E. B. Takeuchi, T. Rayner, M. Weida, S. Crivello, T. Day et al., Band-structure engineering for low-threshold high-efficiency semiconductor lasers Type-I InSb-based mid-infrared diode lasers Type-II quantum-well lasers for the mid-wavelength infrared Continuous-wave operation of ?=3.25 µm broadened-waveguide w quantumwell diode lasers up to T=195k Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Fizika i Tekhnika Poluprovodnikov Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain, Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho. Quantum cascade lasers, pp.2494753160211105797-354172, 1971.

X. J. Wang, J. Y. Fan, T. Tanbun-ek, and F. Choa, Low threshold quantum-cascade lasers of room temperature continuous-wave operation grown by metal-organic chemical-vapor deposition, Applied Physics Letters, vol.90, issue.21, p.211103, 2007.
DOI : 10.1063/1.2741409

P. Harrison and R. A. Soref, Population-inversion and gain estimates for a semiconductor TASER, IEEE Journal of Quantum Electronics, vol.37, issue.1, p.153, 2001.
DOI : 10.1109/3.892737

A. Wacker, Semiconductor Superlattices : A model system for non linear transport, Physics Reports, 2001.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson et al., Vertical transition quantum cascade laser with Bragg confined excited state, Applied Physics Letters, vol.66, issue.5, pp.538-540, 1995.
DOI : 10.1063/1.114005

K. J. Franz, J. J. Raftery, P. Q. Liu, A. J. Hoffman, M. D. Escarra et al., Negative Differential Resistance and Pulse Instabilities in Minimalized Quantum Cascade Laser Structures, Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2008.
DOI : 10.1364/CLEO.2009.CThL5

C. Faugeras, S. Forget, E. Boer-duchemin, H. Page, J. Bengloan et al., High-power room temperature emission quantum cascade lasers at ?=9 µm, IEEE J. Quantum. Electron, issue.12, p.411430, 2005.

J. W. Ng and . Cockburn, Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.83, issue.10, p.1921, 2003.

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at lambda 9.6 um, Applied Physics Letters, issue.20, p.88201114, 2006.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura et al., Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vaporphase epitaxy, Applied Physics Letters, issue.14, p.91141121, 2007.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura et al., High performance quantum cascade lasers based on three-phonon-resonance design, Applied Physics Letters, vol.94, issue.1, p.11103, 2009.
DOI : 10.1063/1.3062981

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish et al., Quantum-cascade lasers operating in continuous-wave mode above 90??C at ?????5.25??m, Applied Physics Letters, vol.88, issue.5, p.51105, 2006.
DOI : 10.1063/1.2171476

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden et al., High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at ?????4.8??m, Applied Physics Letters, vol.87, issue.4, p.41104, 2005.
DOI : 10.1063/1.2000343

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, Temperature dependent characteristics of lambda 3.8 um room-temperature continuous-wave quantum-cascade lasers, Applied Physics Letters, issue.25, p.88251118, 2006.

J. S. Yu, S. R. Darvish, A. Evans, J. Nguyen, S. Slivken et al., Room-temperature continuous-wave operation of quantum-cascade lasers at ?????4??m, Applied Physics Letters, vol.88, issue.4, p.41111, 2006.
DOI : 10.1063/1.2167394

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai et al., Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency, Applied Physics Letters, vol.91, issue.7, p.91071101, 2007.
DOI : 10.1063/1.2770768

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency, Applied Physics Letters, vol.93, issue.2, p.21103, 2008.
DOI : 10.1063/1.2957673

M. Airey and . Hopkinson, InGaAs/AlAsSb quantum cascade lasers, 2004.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl et al., 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach, Applied Physics Letters, vol.95, issue.14, p.141113, 2009.
DOI : 10.1063/1.3238263

J. Faist, Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits, Applied Physics Letters, vol.90, issue.25, p.253512, 2007.
DOI : 10.1063/1.2747190

G. Sun and J. B. Khurgin, Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study, IEEE Journal of Quantum Electronics, vol.29, issue.4, p.1104, 1993.
DOI : 10.1109/3.214496

