R. C. Engstrom, Measurements within the diffusion layer using a microelectrode probe, Analytical Chemistry, vol.58, issue.4, pp.844-848, 1986.
DOI : 10.1021/ac00295a044

A. J. Bard, Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes, Analytical Chemistry, vol.58, issue.11, pp.58-2321, 1986.
DOI : 10.1021/ac00124a045

A. J. Bard, Scanning electrochemical microscopy. Introduction and principles, Analytical Chemistry, vol.61, issue.2, pp.132-138, 1989.
DOI : 10.1021/ac00177a011

J. Kwak and A. J. Bard, Scanning electrochemical microscopy. Theory of the feedback mode, Analytical Chemistry, vol.61, issue.11, pp.61-1221, 1989.
DOI : 10.1021/ac00186a009

A. J. Bard and M. V. Mirkin, Scanning Electrochemical Microscopy, 2001.

C. Lefrou and R. Cornut, Analytical Expressions for Quantitative Scanning Electrochemical Microscopy (SECM), ChemPhysChem, vol.89, issue.3, pp.547-556, 2010.
DOI : 10.1002/cphc.200900600

G. Wittstock, Scanning Electrochemical Microscopy for Direct Imaging of Reaction Rates, Angewandte Chemie International Edition, vol.78, issue.525, pp.1584-1617, 2007.
DOI : 10.1002/anie.200602750

P. Sun, F. O. Laforge, and M. V. Mirkin, Scanning electrochemical microscopy in the 21st century, Phys. Chem. Chem. Phys., vol.116, issue.7, pp.802-823, 2007.
DOI : 10.1039/B612259K

E. Zrenner, Subretinal Microelectrode Arrays Allow Blind Retinitis Pigmentosa Patients to Recognize Letters and Combine them to Words, 2009 2nd International Conference on Biomedical Engineering and Informatics, pp.1049-1052, 1994.
DOI : 10.1109/BMEI.2009.5305315

F. O. Laforge, P. Sun, and M. V. Mirkin, Physicochemical Applications of Scanning Electrochemical Microscopy, Advances in Chemical Physics, pp.177-244, 2008.
DOI : 10.1002/9780470259498.ch4

M. V. Mirkin and B. R. Horrocks, Fundamentals of scanning electrochemical microscopy, in Electrochemical microsystem technologies, pp.209-242, 2002.

C. Amatore, electrochemistry at ultramicroelectrodes, in Physical electrochemistry, pp.131-208, 1995.

D. J. Comstock, Integrated Ultramicroelectrode???Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy, Analytical Chemistry, vol.82, issue.4, pp.1270-1276, 2010.
DOI : 10.1021/ac902224q

X. Xu, A Simple and Inexpensive Method for Fabrication of Ultramicroelectrode Array and Its Application for the Detection of Dissolved Oxygen, Electroanalysis, vol.30, issue.7, pp.797-802, 2008.
DOI : 10.1002/elan.200704101

J. Orozco, C. Fernandez-sanchez, and C. Jimenez-jorquera, Underpotential deposition-anodic stripping voltammetric detection of copper at gold nanoparticlemodified ultramicroelectrode arrays, Environmental Science & Technology, issue.13, pp.42-4877, 2008.

J. Orozco, C. Jimenez-jorquera, and C. Fernandez-sanchez, Gold nanoparticlemodified ultramicroelectrode arrays for biosensing: A comparative assessment, Bioelectrochemistry, issue.2, pp.75-176, 2009.

S. Lupu, F. J. Del-campo, and F. X. Munoz, Development of microelectrode arrays modified with inorganic???organic composite materials for dopamine electroanalysis, Journal of Electroanalytical Chemistry, vol.639, issue.1-2, pp.147-153, 2010.
DOI : 10.1016/j.jelechem.2009.12.003

C. J. Hayden and C. Dalton, Direct patterning of microelectrode arrays using femtosecond laser micromachining, Applied Surface Science, vol.256, issue.12, pp.3761-3766, 2010.
DOI : 10.1016/j.apsusc.2010.01.022

D. D. Gornall, S. D. Collyer, and S. P. Higson, -phenylenediamine) Films for Application as Insulating Layers upon Carbon Substrates for Use within Sonochemically Fabricated Microelectrode Arrays, Electroanalysis, vol.585, issue.4, pp.384-392, 2010.
DOI : 10.1002/elan.200900392

URL : https://hal.archives-ouvertes.fr/jpa-00214900

E. C. Anderson, M. C. Weston, and I. Fritsch, Investigations of Redox Magnetohydrodynamic Fluid Flow At Microelectrode Arrays Using Microbeads, Analytical Chemistry, vol.82, issue.7, pp.82-2643, 2010.
DOI : 10.1021/ac9020177

