H. The and .. , 301 6.1.2 Tenor structures and simplified notations, 302 6.1.4 On the relative pertinence of the SV-HJM and SV-LMM classes . . . . 303

.. Dynamics-of-rebased-bonds, 304 6.2.1 Dynamics of the rebased Zero Coupons, 304 6.2.2 Dynamics of a rebased ZC basket with fixed weights . . . . . . . . . . . 305

.. Andersen and J. Andreasen, Volatility skews and extension of the libor market model, Applied Mathematical Finance, vol.34875, issue.230, pp.1-32, 2000.

J. [. Andersen and . Andreasen, Volatile volatilities. RISK Magazine, dec, p.333, 2002.

R. [. Andersen and . Brotherton-ratcliffe, Extended libor market models with stochastic volatility, p.333, 2001.

M. [. Avellaneda and . Lipkin, A market-induced mechanism for stock pinning, Quantitative Finance, vol.333, pp.417-425, 2003.

]. C. [-ale04 and . Alexander, Normal mixture diffusion with uncertain volatility : Modelling shortand long-term smile effects, Journal of Banking and Finance, vol.2858, pp.2957-2980, 2004.

]. C. An04a, L. M. Alexander, and . Nogueira, Hedging with stochastic and local volatility. Working Paper, 2004.

]. C. An04b, L. M. Alexander, and . Nogueira, Stochastic local volatility, Second IASTED International Conference, pp.136-141, 2004.

]. J. And05 and . Andreasen, Back to the future, Risk magazine, vol.18230, pp.104-109, 2005.

V. [. Andersen and . Piterbarg, Moment explosions in stochastic volatility models, Finance and Stochastics, vol.211, issue.375, 2006.

]. K. Bab01 and . Babbar, Aspects of stochastic implied volatility in financial markets, 2001.

]. P. Bal02 and . Balland, Deterministic implied volatility models, Quantitative Finance, vol.23, pp.31-44, 2002.

H. Beresticki, J. Busca, and I. Florent, Asymptotics and calibration of local volatility models, Quantitative Finance, vol.4, issue.1, pp.49-53, 2002.
DOI : 10.1002/cpa.3160450103

J. [. Beresticki, I. Busca, and . Florent, Computing the implied volatility in stochastic volatility models, Communications on Pure and Applied Mathematics, vol.20, issue.140, pp.1352-1373, 2004.
DOI : 10.1002/cpa.20039

O. [. Benhamou and . Croissant, Local time for the sabr model. connection with the complex black-scholes and application to cms and spread options. Working paper, IXIS CIB, sep, 2007.

]. S. Bec80 and . Beckers, The constant elasticity of variance model and its implications for option pricing, The Journal of Finance, vol.35109, issue.3, pp.661-673, 1980.

X. Xxvi-bibliography-[-ber04 and ]. L. Bergomi, Smile dynamics, Risk, pp.117-123, 2004.

]. L. Ber05 and . Bergomi, Smile dynamics ii, Risk, pp.67-73, 2005.

]. L. Ber08 and . Bergomi, Smile dynamics iii, Risk, pp.90-96, 2008.

]. L. Ber09 and . Bergomi, Smile dynamics iv, Risk, pp.94-100, 2009.

P. [. Benaim and . Friz, Smile asymptotics ii : models with known moment generating function, 2008.

P. [. Benaim and . Friz, REGULAR VARIATION AND SMILE ASYMPTOTICS, Mathematical Finance, vol.14, issue.3, pp.1-12, 0209.
DOI : 10.1111/j.1467-9965.2008.00354.x

URL : http://arxiv.org/abs/math/0603146

P. [. Benaim, R. Friz, and . Lee, On Black-Scholes Implied Volatility at Extreme Strikes, 2008.
DOI : 10.1002/9781118266915.ch2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. [. Brace, F. Goldys, R. Klebaner, and . Womersley, Market model of stochastic implied volatility with application to the bgm model, 2001.

