J. L. Bacaria, Un modèle comportemental et transitoire pour la coupe des métaux, 2001.

M. C. Shaw, Metal cutting principles, Tribology International, vol.18, issue.1, 1984.
DOI : 10.1016/0301-679X(85)90013-1

R. Komanduri and R. H. Brown, On the Mechanics of Chip Segmentation In Machining, Journal of Engineering for Industry, vol.103, issue.1, pp.33-51, 1981.
DOI : 10.1115/1.3184458

J. Hua and R. Shivpuri, Prediction of chip morphology and segmentation during the machining of titanium alloys, Journal of Materials Processing Technology, vol.150, issue.1-2, pp.124-133, 2004.
DOI : 10.1016/j.jmatprotec.2004.01.028

V. P. Astakhov, S. V. Shvets, and M. O. Osman, Chip structure classification based on mechanics of its formation, Journal of Materials Processing Technology, vol.71, issue.2, pp.247-257, 1997.
DOI : 10.1016/S0924-0136(97)00081-2

M. Saoubi and R. , Aspects thermiques et microstructuraux de la coupe -Application à la coupe des aciers austénitiques, p.137, 1998.

G. Poulachon, Aspects phénoménologique, mécaniques et métallurgiques en tournage C-BN des aciers durcis. Application: usinabilité de l'acier 100 Cr6, 1999.

T. H. Childs, K. Maekawa, T. Obikawa, and Y. Yamane, Metal Machining, Theory and Applications, pp.65-68, 2000.
URL : https://hal.archives-ouvertes.fr/jpa-00255374

M. Nouari, M. Calamaz, and F. Girot, M??canismes d'usure des outils coupants en usinage ?? sec de l'alliage de titane a??ronautique Ti???6Al???4V, Comptes Rendus M??canique, vol.336, issue.10, pp.772-781, 2008.
DOI : 10.1016/j.crme.2008.07.007

A. J. Sabberwal, Chip section and cutting force model during the milling process, Annales du CIRP, vol.10, 1961.

T. Ozel, The influence of friction models on finite element simulations of machining, International Journal of Machine Tools and Manufacture, vol.46, issue.5, pp.518-530, 2006.
DOI : 10.1016/j.ijmachtools.2005.07.001

P. L. Oxley and W. F. Hasting, Minimum work as possible criterion for determining the frictionnal conditions as the tool interface in machining Philosophical Transactions of The Royal Society of London, pp.282-565, 1310.

T. D. Marusich and M. Ortiz, Modelling and simulation of high-speed machining, International Journal for Numerical Methods in Engineering, vol.36, issue.18, pp.3675-3694, 1995.
DOI : 10.1002/nme.1620382108

F. Klocke, H. Raedt, and S. Hoppe, 2D-FEM SIMULATION OF THE ORTHOGONAL HIGH SPEED CUTTING PROCESS, Machining Science and Technology, vol.107, issue.3, pp.323-340, 2001.
DOI : 10.1063/1.1707586

L. J. Xie, J. Schmidt, C. Schmidt, and F. Biesinger, 2D FEM estimate of tool wear in turning operation, Wear, vol.258, issue.10, pp.1479-1490, 2005.
DOI : 10.1016/j.wear.2004.11.004

S. A. Iqbal, P. T. Mativenga, and M. A. Sheikh, Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 1: investigation of contact phenomena, Proceedings of the Institution of Mechanical Engineers, pp.909-916, 2007.
DOI : 10.1243/09544054JEM796

S. A. Iqbal, P. T. Mativenga, and M. A. Sheikh, Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 2: evaluation of flow stress models and interface friction distribution schemes, Proceedings of the Institution of Mechanical Engineers, pp.917-926, 2007.
DOI : 10.1243/09544054JEM797

G. S. Andreev, Photoelastic study of stresses in a cutting tool using cinematography. Vestnyk Machinostroeniya, pp.38-54, 1958.

A. Molinari and D. Dudzinski, Stationnary shear band in high-speed machining, C.R. Acad. Sci. Paris, pp.315-399, 1992.

R. J. Clifton, J. Duffy, K. A. Hartley, and T. G. Shawki, On critical conditions for shear band formation at high strain rates, Scripta Metallurgica, vol.18, issue.5, p.443, 1984.
DOI : 10.1016/0036-9748(84)90418-6

K. Williams and E. Griffen, Friction between unlubricated steel surfaces at sliding speeds up to 649 feet per second, Proc. IME, pp.24-36, 1964.

