2 | ≤ C εγ
∣∣∣∣
∂u0
∂Θ

(x̄)

∣∣∣∣
∫

ω

∣∣∣∣
Θ

|Θ| · (ξ − x̄)

∣∣∣∣ e
−

Θ·(ξ−x̄)
ε dξ

≤ C εγ
∣∣∣∣
∂u0
∂Θ

(x̄)

∣∣∣∣
∫

Rd−1

dz′
+∞∫

S0|z′|2

zd e
−

|Θ|zd
ε dzd

≤ C ε2+γ

∣∣∣∣
∂u0
∂Θ

(x̄)

∣∣∣∣
∫

Rd−1

(1 + S0 |z′|2 ε−1) e−
|Θ|S0|z′|2

ε dz′

≤ C ε2+γ ε
d−1
2 ,

for some constantS0 > 0 andC = C(S0,Θ). Finally, we have derived the following
asymptotics ofvε, asε→ 0,

vε(t, x) = ε2 ε
d−1
2

(
1 + rε(t, x)

)
K0(t, x, x̄)

∂u0
∂Θ

(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e
−|Θ|ζd M{P−1

Θ

(
·, ζd + z̄εd

)
} dζd,

whererε(t, x) converges to zero uniformly with respect to(t, x) ∈ [t0, T ] × Ω with any
t0 > 0.

We summarize the result, just obtained, by formulating a more precise version of The-
orem 2.3, describing the asymptotics ofuε(t, x).

THEOREM 5.1. Suppose conditions(H1)− (H6) are satisfied andΘ 6= 0. Letuε be
the solution of problem(1.1). Then, fort ≥ t0 > 0,

uε(t, x) = ε2 ε
d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ
(x
ε

)
u(t, x),

where(λ1(Θ), pΘ) is the first eigenpair defined by Lemma 2.1 andrε(t, x) → 0, asε→ 0,
uniformly with respect to(t, x) ∈ [t0, T ]×Ω. The functionu(t, x) solves the homogenized
problem

(5.6)





∂tu = div(aeff ∇u), (t, x) ∈ (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = ∇u0(x̄) ·
Θ

|Θ| δ(x− x̄), x ∈ Ω,



with aeff being a positive definite matrix given by(4.7), δ(x− x̄) is the Dirac delta-function
at the pointx̄. The constantMε is defined by

(5.7) Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e
−|Θ|ζd M{P−1

Θ

(
·, ζd + z̄εd

)
} dζd,

whereM{P−1
Θ

(
·, τd
)
} is the mean-value of the almost periodic functionη′ → P−1

Θ (η′, τd)

(see(5.4)), PΘ is given by(5.2)and z̄εd = R{x̄/ε} · Θ
|Θ|

.

ω

Ω

x̄
b

b b

b

b
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FIGURE 2. Position of̄x in εY for different values ofε

REMARK 5.2. The constantMε defined by (5.7) depends on̄zεd = R{x̄/ε} · Θ
|Θ|

, that
is on the component, parallel toΘ, of the fractional part of̄x/ε, or, in other words, on the
relative position of̄x inside the cellεY (see Figure 2). Notice thatMε is bounded, thus,
up to a subsequence, it converges to someM∗, asε → 0. The choice of the converging
subsequence is only a matter of the geometric definition of the periodic medium. For
example, ifx̄ is known, we may decide to make it the origin and to define the periodic
microstructure relative to this origin. Then̄x = 0, z̄ε = 0 is fixed in the periodicity cell,
andMε =M is independent ofε.

It might happen that the vectorΘ is such that its componentsΘd andΘk are rationally
independent for allk 6= d. In such a case, it turns out that the constantMε does not depend
onε and, moreover, can be explicitly computed. This is the topicof the following result.

COROLLARY 5.3. Let conditions of Theorem 5.1 be satisfied. And assume that the
vectorΘ is such thatΘd andΘk, for anyk = 1, · · · , (d− 1), are rationally independent.



ThenMε is independent ofε and is given by

Mε =
(d− 1)

|Θ|2
( π

|Θ|
)d−1

2
(detS)1/2

∫

Y

p−1
Θ (y) dy.

In other words, fort ≥ t0 > 0,

uε(t, x) =
( ε

|Θ|
)2+ d−1

2
K e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε pΘ
(x
ε

)
u(t, x)

(
1 + rε(t, x)

)
,

whererε(t, x) → 0, asε → 0, uniformly with respect to(t, x) ∈ [t0, T ]×Ω; u(t, x) solves
the homogenized problem(5.6). The constantK is given by

K = (d− 1) π
d−1
2 (detS)1/2

∫

Y

p−1
Θ (y) dy.

PROOF. It is sufficient to notice that in the case whenΘd andΘk, k = 1, 2, · · · (d−1),
are rationally independent, the mean value of the almost periodic functionP−1

Θ (ζ ′, τd) with
respect to the first variableζ ′, for anyτd, coincides with its volume average

M{P−1
Θ (·, τd)} =

∫

Y

p−1
Θ (y) dy.

Thus, the constantMε given by (5.7) does not depend onε and has the following form

Mε =
(∫

Y

p−1
Θ (y) dy

) ∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e
−|Θ|ζd dζd.

Evaluating the last integral we obtain

Mε =
(d− 1)

|Θ|2
( π

|Θ|
) d−1

2

(detS)1/2
∫

Y

p−1
Θ (y) dy

that implies the desired result. �

REMARK 5.4. Theorem 5.1 does not provide any rate of convergence dueto several
reasons. First of all, without specifying the remainder in hypothesis(H5), one cannot
expect any estimate in (5.3). One possible option would be toassume that in local coordi-
nates, in the neighbourhood of the pointx̄, ∂ω is defined by

zd = (Sz′, z′) +O(|z|3).
Then in (5.3) one would obtain the errorO(ε3 ε(d−1)/2).

The second reason for the lack of estimates is concealed in Lemma 8.2. In contrast
with the classical mean value theorem for periodic functions, Lemma 8.2 does not provide
any rate of convergence. However, if all the components of the vectorΘ are rationally
dependent, thenPΘ remains periodic (maybe with another period), and one can apply the



mean value theorem for smooth periodic functions that givesan errorO(ε), and, conse-
quently,O(ε3 ε(d−1)/2) in (5.5).

Finally, estimate (4.31) guaranties that the second integral in (5.1) isεγ smaller than
the first one, where0 < γ ≤ 1 depends onΛ,Ω, d.

REMARK 5.5. We stress that if condition(H3) is violated and the support ofu0 touches
the boundary ofΩ, then the two integrals in (5.1) are of the same order, and we cannot
neglect the second integral any more. In this case it is necessary to construct not only the
leading term of the asymptotics forKε, but also a corrector term together with a boundary
layer corrector. It is possible in some particular cases, for example, when̄x belongs to a
flat part of the boundary ofΩ, or when the coefficients of the equation are constant. But
it is well known that boundary layers in homogenization are very difficult to build in the
case of a non flat boundary. Simple cases (flat boundaries, cylindrical domains) will be
considered in our forthcoming paper [3].

Another typical situation arises when we do not assume anymore that the initial datau0
is continuous onΩ but merely that it has compact support and isC2 inside its support. In
particular, in this new situation we may haveu0(x̄) 6= 0. The next theorem, characterizing
the asymptotic behaviour ofuε in this case, can be proved in exactly the same way as
Theorem 5.1.

THEOREM 5.6. Suppose conditions(H1), (H2), (H4), (H5) are satisfied andΘ 6= 0.
Assume thatu0 has compact supportω ⋐ Ω, u0 ∈ C2(ω) andu0(x̄) 6= 0. If uε is a solution
of problem(1.1), then, fort ≥ t0 > 0

uε(t, x) = ε ε
d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ
(x
ε

)
u(t, x),

whererε(t, x) → 0, asε → 0, uniformly with respect to(t, x) ∈ [t0, T ]×Ω. Here,u(t, x)
solves the effective problem





∂tu = div(aeff ∇u), (t, x) ∈ (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x̄) δ(x− x̄), x ∈ Ω.

The constantMε is now given by

Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄εd

)
} dζd,

with the same definitions of the mean-valueM, of the almost periodic functionPΘ and of
z̄εd as in Theorem 5.1.

REMARK 5.7. Yet another possible situation is thatu0 = ∂u0/∂Θ = 0 in the neigh-
borhood ofx̄. If we assume thatu0 ∈ C3(ω) and replace condition(H6) by

∂2u0
∂Θ2

(x̄) =
∂

∂Θ

(∂u0
∂Θ

)
(x̄) 6= 0,



where∂u0/∂Θ is the directional derivative ofu0 in the direction ofΘ, then we can prove
in this case that, fort ≥ t0 > 0,

uε(t, x) = ε3 ε
d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e−
Θ·(x−x̄)

ε Mε pΘ
(x
ε

)
u(t, x),

whererε(t, x) → 0, asε→ 0, uniformly with respect to(t, x) ∈ [t0, T ]×Ω andu(t, x) is
a solution of 




∂tu = div(aeff ∇u), (t, x) ∈ (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

u(0, x) =
1

2

∂2u0
∂Θ2

(x̄) δ(x− x̄), x ∈ Ω.

The constantMε is now given by

Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζ2d e
−|Θ|ζd M{P−1

Θ

(
·, ζd + z̄εd

)
} dζd.

The case whenu0 vanishes on the boundary ofω together with its derivatives up to order
k, can be treated similarly.

It should be noticed that a statement similar to that of Corollary 5.3 remains valid for
Theorem 5.6 and Remark 5.7.

6. The case of a flat boundary ofω

In the previous sections we analyzed the case when the quadratic form of the surface
∂ω is non-degenerate at the pointx̄. The asymptotics of the solution of problem (1.1) can
also be constructed when̄x belongs to a flat partΣ of ∂ω and the vectorΘ is orthogonal
toΣ.

More precisely, we replace the previous assumptions(H4), (H5), (H6) with the fol-
lowing ones.

(H4’) The set of points̄x which provide the minimum inminx∈ω Θ · x is a subsetΣ of
∂ω which is included in an hyperplane ofRd andΣ has a positive(d−1)-measure.

(H5’) u0(y) = 0 for all y ∈ Σ. There exists̄x ∈ Σ such that
∂u0
∂Θ

(x̄) 6= 0.

REMARK 6.1. Assumption(H4’) implies that

Θ · (x− x̄) > 0 for all x ∈ ω \ Σ, x̄ ∈ Σ,

andΘ is orthogonal toΣ and directed insideω (see Figure 3). Furthermore,x̄Θ = x̄ · Θ
|Θ|

is the same for all̄x ∈ Σ.

In this case we prove the following result.
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FIGURE 3. The case of a flat part of the boundary∂ω

THEOREM 6.2. Assume that conditions(H1)-(H3) and (H4’)-(H5’) are fulfilled, and
Θ 6= 0. Then, fort ≥ t0 > 0, the asymptotic behaviour of the solutionuε of problem(1.1)
is described by

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε (1 + rε(t, x))Mε pΘ
(x
ε

)
u(t, x),

whererε(t, x) → 0, asε → 0, uniformly with respect to(t, x) ∈ [t0, T ]× Ω, (λ1(Θ), pΘ)
is the first eigenpair defined by Lemma 2.1,x̄ is an arbitrary point onΣ andu(t, x) solves
the homogenized problem

(6.1)





∂tu = div(aeff ∇u), (t, x) ∈ (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

u(0, x) =
∂u0
∂Θ

(x) δΣ, x ∈ Ω.

Hereaeff is still defined by(4.7), δΣ is the Dirac delta-function onΣ and the constantMε

is given by

Mε =

+∞∫

0

ζd e
−|Θ| ζd M{P−1

Θ

(
·, ζd +

x̄Θ
ε

)
}dζd

with M{P−1
Θ (·, τd)} being the mean value of the almost periodic functionP−1

Θ (·, τd) (see
(5.4)), PΘ(z) being the rotation ofpΘ in the local coordinates ofΣ: PΘ(ζ) = pΘ(R−1ζ),
whereR is the rotation matrix.

PROOF. The proof starts, like that of Theorem 5.1, by using the representation formula
(3.5) for the solutionvε of (3.2) in terms of the Green functionKε. Writing Kε = K0 +
(Kε −K0) we arrive at (5.1), namely

vε(t, x) = Iε1 + Iε2 .



By Lemma 4.1, we can estimateIε2 , passing to local coordinates, as in the proof of Theo-
rem 5.1,

|Iε2 | ≤ C εγ
∫

ω

|u0(ξ)| e−
Θ·(ξ−x̄)

ε dξ

≤ C εγ
∫

Σ

∣∣∂u0
∂Θ

(z′, x̄Θ)
∣∣dz′

+∞∫

0

zd e
−

|Θ|zd
ε dzd

for someγ = γ(Λ,Ω, d) > 0 defined in (4.31). Making the change of variablesζd = zd/ε,
we see that

|Iε2 | ≤ C ε2+γ

∫

Σ

∣∣∂u0
∂Θ

(z′, x̄Θ)
∣∣dz′

+∞∫

0

ζd e
−|Θ|ζd dζd ≤ C ε2+γ.

In order to compute approximatelyIε1 , we again pass to the local coordinates. Namely, we
rotate coordinatesz = R ξ in such a way thatΘ is directed alongzd. It is obvious that
only the neighborhood ofΣ contributes inIε1 . ExpandingK0 andu0 into a Taylor series
with respect tozd and making the change of variablesζd = zd/ε leads to

Iε1 = ε2
+∞∫

0

ζd e
−|Θ| ζd dζd

∫

Σ

K0(t, x, z
′, x̄Θ)

∂u0
∂Θ

(z′, x̄Θ)P
−1
Θ

(z′
ε
, ζd +

x̄Θ
ε

)
dz′ + o(ε2).

wherePΘ(ζ) ≡ pΘ(R−1ζ) with R being the rotation matrix.
SinceP−1

Θ (ζ ′, τd) is uniformly continuous, and, moreover, almost periodic with respect
to ζ ′, by Lemma 8.1, we have

Iε1 = ε2Mε

∫

Σ

K0(t, x, z
′, x̄Θ)

∂u0
∂Θ

(z′, x̄Θ) dz
′ + o(ε2),

where

Mε =

+∞∫

0

ζd e
−|Θ| ζd M{P−1

Θ

(
·, ζd +

x̄Θ
ε

)
}dζd.

HereM{P−1
Θ (·, τd)} is the mean value of the almost periodic functionP−1

Θ (·, τd) (see
(5.4)).

Consequently, asε → 0,

vε(t, x) = ε2Mε

∫

Σ

K0(t, x, z
′, x̄Θ)

∂u0
∂Θ

(z′, x̄Θ) dz
′ + o(ε2).

Recalling thatK0 is the Green function of the effective problem (4.1) completes the proof.
�



COROLLARY 6.3. Let conditions of Theorem 6.2 be fulfilled. Assume that the vector
Θ is such thatΘd andΘk, for anyk = 1, · · · , (d − 1), are rationally independent. Then,
for t ≥ t0 > 0,

uε(t, x) =
( ε

|Θ|
)2
e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε (1 + rε(t, x)) pΘ
(x
ε

) ( ∫

Y

p−1
Θ dy

)
u(t, x),

whererε(t, x) → 0, asε → 0, uniformly with respect to(t, x) ∈ [t0, T ] × Ω andu(t, x)
solves the homogenized problem(6.1).

Corollary 6.3 is proved in the same way as Corollary 5.3.

7. Numerical examples

In this section we illustrate the results obtained in the previous sections by direct com-
putations performed with the free software FreeFEM++ ([15]).

When studying convection-diffusion equation, the so-called effective convection (ef-
fective drift) defined by (2.4) plays an important role. As was already noticed, condition
b̄i 6= 0 yieldsΘi 6= 0. The question arises, if̄b coincide withΘ or not. The answer is
negative, and the corresponding example is given below.

Example 1. Let Ω ⊂ R2 be a bounded domain. Consider the following boundary
value problem with constant coefficients:

(7.1)





∂tu
ε − ∂2uε

∂x21
− 2

∂2uε

∂x1 ∂x2
− 2

∂2uε

∂x22
+

1

ε
b
∂uε

∂x2
= 0, in (0, T )× Ω,

uε(t, x) = 0, on (0, T )× ∂Ω,

uε(0, x) = u0(x), x ∈ Ω.

Hereb > 0 is a real parameter and it is obvious that the effective driftis b̄ = {0, b}. To
find Θ, one should consider the spectral problem (2.1) on the periodicity cell. Since the
coefficients of the equation are constant,λ1(θ) can be found easily:

λ1(θ) = −θ21 − 2 θ1 θ2 − 2 θ22 + b θ2.

The maximum ofλ1 is attained atΘ = {−b/2, b/2} 6= b̄.
For the numerical computations, we chooseΩ to be the unit circleΩ = {x : |x1−1|2+

|x2−1|2 ≤ 1},u0 being the characteristic function of the smaller circle{x : |x1−1|2+|x2−
1|2 ≤ 0.5} (see Figure 4(a)),b = 1 andε = 0.03. Theorem 2.3 predicts that the “hot spot”
or concentration point of the solutionuε will be at the pointxc = (1 −

√
2/2, 1 +

√
2/2)

whereΘ is orthogonal to∂Ω.
The presence of the large parameter in front of the convection in (1.1) suggests to use

Characteristics-Galerkin Method (see [14], [22]). As a finite element space, a space of
piecewise linear continuous functions has been chosen. Thenumber of triangles is21192.
The result of the direct computations at different times arepresented on Figure 4.

Splitting each triangle of the mesh in9, we have compared two solutions,u1 defined
on the original mesh andu2 on the refined one, and computed the relativeL2-error for



(a) t=0 (b) t=0.01 (c) t=0.02

(d) t=0.03 (e) t=0.04 (f) t=0.05

FIGURE 4. Isolines ofuε for small values oft

smallt

sup
t

‖u1 − u2‖L2(Ω)

‖u1‖L2(Ω)

≈ 0.002.

It is small enough so we can conclude that convergence under mesh refinement is attained.
It can be seen from Figure 4 that the solution profile, vanishing with time, moves first in
the vertical direction (along the effective drift) and thento the left. Because of the very
fast decay, it is not possible to plot the solution itself at large time. Thus, instead ofuε we
consider̃uε = uε/maxΩ u

ε. On Figure 5 the isolines of̃uε are presented. One can see that
indeed the concentration occurs at the point(1 −

√
2/2, 1 +

√
2/2), not the point(1, 2)

whereb̄ is normal to∂Ω.
We perform another numerical test in a nonconvex domain for the same values of the

parameters in (7.1). The isolines of the rescaled solutionũε are ploted on Figure 6. It is
interesting to see how the initial profile first moves in the direction of the effective drift,
then vanishes and reappear afterwards to concentrate at the“hot spot” whereΘ · x attains
its maximum, as predicted by Theorem 2.3. Such an example is clearly non-intuitive (at
least to the authors).

8. Some results from the theory of almost periodic functions.

Denote byTrig(Rd) the set of all trigonometric polynomials

Trig(Rd) =
{
P(x)

∣∣ P(x) =
∑

ξ∈Rd

cξ e
ix·ξ
}
,



(a) t=0 (b) t=0.1 (c) t=0.2

(d) t=0.3 (e) t=0.4 (f) t=0.5

FIGURE 5. Isolines of rescaleduε for different values oft

where in the sum only finite number ofcξ 6= 0. We designate byCAP(Rd) (set of almost
periodic functions) a closure ofTrig(Rd) with respect to the normsup

Rd

|P(x)|. For any

almost periodic functiong ∈ CAP(Rd), there exists a mean value

(8.1) M{g} = lim
t→∞

1

|tB|

∫

tB

g(x) dx,

whereB ⊂ Rd is a Borel set,|B| - its volume. The mean-value theorem takes place for
almost periodic functions ([18]).

LEMMA 8.1. Giveng ∈ CAP(Rd) andv ∈ L2(Q), Q ⊂ Rd, the following equality
holds true:

lim
ε→0

∫

Q

g
(x
ε

)
v(x) dx = M{g}

∫

Q

v(x) dx,

whereM{g} is given by formula(8.1).

Lemma 8.1 can be formulated also in more general form.

LEMMA 8.2. Given a functiong(x, y) ∈ C[Q; CAP(Rd)], Q ⊂ Rd, the following
equality holds:

lim
ε→0

∫

Q

g
(
x,
x

ε

)
dx =

∫

Q

M{g(x, ·)} dx,



(a) t=0 (b) t=0.1 (c) t=0.2

(d) t=0.3 (e) t=0.4 (f) t=0.44

(g) t=0.46 (h) t=0.5 (i) t=0.6

(j) t=0.7 (k) t=0.8 (l) t=0.9

(m) t=1.0 (n) t=1.2 (o) t=1.3

FIGURE 6. Isolines of rescaleduε for different values oft in a non-convex domain



where

M{g(x, ·)} = lim
t→∞

1

|tB|

∫

tB

g(x, y) dy.

The last statement can be proved combining the approximation of g(x, y) by finite
sums of the type

∑
f1(x) f2(y) and the result of Lemma 8.1.
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thin rod and in a layer
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ABSTRACT. The paper deals with a homogenization problem for a non-stationary
convection-diffusion equation defined in a thin rod or in a layer. Under the assumption
that the convection term is large, we describe the evolutionof the solution’s profile
and determine the rate of its decay. Due to the specific geometry of the domains under
consideration, it is possible to construct the boundary layer correctors.

Keywords: Homogenization, convection-diffusion, localization.

1. Introduction

The paper deals with the homogenization of a nonstationary convection-diffusion equa-
tion with large convection stated either in a thin rod or in a layer. In the previous work
[4] the authors addressed a similar homogenization problem for an equation defined in a
general bounded domainΩ. Namely, the following initial-boundary value problem has
been considered:

(1.1)





∂tu
ε − div

(
a
(x
ε

)
∇uε

)
+

1

ε
b
(x
ε

)
· ∇uε = 0, in (0, T )× Ω,

uε(t, x) = 0, on (0, T )× ∂Ω,

uε(0, x) = u0(x), x ∈ Ω,

with periodic coefficientsaij , bj and a small parameterε. Notice that in the case of
solenoidal vector-fieldb(y) with zero mean-value the problem can be studied by the clas-
sical homogenization methods (see, for example, [5], [15]). In particular, the sequence of
solutions is bounded inL∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] and converges, asε → 0, to

1



a solution of an effective or homogenized problem in which there is no convective term.
A similar behaviour ofuε is observed if the so-called effective drift is equal to zero. The
behaviour of the solution changes essentially if the effective drift is nontrivial. Problem
(1.1) with nonzero effective drift has been considered in [4] under the crucial assumption
that the initial functionu0 has a compact support inΩ. In this case the initial profile moves
towards the boundary during the time of orderε, and then, upon reaching the boundary,
starts dissipating. As a result, the solution is asymptotically small for timet ≫ ε. Paper
[4] focuses on the asymptotics ofuε for such times.

Without the assumption thatu0 has a compact support inΩ, one faces the necessity to
construct boundary layer correctors in the neighbourhood of ∂Ω. It is well known that this
problem cannot be solved in the case of general bounded domain. However, it is getting
feasible if the periodic structure agrees with the geometryof the boundary ofΩ. In the
present paper we consider two types of domains which possessthis property. Namely, we
study a convection-diffusion models in a thin rod and in a layer inRd.

In the case of a thin rod (Section 2) we impose homogeneous Neumann boundary
conditions on the lateral boundary of the rod and homogeneous Dirichlet boundary con-
ditions on its bases. As was noticed above, the solution vanishes for timet ≫ ε. We
determine the rate of vanishing of the solution and describethe evolution of its profile
(see Theorem 2.2). If the effective axial drift is not zero (we study only this case), the
rescaled solution concentrates in the vicinity of one of therod ends, and the choice of the
end depends on the sign of the effective convection. In orderto characterize the rate of
decay we introduce a 1-parameter family of auxiliary cell spectral problems (see [5], [6]).
The asymptotic behaviour of the solution is then governed bythe first eigenpair of the said
family of spectral problems.

Among the technical tools used in the paper, are factorization principle (see [10], [14],
[15], [6]), dimension reduction arguments and qualitative resultsrequired for constructing
boundary layer correctors.

In the case of a layer addressed in Section 3, in addition to the factorization principle,
we also have to introduce moving coordinates. More precisely, we use a parameterized
cell spectral problem and factorization principle to suppress the component of the effec-
tive drift which is perpendicular to the layer boundary. While, due to the presence of
the longitudinal components of the effective convection wehave to introduce the moving
coordinates (see [8], [3]). The main result in this case is given by Theorem 3.5.

2. Convection-diffusion equation in a thin rod

The section concerns the homogenization of a nonstationaryconvection-diffusion equa-
tion stated in a thin rodGε = (−1, 1)×εQ. HereQ ⊂ Rd−1 is a bounded domain with the
Lipschitz boundary∂Q, ε > 0 is a small parameter. Throughout the paper the points inRd

are denotedx = (x1, x
′). The lateral boundary of the rodGε is denotedΣε = (−1, 1)×∂Q.



x1

Gε

x2

x3

−1 1

Σε
εQ

FIGURE 1. The rodGε

ForT > 0, we consider the following model:

(2.1)





∂tu
ε(t, x) + Aε u

ε(t, x) = 0, in (0, T )×Gε,

Bεu
ε(t, x) = 0, on (0, T )× Σε,

uε(t,±1, x′) = 0, on (0, T )×Q,

uε(0, x) = u0(x1), x ∈ Gε

with

Aεu
ε = −div

(
aε∇uε

)
+

1

ε
bε · ∇uε; Bεu

ε = aε∇uε · n.

The coefficients of the equation are given by

aεij = aij
(x
ε

)
, bεj = bj

(x
ε

)
.

We assume that:

(H1) The coefficients ofAε are measurable bounded functions, that isaij , bj ∈ L∞(R×
Q). Moreover,aij(y1, y′), bj(y1, y′) are periodic with respect toy1.

(H2) Thed×dmatrixa(y) is symmetric and satisfies the uniform ellipticity condition,
that is there existsΛ > 0 such that

aij(y)ξiξj ≥ Λ|ξ|2, ∀x, ξ ∈ R
d.

(H3) The initial functionu0(x1) ∈ C[−1, 1].

For simplicity, in what follows we assume thatε = 1/N ,N ∈ Z+.
Under the stated assumptions we study the asymptotic behaviour of solutionsuε(t, x)

of problem (2.1), asε → 0.

2.1. Auxiliary spectral problems and main result. In what follows we denote

Au = −div(a∇u) + b · ∇u, Bu = a∇u · n;

A∗u = −div(a∇u)− div(b u), B∗u = a∇u · n+ (b · n) u.



Following [5], for θ ∈ R, we introduce two parameterized families of spectral problems
(direct and adjoint).

(2.2)





e−θy1 Aeθy1 pθ(y) = λ(θ) pθ(y), Y = S1 ×Q,

e−θy1 B eθy1 pθ(y) = 0, ∂Y = S1 × ∂Q,

y1 → pθ(y) 1-periodic.





eθy1 A∗ e−θy1 p∗θ(y) = λ(θ) p∗θ(y), Y,

eθy1 B∗ e−θy1 p∗θ(y) = 0, ∂Y,

y1 → p∗θ(y) 1-periodic.

HereS1 is the 1-dimensional unit circle. Note that the exponentialtransform is applied
with respect to only one variablex1. Next result, based on the Krein-Rutman theorem, has
been proved in [6].

LEMMA 2.1. For eachθ ∈ R, the first eigenvalueλ1(θ) of problem(2.2)is real, simple,
and the corresponding eigenfunctionspθ andp∗θ can be chosen positive. Moreover,θ →
λ1(θ) is twice differentiable, strictly concave and admits a maximum which is obtained for
a uniqueθ = Θ.

The eigenfunctionspθ andp∗θ defined by Lemma 2.1, can be normalized by
∫

Y

pθ(y) p
∗
θ(y) dy = 1.

Differentiating equation (2.2) with respect toθ, integrating againstp∗θ and writing down
the compatibility condition for the resulting equation, yield

(2.3)
dλ1
dθ

=

∫

Y

(
b1 pθ p

∗
θ + aij(pθ ∂yjp

∗
θ − p∗θ ∂yjpθ)− 2 θ pθ p

∗
θ a11

)
dy.

Noticing thatλ1(0) = 0 andpθ(y)|θ=0 = 1, one obtains

(2.4)
dλ1
dθ

∣∣∣
θ=0

=

∫

Y

(
aij ∂yjp

∗ + b1 p
∗
)
dy ≡ b̄1,

wherep∗(y) = p∗θ(y)|θ=0. The last expression is the so-called effective axial drift.
In what follows we assume thatb̄1 > 0 that yieldsΘ > 0. The casēb1 < 0 can be

considered in the same way.
To avoid the technicalities, we formulate, first, the main result of the section in a loose

way.

THEOREM 2.2. Let conditions(H1)− (H3) be fulfilled and̄b1 > 0 (see(2.4)). Sup-
poseu0 ∈ C1[−1, 1] is such thatu0(−1) 6= 0. Then there exist constantsaeff andM such



that, for t > 0 andx ∈ Gε, the asymptotics of the solutionuε of problem(2.1) takes the
form

uε(t, x) = εd+1 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

) [
u(t, x1) + rε(t, x)

]
,

whereu is a solution of the one-dimensional effective problem




∂tu = aeff ∂2x1
u, (t, x1) ∈ (0, T )× (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) =M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1).

Hererε(t, x) is such that|rε(t, ·)| ≤ C
√
ε for t ≥ t0 > 0, x ∈ Gε, and the constantC

depends onmin{(x1 + 1), (1− x1)}.

The proof of Theorem 2.2 is perform is several steps. First, we make use of the fac-
torization principle in order to simplify the original problem. Then, we represent new
unknown function in terms of the corresponding Green’s function. And, finally, we study
the asymptotic behaviour of the mentioned Green’s function, asε → 0.

2.2. Proof of Theorem 2.2.
2.2.1. Factorization. In order to simplify the original problem we perform the change

of unknowns, as was suggested in [7], [3].

(2.5) uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

)
vε(t, x).

Substituting (2.5) into (2.1) yields the problem for the newunknown functionvε

(2.6)





ρεΘ(x) ∂tv
ε − div

(
aΘ
(x
ε

)
∇vε

)
+

1

ε
bΘ
(x
ε

)
· ∇vε = 0, (0, T )×Gε,

aΘ
(x
ε

)
∇vε · n = 0, (0, T )× Σε,

vε(t,±1, x′) = 0, (0, T )×Q,

vε(0, x) = u0(x1) p
−1
Θ

(x
ε

)
e−

Θ(x1+1)
ε , x ∈ Gε.

Here

(2.7)

ρεΘ(x) = pΘ
(x
ε

)
p∗Θ
(x
ε

)
; aΘ(y) = pΘ(y) p

∗
Θ(y) a(y);

bΘ(y) = pΘ(y) p
∗
Θ(y) b(y)− 2Θ pΘ(y) p

∗
Θ(y) a1·(y)

+a(y)
[
pΘ(y)∇yp

∗
Θ(y)− p∗Θ(y)∇ypΘ(y)

]
.

For brevity, in what follows we denote

Aε
Θv = −div

(
aΘ
(x
ε

)
∇v
)
+

1

ε
bΘ
(x
ε

)
· ∇v, Bε

Θv = aΘ
(x
ε

)
∇v · n;

AΘv = −div(aΘ∇v) + bΘ · ∇v, BΘv = aΘ∇v · n.



A∗,ε
Θ v = −div

(
aΘ
(x
ε

)
∇v
)
− 1

ε
bΘ
(x
ε

)
· ∇v;

A∗
Θv = −div(aΘ∇v)− bΘ · ∇v.

Straightforward calculations yield

(2.8) ∀θ ∈ R : divyb
θ(y) = 0; bθ · n = 0 on Σε.

Taking into account the fact thatΘ is the maximum point ofλ1 and equality (2.3), we
obtain that the first component ofbΘ has zero mean:

(2.9)
∫

Y

bΘ1 (y) dy = 0.

Due to (2.8), (2.9), problem (2.6) admits homogenization. However, the presence of an
asymptotically singular initial condition in (2.6) bringssome difficulties into the homog-
enization procedure. In order to study the asymptotic behaviour of vε, we will use its
representation in terms of the corresponding Green’s functionKε(t, x, ξ)

(2.10) vε(t, x) =

∫

Gε

Kε(t, x, ξ) u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ.

HereKε, for eachξ ∈ Gε, solves the problem

(2.11)





ρεΘ ∂tKε + Aε
ΘKε = 0, (0, T )×Gε,

Bε
ΘKε = 0, (0, T )× Σε,

Kε(t, x, ξ)
∣∣∣
x1=±1

= 0, (0, T )×Q,

Kε(0, x, ξ) = δ(x− ξ), x ∈ Gε.

Note thatKε with respect to(t, ξ) is a solution of the formally adjoint problem, which
differs from (2.11) in the sign in front of the first-order terms.

Because of the presence of the delta-function in the initialcondition, it is difficult to
construct the asymptotics forKε directly. Let us introduce a function

Vε(t, x, ξ) = Φε(t, x, ξ)−Kε(t, x, ξ),

whereΦε is Green’s function in the thin infinite cylinderGε = R× εQ




ρεΘ(ξ) ∂tΦε + A∗,ε
Θ Φε = 0, (t, ξ) ∈ (0, T )×Gε,

Bε
ΘΦε = 0, (t, ξ) ∈ (0, T )× Γε,

Φε(0, x, ξ) = δ(x− ξ), ξ ∈ Gε.



By Γε we denote the lateral boundaryR × ∂(εQ) of the cylinderGε. Thus, for each
x ∈ Gε, Vε solves the problem

(2.12)





ρεΘ(x) ∂tVε + A∗,ε
Θ Vε = 0, (t, ξ) ∈ (0, T )×Gε,

Bε
ΘVε = 0, (t, ξ) ∈ (0, T )× Σε,

Vε(t, x, ξ)
∣∣∣
ξ1=±1

= Φε(t, x, ξ)
∣∣∣
ξ1=±1

, (t, ξ) ∈ (0, T )×Q,

Vε(0, x, ξ) = 0, ξ ∈ Gε.