T. Paixao and M. Bertotti, M??todos para fabrica????o de microeletrodos visando a detec????o em microambientes, Qu??mica Nova, vol.32, issue.5, pp.1306-1314, 2009.
DOI : 10.1590/S0100-40422009000500037

G. Kang, Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI), Analyst, vol.26, issue.92211, pp.3236-3242, 2009.

L. Xiao, Fabricating random arrays of boron doped diamond nano-disc electrodes: Towards achieving maximum Faradaic current with minimum capacitive charging, Sensors and Actuators B: Chemical, vol.133, issue.1, pp.118-127, 2008.
DOI : 10.1016/j.snb.2008.02.003

X. Y. Xiao, A. J. Bard, and C. , Observing Single Nanoparticle Collisions at an Ultramicroelectrode by Electrocatalytic Amplification, Electrochemical and Spectroscopic Investigation of Counterions Exchange in Polyelectrolyte Brushes, pp.25-5360, 2007.
DOI : 10.1021/ja072344w

C. Amatore, Electrochemical Determination of Flow Velocity Profile in a Microfluidic Channel from Steady-State Currents: Numerical Approach and Optimization of Electrode Layout, Analytical Chemistry, vol.81, issue.18, pp.81-7667, 2009.
DOI : 10.1021/ac9010827

C. Amatore, S. Arbault, A. C. Koh, and S. , Simultaneous Detection of Reactive Oxygen and Nitrogen Species Released by a Single Macrophage by Triple Potential- Step Chronoamperometry Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials, Analytical Chemistry Biosensors & Bioelectronics, vol.82, issue.410, pp.24-3067, 2009.

C. Amatore, Analysis of individual biochemical events based on artificial synapses using ultramicroelectrodes: cellular oxidative burst, Faraday Discussions, vol.116, pp.319-333, 2000.
DOI : 10.1039/b001448f

R. J. Forster, Microelectrodes: new dimensions in electrochemistry, Chemical Society Reviews, vol.23, issue.4, pp.289-297, 1994.
DOI : 10.1039/cs9942300289

N. Portail, Thèse de doctorat, in Electrochimie -Corrosion Nanoelectrodes, nanoelectrode arrays and their applications, Analyst, issue.12, pp.129-1157, 2004.

P. Sharma, S. F. Basir, and P. Nahar, Photoimmobilization of unmodified carbohydrates on activated surface, Journal of Colloid and Interface Science, vol.342, issue.1, pp.202-204, 2010.
DOI : 10.1016/j.jcis.2009.10.038

D. Weinrich, Preparation of Biomolecule Microstructures and Microarrays by Thiol-ene Photoimmobilization, ChemBioChem, vol.48, issue.2, pp.235-247, 2010.
DOI : 10.1002/cbic.200900559

D. Mandler and A. J. Bard, Hole injection and etching studies of gaas using the scanning electrochemical microscope. langmuir, pp.1489-1494, 1990.

D. Mandler and A. J. Bard, High Resolution Etching of Semiconductors by the Feedback Mode of the Scanning Electrochemical Microscope, Journal of The Electrochemical Society, vol.137, issue.8, pp.137-2468, 1990.
DOI : 10.1149/1.2086965

A. J. Bard, Scanning electrochemical microscopy - a new technique for the characterization and modification of surfaces, Accounts of Chemical Research, vol.23, issue.11, pp.23-357, 1990.
DOI : 10.1021/ar00179a002

D. H. Craston, C. W. Lin, and A. J. Bard, High Resolution Deposition of Silver in Nafion Films with the Scanning Tunneling Microscope, Journal of The Electrochemical Society, vol.135, issue.3, pp.785-786, 1988.
DOI : 10.1149/1.2095752

C. W. Lin, F. R. Fan, and A. J. Bard, High Resolution Photoelectrochemical Etching of n-GaAs with the Scanning Electrochemical and Tunneling Microscope, Journal of The Electrochemical Society, vol.134, issue.4, pp.1038-1039, 1987.
DOI : 10.1149/1.2100566

D. Mandler and A. J. Bard, A New Approach to the High Resolution Electrodeposition of Metals via the Feedback Mode of the Scanning Electrochemical Microscope, Journal of The Electrochemical Society, vol.137, issue.4, pp.1079-1086, 1990.
DOI : 10.1149/1.2086606

S. Kramer, R. R. Fuierer, and C. B. Gorman, Scanning Probe Lithography Using Self-Assembled Monolayers, Chemical Reviews, vol.103, issue.11, pp.4367-4418, 2003.
DOI : 10.1021/cr020704m

D. Mandler, S. Meltzer, and I. Shohat, Microelectrochemistry on Surfaces with the Scanning Electrochemical Microscope (SECM), Israel Journal of Chemistry, vol.30, issue.1, pp.73-80, 1996.
DOI : 10.1002/ijch.199600010