R. S. Montgomery, Friction and wear at high sliding speeds, Wear, vol.36, issue.3, pp.275-298, 1976.
DOI : 10.1016/0043-1648(76)90108-3

S. C. Lim, M. F. Ashby, and J. H. Brunton, The effects of sliding conditions on the dry friction of metals, Acta Metallurgica, vol.37, issue.3, pp.767-772, 1989.
DOI : 10.1016/0001-6160(89)90003-5

N. N. Zorev and H. S. Massey, Metal Cutting Mechanics, 1966.

D. Buryta, R. Sowerby, and I. Yellowley, Stress distributions on the rake face during orthogonal machining, International Journal of Machine Tools and Manufacture, vol.34, issue.5, pp.721-739, 1994.
DOI : 10.1016/0890-6955(94)90054-X

T. Shirakashi and E. Usui, Friction Characteristics on Tool Face in Metal Machining, Journal of the Japan Society of Precision Engineering, vol.39, issue.464, pp.966-972, 1973.
DOI : 10.2493/jjspe1933.39.966

K. Iwata, K. Osakada, and Y. Teresaka, Process modeling of orthogonal cutting by the rigidplastic finite element method. Transactions of the ASME, pp.132-138, 1984.

K. F. Eldridge, O. W. Dillon, and W. Y. Lu, thermo-viscoplastic finite element modelling of machining under various cutting conditions. Transaction of NAMIR, SME, pp.162-169, 1991.

J. S. Wu, D. Jr, and J. W. Lu, Thermo-Viscoplastic Modeling of Machining Process Using a Mixed Finite Element Method, Journal of Manufacturing Science and Engineering, vol.118, issue.4, pp.470-482, 1996.
DOI : 10.1115/1.2831056

I. Finnie and M. C. Shaw, The friction process in metal cutting, Trans. ASME, vol.77, pp.1649-1657, 1956.

B. Ackroyd, S. Chandrasekar, and W. D. Compton, A Model for the Contact Conditions at the Chip-Tool Interface in Machining, Journal of Tribology, vol.125, issue.3, pp.649-660, 2003.
DOI : 10.1115/1.1537747

P. W. Wallace and G. Boothroyd, Tool forces and tool???chip friction in orthogonal machining, ARCHIVE: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23), vol.6, issue.1, pp.74-87, 1964.
DOI : 10.1243/JMES_JOUR_1964_006_013_02

A. Bagachi and P. K. Wright, Stress Analysis in Machining with the Use of Sapphire Tools, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.409, issue.1836, pp.409-99, 1987.
DOI : 10.1098/rspa.1987.0008

G. Barrow, W. Graham, T. Kurimoto, and Y. F. Leong, Determination of rake face stress distribution in orthogonal machining, International Journal of Machine Tool Design and Research, vol.22, issue.1, pp.75-85, 1982.
DOI : 10.1016/0020-7357(82)90022-1

S. Raman, A. Longstreet, and D. Guha, A fractal view of tool???chip interfacial friction in machining, Wear, vol.253, issue.11-12, pp.11-12, 2002.
DOI : 10.1016/S0043-1648(02)00238-7

A. Moufki, A. Molinari, D. Dudzinski, and R. Rausch, Thermoviscoplastic modelling of oblique cutting: forces and chip flow predictions, International Journal of Mechanical Sciences, vol.42, issue.6, pp.1205-1232, 2000.
DOI : 10.1016/S0020-7403(99)00036-3

A. Moufki, A. Devillez, D. Dudzinski, and A. Molinari, Thermomechanical modelling of oblique cutting and experimental validation, International Journal of Machine Tools and Manufacture, vol.44, issue.9, pp.971-989, 2004.
DOI : 10.1016/j.ijmachtools.2004.01.018

E. Merchant, Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting, Journal of Applied Physics, vol.16, issue.6, pp.318-324, 1945.
DOI : 10.1063/1.1707596

L. V. Colwell, Predicting the angle of chip flow for single-point cutting tools. trans, ASME, issue.76, pp.199-204, 1954.