D. [. Brace, M. Gatarek, and . Musiela, The Market Model of Interest Rate Dynamics, Mathematical Finance, vol.7, issue.2, pp.127-155, 1997.
DOI : 10.1111/1467-9965.00028

E. [. Benhamou, M. Gobet, and . Miri, EXPANSION FORMULAS FOR EUROPEAN OPTIONS IN A LOCAL VOLATILITY MODEL, International Journal of Theoretical and Applied Finance, vol.13, issue.04, p.375, 2008.
DOI : 10.1142/S0219024910005887

URL : https://hal.archives-ouvertes.fr/hal-00325939

]. E. Bgm09a, E. Benhamou, M. Gobet, and . Miri, Analytical formulas for local volatility model with stochastic rates, 2009.

]. E. Bgm09b, E. Benhamou, M. Gobet, and . Miri, Time dependent heston model, 2009.

R. [. Breeden and . Litzenberger, Prices of State-Contingent Claims Implicit in Option Prices, The Journal of Business, vol.51, issue.4, pp.621-651, 1978.
DOI : 10.1086/296025

F. [. Brigo and . Mercurio, Interest rate models: theory and practice, 2006.
DOI : 10.1007/978-3-662-04553-4

F. [. Brigo, F. Mercurio, and . Rapisarda, LOGNORMAL-MIXTURE DYNAMICS AND CALIBRATION TO MARKET VOLATILITY SMILES, International Journal of Theoretical and Applied Finance, vol.05, issue.04, pp.427-446, 2002.
DOI : 10.1142/S0219024902001511

F. [. Brigo, F. Mercurio, R. Rapisarda, and . Scotti, Approximated momentmatching dynamics for basket-options simulation. Working paper, Banca IMI, vol.135, 2002.
DOI : 10.2139/ssrn.268433

]. H. Buh06a and . Buhler, Consistent variance curves, Finance and Stochastics, vol.103, issue.2, 2006.

]. H. Buh06b and . Buhler, Volatility markets : consistent modeling, hedging and practical implementation of Variance Swap Market Models, 2006.

]. R. Cdf02, J. Cont, and . Da-fonseca, Dynamics of implied volatility surfaces, Quantitative Finance, vol.23, issue.25, pp.45-60, 2002.

]. R. Cdfd02, J. Cont, V. Da-fonseca, and . Durrleman, Stochastic models of implied volatility surfaces, Economic Notes, vol.313, issue.2, pp.361-377, 2002.

]. O. Che92 and . Cheyette, Term structure dynamics and mortgage valuation, Journal of Fixed Income, vol.1303, pp.28-41, 1992.

S. [. Carmona and . Nadtochiy, An infinite dimensional stochastic analysis approach to local volatility models, Communications on Stochastic Analysis, vol.23, issue.375, pp.109-123, 2008.

S. [. Carmona and . Nadtochiy, Local volatility dynamic models, Finance and Stochastics, vol.20, issue.2, pp.1-48, 2009.
DOI : 10.1007/s00780-008-0078-4

]. R. Con04 and . Cont, Modeling term structure dynamics: an infinite dimensional approach, Ecole Polytechnique, vol.334, 2004.

M. [. Carmona and . Tehranchi, Interest rate models : an infinite-dimensional stochastic analysis perspective, 2006.

]. M. Dav04 and . Davis, Complete-market models of stochastic volatility, Proceedings of the Royal Society, pp.11-26, 2004.

]. E. Der99 and . Derman, Regimes of volatility : Some observations on the variation of sp500 implied volatilities. Quantitative strategies research notes, 1999.