V. Radtke and J. Heinze, Scanning Electrochemical Microscopy as a Versatile Tool for Modifying Surfaces, Zeitschrift f??r Physikalische Chemie, vol.218, issue.1-2004, pp.103-121, 2004.
DOI : 10.1524/zpch.218.1.103.25387

D. Mandler and A. J. Bard, Scanning Electrochemical Microscopy: The Application of the Feedback Mode for High Resolution Copper Etching, Journal of The Electrochemical Society, vol.136, issue.10, pp.136-3143, 1989.
DOI : 10.1149/1.2096416

S. Meltzer and D. Mandler, Study of silicon etching in HBr solutions using a scanning electrochemical microscope, Journal of the Chemical Society, Faraday Transactions, vol.91, issue.6, pp.91-1019, 1995.
DOI : 10.1039/ft9959101019

Y. B. Zu, Studies on silicon etching using the confined etchant layer technique, Electrochimica Acta, vol.43, issue.12-13, pp.12-13, 1998.
DOI : 10.1016/S0013-4686(97)00301-0

I. Turyan, ???Writing???Reading???Erasing??? on Tungsten Oxide Films Using the Scanning Electrochemical Microscope, Advanced Materials, vol.12, issue.5, p.330, 2000.
DOI : 10.1002/(SICI)1521-4095(200003)12:5<330::AID-ADMA330>3.0.CO;2-8

H. Shiku, Microfabrication and Characterization of Diaphorase-Patterned Surfaces by Scanning Electrochemical Microscopy, Analytical Chemistry, vol.67, issue.2, pp.312-317, 1995.
DOI : 10.1021/ac00098a014

H. Shiku, I. Uchida, and T. Matsue, Microfabrication of Alkylsilanized Glass Substrate by Electrogenerated Hydroxyl Radical Using Scanning Electrochemical Microscopy, Langmuir, vol.13, issue.26, pp.13-7239, 1997.
DOI : 10.1021/la970554o

H. Kaji, In Situ Control of Cellular Growth and Migration on Substrates Using Microelectrodes, Journal of the American Chemical Society, vol.126, issue.46, pp.126-15026, 2004.
DOI : 10.1021/ja045702t

O. De-abril, D. Mandler, and P. R. Unwin, Local Cobalt Electrodeposition Using the Scanning Electrochemical Microscope, Electrochemical and Solid-State Letters, vol.7, issue.6, pp.71-74, 2004.
DOI : 10.1149/1.1697906

I. Turyan, Improved Resolution of Local Metal Deposition by Means of Constant Distance Mode Scanning Electrochemical Microscopy, Electroanalysis, vol.16, issue.5-6, pp.5-6, 2005.
DOI : 10.1002/elan.200403179

Y. Yatziv, I. Turyan, and D. Mandler, A New Approach to Micropatterning:?? Application of Potential-Assisted Ion Transfer at the Liquid???Liquid Interface for the Local Metal Deposition, Journal of the American Chemical Society, vol.124, issue.20, pp.124-5618, 2002.
DOI : 10.1021/ja0257826

S. Sauter and G. Wittstock, Local deposition and characterisation of K2Co[Fe(CN)6] and K2Ni[Fe(CN)6] by scanning electrochemical microscopy, Journal of Solid State Electrochemistry, vol.5, issue.3, pp.205-211, 2001.
DOI : 10.1007/s100080000137

S. Sauter, G. Wittstock, and R. Szargan, Localisation of electrochemical oxidation processes in nickel and cobalt hexacyanoferrates investigated by analysis of the multiplet patterns in X-ray photoelectron spectra, Physical Chemistry Chemical Physics, vol.3, issue.4, pp.562-569, 2001.
DOI : 10.1039/b008430l

G. Wittstock and W. Schuhmann, Formation and Imaging of Microscopic Enzymatically Active Spots on an Alkanethiolate-Covered Gold Electrode by Scanning Electrochemical Microscopy, Analytical Chemistry, vol.69, issue.24, pp.69-5059, 1997.
DOI : 10.1021/ac970504o

J. Ufheil, Nanostructuring and nanoanalysis by scanning electrochemical microscopy (SECM) Physical Chemistry Chemical Physics, pp.3185-3190, 2005.
DOI : 10.1039/b505189d

K. Borgwarth and J. Heinze, Increasing the Resolution of the Scanning Electrochemical Microscope Using a Chemical Lens: Application to Silver Deposition, Journal of The Electrochemical Society, vol.146, issue.9, pp.3285-3289, 1999.
DOI : 10.1149/1.1392468

J. Ufheil, Microstructuring of solid-supported lipid layers using SAM pattern generation by scanning electrochemical microscopy and the chemical lens, Bioelectrochemistry, vol.52, issue.1, pp.103-110, 2000.
DOI : 10.1016/S0302-4598(00)00090-8

O. E. Husser, D. H. Craston, and A. J. Bard, Scanning electrochemical microscopy high-resolution deposition and etching of metals, Journal of the Electrochemical Society, issue.11, pp.136-3222, 1989.

