S. Microalgae-production, 17 I.2.1 Open ponds

. Thermochemical and .. Biological-conversion-of-microalgae, 27 I.2.6.1 Thermochemical conversion processes, p.28

D. Results, 51 II.5.3 Pseudo homogeneous liquid velocities, Circulation time, p.56

V. Introduction and .. , 153 V.2 Integration of microalgae culture in industrial processes, p.153

R. Rocheleau and J. Benemann, Biohydrogen Production Report to the U.S Department of Energy Hydrogen Program. Hawaii Natural Energy Institute, p.pdf, 2000.

A. Ross, J. Jones, M. Kubacki, and T. Bridgeman, Classification of macroalgae as fuel and its thermochemical behaviour, Bioresource Technology, vol.99, issue.14, pp.6494-6504, 2008.
DOI : 10.1016/j.biortech.2007.11.036

A. Ross, J. Jones, M. Kubacki, and T. Bridgeman, Hydrothermal processing of microalgae using alkali and organic acids, Fuel, vol.89, issue.9, pp.2234-2243, 2010.
DOI : 10.1016/j.fuel.2010.01.025

A. Sánchez, M. Ceron, F. García, E. Molina, and Y. Chisti, Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture, Enzyme and Microbial Technology, vol.31, issue.7, pp.1015-1023, 2002.
DOI : 10.1016/S0141-0229(02)00229-6

T. Sato, S. Usui, Y. Tsuchiya, and Y. Kondo, Invention of outdoor closed type photobioreactor for microalgae. Energy Conversion and Management 47, pp.791-799, 2006.

N. Sazdanoff, Modeling and Simulation of the Algae to Biodiesel Fuel Cycle Report, Department of Mechanical Engineering, The Ohio State University, United States. [online] Available from: https://kb.osu, 1811.

J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, A Look Back at the U.S. Department of Energy's Aquatic Species Program?Biodiesel from Algae. Report, U.S. Department of Energy's Office of Fuels Development, 1998.

. Sialve, . Bruno, N. Bernet, and O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances, vol.27, issue.4, pp.409-416, 2009.
DOI : 10.1016/j.biotechadv.2009.03.001

URL : https://hal.archives-ouvertes.fr/hal-00854465

K. Skjanes, P. Lindblad, and J. Muller, BioCO2 ??? A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products, Biomolecular Engineering, vol.24, issue.4, pp.405-413, 2007.
DOI : 10.1016/j.bioeng.2007.06.002

P. Spolaore, C. Joannis-cassan, E. Duran, and A. Isambert, Commercial applications of microalgae, Journal of Bioscience and Bioengineering, vol.101, issue.2, pp.87-96, 2006.
DOI : 10.1263/jbb.101.87

URL : https://hal.archives-ouvertes.fr/hal-00133263

D. Stepan, T. Shockey, T. Moe, and R. Dorn, Subtask 2.3 ? Carbon dioxide sequestering using microalgal systems. [online] Available from, pp.882000-882023, 2009.

N. Sushchik, G. Kalacheva, N. Zhila, M. Gladyshev, and T. Volova, A temperature dependence of the intra-and extracellular fatty acid composition of green algae and cyanobacterium, Russian Journal of Plant Physiology, vol.50, issue.3, pp.374-80, 2003.
DOI : 10.1023/A:1023830405898

Y. Ueno, N. Kurano, and S. Miyachi, Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale, Journal of Fermentation and Bioengineering, vol.86, issue.1, pp.38-43, 1998.
DOI : 10.1016/S0922-338X(98)80031-7

K. Tan, K. Lee, A. Mohamed, and S. Bhatia, Palm oil: Addressing issues and towards sustainable development, Renewable and Sustainable Energy Reviews, vol.13, issue.2, pp.420-427, 2007.
DOI : 10.1016/j.rser.2007.10.001

F. Acién, J. García, J. Sánchez, J. Fernández, and E. Molina, A Model for Light Distribution and Average Solar Irradiance Inside Outdoor Tubular Photobioreactors for the Microalgal Mass Culture, Biotechnology and Bioengineering, vol.55, pp.701-714, 1997.