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat et al., Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation, IEEE Journal of Quantum Electronics, vol.38, issue.6, p.533, 2002.
DOI : 10.1109/JQE.2002.1005404

. Cho, High-Power Infrared (8-Micrometer Wavelength) Superlattice Lasers, Science, vol.276, issue.5313, p.773, 1997.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson et al., High performance interminiband quantum cascade lasers with graded superlattices, Applied Physics Letters, vol.73, issue.15, pp.732101-2103, 1998.
DOI : 10.1063/1.122391

A. Tahraoui, A. Matlis, S. Slivken, J. Diaz, and M. Razeghi, High-performance quantum cascade lasers (?????11?????m) operating at high temperature (T??????425???K), Applied Physics Letters, vol.78, issue.4, p.416, 2001.
DOI : 10.1063/1.1343848

A. Friedrich, G. Boehm, and M. C. Amann, Low-threshold injectorless quantum cascade laser with four material compositions, Electronics Letters, vol.44, issue.9, p.580, 2008.

G. Bastard, Wave mechanics applied to semiconductor heterostructures. Les éditions de physique, 1992.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells, Physical Review B, vol.50, issue.12, p.508663, 1994.
DOI : 10.1103/PhysRevB.50.8663

Y. Bai, S. Slivken, S. Kuboya, S. Darvish, and M. Razeghi, Quantum cascade lasers that emit more light than heat, Nature Photonics, vol.91, issue.2, p.99, 2010.
DOI : 10.1038/nphoton.2009.263

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz et al., 300 K operation of a GaAs-based quantum-cascade laser at lambda 9 µm, Applied Physics Letters, issue.22, p.783529, 2001.

C. Becker, Lasers à cascade quantique : Etude physique et ingénierie de la structure quantique, 2002.

G. L. Bir and G. E. Pikus, Symmetry and strain-induced effects in semiconductors, 1974.

C. G. Van-de-walle, Band lineups and deformation potentials in the model-solid theory, Physical Review B, vol.39, issue.3, p.1871, 1989.
DOI : 10.1103/PhysRevB.39.1871

A. Nedelcu, Semi-conducteur III-V massif contraint méthode kp, 2007.

H. Landolt and R. Börnstein, Semi-Conductors Basic Data, 1991.

. Adachi, Physical Properties of III-V semiconductor compounds, 1992.
DOI : 10.1002/352760281X

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III???V compound semiconductors and their alloys, Journal of Applied Physics, vol.89, issue.11, pp.5815-5875, 2001.
DOI : 10.1063/1.1368156

R. C. Iotti and F. Rossi, Nature of Charge Transport in Quantum-Cascade Lasers, Physical Review Letters, vol.87, issue.14, p.146603, 2001.
DOI : 10.1103/PhysRevLett.87.146603

P. Harrison, Quantum Wells, Wires and Dots, 2005.

P. Harrison, The nature of the electron distribution functions in quantum cascade lasers, Applied Physics Letters, vol.75, issue.18, pp.2800-2802, 1999.
DOI : 10.1063/1.125154

A. Leuliet, Simulation du Transport dans les Lasers à Cascade Quantiques, 2010.

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonic, Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers, Journal of Applied Physics, vol.91, issue.11, p.919019, 2002.
DOI : 10.1063/1.1474613

S. Lee and A. Wacker, Nonequilibrium Green???s function theory for transport and gain properties of quantum cascade structures, Physical Review B, vol.66, issue.24, p.245314, 2002.
DOI : 10.1103/PhysRevB.66.245314

R. Terazzi and J. Faist, A density matrix model of transport and radiation in quantum cascade lasers, New Journal of Physics, vol.12, issue.3, p.33045, 2010.
DOI : 10.1088/1367-2630/12/3/033045

H. Willenberg, G. H. Döhler, and J. Faist, Intersubband gain in a Bloch oscillator and quantum cascade laser, Physical Review B, vol.67, issue.8, p.85315, 2003.
DOI : 10.1103/PhysRevB.67.085315