C. Kranz, Lateral deposition of polypyrrole lines by means of the scanning electrochemical microscope, Advanced Materials, vol.61, issue.1, pp.38-40, 1995.
DOI : 10.1002/adma.19950070106

C. Kranz, H. E. Gaub, and W. Schuhmann, Polypyrrole towers grown with the scanning electrochemical microscope, Advanced Materials, vol.137, issue.8, p.634, 1996.
DOI : 10.1002/adma.19960080805

E. M. El-giar, Localized Electrochemical Deposition of Copper Microstructures, Journal of The Electrochemical Society, vol.147, issue.2, pp.586-591, 2000.
DOI : 10.1149/1.1393237

T. Wilhelm and G. Wittstock, Localised electrochemical desorption of gold alkanethiolate monolayers by means of scanning electrochemical microscopy (SECM)

T. Wilhelm and G. Wittstock, Patterns of functional proteins formed by local electrochemical desorption of self-assembled monolayers, Electrochimica Acta, vol.47, issue.1-2, pp.275-281, 2001.
DOI : 10.1016/S0013-4686(01)00566-7

G. Wittstock, R. Hesse, and W. Schuhmann, Patterned self-assembled alkanethiolate monolayers on gold. Patterning and imaging by means of scanning electrochemical microscopy, Electroanalysis, vol.346, issue.10, pp.746-750, 1997.
DOI : 10.1002/elan.1140091003

C. A. Widrig, C. Chung, and M. D. Porter, The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.310, issue.1-2, pp.335-359, 1991.
DOI : 10.1016/0022-0728(91)85271-P

T. Matrab, C. Combellas, and F. Kanoufi, Scanning electrochemical microscopy for the direct patterning of a gold surface with organic moities derived from iodonium salt, Electrochemistry Communications, vol.10, issue.9, pp.1230-1234, 2008.
DOI : 10.1016/j.elecom.2008.06.006

C. Cougnon, In Situ Formation of Diazonium Salts from Nitro Precursors for Scanning Electrochemical Microscopy Patterning of Surfaces, Angewandte Chemie- International Edition, issue.22, pp.48-4006, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417304

A. Ghorbal, Localized Electrografting of Vinylic Monomers on a Conducting Substrate by Means of an Integrated Electrochemical AFM Probe, ChemPhysChem, vol.146, issue.7, pp.1053-1057, 2009.
DOI : 10.1002/cphc.200800803

F. Deiss, Lithography by Scanning Electrochemical Microscopy with a Multiscaled Electrode, Analytical Chemistry, vol.82, issue.12, pp.5169-5175, 2010.
DOI : 10.1021/ac100399q

C. Combellas, A. Fuchs, and F. Kanoufi, Scanning Electrochemical Microscopy with a Band Microelectrode:?? Theory and Application, Analytical Chemistry, vol.76, issue.13, pp.76-3612, 2004.
DOI : 10.1021/ac049752s

D. Prime, S. Paul, and P. W. , Electrical properties of nanometre thin film polystyrene for organic electronic applications, IEEE Transactions on Dielectrics and Electrical Insulation, vol.15, issue.4, pp.905-909, 2008.
DOI : 10.1109/TDEI.2008.4591208

A. Welle, Photo-chemically patterned polymer surfaces for controlled PC-12 adhesion and neurite guidance, Journal of Neuroscience Methods, vol.142, issue.2, pp.243-250, 2005.
DOI : 10.1016/j.jneumeth.2004.08.011

T. Blattler, Nanopatterns with Biological Functions, Journal of Nanoscience and Nanotechnology, vol.6, issue.8, pp.2237-2264, 2006.
DOI : 10.1166/jnn.2006.501

J. M. Goddard and J. H. Hotchkiss, Polymer surface modification for the attachment of bioactive compounds, Progress in Polymer Science, vol.32, issue.7, pp.698-725, 2007.
DOI : 10.1016/j.progpolymsci.2007.04.002

Y. Sasai, Surface Engineering of Polystyrene Dish for Improvement of Cell Adhesion Using Plasma Techniques, Journal of Photopolymer Science and Technology, vol.21, issue.2, pp.277-280, 2008.
DOI : 10.2494/photopolymer.21.277

A. Boulares-pender, Surface-functionalization of plasma-treated polystyrene by hyperbranched polymers and use in biological applications, Journal of Applied Polymer Science, vol.48, issue.5, pp.2701-2709, 2009.
DOI : 10.1002/app.29849

J. D. Kim, Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates, Polymer, vol.51, issue.10, pp.51-2147, 2010.
DOI : 10.1016/j.polymer.2010.03.038

S. Montero-pancera, Design of Chemically Activated Polymer Microwells by One-Step UV-Lithography for Stem Cell Adhesion, Langmuir, vol.26, issue.3, pp.2050-2056, 2010.
DOI : 10.1021/la902563d

