@. F. Linot, X. Begaud, M. Soiron, C. Renard, and M. Labeyrie, Characterization of a loaded high impedance surface, International Journal of Microwave and Wireless Technologies, vol.2, issue.06, pp.483-487, 2009.
DOI : 10.1109/TAP.2008.923327

@. M. Grelier, F. Linot, A. C. Lepage, X. Begaud, J. M. Le-mener et al., Analytical methods for AMC and EBG characterisations, Applied Physics A : Materials Science & Processing, vol.102, issue.2, 2011.

@. M. Brevet, F. Soiron, B. Linot, X. Perpere, N. Begaud et al., Antenne directive ultra large bande à plan de masse actif, pp.11-01005, 2011.

@. F. Colloques-internationaux-avec-comités-de-lecture, X. Linot, M. Begaud, C. Soiron, B. Renard et al., Mutual Coupling Reduction Using A Thin Modified Electromagnetic Band Gap, META'08, NATO Advanced Research Workshop on Metamaterials for Secure Information and Communication Technologies, pp.7-10, 2008.

@. M. Grelier, F. Linot, A. C. Lepage, X. Begaud, M. Soiron et al., Analytical methods for AMC and EBG characterisations, META'10, 2nd International Conference on Metamaterials, Photonic Crystals and Plasmonics, pp.221-224, 2010.

@. F. Linot, R. Cousin, X. Begaud, and M. Soiron, Design and measurement of high impedance surface, 2010.

@. F. Colloques-nationaux-avec-comités-de-lecture, X. Linot, M. Begaud, C. Soiron, M. Renard et al., Caractérisation d'une Surface Haute Impédance chargée par des résistances, Journées Nationales Microondes JNM, 2009.

@. F. Linot, R. Cousin, X. Begaud, M. Soiron, and C. Renard, Conception et mesure de surfaces haute impédance, Colloque National Métamatériaux, 2011.

@. F. Linot, M. Soiron, X. Begaud, and C. Renard, Antenne directive ultra large bande sur réflecteurs à haute impédance, Journées Nationales Microondes JNM, 2011.

@. F. Linot, X. Begaud, and R. Cousin, Reflectivity and Phase reflexion diagram of High Impedance Surface,Artificial Magnetic Conductor,Electromagnetic Band Gap Structures Documentation technique (Manuel d'utilisation, spécification...) en ligne sur le site http, 2005.

R. Hansen, Phased array antennas, p.129, 2009.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2059-2074, 1999.
DOI : 10.1109/22.798001

M. Pasian, S. Monni, A. Neto, M. Ettorre, and G. Gerini, Frequency Selective Surfaces for Extended Bandwidth Backing Reflector Functions, IEEE Transactions on Antennas and Propagation, vol.58, issue.1, pp.43-50, 2010.
DOI : 10.1109/TAP.2009.2036185

URL : https://hal.archives-ouvertes.fr/hal-00506688

L. Schreider, X. Begaud, M. Soiron, B. Perpere, and C. Renard, Broadband Archimedean spiral antenna above a loaded electromagnetic band gap substrate, IET Microwaves, Antennas & Propagation, vol.1, issue.1, pp.212-216, 2007.
DOI : 10.1049/iet-map:20050323

J. Daniel, Mutual coupling between antennas for emission or reception ? application to passive and active dipoles Antennas and Propagation, IEEE Transactions on, issue.6, 1974.

D. Pozar, Input impedance and mutual coupling of rectangular microstrip antennas Antennas and Propagation, IEEE Transactions on, vol.7, issue.8, pp.1191-1196, 1982.

D. Pozar, Finite phased arrays of rectangular microstrip patches, IEEE Transactions on Antennas and Propagation, vol.34, issue.5, pp.658-665, 1986.
DOI : 10.1109/TAP.1986.1143868

R. Staraj, E. Cambiaggio, and A. Papiernik, Infinite phased arrays of microstrip antennas with parasitic elements: application to bandwidth enhancement, IEEE Transactions on Antennas and Propagation, vol.42, issue.5, pp.742-746, 1994.
DOI : 10.1109/8.299576

URL : https://hal.archives-ouvertes.fr/hal-00986239

B. Roudot, J. Mosig, and F. Gardiol, Surface Wave Fields and Efficiency of Microstrip Antennas, 18th European Microwave Conference, 1988, 1988.
DOI : 10.1109/EUMA.1988.333949

R. Mailloux, Phased Array Antenna Handbook. Artech House, 1994.

G. Kumar and K. P. Ray, Broadband Microstrip Antennas, 1996.

D. Schaubert, J. Aas, M. Cooley, and N. Buris, Moment method analysis of infinite stripline-fed tapered slot antenna arrays with a ground plane, IEEE Transactions on Antennas and Propagation, vol.42, issue.8, pp.1161-1166, 1994.
DOI : 10.1109/8.310008

D. Pozar and D. H. Schaubert, Scan blindness in infinite phased arrays of printed dipoles Antennas and Propagation, IEEE Transactions on, vol.12, issue.6, p.13, 1984.