R. Babcock, J. Malda, and J. Radway, Hydrodynamics and mass transfer in a tubular airlift photobioreactor, Journal of Applied Phycology, vol.14, issue.3, pp.169-184, 2002.
DOI : 10.1023/A:1019924226457

J. Bailey and D. Ollis, Biochemical engineering fundamentals, 1986.

G. Becerra, Proposition des strategies de commande pour la culture de microalgues dans un photobioreacteur continu. Paris: Ecole Centrale des Arts et Manufactures, 2009.

E. Becker, Microalgae: Biotechnology and microbiology, 1994.

R. Bello, C. Robinson, and M. Moo-young, Gas holdup and overall volumetric oxygen transfer coefficient in airlift contactors, Biotechnology and Bioengineering, vol.27, issue.3, pp.369-381, 1985.
DOI : 10.1002/bit.260270323

R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena, 2002.

V. Burris, D. Mcginnis, and J. Little, Predicting oxygen transfer and water flow rate in airlift aerators, Water Research, vol.36, issue.18, pp.4605-4615, 2002.
DOI : 10.1016/S0043-1354(02)00176-8

P. Calderbank and M. Moo-young, The continuous phase heat and mass-transfer properties of dispersions, Chemical Engineering Science, vol.16, issue.1-2, pp.39-54, 1961.
DOI : 10.1016/0009-2509(61)87005-X

F. Camacho, F. Acien, J. Sanchez, F. Garcia, and E. Molina, Prediction of dissolved oxygen and carbon dioxide concentrations profiles in tubular photobioreactors for microalgal culture, Biotechnology and Bioengineering, vol.62, pp.71-86, 1999.

P. Carlozzi, Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors, Applied Microbiology and Biotechnology, vol.54, issue.1, pp.14-22, 2000.
DOI : 10.1007/s002530000355

A. Cascallo, Conception, contrôle et fonctionnement d'un photobioréacteur pour la culture en mode continu de la cyanobactérie Spirulina platensis, 2000.

M. Cerri, L. Futiwaki, C. Jesus, A. Cruz, and A. Badino, Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor, Biochemical Engineering Journal, vol.39, issue.1, pp.51-57, 2008.
DOI : 10.1016/j.bej.2007.08.009

M. Chisti, Airlift bioreactors, 1989.

M. Chisti, Animal-cell damage in sparged bioreactors, Trends in Biotechnology, vol.18, issue.10, pp.420-432, 2000.
DOI : 10.1016/S0167-7799(00)01474-8

G. Cogne, C. Lasseur, J. Cornet, C. Dussap, and J. Gros, Growth monitoring of a photosynthetic micro-organism (Spirulina platensis) by pressure measurements, Biotechnology Letters, vol.23, issue.16, pp.1309-1314, 2001.
DOI : 10.1023/A:1010521406607

A. Contreras, F. García, E. Molina, and J. Merchuk, Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor, Enzyme and Microbial Technology, vol.25, issue.10, pp.820-830, 1999.
DOI : 10.1016/S0141-0229(99)00119-2

A. Converti, A. Lodi, A. Del-borghi, and C. Solisio, Cultivation of Spirulina platensis in a combined airlift-tubular reactor system, Biochemical Engineering Journal, vol.32, issue.1, pp.13-18, 2006.
DOI : 10.1016/j.bej.2006.08.013

J. Cornet, Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach, Chemical Engineering Science, vol.65, issue.2, pp.985-998, 2010.
DOI : 10.1016/j.ces.2009.09.052

J. Cornet and C. Dussap, A Simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors, Biotechnology Progress, vol.192, issue.2, pp.424-435, 2009.
DOI : 10.1002/btpr.138

J. Cornet, C. Dussap, and J. Gros, A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors, Chemical Engineering Science, vol.50, issue.9, pp.1489-1500, 1995.
DOI : 10.1016/0009-2509(95)00022-W

J. Cornet, C. Dussap, and J. Gros, Kinetics and energetics of photosynthetic micro-organisms in photobioreactors, Advanced Biochemical Engineering Biotechnology, vol.59, pp.153-224, 1998.
DOI : 10.1007/BFb0102299

E. Cussler, Diffusion. Mass Transfer in Fluid Systems, 2007.

E. Danesi, C. Rangel, J. Carvahlo, and S. Sato, Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis, Biomass and Bioenergy, vol.26, issue.4, pp.329-335, 2004.
DOI : 10.1016/S0961-9534(03)00127-2