P. L. Oxley, Mechanics of machining, 1989.

J. Wang and P. Mathew, Development of a general tool model for turning operations based on a variable flow stress theory, International Journal of Machine Tools and Manufacture, vol.35, issue.1, pp.71-90, 1995.
DOI : 10.1016/0890-6955(94)E0004-3

J. A. Arsecularatne, R. F. Fowle, and P. Mathew, Nose radius oblique tool: Cutting force and built-up edge prediction, International Journal of Machine Tools and Manufacture, vol.36, issue.5, pp.585-595, 1996.
DOI : 10.1016/0890-6955(95)00065-8

G. V. Stabler, The fundamental geometry of cutting tools, ARCHIVE: Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196), vol.165, issue.1951, pp.14-21, 1951.
DOI : 10.1243/PIME_PROC_1951_165_008_02

R. H. Brown and J. A. Armarego, Oblique machining with a single cutting edge, International Journal of Machine Tool Design and Research, vol.4, issue.1, pp.9-25, 1964.
DOI : 10.1016/0020-7357(64)90006-X

R. J. Brown and R. H. , The measurement of chip flow direction, Int. J. Mach. Tool Des. Res, issue.6, pp.129-138, 1966.

W. K. Luk, The direction of chip flow in oblique cutting, International Journal of Production Research, vol.74, issue.1, pp.67-76, 1972.
DOI : 10.1080/00207547208929906

M. C. Shaw, Metal cutting principles, Tribology International, vol.18, issue.1, 1984.
DOI : 10.1016/0301-679X(85)90013-1

E. Usui and H. Takeyama, A Photoelastic Analysis of Machining Stresses, Journal of Engineering for Industry, vol.82, issue.4, pp.303-308, 1960.
DOI : 10.1115/1.3664233

N. N. Zorev and H. S. Massey, Metal Cutting Mechanics, 1966.

E. M. Trent, P. K. Wright, . Butterworth-heinemann, . T. Boston, K. Maekawa et al., Metal Machining; Theory and Applications, pp.65-68, 2000.

S. Kato, K. Yamaguchi, and M. Yamada, Stress Distribution at the Interface Between Tool and Chip in Machining, Journal of Engineering for Industry, vol.94, issue.2, pp.683-689, 1972.
DOI : 10.1115/1.3428229

T. Shirakashi and E. Usui, Friction Characteristics on Tool Face in Metal Machining, Journal of the Japan Society of Precision Engineering, vol.39, issue.464, pp.966-972, 1973.
DOI : 10.2493/jjspe1933.39.966

V. R. Marinov, Hybrid analytical???numerical solution for the shear angle in orthogonal metal cutting ??? Part I: theoretical foundation, International Journal of Mechanical Sciences, vol.43, issue.2, pp.399-414, 2001.
DOI : 10.1016/S0020-7403(00)00013-8

H. S. Qi and B. Mills, Modelling of the dynamic tool???chip interface in metal cutting, Journal of Materials Processing Technology, vol.138, issue.1-3, pp.201-207, 2003.
DOI : 10.1016/S0924-0136(03)00072-4

R. Komanduri and B. F. Turkovich, New observations on the mechanism of chip formation when machining titanium alloys, Wear, vol.69, issue.2, pp.179-188, 1981.
DOI : 10.1016/0043-1648(81)90242-8

A. Vyas and M. C. Shaw, Mechanics of Saw-Tooth Chip Formation in Metal Cutting, Journal of Manufacturing Science and Engineering, vol.121, issue.2, pp.121-165, 1999.
DOI : 10.1115/1.2831200

J. Hua and R. Shivpuri, Prediction of chip morphology and segmentation during the machining of titanium alloys, Journal of Materials Processing Technology, vol.150, issue.1-2, pp.124-133, 2004.
DOI : 10.1016/j.jmatprotec.2004.01.028

Y. Bai and B. Dodd, Adiabatic shear localisation; Occurence, Theories and Applications, 1992.

N. N. Zorev and H. S. Massey, Metal Cutting Mechanics, 1966.

T. H. Childs, K. Maekawa, T. Obikawa, and Y. Yamane, Metal Machining, Theory and Applications, pp.65-68, 2000.
URL : https://hal.archives-ouvertes.fr/jpa-00255374