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, Sequential resonant tunneling in quantum cascade lasers, Physical Review B, vol.78, issue.15, p.78155328, 2008.
DOI : 10.1103/PhysRevB.78.155328

H. Callebaut and Q. Hu, Importance of coherence for electron transport in terahertz quantum cascade lasers, Journal of Applied Physics, vol.98, issue.10, p.98104505, 2005.
DOI : 10.1063/1.2136420

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco et al., Resonant tunneling in quantum cascade lasers, IEEE Journal of Quantum Electronics, vol.34, issue.9, pp.1722-1729, 1998.
DOI : 10.1109/3.709589

A. Buffaz, M. Carras, L. Doyennette, V. Trinité, X. Marcadet et al., Long range resonant tunneling in quantum cascade structures, Applied Physics Letters, vol.96, issue.16, p.96162103, 2010.
DOI : 10.1063/1.3399768

A. Gordon and D. Majer, Coherent transport in semiconductor heterostructures: A phenomenological approach, Physical Review B, vol.80, issue.19, p.195317, 2009.
DOI : 10.1103/PhysRevB.80.195317

S. Lee, F. Banit, M. Woerner, and A. Wacker, Quantum mechanical wavepacket transport in quantum cascade laser structures, Physical Review B, vol.73, issue.24, p.73245320, 2006.
DOI : 10.1103/PhysRevB.73.245320

R. Ferreira and G. Bastard, Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures, Physical Review B, vol.40, issue.2, p.1074, 1989.
DOI : 10.1103/PhysRevB.40.1074

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities, Journal of Applied Physics, vol.93, issue.3, p.931586, 2003.
DOI : 10.1063/1.1535733

F. Chevoir and B. Vinter, Scattering-assisted tunneling in double-barrier diodes: Scattering rates and valley current, Physical Review B, vol.47, issue.12, p.477260, 1993.
DOI : 10.1103/PhysRevB.47.7260

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler et al., High-power quantum cascade lasers grown by low-pressure metal organic vaporphase epitaxy operating in continuous wave above 400 K, Applied Physics Letters, issue.20, p.88201115, 2006.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler et al., High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy, Applied Physics Letters, vol.89, issue.8, p.89081101, 2006.
DOI : 10.1063/1.2337284

X. J. Wang, J. Y. Fan, T. Tanbun-ek, and F. Choa, Low threshold quantum-cascade lasers of room temperature continuous-wave operation grown by metal-organic chemicalvapor deposition, Applied Physics Letters, issue.21, p.90211103, 2007.

K. Ohtani, K. Fujita, and H. Ohno, Mid-infrared InAs???AlGaSb superlattice quantum-cascade lasers, Applied Physics Letters, vol.87, issue.21, p.211113, 2005.
DOI : 10.1063/1.2136428

]. A. Wacker, Semiconductor Superlattices : A model system for non linear transport, Physics Reports, issue.2, 2001.

A. Y. Sivco, M. Cho, . B. Striccoli-]-v, S. Gorfinkel, B. Luryi et al., Electronic distribution in superlattice quantum cascade lasers Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations The nature of the electron distribution functions in quantum cascade lasers Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A monte carlo approach, Applied Physics Letters IEEE J. Quantum. Electron. Applied Physics Letters Applied Physics Letters, vol.77, issue.7518, pp.10882800-782902, 1995.

]. E. Conwell and M. O. Vassell, Femtosecond dynamics of resonant tunneling and superlattice relaxation in quantum cascade lasers High-field distribution function in gaas, Li. Interface phonons in the active region of a quantum cascade laser, p.12211422, 1966.

I. Lee, S. M. Goodnick, M. Gulia, E. Molinari, and P. Lugli, Microscopic calculation of the electron-optical-phonon interaction in ultrathin GaAs/Al x Ga 1-x As alloy quantum-well systems, Phys. Rev. B, issue.11, p.517046, 1995.