W. Deckwer, R. Burckhart, and G. Zoll, Mixing and mass transfer in tall bubble columns, Chemical Engineering Science, vol.29, issue.11, 1974.
DOI : 10.1016/0009-2509(74)80025-4

J. Doucha and K. Livansky, Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate, Journal of Applied Phycology, vol.3, issue.6, pp.811-826, 2006.
DOI : 10.1007/s10811-006-9100-4

A. Fadavi and Y. Chisti, Gas holdup and mixing characteristics of a novel forced circulation loop reactor, Chemical Engineering Journal, vol.131, issue.1-3, pp.105-111, 2007.
DOI : 10.1016/j.cej.2006.12.037

L. Fan, Y. Zhang, L. Zhang, and H. Chen, Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, Journal of Membrane Science, vol.325, issue.1, pp.336-345, 2008.
DOI : 10.1016/j.memsci.2008.07.044

C. Freitas and J. Texeira, Oxygen mass transfer in a high solids loading three-phase internal-loop airlift reactor, Chemical Engineering Journal, vol.84, issue.1, pp.57-61, 2001.
DOI : 10.1016/S1385-8947(00)00274-6

G. Froment and K. Bischoff, Chemical Reactor and Design, 1990.

K. Ganzeveld, Y. Chisti, and M. Moo-young, Hydrodynamic behaviour of animal cell microcarrier suspensions in split-cylinder airlift bioreactors, Bioprocess Engineering, vol.58, issue.6, pp.239-247, 1995.
DOI : 10.1007/BF00369497

A. Giaveno, L. Lavalle, P. Chiacchiarini, and E. Donati, Microbial Processing of Metal Sulfides, 2007.

D. Hall, F. Acién, E. Canizares, K. Krishna, and E. Molina, Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity, Biotechnology and Bioengineering, vol.87, issue.1, pp.62-73, 2003.
DOI : 10.1002/bit.10543

M. Huntley and D. Redalje, CO 2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaptation Strategies for Global Change, pp.573-608, 2006.

M. Janssen, L. Bresser, T. Baijnes, J. Tramper, L. Mur et al., Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles, Journal of Applied Phycology, vol.12, issue.3/5, pp.225-237, 2000.
DOI : 10.1023/A:1008151526680

M. Janssen, M. Janssen, M. De-winter, J. Tramper, L. Mur et al., Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles, Journal of Biotechnology, vol.78, issue.2, pp.123-137, 2000.
DOI : 10.1016/S0168-1656(99)00233-3

Y. Jeon, C. Cho, and Y. Yun, Measurement of microalgal photosynthetic activity depending on light intensity and quality, Biochemical Engineering Journal, vol.27, issue.2, pp.127-131, 2005.
DOI : 10.1016/j.bej.2005.08.017

C. Jimenez, B. Cossio, and X. Niell, Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield, Aquaculture, vol.221, issue.1-4, 2003.
DOI : 10.1016/S0044-8486(03)00123-6

B. Jin, P. Yin, and P. Lant, Hydrodynamics and mass transfer coefficient in three-phase air-lift reactors containing activated sludge, Chemical Engineering and Processing: Process Intensification, vol.45, issue.7, pp.608-617, 2006.
DOI : 10.1016/j.cep.2005.08.007

Y. Kawase and M. Moo-young, Theoretical prediction of gas hold-up in bubble columns with Newtonian and non-Newtonian fluids, Industrial & Engineering Chemistry Research, vol.26, issue.5, pp.933-937, 1986.
DOI : 10.1021/ie00065a014

Q. Kong, L. Li, B. Martinez, P. Chen, and R. Ruan, Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production, Applied Biochemistry and Biotechnology, vol.15, issue.1, pp.9-18, 2010.
DOI : 10.1007/s12010-009-8670-4

Y. Lee, Microalgal mass culture systems and methods: Their limitation and potential, Journal of Applied Phycology, vol.13, issue.4, pp.307-315, 2001.
DOI : 10.1023/A:1017560006941

R. Leon and F. Galvan, Analysis of effective light in different photobioreactors: its in¯uence on growth, photosynthetic activity and glycerol production by the freshwater green alga Chlamydomonas reinhardtii, World Journal of Microbiology and Biotechnology, vol.13, issue.2, pp.237-293, 1997.
DOI : 10.1023/A:1018506317991