2.2.2. Asymptotics forΦε(t, x, ξ). Denote byΦ0 a fundamental solution of the 1-
dimensional homogenized problem

{
∂tΦ0 = aeff ∂2ξΦ0(t, x1, ξ1), ξ ∈ R,

Φ0(0, x1, ξ1) = δ(x1 − ξ1).

Here the effective coefficientaeff is given by

(2.13)

aeff =

∫

Y

(aΘ11 + aΘ1j∂yjN − bΘ1 N) dy

=

∫

Y

(aΘ11 + aΘ1j∂yjN
∗ + bΘ1 N

∗) dy,

1-periodic iny1 functionsN andN∗ solve the standard cell problems (direct and adjoint,
respectively):

(2.14)

{
AΘN = ∂yja

Θ
j1(y)− bΘ1 (y), Y,

BΘN = 0, ∂Y ;

(2.15)

{
A∗

ΘN
∗ = ∂yja

Θ
j1 + bΘ1 , Y,

BΘN
∗ = 0, ∂Y.

It can be shown thataeff > 0 (see, for example, [12]). Note thatN andN∗ are Hölder
continuous functions (see [9]).

The fundamental solutionΦ0 admits the explicit formula

(2.16) Φ0(t, x1, ξ1) =
1

2
√
π t

1

aeff
e−

|x1−ξ1|2

4aeff t .

We also introduce the first- and second-order approximationof Φε by

(2.17)
Φε

1(t, x, ξ) = Φ0(t, x1, ξ1) + εN
(x
ε

)
∂x1Φ0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1Φ0(t, x1, ξ1).



(2.18)
Φε

2(t, x, ξ) = Φε
1(t, x, ξ) + ε2N2

(x
ε

)
∂2x1

Φ0(t, x1, ξ1)

+ε2N∗
2

(ξ
ε

)
∂2ξ1Φ0(t, x1, ξ1) + ε2N

(x
ε

)
N∗
(ξ
ε

)
∂x1∂ξ1Φ0(t, x1, ξ1).

Next result, which concerns the asymptotic behaviour ofΦε, is similar to one announced
in [15] (see Chapter II) and then proved rigorously in [1].

LEMMA 2.3. For anyx, ξ ∈ Gε andt ≥ ε2,

(2.19) |Φε(t, x, ξ)− Φk(t, x1, ξ1)| ≤ C
εk+1

t(k+1)/2
, k = 0, 1, 2.

2.2.3. Asymptotics forVε(t, x, ξ). The formal asymptotic expansion forVε takes the
form

(2.20)

Wε(t, x, ξ) = V0(t, x1, ξ1) + εN
(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ)

+ε2 V2(t, x1, ξ1; y, η)
∣∣∣
y=x/ε,η=ξ/ε

+ ε3W ε
bl(t, x, ξ),

where

(2.21)

V2(t, x1, ξ1; y, η) = N2(y) ∂
2
x1
V0(t, x1, ξ1)

+N∗
2 (η) ∂

2
ξ1
V0(t, x1, ξ1) +N(y)N∗(η) ∂x1∂ξ1V0(t, x1, ξ1)

+N(y) ∂x1V1(t, x1, ξ1) +N∗(η) ∂ξ1V1(t, x1, ξ1).

In (2.20) the terms of orderε will be used as an approximation ofVε, whileV2 andW ε
bl are

constructed to guarantee the required accuracy.
In the expansion (2.20), the functionV0, for eachx1 ∈ (−1, 1), is a solution of the

homogenized problem

(2.22)





∂tV0 = aeff ∂2ξ1V0, (t, ξ1) ∈ (0, T )× (−1, 1),

V0(t, x1,±1) = Φ0(t, x1,±1), t ∈ (0, T ),

V0(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1).

The effective coefficientaeff is defined by (2.13);N andN∗ are solutions of (2.14) and
(2.15), respectively. Forx1 6= ±1, the functionV0 belongs toC∞([0, T ]×(−1, 1)×[−1, 1])
and fort ∈ [0, T ], x ∈ I ⋐ (−1, 1) we have

(2.23) 0 ≤ ∂kt ∂
l
x1
∂mξ1 V0(t, x1, ξ1) ≤

C

min{(x1 − 1), (x1 + 1)}2k+l+m+1
.



In order to defineV1 and the boundary layer correctorV ε
bl, we introduce functionsv± stated

in semi-infinite cylindersG+ = (0,+∞)×Q andG− = (−∞, 0)×Q:

(2.24)





A∗
Θv

± = 0, η ∈ G∓,

BΘv
± = 0, η ∈ Σ∓,

v±(0, η′) = −N∗(0, η′),

whereΣ± are the lateral boundaries ofG±. It has been proved in [12] that bounded
solutionsv± exist, they are uniquely defined and stabilize to some constants v̂± at the
exponential rate, asη1 → ±∞:

(2.25)

|v±(η1, η′)− v̂±| ≤ C0 e
−γ |η1|, C0, γ > 0;

‖∇v+‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0,

‖∇v−‖L2((−(n+1),−n)×Q) ≤ C e−γ n, ∀n > 0.

Then,V1, for x1 ∈ (−1, 1), satisfies the problem

(2.26)





∂tV1 = aeff ∂2ξ1V1 + F (t, x1, ξ1), (t, ξ1) ∈ (0, T )× (−1, 1),

V1(t, x1,±1) = v̂± ∂ξ1 (V0 − Φ0)
∣∣∣
ξ1=±1

, t ∈ (0, T ),

V1(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1),

where

(2.27)
F (t, x1, ξ1) = ∂3ξ1V0(t, x1, ξ1)

∫

Y

[
aΘ1j(η)∂ηjN

∗
2 (η)

+ aΘ11(η)N
∗(η) + bΘ1 (η)N

∗
2 (η)− aeff ρΘ(η)N

∗(η)
]
dη,

andN∗
2 solves the problem





A∗
ΘN

∗
2 = ∂ηi(a

Θ
i1N

∗) + aΘ1j∂ηjN
∗

+aΘ11 + bΘ1 N
∗ − aeff ρΘ, Y,

BΘN
∗
2 = −aΘi1 niN

∗, ∂Y.

In the definition ofV2, the1-periodic (w.r.ty1) functionN2(y) solves the following prob-
lem: 




AΘN2 = ∂ηi(a
Θ
i1N) + aΘ1j∂ηjN

+aΘ11 − bΘ1 N − aeff ρΘ, Y,

BΘN2 = −aΘi1 niN, ∂Y.



Notice thatV1 is a smooth function of its variables forx ∈ I ⋐ (−1, 1), andN∗
2 is Hölder

continuous. The first boundary layer corrector is given by

(2.28)
V ε
bl(t, x, ξ) =

[
v−
(ξ1 + 1

ε
,
ξ′

ε

)
− v̂−

]
∂ξ1(V0 − Φ0)

∣∣∣
ξ1=−1

+
[
v+
(ξ1 + 1

ε
,
ξ′

ε

)
− v̂+

]
∂ξ1(V0 − Φ0)

∣∣∣
ξ1=1

.

Due to the above constructions,
{
V0(t, x1, ξ1) + εN

(x
ε

)
∂x1V0(t, x1, ξ1) + εN

(ξ
ε

)
∂ξ1V0(t, x1, ξ1)

+ε V1(t, x1, ξ1) + ε V ε
bl(t, x1, ξ1)

}∣∣∣
ξ1=±1

= Φε
1(t, x, ξ)

∣∣∣
ξ1=±1

,

whereΦε
1 is defined by (2.17).

The second boundary layer correctorW ε
bl is designed to compensate the time derivative

of V ε
bl and is defined by

W ε
bl(t, x, ξ) =

[
w−
(ξ1 + 1

ε
,
ξ′

ε

)
− ŵ−

]
∂t∂ξ1(V0 − Φ0)

∣∣∣
ξ1=−1

+
[
w+
(ξ1 + 1

ε
,
ξ′

ε

)
− ŵ+

]
∂t∂ξ1(V0 − Φ0)

∣∣∣
ξ1=1

.

The functionsw± solve nonhomogeneous problems




A∗
Θw

± = (v̂± − v±(η)) ρΘ(η), η ∈ G∓,

BΘw
± = 0, η ∈ Σ∓,

w±(0, η′) = 0.

Bounded solutionsw± exist, they are uniquely defined and stabilize to some constantsŵ±

at the exponential rate, asη1 → ±∞ (see [12]).

LEMMA 2.4. Denote byV ε
1 the first-order approximation ofVε

V ε
1 (t, x, ξ) = V0(t, x1, ξ1) + εN

(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ).

Then, forx ∈ Gε andt ≥ 0, the following estimate is valid:

(2.29)
∫

Gε

|Vε − V ε
1 |2 dξ ≤ C ε4 εd−1

with the constantC depending onmin((x1 − 1), (x1 + 1)), Λ, d and independent ofε.

PROOF. The proof of Lemma 2.4 consists of several steps. First, we calculate the
discrepancy appearing on the right-hand side of the equation and boundary condition when
substituting the differenceWε − Vε into (2.12). Then, by linearity, by representWε − Vε



as a sumṼ ε
1 + Ṽ ε

2 , whereṼ ε
1 is estimated using standard a priori estimates, andṼ ε

2 - with
the help of the maximum principle. Finally, combining the obtained estimates for̃V ε

1 , Ṽ ε
2

with an estimate for the differenceWε − V ε
1 , we end up with the estimate forVε − V ε

1 .
1. Auxiliary a priori estimates
Consider the following problem:

(2.30)





ρεΘ∂tw
ε + A∗,ε

Θ wε = f(t, x) + divF (t, x), (0, T )×Gε,

Bε
Θw

ε = εg(t, x)− (F, n), (0, T )× Σε,

wε(t,±1, x′) = 0, (t, x′) ∈ (0, T )×Q,

wε(0, x) = 0, x ∈ Gε.

Sincediv bεΘ = 0, a priori estimates are obtained in the standard way. Multiplying the
equation in (2.30) bywε and integrating by parts and exploiting the Cauchy-Bunyakovsky
inequality and Grönwall’s lemma, we obtain

(2.31)

∫

Gε

(wε)2 dx+

t∫

0

∫

Gε

|∇wε|2 dx dτ

≤ C eC1t
(
‖f‖2L2((0,T )×Gε)

+ ε‖g‖L2((0,T )×Σε) + ‖F‖L2((0,T )×Gε)

)
,

where the constantsC,C1 are independent ofε.

2. To estimate theL2(Gε) norm ofWε − Vε, we calculate first the discrepancy appear-
ing on the right-hand side in the equation and lateral boundary condition.

ρΘ ∂t(Wε − Vε) + A∗ε
Θ (Wε − Vε)

= εR1(t, x1, ξ1; y, η) + ε2R2(t, x1, ξ1; y, η)
∣∣∣
y=x/ε,η=ξ/ε

,

Bε
Θ(Wε − Vε) = ε2 aΘi1(η)ni ∂ξ1V2(t, x1, ξ1; y, η)

∣∣∣
y=x/ε,η=ξ/ε

where

R1(t, x1, ξ1; y, η) = ρΘ(η)N(y)∂t∂x1V0(t, x1, ξ1)

+ρΘ(η)N
∗(η)∂t∂ξ1V0 + ρΘ(η)∂tV1 − aΘ11(η)N(y)∂2ξ1∂x1V0(t, x1, ξ1)

−aΘ11(η)N∗(η)∂3ξ1V0(t, x1, ξ1)− aΘ11(η)∂
2
ξ1
V1(t, x1, ξ1)

−aΘ1j(η)∂ξ1∂ηjV2(t, x1, ξ1; y, η)− ∂ηi(a
Θ
i1(η)∂ξ1V2(t, x1, ξ1; y, η))

−bΘ1 (η)∂ξ1V2(t, x1, ξ1; y, η).

R2(t, x1, ξ1; y, η) = ρΘ ∂tV2(t, x1, ξ1; y, η)− aΘ11(η)∂
2
ξ1
V2(t, x1, ξ1; y, η).



By linearity, we representWε − Vε as a sumWε − Vε = Ṽ ε
1 + Ṽ ε

2 , whereṼ ε
1 andṼ ε

2 ,
for eachx ∈ Gε, solve the following problems:





ρΘ ∂tṼ ε
1 + A∗ε

Θ Ṽ
ε
1 = εR1(t, x1, ξ1; y, η)

+ε2R2(t, x1, ξ1; y, η)
∣∣∣
y=x/ε,η=ξ/ε

, (t, ξ) ∈ (0, T )×Gε,

Bε
ΘṼ

ε
1 = ε2 aΘi1(η)ni ∂ξ1V2(t, x1, ξ1; y, η)

∣∣∣
y=x/ε,η=ξ/ε

, (t, ξ) ∈ (0, T )× Σε,

Ṽ ε
1 (t, x, ξ)

∣∣∣
ξ1=±1

= 0, t ∈ (0, T )

Ṽ ε
1 (0, x, ξ) = 0, ξ ∈ Gε;





ρΘ ∂tṼ ε
2 + A∗ε

Θ Ṽ
ε
2 = 0, (t, ξ) ∈ (0, T )×Gε,

Bε
ΘṼ

ε
2 = 0, (t, ξ) ∈ (0, T )× Σε,

Ṽ ε
2 (t, x, ξ)

∣∣∣
ξ1=±1

= (Wε − Vε)(t, x, ξ)
∣∣∣
ξ1=±1

, t ∈ (0, T )

Ṽ ε
2 (0, x, ξ) = 0, ξ ∈ Gε.

3. We estimate first̃V ε
1 using a priori estimates (2.31). To this end, we notice that,in

view of (2.22) and (2.26),
∫

Y

R1(t, x1, ξ1; y, η) dη +

∫

∂Y

aΘi1(η)∂ξ1V2(t, x1, ξ1; y, η) dσ = 0,

thus, there exists a1-periodic with respect toη1 vector-functionχ = χ(t, x1, ξ1; y, η) such
that {

−divηχ = R1(t, x1, ξ1; y, η), η ∈ Y,

(χ, n) = aΘi1(η)ni ∂ξ1V2(t, x1, ξ1; y, η), η ∈ ∂Y.

Obviously,

R1(t, x1, ξ1; y, η)
∣∣∣
η=ξ/ε

= −εdivξχ
(
t, x1, ξ1; y,

ξ

ε

)

+ε∂ξ1χ1

(
t, x1, ξ1; y, η

)∣∣∣
η=ξ/ε

;

and ∫

Gε

χ2(t, x1, ξ1; y,
ξ

ε
) dξ ≤ C

∫

Gε

R2
1(t, x1, ξ1; y,

ξ

ε
) dξ.

Then, in view of (2.23), we have

(2.32)
∫

Gε

χ2(t, x1, ξ1; y,
ξ

ε
) dξ ≤ C ε4 εd−1, x1 ∈ (−1, 1), x′ ∈ εQ

with the constantC depending onmin{(x1 − 1), (x1 + 1)}, Λ, d.



Taking into account (2.21) and (2.23), we see that

(2.33)
∫

Gε

R2
2(t, x1, ξ1; y,

ξ

ε
) dξ ≤ C ε4 εd−1, x1 ∈ (−1, 1), x′ ∈ εQ

whereC depends onmin{(x1 − 1), (x1 + 1)}, Λ, d. Thus, forx ∈ Gε such thatx1 ∈ I ⋐

(−1, 1),

(2.34)
∫

Gε

|Ṽ ε
1 (t, x, ξ)|2 dξ ≤ C ε4 εd−1, t ≥ 0,

with the constantC which depends onmin{(x1 − 1), (x1 + 1)}, Λ, d.

4. We proceed by estimating̃V ε
2 . Due to the presence of the boundary layer corrector

V ε
bl,

Wε(t, x, ξ
′,±1)− Φε(t, x, ξ

′,±1)

=
(
ε2V2(t, x1, ξ1; y,

ξ

ε
) + ε3W ε

bl(t, x, ξ)
)
+
(
Φε

1(t, x, ξ)− Φε(t, x, ξ)
)
.

Taking into account (2.23) and the fact thatN,N∗, N2, N
∗
2 are Hölder continuous func-

tions, we see that
∣∣∣ε2V2(t, x1, ξ1; y,

ξ

ε
) + ε3W ε

bl(t, x, ξ)
∣∣∣ ≤ C ε2, t ≥ 0, ξ ∈ Gε,

whereC depends onmin{(x1 − 1), (x1 + 1)}, Λ, d.
To estimate|Φε

1 −Φε| for t ≤ εβ, β > 0, we use Aronson’s estimates. Namely, thanks
to (2.8)-(2.9), forξ1 = ±1, x1 ∈ I ⋐ (−1, 1) andt ≤ εβ

|Φε| ≤
C√
t
e−

C0|x1−ξ1|2
t = O(e−C1/εβ)

with some constantsC0, C, C1.
Similarly,Φ0 is exponentially small ifξ1 = ±1, x1 ∈ I ⋐ (−1, 1) andt ≤ εβ, β > 0.
To estimate|Φε

1−Φε| for t ≥ εβ, we make use of Lemma 2.3. Namely, fort ≥ εβ, the
following estimate holds true:

|Φε(t, x, ξ)− Φε
2(t, x, ξ)| ≤ C ε3−2β , ∀β > 0,

with the constantC independent ofε. Then, by (2.16),

|Φε
2(t, x,±1, ξ′)− Φε

1(t, x,±1, ξ′)| ≤ C ε2, x1 ∈ I ⋐ (−1, 1),

with some constantC depending on the distance fromx to the rod ends.
Finally, we obtain that

|Φε(t, x,±1, ξ′)− Φε
1(t, x,±1, ξ′)| ≤ C ε2,

whereC depends onmin{(x1 − 1), (x1 + 1)}, Λ, d.



Combining the last estimate with the estimates forΦε andΦ0 for t ≤ εβ, β > 0, we
obtain that the boundary conditions on the bases of the rod are satisfied up to the second
order inε:

(2.35) |Wε(t, x,±1, ξ′)− Φε(t, x,±1, ξ′)| ≤ C ε2, t ≥ 0, x1 ∈ I ⋐ (−1, 1)

whereC depends onmin{(x1 − 1), (x1 + 1)}, Λ, d. Thus, by the maximum principle, for
x ∈ Gε such thatx1 ∈ I ⋐ (−1, 1),

(2.36) |Ṽ ε
2 (t, x, ξ)| ≤ C ε2, t ≥ 0, ξ ∈ Gε,

whereC depends onmin{(x1 − 1), (x1 + 1)}, Λ, d.

5. Finally, recalling thatWε − Vε = Ṽ ε
1 + Ṽ ε

2 , by (2.34), (2.36), for anyt ∈ [0, T ], we
obtain the following estimate:∫

Gε

|Vε −Wε|2 dx ≤ C ε4 εd−1, x1 ∈ I ⋐ (−1, 1), x′ ∈ εQ.

It is easy to see that forx1 ∈ I ⋐ (−1, 1), x′ ∈ εQ,
∫

Gε

|V2(t, x1, ξ1; y, η)|2
∣∣
η=ξ/ε

dξ +

∫

Gε

|W ε
bl|2 ≤ C εd−1.

Consequently, last two estimates yield (2.29). Lemma 2.4 isproved. �

2.2.4. Asymptotics forvε. Recalling the definition ofVε, we obtain the following ap-
proximation for Green’s functionKε:

(2.37)
Kε

1(t, x, ξ) = K0(t, x1, ξ1) + εN
(x
ε

)
∂x1K0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1K0(t, x1, ξ1) + εK1(t, x1, ξ1)− ε V ε

bl(t, x, ξ),

whereK0 is the Green function of the one-dimensional effective problem

(2.38)





∂tK0 = aeff ∂2ξ1K0, (t, ξ1) ∈ (0, T )× (−1, 1),

K0(t, x1,±1) = 0, t ∈ (0, T ),

K0(0, x1, ξ1) = δ(x1 − ξ1), ξ1 ∈ (−1, 1),

K1 is a solution of the nonhomogeneous problem



∂tK1 = aeff ∂2ξ1K1 − F (t, x1, ξ1), (t, ξ1) ∈ (0, T )× (−1, 1),

K1(t, x1,±1) = v̂± ∂ξ1 K0

∣∣∣
ξ1=±1

, t ∈ (0, T ),

K1(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1)

with the right-hand sideF given by (2.27). The boundary layer correctorV ε
bl is defined by

(2.24) and (2.28), respectively. Taking into account Lemmata 2.4 and 2.3, we obtain the
following statement.



LEMMA 2.5. For eachx ∈ Gε andt > 0, the following estimates hold true:

(2.39)
‖Kε −K0‖L2(Gε) ≤ C ε ε

d−1
2 ,

‖Kε −Kε
1‖L2(Gε) ≤ C ε2 ε

d−1
2 ,

where the constantC depends onmin{(1−x1), (1+x1)}, Λ, d and does not depend onε.

Now we turn to analyzing the asymptotics ofvε which is given by (2.10) in terms of
the corresponding Green functionKε. Obviously, (2.10) can be rewritten in the following
form:

(2.40)

vε(t, x) =

∫

Gε

Kε
1(t, x, ξ) u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

+

∫

Gε

(Kε(t, x, ξ)−Kε
1(t, x, ξ)) u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ.

Thanks to (2.39) we have
∣∣∣
∫

Gε

(Kε(t, x, ξ)−Kε
1(t, x, ξ)) u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

∣∣∣ ≤ C ε1/2 εd+1,

where the constantC depends onmin{(1−x1), (1+x1)}, Λ, d and does not depend onε.
We proceed with analyzing the second integral in (2.40). We compute separately the

contributions of each summand in (2.37).
ExpandingK0 andu0 into the Teylor series in the neighbourhood ofξ1 = −1, we see

that, fort ≥ t0 > 0,∫

Gε

K0(t, x1, ξ1) u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

= u0(−1) ∂ξ1K0(t, x1,−1)

∫

Gε

(ξ1 + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ +O(εd+2), ε → 0.

Making change of variables

z1 =
ξ1 + 1

ε
, z′ =

ξ′

ε
,

and using the periodicity ofpΘ, one gets

(2.41)

∫

Gε

K0(t, x1, ξ1) u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

×
+∞∫

0

∫

Q

z1 pΘ(z)
−1 e−Θz1 dz′dz1 +O(εd+2).



Recall that, for simplicity, we assumeε = 1/N ,N ∈ Z+.
Similarly we have that fort ≥ t0 > 0,

(2.42)

ε

∫

Gε

N∗
(ξ
ε

)
∂ξ1K0(t, x, ξ)

u0(ξ1)

pΘ(ξ/ε)
e−

Θ(ξ1+1)
ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

×
+∞∫

0

∫

Q

N∗(z) pΘ(z)
−1 e−Θz1 dz′dz1 +O(εd+2).

Taking into account that∂x1K0(t, x1,±1) = 0, we obtain

ε

∫

Gε

N
(x
ε

)
∂x1K0(t, x1, ξ1) u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = O(εd+2),

thus, this term can be neglected.
By the same argument, sinceK1(t, x1,−1) = v̂−∂ξ1K0(t, x1,−1),

ε

∫

Gε

(K1(t, x1, ξ1)− v̂−∂ξ1K0(t, x1,−1)) u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = O(εd+2).

Performing change of variables as above and using the periodicity of pΘ, we get

(2.43)

ε

∫

Gε

v−
(ξ1 + 1

ε
,
ξ′

ε

)
∂ξ1K0(t, x1,−1) u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)

ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

×
+∞∫

0

∫

Q

v−(z) p−1
Θ (z) e−Θz1 dz′dz1 +O(εd+2).

Thanks to (2.25), the term containing the boundary layer corrector near the right base of
the rod is exponentially small. Combining (2.41)–(2.43) yields

vε(t, x) = εd+1M u0(−1) ∂ξ1K0(t, x1,−1) + rε(t, x), t ≥ t0 > 0,

where|rε(t, x)| ≤ C0 ε
1/2 εd+1 with the constantC0 depending onmin{(x1 + 1), (1 −

x1)},Λ, d; the constantM is defined by

M =

+∞∫

0

∫

Q

(z1 +N∗(z) + v−(z)) p−1
Θ (z) e−Θz1 dz′dz1.

In this way we have proved the following theorem.

THEOREM 2.6. Let conditions(H1)− (H3) be fulfilled and̄b1 > 0.



(1) Supposeu0 ∈ C1[−1, 1] is such thatu0(−1) 6= 0. The asymptotics of the solution
uε of problem(2.1), for t ≥ t0 > 0 andx ∈ Gε, takes the form

uε(t, x) = ε2 εd−1 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

) [
u(t, x) + rε(t, x)

]
,

whereu is a solution of the effective problem




∂tu = aeff ∂2x1
u, (t, x1) ∈ (0, T )× (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) =M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1).

Here the effective coefficientaeff is defined by(2.13), rε(t, x) is such that|rε(t, x)| ≤
C
√
ε, and the estimate is uniform fort ≥ t0 > 0, x1 ∈ I ⋐ (−1, 1), with

C = C(min{(1− x1), (1 + x1)},Λ, d). The constantM is given by

M =

+∞∫

0

∫

Q

(z1 +N∗(z) + v−(z)) p−1
Θ (z) e−Θz1 dz′dz1,

wherepθ is defined by Lemma 2.1,Θ is the maximum point ofλ1(θ); the functions
N∗ andv− solve(2.15)and (2.24), respectively.

(2) If u0 ∈ Ck+1(−1, 1) is such thatu(l)0 (−1) = 0, l = 0, · · · , k− 1, andu(k)0 (−1) 6=
0, then

uε(t, x) = εk+2 εd−1 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

) [
ũ(t, x) + r̃ε(t, x)

]
,

whereũ is a solution of the homogenized problem




∂tũ = aeff ∂2x1
ũ, (t, x1) ∈ (0, T )× (−1, 1),

ũ(t,±1) = 0, t ∈ (0, T ),

ũ(0, x1) = M̃ u
(k)
0 (−1) δ′(x1 + 1), x1 ∈ (−1, 1).

Here the constant̃M is given by

M̃ =
1

k!

+∞∫

0

∫

Q

(z1)
k (z1 +N∗(z) + v−(z)) p−1

Θ (z) e−Θz1 dz′dz1.

r̃ε(t, x) is such that|r̃ε(t, x)| ≤ C
√
ε, and the estimate is uniform for fort ≥

t0 > 0, x1 ∈ I ⋐ (−1, 1), x′ ∈ εQ, withC = C(min{(1− x1), (1 + x1)},Λ, d).

The second statement of Theorem 2.6 can be proved in exactly the same way as the
first one.



3. Problem in a layer

Denote byΩ the layer{x ∈ Rd : x′ = (x1, · · · , xd−1) ∈ Rd−1, −1 ≤ xd ≤ 1} (see
Figure 2). Then the boundary ofΩ consists of two planesΓ± = {x ∈ Rd : xd = ±1}. We
study a homogenization problem for a non-stationary convection-diffusion equation stated
in Ω:

(3.1)





∂tu
ε + Aε u

ε = 0, (t, x) ∈ (0, T )× Ω,

uε = 0, (t, x) ∈ Γ+ ∩ Γ−,

uε(0, x) = u0(x), x ∈ Ω,

where

Aεu
ε = −div

(
aε∇uε

)
+

1

ε
bε · ∇uε,

and the coefficients of the equation are given by

aεij = aij
(x
ε

)
; bεj = bj

(x
ε

)
.

In the sequel we assume that the following conditions are satisfied:

(A1) The coefficients of the equationaij, bj ∈ L∞(Ω) areY -periodic,Y = (0, 1]d

being the periodicity cell.
(A2) Thed×dmatrixa(y) satisfies the uniform ellipticity condition, that is there exists

Λ > 0 such that

aij(y)ξiξj ≥ Λ|ξ|2, ∀x, ξ ∈ R
d.

(A3) u0(x) ∈ C0(R
d−1;C[−1, 1]), that is the initial functionu0 has compact support

with respect tox′ = (x1, · · · , xd−1).
(A4) For simplicity we assume thatε = 1/N , so that the periodic structure agrees with

the thickness of the layerΩ.

REMARK 3.1. Instead of the functionu0 having compact support inΩ, one can con-
sider a more general situation, whenu0 ∈ C(Ω) ∩ L1(Ω) ∩ L2(Ω).

As in the case of a thin rod, we study the asymptotic behaviourof solutionsuε(t, x) of
problem (3.1), asε → 0. Note that if the effective convection in the directionxd is zero,
the homogenization in moving coordinates takes place (see [8], [3]).

3.1. Auxiliary spectral problems. For brevity, in what follows we denote

Au = −div(a∇u) + b · ∇u, A∗v = −div(a∇v)− div(b v).

In order to simplify the original problem, we make use of the factorization principle, as
in Section 2, with respect toxd, and then construct the asymptotics of the new unknown
function in moving coordinates.
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FIGURE 2. The layerΩ

For θ ∈ R, we introduce two parameterized families of spectral problems:

(3.2)

{
e−θ yd Aeθ yd pθ(y) = λ(θ) pθ(y), Y,

y → pθ(y) Y-periodic.

{
eθ yd A∗ e−θ yd p∗θ(y) = λ(θ) p∗θ(y), Y,

y → p∗θ(y) Y-periodic.

By the Krein-Rutman theorem, for eachθ ∈ R, the first eigenvalueλ1(θ) of problem (3.2)
is real, simple, and the corresponding eigenfunctionspθ andp∗θ can be chosen positive.
Moreover, as was proved in [6], θ → λ1(θ) is twice differentiable, strictly concave and
admits a maximum which is obtained for a uniqueθ = Θ. The eigenfunctionspθ andp∗θ
can be normalized by ∫

Y

pθ(y) p
∗
θ(y) dy = 1.

Arguments similar to those in Section 2 yield

(3.3)
dλ1
dθ

∣∣∣
θ=0

=

∫

Y

(
bd p

∗
θ + adj ∂yjp

∗
θ

)
dy = b̄d,

wherēbd is the last component of the effective drift. Hence, ifb̄d = 0, thenΘ = 0. As was
noticed already, we assume thatb̄d 6= 0 (or, equivalently,Θ 6= 0). In the casēbd = 0 the
method of homogenization in moving coordinates can be applied directly.

3.2. Factorization. If b̄d > 0, then we perform the change of unknown function as
follows

(3.4) uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ
(x
ε

)
vε(t, x).



If b̄d < 0, then instead ofexp
(

Θ(xd+1)
ε

)
we takeexp

(
Θ(xd−1)

ε

)
. Substituting (3.4) into

(3.1), one obtains that the new unknown functionvε satisfies the problem which reads

(3.5)





ρεΘ ∂tv
ε + Aε

Θ v
ε = 0, (t, x) ∈ (0, T )× Ω,

vε = 0, (t, x) ∈ Γ+ ∪ Γ−,

vε(0, x) = u0(x) p
−1
Θ

(x
ε

)
e−

Θ(xd+1)

ε , x ∈ Ω,

where

Aε
Θv = −div

(
aΘ
(x
ε

)
∇v
)
+

1

ε
bΘ
(x
ε

)
· ∇v, ̺Θ(y) = pΘ(y) p

∗
Θ(y)

and the coefficients of the operator are given by

(3.6)

aΘij(y) = ̺Θ(y) aij(y);

bΘi (y) = ̺Θ(y) bi(y)− 2 ̺Θ(y) aid(y) Θ

+aij(y)
[
pΘ(y) ∂yjp

∗
Θ(y)− p∗Θ(y) ∂yjpΘ(y)

]
.

The matrixaΘ is positive definite since bothpΘ andp∗Θ are positive functions. The vector-
field bΘ, for eachθ ∈ R, is divergence-free andbΘd has zero mean, that is

(3.7)
∫

Y

bΘd (y) dy = 0; div bθ = 0, ∀ θ.

Notice that if the average ofbΘk , k = 1, · · · , d− 1, is not equal to zero, then, in contrast
with the case of a thin rod, the classical homogenization methods do not apply to problem
(3.5). To overcome this difficulty, we use of the homogenization in moving coordinates.
Denoting the Green function of problem (3.5) byKε(t, x, ξ), we representvε in the form

(3.8) vε(t, x) =

∫

Ω

Kε(t, x, ξ) u0(ξ) p
−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξ.

For anyx,Kε solves the adjoint problem

(3.9)





̺Θ
(ξ
ε

)
∂tKε(t, x, ξ) + A∗,ε

Θ Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T )× Ω,

Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T )× (Γ− ∪ Γ+),

Kε(0, x, ξ) = δ(x− ξ), ξ ∈ Ω,

A∗,ε
Θ v = −div

(
aΘ
(x
ε

)
∇v
)
− 1

ε
bΘ
(x
ε

)
· ∇v.

SincebΘ is divergence-free,A∗,ε
Θ differs fromAε

Θ by the sign in front of the first-order
term. For anyξ ∈ Ω, Kε solves the direct problem with respect to(t, x), but since we are
interested in the asymptotics ofKε w.r.t ξ, we prefer to interpret it from the very beginning
as a solution of adjoint problem (3.9).



We study the asymptotic behaviour ofKε, asε → 0, and then from (3.8) derive the
asymptotics forvε.

3.3. Asymptotic behaviour ofKε(t, x, ξ). As in the proof of Theorem 2.2, instead
of analyzing directlyKε, we consider the difference

Vε(t, x, ξ) = Φε(t, x, ξ)−Kε(t, x, ξ),

whereΦε is the fundamental solution inRd, that is, for anyx ∈ R
d, Φε solves the problem





̺Θ
(ξ
ε

)
∂tΦε + A∗,ε

Θ Φε = 0, (t, ξ) ∈ (0, T )× R
d,

Φε(0, x, ξ) = δ(x− ξ), ξ ∈ R
d.