D. Pozar and D. Schaubert, Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds, IEEE Transactions on Antennas and Propagation, vol.32, issue.10, pp.1101-1107, 1984.
DOI : 10.1109/TAP.1984.1143211

D. Pozar, General relations for a phased array of printed antennas derived from infinite current sheets, IEEE Transactions on Antennas and Propagation, vol.33, issue.5, pp.498-504, 1985.
DOI : 10.1109/TAP.1985.1143620

D. Pozar, Analysis of finite phased arrays of printed dipoles, IEEE Transactions on Antennas and Propagation, vol.33, issue.10, pp.1045-1053, 1985.
DOI : 10.1109/TAP.1985.1143501

D. Pozar, Finite phased arrays of rectangular microstrip patches, IEEE Transactions on Antennas and Propagation, vol.34, issue.5, pp.658-665, 1986.
DOI : 10.1109/TAP.1986.1143868

S. Edelberg and A. Oliner, Mutual coupling effects in large antenna arrays : Part 1?slot arrays Antennas and Propagation, IRE Transactions on, vol.8, pp.286-297, 1960.

N. Amitay, V. Galindo, and C. Wu, Theory and Analysis of Phased Array Antennas, p.13, 1972.

S. Edelberg and A. Oliner, Mutual coupling effects in large antenna arrays ii : Compensation effects Antennas and Propagation, IRE Transactions on, vol.8, pp.360-367, 1960.

R. Mailloux, Surface waves and anomalous wave radiation nulls on phased arrays of TEM waveguides with fences, IEEE Transactions on Antennas and Propagation, vol.20, issue.2, pp.160-166, 1972.
DOI : 10.1109/TAP.1972.1140171

G. Gauthier, A. Courtay, and G. Rebeiz, Microstrip antennas on synthesized low dielectric-constant substrates, IEEE Transactions on Antennas and Propagation, vol.45, issue.8, pp.1310-1314, 1997.
DOI : 10.1109/8.611252

G. P. Gauthier, J. Raskin, L. P. Katehi, and G. M. Rebeiz, A 94-GHz aperture-coupled micromachined microstrip antenna, IEEE Transactions on Antennas and Propagation, vol.47, issue.12, pp.1761-1766, 1999.
DOI : 10.1109/8.817650

D. Jackson, J. Williams, A. Bhattacharyya, R. Smith, S. Buchheit et al., Microstrip patch designs that do not excite surface waves, IEEE Transactions on Antennas and Propagation, vol.41, issue.8, pp.1026-1037, 1993.
DOI : 10.1109/8.244643

O. Luukkonen, Artificial Impedance Surface, pp.16-30, 2009.

B. A. Munk, Frequency Selective Surfaces : Theory and Design, p.16, 2000.
DOI : 10.1002/0471723770

N. Engheta and R. Ziolkowski, Electromagnetic Metamaterials : Physics and Engineering Explorations, p.16, 2006.

S. Tretyakov, Analytical Modeling in Applied Electromagnetics, p.30, 2003.

A. Lai, T. Itoh, and C. Caloz, Composite right/left-handed transmission line metamaterials Microwave Magazine Electromagnetic Band Gap Structures in Antenna Engineering, IEEE, vol.5, issue.18, pp.34-50, 2004.

L. Brillouin, Wave propagation in periodic structures, p.20, 2003.

F. Yang and Y. Rahmat-samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2936-2946, 1922.
DOI : 10.1109/TAP.2003.817983

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg et al., Coupling Reduction Between Dipole Antenna Elements by Using a Planar Meta-Surface, IEEE Transactions on Antennas and Propagation, vol.57, issue.2, pp.383-394, 1922.
DOI : 10.1109/TAP.2008.2011249

W. Zhang and P. Hall, Mutual coupling investigation of two wideband dipole antennas on ebg ground plane Antenna Technology : Smal l and Smart Antennas Metamaterials and Applications, IWAT '07, pp.35-38, 2007.