B. Tasdelen, H. Thordenberg, and D. Olofsson, An experimental investigation on contact length during minimum quantity lubrication (MQL) machining, Journal of Materials Processing Technology, vol.203, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.jmatprotec.2007.10.027

S. P. Jaspers, Metal cutting mechanics and Material bevahior, 1999.

M. Saoubi, R. Chandrasekaran, and H. , Innovative methods for the investigation of tool-chip adhesion and layer formation during machining. CIRP Annals -Manufacturing Technology, pp.59-62, 2005.

F. J. Zerilli and R. W. Armstrong, Dislocation mechanics based analysis of materials dynamics behaviour, J. de Physique IV, vol.7, pp.637-648, 1997.

P. S. Follansbee and U. F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metallurgica, vol.36, issue.1, pp.81-93, 1988.
DOI : 10.1016/0001-6160(88)90030-2

J. D. Campbell and W. G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel, Philosophical Magazine, vol.59, issue.169, pp.63-82, 1970.
DOI : 10.1016/0502-8205(58)90006-6

W. Tong, R. J. Clifton, and S. Huang, Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper, Journal of the Mechanics and Physics of Solids, vol.40, issue.6, pp.1251-1294, 1992.
DOI : 10.1016/0022-5096(92)90015-T

J. R. Klepaczko, An experimental technique for shear testing at high and very high strain rates. The case of a mild steel, International Journal of Impact Engineering, vol.15, issue.1, pp.25-39, 1994.
DOI : 10.1016/S0734-743X(05)80005-3

T. D. Marusich and M. Ortiz, Modelling and simulation of high-speed machining, International Journal for Numerical Methods in Engineering, vol.36, issue.18, pp.3675-3694, 1995.
DOI : 10.1002/nme.1620382108

X. Soldani and U. M. Lpmm, Modélisation analytique de l'usinage a grande vitesse et étude de l'usure en cratère, 2008.

J. H. Meyer and D. S. Kleponis, Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration, International Journal of Impact Engineering, vol.26, issue.1-10, pp.509-521, 2001.
DOI : 10.1016/S0734-743X(01)00107-5

E. Merchant, Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting, Journal of Applied Physics, vol.16, issue.6, pp.318-324, 1945.
DOI : 10.1063/1.1707596

P. L. Oxley, Introducing strain-rate dependent work material properties into the analysis of orthogonal cutting, Annals of CIRP, vol.13, pp.127-138, 1966.

M. C. Shaw, Metal cutting principles, Tribology International, vol.18, issue.1, 1984.
DOI : 10.1016/0301-679X(85)90013-1

P. L. Oxley and W. F. Hasting, Minimum work as possible criterion for determining the frictionnal conditions as the tool interface in machining, Philosophical Transactions of The Royal Society of London, pp.282-565, 1310.

W. Bouzid, Etude expérimentale et numérique de la coupe orthogonale, ENSAM, p.170, 1993.

S. P. Jaspers, Metal cutting mechanics and Material bevahior, 1999.

A. Moufki, A. Molinari, and D. Dudzinski, Modelling of orthogonal cutting with a temperature dependent friction law, Journal of the Mechanics and Physics of Solids, vol.46, issue.10, pp.46-2103, 1998.
DOI : 10.1016/S0022-5096(98)00032-5

T. H. Childs, K. Maekawa, T. Obikawa, and Y. Yamane, Metal Machining, Theory and Applications, pp.65-68, 2000.
URL : https://hal.archives-ouvertes.fr/jpa-00255374

A. Moufki, Contribution à la modélisation de l'usinage par une approche thermoviscoplastique. Application à la coupe orthogonale et oblique., in LPMM, 1998.