In this way, for allx ∈ Ω, Vε satisfies the problem

(3.10)





̺Θ
(ξ
ε

)
∂tVε(t, x, ξ) + A∗,ε

Θ Vε(t, x, ξ) = 0, (t, ξ) ∈ (0, T )× Ω,

Vε(t, x, ξ) = Φε(t, x, ξ), (t, ξ) ∈ (0, T )× (Γ− ∪ Γ+),

Vε(0, x, ξ) = 0, ξ ∈ Ω.

We would like to emphasize thatVε is a smooth function ofξ, for x such thatxd 6= ±1.
To describe the asymoptotics ofΦε, we introduceΦ0(t, x, ξ), the fundamental solution

of the effective problem
{
∂tΦ0 = divξ(a

eff∇ξΦ0), (t, ξ) ∈ (0, T )× R
d,

Φ0(0, x, ξ) = δ(x− ξ), ξ ∈ R
d

with aeff given by

aeff

ij =

∫

Y

(aΘij(y) + aΘik(y)∂ykNj(y)− bΘi (y)Nj(y) + βΘ
j ρΘNj(y)) dy

=

∫

Y

(aΘij(η) + aΘik(η)∂ykN
∗
j (η) + bΘi (η)N

∗
j (η)− βΘ

j ρΘN
∗
j (η)) dη.

The constant

βΘ
j =

∫

Y

bΘj (y)dy, j = 1, · · · , d− 1,

is thejth component of the effective convection (βΘ
d = 0); vector functionsN andN∗

solve the following cell problems (direct and adjoint, respectively):

(3.11)

{
−div(aΘ∇Ni) + bΘ · ∇Ni = ∂yja

Θ
ij(y)− bΘi (y) + βΘ, Y,

y 7→ Ni Y − periodic;

(3.12)

{
−div(aΘ∇N∗

i )− bΘ · ∇N∗
i = ∂yja

Θ
ij(y) + bΘi (y)− βΘ, Y,

y 7→ N∗
i Y − periodic.



Note that, in view of the definition ofβΘ, the compatibility conditions for (3.11) and (3.12)
are satisfied. It can be seen that the matrixaeff is positive definite, and the functionsN and
N∗ are Hölder continuous functions (see [9]).

The following important result characterizing the asymptotic behaviour ofΦε can be
proved in the same way as in [1].

LEMMA 3.2. Assume that conditions(A1)-(A2) are fulfilled. Then, forx, ξ ∈ Rd and
t ≥ ε2, the estimate holds

∣∣∣Φε(t, x, ξ)− Φε
1

(
t, x, ξ +

βΘ

ε
t
)∣∣∣ ≤ C

ε2

t(d+2)/2
,

whereβΘ =
∫
Y
bΘ(y) dy, the constantC does not depend onε, and the first-order approx-

imationΦε
1 is given by

Φε
1

(
t, x, ξ +

βΘ

ε
t
)
= Φ0

(
t, x, ξ +

βΘ

ε
t
)
+ εN

(x
ε

)
∇xΦ0

(
t, x, ξ +

βΘ

ε
t
)

+εN∗
(ξ
ε

)
∇ξΦ0

(
t, x, ξ +

βΘ

ε
t
)
.

Turning back toVε, for eachx ∈ Ω, we denote byV0 a solution of the homogenized
problem 




∂tV0 = divξ(a
eff∇ξV0), (t, ξ) ∈ (0, T )× Ω,

V0(t, x, ξ) = Φ0(t, x, ξ), (t, ξ) ∈ (0, T )× (Γ− ∪ Γ+),

V0(0, x, ξ) = 0, ξ ∈ Ω.

Note that, forx /∈ (Γ− ∪ Γ+), V0 ∈ C∞([0, T ] × Ω × Ω) and for(t, ξ) ∈ [0, T ] × Ω one
has

0 ≤ ∂kt ∂
l
x ∂

m
ξ V0(t, x, ξ) ≤

C

dist(K, (Γ− ∪ Γ+))2k+l+m+d−1
, x ∈ K ⋐ Ω.

The formal asymptotic expansion forVε takes the form

(3.13)

Wε

(
t, x, ξ̃

)
= V0

(
t, x, ξ̃

)
+ εN

(x
ε

)
· ∇xV0

(
t, x, ξ̃

)

+εN∗
(ξ
ε

)
· ∇ξV0

(
t, x, ξ̃

)
+ ε V1

(
t, x, ξ̃

)

+εV ε
bl(t, x, ξ) + ε2 V ε

2 (t, x, ξ̃) + ε2 ϕε
bl(t, x, ξ)

+ε3 ψε
bl(t, x, ξ), ξ̃ = ξ +

βΘ

ε
t,

where

(3.14)

V ε
2 (t, x, ξ̃) =

{
Qij(y) ∂xi

∂xj
V0(t, x, ξ̃)

+Q∗
ij(η) ∂ξi∂ξjV0(t, x, ξ̃) +Ni(y)N

∗
j (η) ∂xi

∂ξjV0(t, x1, ξ̃)

+Ni(y) ∂xi
V1(t, x1, ξ̃) +N∗

i (η) ∂ξiV1(t, x1, ξ̃)
}∣∣∣

y=x
ε
,η= ξ

ε

.



The functionsQij , Q
∗
ij solve the problems




AΘQij = ∂yk(a
Θ
kiNj) + aΘik∂ykNj + aΘij

−bΘi Nj + βΘ
i ρΘNj − aeff

ij ρΘ, Y,

y 7→ Qij is periodic;





A∗
ΘQ

∗
ij = ∂yk(a

Θ
kiN

∗
j ) + aΘik∂ykN

∗
j + aΘij

+bΘi N
∗
j − βΘ

i ρΘN
∗
j − aeff

ij ρΘ, Y,

y 7→ Q∗
ij is periodic.

Here for brevity we denote

AΘv = −divy(a(y)∇yv) + b(y) · ∇yv,

A∗
Θv = −divy(a(y)∇yv)− b(y) · ∇yv.

In order to defineV1 and the first boundary layer correctorV ε
bl, we consider auxiliary

problems in semi-infinite cylindersG∓ = (0, 1]d−1 × (0,∓∞):

(3.15)





A∗
Θv

± = 0, η ∈ G∓,

v±(η′, 0) = −N∗
d (η

′, 0),

η′ 7→ v±(η′, ηd) is (0, 1]d−1 − periodic.

Sinceβd = 0, then such functionsv± exist, they are uniquely defined and stabilize to some
constantŝv± at the exponential rate, asηd → ∓∞ (see [13]):

(3.16)

|v±(η′, ηd)− v̂±| ≤ C0 e
−γ |ηd|, C0, γ > 0;

‖∇v+‖L2((n−1,n)×Q) ≤ C e−γ n, ∀n < 0,

‖∇v−‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0.

The first boundary layer corrector is given by

(3.17)
V ε
bl(t, x, ξ) =

[
v−
(ξ′
ε
,
ξd + 1

ε

)
− v̂−

]
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=−1

+
[
v+
(ξ′
ε
,
ξd − 1

ε

)
− v̂+

]
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=1
.

Then,V1, for x ∈ Ω, satisfies the problem

(3.18)





∂tV1 = divξ(a
eff ∇ξV1) + F (t, x, ξ), (t, ξ) ∈ (0, T )× Ω,

V1(t, x, ξ
′,±1) = v̂± ∂ξd (V0 − Φ0)(t, x, ξ

′,±1), (t, ξ′) ∈ (0, T )× R
d−1,

V1(0, x, ξ) = 0, ξ ∈ Ω,



where

F (t, x, ξ) = ∂ξk∂ξi∂ξjV0(t, x, ξ)

∫

Y

[
aΘkl∂ηlQ

∗
ij

+ aΘkjN
∗ + bΘk Q

∗
ij − βΘ

k ρΘQ
∗
ij − aeff

ij ρΘN
∗
k

]
dη.

The second boundary layer correctorϕε
bl is defined as follows

ϕε
bl(t, x, ξ)

=
[
ϕ−
k

(ξ′
ε
,
ξd + 1

ε

)
− ϕ̂−

k

]
∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=−1

)

+
[
ϕ+
k

(ξ′
ε
,
ξd − 1

ε

)
− ϕ̂+

k

]
∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=1

)
.

The functionsϕ±
k solve nonhomogeneous problems





A∗
Θϕ

±
k = ∂ηi(a

Θ
ik(v

± − v̂±)) + aΘik ∂ηiv
±

+(bΘk − βΘ
k ρΘ)(v

± − v̂±), η ∈ G∓,

ϕ±
k (η

′, 0) = 0,

η′ 7→ ϕ±
k (η

′, ηd) is (0, 1]d−1 − periodic.

The right-hand side of the last equation, due to (3.16), is anexponentially decaying func-
tion. SinceβΘ

d = 0, the functionsϕ±
k exist, they are uniquely defined and stabilize to some

constantŝw±
k at the exponential rate, asηd → ±∞ (see [13]). The correctorϕε

bl has been
introduced to compensate the terms of orderε0 which will appear on the right-hand side
after substitutingV ε

bl into the original equation.
The last boundary layer correctorψε

bl is defined by

ψε
bl(t, x, ξ)

=
[
ψ−
ik

(ξ′
ε
,
ξd + 1

ε

)
− ψ̂−

ik

]
∂ξi∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=−1

)

+
[
ψ+
ik

(ξ′
ε
,
ξd − 1

ε

)
− ψ̂+

ik

]
∂ξi∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=1

)
.

The functionsψ±
ik solve nonhomogeneous problems




A∗
Θψ

±
ik = (aΘik − aeff

ikρΘ)(v
± − v̂±) + ∂ηi(a

Θ
ij(ϕk − ϕ̂k))

+aΘij∂ηjϕk + (bΘi − βΘ
i )(ϕk − ϕ̂k), η ∈ G∓,

ψ±
ik(η

′, 0) = 0,

η′ 7→ ψ±
ik(η

′, ηd) is (0, 1]d−1 − periodic.

The right-hand side of the last equation is an exponentiallydecaying function. Thus, the
functionsψ±

ik exist, they are uniquely defined and stabilize to some constants ψ̂±
j at the

exponential rate, asηd → ±∞. The boundary layer correctorψε
bl has been designed in



order to compensate the terms of orderε on the right-hand side of the equation, which
come fromV ε

bl andϕε
bl being substituted into the equation.

Now the formal expansion is defined and we can proceed with justifying the obtained
formal asymptotics forVε. We would like to emphasize that the functionsV1 andV ε

bl are
introduced to satisfy the boundary conditions onΓ± up to the second order inε, while
V ε
2 , ϕ

ε
bl andψε

bl serve to guarantee the required accuracy and will not show upin the final
expansion (see Proposition 3.3 below).

Our next goal is to prove the following statement.

PROPOSITION3.3. Denote byV ε
1 the first-order approximation ofVε

(3.19)
V ε
1 (t, x, ξ) = V0

(
t, x, ξ +

βΘ

ε
t
)
+ εNj

(x
ε

)
∂xj

V0
(
t, x, ξ +

βΘ

ε
t
)

+εN∗
j

(ξ
ε

)
∂ξjV0

(
t, x, ξ +

βΘ

ε
t
)
+ ε V1

(
t, x, ξ +

βΘ

ε
t
)
+ ε V ε

bl(t, x, ξ).

Then, forx such thatxd ∈ I ⋐ (−1, 1) and fort ≥ 0, the following estimate is valid:

(3.20)
∫

Ω

|Vε − V ε
1 |2 ≤ C ε4

with the constantC depends ondist(x,Γ− ∪ Γ+),Λ, d and is independent ofε.

PROOF. Let us substitute ansatz (3.13) into (3.10) and compute thediscrepancy.

(3.21)

ρεΘ∂t(Wε − Vε) + A∗,ε
Θ (Wε − Vε)

= εR1

(
t, x, ξ̃; y, η

)
+ ε divη(a

Θ(η)∇ξ̃V2(t, x, ξ̃; y, η))
∣∣∣
y=x

ε
,η= ξ

ε

+ε2R2

(
t, x, ξ̃; η

)
+ ε3R3

(
t, x, ξ̃; η

)∣∣∣
y=x

ε
,η= ξ

ε

, ξ̃ = ξ +
βΘ

ε
t,

where

R1

(
t, x, ξ̃; y, η

)
= −ρΘ(η)∂tV1(t, x, ξ̃)− ρΘ(η)N

∗
j (η)∂t∂ξjV0(t, x, ξ̃)

−ρΘ(η)Nj(y)∂t∂xj
V0(t, x, ξ̃)− ρΘ(η)β

Θ
j ∂ξ̃jV2(t, x, ξ̃; y, η)

+divξ(a
Θ(η)∇ηV2(t, x, ξ̃; y, η)) + divξ(a

Θ(η)∇ξ(N
∗(η) · ∇ξV0(t, x, ξ̃))

+divξ(a
Θ(η)∇ξ(N(y) · ∇xV0(t, x, ξ̃)) + divξ(a

Θ(η)∇ξV1(t, x, ξ̃))

+bΘj (η)∂ξjV2(t, x, ξ̃; y, η), ξ̃ = ξ +
βΘ

ε
t;



R2

(
t, x, ξ̃; η

)
=
{
(aeff

ij − aΘij(η))(ϕk(η)− ϕ̂k)

−∂ηj (aΘjl(η)(ψik(η)− ψ̂ik))− aΘjl(η)∂ηlψik(η)

+(βΘ
j − bΘj (η))(ψik(η)− ψ̂ik)

}

×∂ξj∂ξi∂ξk
(
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=1

)
;

R3

(
t, x, ξ̃; η

)
= (ρΘ(η)a

eff

jl − aΘjl)(ψik(η)− ψ̂ik)

×∂ξl∂ξj∂ξi∂ξk
(
∂ξd(V0 − Φ0)

(
t, x, ξ +

βΘ

ε
t
)∣∣∣

ξd=1

)
.

Notice that, in view of (3.14) and (3.18),
∫

Y

R1

(
t, x, ξ̃; y, η

)
dη = 0.

Thus, there existsχ
(
t, x, ξ̃; y, η

)
, periodic inη, such that

−divηχ = R1

(
t, x, ξ̃; y, η

)
.

Consequently,

R1

(
t, x, ξ +

βΘ

ε
t; y,

ξ

ε

)
= −εdivξχ

(
t, x, ξ +

βΘ

ε
t; y,

ξ

ε

)

+εdivξχ
(
t, x, ξ +

βΘ

ε
t; y, η

)∣∣∣
η= ξ

ε

.

It is easy to see that, for sufficiently smallε,
∫

Ω

[
χ
(
t, x, ξ +

βΘ

ε
t; y,

ξ

ε

)]2
dξ ≤ C

∫

Ω

∫

Y

[
R1

(
t, x, ξ; y, η

)]2
dη dξ

with the constantC independent ofε. To estimate the norm on the right-hand side of the
last inequality, we notice that each term inR1 is a product of the form

F (y, η) ∂rt ∂
m
ξj
V0(t, x, ξ +

βΘ

ε
t)

with a bounded periodic functionF (y, η). Hence, it is sufficient to estimate the derivatives
of the functionV0.

Since the effective operator has constant coefficients,Φ0 is given by the explicit for-
mula

(3.22) Φ0(t, x, ξ) =
1

(2πt)d/2
1

detaeff
exp
(
− (x− ξ)T (aeff)−1(x− ξ)

4t

)
.



Denote byK0(t, x, ξ) the Green function of the effective problem

(3.23)





∂tw(t, x) = div(aeff∇w(t, x)), (t, x) ∈ (0, T )× Ω,

w(t, x) = 0, (t, x) ∈ (0, T )× (Γ− ∪ Γ+),

w(0, x) = w0(x), x ∈ Ω.

By the maximum principle,

K0(t, x, ξ) ≤ Φ0(t, x, ξ) ≤
C

td/2
exp
(
− γ0

(x− ξ)2

t

)
,

and, thus,

V0(t, x, ξ) = Φ0(t, x, ξ)−K0(t, x, ξ) ≤
C

td/2
exp
(
− γ0

(x− ξ)2

t

)
.

The last estimate together with the local estimates for the derivatives ofV0 (see, for exam-
ple, [11]) imply

(3.24) |∂rt ∂mξ V0(t, x, ξ)| ≤ C e−γ(x−ξ)2 , t ≥ t0 > 0.

Consequently, ∫

Ω

[
χ
(
t, x, ξ +

βΘ

ε
t; y,

ξ

ε

)]2
dξ ≤ C.

Multiplying equation (3.21) byWε−Vε, integrating by parts and taking into account (3.7),
exponential decay of the boundary layer correctors, (3.22)and (3.24), we obtain

(3.25)
∫

Ω

|Wε − Vε|2 dξ ≤ C ε4, t ≥ 0.

Note that due to the presence of the boundary layer correctors, the boundary conditions on
Γ+ ∩Γ− in (3.10) are satisfied up to the second order inε. It is left to notice that fort ≥ 0
andx ∈ Ω such thatxd ∈ I ⋐ (−1, 1)

∫

Ω

|Wε(t, x, ξ)− V ε
1 (t, x, ξ)|2dξ ≤ C ε4,

whereV ε
1 is the first-order approximation ofVε defined by (3.19). Combining the last two

estimates yields the desired result. Proposition 3.3 is proved. �

We turn back to the asymptotics ofKε(t, x, ξ). Let us recall that

K0(t, x, ξ) = Φ0(t, x, ξ)− V0(t, x, ξ)

is the Green function of the effective problem (3.23). The following lemma constitutes the
main result of the section.



LEMMA 3.4. Assume that conditions(A1) − (A2) are satisfied. IfKε is a Green
function solving(3.9), then, fort ≥ t0 > 0 andx ∈ Ω such thatxd ∈ I ⋐ (−1, 1), the
following estimate holds:

∫

Ω

|Kε(t, x, ξ)−Kε
1

(
t, x, ξ +

βΘ

ε
t
)
|2dξ ≤ C ε4,

where the constantC depends ondist(x,Γ− ∪ Γ+) and is independent ofε; Kε
1 is a first-

order approximation ofKε given by

(3.26)
Kε

1

(
t, x, ξ̃

)
= K0

(
t, x, ξ̃

)
+ εN

(x
ε

)
∇xK0

(
t, x, ξ̃

)

+εN
(ξ
ε

)
∇ξK0

(
t, x, ξ̃

)
+ εK1(t, x, ξ̃)− ε V ε

bl(t, x, ξ̃), ξ̃ = ξ +
βΘ

ε
t,

K0 is the Green function of the effective problem(3.23),N,N∗ are the solutions of(3.11),
(3.12), respectively. The effective convectionβΘ

j =
∫
Y
bΘj (y)dy with βΘ

d = 0. The function
K1(t, x, ξ) satisfies the problem





∂tK1(t, x, ξ) = divξ(a
eff ∇ξK1(t, x, ξ))− F (t, x, ξ), (t, ξ) ∈ (0, T )× Ω,

K1(t, x, ξ
′,±1) = v̂± ∂ξd K0(t, x, ξ

′,±1), (t, ξ′) ∈ (0, T )× R
d−1,

K1(0, x, ξ) = 0, ξ ∈ Ω,

where

F (t, x, ξ) = ∂ξk∂ξi∂ξjV0(t, x, ξ)

∫

Y

[
aΘkl∂ηlQ

∗
ij

+ aΘkjN
∗ + bΘk Q

∗
ij − βΘ

k ρΘQ
∗
ij − aeff

ij ρΘN
∗
k

]
dη.

The boundary layer correctorV ε
bl is defined by(3.17).

3.4. Asymptotics ofuε(t, x). Recall thatvε as a solution of (3.4), is represented in
terms of the Green functionKε as follows

vε(t, x) =

∫

Ω

Kε(t, x, ξ) u0(ξ) p
−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξ.

Obviously,

(3.27)

vε(t, x) =

∫

Ω

Kε
1(t, x, ξ) u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξ

+

∫

Ω

(Kε −Kε
1) u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξ,

whereKε
1 is the first order approximation ofKε given by (3.26). Suppose that the initial

function is such thatu0(x′,±1) 6= 0. The caseu0(x′,±1) = · · · = ∂k−1
ξd

u0(x
′,±1) = 0,

∂kξdu0(x
′,±1) 6= 0 can be considered similarly. With the help of Lemma 3.4 we estimate



the second integral in (3.27). Taking into account the boundedness ofpΘ, and expanding
u0 into Teylor series in the neighbourhood ofξd = −1, we have

∣∣∣
∫

Ω

(Kε −Kε
1) u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξ
∣∣∣

≤ C ε3
∫

Rd−1

u0(ξ
′,−1) dξ′

+∞∫

0

e−Θzd dzd ≤ C ε3.

Our next goal is to derive the asymptotics for the first integral in (3.27). Denote

vε0(ξ) = u0(ξ) p
−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε .

Then, by (3.26),

(3.28)

I =

∫

Ω

Kε
1(t, x, ξ) v

ε
0(ξ) dξ =

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

+ε

∫

Ω

N∗
j

(ξ
ε

)
∂ξjK0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

+ε

∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
vε0(ξ) dξ

+ε

∫

Ω

Nj

(x
ε

)
∂xj

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

+ε

∫

Ω

(
K1

(
t, x− βΘ

ε
t, ξ
)
− v̂− ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1

)
vε0(ξ) dξ

+ε

∫

Ω

(
v+
(ξ′
ε
,
ξd − 1

ε

)
− v̂+ ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=1

)
vε0(ξ) dξ.

Notice thatK0

(
t, x− βΘ

ε
t, ξ
)
= K0

(
t, x, ξ + βΘ

ε
t
)

sinceβΘ
d = 0 andx′ live in R

d−1.



ExpandingK0 andu0 into the Teylor series with respect toξd, for t ≥ t0 > 0, we
obtain ∫

Ω

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

=

∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
1∫

−1

(ξd + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξd +O(ε3)

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
+∞∫

0

zd p
−1
Θ

(ξ′
ε
, zd
)
e−Θzddzd +O(ε3).

The integral
+∞∫

0

zd p
−1
Θ

(ξ′
ε
, zd
)
e−Θzddzd

is ε(0, 1]d−1-periodic with respect toξ′. By the classical mean-value theorem (see, for
example, [15]),

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
∫

(0,1]d−1

+∞∫

0

zd p
−1
Θ (z′, zd) e

−Θzddzd dz
′ +O(ε3).

By similar arguments,
∫

Ω

N∗
j

(ξ
ε

)
∂ξjK0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
∫

(0,1]d−1

+∞∫

0

N∗
d (z) p

−1
Θ (z) e−Θzddzd dz

′ +O(ε3);



and ∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξdK0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
∫

(0,1]d−1

+∞∫

0

v−(z) p−1
Θ (z) e−Θzddzd dz

′ +O(ε3).

Noticing thatK1

∣∣
ξd=−1

= v̂−∂ξdK0

∣∣
ξd=−1

, and∂xj
K0

∣∣
ξd=−1

= 0, one can see that the last

two integrals in (3.28) are of orderε3. We would like to emphasize that, in view of (3.16),
the terms containing boundary layer correctors nearΓ+ are negligible.

Finally,

vε(t, x) = ε2M

∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′ +O(ε3),

where the constantM is given by

M =

∫

(0,1]d−1

+∞∫

0

[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′.

To summarize, we formulate the following theorem.

THEOREM 3.5. Suppose that conditions(A1)-(A4) are fulfilled,b̄d 6= 0 (see(3.3)) and
u0(x

′,−1) 6= 0. Then, fort ≥ t0 > 0, the asymptotics of the solutionuε of problem(3.1),
asε → 0, takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ
(x
ε

) [
u(t, x− βΘ

ε
t) + rε(t, x)

]
,

whererε(t, x) ≤ C ε, for t ≥ t0 > 0 andx ∈ Ω such thatxd ∈ I ⋐ (−1, 1), and the
constantC depends ondist(x,Γ− ∪ Γ+).

u(t, x− βΘ

ε
t) =M

∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

and the constantM is given by

M =

∫

(0,1]d−1

+∞∫

0

[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′,

λ1(Θ), pΘ have been defined in Section 3.1;K0 is the Green function of the effective
problem(3.23); N∗

d is a solution of the cell problem(3.12); v− is defined by(3.15). The



effective convectionβΘ is defined by

βΘ
j =

∫

Y

bΘj (y)dy, βΘ
d = 0,

with bΘj given in(3.6).

REMARK 3.6. In the caseu0(x′,−1) = · · · = ∂k−1
ξd

u0(x
′,−1) = 0 and∂kxd

u0(x
′,−1) 6=

0 for somek, the asymptotics ofuε takes the form

uε(t, x) = ε2+k e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ
(x
ε

) [
u(t, x− βΘ

ε
t) + rε(t, x)

]
,

whererε(t, x) ≤ C ε, for t ≥ t0 > 0 andx ∈ Ω such thatxd ∈ I ⋐ (−1, 1); C =
C(dist(x,Γ− ∪ Γ+)).

u(t, x− βΘ

ε
t) =

M

k!

∫

Rd−1

∂kxd
u0(ξ

′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

and the constantM is given by

M =

∫

(0,1]d−1

+∞∫

0

(zd)
k
[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′.
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Homogenization of spectral problem for periodic elliptic operators
with sign-changing density function
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ABSTRACT. The work deals with the asymptotic behaviour of spectra of second order
self-adjoint elliptic operators with periodic rapidly oscillating coefficients in the case
when the density function (the factor on the spectral parameter) changes sign. We study
the Dirichlet problem in a regular bounded domain and show that the spectrum of this
problem is discrete and consists of two series, one of them tends towards+∞ and
another towards−∞. The asymptotic behaviour of positive and negative eigenvalues
and the corresponding eigenfunctions depends crucially onwhether the average of the
weight function is equal to zero or not. We construct the asymptotics of eigenpairs in
both cases.

Keywords: Spectral problem, sign-changing density, homogenization.

1. Introduction

The paper focuses on the homogenization of the Dirichlet spectral problem

(1.1)
−div

(
a
(x
ε

)
∇u
)
= ρ
(x
ε

)
λ u in Ω,

u = 0 on∂Ω,

stated in a regular bounded domainΩ ⊂ Rn for a second order symmetric uniformly
elliptic operator

Lε = div
(
a
(x
ε

)
∇
)

with periodic rapidly oscillating coefficients,ε being a small positive parameter.

1



Regarding the density functionρ we assume that it is periodic and changes sign, that is
both the sets{x ∈ Ω : ρ(x/ε) < 0} and{x ∈ Ω : ρ(x/ε) > 0} are of positive measure.
The last assumption makes the problem under consideration nonstandard.

It is shown that for eachε > 0 the spectrum of (1.1) is discrete and consists of the
following two infinite sequences

0 < λε,+1 ≤ λε,+2 ≤ · · · ≤ λε,+j ≤ ..., lim
j→∞

λε,+j = +∞,

and

0 > λε,−1 ≥ λε,−2 ≥ · · · ≥ λε,−j ≥ ..., lim
j→∞

λε,−j = −∞.

The asymptotic behaviour of the eigenpairs depends crucially on whether the average ofρ
is positive, or negative, or equal to zero.

Previously, a spectral problem with sign-changing densityfor the Laplace operator
has been considered in [10]; in this work the limit behaviour of spectrum has been studied
under the assumption that the density consists of a fixed positive part and asymptotically
vanishing negative part.

There is a vast literature on homogenization of spectral problems in the case of point-
wise positive weightρ. These problems have been studied in [7], [8] and then in many
other papers. The homogenization of spectral problems in perforated domains has been
studied in [13] followed by many other works on the subject. The limit behaviour of
spectrum of elasticity system in perforated domain has beenconsidered in [12]. In [4] the
authors have generalized the results obtained in [12] by making weaker the assumptions
on the regularity of the inclusions and external forces.

The spectral problems for locally periodic symmetric second order elliptic operators
with large potential have been studied in [1]. The work [2] dealt with the asymptotic
behaviour of spectrum for a periodic symmetric elliptic system with large potential.

As was noticed above, the asymptotic behaviour of the spectrum depends crucially
on the sign of the average ofρ. In the present paper we construct the asymptotics in the
following cases.
I. If the average ofρ is strictly positive, then the positive eigenvalues and thecorresponding
eigenfunctions show the same regular limit behaviour as in the case of point-wise positive
spectral density. Namely, for anyj ≥ 1 the eigenvalueλε,+j converges, asε → 0, to the
j-th eigenvalue of the limit spectral problem. The corresponding eigenfunctions converge
along subsequences.

II . If the mean value ofρ is equal to zero, then the limit spectral problem generates a
quadratic operator pencil, and the eigenvaluesλε,+j , j = 1, 2, . . . , are of order1/ε so that
the normalized quantitiesελε,+j converge to eigenvalues of the limit spectral problem.



2. Problem setup

LetΩ be aC2,δ bounded domain inRd with a boundary∂Ω. We consider the following
spectral problem:

(2.1)

{
Lεuε(x) ≡ −div

(
aε(x)∇uε(x)

)
= ρε(x) λε uε(x), x ∈ Ω,

uε(x) = 0, x ∈ ∂Ω,

where
aε(x) = a

(x
ε

)
, ρε(x) = ρ

(x
ε

)
, ε > 0.

Herea(y) is a symmetricd× d matrix satisfying the uniform ellipticity condition

d∑

i,j=1

aij(y)ξiξj ≥ Λ|ξ|2, ξ ∈ R
d,

for someΛ > 0. We assume thataij(y) ∈ L∞(Y ) are periodic functions (from this
time onwardY denotes the periodicity cell);ρ(y) ∈ L∞(Y ) is Y -periodic and changes
sign, that is the sets{y ∈ Y : ρ(y) < 0} and{y ∈ Y : ρ(y) > 0} have positive
Lebesgue measures. The weak formulation of spectral problem (2.1) reads: to findλε ∈ C

(eigenvalues) anduε ∈ H1
0 (Ω), u

ε 6= 0, (eigenfunctions) such that

(2.2) aε(u
ε, v) = λε (ρε uε, v)Ω, v ∈ H1

0 (Ω),

whereaε(u, v) = (aε∇u,∇v)Ω is a bilinear quadratic form;(·, ·)Ω is a scalar product in
L2(Ω). Since functionρε changes sign, problem (2.2) is not a standard spectral problem,
and the existing results on the spectrum of semi-bounded self-adjoint operators with com-
pact resolvent do not apply. To overcome this difficulty, we reduce the studied problem
(2.2) to an equivalent spectral problem for a compact self-adjoint operator.

Denote byH a spaceH1
0 (Ω) equipped with the norm

(2.3) ‖u‖H = 〈u, u〉 = aε(u, u).

The bilinear form(ρεu, v)Ω on H defines a bounded linear operatorKε : H → H such
that

(ρεu, v)Ω = 〈Kεu, v〉.
By definition, the operatorKε is symmetric and its domainD(Kε) coincides with the
whole spaceH, thus it is self-adjoint. Using the representation ofKεu as a solution of the
boundary value problem

(2.4)





−div
(
aε(x)∇(Kεu(x))

)
= ρε(x) u(x), x ∈ Ω,

Kεu(x) = 0, x ∈ ∂Ω,

and the compactness of the imbeddingH1
0 (Ω) in L2(Ω), one can see thatKε is a compact

operator.



In terms of the operatorKε problem (2.2) takes the form

(2.5) Kεuε = µε uε, µε = 1/λε.

REMARK 2.1. Note that in the caseρ(y) ≥ 0 the operatorKε is positive and its
spectrumσ(Kε) belongs to the segment[0, kε] ⊂ R, kε = ‖Kε‖. Moreover,µε = 0
belongs to the essential spectrumσe(Kε).

Recall that the essential spectrum of a self-adjoint operatorA is by definition

σe(A) = σ∞
p (A) ∪ σc(A),

whereσ∞
p (A) is a set of eigenvalues of infinite multiplicity andσc(A) is the continuous

spectrum (see, e.g., [3]).
The spectrum of the operatorKε is described by the following statement.

LEMMA 2.2. Let ρ(y) be such that the Lebesgue’s measure of the sets whereρ is
positive and negative is greater than zero, in other words

(2.6) |{y : ρ(y) ≶ 0}| > 0.

Thenσ(Kε) ⊂ [−kε, kε], kε = ‖Kε‖; the pointµ = 0 is the only element of the essential
spectrumσe(Kε) (see, for example,[3]). Moreover, the discrete spectrum of the operator
Kε consists of two infinite monotone sequences

µε,+
1 ≥ µε,+

2 ≥ · · · ≥ µε,+
j ≥ · · · → +0,

µε,−
1 ≤ µε,−

2 ≤ · · · ≤ µε,−
j ≤ · · · → −0.

Proof. Since the operatorKε is compact and self-adjoint, its spectrumσ(Kε) is a
countable set of points inR which does not have any accumulation points except maybe
for µ = 0. Every nonzero eigenvalue has finite multiplicity.

Let us show that the families{µε,±
j } are infinite, and, thus, converge to0. We make use

of the minimum principle (see [3]) which implies that the eigenvaluesµε,±
j can be found

from the formula

µε,±
j = max

u∈H,
〈u,u〉=1

±〈Kε u, u〉,

where the minimum is taken over vectorsu ∈ H which are orthogonal to the linear span
of {uε,±k }j−1

k=1, anduε,±j is a point on the unit sphere inH at which the minimum is attained.
In particular, for the first negative eigenvalueµε,−

1 we have

µε,−
1 = min

u∈H,
〈u,u〉=1

〈Kε u, u〉 = min
〈u,u〉=1

(ρεu, u)Ω.

Due to our assumption, the measure of the setMε
1 ≡ {x ∈ Ω : ρε(x) < 0} is positive.

Denote byχ(Mε
1 ) the characteristic function ofMε

1 , and letϕ be aC∞
0 (Rn) function such

thatϕ ≥ 0, ϕ(x) = 0 if |x| ≥ 1;
∫
Ω
ϕ(x)dx = 1. We setϕδ(x) = δ−nϕ(x/δ). Then



χδ(M
ε
1 ) ≡ χ(Mε

1 ) ∗ ϕδ converges toχ(Mε
1 ) in L2(Ω) asδ → 0. As usually, the sign“ ∗ ”

indicates the convolution of two functions, that is

χδ(M
ε
1 ) =

∫

Rd

χ(Mε
1 )(x− z)ϕδ(z) dz.