M. Liu, C. Lu, M. Shi, C. Yan, and Y. Fan, Region-dependent mass transfer behavior in a forced circulation airlift loop reactor, Powder Technology, vol.201, issue.1, pp.93-103, 2010.
DOI : 10.1016/j.powtec.2010.03.015

K. Loubiere, E. Olivo, G. Bougaran, J. Pruvost, R. Robert et al., A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow, Biotechnology and Bioengineering, vol.8, issue.5, pp.132-147, 2008.
DOI : 10.1002/bit.22035

J. Merchuk and I. Berzin, Distribution of energy dissipation in airlift reactors, Chemical Engineering Science, vol.50, issue.14, pp.2225-2233, 1995.
DOI : 10.1016/0009-2509(95)00027-3

J. Merchuk, M. Ronen, S. Giris, and S. Arad, Light/dark cycles in the growth of the red microalgaPorphyridium sp., Biotechnology and Bioengineering, vol.28, issue.6, pp.705-713, 1998.
DOI : 10.1002/(SICI)1097-0290(19980920)59:6<705::AID-BIT7>3.0.CO;2-J

E. Molina, F. Acién, F. Garcia, and Y. Chisti, Photobioreactors: light regime, mass transfer, and scaleup, Journal of Biotechnology, vol.70, issue.1-3, pp.231-247, 1999.
DOI : 10.1016/S0168-1656(99)00078-4

E. Molina, J. Fernandez, F. Acien, and Y. Chisti, Tubular photobioreactor design for algal cultures, Journal of Biotechnology, vol.92, issue.2, pp.113-131, 2001.
DOI : 10.1016/S0168-1656(01)00353-4

E. Molina, J. Fernandez, J. Sanchez, and F. Garcia, A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances, Journal of Biotechnology, vol.45, pp.59-69, 1996.

J. Moroney and N. Tolbert, Inorganic Carbon Uptake by Chlamydomonas reinhardtii, PLANT PHYSIOLOGY, vol.77, issue.2, pp.253-258, 1985.
DOI : 10.1104/pp.77.2.253

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1064499

A. Muller-feuga, L. Guédes, R. Hervé, A. Durand, and P. , Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum, Journal of Applied Phycology, vol.10, issue.1, pp.83-90, 1998.
DOI : 10.1023/A:1008046814640

R. Munoz and B. Guieysse, Algal???bacterial processes for the treatment of hazardous contaminants: A review, Water Research, vol.40, issue.15, pp.2799-2815, 2006.
DOI : 10.1016/j.watres.2006.06.011

M. Nicolella, M. Van-loosdrecht, R. Van-der-lans, and J. Heijnen, Hydrodynamic characteristics and gas???liquid mass transfer in a biofilm airlift suspension reactor, Biotechnology and Bioengineering, vol.60, issue.5, pp.627-635, 1998.
DOI : 10.1002/(SICI)1097-0290(19981205)60:5<627::AID-BIT13>3.3.CO;2-6

S. Nouals, Modélisation d'un photobioréacteur pilote pour la mise en oeuvre de microalgues, 2000.

. Paris, Ecole Centrale des Arts et Manufactures

J. Ogbonna, H. Yada, and H. Tanaka, Light supply coefficient: A new engineering parameter for photobioreactor design, Journal of Fermentation and Bioengineering, vol.80, issue.4, pp.369-376, 1995.
DOI : 10.1016/0922-338X(95)94206-7

S. Oncel and F. Vardar-sukan, Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime, International Journal of Hydrogen Energy, vol.34, issue.18, pp.7592-7602, 2009.
DOI : 10.1016/j.ijhydene.2009.07.027

R. Perry, D. Green, and J. Maloney, Perry's Chemical Engineers's handbook. United States of America, 1999.

J. Pruvost, J. Cornet, and J. Legrand, Hydrodynamics influence on light conversion in photobioreactors: An energetically consistent analysis, Chemical Engineering Science, vol.63, issue.14, pp.3679-3694, 2008.
DOI : 10.1016/j.ces.2008.04.026

J. Pruvost, J. Legrand, P. Legentilhomme, and A. Muller-feuga, Simulation of microalgae growth in limiting light conditions: Flow effect, AIChE Journal, vol.27, issue.5, pp.1109-1120, 2002.
DOI : 10.1002/aic.690480520