W. Brostow, H. E. Lobland, and M. Narkis, Sliding wear, viscoelasticity, and brittleness of polymers, Journal of Materials Research, vol.24, issue.09, pp.2422-2428, 2006.
DOI : 10.1115/1.1354623

I. Langmuir, Oscillations in Ionized Gases, Proceedings of the National Academy of Sciences of the United States of America, pp.627-637, 1928.
DOI : 10.1073/pnas.14.8.627

N. Vandencasteele and F. Reniers, Plasma-modified polymer surfaces: Characterization using XPS, Journal of Electron Spectroscopy and Related Phenomena, vol.178, issue.179, pp.394-408, 2010.
DOI : 10.1016/j.elspec.2009.12.003

T. Okano, A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide), Journal of Biomedical Materials Research, vol.227, issue.10, pp.27-1243, 1993.
DOI : 10.1002/jbm.820271005

E. H. Lock, Surface Composition, Chemistry, and Structure of Polystyrene Modified by Electron-Beam-Generated Plasma, Langmuir, vol.26, issue.11, pp.26-8857, 2010.
DOI : 10.1021/la9046337

I. Beaulleu, M. Geissler, and J. Mauzeroll, Oxygen Plasma Treatment of Polystyrene and Zeonor: Substrates for Adhesion of Patterned Cells, Langmuir, vol.25, issue.12, pp.25-7169, 2009.
DOI : 10.1021/la9001972

D. Y. Lee, Low-Temperature Plasma-Assisted Nanotransfer Printing between Thermoplastic Polymers, Advanced Materials, vol.5, issue.24, p.2524, 2009.
DOI : 10.1002/adma.200803121

R. M. France and R. D. Short, Plasma Treatment of Polymers:?? The Effects of Energy Transfer from an Argon Plasma on the Surface Chemistry of Polystyrene, and Polypropylene. A High-Energy Resolution X-ray Photoelectron Spectroscopy Study, Langmuir, vol.14, issue.17, pp.14-4827, 1998.
DOI : 10.1021/la9713053

C. C. Dupont-gillain, Plasma-Oxidized Polystyrene:?? Wetting Properties and Surface Reconstruction, Langmuir, vol.16, issue.21, pp.8194-8200, 2000.
DOI : 10.1021/la000326l

J. M. Grace and L. J. Gerenser, Plasma Treatment of Polymers, Journal of Dispersion Science and Technology, vol.1, issue.13, pp.3-4, 2003.
DOI : 10.1081/DIS-120021793

L. Lianos, x???ray photoelectron spectroscopy studies of polymer surface modifications by a remote oxygen plasma treatment, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.12, issue.4, pp.2491-2498, 1994.
DOI : 10.1116/1.579199

F. M. Petrat, Comparative in-situ TOF-SIMS/XPS study of polystyrene modified by argon, oxygen and nitrogen plasmas. Surface and Interface Analysis, pp.6-7, 1994.

J. Hopkins, S. H. Wheale, and J. P. Badyal, Synergistic Oxidation at the Plasma/Polymer Interface, The Journal of Physical Chemistry, vol.100, issue.33, pp.100-14062, 1996.
DOI : 10.1021/jp953786+

Y. Sasai, Introduction of carboxyl group onto polystyrene surface using plasma techniques, Surface and Coatings Technology, vol.202, issue.22-23, pp.22-23, 2008.
DOI : 10.1016/j.surfcoat.2008.06.085

R. W. Paynter, Angle-resolved X-ray photoelectron spectroscopy studies of the evolution of plasma-treated surfaces with time. Surface and Interface Analysis, pp.103-113, 1999.

D. Briggs, Surface modification of poly(ethylene terephthalate) by electrical discharge treatment, Polymer, vol.21, issue.8, pp.895-900, 1980.
DOI : 10.1016/0032-3861(80)90244-X

M. Morra, E. Occhiello, and F. Garbassi, Contact angle hysteresis on oxygen plasma treated polypropylene surfaces, Journal of Colloid and Interface Science, vol.132, issue.2, pp.504-508, 1989.
DOI : 10.1016/0021-9797(89)90264-6

M. Morra, Surface Dynamics vs. Adhesion in Oxygen Plasma Treated Polyolefins, The Journal of Adhesion, vol.33, issue.1-2, pp.77-88, 1990.
DOI : 10.1016/0001-8686(90)80012-O

E. Occhiello, SSIMS studies of hydrophobic recovery: Oxygen plasma treated PS, Applied Surface Science, vol.47, issue.3, pp.235-242, 1991.
DOI : 10.1016/0169-4332(91)90037-K

M. Strobel, Analysis of air-corona-treated polypropylene and poly(ethylene terephthalate) films by contact-angle measurements and X-ray photoelectron spectroscopy, Journal of Adhesion Science and Technology, vol.6, issue.4, pp.429-443, 1992.
DOI : 10.1163/156856192X00764