L. Aspremont and . Ghaoui, Static arbitrage bounds on basket option prices, Mathematical Programming, pp.467-89, 2006.

I. [. Derman and . Kani, Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility, International Journal of Theoretical and Applied Finance, vol.01, issue.01, pp.61-110, 1998.
DOI : 10.1142/S0219024998000059

N. [. Durrleman and . Karoui, Coupling smiles, Quantitative Finance, vol.89, issue.126, pp.573-590, 2008.
DOI : 10.2139/ssrn.1005332

URL : https://hal.archives-ouvertes.fr/hal-00708494

I. [. Derman, J. Z. Kani, and . Zou, The local volatility surface : Unlocking the information in index option prices. Quantitative strategies research notes, 1995.

J. [. Davis and . Obloj, Market completion using options, Advances in Mathematics of Finance, 2008.
DOI : 10.4064/bc83-0-4

URL : http://arxiv.org/abs/0710.2792

]. B. Dup93 and . Dupire, Pricing and hedging with smiles. Working paper, Paribas Capital Markets, 1993.

]. B. Dup94 and . Dupire, Pricing with a smile, Risk, 1994.

]. V. Dur03 and . Durrleman, From Implied to Spot Volatilities, 2003.

]. V. Dur06 and . Durrleman, From implied to spot volatilities, Mathematical Finance, vol.43, issue.179, 2006.

]. V. Dur07 and C. Durrleman, Convergence of at-the-money implied volatilities to the spot volatility, 2007.

X. Bibliography-[-dur10 and ]. V. Durrleman, From implied to spot volatilities, Finance and Stochastics, vol.149, issue.2, pp.157-177, 2010.

V. [. Dragulescu and . Yakovenko, Probability distribution of returns in the heston model with stochastic volatility, Quantitative Finance, vol.236, issue.209, pp.443-453, 2002.

]. M. Fen05 and . Fengler, Semiparametric Modeling of Implied Volatility. Lecture Notes, 2005.

]. D. Fil01 and . Filipovic, Consistency problems for Heath-Jarrow-Morton interest rate models, Lecture Notes in Mathematics, vol.334, 2001.

A. [. Forde and . Jacquier, Small-time asymptotics for implied volatility under a general local-stochastic volatility model, 2009.

J. [. Fournie, N. Lebuchoux, and . Touzi, Small noise expansion and importance sampling, Asymptotic Analysis, vol.14, issue.4, pp.361-376, 0207.

F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, vol.81, issue.3, pp.637-654, 1973.
DOI : 10.1086/260062

[. Fouque, G. Papanicolau, and K. R. Sircar, Financial modeling in a fast meanreverting stochastic volatility environment, Asia-Pacific Financial Markets, vol.6, issue.1, pp.37-48, 1999.
DOI : 10.1023/A:1010010626460

J. Fouque, G. Papanicolau, and K. R. Sircar, Derivatives In Financial Markets With Stochastic Volatility, 0207.

[. Fouque, G. Papanicolau, and K. R. Sircar, MEAN-REVERTING STOCHASTIC VOLATILITY, International Journal of Theoretical and Applied Finance, vol.03, issue.01, pp.470-493, 2000.
DOI : 10.1142/S0219024900000061

]. D. Gat03a and . Gatarek, Libor market model with stochastic volatility, 2003.

]. J. Gat03b and . Gatheral, Modeling the implied volatility surface. Presentation at the global derivatives and risk management, 2003.

]. J. Gat06 and . Gatheral, The Volatility Surface : a practitioner's guide, p.53, 2006.

]. J. Gat07 and . Gatheral, Developments in volatility derivatives modeling. Presentation at the global derivatives trading and risk management, 2007.

]. J. Gat08 and . Gatheral, Further developments in volatility derivatives modeling. Presentation at the global derivatives trading and risk management, 2008.

]. J. Ghl-+-10, E. P. Gatheral, P. Hsu, C. Laurence, T. H. Ouyang et al., Asymptotics of implied volatility in local volatility models, 2010.

S. [. Glasserman and . Kou, The term structure of simple forward rates with jump risk. Working paper, Columbia Unversity, 1999.