If we choose a constantc0 such that

c20〈χδ(M
ε
1 ), χδ(M

ε
1 )〉 = 1,

then the functionc0χδ(M
ε
1 ) can be used as a test function in the expression forµε,−

1 , and
thus

µε,−
1 ≤ c20(ρ

εχδ(M
ε
1 ), χδ(M

ε
1 ))Ω −→

δ→0
c20(ρ

εχ(Mε
1 ), χ(M

ε
1 ))Ω.

Hence, in view of definition ofMε
1 , the last expression impliesµε,−

1 < 0.
The second eigenvalue can be found from the formula

µε,−
2 = min

〈u,u〉=1

〈u,uε,−
1

〉=0

〈Kε u, u〉 = min
〈u,u〉=1

〈u,uε,−
1

〉=0

(ρεu, u)Ω.

It is not difficult to see that the set

Θ = {w ∈ H1
0 (Ω) : 〈w, uε,−1 〉 = 0, (ρεw,w)Ω < 0}

is not empty. Indeed, it suffices to consider two functions inH1
0 (Ω), sayψε

1(x) andψε
2(x),

with disjoint supports such that(ρεψε
1, ψ

ε
1)Ω < 0 and(ρεψε

2, ψ
ε
2)Ω < 0. Choosing a suitable

linear combinationγ1ψε
1 + γ2ψ

ε
2, one readily gets an element ofΘ. This yieldsµε,−

2 < 0.
In the same way one proves that for anym ≥ 1 the set

{w ∈ H1
0 (Ω) : (ρεw,w)Ω < 0, 〈w, uε,−k 〉 = 0, k = 1, ..., m}

is not empty. Thus, we have shown thatµε,−
j < 0 for anyj.

Due to the compactness ofKε, for anyε > 0 we have

lim
j→∞

µε,−
j = 0.

Similar arguments for positive eigenvaluesµε,+
j give the desired statement. Lemma 2.2 is

proved.�
Taking into account the relationµε,±

j = 1/λε,±j , we obtain the following theorem.

THEOREM 2.3. Under the assumption(2.6) the operatorLε has a discreet spectrum
which consists of two sequences

(2.7)
0 < λε,+1 ≤ λε,+2 ≤ · · · ≤ λε,+j ≤ · · · → +∞,

0 > λε,−1 ≥ λε,−2 ≥ · · · ≥ λε,−j ≥ · · · → −∞.

The corresponding eigenfunctionsuε,±j satisfy the orthogonality and normalization condi-
tion

(2.8) 〈uε,±i , uε,±j 〉 = δi,j.



3. The case〈ρ〉 > 0

We represent a solution(λε, uε) of problem (2.2) in the form

(3.1)
uε(x) = u0(x) + εN(y)T ∇u0(x) + ε2w(x, y) + · · · , y =

x

ε
,

λε = λ0 + · · · ;
hereN(y) andw(x, y) areY -periodic iny. Let us substitute ansätze (3.1) into (2.1) and
collect power-like with respect toε terms. This yields the following problems on the
periodicity cellY :

(3.2)

{
−divy(a(y)∇yNk(y)) = divya·k(y), k = 1, ..., d, y ∈ Y,

Nk ∈ H1
#(Y ),

wherea·k is akth column of the matrixa(y),

(3.3)





−divy(a(y)∇yw(x, y)) = divx(a(y)∇xu
0(x)) + λ0ρ(y)u0(x)

+divx
[
a(y)∇y(N(y)T ∇xu

0(x))
]

+divy
[
a(y)∇x(N(y)T ∇xu

0(x))
]
, y ∈ Y,

w(x, y) is periodic iny.

If the mean-value of the right-hand side in (3.3) is equal to zero, then a solution of periodic
problem (3.3) exists and is unique up to an additive constant(see, for example, Section 1.1
in [15]). The compatibility condition in problem (3.3) reads

∫

Y

{
divx(a(y)∇xu

0(x)) + λ0ρ(y)u0(x)

+divx
[
a(y)∇y(N(y)T ∇xu

0(x))
]
+

+divy
[
a(y)∇x(N(y)T ∇xu

0(x))
]}

dy = 0.

From the last equality one derives the following equation for u0(x):

(3.4)

{
Lhomu0(x) ≡ −div(ahom∇u0(x)) = λ0 〈ρ〉 u0(x), x ∈ Ω,

u0(x) = 0, x ∈ ∂Ω,

where the constant matrixahom has the form

(3.5) ahom =

∫

Y

[
a(y) + a(y)∇yN(y)T

]
dy,

in other words,

ahomij =

∫

Y

[
aij(y) + aik(y)∂ykNj(y)

]
dy, i, j = 1, ..., d.

This matrixahom is symmetric and positive definite (see, for instance [15]).



In view of Remark 2.1, Dirichlet problem (3.4) has the discreet spectrum

(3.6) 0 < λ0,+1 < λ0,+2 ≤ · · · ≤ λ0,+j ≤ · · · → +∞.

Note that the first eigenvalueλ0,+1 is simple (see, for example, [6]). The corresponding
eigenfunctions can be chosen to satisfy the orthogonality and normalization condition

(3.7) (ahom∇u0,+i ,∇u0,+j )Ω = 〈ρ〉 |λ0,+i | (u0,+i , u0,+j )Ω = δi,j , i, j = 1, ..., d.

REMARK 3.1. SinceΩ is aC2,δ domain, thenu0,+j areC2,δ(Ω) functions (see [6]).
Moreover, in the interior of the domainΩ the eigenfunctionsu0,+j areC∞ functions (see
[6]).

The next statement characterizes the asymptotic behaviourof the positive part of the
spectrumσ(Lε) asε→ 0.

THEOREM 3.2. Assume thataij , ρ ∈ L∞(Y ) are periodic functions, and〈ρ〉 > 0.
Then the following statements hold true:

(1) Letλ0,+j be an eigenvalue of the limit spectral problem (3.4), and assume that the

multiplicity of λ0j is equal toκ+
j , κ+

j ≥ 1, so thatλ0,+j−1 < λ0,+j = λ0,+j+1 = · · · =
λ0,+
j+κ

+
j −1

< λ0,+
j+κ

+
j

. Then there existεj > 0 and a constantcj such that forκ

eigenvaluesλε,+j , · · · , λε,+
j+κ

+
j −1

of problem (2.1) and only for them the inequality

holds
|λε,+q − λ0,+j | ≤ cj ε

1/2, ε ∈ (0, εj).

Moreover, forq 6∈ {j, j + 1, . . . , j + κ
+
j − 1} the inequality holds

|λε,+q − λ0,+j | ≥ c̃j , ε ∈ (0, εj),

with somẽcj > 0.
(2) There exists an unitaryκ+

j × κ
+
j matrixβε such that

(3.8)

∥∥∥∥∥∥
uε,+p −

j+κ
+
j −1∑

k=j

βε
kp Ũ

ε,+
k

∥∥∥∥∥∥
H1(Ω)

≤ Cj ε
1/2, p = j, · · · , j + κ

+
j − 1,

where

(3.9) Ũε,±
k (x) = u0,+k (x) + εN ε(x)T ∇u0,+k (x).

HereN ε(x) = N(x/ε), the vector-functionN(y) is a solution of problem(3.2);
the eigenfunctionsu0,+k of limit spectral problem(3.4)satisfy normalization con-
dition (3.7).

”Almost eigenfunctions”{Ũε,+
k } are ”almost” orthogonal and normalized in

the sense of the following inequality:

(3.10)
∣∣∣〈Ũε,+

k , Ũε,+
l 〉 − δk,l

∣∣∣ ≤ C ε1/2.



REMARK 3.3. Sinceλ0,+1 is simple, then by Theorem 3.2, for sufficiently smallε the
eigenvalueλε,+1 is simple as well.

Theorem 3.2 can be also reformulated as a convergence result.

COROLLARY 3.4. For the positive eigenvalues(2.7) and (3.6) the following conver-
gence result holds:

λε,+j → λ0,+j , ε → 0.

If λ0,+j is simple, thenλε,+j is also simple and the corresponding eigenfunctions satisfy the
relations:

• uε,+j −−→
ε→0

u0,+j strongly in L2(Ω);

• uε,+j − ε(N ε)T ∇u0,+j −−→
ε→0

u0,+j strongly in H1(Ω);

• aε∇uε,+j −−→
ε→0

ahom ∇u0,+j weakly in L2(Ω), where〈·〉 denotes the mean

value overY .

The proofs of Theorem 3.2, as well as Corollary 3.4, are similar to the proofs of the
corresponding statements in the case〈ρ〉 = 0 but a little bit less technical, that is why we
omit them here.

REMARK 3.5. Theorem 3.2 also applies to the negative part of the spectrum in the
case〈ρ〉 < 0. Indeed, it suffices to replaceρ with −ρ in (2.1).

4. The asymptotics of spectrum in the case〈ρ〉 = 0

4.1. Preliminary notes. We begin by estimating|λε,±1 | from below. Multiplying the
equalityLεuε,+1 = λε,+1 ρεuε,+1 by uε,+1 and integrating the result overΩ, we obtain

(4.1)
∫

Ω

(∇uε,+1 )Taε(∇uε,+1 )dx = λε,+1

∫

Ω

ρε(uε,+1 )2 dx.

Since〈ρ〉 = 0, there is a periodic vector-functionJ ∈ (L∞
# (Y ))n ∩ (H1

#(Y ))
n such that

ρ(y) = divJ(y) and〈J〉 = 0. This yields

λε,+1

∫

Ω

ρε(x)(uε,+1 (x))2 dx = 2 ε λε,+1

∫

Ω

uε,+1 (x) J
(x
ε

)T
∇ uε,+1 (x) dx ≤

≤ C ε λε,+1

∫

Ω

|uε,+1 (x)| |∇ uε,+1 (x)| dx ≤ C ε λε,+1 ‖∇uε,+1 ‖2L2(Ω).

Combining this inequality with (4.1), we conclude thatλε,+1 ≥ cε−1, c > 0. Similarly,
|λε,−1 | ≥ cε−1.



Let us show that if〈ρ〉 = 0, then|λε,±1 | ≤ Cε−1. To this end we use the variational
principle (see, e.g., [3]):

(4.2) λε,±1 = ± min
v∈H

(ρεv,v)Ω=±1

∫

Ω

∇Tv(x) aε(x)∇v(x) dx.

Denote
vε(x) = cεϕ(x)

[
1 + ε ρε(x)

]
,

with ϕ ∈ C∞
0 (Ω), ϕ 6≡ 0. We choose the constantcε such that

1 = (cε)2
∫

Ω

ρε(x) (ϕ(x))2
[
1 + 2ε ρε(x) + ε2 (ρε(x))2

]
dx.

Using again the representationρ(y) = divJ(y), neglecting the terms of orderε2, and
integrating by parts, we obtain

(4.3)

1 = (cε)2ε

∫

Ω

{
divJ

(x
ε

)
(ϕ(x))2 + 2(ρε(x))2 (ϕ(x))2 +O(ε)

}
dx =

= −(cε)2
{
ε

∫

Ω

(
J
(x
ε

))T
∇(ϕ(x))2 dx+ 2ε

∫

Ω

(ρε(x))2 (ϕ(x))2 dx+O(ε2)

}
.

Since〈J〉 = 0, each component of this vector-function admits the representationJk =

divJ̃·k, whereJ̃·k are periodic vectror-functions. This allows us to integrate by parts in
(4.3) once more and to derive

1 = (cε)2
(
2 ε 〈ρ2〉 ‖ϕ‖2L2(Ω) +O(ε2)

)
.

Therefore,

(cε)2 =
(
2 ε 〈ρ2〉 ‖ϕ‖2L2(Ω)

)−1
+O(ε).

Takingvε as a test function in (4.2), one sees that

λε,+1 ≤
∫

Ω

∇Tvε(x) aε(x)∇vε(x) dx ≤ C ε−1.

The negative eigenvalueλε,−1 can be estimated in the same way.

4.2. Formal asymptotic expansion.Bearing in mind the estimates from the previous
subsection, we are looking for a solution of problem (2.1) inthe form

(4.4)
uε(x) = u0(x) + ε u1(x, y) + ε2 u2(x, y) + · · · , y =

x

ε
,

λε = ε−1ν + · · · ,
whereν, u0(x), u1(x, y) andu2(x, y) are to be determined. We suppose thatu1(x, y) and
u2(x, y) areY -periodic iny. Substituting asymptotic ansätze (4.4) into (2.1) and collecting



terms of orderε−1, we obtain the following equation for the unknown functionu1(x, y):{
−divy

(
a(y)∇yu1(x, y)

)
= divy

(
a(y)∇xu

0(x)
)
+ ν ρ(y) u0(x), y ∈ Y,

u1(x, ·) ∈ H1
#(Y ).

Note that, sincea(y) is periodic and〈ρ〉 = 0, the compatibility condition is satisfied and
the last problem has a unique solution of zero average. The specific form of the right-hand
side of the equation suggests the following representationfor the solution:

u1(x, y) = N(y)T ∇xu
0(x) + ν N0(y) u0(x).

Thus, the unknown vector-functionN and the functionN0 solve the problems

(4.5)

{
−divy(a(y)∇yNk(y)) = divya·k(y), k = 1, ..., d, y ∈ Y,

Nk ∈ H1
#(Y ),

wherea·k is akth column in the matrixa(y),

(4.6)

{
−divy(a(y)∇yN

0(y)) = ρ(y), y ∈ Y,

N0 ∈ H1
#(Y ).

Notice that the compatibility conditions in problems (4.5)and (4.6) are satisfied.
Then, collecting the terms of orderε0, we get an equation for the functionu2(x, y) on

the periodicity cellY , namely

(4.7)





−divy

(
a(y)∇yu2(x, y)

)
= divy

(
a(y)∇x(N(y)T∇xu

0(x))
)
+

+ν divy
(
a(y)∇xu

0(x)N0(y)
)
+ divx

(
a(y)∇yN(y)∇xu

0(x)
)
+

+ν divx
(
a(y)∇yN

0(y) u0(x)
)
+ divx

(
a(y)∇xu

0(x)
)
+

+ν ρ(y)N(y)T ∇xu
0(x) + ν2 ρ(y)N0(y) u0(x), y ∈ Y,

u2(x, ·) ∈ H1
#(Y ).

Owing to the periodicity of the matrixa(y), the vector functionN(y) and the function
N0(y), we have

∫

Y

divy
(
a(y)∇x(N(y)T∇xu

0(x))
)
+ ν divy

(
a(y)∇xu

0(x)N0(y)
)
dy = 0.

Thus, the compatibility condition in problem (4.7) reads

(4.8)

divx

{∫

Y

(
a(y) + a(y)∇yN(y)

)
dy∇xu

0(x)

}

+ν divx

{∫
Y

a(y)∇yN
0(y) dy u0(x)

}
+

+ν

∫

Y

ρ(y)N(y)T dy∇xu
0(x) + ν2

∫

Y

ρ(y)N0(y) dy u0(x) = 0.



Let us rearrange (4.8) using equations forN andN0:

(4.9)

∫

Y

ρ(y)N(y)T dy = −
∫

Y

divy
(
a(y)∇yN

0(y)
)
N(y)T dy

=

∫

Y

∇T
yN

0(y) a(y)∇yN(y)T dy,

(4.10)

divx

{∫

Y

a(y)∇yN
0(y) dy u0(x)

}

= −divx

{∫
Y

divya(y)N
0(y) dy u0(x)

}
=

= divx

{∫

Y

divy
(
a(y)∇yN(y)T

)
N0(y) dy u0(x)

}
=

= −
∫

Y

∇T
yN

0(y) a(y)∇yN(y)T dy,

(4.11)

ν2
∫

Y

ρ(y)N0(y) dy u0(x) = −ν2
∫

Y

divy
(
a(y)∇yN

0(y)
)
N0(y) dy u0(x) =

= ν2
∫

Y

∇T
yN

0(y) a(y)∇yN
0(y) dy u0(x) ≡ ν2 κ2 u0(x),

where we have set

(4.12) κ2 =

∫

Y

∇T
yN

0(y) a(y)∇yN
0(y) dy.

Notice that the sum of the right-hand sides in (4.9) and (4.10) is equal to zero. Conse-
quently, (4.8) (supplemented with an appropriate boundarycondition) takes the form

(4.13)

{
Lhomu0(x) ≡ −divx

(
ahom∇xu

0(x)
)
= ν2 κ2 u0(x), x ∈ Ω,

u0(x) = 0, x ∈ ∂Ω,

with a positive definite symmetric homogenized matrixahom defined by the formula

(4.14) ahom ≡
∫

Y

(
a(y) + a(y)∇yN(y)

)
dy.

Although (4.13) is a spectral problem for a quadratic operator pencil with respect toν, it
is not difficult to characterize its spectrum introducing the new spectral parameterτ = ν2.
Indeed, the spectrum of (4.13) consists of two sequences

(4.15)
0 < ν0,+1 < ν0,+2 ≤ · · · ≤ ν0,+j ≤ · · · → +∞,

0 > ν0,−1 > ν0,−2 ≥ · · · ≥ ν0,−j ≥ · · · → −∞.



with ν0,−j = −ν0,+j , j = 1, 2, . . . , and with the corresponding eigenfunctionsu0,+j = u0,−j .
In what follows, omitting the indices±, we will denote themu0j . The notationκj will be
used for the multiplicity ofν0,±j .

For the eigenfunctionsu0j we choose the following orthogonality and normalization
condition:

(4.16) (ahom∇u0i ,∇u0j)Ω + ν0i ν
0
i κ

2 (u0i , u
0
j)Ω = δi,j.

Although, at first sight, such a choice seems to be odd, it ensures the convergence of
energies. It should be noted that the first positive and negative eigenvaluesν0,±1 are simple.

REMARK 4.1. SinceΩ is aC2,δ-domain, then, as in the case〈ρ〉 > 0, u0j areC2,δ(Ω)-
functions (see [6]). Moreover, in the interior of the domainΩ the eigenfunctionsu0j are
C∞-functions (see [6]).

4.3. Justification procedure in the case〈ρ〉 = 0. Let ν0,±j be eigenvalues of the oper-
ator pencil (4.13) of multiplicityκj that is±ν0,±j−1 < ±ν0,±j = ±ν0,±j+1 = · · · = ±ν0,±j+κj−1 <

±ν0,±j+κj
, and{u0p}, p = j, · · · , j+κj − 1, be the eigenfunctions of the limit spectral prob-

lem (4.13) corresponding toν0,±j . We denoteΩγ = {x ∈ Ω : dist(x, ∂Ω) ≥ γ}. Let χε

be a cut-off function which is equal to0 in Ω \ Ωhε, h >
√
d, equal to1 in Ω2hε, and is

such that

(4.17) 0 ≤ χε(x) ≤ 1, |∇χε(x)| ≤ Cε−1.

The justification procedure will rely on the lemma about ”almost eigenvalues and
eigenfunctions” (see, for example, [14], [12] and [9]).

LEMMA 4.2. Given a self-adjoint operatorKε : H → H, let ν ∈ R and v ∈ H be
such that

‖v‖H = 1, δ ≡ ‖Kε v − ν v‖H < |ν|.
Then there exists an eigenvalueµε

l of the operatorKε such that

|µε
l − ν| ≤ δ.

Moreover, for anyδ1 ∈ (δ, |ν|) there exist coefficients{bεj} ∈ R satisfying

‖v −
∑

bεju
ε
j‖H ≤ 2

δ

δ1
,

where the sum is taken over all the eigenvalues of the operator Kε in the segment[ν −
δ1, ν + δ1], and{uεj} are the corresponding orthonormalized inH eigenfunctions. The
coefficientsbεj are normalized by

∑
|bεj |2 = 1.

For an arbitraryp ∈ {j, . . . , j + κj − 1}, denote

(4.18) Uε,±
p (x) ≡ u0p(x) + ε χε(x)N

(x
ε

)T ∇u0p(x) + ε ν0,±j N0
(x
ε

)
u0p(x),



whereN(y) andN0(y) solve problems (4.5) and (4.6), respectively. The normalized
functionsUε,+

p ≡ ‖Uε,+
p ‖−1

H Uε,+
p and the numbersε(ν0,+j )−1 will play the role ofv ∈ H

andν ∈ R in Lemma 4.2. Notice that∇u0p need not be equal to zero on the boundary∂Ω;
the cut-off function has been introduced in order to make theapproximate solution (4.18)
an element of the spaceH.

We are going to estimate
∥∥Kε Uε,±

p − ε(ν0,±j )−1 Uε,±
p

∥∥
H
= sup

v∈H
〈v,v〉=1

∣∣〈Kε Uε,±
p − ε(ν0,±j )−1 Uε,±

p , v〉
∣∣ =

= ε(ν0,±j )−1 ‖Uε,±
p ‖−1

H sup
v∈H

〈v,v〉=1

∣∣〈ε−1 ν0,±j Kε Uε,±
p − Uε,±

p , v 〉
∣∣ =

= ε(ν0,±j )−1 ‖Uε,±
p ‖−1

H sup
v∈H

〈v,v〉=1

∣∣aε(Uε,±
p , v)− ε−1 ν0,±j

(
ρε Uε,±

p , v
)
Ω

∣∣ =

= ε(ν0,±j )−1‖Uε,±
p ‖−1

H sup
v∈H

〈v,v〉=1

∣∣(Lε Uε,±
p − ε−1 ν0,±j ρε Uε,±

p , v
)
Ω

∣∣ =

= ε(ν0,±j )−1 ‖Uε,±
p ‖−1

H sup
v∈H

〈v,v〉=1

∣∣ε−1(Iε1 , v)Ω + ε0(Iε2 , v)Ω + ε1(Iε3 , v)Ω
∣∣,

where

Iε1(x) =
{
− divy

[
a(y)∇yN(y)∇xu

0
p(x))

]
χε(x)− divy

[
a(y)∇xu

0
p(x)

]
−

− ν0,±j divy
[
a(y)∇yN

0(y) u0p(x)
]
− ν0,±j ρ(y) u0p(x)

}∣∣∣
y=x/ε

=

= −divya·i(y) ∂xi
u0p(x)

(
1− χε(x)

)∣∣∣
y=x/ε

;

Iε2(x) =
{
− divx

[
a(y)∇yN(y)∇u0p(x)

]
χε(x)

−∇T
xχε(x) a(y)∇yN(y)∇u0p(x)−

− ν0,±j divx
[
a(y)∇yN

0(y) u0p(x)
]
− divx

[
a(y)∇u0p(x)

]
−

− ν0,±j ρ(y)χε(x)N(y)T ∇xu
0
p(x)− (ν0,±j )2 ρ(y)N0(y) u0p(x)

}∣∣∣
y=x/ε

;

Iε3(x) =
{
−
[
divx + ε−1divy

] (
a(y)∇x

(
χε(x)N(y)T ∇u0p(x)

))
−

− ν0,±j

[
divx + ε−1divy

](
a(y)N0(y)∇xu

0
p(x)

)}∣∣∣
y=x/ε

.



Integrating by parts, and considering the regularity ofu0p, we obtain

ε−1
∣∣(Iε1 , v)Ω

∣∣ = ε−1
∣∣∣
∫

Ω

ε∇T
y

(
(1− χε(x)) v(x)

)
a·i
(x
ε

)
∂xi
u0p(x) dx

∣∣∣ ≤

≤ C1

∫

Ω\Ωhε

{
|v(x)|+ |∇xv(x)|

}
(1− χε(x)) dx

+C2

∫

Ω\Ωhε

|v(x)| |∇xχε(x)| dx.

By (4.17), Lemma 4.3 formulated below, and the Cauchy-Bunyakovsky inequality we get

(4.19) ε−1
∣∣(Iε1 , v)Ω

∣∣ ≤ C
√
ε;

here we have also used the fact that the measure ofΩ \Ωhε is of orderε. The proofs of the
following auxiliary inequalities of Hardy’s type can be found, for example, in [9].

LEMMA 4.3. Let v ∈ H1
0 (Ω). Then

‖v‖L2(∂Ωγ ) ≤ C
√
γ ‖∇v‖L2(Ω);

‖v‖L2(Ω\Ωγ ) ≤ C γ ‖∇v‖L2(Ω).

Denote byW 1,∞
# (Y ) a space of periodic functionsv with the norm

‖v‖W 1,∞
# (Y ) = ‖v‖L∞(Y ) + ‖∇v‖L∞(Y ).

LEMMA 4.4. Let 〈g〉 be the mean value ofg over the periodicity cellY , f ∈ H1(Ω)
and g ∈ L2(Y ) (or, alternatively,f ∈ W 1,∞

# (Y ) and g ∈ L1(Y )). Then the following
inequality is valid:

∣∣∣∣∣∣

∫

Ω

χε(x)f(x)g
(x
ε

)
dx− 〈g〉

∫

Ω

f(x) dx

∣∣∣∣∣∣
≤ C ε‖f‖ ‖g‖

with the corresponding norms of the functionsf andg, the constantC does not depend on
ε, f andg.

The proof of Lemma 4.4 can be found, for example, in [5] and [11].



In order to estimate(Iε2 , v)Ω we rearrangeIε2 as follows:

Iε2(x) = −
{
divx

[
a(y)∇yN(y)∇xu

0
p(x)

]
+ divx

[
a(y)∇xu

0
p(x)

]
+

+ ν0,±j divx
[
a(y)∇yN

0(y) u0p(x)
]
+ ν0,±j ρ(y)N(y)T ∇xu

0
p(x) +

+(ν0,±j )2 ρ(y)N0(y) u0p(x)
} ∣∣∣

y=x/ε
χε(x)−

−
[
ν0,±j divx

[
a(y)∇yN

0(y) u0p(x)
]
+ divx

[
a(y)∇xu

0
p(x)

]
+

+ (ν0,±j )2 ρ(y)N0(y) u0p(x)
] ∣∣∣

y=x/ε

(
1− χε(x)

)

−∇T
xχε(x) a(y)∇yN(y)∇xu

0
p(x)

∣∣∣
y=x/ε

≡

≡ f ε
1 (x)χε(x) + f ε

2 (x) (1− χε(x)) + f ε
3 (x);

Since the expression in the braces has zero mean (see (4.8)),we, by Lemma 4.4, have

(4.20) |
(
f ε
1 χε, v

)
Ω
| ≤ C ε.

Taking into account the boundedness of the coefficients, Remark 4.1, formula (4.17) and
the properties ofN0 as a solution of (4.6), one can check up that

∣∣(f ε
2 (1− χε), v

)
Ω

∣∣ ≤ C
√
ε ‖∇yN

0‖L2(Ω\Ωhε) ‖v‖L2(Ω\Ωhε)+

+C|Ω \ Ωhε|1/2 ‖v‖L2(Ω\Ωhε) ≤ C ε3/2‖v‖H1(Ω).

Here|Ω\Ωhε| is the Lebesgue measure of the setΩ\Ωhε. By similar arguments, we derive
the estimate

∣∣(f ε
3 ∇χε, v

)
Ω

∣∣ ≤ C ε−1
( ∫

Ω\Ωhε

|∇yN(y)T |2
∣∣
y=x/ε

dx
)1/2 ‖v‖L2(Ω\Ωhε)

≤ C
√
ε ‖v‖H1(Ω).

Consequently,

(4.21) |(Iε2 , v)Ω| ≤ C
√
ε.



In view of (4.17) integrating by parts yields

|ε (Iε3 , v)Ω| ≤ ε

∣∣∣∣∣∣

∫

Ω

∇T v(x) aε(x)∇χε(x)N
T
(x
ε

)
∇u0p(x) dx

∣∣∣∣∣∣
+

+ε

∣∣∣∣∣∣

∫

Ω

∇Tv(x) aε(x)∇x(N(y)T ∇u0p(x))
∣∣
y=x/ε

χε(x) dx

∣∣∣∣∣∣
+

+ε

∣∣∣∣∣∣

∫

Ω

∇Tv(x) aε(x)∇u0p(x)N0
(x
ε

)
dx

∣∣∣∣∣∣
≤

≤ C |Ω \ Ωhε|1/2‖∇v‖L2(Ω) + Cε‖∇v‖L2(Ω).

Finally,

(4.22) |ε (Iε3, v)Ω| ≤ C
√
ε.

LEMMA 4.5. ”Almost eigenfunctions”Uε,±
p = ‖Uε,±

p ‖−1
H Uε,±

p , p = j, · · · , j + κj −
1, whereUε,±

p is defined by(4.18), are ”almost orthonormal”. Namely, the following
inequality holds true:

(4.23)
∣∣〈Uε,±

p ,Uε,±
q 〉 − δp,q

∣∣ ≤ C ε, p, q = j, · · · , j + κj − 1.

Proof. 1. First, we calculate the gradient of the functionUε,±
p :

∇Uε,±
p (x) =

{
∇xu

0
p(x) +∇yN(y)∇xu

0
p(x)

+ν0,±j ∇yN
0(y) u0p(x)

}∣∣
y=x/ε

χε(x)+

+ε
{
∇x(N(y)T∇xu

0
p(x)) + ν0,±j ∇yN

0(y) u0p(x)
}∣∣

y=x/ε
χε(x)+

+
[{

∇xu
0
p(x) + ν0,±j ∇yN

0(y) u0p(x)
}
(1− χε(x))

+εN(y)T∇xu
0
p(x)∇xχε(x)

]∣∣
y=x/ε

≡

≡ χε(x) J
ε
1p(x) + εχε(x)J

ε
2p(x) + Jε

3p(x).

Then〈Uε,±
p , Uε,±

q 〉 takes the form

(aε ∇Uε,±
p ,∇Uε,±

q )Ω = (aεχεJ
ε
1p, χεJ

ε
1q)Ω + ε(aεχεJ

ε
1p, χεJ

ε
2q)Ω

+(aεχεJ
ε
1p, J

ε
3q)Ω + ε(aεχεJ

ε
2p, χεJ

ε
1q)Ω + ε2(aεχεJ

ε
2p, χεJ

ε
2q)Ω

+ε(aεχεJ
ε
2p, J

ε
3q)Ω + (aεJε

3p, χεJ
ε
1q)Ω + ε(aεJε

3p, χεJ
ε
2q)Ω

+(aεJε
3p, J

ε
3q)Ω.

2. Let us proceed with proving that

(4.24)
∣∣(aεχεJ

ε
1p, χεJ

ε
1q)Ω − δp,q

∣∣ ≤ C ε.



We have

(aεχεJ
ε
1p, χεJ

ε
1q)Ω =

∫

Ω

χ2
ε(x)∇T

xu
0
p

[
a+ (∇yN

T )T a
]∣∣∣

y=x/ε
∇xu

0
p dx+

+

∫

Ω

χ2
ε(x) ν

0,±
j

{
∇T

yN
0(y) a(y) +∇T

yN
0(y) a(y)∇yN(y)T

}∣∣
y=x/ε

×u0q(x)∇xu
0
p(x) dx+

+

∫

Ω

χ2
ε(x)∇T

xu
0
q(x)

{
a(y)∇yN(y)T

+(∇yN(y)T )T a(y)∇yN(y)T
}∣∣

y=x/ε

∇xu
0
p(x) dx+

+

∫

Ω

χ2
ε(x) ν

0,±
j ∇T

xu
0
q(x)

{
a(y)∇T

yN
0(y)

+∇T
yN

0(y) a(y)∇yN(y)T
}∣∣

y=x/ε

u0p(x) dx+

+

∫

Ω

χ2
ε(x) (ν

0,±
j )2∇T

yN
0(y) a(y)∇yN

0(y)∣∣
y=x/ε

u0p(x) u
0
q(x) dx.

Notice that the mean value of the expression in square brackets coincides with the homog-
enized matrix (see (4.14)). Integrating by parts one can show that all expressions in braces
have zero mean, and, by definition,

∫

Y

∇T
yN

0(y) a(y)∇yN
0(y) dy ≡ κ2.

Thus, by Lemma 4.4,
∣∣∣(aε χεJ

ε
1p, χεJ

ε
1q)Ω − (ahom ∇u0p,∇u0q)Ω − (ν0,±j )2 κ2 (u0p, u

0
q)Ω

∣∣∣ ≤ C ε.

Taking into account the orthogonality and normalization condition (4.16), we obtain
∣∣∣(aε χεJ

ε
1p, χεJ

ε
1q)Ω − δp,q

∣∣∣ ≤ C ε.

In particular, theL2(Ω)-norm ofχεJ
ε
1p is bounded for a smallε > 0:

(4.25) ‖χεJ
ε
1p‖2L2(Ω) ≤ 1 + C ε ≤ C̃.

3. At this step we show that

(4.26)
∣∣(aε∇Uε,±

p ,∇Uε,±
q )Ω − (aεχεJ

ε
1p, χεJ

ε
1q)Ω

∣∣ ≤ C ε.

Combining (4.25) with the evident estimate

(4.27)
∣∣∣ε2
∫

Ω

χ2
ε(x) (J

ε
2p(x))

2 dx
∣∣∣ ≤ Cε2,



we obtain

(4.28) 2ε
∣∣∣(aε χε J

ε
1p, χε J

ε
2q)Ω

∣∣∣ ≤ C ε.

From (4.17), Remark 4.1 and the bound|Ω \ Ωhε| ≤ cε, it follows that

‖Jε
3p‖2L2(Ω) ≤

∫

Ω

(1− χε(x))
2 (|∇xu

0
p(x)|2

+ν0,±j |∇yN
0(y)|2∣∣

y=x/ε

(u0p(x))
2) dx

+ε2
∫

Ω

|∇xχε(x)|2 |N(x/ε)T ∇xu
0
p(x)|2 dx

≤ C(|Ω \ Ωhε|+ ε+ ε2 ε−2|Ω \ Ωhε|) ≤ C ε.

The last estimate together with (4.27) gives

(4.29) ε
∣∣∣(aε χε J

ε
2p, J

ε
3q)Ω

∣∣∣ ≤ C ε3/2.