H. Qiang and A. Richmond, Optimizing the population density inIsochrysis galbana grown outdoors in a glass column photobioreactor, Journal of Applied Phycology, vol.29, issue.152, pp.391-396, 1994.
DOI : 10.1007/BF02182155

E. Radmann, C. Reinehr, and J. Costa, Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds, Aquaculture, vol.265, issue.1-4, pp.118-126, 2007.
DOI : 10.1016/j.aquaculture.2007.02.001

A. Richmond, Handbook of Microalgal Culture, Biotechnology and Applied Phycology, 2004.

M. Roustan, Transferts gas-liquide dans les procédés de traitement des eaux et des effluents gazeux, 2003.

F. Rubio, J. Garcia, E. Molina, and Y. Chisti, Axial inhomogeneities in steady-state dissolved oxygen in airlift bioreactors: predictive models, Chemical Engineering Journal, vol.84, issue.1, pp.43-55, 2001.
DOI : 10.1016/S1385-8947(00)00261-8

A. Sanchez, M. Ceron, F. Garcia, E. Molina, and Y. Chisti, Mixing in Bubble Column and Airlift Reactors, Chemical Engineering Research and Design, pp.1367-1374, 2004.

A. Sanchez, G. Contreras, F. Garcia, E. Molina, and Y. Chisti, Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae, Journal of Biotechnology, vol.70, issue.1-3, pp.249-270, 1999.
DOI : 10.1016/S0168-1656(99)00079-6

R. Siegel and J. Howell, Thermal Radiation Heat Transfer, p.123, 2002.

K. Skjanes, P. Lindblad, and J. Muller, BioCO2 ??? A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products, Biomolecular Engineering, vol.24, issue.4, pp.405-413, 2007.
DOI : 10.1016/j.bioeng.2007.06.002

H. Takache, G. Christophe, J. Cornet, and J. Pruvost, Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors, Biotechnology Progress, vol.26, pp.431-440, 2010.

S. Talvy, A. Cockx, and A. Liné, Modeling of oxygen mass transfer in a gas???liquid airlift reactor, AIChE Journal, vol.7, issue.3, pp.316-326, 2007.
DOI : 10.1002/aic.11075

M. Tobajas, E. Garcia-calvo, M. Siegel, and S. Apitz, Hydrodynamics and mass transfer prediction in a three-phase airlift reactor for marine sediment biotreatment, Chemical Engineering Science, vol.54, issue.21, pp.5347-5354, 1999.
DOI : 10.1016/S0009-2509(99)00262-6

L. Travieso, D. Hall, K. Rao, F. Benitez, E. Sanchez et al., A helical tubular photobioreactor producing Spirulina in a semicontinuous mode, International Biodeterioration & Biodegradation, vol.47, issue.3, pp.151-155, 2001.
DOI : 10.1016/S0964-8305(01)00043-9

M. Tredici and G. Zittelli, Efficiency of sunlight utilization: Tubular versus flat photobioreactors, Biotechnology and Bioengineering, vol.31, issue.2, pp.187-197, 1998.
DOI : 10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J

A. Vonshak, Spirulina Platensis (Arthrospira): Physiology, Cell-biology and Biotechnology, 1997.

C. Wang, C. Fu, and Y. Liu, Effects of using light-emitting diodes on the cultivation of Spirulina platensis, Biochemical Engineering Journal, vol.37, issue.1, pp.21-25, 2007.
DOI : 10.1016/j.bej.2007.03.004

U. Wiesmann, I. Choi, and E. Dombrowski, Fundamentals of Biological Wastewater Treatment, 2007.
DOI : 10.1002/9783527609604

X. Wu and J. Merchuk, Simulation of algae growth in a bench scale internal loop airlift reactor, Chemical Engineering Science, vol.59, issue.14, 2004.
DOI : 10.1016/j.ces.2004.02.019

Z. Xu, Z. Baicheng, Z. Yiping, C. Zhaoling, C. Wei et al., A simple and low-cost airlift photobioreactor for microalgal mass culture, Biotechnology Letters, vol.24, issue.21, pp.1767-1771, 2002.
DOI : 10.1023/A:1020648919331

M. Zeng and A. Vonshak, Adaptation of Spirulina platensis to salinity-stress, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.120, issue.1, pp.113-118, 1998.
DOI : 10.1016/S1095-6433(98)10018-1