P. Harrison, D. Indjin, and R. W. , Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers, Journal of Applied Physics, vol.92, issue.11, p.926921, 2002.
DOI : 10.1063/1.1517747

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic et al., Influence of doping density on electron dynamics in GaAs???AlGaAs quantum cascade lasers, Journal of Applied Physics, vol.99, issue.10, p.99103106, 2006.
DOI : 10.1063/1.2194312

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz et al., 300 K operation of a GaAs-based quantum-cascade laser at lambda 9 µm, Applied Physics Letters, issue.22, p.783529, 2001.

V. Spagnolo, G. Scamarcio, H. Page, and C. Sirtori, Simultaneous measurement of the electronic and lattice temperatures in GaAs/Al0.45Ga0.55As quantum-cascade lasers: Influence on the optical performance, Applied Physics Letters, vol.84, issue.18, p.3690, 2004.
DOI : 10.1063/1.1739518

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat et al., Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation, IEEE Journal of Quantum Electronics, vol.38, issue.6, p.533, 2002.
DOI : 10.1109/JQE.2002.1005404

. Oesterle and . Gaas, Al x Ga 1 ? x As quantum cascade lasers, Applied Physics Letters, vol.73, issue.24, p.3486, 1998.

A. Leuliet, Simulation du Transport dans les Lasers à Cascade Quantiques, 2010.

S. Vincenzo, G. Scamarcio, W. Schrenk, and G. Strasser, Influence of the band-offset on the electronic temperature of GaAs/AlGaAs superlattice quantum cascade lasers, Semiconductor Science and Technology, vol.19, issue.4, p.110, 2004.

R. Q. Yang, J. M. Xu, M. Sweeny, H. C. Liu, M. Buchanan et al., Wave mechanics applied to semiconductor heterostructures. les étditions de physique Selection rules of intersubband transitions in conduction-band quantum wells How good is the polarization selection rule for intersubband transitions? Self-consistent field approach to the many-electron problem, Références Bilbliographiques [1] A. Fily. Modèles pour diodes laser de puissance Semtsiv. InGaAs-AlAs and InGaAs-InGaP Strain-Compensated Heterostructures for Short-Wavelength Intersubband Transitions and Lasers, p.74741682786, 1959.

A. Kuhn, H. Hase, and . Künzel, Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma, Phys. Rev. Lett, vol.80, issue.16, p.3575, 1998.

T. Elsaesser and M. Woerner, Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures, Physics Reports, vol.321, issue.6, p.253, 1999.
DOI : 10.1016/S0370-1573(99)00034-4

R. A. Kaindl, K. Reimann, M. Woerner, T. Elsaesser, R. Hey et al., Homogeneous broadening and excitation-induced dephasing of intersubband transitions in a quasi-two-dimensional electron gas, Physical Review B, vol.63, issue.16, p.63161308, 2001.
DOI : 10.1103/PhysRevB.63.161308

Z. Ikonic, V. Milanovic, D. Tjapkin, and S. Pajevic, Effective-mass-mismatch-induced intersubband absorption line broadening in semiconductor quantum wells, Physical Review B, vol.37, issue.6, p.3097, 1988.
DOI : 10.1103/PhysRevB.37.3097

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub et al., Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs???AlInAs quantum-cascade structures, Applied Physics Letters, vol.86, issue.6, p.62113, 2005.
DOI : 10.1063/1.1862344

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities, Journal of Applied Physics, vol.93, issue.3, p.931586, 2003.
DOI : 10.1063/1.1535733

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, Intersubband linewidths in quantum cascade laser designs, Applied Physics Letters, vol.93, issue.14, p.93141103, 2008.
DOI : 10.1063/1.2993212

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki et al., Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well, Applied Physics Letters, vol.78, issue.22, p.783448, 2001.
DOI : 10.1063/1.1376154

J. B. Khurgin, Inhomogeneous origin of the interface roughness broadening of intersubband transitions, Applied Physics Letters, vol.93, issue.9, p.91104, 2008.
DOI : 10.1063/1.2977994

C. A. Ullrich and G. Vignale, Theory of the Linewidth of Intersubband Plasmons in Quantum Wells, Physical Review Letters, vol.87, issue.3, p.37402, 2001.
DOI : 10.1103/PhysRevLett.87.037402

J. Li and C. Z. Ning, Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well, Physical Review B, vol.70, issue.12, p.125309, 2004.
DOI : 10.1103/PhysRevB.70.125309

S. H. Cho, U. Park, and . Kim, Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides, Journal of Applied Physics, issue.10, p.786318, 1995.