J. H. Dautzenberg, P. C. Veenstra, and A. C. Van-der-wolf, The Minimum Energy Principle for the Cutting Process in Theory and Experiment, CIRP Annals - Manufacturing Technology, vol.30, issue.1, pp.1-4, 1981.
DOI : 10.1016/S0007-8506(07)60884-1

P. L. Oxley, Mechanics of machining, 1989.

W. N. Findley and R. M. Reed, The Influence of Extreme Speeds and Rake Angles in Metal Cutting, Journal of Engineering for Industry, vol.85, issue.1, pp.49-67, 1963.
DOI : 10.1115/1.3667587

L. Volf, Modélisation de l'écoulement viscoplastique dans la coupe orthogonale des métaux, CREAS et LPMM, 1995.

A. Moufki, A. Devillez, D. Dudzinski, and A. Molinari, Thermomechanical modelling of oblique cutting and experimental validation, International Journal of Machine Tools and Manufacture, vol.44, issue.9, pp.971-989, 2004.
DOI : 10.1016/j.ijmachtools.2004.01.018

M. Jrad, A. Devilliez, and D. Dudzinski, Approches analytique et numérique pour la modélisation du perçage, in 18 ème Congrés Français de Mécanique, 2007.

G. Sutter and N. Ranc, Temperature fields in a chip during high-speed orthogonal cutting???An experimental investigation, International Journal of Machine Tools and Manufacture, vol.47, issue.10, pp.47-1507, 2007.
DOI : 10.1016/j.ijmachtools.2006.11.012

URL : https://hal.archives-ouvertes.fr/hal-00171984

G. S. Gad, E. J. Armarego, and A. J. Smith, Tool-chip contact length in orthogonal machining and its importance in tool temperature predictions, International Journal of Production Research, vol.73, issue.3, pp.485-501, 1992.
DOI : 10.1016/S0007-8506(07)60886-5

R. Hill, The mathematical theory of plasticity, 1951.

W. Grzesik, Advanced Machining Processes of Metallic Materials, Theory, Modelling and Applications, p.472, 2008.

M. Bäker, Does chip formation minimize the energy?, Computational Materials Science, vol.33, issue.4, pp.407-418, 2005.
DOI : 10.1016/j.commatsci.2004.08.007

K. A. Zvorykin, On the force and energy necessary to seperate the chip from the workpiece, pp.1896-123

T. Özel and E. Zeren, A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining, Journal of Manufacturing Science and Engineering, vol.128, issue.1, pp.119-129, 2006.
DOI : 10.1115/1.2118767

P. S. Follansbee and U. F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metallurgica, vol.36, issue.1, pp.81-93, 1988.
DOI : 10.1016/0001-6160(88)90030-2

J. H. Meyer and D. S. Kleponis, Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration, International Journal of Impact Engineering, vol.26, issue.1-10, pp.509-521, 2001.
DOI : 10.1016/S0734-743X(01)00107-5

T. D. Marusich and M. Ortiz, Modelling and simulation of high-speed machining, International Journal for Numerical Methods in Engineering, vol.36, issue.18, pp.3675-3694, 1995.
DOI : 10.1002/nme.1620382108

D. Ryckelynck and M. Meiller, Mod??lisation du frottement outil???pi??ce pour la simulation de la coupe par la m??thode des ??l??ments finisFriction modelisation of tool workpiece contact for the finite element simulation of cutting process, M??canique & Industries, vol.3, issue.4, pp.323-332, 2002.
DOI : 10.1016/S1296-2139(02)01172-7

A. K. Balaji, G. Sreeram, I. S. Jawahir, and E. Lenz, The Effects of Cutting Tool Thermal Conductivity on Tool-Chip Contact Length and Cyclic Chip Formation in Machining with Grooved Tools, CIRP Annals - Manufacturing Technology, vol.48, issue.1, pp.33-38, 1999.
DOI : 10.1016/S0007-8506(07)63126-6

H. S. Qi and B. Mills, Modelling of the dynamic tool???chip interface in metal cutting, Journal of Materials Processing Technology, vol.138, issue.1-3, pp.201-207, 2003.
DOI : 10.1016/S0924-0136(03)00072-4

M. Rappaz, M. Bellet, and M. Deville, Numerical modeling in materials science and engineering, 2002.
DOI : 10.1007/978-3-642-11821-0

URL : https://hal.archives-ouvertes.fr/hal-00510518

T. Hughes and A. Brooks, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. Finite Elements in Fluids, pp.46-65, 1982.