T. Murakami, S. Kuroda, and Z. Osawa, Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma: Effect of Aging Media after Plasma Treatment, Journal of Colloid and Interface Science, vol.202, issue.1, pp.37-44, 1998.
DOI : 10.1006/jcis.1997.5386

T. Murakami, S. Kuroda, and Z. Osawa, Dynamics of Polmeric Solid Surfaces Treated by Oxygen Plasma: Plasma-Induced Increases in Surface Molecular Mobility of Polystyrene, Journal of Colloid and Interface Science, vol.200, issue.1, pp.192-194, 1998.
DOI : 10.1006/jcis.1997.5276

J. G. Terlingen, Introduction of functional groups on polyethylene surfaces by a carbon dioxide plasma treatment, Journal of Applied Polymer Science, vol.57, issue.8, pp.57-969, 1995.
DOI : 10.1002/app.1995.070570809

L. Li, Thermally stable and solvent resistant honeycomb structured polystyrene films via photochemical cross-linking, Journal of Materials Chemistry, vol.65, issue.39, pp.7222-7227, 2009.
DOI : 10.1039/b911714h

C. Remili, Photo-oxidation of polystyrene/clay nanocomposites under accelerated UV exposure: Effect on the structure and molecular weight, Journal of Applied Polymer Science, vol.89, issue.5, pp.2868-2875, 2009.
DOI : 10.1002/app.29806

A. C. Duncan, Effect of laser modified surface microtopochemistry on endothelial cell growth, Colloids and Surfaces B: Biointerfaces, vol.54, issue.2, pp.150-159, 2007.
DOI : 10.1016/j.colsurfb.2006.09.013

M. Jäger, Surface Modification of Polymers by using Excimer Laser for Biomedical Applications, Plasma Processes and Polymers, issue.4S1, pp.416-418, 2007.

E. Rebollar, Proliferation of aligned mammalian cells on laser-nanostructured polystyrene, Biomaterials, vol.29, issue.12, pp.1796-1806, 2008.
DOI : 10.1016/j.biomaterials.2007.12.039

W. Pfleging, Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion, Applied Surface Science, vol.255, issue.10, pp.255-5453, 2009.
DOI : 10.1016/j.apsusc.2008.08.053

S. A. Mitchell, Cellular attachment and spatial control of cells using micropatterned ultra-violet/ozone treatment in serum enriched media, Biomaterials, issue.18, pp.25-4079, 2004.

P. Rytlewski and M. Zenkiewicz, Laser-induced surface modification of polystyrene, Applied Surface Science, vol.256, issue.3, pp.857-861, 2009.
DOI : 10.1016/j.apsusc.2009.08.075

J. S. Lee, Micropatterning of cultured cells on polystyrene surface by using an excimer laser, Applied Physics Letters, vol.65, issue.4, pp.400-402, 1994.
DOI : 10.1063/1.112314

H. Mirzadeh and S. Bagheri, Comparison of the effect of excimer laser irradiation and RF plasma treatment on polystyrene surface. Radiation Physics and Chemistry, pp.8-9, 2007.

E. C. Onyiriuka, Electron beam surface modification of polystyrene used for cell cultures, Journal of Adhesion Science and Technology, vol.1, issue.1, pp.1-9, 1994.
DOI : 10.1163/156856194X00014

S. Burkert, Tuning of surface properties of thin polymer films by electron beam treatment, Applied Surface Science, vol.255, issue.12, pp.6256-6261, 2009.
DOI : 10.1016/j.apsusc.2009.01.096

V. Svorcik, Electron beam modification of polyethylene and polystyrene, Journal of Applied Polymer Science, vol.64, issue.13, pp.2529-2533, 1997.
DOI : 10.1002/(SICI)1097-4628(19970627)64:13<2529::AID-APP6>3.0.CO;2-F

M. Dole, Report of Symposium IV: Chemistry and Physics of Radiation Dosimetry, 1950.

R. S. Benson, Use of radiation in biomaterials science. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, pp.752-757, 0191.

E. C. Onyiriuka, The effects of high-energy radiation on the surface chemistry of polystyrene: A mechanistic study, Journal of Applied Polymer Science, vol.47, issue.12, pp.47-2187, 1993.
DOI : 10.1002/app.1993.070471213

Y. Kawamura, Effects of gamma irradiation on polyethylene, polypropylene, and polystyrene, in Irradiation of Food and Packaging: Recent Developments, pp.262-276, 2004.