As regards to the term(aεχεJ
ε
1p, J

ε
3q)Ω, it is not difficult to show that

(4.30)
∣∣∣(aεχεJ

ε
1p, J

ε
3q)Ω

∣∣∣ ≤ Cε.

Now (4.27)–(4.30) imply (4.26) which, in turn, together with (4.24) leads to the inequality

(4.31)
∣∣∣(aε∇Uε,±

p ,∇Uε,±
q )Ω − δp,q

∣∣∣ ≤ C ε.

In particular, the last estimate yields

(4.32) ‖Uε,±
p ‖2H ≥ 1

2
, ε ∈ (0, ε0).

SinceUε,±
p = ‖Uε,±

p ‖−1
H Uε,±

p , we have
∣∣∣〈Uε,±

p ,Uε,±
q 〉 − δp,q

∣∣∣ = ‖Uε,±
p ‖−2

H

∣∣∣〈Uε,±
p , Uε,±

q 〉 − ‖Uε,±
p ‖2H δp,q

∣∣∣ ≤

≤ ‖Uε,±
p ‖−2

H

∣∣∣〈Uε,±
p , Uε,±

q 〉 − δp,q

∣∣∣+ ‖Uε,±
p ‖−2

H δp,q

∣∣∣1− ‖Uε,±
p ‖−2

H

∣∣∣.

The last inequality, (4.31) and (4.32) result in (4.23). Lemma is proved.�
Taking into account (4.19), (4.21), (4.22) and (4.32), we obtain the estimate

(4.33)
∥∥Kε Uε,±

p − ε(ν0,±j )−1 Uε,±
p

∥∥
H
≤ C ε3/2.

By Lemma 4.2, there exists an eigenvalueµε,±
qj

of the operatorKε, whereqj might depend
onε, such that

(4.34) |µε,±
qj

− ε(ν0,±j )−1| ≤ C ε3/2.

Sinceλε,±qj
= (µε,±

qj
)−1, there existεj > 0 and a constantcj such that

|λε,±qj
− ε−1ν0,±j | ≤ cj ε

−1/2, ε ∈ (0, εj).



Moreover, lettingδ1 in Lemma 4.2 be equal toΘj ε
3/2 (the constantΘj will be chosen

below), we conclude that there exists aKj(ε)× κj constant matrixαε such that
∥∥∥∥U

ε,±
p −

Jj+KJ(ε)−1∑

k=Jj

αε
kp u

ε,±
k

∥∥∥∥
H

≤ 2
Cε3/2

δ1
≤ CjΘ

−1
j , p = j, · · · , j + κj − 1,

hereµε,±
Jj(ε)

, ..., µε,±
Jj(ε)+Kj(ε)−1 are all the eigenvalues of the operatorKε which satisfy the

estimate

(4.35) |µε,±
k − ε(ν0,±j )−1| ≤ Θj ε

3/2.

Since the eigenvaluesν0,±j do not depend onε, one can choose the constantsεj >
0 such that the intervals(ε(ν0,±j )−1 − Θjε

3/2 , ε(ν0,±j )−1 + Θjε
3/2) and (ε(ν0,±k )−1 −

Θkε
3/2 , ε(ν0,±k )−1 + Θkε

3/2) do not intersect under the conditionν0,±j 6= ν0,±k andε <
min{εj, εk}. Then the eigenvalue sets{µε,±

k } related to differentν0,±j in (4.35) do not
intersect for a smallε.

Thus, we conclude that, for anyν0,±j of multiplicity κj , there existKJ(ε) eigenvalues
λε,±k of problem (2.1) such that

(4.36) |ε λε,±k − ν0,±j | ≤ Θj ε
1/2, ε ∈ (0, εj),

and the functionsUε±
p admit the approximation

(4.37)

∥∥∥∥U
ε,±
p −

Jj(ε)+KJ (ε)−1∑

k=Jj(ε)

αε
kp u

ε,±
k

∥∥∥∥
H

≤ Cj Θ
−1
j , p = j, · · · , j + κj − 1,

DenoteJ(j) = min{i ∈ Z+ : ν0,±i = ν0,±j }. The main result of this section is given
in the following theorem.

THEOREM 4.6. Assume thataij , ρ ∈ L∞(Y ) are periodic functions, and the function
ρ has zero mean. Letν0,±j be an eigenvalue of the Dirichlet problem(4.13)of multiplicity
κj . Then the following statements hold true:

(1) For eachj = 1, 2, . . . , there existεj > 0 and a constantcj such that only the
eigenvaluesλε,±J(j), · · · , λ

ε,±
J(j)+κj−1 of problem(2.1)satisfy the inequality

|ε λε,±q − ν0,±j | ≤ cj ε
1/2, ε ∈ (0, εj).

(2) There exists a unitaryκj × κj matrixβε such that

(4.38)

∥∥∥∥u
ε,±
p −

J(j)+κj−1∑

k=J(j)

βε
kp Ũ

ε,±
k

∥∥∥∥
H1(Ω)

≤ Cj ε
1/2,

wherep = J(j), · · · , J(j) + κj − 1 and

(4.39) Ũε,±
k (x) = u0k(x) + εN

(x
ε

)T ∇u0k(x) + ε ν0,±j N0
(x
ε

)
u0k(x).



Here the functionsN,N0 solve problems(4.5)and(4.6), respectively; eigenfunc-
tionsu0k of the limit problem(4.13)satisfy the orthogonality and normalization
condition(4.16).

”Almost eigenfunctions”{Ũε,±
k } are ”almost” orthogonal and normalized in

the following sense:

(4.40)
∣∣∣〈Ũε,±

k , Ũε,±
l 〉 − δk,l

∣∣∣ ≤ C ε1/2.

REMARK 4.7. Since bothν0,+1 andν0,−1 are simple, forε ∈ (0, ε1), eigenvaluesλε,±1

are simple owing to Theorem 4.6.

Proof of Theorem 4.6. The proof consists of the several steps. First, we show that
columns of the matrixαε are ”almost” orthonormal, and from this deduce thatKJ(ε) ≥
κj . Then we prove thatJj(ε) = J(j) andKJ(ε) = κj . Finally, using properties of the
matrixαε we derive (4.38). 1. A simple transformation gives

〈Uε,±
p ,Uε,±

q 〉 =
〈
Uε,±
p −

Jj+KJ(ε)−1∑
k=Jj

αε
kpu

ε,±
k , Uε,±

q

〉

+
〈 Jj+KJ(ε)−1∑

k=Jj

αε
kpu

ε,±
k , Uε,±

q −
Jj+KJ(ε)−1∑

k=Jj

αε
kqu

ε,±
k

〉
+

Jj+KJ (ε)−1∑

k=Jj

αε
kp α

ε
kq.

Taking estimates (4.23) and (4.37) into account, we obtain

∣∣∣
Jj+KJ (ε)−1∑

k=Jj

αε
kp α

ε
kq − δp,q

∣∣∣ ≤ C Θ−1
j ,

and, in other words,

(4.41)
∣∣(αε

·p)
T αε

·q − δp,q
∣∣ ≤ C Θ−1

j ,

whereαε
·p denotes apth column in the matrixαε, andp, q = J(j), · · · , J(j) + κj − 1.

The last inequality means that the vectors{αε
·p}

J(j)+κj−1

p=J(j) are asymptotically orthonormal.
This property implies the linear independence of the vectors {αε

·p}. Indeed, assume that

{αε
·p}

J(j)+κj−1

p=J(j) are not linearly independent. Then there exist constantscJ(j), · · · , cJ(j)+κj−1

such that
J(j)+κj−1∑

k=J(j)

ck α
ε
·k = 0.

Without loss of generality we assume thatcJ(j) = 1 ≥ maxk |ck|. Then

αε
·,J(j) +

∑

k>J(j)

ck α
ε
·k = 0.

Multiplying the last equality byαε
·,J(j) and using (4.41) we obtain the inequality

∣∣(αε
·,J(j))

T αε
·,J(j)

∣∣ ≤ Cj Θ
−1
j ,



that contradicts (4.41) ifΘj is small. Thus, the vectors{αε
·p}

J(j)+κj−1

p=J(j) of lengthKJ(ε) are
linearly independent. Obviously, it is possible only in thecaseKJ(ε) ≥ κj .

2. Our next goal is to prove that any accumulating point of thesequenceελε,±j , as
ε→ 0, is an eigenvalue of problem (4.13).

LEMMA 4.8. Assume that, for an infinitesimal positive sequence{εk}, there exists a
sequence{j(k)} such that

εkλ
εk,+
j(k) −→

k→∞
β or εkλ

εk,−
j(k) −→

k→∞
β.

Thenβ is an eigenvalue of the limit problem(4.13).
Furthermore, for anyj, perhaps along a subsequence,ελε,±j does converge to an

eigenvalue of the Dirichlet problem(4.13).

Proof of Lemma 4.8. Note first that due to the inequalityKj(ε) ≥ κj and (4.36),
the sequence{ελε,±j } is bounded for anyj. Therefore, the second statement of Lemma
follows from the first one.

Since the eigenpair{λεk,±j(k) , u
εk,±
j(k) } solves problem (2.2), integrating by parts yields

(4.42)
(
uεk,±j(k) ,LεkV − λεk,±j(k) ρ

εk V
)
Ω
= 0, V ∈ H1

0 (Ω).

In view of the normalization condition (2.6), up to a subsequence,uεk,±j(k) converges weakly
in H1

0 (Ω) to some function̄u±:

(4.43) uεk,±j(k) → ū± weakly inH1
0 (Ω), εk → 0.

In order to show thatβ is an eigenvalue of problem (4.13), for anyv ∈ C∞
0 (Ω) we substi-

tute into (4.42) a test function in the form

V ε(x) ≡ v(x) + εN
(x
ε

)T ∇xv(x) + ε2 λε,±j N0
(x
ε

)
v(x)

whereN andN0 solve problems (4.5) and (4.6), respectively. Let us calculate the expres-
sionLεV ε − λε,±j ρεV ε:

LεV ε(x)− λε,±j ρε(x)V ε(x)

=
{
− divx

(
a(y)∇xv(x)

)
− divx

(
a(y)∇yN(y)∇xv(x)

)

− ε λε,±j divx
(
a(y)∇yN

0(y) v(x)
)
− ε λε,±j ρ(y)N(y)T ∇xv(x)

−(ε λε,±j )2ρ(y)N0(y) v(x)
}∣∣∣

y=x/ε

−ε [divx + ε−1divy]
(
a(y)∇x(N(y)T ∇xv(x))

) ∣∣∣
y=x/ε

−ε2λε,±j [divx + ε−1divy]
(
a(y)N0(y)∇xv(x))

) ∣∣∣
y=x/ε

≡ Iε1(x, y)
∣∣∣
y=x/ε

+ Iε2(x) + Iε3(x).



Recalling the definition ofahom andκ, one sees that the mean value of the expression in
braces takes the form∫

Y

Iε1(x, y) dy = −div(ahom∇v)− (ε λε,±j )2κ2 v(x).

In view of (4.43), we have
(
uεk,±j(k) ,

∫

Y

Iε1(·, y) dy
)
Ω
−→
εk→0

(
ū±,−div(ahom∇v)− β2κ2 v(x)

)
Ω
.

Considering (4.43) and the smoothness ofv, Lemma 4.4 provides that
(
uεk,±j(k) , Iε

1 −
∫

Y

Iε1(·, y) dy
)
Ω
→ 0, ε→ 0, Iε

1(x) ≡ Iε1
(
x,
x

ε

)
.

Then, integrating by parts and using the boundedness ofa(y) and regularity properties of
N andN0, we estimate(uεk,±j(k) , I

ε
2)Ω and(uεk,±j(k) , I

ε
3)Ω as follows

∣∣(uεk,±j(k) , I
ε
2)Ω
∣∣ =

∣∣∣εk
∫

Ω

∇Tuεk,±j(k) a
εk(x)∇x(N(y)T∇xv(x))

∣∣
y=x/εk

dx
∣∣∣ ≤

≤ C εk‖∇uεk,±j(k) ‖L2(Ω) ≤ Cεk;

∣∣(uεk,±j(k) , I
ε
3)Ω
∣∣ =

∣∣∣ε2k λεk,±j(k)

∫

Ω

∇Tuεk,±j(k) a
εk(x)N0

( x
εk

)
∇xv(x) dx

∣∣∣ ≤

≤ C εk‖∇uεk,±j(k) ‖L2(Ω) ≤ Cεk.

In such a way passing to the limit in the integral identity (4.42) leads to the equality
(
ū±,Lhomv − (β)2 κ2 v

)
Ω
= 0, v ∈ C∞

0 (Ω).

Integrating by parts gives
(
Lhomū± − (β)2 κ2 ū±, v

)
Ω
= 0, v ∈ C∞

0 (Ω).

Since the spaceC∞
0 (Ω) is dense inH1

0(Ω), the last equality holds for anyv ∈ H1
0 (Ω), that

means{β, ū±} to be an eigenpair of problem (4.13) ifū± 6= 0. Let us assume thatuεk,±j(k)

converges weakly inH1(Ω) to ū± ≡ 0, asεk → 0. By the definition of the eigenpair
{λεk,±j(k) , u

εk,±
j(k) } and normalization condition (2.6) we have

1 = aεk(uεk,±j(k) , u
εk,±
j(k) ) = λεk,±j(k) (ρ

εkuεk,±j(k) , u
εk,±
j(k) )Ω.

In the same way as in the proof of Lemma 4.4 one shows that

(ρεkuεk,±j(k) , u
εk,±
j(k) )Ω ≤ Cεk‖uεk,±j(k) ‖L2(Ω)‖∇uεk,±j(k) ‖L2(Ω)

Combining the last two relations and taking into account theestimate|εkλ±j(k)| ≤ C, we
conclude that

‖uεk,±j(k) ‖L2(Ω) ≥ C > 0.

Thus,‖ū±‖ ≥ C > 0. We arrive at contradiction. Lemma 4.8 is proved.�



Assume thatKJ(εk) > κj for some sequenceεk → 0. It means that there existcj > 0
and at leastκj + 1 eigenvaluesλεk,±l of problem (2.1) such that

|εkλεk,±l − ν0,±j | ≤ cjε
1/2
k , l = Jj(εk), · · · , Jj(εk) + κj .

Then by Lemma 4.8 the corresponding eigenfunctionsuεk,±l converge to eigenfunctions
{ū±r }

κj+1
r=1 of the Dirichlet problem (4.13):

Lhomū±r = (ν0,±j )2 κ2 ū±r , r = 1, 2, . . . ,κj + 1.

It is straightforward to check that the functions{ū±r }
κj+1
r=1 are linearly independent. In

order to prove the linear independence of the obtained eigenfunctionsū±l we consider a
linear combinatioñuε,± =

∑Jj+κj

l=Jj
clu

ε,±
l , where the constantscl are chosen in such a way

that
∑Jj+κj

l=Jj
|cl|2 = 1. Thenũε,± is an eigenfunction ofLε. By Lemma 4.8 it converges

to the functionũ± =
∑Jj+κj

l=Jj
clū

±
l 6= 0, which implies the linear independence of the

eigenfunctions functions{ū±l }
Jj+κj

l=Jj
corresponding to the eigenvalueν±j . Therefore, the

multiplicity of ν0,±j is greater than or equal toκj + 1 which contradicts our assumption.
Thus,KJ(ε) = κj . Combining this relation with the fact that for eachj ∈ Z

+, any
accumulating point of the sequenceελε,±j , asε → 0, is an eigenvalue of the homogenized
problem, we conclude that

lim
ε→0

ελε,±j = ν0,±j .

This completes the proof of the first statement of Theorem 4.6.
3. In order to prove the second statement in the theorem, we come back to bound

(4.33) and apply the estimate in Lemma 4.2 withδ1 = cjε, cj being a sufficiently small
constant. In our case this estimate reads∥∥∥∥U

ε,±
p −

∑

k∈S(j,ε)

αε
kp u

ε,±
k

∥∥∥∥
H

≤ 2
Cε3/2

δ1
≤ Cjε

1/2 ,

herep = j, · · · , j+κj − 1; S(j, ε) is the set of eigenvaluesµε,±
k of the operatorKε which

satisfy the estimate

(4.44) |µε,±
k − ε(ν0,±j )−1| ≤ cj ε;

the constant matrixαε is such that

(4.45)
∣∣(αε

·p)
T αε

·q − δp,q
∣∣ ≤ Cj ε

1/2, p, q = J(j), · · · , J(j) + κj − 1,

From the first statement of the theorem we deduce that for sufficiently smallε > 0 the set
S(j, ε) coincides with the set{J(j), . . . , J(j)+κj−1}. Hence, forp = j, · · · , j+κj−1,
we have

(4.46)

∥∥∥∥U
ε,±
p −

J(j)+κj−1∑

k=J(j)

αε
kp u

ε,±
k

∥∥∥∥
H

≤ 2
Cε3/2

δ1
≤ Cjε

1/2,



with κj × κj matrixαε which meets (4.45). It remains to use the following simple state-
ment.

LEMMA 4.9. For anyn× n matrixA satisfying an equality

‖ATA− I;Rn → R
n‖ = γ ∈ (0, 1),

there exists a unitary matrixB such that

‖AB − I;Rn → R
n‖ ≤ γ;

hereI is a unit matrix and

‖D;Rn → R
n‖ = sup

ξ∈Rn

‖ξ;Rn‖=1

‖Dξ;Rn‖.

We omit the proof of this lemma which can be found in [9].
According to (4.45) and Lemma 4.9, there exists a unitaryκj ×κj matrixβε such that

(4.47) ‖αε βε − I;Rκj → R
κj‖ ≤ Cε1/2.

If we denote byUε,±

J̄
, Uε,±

J̄
anduε,±

J̄
the vectors(Uε,±

J(j), . . . ,U
ε,±
J(j)+κj−1)

T ,

(Uε,±
J(j), . . . , U

ε,±
J(j)+κj−1)

T and(uε,±J(j), . . . , u
ε,±
J(j)+κj−1)

T , respectively, then
∥∥∥uε,±J̄

− βεUε,±

J̄

∥∥∥
Hκj

≤ 2
∥∥∥αεuε,±

J̄
− αεβεUε,±

J̄

∥∥∥
Hκj

≤
∥∥∥αεuε,±

J̄
− Uε,±

J̄

∥∥∥
Hκj

+
∥∥∥Uε,±

J̄
− Uε,±

J̄

∥∥∥
Hκj

+
∥∥∥Uε,±

J̄
− αεβεUε,±

J̄

∥∥∥
Hκj

≤ Cjε
1/2;

here we have also used (4.31), (4.47) and (4.46). The last inequality implies that
∥∥∥∥u

ε,±
p −

j+κj−1∑

m=j

βε
mp U

ε,±
m

∥∥∥∥
H

≤ Cjε
1/2.

In order to replace hereUε,±
m given by formula (4.18) with̃Uε,±

m defined by (4.39), we
estimate theH1(Ω) norm of the difference

‖Uε,±
m − Ũε,±

m ‖H1(Ω) = ε2 ‖(1− χε) (N
ε)T ∇u0m‖H1(Ω)

with N ε(x) = N ε(x/ε). Considering the properties ofχε andN(y), it is straightforward
to check that

(4.48) ‖Uε,±
m − Ũε,±

m ‖H1(Ω) ≤ Cε1/2,

which, in turn, results in (4.38).
Lemma 4.5 states that the functions{Uε,±

p }j+κj−1
p=j corresponding to the same eigen-

valueν0,±j are almost orthonormal. Letu0q be an eigenfunction of the limit problem (4.13)



which corresponds toν0,±m . Using formula (4.4) we constructUε,±
q = ‖Uε,±

q ‖−1
H Uε,±

q . By
(4.33), we have

KεUε,±
p = ε(νε,±j )−1Uε,±

p + θεp(x), ‖θεp‖H ≤ Cε3/2;

KεUε,±
q = ε(νε,±m )−1Uε,±

q + θεq(x), ‖θεq‖H ≤ Cε3/2.

Multiplying the last two relations byUε,±
q andUε,±

p in H, respectively, and subtracting
them from each other, we obtain

(4.49) 〈Uε,±
p ,Uε,±

q 〉 = ε−1
ν0,±j ν0,±m

ν0,±j − ν0,±m

[
〈θεq ,Uε,±

p 〉 − 〈θεp,Uε,±
q 〉

]
≤ Cε1/2.

This completes the proof of Theorem 4.6.�

From Theorem 4.6 we obtain the following convergence result.

COROLLARY 4.10. For the sequences of eigenvalues(2.7) and (4.15) the following
convergence result holds:

ελε,±j → ν0,±j , ε→ 0.

Moreover, ifν0,±j is a simple eigenvalue, thenλε,±j is also simple, for a smallε, and the
corresponding eigenfunctions satisfy the relations:

uε,±j −−→
ε→0

u0j strongly inL2(Ω);

uε,±j − εN
(x
ε

)T ∇u0j − ε ν0,±j N0
(x
ε

)
u0j −−→

ε→0
u0j strongly in H1(Ω);

aε ∇uε,±j ⇀
ε→0

ahom ∇u0j + ν0,±j 〈a∇N0〉 u0j weakly in L2(Ω),

where〈·〉 denotes the mean value overY .

Proof. All the statements, except for the last one, are immediate consequences of
Theorem 4.6. In order to prove the convergence of fluxes, we estimate, for an arbitrary
functionv ∈ C∞

0 (Ω), the following expression
∣∣∣
(
aε∇uε,±j − ahom ∇u0j − ν0,±j 〈a∇N0〉 u0j , v

)
Ω

∣∣∣ ≤

≤ C
∥∥∇(uε,±j − Ũε,±

j )
∥∥
L2(Ω)

∥∥v
∥∥
L2(Ω)

+
∣∣(aε ∇Ũε,±

j − ahom ∇u0j − ν0,±j 〈a∇N0〉 u0j , v
)
Ω

∣∣.

By Theorem 4.6,
∥∥∥∇(uε,±j − Ũε,±

j )
∥∥∥
L2(Ω)

≤ Cjε
1/2.



A straightforward calculation gives

a(y)∇Ũε,±
j (x)− ahom ∇u0j(x)− ν0,±j 〈a∇N0〉 u0j(x) =

=
{
(a(y) + a(y)∇yN(y))− ahom

} ∣∣∣
y=x/ε

∇xu
0
j(x)+

+ν0,±j

{
a(y)∇yN

0(y)− 〈a∇N0〉
} ∣∣∣

y=x/ε
u0j(x)+

+ε a(y)∇x(N(y)T ∇xu
0
j(x))

∣∣∣
y=x/ε

+ ε ν0,±j a(y)N0(y)∇xu
0
j(x)

∣∣∣
y=x/ε

.

The first two items on the right-hand side have zero mean, thus, by Lemma 4.4∣∣∣∣
∫

Ω

{
(a(y) + a(y)∇yN(y))− ahom

}∣∣∣
y=x/ε

v(x)∇u0j(x) dx
∣∣∣∣ ≤ Cε;

∣∣∣∣
∫

Ω

{
a(y)∇yN

0(y)− 〈a∇N0〉
}∣∣∣

y=x/ε
u0j(x) v(x) dx

∣∣∣∣ ≤ Cε;

Finally, using the boundedness ofaij(y), properties ofN0(y) and the smoothness ofu0j(x)
we have

ε

∣∣∣∣
∫

Ω

a(y)∇x(N(y)T ∇xu
0
j(x))

∣∣∣
y=x/ε

v(x) dx

∣∣∣∣ ≤ Cε;

ε ν0,±j

∣∣∣∣
∫

Ω

a(y)N0(y)
∣∣∣
y=x/ε

∇xu
0
j(x) v(x) dx

∣∣∣∣ ≤ Cε.

Summing up the obtained estimates, we arrive at the last statement in the corollary.�
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Homogenization of spectral problem for locally periodic elliptic
operators with sign-changing density function
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ABSTRACT. The paper deals with homogenization of a spectral problem for a second
order self-adjoint elliptic operator stated in a thin cylinder with homogeneous Neu-
mann boundary condition on the lateral boundary and Dirichlet condition on the bases
of the cylinder. We assume that the operator coefficients andthe spectral density func-
tion are locally periodic in the axial direction of the cylinder, and that the spectral
density function changes sign. We show that the behaviour ofthe spectrum depends
essentially on whether the average of the density function is zero or not. In both cases
we construct the effective1-dimensional spectral problem and prove the convergence
of spectra.

Keywords: Spectral problem, sign-changing density, homogenization, thin cylinder.

1. Introduction

The paper is aimed at homogenization of a spectral problem for a second order diver-
gence form elliptic operator defined in a thin cylinder of finite length with homogeneous
Neumann boundary condition on the lateral boundary of the cylinder and Dirichlet con-
ditions on the cylinder bases. We make a crucial assumption that the spectral weight
function changes sign and assume that both operator coefficients and the weight function
are locally periodic in the axial direction of the cylinder.

Under the said conditions we show that the asymptotic behaviour of the spectrum
depends essentially on whether the average of the weight function over the period is equal
to zero or not. In both cases we construct an effective model and prove the convergence
result; the estimates for the rate of convergence are also obtained.

1



The studied spectral problem might have interesting and important applications in the
modern theory of metamaterials, that is artificial composite materials engineered to pro-
duce a desired electromagnetic behavior with significantlyenhanced performance over
”natural” structures. For example, when the world is observed through conventional
lenses, the sharpness of the image is determined by and limited to the wavelength of light.
Metamaterials with negative refractive index aimed at creation of ”perfect” lenses, that is
lenses with capabilities beyond conventional (positive index) ones.

First initiated by L.S. Pontrgyagin in [15], the qualitative theory of spectral problems
in spaces with indefinite metric was further developed by M.G. Krein ([7]), I.S. Iokhvidov
([4]) and other mathematicians. The detailed presentation of this theory can be found, for
example, in books [1], [16].

The homogenization of spectral problems in the case of positive weight functions was
considered in [5], [6], [17], then in [13] for elasticity system and then in many other works.
However, the presence of sign-changing weight function makes the problem nonstandard
and leads to new interesting phenomena. For operators with pure periodic coefficients
defined in a fixed (not asymptotically thin) domains similar problems have been studied in
the recent works [11], [12]. In contrast with problems investigated in these works, for the
model considered in the present paper the limit spectral problem is one-dimensional, so
that dimension reduction arguments are to be used. We combine the asymptotic expansion
technique with the singular measure approach developed in [20] and [2].

For the density function having positive average the effective spectral problem happens
to be a Sturm-Liouville problem. In this case the convergence of the positive part of the
spectrum is justified by means of convergence in variable spaces with singular measures.

In the case of zero average weight function the limit spectral problem is that for a
quadratic operator pencil. To study this operator pencil weapply the results from [8]
combined with usual arguments used when studying Sturm-Liouville problems. It should
be noted that in contrast with [12], the presence of slow variable in the coefficients makes
the limit operator pencil nontrivial, so that it can not be reduced to the standard Sturm-
Liouville problem.

The fact that the considered operator is defined in a thin cylinder allows us to build
boundary layer correctors in the neighbourhood of the cylinder bases and, as a result,
improve essentially the asymptotics. As a matter of fact, ifthe coefficients are sufficiently
regular, then arbitrary many terms in the asymptotic expansion can be constructed. The
existence of exponentially decaying boundary layer correctors is assured by the results
obtained in [14].

In the last section we address the case when the local averageof the weight function
changes sign. In this case the convergence of both, positiveand negative parts of the
spectrum is justified.

The asymptotics of negative part of the spectrum in the case of positive average of the
density function will be treated in a separate publication.



The paper is organized as follows. Section 2 contains the statement of the problem
together with some preliminary results concerning the structure of the spectrum of the
original operator. In Section 3.1 we construct the formal asymptotic expansion in the case
when the average of the weight function over the period is positive. The justification of the
homogenization procedure is given in Section 3.2. Section 4is devoted to the case when
the average of the weight function is equal to zero. In Section 5 the case when the average
of the weight function changes sign is considered.

2. Problem setup and main results

LetQ be a boundedC2,α domain inRd−1 with a boundary∂Q. The points inRd are
denotedx = (x1, x

′), wherex′ = x2, ..., xd. Denote byGε a thin rod[−1, 1]×εQ with the
lateral boundaryΣε = (−1, 1)× ∂(εQ) and the basesS±1 = {±1} × εQ. In the cylinder
Gε we consider the following spectral problem:

(2.1)





Aεuε(x) ≡ −div
(
aε(x)∇uε(x)

)
= λε ρε(x) uε(x), x ∈ Gε,

Bεuε(x) ≡ (aε∇uε, n) = 0, x ∈ Σε,

uε(−1, x′) = uε(1, x′) = 0, x ∈ ∂(εQ).

with

aε(x) = a
(
x1,

x

ε

)
, ρε(x) = ρ

(
x1,

x

ε

)
,

wherea(x1, y) is a symmetricd × d matrix andρ(x1, y) is a scalar function;(·, ·) is the
inner product inRd. We assume the following conditions to hold:

(H0) aij(x1, y), ρ(x1, y) ∈ C1,α([−1, 1];Cα(Y )) for someα > 0. HereY = S1 × Q
denotes the periodicity cell,S1 is a unit circle;

(H1) Functionsaij(x1, y) andρ(x1, y), are1-periodic iny1;
(H2) The matrixa(x1, y) satisfies the uniform ellipticity condition, that is for anyx1 ∈

[−1, 1] andy ∈ Y

d∑

i,j=1

aij(x1, y)ξiξj ≥ Λ|ξ|2, ξ ∈ R
d, Λ > 0;

(H3) The weight functionρ(x1, y) changes sign, that is for anyx1 ∈ [−1, 1] the sets
{y ∈ Y : ρ(x1, y) < 0} and{y ∈ Y : ρ(x1, y) > 0} have positive Lebesgue
measures, i.e. ∣∣{y ∈ Y : ρ(x1, y) ≶ 0}

∣∣ > 0.

Also, for presentation simplicity we assume that

(2.2) ε = 1/L, L = 1, 2, . . . .

The general case can be treated in the same way, see Remark 3.4in Section 3 for further
discussion.



REMARK 2.1. It follows from condition(H3) that, for sufficiently smallε, the sets
{x ∈ Gε : ρ

(
x1,

x
ε

)
< 0} and {x ∈ Gε : ρ

(
x1,

x
ε

)
> 0} have positive Lebesgue

measures.

The weak formulation of problem (2.1) is as follows: findλε ∈ C (eigenvalues) and
uε ∈ H1(Gε) \ {0} (eiegenfunctions) such thatuε(±1, x′) = 0 and

(2.3) (aε∇uε,∇v)L2(Gε) = λε (ρε uε, v)L2(Gε),

wherev ∈ C∞(Gε) such thatv(±1, x′) = 0, (·, ·)L2(Gε) denotes the usual scalar product
in L2(Gε).

First we study the qualitative properties of problem (2.1) for a fixed value ofε. For this
aim, following the ideas in [12], we are going to reduce the problem under consideration
to an equivalent spectral problem for a compact self-adjoint operator. To this end let us
introduce the space

Hε = {u ∈ H1(Gε) : u
∣∣
S±1

= 0}
equipped with the norm

‖u‖2Hε = (u, u)Hε = (aε∇u,∇u)L2(Gε).

Thanks to the Friedrischs inequality

‖v‖L2(Gε) ≤ 2‖∇v‖L2(Gε), v ∈ Hε,

the quadratic form(aε∇u,∇u)L2(Gε) defines a norm inHε, which is equivalent to the
standardH1(Gε) norm.

In view of condition(H0), the bilinear form(ρεu, v)L2(Gε) defines onHε a bounded
linear operatorKε : Hε → Hε by the following rule:

(Kεu, v)Hε = (ρεu, v)L2(Gε).

By definition, the operatorKε is symmetric and, since it is bounded, it is self-adjoint.
Notice thatKεu can be also introduced as a solution of the boundary value problem

(2.4)





Aε(Kεu(x)) = ρε(x) u(x), x ∈ Gε,

Bε(Kεu(x)) = 0, x ∈ Σε,

Kεu(x) = 0, x ∈ S±1.

Considering this representation and the compactness of theimbeddingH1(Gε) in L2(Gε),
one can see thatKε is a compact operator, both inHε and inL2(Gε).

REMARK 2.2. Since for anyu ∈ L2(Gε) the functionKεu belongs toHε, then the
spectrum ofKε in L2(Gε) coincides with that inHε. We prefer to study the spectrum of
Kε in the spaceHε because in this spaceKε is self-adjoint.

In terms of the operatorKε problem (2.1) takes the form

(2.5) Kεuε = µε uε, µε = 1/λε.



Exactly in the same way as in [12] (see Lemma 2.1) one can show that the discrete spec-
trum of the operatorKε consists of two infinite sequences. The following statementholds.

LEMMA 2.3. Suppose that conditions(H0) − (H3) are fulfilled. Then the spectrum
σ(Kε) of the operatorKε belongs to the interval[−kε, kε], kε = ‖Kε‖; the pointµ = 0 is
the only element of the essential spectrumσe(Kε). Moreover, the discrete spectrum of the
operatorKε consists of two infinite sequences

µε,+
1 ≥ µε,+

2 ≥ · · · ≥ µε,+
j ≥ · · · → +0,

µε,−
1 ≤ µε,−

2 ≤ · · · ≤ µε,−
j ≤ · · · → −0.

Taking into account (2.5), we conclude that problem (2.1) has a discrete spectrum
which consists also of two infinite sequences. More precisely, we have proved the follow-
ing result.

THEOREM 2.4. Under the assumptions(H0) − (H3) spectral problem(2.1) has a
discrete spectrum which consists of two sequences

0 < λε,+1 ≤ λε,+2 ≤ · · · ≤ λε,+j ≤ · · · → +∞,

0 > λε,−1 ≥ λε,−2 ≥ · · · ≥ λε,−j ≥ · · · → −∞.