H. [. Glasserman and . Wang, Discretization of deflated bond prices, Advances in Applied Probability, vol.32336, pp.540-563, 2001.
DOI : 10.1239/aap/1013540178

URL : http://projecteuclid.org/download/pdf_1/euclid.aap/1013540178

X. [. Glasserman and . Zhao, Arbitrage-free discretization of lognormal forward Libor and swap rate models, Finance and Stochastics, vol.4, issue.1, pp.35-68, 2000.
DOI : 10.1007/s007800050002

]. R. Haf04 and . Hafner, Stochastic Implied Volatility. Number 545 in Lecture Notes In Economics And Mathematical Systems, pp.25-374, 2004.

]. P. Hen06 and . Henrotte, The case for time homogeneity. Wilmott Magazine, sep, 2006.

]. S. Hes93 and . Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review Of Financial Studies, vol.6, issue.2, pp.327-343, 1993.

DOI : 10.1142/9789812819222_0013

D. [. Hagan, A. S. Kumar, D. E. Lesniewski, and . Woodward, Managing smile risk. Wilmott, sep, pp.84-108, 2002.

. [. Henry-labordere, A General Asymptotic Implied Volatility for Stochastic Volatility Models, SSRN Electronic Journal, 2005.
DOI : 10.2139/ssrn.698601

URL : https://hal.archives-ouvertes.fr/hal-00004632

. [. Henry-labordere, Unifying the bgm and sabr models : a short ride in hyperbolic geometry, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00015510

]. P. Hl08a, A. Hagan, . Lesniewski, and . Morgan, Libor market model with sabr style stochastic volatility, 2008.

]. P. Hl08b and . Henry-labordere, Analysis, Geometry and Modeling in Finance -Advanced Methods in Option Pricing, CRC Financial Mathematics Series. Chapman & Hall, vol.8, issue.333, 2008.

A. [. Hagan, D. E. Lesniewski, and . Woodward, Probability Distribution in the SABR Model of Stochastic Volatility, Report, Bloomberg LP, 2005.
DOI : 10.1007/978-3-319-11605-1_1

B. [. Hafner and . Schmid, A factor-based stochastic implied volatility model, Risklab Germany, vol.3, 2005.

]. J. Hul03 and . Hull, Options, Futures, and Other Derivatives. Fifth Edition. Finance Series, 2003.

A. [. Hull and . White, The Pricing of Options on Assets with Stochastic Volatilities, The Journal of Finance, vol.40, issue.2, pp.281-300, 1987.
DOI : 10.1111/j.1540-6261.1987.tb02568.x

A. [. Hull and . White, Pricing Interest-Rate-Derivative Securities, Review of Financial Studies, vol.3, issue.4, pp.573-592, 1990.
DOI : 10.1093/rfs/3.4.573

URL : http://rfs.oxfordjournals.org/cgi/content/short/3/4/573

D. [. Hagan and . Woodward, Equivalent black volatilities An asymptotic fx option formula in the cross currency libor market model, Applied Mathematical Finance, vol.668, issue.121 253, pp.147-157, 1999.

P. [. Jacod and . Protter, Risk-neutral compatibility with option prices, Finance and Stochastics, vol.12, issue.2, pp.285-315, 2010.
DOI : 10.1007/s00780-009-0109-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. [. Joshi and . Rebonato, A stochastic-volatility, displaced-diffusion extension of the libor market model. Working paper, 2001.

]. N. Kar09 and . Karoui, Processus stochastiques et produits dérivés. Lecture notes, 2009.

]. N. Kases98, M. Karoui, S. E. Jeanblancpicqù-e-ans, and . Shreve, Robustness of the black and scholes formula, Mathematical Finance, vol.817, issue.2, pp.93-126, 1998.

H. [. Karoui, J. Geman, and . Rochet, Changes of numéraire, changes of probability measure and option pricing, Journal of Applied Probability, vol.32263, issue.2, pp.443-458, 1995.