C. S. Chen, Micropatterned Surfaces for Control of Cell Shape, Position, and Function, Biotechnology Progress, vol.14, issue.3, pp.356-363, 1998.
DOI : 10.1021/bp980031m

M. Nishizawa, K. Takoh, and T. Matsue, Micropatterning of HeLa Cells on Glass Substrates and Evaluation of Respiratory Activity Using Microelectrodes, Langmuir, vol.18, issue.9, pp.3645-3649, 2002.
DOI : 10.1021/la011576k

Y. Xia, G. M. Whitesides, R. L. Mccreery, D. S. Mandler, J. M. Desimone et al., Soft Lithography, ) Weyl, W. Ann. Phys. 1863, pp.550-429, 0197.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

C. P. Andrieux, C. Combellas, F. Kanoufi, J. Savéant, A. Thiébault et al., Dynamics of Bond Breaking in Ion Radicals. Mechanisms and Reactivity in the Reductive Cleavage of Carbon???Fluorine Bonds of Fluoromethylarenes, Journal of the American Chemical Society, vol.119, issue.40, p.9527, 1997.
DOI : 10.1021/ja971094o

N. J. Sniadecki, R. A. Desai, S. A. Ruiz, and C. S. Chen, Nanotechnology for Cell???Substrate Interactions, Annals of Biomedical Engineering, vol.74, issue.1, pp.59-267, 2000.
DOI : 10.1007/s10439-005-9006-3

S. Krishnan, C. J. Weinman, and C. K. Ober, Advances in polymers for anti-biofouling surfaces, Journal of Materials Chemistry, vol.23, issue.Supplement, p.3405, 2008.
DOI : 10.1021/ma702074v

F. Cortes-salazar, M. Traeuble, J. Busnel, A. Gassner, M. Hojeij et al., Soft Stylus Probes for Scanning Electrochemical Microscopy, Analytical Chemistry, vol.81, issue.16, p.6889, 2009.
DOI : 10.1021/ac900887u

H. Kaji, K. Tsukidate, T. Matsue, and M. Nishizawa, In Situ Control of Cellular Growth and Migration on Substrates Using Microelectrodes, Journal of the American Chemical Society, vol.126, issue.46, p.15026, 2004.
DOI : 10.1021/ja045702t

T. Murakami, S. Kuroda, Z. Osawa, A. Bernard, E. Delamarche et al., ) Fin, J. Colloid Interface Sci J.; Thery, M Dupont, R.; Chatelain, F, vol.7, issue.64, p.672, 1998.

N. Shahidzadeh-ahmadi, F. Arefi-khonsari, and J. Amouroux, plasma-treated polypropylene films and the effects of ageing, J. Mater. Chem., vol.46, issue.2, p.229, 1995.
DOI : 10.1039/JM9950500229

S. Gupta, Covalent immobilization of quantum dots on macroscopic surfaces using poly(acrylic acid) brushes, J. Mater. Chem., vol.342, issue.9, pp.214-220, 2008.
DOI : 10.1039/B711082K

A. N. Shipway, E. Katz, and I. Willner, Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications, ChemPhysChem, vol.1, issue.1, pp.18-52, 2000.
DOI : 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L

X. Michalet, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, vol.307, issue.5709, pp.538-544, 2005.
DOI : 10.1126/science.1104274

V. Biju, T. Itoh, and M. Ishikawa, Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging, Chemical Society Reviews, issue.8, pp.39-3031, 2010.

F. Wang, Upconversion nanoparticles in biological labeling, imaging, and therapy, The Analyst, vol.18, issue.8, pp.1839-1854, 2010.
DOI : 10.1016/j.nano.2009.11.004

M. Agrawal, Polystyrene???ZnO Composite Particles with Controlled Morphology, Chemistry of Materials, vol.19, issue.7, pp.1845-1852, 2007.
DOI : 10.1021/cm062757g

D. L. Klein, A single-electron transistor made from a cadmium selenide nanocrystal, Nature, vol.389, issue.6652, pp.699-701, 1997.

C. J. Kiely, Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature, vol.396, issue.6710, pp.444-446, 1998.
DOI : 10.1038/24808

T. A. Taton, The DNA-Mediated Formation of Supramolecular Mono- and Multilayered Nanoparticle Structures, Journal of the American Chemical Society, vol.122, issue.26, pp.122-6305, 2000.
DOI : 10.1021/ja0007962

C. A. Goss, D. H. Charych, M. Majda, and G. , application of (3- mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapordeposited gold electrodes on glass substrates colloidal metal-films as a substrate for surface-enhanced spectroscopy, Analytical Chemistry Journal of Physical Chemistry, vol.63, issue.123, pp.99-9466, 1991.

R. G. Freeman, Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates, Science, vol.267, issue.5204, pp.1629-1632, 1995.
DOI : 10.1126/science.267.5204.1629

K. C. Grabar, Preparation and Characterization of Au Colloid Monolayers, Analytical Chemistry, vol.67, issue.4, pp.735-743, 1995.
DOI : 10.1021/ac00100a008

A. Shavel, N. Gaponik, and A. Eychmuller, Covalent Linking of CdTe Nanocrystals to Amino-Functionalized Surfaces, ChemPhysChem, vol.16, issue.3, pp.449-451, 2005.
DOI : 10.1002/cphc.200400516

M. Brust, synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquidliquid system Rational and combinatorial design of peptide capping Ligands for gold nanoparticles, journal of the Chemical Society-Chemical Communications Journal of the American Chemical Society, vol.16, issue.732, pp.801-802, 1994.