Under proper normalization, the corresponding eigenfunctionsuε,±j satisfy the orthogo-
nality condition

(2.6) (uε,±i , uε,±j )Hε = εd−1 |Q| δij,
where|Q| is the Lebesgue measure ofQ andδij is the Kronecker delta.

The goal of the present work is to study the asymptotic behaviour of the spectrum of
problem (2.1), asε → 0. As was already pointed out, the asymptotic behaviour of the
spectrum depends crucially on whether the local average ofρ(x1, ·) is zero on[−1, 1] or
not. To avoid the technicalities for the moment, we formulate the main result of the paper
in a loose way.

THEOREM 2.5. Let conditions(H0)− (H3) be fulfilled. Ifλε,+j (λε,−j ) stands for the
jth positive (negative) eigenvalue of problem(2.1), anduε,+j (uε,−j ) for the corresponding
eigenfunction, then the following convergence results hold:

(1) If 〈ρ(x1, ·)〉 > 0 for all x1 ∈ [−1, 1], then, for anyj,

λε,+j → λ0,+j , ε → 0;

ε
d−1
2 ‖uε,+j − u0,+j ‖L2(Gε) → 0, ε→ 0,

where(λ0,+j , u0,+j ) is thejth eigenpair of the effective Sturm-Liouville problem

(2.7)





− d

dx1

(
aeff(x1)

du0(x1)

dx1

)
= λ0 〈ρ(x1, ·)〉 u0(x1), x1 ∈ (−1, 1),

u0(±1) = 0,



with some strictly positive continuous functionaeff(x1) (see(3.3)).
(2) If 〈ρ(x1, ·)〉 = 0 for all x1 ∈ [−1, 1], then, for anyj,

ε λε,±j − ν0,±j → 0, ε→ 0;

ε
d−1
2 ‖uε,±j − v0,±j ‖L2(Gε) → 0, ε→ 0,

where(ν0,±j , v0,±j ) are thejth eigenpairs of the following quadratic operator pen-
cil:

(2.8)





− d

dx1

(
aeff(x1)

dv0(x1)

dx1

)
+ ν0B(x1) v

0(x1)

−(ν0)2C(x1) v
0(x1) = 0, x1 ∈ (−1, 1),

v0(−1) = v0(1) = 0,

with the functionsB(x1),C(x1) > 0 defined by(4.8)and (4.7), respectively.
(3) If 〈ρ(x1, ·)〉 changes sign , then, for anyj,

λε,±j → λ0,±j , ε → 0;

ε
d−1
2 ‖uε,±j − u0,±j ‖L2(Gε) → 0, ε → 0,

where(λ0,±j , u0,±j ) are thejth eigenpairs of the effective spectral problem

(2.9)





− d

dx1

(
aeff(x1)

du0(x1)

dx1

)
= λ0 〈ρ(x1, ·)〉 u0(x1), x1 ∈ (−1, 1),

u0(±1) = 0,

with the functionaeff(x1) > 0 defined by(3.3).

Notice that in the case〈ρ(x1, ·)〉 > 0 the eigenvalues of the effective problem form
a monotone sequenceλ0,+j → +∞, asj → +∞, while in the cases〈ρ(x1, ·)〉 = 0 and
when〈ρ(x1, ·)〉 changes sign the spectra of the effective spectral problems(2.8) and (2.9)
consist of two infinite sequences, tending to+∞ and−∞ (see Theorems 3.2, 4.1 and
Section 5). Thus, one cannot characterize the asymptotic behaviour of the negative part
of the spectrum in the case〈ρ(x1, ·)〉 > 0 in terms of the effective problem (2.7). The
negative part of the spectrum will be considered elsewhere.

Theorem 2.5 follows from stronger results given in Sections3-5 (see Theorem 3.6, 4.3,
5.1). In all cases we construct interior correctors, boundary layer correctors in the vicinity
of the cylinder bases, and obtain estimates for the rate of convergence.

3. The case〈ρ(x1, ·)〉 > 0

3.1. Formal asymptotic expansion.In what follows we denote∇y = {∂y1 , · · · , ∂yd}T ,

〈ρ(x1, ·)〉 =
∫

Y

ρ(x1, y) dy;

Ay u ≡ −divy(a(x1, y)∇yu); By u ≡ (a(x1, y)∇yu, n).



We are looking for a solution(λε, uε) of problem (2.1) in the form

(3.1)
uε(x) = u0(x1) + ε u1(x1, y) + ε2 u2(x1, y) + ε3 u3(x1, y) + · · · ,

λε = λ0 + ε λ1 + · · · , y =
x

ε
,

where unknown functionsuk(x1, y) are1-periodic iny1. Let us substitute ansätze (3.1)
into (2.1) and collect power-like with respect toε terms. Equating the coefficient in front
of ε−1 to 0, we obtain an equation foru1(x1, ·), x1 ∈ (−1, 1):





Ayu
1(x1, y) = divya·1(x1, y)

du0

dx1
, y ∈ Y,

Byu
1(x1, y) = −(a·1(x1, y), n)

du0

dx1
, y ∈ ∂Y,

u1(x1, ·)− y1 − periodic,

wherea·k is akth column of the matrixa(y). Note that∂Y = S1 × ∂Q. Particular form
of the right-hand side in the last equation suggests the representation foru1

u1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ v1(x1),

with N1,1 being, for anyx1 ∈ (−1, 1), a solution of the problem

(3.2)





AyN
1,1(x1, y) = divya·1(x1, y), y ∈ Y,

ByN
1,1(x1, y) = −(a·1(x1, y), n), y ∈ ∂Y,

N1,1(x1, ·)− y1 − periodic.

Under assumption(H0),N1,1(x1, y) ∈ C1,α([−1, 1];C1,α(Y )).
Similarly, collecting the terms of orderε0 we obtain the problem foru2:





Ayu
2(x1, y) =

∂

∂x1

(
a1·(x1, y)∇yN

1,1(x1, y)
du0(x1)

dx1

)

+
∂

∂x1
(a11(x1, y)

du0(x1)

dx1
) + divy

(
a·1(x1, y)

∂

∂x1
(N1,1(x1, y)u

0(x1))
)

+divya·1(x1, y)
dv1(x1)

dx1
+ λ0 ρ(x1, y) u

0(x1), x1 ∈ (−1, 1), y ∈ Y,

Byu
2(x1, y) = −(a·1(x1, y), n)

∂

∂x1
(N1,1(x1, y)u

0(x1))

−(a·1(x1, y), n)
dv1

dx1
, x1 ∈ (−1, 1), y ∈ ∂Y,

u2(x1, ·)− y1 − periodic.



The compatibility condition for the last problem reads

d

dx1

∫

Y

(
a11(x1, y) + a1·(x1, y)∇yN

1,1(x1, y)
)
dy
du0(x1)

dx1

+λ0
∫

Y

ρ(x1, y) dy u
0(x1) = 0, x1 ∈ (−1, 1).

Denoting

(3.3) aeff(x1) =

∫

Y

a1j(x1, y)
(
δ1j + ∂yjN

1,1(x1, y)
)
dy,

we derive the following problem foru0:

(3.4)





A0 u0(x1) ≡ − d

dx1

(
aeff(x1)

du0(x1)

dx1

)

= λ0 〈ρ(x1, ·)〉 u0(x1), x1 ∈ (−1, 1),

u0(±1) = 0.

LEMMA 3.1. The effective coefficientaeff(x1) ∈ C1,α[−1, 1] is positive for allx1 ∈
[−1, 1].

PROOF. Obviously,aeff(x1) is an element{Aeff(x1)}11 of the matrixAeff(x1) given by

Aeff

ij (x1) =

∫

Y

(
aij(x1, y) + aik ∂ykN

1,1
k (x1, y)

)
dy,

where functionsN1,1
k solve the problems





AyN
1,1
k (x1, y) = divya·k(x1, y), k = 2, ..., d, y ∈ Y,

ByN
1,1
k (x1, y) = −(a·k(x1, y), n), y ∈ ∂Y,

N1,1
k − y1 − periodic.

Let us show that the matrixAeff(x1) is positive definite. Notice that

0 =

∫

Y

∂ym(ajmN
1,1
i ) dy −

∫

∂Y

ajmN
1,1
i nm dσ.



Reorganizing the last expression yields

0 =

∫

Y

∂ym(ajmN
1,1
i ) dy −

∫

∂Y

ajmN
1,1
i nm dσ

=

∫

Y

(
ajm∂ymN

1,1
i + ∂ymamj N

1,1
i

)
dy −

∫

∂Y

ajmN
1,1
i nm dσ

=

∫

Y

(
ajm∂ymN

1,1
i − ∂ym(amk ∂ykN

1,1
j )N1,1

i

)
dy −

∫

∂Y

ajmN
1,1
i nm dσ

=

∫

Y

(
ajm∂ymN

1,1
i + amk ∂ykN

1,1
j ∂ymN

1,1
i

)
dy.

Consequently,

Aeff(x1) =

∫

Y

(
aij(x1, y) + aik ∂ykN

1,1
k (x1, y)

)
dy

+

∫

Y

(
ajm∂ymN

1,1
i + amk ∂ykN

1,1
j ∂ymN

1,1
i

)
dy

=

∫

Y

(
δim + ∂ymN

1,1
i

)
amk

(
δkj + ∂ykN

1,1
j

)
dy,

thus, the matrixAeff is nonnegative. Let us show thataeff > 0. For an arbitrary nonnegative
matrix C we state that ifC11 = 0, thenC1k = 0, k = 2, · · · , d, and, consequently,
Ce1 = 0. Assuming that(δ1j+∂y1N

1,1
j ) = 0 we arrive at contradiction with the periodicity

of N1,1
1 in y1. Thus,aeff > 0. �

For the reader’s convenience we formulate here the classical result on Sturm-Liouville
spectral problem (see, for instance, [10]).

THEOREM 3.2. The eigenvalues of the Sturm-Liouville problem(3.4) are real and
form a monotone sequence

0 < λ0,+1 < λ0,+2 < · · · < λ0,+j · · · → +∞.

Moreover, all the eigenvalues are simple.

REMARK 3.3. The corresponding eigenfunctionsu0,+i ∈ C2,α[−1, 1] of problem (3.4)
can be normalized by

(3.5)

1∫

−1

aeff(x1)
du0,+i

dx1

du0,+j

dx1
dx1 = δij .



Our next goal is to derive the equation for the unknown functionv1(x1). To this end we
analyze the right-hand side of the equation foru2(x1, y). The structure of the right-hand
side suggests the following representation:

(3.6)
u2(x1, y) = N2,2(x1, y)

d2u0(x1)

dx21
+N2,1(x1, y)

du0(x1)

dx1

+N2,0(x1, y) u
0(x1) +N1,1(x1, y)

dv1(x1)

dx1
+ v2(x1),

whereN2,2,N2,1 andN2,0 arey1-periodic solutions of the problems

(3.7)





AyN
2,2(x1, y) = divy(a(x1, y)N

1,1(x1, y))

+a1j(x1, y)(δ1j + ∂yjN
1,1(x1, y))− aeff(x1), y ∈ Y,

ByN
2,2(x1, y) = −(a·1(x1, y), n)N

1,1(x1, y), y ∈ ∂Y ;

(3.8)





AyN
2,1(x1, y) = divy(a·1(x1, y)

∂

∂x1
N1,1(x1, y))

+
∂

∂x1

[
a1j(x1, y)(δ1j + ∂yjN

1,1(x1, y))
]
− daeff(x1)

dx1
, y ∈ Y,

ByN
2,1(x1, y) = −(a·1(x1, y), n)

∂

∂x1
N1,1(x1, y), y ∈ ∂Y ;

(3.9)

{
AyN

2,0(x1, y) = λ0
(
ρ(x1, y)− 〈ρ(x1, ·)〉

)
, y ∈ Y,

ByN
2,0(x1, y) = 0, y ∈ ∂Y.

Equating the coefficients in front ofε1, we get the equation foru3:




Ayu
3(x1, y) = divy

(
a·1(x1, y)

∂u2

∂x1

)
+

∂

∂x1

(
a11(x1, y)

∂u1

∂x1

)

+λ0 ρ(x1, y) u
1(x1, y) + λ1 ρ(x1, y) u

0(x1), y ∈ Y,

Byu
3(x1, y) = −(a·1(x1, y), n)

∂u2

∂x1
.

The compatibility condition for the last equation reads

(3.10) − d

dx1

(
aeff(x1)

dv1

dx1

)
− λ0 〈ρ(x1, ·)〉 v1(x1) = F (x1) + λ1 〈ρ(x1, ·)〉 u0,

where

(3.11)

F (x1) =

2∑

k=0

d

dx1

∫

Y

a1·(x1, y)∇yN
2,k(x1, y)

dku0(x1)

dxk1
dy

+λ0
∫

Y

ρ(x1, y)N
1,1(x1, y)

du0(x1)

dx1
dy.



Determining the boundary conditions forv1(x1) at the pointsx1 = ±1 requires construct-
ing boundary layer correctors in the vicinity of these points.

LetG− = (0,+∞)×Q andG+ = (−∞, 0)×Q be semi-infinite cylinders with the axis
directed alongy1 and lateral boundariesΣ− = (0,+∞)× ∂Q andΣ+ = (−∞, 0)× ∂Q.
We denote byw±(y) solutions to the following boundary value problems:

(3.12)





−divy(a(±1, y1 ± δ, y′)∇yw
±) = 0, y ∈ G±,

(a(±1, y1 ± δ, y′)∇yw
±, n) = 0, y ∈ Σ±,

w±(0, y′) = −N1,1(±1,±δ, y′) du
0

dx1
(±1), y′ ∈ Q.

whereδ = δ(ε) is the fractional part ofε−1. Due to our assumption (2.2) we haveδ = 0
so that problem (3.12) reads

(3.13)





−divy(a(±1, y)∇yw
±) = 0, y ∈ G±,

(a(±1, y)∇yw
±, n) = 0, y ∈ Σ±,

w±(0, y′) = −N1,1(±1, 0, y′)
du0

dx1
(±1), y′ ∈ Q,

According to [14] there exists a unique bounded solutionw± ∈ H1
loc(G

±) ∩ C1,α(G±) of
problem (3.13). It stabilizes to some constantŵ±, as|y1| → +∞:

(3.14)

|w±(y1, y
′)− ŵ±| ≤ C0 e

−γ |y1|, C0, γ > 0;

‖∇w+‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0,

‖∇w−‖L2((−(n+1),−n)×Q) ≤ C e−γ n, ∀n > 0,

for someγ > 0. As a boundary condition forv1(x1) we choose the uniquely defined
constantŝw±: v1(±1) = ŵ±. Thus, the problem forv1 takes the form

(3.15)





− d

dx1

(
aeff(x1)

dv1

dx1

)
− λ0 〈ρ(x1, ·)〉 v1(x1)

= F (x1) + λ1 〈ρ(x1, ·)〉 u0, x1 ∈ (−1, 1),

v1(±1) = ŵ±,

whereF (x1) is defined by (3.11).
Due to the Fredholm alternative, problem (3.15) is solvableinH1(−1, 1) if and only if

the right-hand side is orthogonal to the kernel of the adjoint operator, that is to the function
u0(x1) (see (3.4)). Thus, taking into account the normalization condition (3.5), we have

(3.16)
λ1 = −λ0

1∫

−1

F (x1) u
0(x1) dx1

+λ0
(
aeff(1)

du0

dx1
(1) ŵ+ − aeff(−1)

du0

dx1
(−1) ŵ−

)
.



Under our standing assumptionsv1 ∈ C2,α[−1, 1]. Notice thatv1(x1) is defined up to a
function of the formC u0(x1), whereC is a constant. We fix the choice ofv1 setting

1∫

−1

v1(x1) u
0(x1) dx1 = 0.

In this way the function

u0(x1) + ε
[
N1,1

(
x1,

x′

ε

)du0(x1)
dx1

+ v1(x1)
]

+ε
[
w+
(x1 − 1

ε
,
x′

ε

)
− ŵ+

]
+ ε

[
w−
(x1 + 1

ε
,
x′

ε

)
− ŵ−

]

satisfies the homogeneous Dirichlet boundary conditions onS±1. We denote

(3.17) uε,±bl (x) ≡ ũε,±bl (y)
∣∣∣
y=x

ε

= w±
(x1 ∓ 1

ε
,
x′

ε

)
− ŵ±,

where

ũε,±bl (y) = w±
(
y1 ∓

1

ε
, y′
)
− ŵ±.

REMARK 3.4. If assumption (2.2) does not hold, then problem (3.12) depends on a
parameterδ = δ(ε) ∈ [0, 1) being the fractional part of1/ε. In this case the boundary
layer functionsw±(y) also depend onδ, so doŵ±, v1 andλ1. Nevertheless, all the re-
sults of Theorem 2.5 remain valid. We assume (2.2) just for presentation simplicity. The
dependence onδ(ε) does not create any additional technical difficulties.

REMARK 3.5. We succeeded in constructing exponential boundary layer correctors
uε,±bl owing to the special structure of the domainGε. This allowed us to definev1, λ1 and
other higher order terms of the asymptotic expansion (3.1).In the case of a generic smooth
bounded domain one is unable to construct such a boundary layer due to the disagreement
between the periodic structure and the domain boundary. By this reason in [11] and [12]
only two leading terms of the expansion have been constructed.

3.2. Justification procedure in the case〈ρ(x1, ·)〉 > 0.
Let λ0,+j be thejth eigenvalue andu0,+j the corresponding eigenfunction of problem (3.4).
For anyj ∈ N we denote

(3.18) Uε,+
j (x) = u0,+j (x1) + εN1,1

(
x1,

x

ε

) du0,+j (x1)

dx1
+ε v1,+j (x1) + ε

(
uε,+bl (x) + uε,−bl (x)

)
,

whereu0,+j , N1,1 andv1,+j solve problems (3.4), (3.2) and (3.15), respectively (withu0 =

u0,+j andλ0 = λ0,+j ). The boundary layer functionsuε,±bl are defined by (3.17) and (3.13).
Let us emphasize that, due to the presence of the boundary layer terms, the functionUε,+

j

satisfies the homogeneous Dirichlet boundary conditions onS±1, and, as a consequence,
belong to the spaceHε.



The goal of this section is to prove the following result.

THEOREM 3.6. Let conditions(H0)−(H3) be fulfilled, and suppose that〈ρ(x1, ·)〉 >
0 for anyx1 ∈ [−1, 1]. If λε,+j is thejth positive eigenvalue of problem(2.1) anduε,+j is
the corresponding eigenfunction, then the following statements hold:

(i) For anyj ∈ N, there existεj andCj > 0 such that

|λε,+j − λ0,+j | ≤ Cj ε, ∀ε ∈ (0, εj].

(ii) For anyj ∈ N

‖uε,+j − Uε,+
j ‖H1(Gε) ≤ Cj ε ε

d−1
2

whereUε,+
j is defined by(3.18), and(λ0,+j , u0,+j ) is the jth eigenpair of the limit

problem(3.4). Moreover, the ”almost eigenfunctions” are almost orthonormal,
that is ∣∣∣ε

−(d−1)

|Q| (aε ∇Uε,+
i ,∇Uε,+

j )L2(Gε) − δij

∣∣∣ ≤ Cj ε.

(iii) For anyj ∈ N, λε,+j is simple, for sufficiently smallε > 0.

REMARK 3.7. The estimates of Theorem 3.6 rely on the presence of the boundary
layer correctors in the asymptotics ofuε,+j . The estimates obtained in [11] and [12] for a
generic smooth domain are of order

√
ε.

PROOF OFTHEOREM 3.6. We make use of the following statement about ”almost eigen-
values and eigenfunctions” (see [18], [19]).

LEMMA 3.8. Given a compact self-adjoint operatorKε : Hε → Hε, let ν ∈ R and
v ∈ Hε be such that

‖v‖Hε = 1, δ ≡ ‖Kε v − ν v‖Hε < |ν|.
Then there exists an eigenvalueµε

l of the operatorKε such that

|µε
l − ν| ≤ δ.

Moreover, for anyδ1 ∈ (δ, |ν|) there exist coefficients{bεj} ∈ R satisfying

‖v −
∑

bεju
ε
j‖Hε ≤ 2

δ

δ1
,

where the sum is taken over all the eigenvalues of the operator Kε in the segment[ν −
δ1, ν + δ1], and{uεj} are the corresponding orthonormalized inHε eigenfunctions. The
coefficientsbεj are normalized by

∑
|bεj |2 = 1.

As v ∈ Hε andν ∈ R in Lemma 3.8 we use the normalized ansatz (3.18)

Uε,+
j =

Uε,+
j

‖Uε,+
j ‖Hε



and the numbers(λ0,+j + ελ1,+j )−1, respectively. Hereλ1,+j is defined by formula (3.16)
with u0 = u0,+j .

LEMMA 3.9. For anyj ∈ N there isεj > 0 such that

(3.19) ‖Kε Uε,+
j − (λ0,+j + ελ1,+j )−1 Uε,+

j ‖Hε ≤ Cj ε, ε < εj ,

for some constantCj that does not depend onε.

PROOF. Letting

Iε ≡ ‖Kε Uε,+
j − (λ0,+j + ελ1,+j )−1 Uε,+

j ‖Hε,

after straightforward rearrangements we have

Iε = sup
w∈Hε

‖w‖Hε=1

∣∣∣
(
Kε Uε,+

j − (λ0,+j + ελ1,+j )−1 Uε,+
j , w

)
Hε

∣∣∣

=
‖Uε,+

j ‖−1
Hε

(λ0,+j + ελ1,+j )
sup
w∈Hε

‖w‖Hε=1

∣∣∣
(
(λ0,+j + ελ1,+j )Kε Uε,+

j − Uε,+
j , w

)
Hε

∣∣∣

=
‖Uε,+

j ‖−1
Hε

(λ0,+j + ελ1,+j )
sup
w∈Hε

‖w‖Hε=1

∣∣∣(λ0,+j + ελ1,+j )
(
ρε Uε,+

j , w
)
L2(Gε)

−
(
aε ∇Uε,+

j , ∇w
)
L2(Gε)

∣∣∣.

Integrating by parts and using the boundary conditions forN1,1 yield

Iε =
‖Uε,+

j ‖−1
Hε

(λ0,+j + ελ1,+j )
sup
w∈Hε

‖w‖Hε=1

∣∣∣
(
Aε Uε,+

j − (λ0,+j + ελ1,+j ) ρε Uε,+
j , w

)
L2(Gε)

+ε

∫

Σε

(aε·1(x), n)
∂

∂x1

(
N1,1(x1, y)

du0,+j (x1)

dx1
+ v1,+j (x1)

)∣∣
y=x/ε

dσ

+ε

∫

Σε

(
aε∇y(ũ

ε,−
bl

+ ũε,+
bl

), n
)
w dσ

∣∣∣

=
‖Uε,+

j ‖−1
Hε

(λ0,+j + ελ1,+j )
sup
w∈Hε

‖w‖Hε=1

∣∣∣(ε0Iε0 + ε1Iε1 + ε2Iε2 , w)L2(Gε)

+ε

∫

Σε

(aε·1(x), n)
∂

∂x1

(
N1,1(x1, y)

du0,+j (x1)

dx1
+ v1,+j (x1)

)∣∣
y=x/ε

dσ

+ε

∫

Σε

(
aε∇y(ũ

ε,−
bl

+ ũε,+
bl

), n
)
w dσ

∣∣∣.



Here

Iε0(x) = I0(x1, y)
∣∣
y=x/ε

= − ∂

∂x1

(
a1·∇yN

1,1
du0,+j

dx1

)

− ∂

∂x1

(
a11

du0,+j

dx1

)
− λ0,+j ρ u0,+j

∣∣∣
y=x/ε

.

Iε1(x) = Iε
bl
(x)− {divx +

1

ε
divy}

(
a·1

∂

∂x1

(
N1,1

du0,+j

dx1
+ v1,+j

)∣∣
y=x/ε

)

−λ1,+j ρ
(
N1,1

du0,+j

dx1
+ v1,+j

)∣∣
y=x/ε

− λ1,+j ρε u0,+j ,

Iεbl(x) = Aε (uε,−bl + uε,+bl )− λ0,+j ρε (uε,−bl + uε,+bl ),

Iε2(x) = λ1,+j ρ(x1, y)N
1,1(x1, y)

du0,+j

dx1

∣∣
y=x/ε

+λ1,+j ρ(x1, y) v
1,+
j (x1)

∣∣
y=x/ε

+ λ1,+j (uε,−bl (x) + uε,+bl (x)).

PROPOSITION3.10. The boundary layer functionsuε,±bl satisfy the
estimate∣∣∣ε(Aε uε,±bl , v)L2(Gε) + ε(aε∇uε,±bl v, n)L2(Σε) − ε λ0,+j (ρε uε,±bl , v)L2(Gε)

∣∣∣

≤ C ε ε(d−1)/2 ‖v‖H1(Gε), v ∈ Hε.

PROOF. We prove the proposition foruε,−bl , a similar proof can be performed foruε,+bl .
Due to the definition ofuε,−bl , up to the terms of higher order,

εAε uε,−
bl

(x) = −(divx +
1

ε
divy)

(
(x1 + 1)

∂a

∂x1
(x1, y)∇yũ

ε,−
bl

(y)
)∣∣∣

y=x/ε
.

Integrating by parts yields

ε(Aε uε,−
bl
, v)L2(Gε) + ε(aε∇yu

ε,−
bl

v, n)L2(Σε)

= ε

∫

Gε

(y1 + 1/ε)
∂a

∂x1
(−1, y) (∇yũ

ε,−
bl

(y),∇v(x))
∣∣
y=x/ε

dx.

Schwartz inequality and the exponential decay ofu−bl give
∣∣∣ε(Aε uε,−bl , v)L2(Gε) + ε(aε∇yu

ε,−
bl v, n)L2(Σε)

∣∣∣ ≤ C ε ε(d−1)/2 ‖v‖H1(Gε)

with the constantC depending only onΛ andQ. Then, due to the boundedness ofρ and
the Schwartz inequality,

∣∣∣ε λ0,+j (ρε uε,±
bl
, v)L2(Gε)

∣∣∣ ≤ C ε

∫

Gε

∣∣uε,−
bl

| |v| dx.



By the exponential decay property ofu−bl,

‖uε,−
bl

‖L2(Gε) ≤ C
√
ε ε

d−1
2 .

The last estimate completes the proof. �

Further analysis essentially relies on the following statement.

LEMMA 3.11. Let g(x1, y) ∈ C1,α([−1, 1];Cα(Y )) be such that

〈g(x1, ·)〉 =
∫

Y

g(x1, y) dy = 0.

Then, for anyw ∈ H1(Gε), the following estimate is valid:
∣∣∣
∫

Gε

g
(
x1,

x

ε

)
w(x) dx

∣∣∣ ≤ C ε ε
d−1
2 ‖w‖H1(Gε)

with a constantC independent ofε.

PROOF. Since〈g(x1, ·)〉 = 0, then there exists ay1-periodic functionψ(x1, y) ∈
C1,α([−1, 1];C2,α(Y )) being a solution of the problem

{
−∆y ψ(x1, y) = g(x1, y), y ∈ Y,

(∇yΨ(x1, y), n) = 0, y ∈ ∂Y.

Then we have∫

Gε

g(x1, y)w(x) dx = ε

∫

Gε

(∇yψ(x1, y) , ∇w(x))
∣∣
y=x/ε

dx

+ε

∫

Gε

w(x) divx(∇yψ(x1, y))
∣∣
y=x/ε

dx

≤ C ε ε
d−1
2 ‖w‖H1(Gε).

�

Let us turn back to the proof of Lemma 3.9. Sinceu0,+j is a solution of problem (3.4),
thenI0(x1, y) ∈ C1,α([−1, 1];Cα(Y )) and

∫

Y

I0(x1, y)dy = 0.

Thus, by Lemma 3.11,

(3.20)
∣∣∣
∫

Gε

Iε0(x)w(x) dx
∣∣∣ ≤ C ε ε

d−1
2 ‖w‖H1(Gε).



The terms containinguεbl have been estimated in Proposition 3.10. Integrating by parts the
remaining terms of(Iε1 , w)L2(Gε), using(H0) and the regularity properties ofu0,+j ,N1,1

andv1,+j , one can show that

(3.21)

∣∣∣ε (Iε1 , w)L2(Gε) + ε

∫

Σε

(aε·1, n)
∂

∂x1

(
N1,1

du0,+j

dx1
+ v1,+j

)∣∣
y=x/ε

wdσ
∣∣∣

≤ C ε ε
d−1
2 ‖w‖H1(Gε).

The quantity(Iε2 , w)L2(Gε) is estimated in a similar way:

(3.22) ε2 |(Iε2 , w)L2(Gε)| ≤ C ε2 ε
d−1
2 ‖w‖H1(Gε).

It remains to estimate the norm‖Uε,+
j ‖Hε. To this end we compute first the gradient of

Uε,+
j :

∂

∂x1
Uε,+
j =

du0,+j (x1)

dx1
+ ε

∂u1,+j

∂x1
(x1, y)

+
∂

∂y1
N1,1(x1, y)

du0,+j (x1)

dx1
+

∂

∂y1
(ũε,+

bl
(y) + ũε,−

bl
(y))

∣∣∣
y=x

ε

;

∂

∂xk
Uε,+
j =

∂

∂yk
N1,1(x1, y)

du0,+j (x1)

dx1
+

∂

∂yk
(ũε,+bl (y) + ũε,−bl (y))

∣∣∣
y=x

ε

, k 6= 1.

where

u1,+j (x1, y) = N1,1(x1, y)
du0,+j (x1)

dx1
+ v1,+j (x1).

It is easy to see that

(aε∇Uε,+
i ,∇Uε,+

j ) =
[
a11(x1, y) + a·1(x1, y)∇yN

1,1(x1, y)
] du0,+i

dx1

du0,+j

dx1

+
[
a1·(x1, y) + a(x1, y)∇yN

1,1(x1, y)
]
∇yN

1,1(x1, y)
du0,+i

dx1

du0,+j

dx1
+Jε

xx(x1, y) + Jε
xy(x1, y) + Jε

yy(x1, y), y =
x

ε

where

Jε
xx(x1, y) = ε a11

du0,+i

dx1

du1,+j

dx1
+ ε a11

∂u1,+i

∂x1

du0,+j

dx1
+ ε2 a11

∂u1,+i

∂x1

∂u1,+j

∂x1
;

Jε
xy(x1, y) = εa·1∇yN

1,1 ∂u
1,+
i

∂x1

du0,+j

dx1
+ ε a1·∇yN

1,1
∂u1,+j

∂x1

du0,+i

dx1
;



Jε
yy(x1, y) = a·1∇y(ũ

ε,+
bl

+ ũε,−
bl

)
du0,+i

dx1
+ ε a·1∇y(ũ

ε,+
bl

+ ũε,−
bl

)
∂u1,+i

∂x1

+ε a1·∇y(ũ
ε,+
bl + ũε,−bl )

∂u1,+j

∂x1
+ (a∇yN

1,1,∇y(ũ
ε,+
bl + ũε,−bl ))

du0,+i

dx1

+(a∇yN
1,1,∇y(ũ

ε,+
bl

+ ũε,−
bl

))
du0,+j

dx1
+ (a∇y(ũ

ε,+
bl

+ ũε,−
bl

),∇y(ũ
ε,+
bl

+ ũε,−
bl

)).

Using the regularity properties ofu0,+i andN1,1 one can easily see that
∣∣∣
∫

Gε

Jε
xx(x1,

x

ε
) dx

∣∣∣ ≤ C ε |Gε| ≤ C ε εd−1.

Then, by the periodicity ofN1,1 in y1, we have
∣∣
∫

Gε

Jε
xy(x1,

x

ε
) dx

∣∣ ≤ C ε

∫

Gε

|∇yN
1,1|y=x/ε dx

= C ε ε−1 εd
∫

Y

|∇yN
1,1| dy ≤ C ε εd−1.

Taking into account the exponential decay ofuε,±bl (see Proposition 3.10) we obtain the
estimate ∣∣

∫

Gε

Jε
yy(x1,

x

ε
) dx

∣∣ ≤ C ε εd−1.

Thus,
∣∣∣∣∣∣
(aε∇Uε,+

i ,∇Uε,+
j )L2(Gε) −

∫

Gε

{
a11 + a·1∇yN

1,1
}
y=x/ε

du0,+i

dx1

du0,+j

dx1
dx

−
∫

Gε

{
a1· + a∇yN

1,1
}
∇yN

1,1
∣∣
y=x/ε

du0,+i

dx1

du0,+j

dx1
dx

∣∣∣∣∣∣
≤ C ε εd−1.

Considering (3.3) and Lemma 3.11, we get
∣∣∣(aε∇Uε,+

i ,∇Uε,+
j )L2(Gε) −

∫

Gε

aeff(x1)
du0,+i

dx1

du0,+j

dx1
dx
∣∣∣ ≤ C ε εd−1.

Consequently, in view of the normalization condition (3.5), one has

(3.23)
∣∣∣(aε∇Uε,+

i ,∇Uε,+
j )L2(Gε) − |Q| εd−1 δij

∣∣∣ ≤ C ε εd−1,

and, for sufficiently smallε

(3.24) ε−
(d−1)

2 ‖Uε,+
i ‖Hε ≥ |Q|1/2

2
, ε < εi.



Combining estimates (3.20), (3.21), (3.22), (4.35) and Proposition 3.10 yields the desired
bound (3.19). Lemma 3.9 is proved. �

Combining Lemma 3.9 and Lemma 3.8, we conclude that for any eigenvalueλ0,+j of
problem (3.4) there exists an eigenvalueµε,+

q of the operatorKε such that

|µε,+
q − (λ0,+j + ελ1,+j )−1| ≤ c̃jε.

Considering the fact thatλε,+q = (µε,+
q )−1, we have

(3.25) |λε,+q − λ0,+j | ≤ cj ε, ε < εj .

Generally speaking, there might be more than one eigenvalueof the operatorAε (problem
(2.1)) satisfying inequality (5.14), but we will show that in the case under consideration
such an eigenvalueλε,+j is unique ifε < εj .