L. Yang, M. Fan, and Z. Feng, A spiral electromagnetic band gap (ebg) structure and its application in microstrip antenna arrays, p.22

L. Yang, Z. Feng, F. Chen, and M. Fan, A novel compact electromagnetic band gap (ebg) structure and its application in microstrip antenna arrays, p.22

Y. Yao, X. Wang, and Z. Feng, A novel dual-band compact electromagnetic bandgap (ebg) structure and it application in multi-antennas, p.22

L. Zhang, J. Castaneda, and N. , Scan blindness free phased array design using pbg materials Antennas and Propagation, IEEE Transactions on, vol.52, 1923.
DOI : 10.1109/tap.2004.832516

Z. Iluz, R. Shavit, and R. Bauer, Microstrip Antenna Phased Array With Electromagnetic Bandgap Substrate, IEEE Transactions on Antennas and Propagation, vol.52, issue.6, pp.1446-1453, 2004.
DOI : 10.1109/TAP.2004.830252

M. Coulombe, S. F. Koodiani, and C. Caloz, Compact Elongated Mushroom (EM)-EBG Structure for Enhancement of Patch Antenna Array Performances, IEEE Transactions on Antennas and Propagation, vol.58, issue.4, pp.1076-1086, 1923.
DOI : 10.1109/TAP.2010.2041152

E. Rajo-iglesias, O. Quevedo-teruel, and L. Inclan-sanchez, Mutual Coupling Reduction in Patch Antenna Arrays by Using a Planar EBG Structure and a Multilayer Dielectric Substrate, IEEE Transactions on Antennas and Propagation, vol.56, issue.6, pp.1648-1655, 2008.
DOI : 10.1109/TAP.2008.923306

P. Ikonen, E. Saenz, R. Gonzalo, and S. Tretyakov, Modeling and Analysis of Composite Antenna Superstrates Consisting on Grids of Loaded Wires, IEEE Transactions on Antennas and Propagation, vol.55, issue.10, pp.2692-2700, 2007.
DOI : 10.1109/TAP.2007.905926

H. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, Mutual coupling reduction in patch antenna arrays using a uc-ebg superstrate Antennas and Wireless Propagation Letters, IEEE, vol.9, pp.57-59, 2010.

P. De-maagt, R. Gonzalo, and Y. Vardaxoglou, Review of electromagnetic bandgap technology and applications, The Radio Science Bulletin, vol.309, pp.11-25, 2004.

C. Liu, J. Shmoys, A. Hessel, J. Hanfling, and J. Usoff, Plane wave reflection from microstrip-patch arrays?theory and experiment Antennas and Propagation, IEEE Transactions on, vol.33, pp.426-435, 1927.

F. Yang, K. Ma, Y. Qian, and T. Itoh, A novel tem waveguide using uniplanar compact photonic-bandgap (uc-pbg) structure, " Microwave Theory and Techniques, IEEE Transactions on, vol.47, pp.2092-2098, 1927.

D. Sievenpiper, High Impedance Electromagnetic Surfaces, pp.32-49, 1999.
DOI : 10.1109/22.798001

M. Grelier, F. Linot, A. Lepage, X. Begaud, J. L. Mener et al., Analytical methods for amc and ebg characterisations, META'10 & NATO Advanced Research Workshop on Metamaterials for Secure Information and Communication Technologies, pp.221-224, 1928.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko et al., Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches, IEEE Transactions on Antennas and Propagation, vol.56, issue.6, pp.1624-1632, 2008.
DOI : 10.1109/TAP.2008.923327

F. Linot, X. Begaud, M. Soiron, C. Renard, and M. Labeyrie, Characterization of a loaded high impedance surface, International Journal of Microwave and Wireless Technologies, vol.2, issue.06, pp.483-487, 2009.
DOI : 10.1109/TAP.2008.923327

P. Belov, R. Marques, R. Maslovski, I. Nefedov, M. Silveirinha et al., Strong spatial dispersion in wire media in the very large wavelength limit, Electromagnetic Materials, p.33, 2003.
DOI : 10.1142/9789812704344_0025

O. Luukkonen, C. Simovski, A. Raisanen, and S. Tretyakov, Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches, IEEE Transactions on Antennas and Propagation, vol.56, issue.6, pp.1624-1632, 2008.
DOI : 10.1109/TAP.2008.923327

C. Simovski, P. De-maagt, S. Tretyakov, M. Paquay, and A. Sochava, Angular stabilisation of resonant frequency of artificial magnetic conductors for TE-incidence, Electronics Letters, vol.40, issue.2, pp.92-93, 2004.
DOI : 10.1049/el:20040064

F. Linot, X. Begaud, M. Soiron, C. Renard, and B. Perpere, Mutual coupling reduction using a thin modified. electromagnetic band gap, NATO ARW & ME- TA'08, 1935.