M. Brust, Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties, Langmuir, vol.14, issue.19, pp.5425-5429, 1998.
DOI : 10.1021/la980557g

Y. Yamanoi, Immobilization of Gold Nanoparticles onto Silicon Surfaces by Si???C Covalent Bonds, Langmuir, vol.20, issue.4, pp.1054-1056, 2004.
DOI : 10.1021/la036437c

G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, vol.277, issue.5330, pp.1232-1237, 1997.
DOI : 10.1126/science.277.5330.1232

N. A. Kotov, I. Dekany, and J. H. Fendler, Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films, The Journal of Physical Chemistry, vol.99, issue.35, pp.99-13065, 1995.
DOI : 10.1021/j100035a005

Y. Lvov, and Other Nanoparticles and Polyions, Langmuir, vol.13, issue.23, pp.6195-6203, 1997.
DOI : 10.1021/la970517x

Y. Lvov, A careful examination of the adsorption step in the alternate layer-bylayer assembly of linear polyanion and polycation. Colloids and Surfaces a- Physicochemical and Engineering Aspects, pp.1-3, 1999.

J. W. Ostrander, A. A. Mamedov, and N. A. Kotov, Two Modes of Linear Layer-by-Layer Growth of Nanoparticle???Polylectrolyte Multilayers and Different Interactions in the Layer-by-layer Deposition, Journal of the American Chemical Society, vol.123, issue.6, pp.123-1101, 2001.
DOI : 10.1021/ja0029578

S. Mornet, Magnetic nanoparticle design for medical diagnosis and therapy, Journal of Materials Chemistry, vol.14, issue.14, pp.2161-2175, 2004.
DOI : 10.1039/b402025a

URL : https://hal.archives-ouvertes.fr/hal-00143202

V. Maurice, Synthesis and characterization of functionalized core-shell [gamma]Fe2O3-SiO2 nanoparticles, Journal of Magnetism and Magnetic Materials, issue.10, pp.321-1408, 2009.

J. C. Bacri, Magnetic colloidal properties of ionic ferrofluids, Journal of Magnetism and Magnetic Materials, vol.62, issue.1, pp.36-46, 1986.
DOI : 10.1016/0304-8853(86)90731-6

A. Adenier, Covalent Modification of Iron Surfaces by Electrochemical Reduction of Aryldiazonium Salts, Journal of the American Chemical Society, vol.123, issue.19, pp.4541-4549, 1997.
DOI : 10.1021/ja003276f

C. A. Dyke and J. M. Tour, Solvent-Free Functionalization of Carbon Nanotubes, Journal of the American Chemical Society, vol.125, issue.5, pp.1156-1157, 2003.
DOI : 10.1021/ja0289806

W. Jian, Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts Surface modification of halogenated polymers. 4. Functionalisation of poly(tetrafluoroethylene) surfaces by diazonium salts, Langmuir Polymer, vol.20, issue.261, pp.11450-11456, 2003.

A. Adenier, Grafting of Nitrophenyl Groups on Carbon and Metallic Surfaces without Electrochemical Induction, Chemistry of Materials, vol.17, issue.3, pp.491-501, 2002.
DOI : 10.1021/cm0490625

URL : https://hal.archives-ouvertes.fr/hal-00157436

T. Gueshi, K. Tokuda, and H. Matsuda, Voltammetry at partially covered electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.89, issue.2, pp.247-260, 1978.
DOI : 10.1016/S0022-0728(78)80188-0

T. Gueshi, K. Tokuda, H. Matsuda-tokuda, K. , T. Gueshi et al., Voltammetry at partially covered electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.101, issue.1, pp.29-38, 1979.
DOI : 10.1016/S0022-0728(79)80076-5

C. Amatore, J. M. Saveant, D. Tessier, and M. G. , Charge-transfer at partially blocked surfaces -a model for the case of microscopic active and inactive sites-2): p. 39-51. 40. Nicholso.Rs, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics Grafting aryl diazonium cations to polycrystalline gold: Insights into film structure using gold oxide reduction, redox probe electrochemistry, and contact angle behavior, Journal of Electroanalytical Chemistry Analytical Chemistry Journal of Physical Chemistry C, vol.147, issue.11121, pp.37-111, 1965.

B. Wang, Amphiphilic Janus Gold Nanoparticles via Combining ???Solid-State Grafting-to??? and ???Grafting-from??? Methods, Journal of the American Chemical Society, vol.130, issue.35, pp.130-11594, 2008.
DOI : 10.1021/ja804192e