LEMMA 3.12. For anyq, the estimate holds

0 < m ≤ λε,+q ≤Mq.

PROOF. Let us first estimate the norm of the operatorKε.

‖Kε‖ = sup
‖u‖Hε=1

(Kεu, u)Hε = sup
‖u‖Hε=1

(ρεu, u)L2(Gε) ≤ C ‖u‖L2(Gε)

whereC does not depend onε. Thus,µε,+
q ≤ C, for anyq, and, consequently,λε,+q ≥ m

with m independent ofε.
In order to show that the inverse inequality is valid, we recall that for anyλ0,+j there is

an eigenvalue ofKε such that

µ(ε, j) → (λ0,+j )−1, ε → 0.

It implies thatµ(ε, j) ≥ cj and, moreover,µε,+
k ≥ cj for all k ≥ j. Lemma 3.12 is

proved. �

It follows from Lemma 3.12 that, up to a subsequence,λε,+j converges to someλ∗, as
ε→ 0.

LEMMA 3.13. Suppose that (perhaps for a subsequence)

λε,+j → λ∗, ε → 0.

Thenλ∗ is an eigenvalue of problem(3.4).

There are several different ways of proving Lemma 3.13. Herewe expose the proof
based on the technique of convergence in variable spaces with singular measures.

Introduce the ”universal domain”Kd = [−1, 1]d. For ε small enough,Gε ⊂ Kd. In
what follows, for arbitrary Borel setB ⊂ Kd, we denote

(3.26) µε(B) =
ε−(d−1)

|Q|

∫

B

χ(Gε) dx,



whereχ(Gε) is the characteristic function ofGε; dx is a usuald-dimensional Lebesgue
measure. Thenµε converges weakly to a measureµ∗ = dx1 × δ(x′), asε → 0. For anyε,
the space of Borel measurable functionsg(x) such that∫

Kd

(g(x))2 dµε(x) <∞

is denotedL2(Kd, µε).
Let us also recall the definition of the Sobolev space with measure.

DEFINITION 3.14. We say that a functiong ∈ L2(Kd, µε) belongs to the spaceH1(Kd, µε)
if there exists a vector functionz ∈ L2(Kd, µε)

d and a sequenceϕk ∈ C∞(Kd) such that

ϕk → g in L2(Kd, µε), k → ∞,

∇ϕk → z in L2(Kd, µε)
d, k → ∞.

In this casez is called the gradient ofg and is denoted by∇µεg.

Since in our case the measureµε is a weighted Lebesgue measure, then∇µεg = ∇g
and the spaceH1(Kd, µε) coincides with the usual Sobolev spaceH1(Gε).

DEFINITION 3.15.
We say that a sequence of functions{gε(x)} ⊂ L2(Kd, µε)weakly converges inL2(Kd, µε)
to a functiong(x1) ∈ L2(Kd, µ∗), asε→ 0, if

(i) ‖gε‖L2(Kd,µε) ≤ C;
(ii) for anyϕ ∈ C∞(R) the following limit relation holds:

lim
ε→0

∫

Kd

gε(x)ϕ(x) dµε(x) =

∫

Kd

g(x1)ϕ(x) dµ∗(x).

A sequence{gε} is said to converge strongly tog(x1) in L2(Kd, µε), asε → 0, if it
converges weakly and

lim
ε→0

∫

Kd

gε(x)ψε(x) dµε(x) =

∫

Kd

g(x1)ψ(x1) dµ∗(x)

for any sequence{ψε(x)} weakly converging toψ(x1) in L2(Kd, µε).

Notice that the property of weak compactness of a bounded sequence in a separable
Hilbert space remains valid with respect to the convergencein variable spaces.

In order to prove Lemma 3.13 we use the technique of two-scaleconvergence in vari-
able spaces with measure, so for the reader’s convenience werecall the relevant definition.

DEFINITION 3.16. We say thatgε ∈ L2(Kd, µε) two-scale converges inL2(Kd, µε) to
a functiong̃(x1, y) ∈ L2(Kd × Y, µ∗ × dy), asε → 0, if

(i)
‖gε‖L2(Kd,µε) ≤ C, ε > 0;



(ii) The following limit relation holds:

lim
ε→0

∫

Kd

gε(x)ϕ(x)ψ(
x

ε
)dµε(x) =

∫

Kd

∫

Y

g̃(x1, y)ϕ(x)ψ(y) dy dµ∗(x)

for anyϕ ∈ C∞(Kd), ϕ
∣∣
x1=±1

= 0, andψ(y) ∈ C∞(Y ) periodic iny1.

PROOF OFLEMMA 3.13 By the normalization condition (2.6)

(3.27) ‖uε,+j ‖L2(Kd,µε) + ‖∇uε,+j ‖L2(Kd,µε)d ≤ C,

thus, up to a subsequence,uε,+j (x) converges weakly inL2(Kd, µε) to a functionu∗(x1) ∈
L2(Kd, µ∗), asε → 0. Let us show that in fact the convergence is strong. Denote

ūεj(x1) =

∫

εQ

uε,+j (x1, x
′) dx′.

Then, due to the Poincaré inequality,
∫

εQ

(uε,+j (x)− ūεj(x1))
2 dx′ ≤ C ε2

∫

εQ

|∇(uε,+j (x)− ūεj(x1))|2 dx′.

Integrating with respect tox1 and taking into account (3.27), we get
∫

Kd

(uε,+j (x)− ūεj(x1))
2 dµε ≤ C ε.

On the other hand,̄uεj(x1) is uniformly bounded inH1(−1, 1), thus there exists̄u(x1) such
that

lim
ε→0

ε−(d−1)

|Q|

∫

Gε

(ūεj(x1))
2 dx =

1∫

−1

(ū(x1))
2 dx1.

The strong convergence ofuε,+j (x) to ū(x1) = u∗(x1) in L2(Kd, µε) is the immediate
consequence of the last two formulae.

By Lemma 3.11,ρε(x) converges weakly to〈ρ(x1, ·)〉 in L2(Kd, µε). Thus,

λε,+j ρε(x) uε,+j (x) −→ λ∗ 〈ρ(x1, ·)〉 u∗(x1) weakly in L2(Kd, µε), ε → 0.

Denoting
f ε(x) = λε,+j ρε(x) uε,+j (x), f 0(x1) = λ∗ 〈ρ(x1, ·)〉 u∗(x1),

we arrive at the following boundary value problem:

(3.28)





Aεuε,+j (x) = f ε(x), x ∈ Gε,

Bεuε,+j (x) = 0, x ∈ Σε,

uε,+j (±1, x′) = 0, x′ ∈ εQ.



The homogenization theorem for locally periodic elliptic equations in variable spaces (see
[2], [20]) implies that

uε,+j (x) −→ u∗(x1) wealky inL2(Kd, µε), ε → 0,

aε(x)∇uε,+j (x) −→ {aeff(x1)
du∗
dx1

(x1), 0, · · ·0}T wealky in L2(Kd, µε)
d, ε→ 0,

whereu∗(x1) ∈ H1
0 (−1, 1) is a solution of problem (3.4).

It follows from the normalization condition (2.6), boundedness ofρ(x1, y) andλε,+j

that

1 =
ε−(d−1)

|Q| (aε ∇uε,+j ,∇uε,+j )L2(Gε) = λε,+j

∫

Kd

ρε (uε,+j )2 dµε ≤ Cj ‖uε,+j ‖2L2(Kd,µε)
.

Considering the strong convergence ofuε,+j to u∗ in L2(Kd, µε), we conclude thatu∗ 6= 0.
Thus,(λ∗, u∗) is an eigenpair of the effective problem (3.4). Lemma 3.13 isproved.

Turning back to the proof of Theorem 3.6, suppose that there exist two different eigen-
valuesλε,+i 6= λε,+j satisfying inequality (5.14) withλ0,+ being an eigenvalue of the op-
eratorA0. As was proved in Lemma 3.13, in this case the corresponding eigenfunctions
uε,+i anduε,+j converge strongly inL2(Kd, µε) to the eigenfunctionsu0,+i andu0,+j of A0,
which correspond toλ0,+. Let us show thatu0,+i andu0,+j are linearly independent. By the
normalization condition

λε,+i (ρεuε,+i , uε,+j )L2(Kd,µε) = δij .

Notice that, by Lemma 3.11,ρε converges weakly inL2(Kd, µε) to its average〈ρ(x1, ·)〉.
Thus, passing to the limit in the last identity, we obtain

λ0,+
∫

Kd

〈ρ(x1, ·)〉 u0,+i (x1) u
0,+
j (x1) dµ∗ = δij

that implies the linear independence ofu0,+i andu0,+j . But λ0,+ as an eigenvalue ofA0 is
simple by Theorem 3.2. We arrive at contradiction, thus, forany j there exists a unique
λε,+j satisfying (5.14). In particular, it means that for sufficiently smallε the eigenvalues
λε,+j are simple.

Combining Lemma 3.8, Lemma 3.12 and Lemma 3.13 one obtains the first statement
of Theorem 3.6.

The second statement(ii) of Theorem 3.6 follows immediately from Lemma 3.8 and
(i). This completes the proof.�

Theorem 3.6 might be formulated in terms of convergence in variable spaces with
measure.

COROLLARY 3.17.Suppose that conditions(H0)−(H3) hold true and〈ρ(x1, ·)〉 > 0.
Let (λε,+j , uε,+j ) and (ν0,+j , u0,+j ) be eigenpairs of problems(2.1) and (3.4), respectively.
Then



(a) For anyj ∈ N, λε,+j → λ0,+j , asε→ 0, and

uε,+j (x) −→ u0,+j (x1) strongly in L2(Kd, µε), ε→ 0

in terms of Definition 3.15.
(b) The convergence of fluxes takes place, that is

aε(x)∇uε,+j (x) −→ {aeff(x1)
du0,+j

dx1
(x1), 0, · · ·0}T

weakly inL2(Kd, µε)
d, asε→ 0.

PROOF. The first statement follows from the normalization condition (2.6) (see proof
of Lemma 3.13). The convergence of fluxes is a consequence of the homogenization result
used while proving Lemma 3.13. �

4. The case〈ρ(x1, ·)〉 = 0

4.1. Formal asymptotic expansion.Using the arguments similar to those in Sec-
tion 3.4.1, [12], yields

c ε−1 ≤ λε,±1 ≤ C ε−1,

for some constantsc andC.
Considering the last estimate, we look for a solution of problem (2.1) in the form

(4.1)
uε(x) = u0(x1) + ε u1(x1, y) + ε2 u2(x1, y) + · · · , y =

x

ε
,

λε = ε−1ν0 + ν1 + · · · ,
whereν0, ν1, u0(x1), u1(x1, y) and u2(x1, y) are to be determined. We suppose that
u1(x1, y) andu2(x1, y) are1-periodic iny1. Substituting asymptotic ansätze (4.1) into
(2.1) and collecting terms of orderε−1, we obtain the following equation for the unknown
functionu1(x1, y):





Ayu
1(x1, y) = divya·1(x1, y)

du0(x1)

dx1
+ ν0 ρ(x1, y) u

0(x1), y ∈ Y,

Byu
1(x1, y) = −ai1(x1, y)ni

du0(x1)

dx1
, y ∈ ∂Y,

u1(x1, y) is 1− periodic iny1.

Note that, since〈ρ(x1, ·)〉 = 0, the compatibility condition is satisfied. The structure of
the right-hand side of the last equation suggests the following representation foru1(x1, y):

(4.2) u1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ ν0N1,0(x1, y) u

0(x1) + v1(x1).

Then the functionsN1,1 andN1,0 are1-periodic iny1 solutions of the problems

(4.3)





AyN
1,1(x1, y) = divya·1(x1, y), y ∈ Y,

ByN
1,1(x1, y) = −ai1(x1, y)ni, y ∈ ∂Y,

N1,1(x1, y) is 1− periodic iny1;



(4.4)





AyN
1,0(x, y) = ρ(x1, y), y ∈ Y,

ByN
1,0(x1, y) = 0, y ∈ ∂Y,

N1,0(x1, y) is 1− periodic iny1.

Under assumption(H0) the functionsN1,1(x1, y), N
1,0(x1, y) belong to the spaceC1,α([−1, 1]×

Y ).
Similarly, substituting (4.1) into (2.1) and collecting the terms in front ofε0, we have

(4.5)





Ayu
2(x1, y) = divy(a·1(x1, y)

∂u1

∂x1
(x1, y)

+
∂

∂x1
(a1·(x1, y)∇yu

1(x1, y))

+
∂

∂x1
(a11(x1, y)

du0(x1)

dx1
) + ν1 ρ(x1, y)u

0(x1)

+ν0 ρ(x1, y) u
1(x1), y ∈ Y,

Byu
2(x1, y) = −ai1(x1, y)ni

∂

∂x1
u1(x1, y), y ∈ ∂Y,

u2(x1, y) is 1− periodic iny1.

The compatibility condition for the last problem reads

(4.6)

d

dx1

∫

Y

(a11 + a1·(x1, y)∇yN
1,1(x1, y))

du0(x1)

dx1
dy

+ν0
d

dx1

∫

Y

a1·(x1, y)∇yN
1,0(x1, y)) u

0(x1) dy

+ν0
∫

Y

ρ(x1, y)N
1,1(x1, y) dy

du0(x1)

dx1

+(ν0)2
∫

Y

ρ(x1, y)N
1,0(x1, y) u

0(x1)dy = 0

Rearranging the last three terms in (4.6) gives

ν0
d

dx1

∫

Y

a1·(x1, y)∇yN
1,0(x1, y)) u

0(x1) dy

+ν0
∫

Y

ρ(x1, y)N
1,1(x1, y) dy

du0(x1)

dx1

+(ν0)2
∫

Y

ρ(x1, y)N
1,0(x1, y) u

0(x1)dy

= (ν0)2 u0(x1)

∫

Y

(a(x1, y)∇yN
1,0,∇yN

1,0) dy



+ν0 u0(x1)
d

dx1

∫

Y

(a(x1, y)∇yN
1,1,∇yN

1,0) dy.

Denote

(4.7) C(x1) =

∫

Y

(a(x1, y)∇yN
1,0,∇yN

1,0) dy;

(4.8) B(x1) =
∂

∂x1

∫

Y

(a(x1, y)∇yN
1,1,∇yN

1,0) dy.

In view of the regularity properties ofN1,1 andN1,0,C ∈ C1,α[−1, 1] andB ∈ Cα[−1, 1].
Thus, (4.6) supplemented with an appropriate boundary condition takes the form of a
quadratic operator pencil

(4.9)





Π(ν0)u0(x1) ≡ − d

dx1

(
aeff(x1)

du0(x1)

dx1

)
+ ν0 B(x1) u

0(x1)

−(ν0)2C(x1) u
0(x1) = 0, x1 ∈ (−1, 1),

u0(−1) = u0(1) = 0.

The variational formulation of problem (4.9) reads: findu0 ∈ H1
0 (−1, 1), u0 6= 0, such

that

(4.10)

1∫

−1

aeff
du0

dx1

dv

dx1
dx1 + ν0

1∫

−1

B u0 v dx1 − (ν0)2
1∫

−1

C u0 v dx1 = 0,

for anyv ∈ H1
0 (−1, 1).

The next theorem characterizes the spectrum of the quadratic operator pencil (4.9).

THEOREM 4.1. The spectrum of problem(4.9) is discrete. The eigenvalues are real,
algebraically and geometrically simple, and form two infinite sequences

0 < ν0,+1 < ν0,+2 < · · · ν0,+j · · · → +∞,

0 > ν0,−1 > ν0,−2 > · · · ν0,−j · · · → −∞.

The corresponding eigenfunctions can be normalized by

(4.11)

1∫

−1

aeff
du0,±i

dx1

du0,±j

dx1
dx1 + ν0,±i ν0,±j

1∫

−1

C u0,±i u0,±j dx1 = δij ,

whereaeff andC are defined by(3.3)and (4.7), respectively.

PROOF. The existence of infinite number of eigenvalues is given by the following
classical theorem (see [3], [8]).



THEOREM 4.2. Keldysh Theorem
Given compact operatorsT andH, such thatH is a normal operator withKerH = {0}
(HH∗ = H∗H) andH2 is self-adjoint. Consider the Keldysh operator pencil

B(λ) = Id− λT H − λ2H2,

whereId is the identity operator. The following statements hold:

(1) For anyδ > 0, there is only finite number of eigenvalues outside the angle

{λ :
∣∣ arg λ− kπ

2

∣∣ < δ}, k = 0, 2;

(2) DenoteN+(r) the number of eigenvalues counted according to their multiplicity
of the operatorH2 in the interval(1/r2,+∞). LetNk(r, B(λ)) be a number of
eigenvalues of the operator pencilB(λ) contained in the sector

{λ :
∣∣ arg λ− kπ

2

∣∣ < π

4
, |λ| < r}, k = 0, 1, 2, 3.

If

(4.12) lim inf
r→∞

logN+(r)

log r
<∞,

then

lim inf
r→∞

∣∣∣N2k(r, B(λ))

N+(r)
− 1
∣∣∣ = 0, k = 0, 1.

In our case the operator pencil has the form

Π(ν0) = A0 + ν0 B(x1) Id− (ν0)2C(x1) Id.

Since(A0)−1 is a self-adjoint compact positive operator fromL2(−1, 1) into itself, then
there exists a self-adjoint positive operatorS = (A0)−1/2. It is compact as an operator
from L2(−1, 1) into itself, bounded if we consider it as an operator fromL2(−1, 1) into
H1

0 (−1, 1), and compact if it acts onH1
0 (−1, 1) with values inH1

0 (−1, 1). We apply the
operatorS to both sides of the operator pencilΠ(ν0). As a result we obtain

(4.13) Π̃(ν0) = Id+ ν0 SB(x1)S − (ν0)2 SC(x1)S.

One can check thatH2 = SC(x1)S : L2(−1, 1) → L2(−1, 1) is a self-adjoint compact
positive operator. ThenH = (SC(x1)S)

1/2 is also compact positive and self-adjoint with
KerH = {0}. Introducing

T = SB(x1)S (SC(x1)S)
−1/2,

we see thatT is a compact operator fromL2(−1, 1) into itself. Indeed,SB(x1)S is a com-
pact operator fromL2(−1, 1) intoH1

0 (−1, 1), andH−1 = (SC(x1)S)
−1/2 : H1

0 (−1, 1) →
L2(−1, 1) is bounded.

The spectrum of the quadratic operator pencil (4.13) is discrete and consists of eigen-
values of finite multiplicity possibly accumulating at∞.



Let us estimate the number of eigenvalues ofH2 in the interval(1/r2,+∞). LetL be
a subspace ofL2(−1, 1). Then due to the minimax principle, thekth eigenvalue ofH2 can
be found from the formula

ν+k = min
L

max
x∈L\{0}

(H2x, x)L2(−1,1)

(x, x)L2(−1,1)

≤ Cmin
L

max
x∈L\{0}

(Sx, Sx)L2(−1,1)

(x, x)L2(−1,1)

= C µ+
k ,

whereµ+
k is thekth eigenvalue of the operator(A0)−1. Similarly, sinceC(x1) is bounded

from below, we get the lower bound forν+k , and, consequently,

Cµ+
k ≤ ν+k ≤ C µ+

k .

Thus, we conclude that the number of eigenvalues of the operatorsH2 and (A0)−1 in
(1/r2,+∞) is asymptotically equivalent. The following inequality characterizes the growth
of the eigenvalues of the Sturm-Liouville problem for the operatorA0 (see, for example,
[9], [10]):

C1 π
2 k2

4
≤ 1

µ+
k

≤ C2 π
2 k2

4
,

where the constantsC1 andC2 are lower and upper bounds foraeff(x1), respectively.
Thus, we conclude that the number of eigenvalues ofH2 in the interval(1/r2,+∞) is

proportional tor, and, consequently, condition (4.12) is satisfied. By the Keldysh theorem,
N0(r, Π̃(ν0)), as well asN2(r, Π̃(ν0)), goes to infinity, asr → ∞, thus, it is true also for
Π(ν0).

Let us show that the eigenvalues of problem (4.9) are real. Suppose

ν0 = ℜ(ν0) + iℑ(ν0),

whereℜ(ν0) andℑ(ν0) represent the real and imaginary parts ofν0, respectively. Substi-
tuting the last expression in (4.10) and settingv = u0 we obtain





1∫

−1

aeff

∣∣∣du
0

dx1

∣∣∣
2

dx1 + ℜ(ν0)
1∫

−1

B |u0|2 dx1

−
[
(ℜ(ν0))2 − (ℑ(ν0))2

]
1∫

−1

C |u0|2 dx1 = 0,

ℑ(ν0)
1∫

−1

B |u0|2 dx1 − 2ℑ(ν0)ℜ(ν0)
1∫

−1

C |u0|2 dx1 = 0.



By our assumptionℑ(ν0) 6= 0. Thus, it follows from the last equation that

1∫

−1

B |u0|2 dx1 = 2ℜ(ν0)
1∫

−1

C |u0|2 dx1,

and, therefore,

1∫

−1

aeff

∣∣∣du
0

dx1

∣∣∣
2

dx1 +
[
(ℜ(ν0))2 + (ℑ(ν0))2

] 1∫

−1

C |u0|2 dx1 = 0

that contradicts the positiveness ofaeff andC, and, consequently,ν0 is real. In this way
the existence of two infinite sequences of eigenvalues tending to±∞ is proved.

Let us show that the algebraic multiplicity ofν0 is equal to1. Suppose there exists
ϕ1 ∈ H1

0 (−1, 1) such that

Π(ν0)ϕ1(x1) = −B(x1) u
0(x1) + 2ν0C(x1) u

0(x1),

whereΠ is defined by (4.9). Usingϕ1 as a test function in (4.10) and substituting the
resulting equality into the last formula yields

2ν0
1∫

−1

C (u0)2 dx1 −
1∫

−1

B (u0)2 dx1 = 0.

In view of (4.9),

0 = 2(ν0)2
1∫

−1

C (u0)2 dx1 − ν0
1∫

−1

B (u0)2 dx1

= (ν0)2
1∫

−1

C (u0)2 dx1 +

1∫

−1

aeff

∣∣∣du
0

dx1

∣∣∣
2

dx1 > 0.

We arrive at contradiction. Thus, the eigenvalues of problem (4.9) are algebraically simple.
Suppose the geometric multiplicity ofν0 is greater than1, in other words, there exist

two linearly independent eigenfunctionsu01 andu02 corresponding to the sameν0. Choos-
ing C1 andC2 in such a way that the functioñu0 = C1u

0
1 + C2u

0
2 satisfies the boundary

conditions

ũ0(−1) =
dũ0

dx1
(−1) = 0,

we see that, by the uniqueness result for ordinary differential equations,̃u0 = 0, that
contradicts the linear independence ofu01 andu02. �



We turn back to constructing the asymptotic expansion. The specific form of the right-
hand side of (3.6) suggests the following representation for u2(x1, y):

(4.14)

u2(x1, y) = N2,2(x1, y)
d2u0(x1)

dx21
+N2,1(x1, y)

du0(x1)

dx1

+ν0 q2(x1, y)
du0(x1)

dx1
+ ν0N2,0(x1, y)u

0(x1) + ν1N1,0 u0

+(ν0)2r2(x1, y)u
0(x1) +N1,1(x1, y)

dv1(x1)

dx1
+ν0N1,0(x1, y)v

1(x1) + v2(x1),

whereN2,2,N2,1 andN2,0 arey1-periodic solutions of the problems

(4.15)





AyN
2,2(x1, y) = divy(a(x1, y)N

1,1(x1, y))

+a1j(x1, y)(δ1j + ∂yjN
1,1(x1, y))− aeff(x1), y ∈ Y,

ByN
2,2(x1, y) = −(a·1(x1, y), n)N

1,1(x1, y), y ∈ ∂Y ;

(4.16)





AyN
2,1(x1, y) = divy(a·1(x1, y)

∂

∂x1
N1,1(x1, y))

+
∂

∂x1

[
a1j(x1, y)(δ1j + ∂yjN

1,1(x1, y))
]
− daeff(x1)

dx1
, y ∈ Y,

ByN
2,1(x1, y) = −(a·1(x1, y), n)

∂

∂x1
N1,1(x1, y), y ∈ ∂Y ;

(4.17)





AyN
2,0(x1, y) = divy(a·1(x1, y)

∂

∂x1
N1,0(x1, y)

+
∂

∂x1

(
a1·(x1, y)∇yN

1,0(x1, y)
)

− d

dx1

∫

∂Y

a1·(x1, y)∇yN
1,0(x1, y) dy, y ∈ Y,

ByN
2,0(x1, y) = (a·1(x1, y), n)

∂

∂x1
N1,0(x1, y), y ∈ ∂Y.

They1-periodic functionsq2(x1, y) andr2(x1, y) solve the problems

(4.18)





Ayq2(x1, y) = divy(a·1(x1, y)N
1,0(x1, y))

+a1·(x1, y)∇yN
1,0(x1, y) + ρ(x1, y)N

1,1(x1, y), y ∈ Y,

Byq2(x1, y) = −(a·1(x1, y), n)N
1,0(x1, y), y ∈ ∂Y ;

(4.19)

{
Ayr2(x1, y) = ρ(x1, y)N

1,0(x1, y)−C(x1), y ∈ Y,

Byr2(x1, y) = 0, y ∈ ∂Y.

Bearing in mind (4.3) and (4.4), we see that the compatibility condition for (4.18) is satis-
fied. Similarly, by (4.7), problem (4.19) is solvable.



Our next goal is to obtain an equation forv1(x1). To this end we substitute (4.1)
into (2.1) and collect terms of orderε1 in the equation and of orderε2 in the boundary
condition. In this way we get the problem foru3(x1, y).

(4.20)





Ayu
3(x1, y) = divy(a·1(x1, y)

∂u2

∂x1
(x1, y)

+
∂

∂x1
(a1·(x1, y)∇yu

2(x1, y))

+
∂

∂x1
(a11(x1, y)

du1(x1)

dx1
)

+ν1 ρ(x1, y)u
1(x1) + ν0 ρ(x1, y)u

2(x1), y ∈ Y,

Byu
3(x1, y) = −ai1(x1, y)ni

∂

∂x1
u2(x1, y), y ∈ ∂Y,

u3(x1, y) is 1− periodic iny1.

The compatibility condition for the last problem reads

(4.21) − d

dx1

(
aeff

dv1

dx1

)
+ ν0Bv1 − (ν0)2Cv1 = F1 − ν1Bu0 + 2ν1ν0Cu0,

whereB(x1) andC(x1) are defined by (4.8) and (4.7), respectively, and

(4.22)

F1(x1) =
d

dx1

∫

Y

a1·(x1, y)∇yũ2(x1, y) dy

+
d

dx1

∫

Y

a11(x1, y)
∂ũ1
∂x1

(x1, y) dy + ν0
∫

Y

ρ(x1, y)ũ2(x1, y) dy.

Here for brevity we denote

ũ1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ ν0N1,0(x1, y) u

0(x1);

ũ2(x1, y) = N2,2(x1, y)
d2u0(x1)

dx21
+N2,1(x1, y)

du0(x1)

dx1

+ν0 q2(x1, y)
du0(x1)

dx1
+ ν0N2,0(x1, y)u

0(x1)

+(ν0)2r2(x1, y)u
0(x1)

with the functionsN2,2, N2,1, N2,0, q2, r2 defined in (3.7), (3.8), (3.9), (4.18), (4.19).
As in Section 3, determining the boundary conditions forv1(x1) requires constructing

the boundary layer correctors in the neighbourhood of the pointsx = ±1.
Denote, as before,G− = (0,+∞) × Q andG+ = (−∞, 0) × Q the semi-infinite

cylinders with the axis directed alongy1 and lateral boundariesΣ− = (0,+∞)× ∂Q and



Σ+ = (−∞, 0)× ∂Q. Consider the following boundary value problem:

(4.23)





−divy(a(±1, y1 + δ, y′)∇yw
±) = 0, y ∈ G±,

(a(±1, y1 + δ, y′)∇yw
±, n) = 0, y ∈ Σ±,

w±(0, y′) = −N1,1(±1, δ, y′)
du0

dx1
(±1)

−ν0N1,0(±1, δ, y′) u0(±1),

with δ being the fractional part ofε−1, which is equal to zero in view of condition (2.2).
There exists a unique bounded solutionw± ∈ C1,α(G±) of problem (4.23) stabilizing to
some constant̂w±, as|y1| → +∞ (see [14]):

(4.24)

|w±(y1, y
′)− ŵ±| ≤ C0 e

−γ |y1|, C0, γ > 0;

‖∇w+‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n ≥ 0,

‖∇w−‖L2((−(n+1),−n)×Q) ≤ C e−γ n, ∀n ≥ 0,

for someγ > 0. As a boundary condition forv1(x1) we choose the uniquely defined
constantŝw±: v1(±1) = ŵ±. Thus, the problem forv1 takes the form

(4.25)

{
Π(ν0)v1(x1) = F1 − ν1Bu0 + 2ν1ν0Cu0, x1 ∈ (−1, 1),

v1(±1) = ŵ±.

SinceΠ(ν0)u0 = 0, problem (4.25) is solvable if the right-hand side is orthogonal tou0,
that is

1∫

−1

F1 u
0dx1 = ν1

1∫

−1

B(u0)2 dx1 − 2ν0 ν1
1∫

−1

C(u0)2 dx1 + F̄ ,

where the constant̄F is given by

(4.26) F̄ =
(
aeff(1)

du0

dx1
(1)ŵ+ − aeff(−1)

du0

dx1
(−1)ŵ−

)
.

It follows easily from (4.9) that

1∫

−1

B(x1)(u
0(x1))

2 dx1 − 2ν0
1∫

−1

C(x1)(u
0(x1))

2 dx1 6= 0.

Thus,ν1 can be defined in such a way that (4.25) possesses a solution. Namely,

(4.27) ν1 =
{ 1∫

−1

F1 u
0 dx1 − F̄

} { 1∫

−1

[
B(x1)− 2ν0C(x1)

]
(u0(x1))

2 dx1

}−1

.



We fix the choice of the functionv1 by setting
1∫

−1

v1(x1) u
0(x1) dx1 = 0.

Note that, in view of the regularity assumptions(H0), v1 ∈ C2,α[−1, 1], α > 0. In this
way the function

u0(x1) + εN1,1
(
x1,

x

ε

) du0(x1)
dx1

+ε ν0N1,0
(
x1,

x

ε

)
u0(x1) + ε v1(x1) + ε uε

bl
(x),

with

(4.28)
uεbl(x) = ũεbl(y)

∣∣∣
y=x/ε

=
(
w+
(
y1 −

1

ε
, y′
)
− ŵ+

)
+
(
w−
(
y1 +

1

ε
, y′
)
− ŵ−

)∣∣∣
y=x/ε

,

satisfies the homogeneous Dirichlet boundary conditions atx1 = ±1.

4.2. Justification procedure in the case〈ρ(x1, ·)〉 = 0.
Let ν0,±j be the eigenvalues andu0,±j the corresponding eigenfunctions of problem (4.9).
For anyj ∈ N we denote

(4.29)
Uε,±
j (x) = u0,±j (x1) + εN1,1

(
x1,

x

ε

) du0,±j (x1)

dx1
+ε ν0,±j N1,0

(
x1,

x

ε

)
u0,±j (x1) + ε v1,±j (x1) + ε uε

bl
(x),

whereu0,±j , N1,1, N1,0 andv1,±j solve problems (4.9), (4.3), (4.4) and (4.25), respectively
(with u0 = u0,±j andν0 = ν0,±j ). The boundary layer correctoruεbl is defined by (4.28) and
(4.23).

Let us emphasize that, due to the presence of the boundary layer terms, the function
Uε,±
j satisfies the homogeneous Dirichlet boundary conditions onS±1, and, as a conse-

quence, belong to the spaceHε.
We denote byν1,±j a constant defined by (4.27) withu0 = u0,±j andν0 = ν0,±j . For the

readers convenience we recall its definition.

(4.30) ν1,±j =
{ 1∫

−1

F1 u
0,±
j dx1 − F̄

} { 1∫

−1

[
B− 2ν0,±j C

]
(u0,±j )2 dx1

}−1

,

where(ν0,±j , u0,±j ) are eigenpairs of problem (4.9), the functionsB(x1),C(x1) are defined
by (4.8) and (4.7), respectively; the functionF1(x1) and the constant̄F are given by (4.22)
and (4.26) withu0 = u0,±j andν0 = ν0,±j .

The goal of this section is to prove the following result.



THEOREM 4.3. Let conditions(H0)−(H3) be fulfilled, and suppose that〈ρ(x1, y)〉 =
0 for anyx1 ∈ [−1, 1]. If (λε,±j , uε,±j ) are eigenpairs of problem(2.1), and(ν0,±j , u0,±j ) are
eigenpairs of the operator pencil(4.9), then

(i) For anyj, there existεj andCj > 0 such that

|λε,±j − (ε−1ν0,±j + ν1,±j )| ≤ Cj ε, ∀ε ∈ (0, εj].

Hereν1,±j is defined in(4.30).
(ii) For anyj

‖uε,±j − Uε,±
j ‖H1(Gε) ≤ Cj ε ε

d−1
2 ,

whereUε,±
j is defined by(4.29). Moreover, the ”almost eigenfunctions” satisfy

the almost orthogonality and normalization condition

∣∣∣ε
−(d−1)

|Q| (aε ∇Uε,±
i ,∇Uε,±

j )L2(Gε) − δij

∣∣∣ ≤ Cj ε.

(iii) For anyj ∈ N, λε,±j are simple, for sufficiently smallε > 0.

PROOF OFTHEOREM 3.6. As in Section 3, we make use of Lemma 3.8. Denote

Uε,±
j = ‖Uε,±

j ‖−1
Hε U

ε,±
j .