E. Peter, S. Laurent, C. Sirtori, M. Carras, J. A. Robbo et al., Measurement of semiconductor waveguide optical properties in the midinfrared wavelength range, Applied Physics Letters, vol.92, issue.2, p.21103, 2008.
DOI : 10.1063/1.2830829

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, R. Kohler et al., Dependence of the device performance on the number of stages in quantumcascade lasers, Journal of Selected Topics in Quantum Electronics IEEE, issue.3, p.5808, 1999.

M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, Effect of free-carrier absorption on the threshold current density of GaAs???(Al,Ga)As quantum-cascade lasers, Journal of Applied Physics, vol.96, issue.9, p.4755, 2004.
DOI : 10.1063/1.1803635

H. Choi, L. Diehl, Z. Wu, M. Giovannini, J. Faist et al., Gain Recovery Dynamics and Photon-Driven Transport in Quantum Cascade Lasers, Physical Review Letters, vol.100, issue.16, p.167401, 2008.
DOI : 10.1103/PhysRevLett.100.167401

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori et al., Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy, Applied Physics Letters, vol.94, issue.8, p.94081110, 2009.
DOI : 10.1063/1.3089570

J. Huang and L. W. Casperson, Gain and saturation in semiconductor lasers, Optical and Quantum Electronics, vol.54, issue.6, p.369, 1993.
DOI : 10.1007/BF00420579

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Quantum cascade lasers that emit more light than heat, Nature Photonics, vol.91, issue.2, p.99, 2010.
DOI : 10.1038/nphoton.2009.263

A. Yariv, Optical electronics in modern Communications, 1997.

C. Fan and . Gmachl, Lasing-induced reduction in core heating in high wall plug efficiency quantum cascade lasers, Applied Physics Letters, vol.94, issue.4, p.41101, 2009.

R. Bibliographiques, ]. Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi et al., Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach Low-threshold injectorless quantum cascade laser with four material compositions, Appl. Phys. Lett Appl. Phys. Lett Electronics Letters IEEE JQE, vol.935, issue.38, pp.021103141113580533-546, 2002.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson et al., Vertical transition quantum cascade laser with bragg confined excited state The effect of lateral leakage current on the experimental gain/current-density curve in quantum-well ridge-waveguide lasers Analysis of key parameters affecting the thermal behavior and performance of quantum cascade lasers Lattice thermal conductivity of group-IV and III?V semiconductor alloys, Appl. Phys. Lett Journal of Quantum Electronics IEEE Journal of Applied Physics Journal of Applied Physics, vol.66, issue.1026, pp.538-302245053105063502, 1994.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans et al., Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power, Applied Physics Letters, vol.92, issue.10, p.92101105, 2008.
DOI : 10.1063/1.2894569

Q. K. Yang, C. Mann, F. Fuchs, R. Kiefer, K. Kohler et al., Improvement of lambda ~5 um quantum cascade lasers by blocking barriers in the active regions, Applied Physics Letters, issue.12, p.802048, 2002.

Y. Bai, S. Slivken, S. Kuboya, S. Darvish, and M. Razeghi, Quantum cascade lasers that emit more light than heat, Nature Photonics, vol.91, issue.2, pp.99-102, 2010.
DOI : 10.1038/nphoton.2009.263

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko et al., High-Performance Quantum Cascade Lasers: Optimized Design Through Waveguide and Thermal Modeling, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, issue.5, p.131054, 2007.
DOI : 10.1109/JSTQE.2007.906121