A. [. Kunitomo and . Takahashi, The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims, Mathematical Finance, vol.11, issue.1, pp.117-151, 2001.
DOI : 10.1111/1467-9965.00110

A. [. Kunitomo and . Takahashi, Applications of the asymptotic expansion approach based on malliavin-watanabe calculus in financial problems Graduate school of mathematical sciences, Report, vol.8, p.375, 2003.

. [. Kunita, Stochastic flows and stochastic differential equations, p.90, 1990.

P. [. Ledoit and . Clara, Relative Pricing of Options with Stochastic Volatility, SSRN Electronic Journal, vol.25, 1998.
DOI : 10.2139/ssrn.121257

]. R. Lee04a and . Lee, Implied volatility : Statics, dynamics, and probabilistic interpretation, Recent Advances in Applied Probability, p.49, 2004.

]. R. Lee04b and . Lee, The moment formula for implied volatility at extreme strikes, Mathematical Finance, vol.148, issue.36, pp.469-480, 2004.

]. A. Les02 and . Lesniewski, Wkb method for swaption smile, BNP Paribas, vol.5, 2002.

]. A. Lew00 and . Lewis, Option Valuation Under Stochastic Volatility, p.122, 2000.

. [. Liu, Fundamental methods of numerical extrapolation with applications. Mitopencourseware, Massachusetts Institute Of Technology, 2006.

P. [. Ledoit, S. Santa-clara, and . Yan, Relative Pricing of Options with Stochastic Volatility, SSRN Electronic Journal, vol.3, 2002.
DOI : 10.2139/ssrn.121257

T. [. Laurence and . Wang, What's a basket worth? Risk Magazine, 2004.

]. R. Lwng, D. Lee, and . Wang, Displaced lognormal volatility skews : analysis and applications to stochastic volatility simulations. Annals of Finance, Forthcoming

]. T. Lyo97 and . Lyons, Derivatives as tradeable assets, Seminario de Matematica Financiera (98-99), pp.213-232, 1997.

M. Avellaneda, D. Boyer-olson, J. Busca, and F. P. , Reconstructing the smile, Risk magazine, vol.15135, issue.10, 2002.

]. A. Med04 and . Medvedev, Asymptotic methods for computing implied volatilities under stochastic volatility, National Center of Competence in Research, 2004.

]. A. Med08 and . Medvedev, Implied volatility at expiration. Technical report, Swiss Finance Institute, 2007.

M. [. Musiela and . Rutkowski, Martingale Methods in Financial Modelling, Second Edition. Stochastic Modelling and Applied Probability, 2004.

O. [. Medvedev and . Scaillet, A Simple Calibration Procedure of Stochastic Volatility Models with Jumps by Short Term Asymptotics, SSRN Electronic Journal, 2003.
DOI : 10.2139/ssrn.477441

O. [. Medvedev and . Scaillet, Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility, 2006.

]. S. Naw09 and . Nawalkha, The libor/sabr market models : a critical review, 2009.

S. [. Nocedal and . Wright, Numerical Optimization, Second Edition, p.61, 2006.

]. J. Obl08 and . Obloj, Fine-tune tour smile. correction to hagan & al, 2008.

]. V. Pit05a and . Piterbarg, Mixture of models: A simple recipe for a ... hangover? Wilmott Magazine, pp.72-77, 2005.

]. V. Pit05b and . Piterbarg, Stochastic volatility model with time-dependent skew, Applied Mathematical Finance, vol.124, issue.230, pp.147-185, 2005.

]. V. Pit07 and . Piterbarg, Markovian projection for volatility calibration, Risk Magazine, vol.204, issue.109, pp.84-89, 2007.

M. [. Posner and . Milevsky, Valuing exotic options by approximating the spd with higher moments, The Journal of Financial Engineering, vol.7135, pp.109-125, 1998.