W. Emerson, Electromagnetic wave absorbers and anechoic chambers through the years, IEEE Transactions on Antennas and Propagation, vol.21, issue.4, pp.484-490, 1973.
DOI : 10.1109/TAP.1973.1140517

E. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section, p.35, 1993.
DOI : 10.1049/SBRA026E

R. Fante and M. Mccormack, Reflection properties of the Salisbury screen, IEEE Transactions on Antennas and Propagation, vol.36, issue.10, pp.1443-1454, 1988.
DOI : 10.1109/8.8632

N. Engheta, Thin absorbing screens using metamaterial surfaces, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), pp.392-395, 2002.
DOI : 10.1109/APS.2002.1016106

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.484.833

A. Monorchio, F. Costa, and G. Manara, Enhancing bandwidth of ultra-thin absorbers by using resistive high impedance surfaces, IEEE Metamaterials, pp.887-890, 2007.

F. Costa, A. Monorchio, and G. Manara, Ultra-thin absorbers by using high impedance surfaces with resistive frequency selective surfaces, 2007 IEEE Antennas and Propagation International Symposium, pp.861-864, 2007.
DOI : 10.1109/APS.2007.4395630

H. Mosallaei and K. Sarabandi, A one-layer ultra-thin meta-surface absorber, 2005 IEEE Antennas and Propagation Society International Symposium, pp.615-618, 2005.
DOI : 10.1109/APS.2005.1551634

C. Mias and J. H. Yap, A Varactor-Tunable High Impedance Surface With a Resistive-Lumped-Element Biasing Grid, IEEE Transactions on Antennas and Propagation, vol.55, issue.7, pp.1955-1962, 2007.
DOI : 10.1109/TAP.2007.900228

T. Rozzi and M. Mongiardo, Open electromagnetic waveguides. The Institution of Electrical Engineers Electromagnetic, p.39, 1997.
DOI : 10.1049/pbew043e

M. Grelier, F. Linot, A. Lepage, X. Begaud, J. L. Mener et al., Analytical methods for amc and ebg characterisations, Applied Physics A, p.42, 2011.

M. Rahman and M. Stuchly, Transmission line-periodic circuit representation of planar microwave photonic bandgap structures, Microwave and Optical Technology Letters, pp.15-19, 2001.
DOI : 10.1002/mop.1207

M. Grelier, A. Lepage, X. Begaud, and J. Lemener, A simple mixed analyticalnumerical method for modelling and design planar periodic structures, META- MATERIALS 2009, 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, pp.798-800, 2009.

G. Goussetis, A. Feresidis, and J. Vardaxoglou, Tailoring the AMC and EBG Characteristics of Periodic Metallic Arrays Printed on Grounded Dielectric Substrate, IEEE Transactions on Antennas and Propagation, vol.54, issue.1, pp.82-89, 2006.
DOI : 10.1109/TAP.2005.861575

B. Krietenstein, R. Schuhmann, P. Thoma, and T. Weiland, The perfect boundary approximation technique facing the big challenge of high precision field computation, Proceedings of the XIX International Linear Accelerator Conference, pp.860-862, 1998.

K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, pp.302-307, 1966.

T. Weiland, M. Timm, and I. Munteanu, A practical guide to 3-d simulation Microwave Magazine, IEEE, vol.9, issue.46, pp.62-75, 2008.

J. Jin, The Finite Element Method in Electromagnetics, p.46, 2002.

F. Linot, R. Cousin, X. Begaud, and M. Soiron, Design and measurement of high impedance surface, Proceedings of the Fourth EuCAP : European Conference on Antennas and Propagation, pp.1-4, 2010.

F. Linot and X. Begaud, Phase reflexion diagram of periodically structures Note d'application CST Microwave Studio, p.47, 2010.

R. Pearson, B. Phillips, K. Mitchell, and M. Patel, Application of waveguide simulators to fss and wideband radome design Advances in Electromagnetic Screens, Radomes and Materials (Digest No, IEE Colloquium on, pp.7-8, 1996.

F. Linot, X. Begaud, M. Soiron, C. Renard, and M. Labeyrie, Caracterisation d'une surface haute impedance chargee par des resistances, Journee Nationales Micro-Ondes, p.51, 2009.

M. Fan, Z. Hu, R. Feng, X. Zhang, and Q. Hao, Advance in 2d-ebg research, J. Infrared Millim. Waves, vol.22, issue.2, p.52, 2003.