LEMMA 4.4. For anyj ∈ N there isεj > 0 such that

(4.31)
∥∥KεUε,±

j − (ε−1ν0,±j + ν1,±j )−1 Uε,±
j

∥∥
Hε ≤ Cj ε

2, ε < εj,

where the constantCj depends only onj.

PROOF. After straightforward rearrangements and integration byparts we have

Iε ≡
∥∥Kε Uε,±

j − (ε−1ν0,±j + ν1,±j )−1 Uε,±
j

∥∥
Hε

=
‖Uε,±

j ‖−1
Hε∣∣ε−1ν0,±j + ν1,±j

∣∣ sup
w∈Hε

‖w‖Hε=1

∣∣∣∣
(
Aε Uε,±

j , w
)
L2(Gε)

−(ε−1ν0,±j + ν1,±j )
(
ρε Uε,±

j , w
)
L2(Gε)

+

∫

Σε

(
aε∇Uε,±

j , n
)
w dσ

∣∣∣∣.

It is convenient to use the notation

Uε,±
j (x) = u0,±j (x1) + ε u1,±j (x1, y)

∣∣
y=x/ε

+ ε uεbl(x).



Recall thatu0,±j (x1) ∈ C2,α[−1, 1] andu1,±j (x1, y) ∈ C1,α([−1, 1] × Y ). In this way we
obtain

Iε =
‖Uε,±

j ‖−1
Hε∣∣ε−1ν0,±j + ν1,±j

∣∣ sup
w∈Hε

‖w‖Hε=1

∣∣∣∣∣

∫

Gε

Aε
(
u0,±j (x1) + ε u1,±j (x1,

x

ε
)
)
w(x) dx

−(ε−1ν0,±j + ν1,±j )

∫

Gε

ρε(x)
(
u0,±j (x1) + ε u1,±j (x1, y)

∣∣
y=x/ε

)
w(x) dx

+ε

∫

Σε

(aε·1, n)
∂u1,±j

∂x1
(x1, y)

∣∣
y=x/ε

w dσ + ε
(
Aε uεbl, w

)
L2(Gε)

−(ν0,±j + ε ν1,±j )
(
ρε uε

bl
, w
)
L2(Gε)

+

∫

Σε

(aε·1, n)∇yũ
ε
bl
(y)
∣∣
y=x/ε

w dσ

∣∣∣∣∣.

The last three terms containinguεbl can be estimated exactly like in Lemma 3.10.

(4.32)

∣∣∣ε(Aε uε
bl
, w)L2(Gε) + ε(aε∇uε

bl
w, n)L2(Σε)

−(ν0,±j + ε ν1,±j ) (ρε uε
bl
, w)L2(Gε)

∣∣∣

≤ C ε ε(d−1)/2 ‖w‖H1(Gε), w ∈ Hε.

Then

∫

Gε

Aε
(
u0,±j (x1) + ε u1,±j (x1,

x

ε
)
)
w(x) dx

−(ε−1ν0,±j + ν1,±j )

∫

Gε

ρε(x)
(
u0,±j (x1) + ε u1,±j (x1, y)

∣∣
y=x/ε

)
w(x) dx

+ε

∫

Σε

(aε·1, n)
∂u1,±j

∂x1
(x1, y)

∣∣
y=x/ε

w dσ =

= ε0 (Iε0 , w)L2(Gε) + ε1 (Iε1 , w)L2(Gε)

+ε

∫

Σε

(aε·1, n)
∂u1,±j

∂x1
(x1, y)

∣∣
y=x/ε

w dσ;



here

Iε0(x) = I0(x1, y)
∣∣
y=x/ε

= − ∂

∂x1
(a1·(x1, y)∇yu

1,±
j (x1, y)

− ∂

∂x1

(
a11(x1, y)

du0,±j

dx1
(x1)

)
− ν1,±j ρ(x1, y)u

0,±
j (x1)

−ν0,±j u1,±j (x1, y) ρ(x1, y)
∣∣∣
y=x/ε

;

Iε1(x) = −
{
divx +

1

ε
divy

}(
a·1(x1, y)

∂u1,±j

∂x1
(x1, y)

)

−ν1,±j ρ(x1, y) u
1,±
j (x1, y)

∣∣∣
y=x/ε

.

By (4.9), the average ofI0(x1, y) ∈ C1,α([−1, 1];Cα(Y )) overY is equal to zero, thus, by
Lemma 3.11 ∣∣(Iε0 , w

)
L2(Gε)

∣∣ ≤ C ε ε
d−1
2 ‖w‖H1(Gε).

Integrating by parts and bearing in mind the regularity properties ofu1,±j and assumption
(H0), one can see that

∣∣∣
(
Iε1 , w

)
L2(Gε)

+

∫

Σε

(aε·1, n)
∂u1,±j

∂x1
(x1, y)

∣∣
y=x/ε

w dσ
∣∣∣

=
∣∣∣
∫

Gε

(aε·1(x),∇w)
∂u1,±j

∂x1

∣∣∣
y=x/ε

dx− ν1,±j

∫

Gε

ρε(x) u1,±j (x1,
x

ε
)w(x) dx

∣∣∣

≤ C ε
d−1
2 ‖w‖H1(Gε).

Thus,

(4.33) Iε ≤ C
‖Uε,±

j ‖−1
Hε∣∣ε−1ν0,±j + ν1,±j

∣∣ ε ε
d−1
2 .

Let us estimate‖Uε,±
j ‖Hε . Rearranging the terms in the expression for

(
Uε,±
i , Uε,±

j

)
Hε

yields (
Uε,±
i , Uε,±

j

)
Hε = Jε

xx + Jε
xy + Jε

yx + Jε
yy,

where

Jε
xx =

∫

Gε

aε11
du0,±i

dx1

du0,±j

dx1
dx+ ε

∫

Gε

aε11
du0,±i

dx1

∂u1,±j

∂x1
(x1, y) dx

+ε

∫

Gε

aε11
du0,±j

dx1

∂u1,±i

∂x1
(x1, y) dx+ ε2

∫

Gε

aε11
∂u1,±i

∂x1

∂u1,±j

∂x1
(x1, y) dx.



Jε
xy =

∫

Gε

(aε·1,∇yN
1,1)
∣∣
y=x/ε

du0,±i

dx1

du0,±j

dx1
dx

+

∫

Gε

(aε·1,∇yũ
ε
bl)
∣∣
y=x/ε

du0,±i

dx1
dx

+ν0,±j

∫

Gε

(aε·1,∇yN
1,0)
∣∣
y=x/ε

du0,±i

dx1
u0,±j dx

+ε

∫

Gε

(aε·1,∇yu
1,±
j )
∣∣
y=x/ε

∂u1,±i

∂x1
(x1, y) dx

+ε

∫

Gε

(aε·1,∇yũ
ε
bl
)
∣∣
y=x/ε

∂u1,±i

∂x1
(x1, y) dx.

Jε
yx =

∫

Gε

(aε·1,∇yN
1,1)
∣∣
y=x/ε

du0,±i

dx1

du0,±j

dx1
dx

+

∫

Gε

(aε·1, ũ
ε
bl
)
∣∣
y=x/ε

du0,±j

dx1
dx

+ν0,±i

∫

Gε

(aε·1,∇yN
1,0)
∣∣
y=x/ε

du0,±j

dx1
u0,±i dx+

+ε

∫

Gε

(aε·1,∇yu
1,±
i )
∣∣
y=x/ε

∂u1,±j

∂x1
(x1, y) dx

+ε

∫

Gε

(aε·1,∇yũ
ε
bl
)
∣∣
y=x/ε

∂u1,±j

∂x1
(x1, y) dx.

Jε
yy =

∫

Gε

(aε∇yN
1,1,∇yN

1,1)
∣∣
y=x/ε

du0,±i

dx1

du0,±j

dx1
dx

+ν0,±i

∫

Gε

(aε∇yN
1,0,∇yN

1,1)
∣∣
y=x/ε

u0,±i

du0,±j

dx1
dx

+ν0,±j

∫

Gε

(aε∇yN
1,0,∇yN

1,1)
∣∣
y=x/ε

u0,±j

du0,±i

dx1
dx

+ν0,±i ν0,±j

∫

Gε

(aε∇yN
1,0,∇yN

1,0)
∣∣
y=x/ε

u0,±i u0,±j dx.



There are several ”typical” terms in the expressions forJε
xx, Jε

xy, J
ε
yx andJε

yy to be esti-
mated. For example, using the regularity properties ofa(x1, y), u

0,±
j andu1,±j we get

∣∣∣ε
∫

Gε

aε11
du0,±i

dx1

∂u1,±j

∂x1
(x1, y) dx

∣∣∣ ≤ C ε |Gε| = C ε εd−1.

Then, taking into account the exponential decay ofũεbl one can see that

∣∣∣ε
∫

Gε

(a·1,∇yũ
ε
bl)
∣∣
y=x/ε

du0,±i

dx1
dx
∣∣∣

≤ C εd
1/ε∫

−1/ε

dx1

∫

Q

|∇yũ
ε
bl| dy′ ≤ C ε εd−1.

In view of boundedness of∂u1,±j /∂x1 and periodicity ofN1,1, N1,0

∣∣∣ε
∫

Gε

(a·1,∇yu
1,±
j )
∣∣
y=x/ε

∂u1,±i

∂x1
(x1, y) dx

∣∣∣

≤ C ε

∫

Gε

[
|∇yN

1,1(x1, y)|+ |∇yN
1,0(x1, y)|

]∣∣
y=x/ε

dx

≤ C εd max
x1∈[−1,1]

[ ∫

Y

|∇yN
1,1(x1, y)| dy +

∫

Y

|∇yN
1,0(x1, y)| dy

]
≤ C ε εd−1.

Notice that
∫

Y

{
(a1·(x1, y),∇yN

1,0(x1, y))

+(a1·(x1, y)∇yN
1,0(x1, y),∇yN

1,1(x1, y))
}
dy = 0,

and, thus, by Lemma 3.11

∣∣∣ν0,±i

∫

Gε

{(
a1·(x1, y),∇yN

1,0(x1, y)
)

+
(
a1·(x1, y)∇yN

1,0(x1, y),∇yN
1,1(x1, y)

)}∣∣∣
y=x/ε

u0,±i (x1)
du0,±j

dx1
(x1) dx

∣∣∣

≤ C ε εd−1.



Similarly,
∣∣∣ν0,±j

∫

Gε

{(
a1·(x1, y),∇yN

1,0(x1, y)
)

+
(
a1·(x1, y)∇yN

1,0(x1, y),∇yN
1,1(x1, y)

)}∣∣∣
y=x/ε

u0,±j (x1)
du0,±i

dx1
(x1) dx

∣∣∣

≤ C ε εd−1.

Consequently,

(Uε,±
i , Uε,±

j )Hε =

∫

Gε

(
aε11 + aε·1∇yN

1,1(x1, y)
)∣∣

y=x/ε

du0,±i

dx1

du0,±j

dx1
dx

+

∫

Gε

{(
aε1·,∇yN

1,1
)
+
(
aε∇yN

1,1,∇yN
1,1
)}∣∣

y=x/ε

du0,±i

dx1

du0,±j

dx1
dx

+ν0,±i ν0,±j

∫

Gε

(
aε∇yN

1,0,∇yN
1,0
)∣∣

y=x/ε
u0,±i u0,±j dx+Rε,

where|Rε| ≤ C ε εd−1.
Recalling the definition of the effective coefficientaeff and of the functionC(x1) (see

(3.3) and (4.7), respectively), by Lemma 3.11, we have

∣∣∣(Uε,±
i , Uε,±

j )Hε − εd−1 |Q|
1∫

−1

aeff(x1)
du0,±i

dx1

du0,±j

dx1
dx1

−ν0,±i ν0,±j εd−1 |Q|
1∫

−1

C(x1)u
0,±
i u0,±j dx1

∣∣∣ ≤ C ε εd−1.

In view of the normalization condition (4.11),

(4.34)
∣∣∣ε

−(d−1)

|Q| (Uε,±
i , Uε,±

j )Hε − δij

∣∣∣ ≤ C ε.

Estimate (4.34) implies the lower bound for the norm‖Uε,±
i ‖Hε:

(4.35) ‖Uε,±
i ‖Hε ≥ |Q|1/2

2
ε

d−1
2 , ε < εi.

Combining (4.33) and (4.35) yields the desired estimate (4.31). Lemma 4.4 is proved.�

We turn back to the proof of Theorem 4.3. By Lemma 3.8, in view of estimate (4.31),
for anyj there exists an eigenvalueµε,±

q of the operatorKε such that
∣∣µε,±

q − (ε−1ν0,±j + ν1,±j )−1
∣∣ < Cjε

2, ε < εj .



Considering the relationλε,±j = (µε,±
j )−1, we get

(4.36)
∣∣λε,±q − (ε−1ν0,±j + ν1,±j )

∣∣ < Cjε, ε < εj.

Our next goal is to prove that, for anyj, there is a uniqueλε,±j satisfying inequality (4.36).
The proof consists of three steps presented below. Lemma 4.5gives the lower and upper
bounds forλε,±j . Lemma 4.6 claims that, up to a subsequence,ελε,±q converges to an
eigenvalue of the operator pencil (4.9). Then we show that there exists a unique eigenvalue
λε,±j satisfying (4.36).

LEMMA 4.5. For anyj, the estimate holds true

(4.37) 0 < m ≤ ε |λε,±j | ≤Mj

with some constantsm andMj .

PROOF. By the definition of the operatorKε,

‖Kε‖ = sup
(v,v)Hε=1

(Kεv, v)Hε = sup
(v,v)Hε=1

(ρεv, v)L2(Gε).

Arguments similar to those in Lemma 3.11 yield
∣∣∣
∫

Gε

ρε (v)2 dx
∣∣∣ ≤ C ε ‖v‖2H1(Gε).

Thus,

‖Kε‖ ≤ C ε, |µε,±
j | ≤ C ε, ∀j.

Considering the equalityλε,±j = (µε,±
j )−1, we obtain the lower bound in (4.37). The upper

bound in (4.37) follows easily from estimate (4.36). Lemma 4.5 is proved. �

LEMMA 4.6. For anyj, up to a subsequence,ελε,±j converges to an eigenvalueν∗ of
problem(4.9).

PROOF. In view of Lemma 4.5,ελε,±j converges to someν∗ ∈ R \ {0}. Let us show
that ν∗ is an eigenvalue of the operator pencil (4.9). The weak formulation of problem
(2.1) has the form

(
Aεuε,±i − λε,±i ρεuε,±i , w

)
L2(Gε)

= 0, w ∈ Hε.

Integrating by parts leads to the equality

(4.38)
(
uε,±i , Aεw − λε,±i ρεw

)
L2(Gε)

+

∫

Σε

(aε∇w, n) uε,±i dσ = 0, w ∈ Hε.

By the normalization condition (2.6),uε,±i (x) ∈ L2(Kd, µε) converges strongly in the vari-
able spaceL2(Kd, µε) to a functionu∗(x1) ∈ L2(Kd, µ∗),Kd = [−1, 1]d (see Lemma 3.13



for the details). Thus, showing thatAεw − λε,±i ρεw converges weakly inL2(Kd, µε) will
allow us to pass to the limit in (4.38). For this purpose we construct a test function

V ε(x) = v(x1) + εN1,1(x1,
x

ε
)
dv(x1)

dx1

+ε2 λε,±i N1,0(x1,
x

ε
) v(x1), v ∈ C∞

0 [−1, 1].

We would like to emphasize that, in contrast with anzats (4.29), we do not add the bound-
ary layer corrector here. The reason is thatv(x1) is equal to zero at points±1 together
with all its derivatives, that yieldsV ε(±1, x′) = 0.

Simple transformations yield

AεV ε − λε,±i ρε V ε = Jε
1(x1, y) + Jε

2(x1, y)
∣∣∣
y=x/ε

,

where

Jε
1(x1, y) = − ∂

∂x1

(
a1·(x1, y)∇yN

1,1(x1, y)
dv(x1)

dx1

)

− ∂

∂x1

(
a11(x1, y)

dv(x1)

dx1

)

−ε λε,±i

∂

∂x1

(
a1·(x1, y)∇yN

1,0(x1, y) v(x1)
)

−ε λε,±i ρ(x1, y)N
1,1(x1, y)

dv(x1)

dx1
−(ε λε,±i )2 ρ(x1, y)N

1,0(x1, y) v(x1);

Jε
2(x1, y) = −ε

{
divx +

1

ε
divy

}[
a·1(x1, y)

∂

∂x1
(N1,1(x1, y)

dv(x1)

dx1
)
]

−ε2λε,±i

{
divx +

1

ε
divy

}[
a·1(x1, y)

∂

∂x1
(N1,0(x1, y) v(x1))

]
.

In view of (3.3), (4.8) and (4.7),
∫

Y

Jε
1(x1, y) dy = − ∂

∂x1

(
aeff(x1)

dv(x1)

dx1

)

+ε λε,±i B(x1) v(x1)− (ε λε,±i )2C(x1) v(x1).

Using Lemma 3.11 and normalization condition (2.6), we obtain

∣∣∣
∫

Gε

Jε
1(x1, y)

∣∣
y=x/ε

uε,±i (x)dx−
∫

Gε

∫

Y

Jε
1(x1, y)u

ε,±
i (x) dy dx

∣∣∣

≤ C ε ε
(d−1)

2 ‖uε,±i ‖H1(Gε) ≤ C ε εd−1.



Then, integrating by parts one gets
∫

Gε

Jε
2(x1, y)

∣∣
y=x/ε

uε,±i (x)dx+

∫

Σε

(aε∇V ε, n) uε,±i dσ

= ε

∫

Gε

a·1(x1, y)
∂

∂x1

(
N1,1(x1, y)

dv(x1)

dx1

)∣∣∣
y=x/ε

∇uε,±i (x) dx

+ε2λε,±i

∫

Gε

a·1(x1, y)
∂

∂x1

(
N1,0(x1, y) v(x1)

)∣∣∣
y=x/ε

∇uε,±i (x) dx.

Estimating the terms on the right-hand side of the last equality yields
∣∣∣
∫

Gε

Jε
2(x1, y)

∣∣
y=x/ε

uε,±i (x)dx+

∫

Σε

(aε∇V ε, n) uε,±i dσ
∣∣∣

≤ C ε |Gε|1/2 ‖∇uε,±i ‖L2(Gε) ≤ C ε εd−1.

Consequently,

0 =
(
uε,±i , Aεw − λε,±i ρεw

)
L2(Gε)

+

∫

Σε

(aε∇w, n) uε,±i dσ

=
(
uε,±i , Π(ελε,±i ) v

)
L2(Gε)

+ rε, |rε| ≤ C ε εd−1.

By definition of the measureµε (see Section 3)
∫

Kd

uε,±i (x)Π(ελε,±i ) v(x1) dµε +
rε

εd−1|Q| = 0.

Passing to the limit in the last equality, taking into account the strong convergence ofuε,±i

in L2(Kd, µε), yields ∫

Kd

u∗(x1)Π(ν∗) v(x1) dµ∗(x) = 0.

Integration by parts gives
∫

Kd

v(x1)Π(ν∗) u∗(x1) dµ∗(x) = 0, v ∈ C∞
0 [−1, 1].

Thus,u∗ satisfies the equation

(4.39) Π(ν∗) u∗(x1) = − d

dx1

(
aeff

du∗
dx1

)
+ ν∗ Bu∗ − (ν∗)

2
C u∗ = 0.

By the definition ofuε,±i andλε,±i we have

‖uε,±i ‖2Hε = λε,±i (ρε uε,±i , uε,±i )L2(Gε).



Since〈ρ(x1, ·)〉 = 0, then
∣∣∣
∫

Gε

ρε(uε,±i )2 dx
∣∣∣ ≤ C ε ‖uε,±i ‖L2(Gε) ‖uε,±i ‖H1(Gε),

and, consequently,

‖uε,±i ‖2Hε ≤ C ε λε,±i ‖uε,±i ‖L2(Gε) ‖uε,±i ‖H1(Gε).

Taking into account estimate (4.37) and the defintion of the measureµε, we have

‖uε,±i ‖L2(Kd,µε) ≥ c > 0.

Considering the strong convergence ofuε,±i in L2(Kd, µε) leads to the inequality

‖u∗‖L2(−1,1) ≥ c > 0,

which means, together with (4.39), that(ν∗, u∗) is an eigenpair of the operator pencil (4.9).
Lemma 4.6 is proved. �

Assume that
ελε,±i → ν0,±j , ε→ 0,

ελε,±k → ν0,±j , ε→ 0.

Then necessarilyi = k. Indeed, by Lemma 4.6 the eigenfunctionsuε,±i anduε,±k converge
to the eigenfunctionsu∗,±1 andu∗,±2 of (4.9) corresponding toν0,±j , and, as was proved
above,u∗,±1 6= 0 andu∗,±2 6= 0. Since the eigenvalueν0,±j is simple, we have

u∗,±1 + c̄1u
∗,±
2 = 0.

for somec̄1 6= 0. Assume thati 6= k, and consider the expression

T ε =
1

ε

(
ρε(uε,±i + c̄1u

ε,±
k ), (uε,±i + c̄1u

ε,±
k )
)
L2(Kd,µε)

Considering (2.6), (4.37) and (3.26), we obtain

T ε =
1

ελε,±i

(uε,±i , uε,±i )Hε

εd−1|Q| +
c21

ελε,±k

(uε,±k , uε,±k )Hε

εd−1|Q|

(4.40) =
1

ελε,±i

+
c21

ελε,±k

−→ 1

ν0,±j

+
c21
ν0,±j

=
1 + c21
ν0,±j

6= 0.

It was shown in the proof of Lemma 3.13 thatuε,±i anduε,±k converges strongly in
L2(Kd, µ

ε), therefore,
‖uε,±i + c1u

ε,±
k ‖L2(Kd,µε) → 0,

asε→ 0. Denote byS(x, y) a solution to the following problem




−∆yS(x1, y) = ρ(x1, y), y ∈ G±,

∇yS(x1, y) · n(y) = 0, y ∈ Σ±,

S(x1, y) is 1-periodic iny1.



Since〈ρ(x1, ·)〉 = 0, this problem is solvable. SettingR(x1, y) = ∇yS(x1, y) we have

1

ε
ρ
(
x1,

x

ε

)
= divR

(
x1,

x

ε

)
− ∂

∂x1
R(x1, y)

∣∣
y=x/ε

.

DenotingRε
1(x) =

∂
∂x1
R(x1, y)

∣∣
y=x/ε

andRε(x) = R
(
x1,

x
ε

)
, we rewriteT ε as follows

T ε =
(
divRε(uε,±i + c1u

ε,±
k ), (uε,±i + c1u

ε,±
k )
)
L2(Kd,µε)

−
(
Rε

1(u
ε,±
i + c1u

ε,±
k ), (uε,±i + c1u

ε,±
k )
)
L2(Kd,µε)

.

Clearly,Rε
1 is uniformly in ε bounded. Therefore, the second term on the right-hand side

tends to zero, asε→ 0. Integration by parts in the first term yields
(
divRε(uε,±i + c1u

ε,±
k ), (uε,±i + c1u

ε,±
k )
)
L2(Kd,µε)

=

−2
(
Rε(uε,±i + c1u

ε,±
k ),∇(uε,±i + c1u

ε,±
k )
)
L2(Kd,µε)

.

Since‖∇uε,±i ‖L2(Kd,µε) and‖∇uε,±i ‖L2(Kd,µε) are uniformly inε bounded, the first term
also tends to zero, asε → 0, which implies thatlim

ε→0
T ε = 0. This contradicts (4.40). We

conclude thati = k.
Finally, we conclude that for anyj there is only oneλε,±j satisfying inequality (4.36),

and thus, it is simple for sufficiently smallε. In view of the geometric simplicity ofν0,±j

and Lemma 3.8, the corresponding eigenfunctionuε,±j can be approximated by the ”almost
eigenfunction”Uε,±

j :

‖uε,±j − Uε,±
j ‖Hε ≤ cj ε, ε < εj.

The proof of Theorem 4.3 is complete. �

5. The case of sign-changing〈ρ(x1, ·)〉
In the case of sign-changing〈ρ(x1, ·)〉 the limit spectral problem takes the form

(5.1)





A0 u0(x1) ≡ − d

dx1

(
aeff(x1)

du0(x1)

dx1

)

= λ0 〈ρ(x1, ·)〉 u0(x1), x1 ∈ (−1, 1),

u0(±1) = 0.

Here the effective coefficientaeff is defined by (3.3). By Lemma 3.1 the coefficientaeff(·)
is aC1,α[−1, 1] function such thataeff(x1) > 0 for all x1 ∈ [−1, 1].

Since〈ρ(x1, ·)〉 changes sign, one can see in the same way as in Theorem 2.4 thatthe
spectrum of problem (5.1) is discrete and consists of two infinite sequences

0 < λ0,+1 < λ0,+2 < · · · < λ0,+j · · · → +∞,

0 > λ0,−1 > λ0,−2 > · · · > λ0,−j · · · → −∞.



Moreover, since problem (5.1) is one-dimensional, all the eigenvaluesλ0,±j are simple.
The corresponding eigenfunctionsu0,±i ∈ C2,α[−1, 1] of problem (5.1) can be normalized
by

(5.2)

1∫

−1

aeff(x1)
du0,±i

dx1

du0,±j

dx1
dx1 = δij .

For anyj ∈ N we denote

(5.3)
Uε,±
j (x) = u0,±j (x1) + εN1,1(x1, y)

du0,±j (x1)

dx1

∣∣
y=x/ε

+ε v1,±j (x1) + ε
(
uε,+bl (x) + uε,−bl (x)

)
,

whereu0,±j , N1,1 andv1,±j solve problems (5.1), (3.2) and (3.15), respectively, withu0 =

u0,±j andλ0 = λ0,±j . The boundary layer functionsuε,±bl are defined by (3.17) and (3.13)
with u0 = u0,±j .

THEOREM 5.1. Let conditions(H0) − (H3) be fulfilled, and suppose that〈ρ(x1, ·)〉
changes its sign on[−1, 1]. If (λε,±j , uε,±j ) are eigenpairs of problem(2.1), and(λ0,±j , u0,±j )
are those of problem(5.1), then the following statements hold:

(i) For anyj ∈ N, there existεj andCj > 0 such that

|λε,±j − λ0,±j | ≤ Cj ε, ∀ε ∈ (0, εj].

(ii) For anyj ∈ N

‖uε,±j − Uε,±
j ‖H1(Gε) ≤ Cj ε ε

d−1
2

whereUε,±
j is defined by(5.3). Moreover, the ”almost eigenfunctions” satisfy the

almost orthogonality and normalization condition
∣∣∣ε

−(d−1)

|Q| (aε ∇Uε,±
i ,∇Uε,±

j )L2(Gε) − δij

∣∣∣ ≤ Cj ε.

(iii) For j ∈ N, λε,±j are simple, for sufficiently smallε > 0.

PROOF. Since the proof of Theorem 5.1 is similar to that of Theorem 3.6, we give here
just a sketch of this proof.

First, we construct a formal asymptotic expansion for a solution (λε, uε) of problem
(2.1). In the case under consideration it takes the same formas in the case〈ρ(x1, ·)〉 > 0
(see (3.1)). Namely,

(5.4)
uε(x) = u0(x1) + ε u1(x1, y) + ε2 u2(x1, y) + ε3 u3(x1, y) + · · · ,

λε = λ0 + ε λ1 + · · · , y =
x

ε
,



where unknown functionsuk(x1, y) are1-periodic iny1. We substitute these ansätze for
uε andλε in (2.1), collect power-like terms, and repeat the computations of Section 3.1.
At the first step we obtain that

u1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ v1(x1)

with N1,1 defined in (3.2). At the second step this yields problem (3.4), that is the pair
(λ0, u0) solves problem (5.1).

Notice that, since0 does not belong to the spectrum of (5.1), for eachu0 6= 0 we have

(5.5) λ0 6= 0,

1∫

−1

〈ρ(x1, ·)〉(u0(x1))2 dx1 6= 0.

In order to determine the functionv1(x1) we set, like in (3.6),

u2(x1, y) = N2,2(x1, y)
d2u0(x1)

dx21
+N2,1(x1, y)

du0(x1)

dx1

+N2,0(x1, y) u
0(x1) +N1,1(x1, y)

dv1(x1)

dx1
+ v2(x1),

whereN2,2, N2,1 andN2,0 arey1-periodic functions defined in (3.7)–(3.9). Recalling the
definition of the boundary layer functionsw±(y1, y

′) (see (3.13)) and the corresponding
constantsŵ±, and repeating once again the computations of Section 3.1, we arrive at
problem (3.15) that reads

(5.6)





− d

dx1

(
aeff(x1)

dv1

dx1

)
− λ0 〈ρ(x1, ·)〉 v1(x1)

= F (x1) + λ1 〈ρ(x1, ·)〉 u0, x1 ∈ (−1, 1),

v1(±1) = ŵ±

with F (x1) defined by (3.11).
In view of (5.5), normalization condition (5.2), and by the Fredholm theorem, the

solvability condition of the last problem reads

(5.7)
λ1 = −λ0

1∫

−1

F (x1) u
0(x1) dx1

+λ0
(
aeff(1)

du0

dx1
(1) ŵ+ − aeff(−1)

du0

dx1
(−1) ŵ−

)
.

Imposing the normalization condition

1∫

−1

v1(x1) u
0(x1) dx1 = 0



and letting

(5.8) uε,±bl (x) = w±
(x1 ∓ 1

ε
,
x′

ε

)
− ŵ±,

we finally obtain a formal asymptotic expansion ofuε:

(5.9)
Uε(x) = u0(x1) + εN1,1

(
x1,

x′

ε

)du0(x1)
dx1

+ε v1(x1) + ε
(
uε,+bl (x) + uε,−bl (x)

)
.

Let λ0,+j (λ0,−j ) be thejth positive (negative) eigenvalue of problem (3.4). We substitute
the corresponding eigenfunctionu0,+j ( u0,−j ) for u0 in (5.9) and denote

(5.10)
Uε,±
j (x) = u0,±j (x1) + εN1,1(x1, y)

du0,±j (x1)

dx1

∣∣
y=x/ε

+ε v1,±j (x1) + ε
(
(uε,+

bl
(x) + uε,−

bl
(x)
)
,

whereu0,±j , N1,1 andv1,±j solve problems (5.1), (3.2) and (5.6), respectively, withu0 =

u0,±j andλ0 = λ0,±j . The boundary layer functionsuε,±bl are defined by (3.17) and (3.13)
again withu0 = u0,±j .

Notice that by construction the functionUε,±
j are elements of the spaceHε.

Consider the normalized ansatz (5.10)

Uε,±
j =

(
‖Uε,±

j ‖Hε

)−1
Uε,±
j

and the numbers(λ0,±j + ελ1,±j )−1 with λ1,±j defined by formula (5.7) withu0 = u0,±j and
λ0 = λ0,±j .

The statement of Lemma 3.9 remains valid in the case under consideration both for
positive and negative parts of the spectrum.

LEMMA 5.2. For anyj ∈ N there areεj > 0 andCj > 0 that only depend onj, such
that

(5.11) ‖Kε Uε,±
j − (λ0,±j + ελ1,±j )−1 Uε,±

j ‖Hε ≤ Cj ε for all ε < εj.

PROOF. As in the proof of Lemma 3.9 we set

Iε,±j ≡ ‖Kε Uε,±
j − (λ0,±j + ελ1,±j )−1 Uε,±

j ‖Hε,



and after straightforward rearrangements get

Iε,±j = sup
w∈Hε

‖w‖Hε=1

∣∣∣∣
(
Kε Uε,±

j − (λ0,±j + ελ1,±j )−1 Uε,±
j , w

)
Hε

∣∣∣∣

=
‖Uε,±

j ‖−1
Hε∣∣λ0,±j + ελ1,±j

∣∣ sup
w∈Hε

‖w‖Hε=1

∣∣∣∣
(
(λ0,±j + ελ1,±j )Kε Uε,±

j − Uε,±
j , w

)
Hε

∣∣∣∣

=
‖Uε,±

j ‖−1
Hε∣∣λ0,±j + ελ1,±j

∣∣ sup
w∈Hε

‖w‖Hε=1

∣∣∣(λ0,±j + ελ1,±j )
(
ρε Uε,±

j , w
)
L2(Gε)

−
(
aε∇Uε,±

j , ∇w
)
L2(Gε)

∣∣∣.
Estimate (4.35)) justified in the proof of Lemma 3.9 did not rely on the positiveness of
〈ρ(x1, ·)〉. Thus it also holds in the case of sign-changing〈ρ(x1, ·)〉. Namely, for all
sufficiently smallε > 0 we have

(5.12) ‖Uε,±
i ‖Hε ≥ |Q|1/2

2
ε

(d−1)
2 .

Analogously, in the same way as in the proof of Lemma 3.9, we obtain

(5.13) sup
w∈Hε

‖w‖Hε=1

∣∣∣(λ0,±j +ελ1,±j )
(
ρε Uε,±

j , w
)
L2(Gε)

−
(
aε ∇Uε,±

j , ∇w
)
L2(Gε)

∣∣∣ ≤ Cεε
(d−1)

2 .

Sinceλ0,±j 6= 0, then for sufficiently smallε > 0 we have
∣∣λ0,±j + ελ1,±j

∣∣ ≥ C with some
C > 0. Combining this estimate with (5.12) and (5.13) yields (5.11). �

From Lemma 5.2 and Lemma 3.8 it follows that for anyj ∈ N there areεj > 0 and
q± such that

(5.14) |λε,±q± − λ0,±j | ≤ cj ε, ε < εj.

By the same arguments as in Lemmata 3.12 and 3.13 it is easy to deduce that for any
q ∈ N

0 < m ≤ |λε,±q | ≤ Mq,

and that any limit pointλ∗ of a sequence{λε,+j } or {λε,−j } is an eigenvalue of problem
(5.1).

In the same way as in the proof of Theorem 3.6 this readily implies all the statements
of Theorem 5.1. �
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