]. C. Pot04 and . Potter, Complete stochastic volatility models with variance swaps, 2004.

S. [. Press, W. T. Teukolsky, B. P. Vetterling, and . Flannery, Numerical Recipes in C, Second Edition, 1992.

]. R. Reb07a and . Rebonato, No-arbitrage dynamics for a tractable sabr term structure libor model, 2007.

]. R. Reb07b and . Rebonato, A time-homogeneous, sabr-consistent extension of the lmm : calibration and numerical results, Tanaka Business School, vol.333, 2007.

D. [. Ren, M. Q. Madan, and . Qian, Calibrating and pricing with embedded local volatility models, RISK, vol.3, issue.25, 2007.

K. [. Rebonato, R. Mckay, and . White, The SABR/LIBOR Market Model: Pricing, Calibration and Hedging for Complex Interest Rate Derivatives, 2009.
DOI : 10.1002/9781119206392

]. N. Rou07 and . Rousseau, How to Keep the Smile ? Dynamic Vega Hedges and Volatility Derivatives, 2007.

L. [. Ritchken and . Sankarasubramanian, VOLATILITY STRUCTURES OF FORWARD RATES AND THE DYNAMICS OF THE TERM STRUCTURE, Mathematical Finance, vol.6, issue.1, pp.55-72, 1995.
DOI : 10.1016/0304-405X(77)90016-2

[. Renault and N. Touzi, OPTION HEDGING AND IMPLIED VOLATILITIES IN A STOCHASTIC VOLATILITY MODEL, Mathematical Finance, vol.8, issue.1, pp.279-302, 1996.
DOI : 10.1016/0304-405X(87)90009-2

N. [. Romano and . Touzi, Contingent Claims and Market Completeness in a Stochastic Volatility Model, Mathematical Finance, vol.7, issue.4, pp.399-410, 1997.
DOI : 10.1111/1467-9965.00038

M. [. Rogers and . Tehranchi, Can the implied volatility surface move by parallel shifts? Finance and Stochastics, pp.235-248, 2010.
DOI : 10.1007/s00780-008-0081-9

R. [. Rebonato and . White, Linking caplets and swaptions prices in the LMM-SABR model, The Journal of Computational Finance, vol.13, issue.2, 2007.
DOI : 10.21314/JCF.2009.196

]. P. Sch99 and . Schönbucher, A market model for stochastic implied volatility, Philosophical Transactions of the Royal Society, vol.3573, issue.25, pp.2071-2092, 1758.

. [. Svoboda-greenwood, The displaced diffusion as an approximation of the cev, p.75, 2007.

J. [. Stein and . Stein, Stock Price Distributions with Stochastic Volatility: An Analytic Approach, Review of Financial Studies, vol.4, issue.4, pp.727-752, 1991.
DOI : 10.1093/rfs/4.4.727

A. [. Shiraya, A. Takahashi, and . Yamazaki, Pricing swaptions under the libor market model of interest rates with local-stochastic volatility models, 2010.

]. M. Sw08a, J. Schweiser, and . Wissel, Arbitrage-free market models for option prices : the multi-strike case, Finance and Stochastics, vol.123, pp.469-505, 2008.

]. M. Sw08b, J. Schweiser, and . Wissel, Term structures of implied volatilities : absence of arbitrage and existence results, Mathematical Finance, vol.183, issue.1, pp.77-114, 2008.

]. M. Teh09 and . Tehranchi, Asymptotics of implied volatility far from maturity, Journal of Applied Probability, vol.468, issue.3, pp.629-650, 2009.

]. S. Var08 and . Varadhan, Large deviations. The annals of probability, pp.397-419, 2008.

]. J. Wis07, N. Wissel, and . Finrisk, Arbitrage-free market models for option prices, 2007.

]. A. Zil06 and . Zilber, A market model for stochastic smiles. Working paper, 2006.