W. Mckinzie, On the surface wave properties of Sievenpiper-type metamaterial absorbers, 2009 IEEE Antennas and Propagation Society International Symposium, pp.1-4, 2009.
DOI : 10.1109/APS.2009.5172198

F. Yang and Y. Rahmat-samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.2936-2946, 2003.
DOI : 10.1109/TAP.2003.817983

N. Capet, Amelioration des decouplages inter-elements par Surface Haute Impedance pour des antennes reseaux GNSS compactes, p.67, 2010.

L. Li, X. Dang, B. Li, and C. Liang, Analysis and design of waveguide slot antenna array integrated with electromagnetic band-gap structures Antennas and Wireless Propagation Letters, IEEE, vol.5, issue.1, pp.111-115, 2006.

J. Lee, S. Livingston, and R. Koenig, A low-profile wide-band (5 :1) dual-pol array Antennas and Wireless Propagation Letters, IEEE, vol.2, pp.46-49, 2003.

R. Taylor, B. Munk, and T. Durham, Wideband phased array antenna and asociated methods, p.81, 2003.

M. Soiron, M. Romier, and C. Renard, Antennes non-standard, Chapitre 12 : Antennes multifonctions aeroportees, p.129, 2011.

H. Booker, Slot aerials and their relation to complementary wire aerials (babinet's principle), " Electrical Engineers -Part IIIA : Radiolocation, Journal of the Institution, vol.93, issue.4, pp.620-626, 1946.

V. Rumsey, Frequency independent antennas, IRE International Convention Record, pp.114-118, 1957.
DOI : 10.1109/IRECON.1957.1150565

B. Munk, Frequency Selective Surfaces : Theory and Design Use of dielectric sheets to increase the bandwidth of a planar selfcomplementary antenna array, Antennas and Propagation Society International Symposium, pp.83-2413, 2000.
DOI : 10.1002/0471723770

M. Gustafsson, Broadband array antennas using a self-complementary antenna array and dielectric slabs, p.84

P. Hannan and M. Balfour, Simulation of a phased-array antenna in waveguide, IEEE Transactions on Antennas and Propagation, vol.13, issue.3, pp.342-353, 1965.
DOI : 10.1109/TAP.1965.1138428

E. Parker, S. Hamdy, and R. Langley, Arrays of concentric rings as frequency selective surfaces, Electronics Letters, vol.17, issue.23, p.102, 1981.
DOI : 10.1049/el:19810614

X. H. Wu, A. Kishk, and A. Glisson, A Transmission Line Method to Compute the Far-Field Radiation of Arbitrarily Directed Hertzian Dipoles in a Multilayer Dielectric Structure: Theory and Applications, IEEE Transactions on Antennas and Propagation, vol.54, issue.10, pp.2731-2741, 2006.
DOI : 10.1109/TAP.2006.882164

.. Exemples-de-réseaux-planaire-maille-hexagonale, Maille rectangulaire, (b) Maille triangulaire

.. Réseau-de-dipôles-multifréquence, Réseau de dipôles sans superstrat, p.25

P. Imaginaire and .. , Impédance de surface Z s en fonction de la fréquence d'une SHI absorbante éclairée par une onde plane en incidence normale pour différentes valeurs de résistance : (a) Partie Réelle, p.38

P. Discrétisation-hexaèdrale-d-maillage-avec, une géométrie : (a) maillage de type YEE, p.45

S. Caractérisation-d-'une and .. , Modélisation du simulateur guide d'onde avec CST MWS, (b) SHI absorbante enclavée avant d'être placée en bout d'un simulateur guide d'onde, p.52

.. Maquette-réalisée, Modélisation avec HFSS de l'antenne imprimée élémentaire, p.57

.. Maquette-réalisée, Modélisation avec HFSS des deux antennes imprimées positionnées dans le plan H, p.59

.. Géométrie-de-l-'antenne, Cellule élémentaire Le réseau infini consiste en une répétition périodique des éléments rayonnants alimentés en leurs coins. (b) Vue de côté. Un empilement de diélectrique est placé au-dessus et en-dessous de l'antenne. Un réflecteur métallique parfaitement conducteur est positionné à l'arrière de la structure, p.85

. Comparaison-du-diagramme-de-rayonnement, Gain réalisé) à la fréquence de 6GHz pour un réseau de 5x5 éléments En rouge : diagramme de rayonnement obtenu par le produit du facteur de réseau par le diagramme de rayonnement de la cellule élémentaire. En bleu : Diagramme de rayonnement d'un réseau fini de 5x5 éléments

H. Comparaison-entre-le-modèle-analytique and .. , module du coefficient de réflexion en fonction de la fréquence de l'antenne damier pointant dans l'axe. Différentes valeurs de la capacité variable placée entre les motifs de la SHI sont présentées, p.105