T. Zhang, B. Zhao, and J. Wang, Mathematical models for macro-scale mass transfer in airlift loop reactors, Chemical Engineering Journal, vol.119, issue.1, pp.19-26, 2006.
DOI : 10.1016/j.cej.2006.03.005

S. Ali, Pressure drop correlations for flow through regular helical coil tubes, Fluid Dynamics Research, vol.28, issue.4, pp.295-310, 2001.
DOI : 10.1016/S0169-5983(00)00034-4

R. Babcock, J. Malda, and J. Radway, Hydrodynamics and mass transfer in a tubular airlift photobioreactor, Journal of Applied Phycology, vol.14, issue.3, pp.169-184, 2002.
DOI : 10.1023/A:1019924226457

M. Borowitzka, Commercial production of microalgae: ponds, tanks, tubes and fermenters, Journal of Biotechnology, vol.70, issue.1-3, 1999.
DOI : 10.1016/S0168-1656(99)00083-8

M. Chisti, Airlift Bioreactors, 1989.

A. Contreras, F. Garcia, E. Molina, and J. Merchuk, Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor, Enzyme and Microbial Technology, vol.25, issue.10, pp.820-830, 1999.
DOI : 10.1016/S0141-0229(99)00119-2

P. Coronel and K. Sandeep, PRESSURE DROP and FRICTION FACTOR IN HELICAL HEAT EXCHANGERS UNDER NONISOTHERMAL and TURBULENT FLOW CONDITIONS, Journal of Food Process Engineering, vol.18, issue.3, pp.285-302, 2003.
DOI : 10.1016/0017-9310(67)90113-5

A. Fadavi and Y. Chisti, Gas holdup and mixing characteristics of a novel forced circulation loop reactor, Chemical Engineering Journal, vol.131, issue.1-3, pp.105-111, 2007.
DOI : 10.1016/j.cej.2006.12.037

L. Fan, Y. Zhang, L. Zhang, and H. Chen, Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, Journal of Membrane Science, vol.325, issue.1, pp.336-345, 2008.
DOI : 10.1016/j.memsci.2008.07.044

R. Fox, A. Mcdonald, and P. Pritchard, Introduction to Fluid Mechanics, United States of America, 2004.

C. Freitas, M. Fialova, J. Zahradnik, and J. Teixeira, Hydrodynamic model for three-phase internal- and external-loop airlift reactors, Chemical Engineering Science, vol.54, issue.21, pp.5253-5258, 1999.
DOI : 10.1016/S0009-2509(99)00256-0

L. Guo, Z. Feng, and X. Chen, An experimental investigation of the frictional pressure drop of steam???water two-phase flow in helical coils, International Journal of Heat and Mass Transfer, vol.44, issue.14, pp.2601-2610, 2001.
DOI : 10.1016/S0017-9310(00)00312-4

D. Hall, F. Acién, E. Canizares, K. Krishna, and E. Molina, Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity, Biotechnology and Bioengineering, vol.87, issue.1, pp.62-73, 2003.
DOI : 10.1002/bit.10543

J. Heijnen, J. Hols, R. Van-der-lans, H. Van-leeuwen, A. Mulder et al., A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime, Chemical Engineering Science, vol.52, issue.15, pp.2527-2540, 1997.
DOI : 10.1016/S0009-2509(97)00070-5

I. Idelchik, Handbook of Hydraulic Resistance, 1996.

S. Levy, Two-phase flow in complex systems, 1999.

A. Livingston and S. Zhang, Hydrodynamic behaviour of three-phase (gas???liquid???solid) airlift reactors, Chemical Engineering Science, vol.48, issue.9, pp.1641-1654, 1993.
DOI : 10.1016/0009-2509(93)80124-9

W. Lu, S. Hwang, and C. Chang, Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles, Chemical Engineering Science, vol.50, issue.8, pp.1301-1310, 1995.
DOI : 10.1016/0009-2509(95)98842-3

J. Merchuk and I. Berzin, Distribution of energy dissipation in airlift reactors, Chemical Engineering Science, vol.50, issue.14, pp.2225-2233, 1995.
DOI : 10.1016/0009-2509(95)00027-3

P. Naphon and S. Wongwises, A review of flow and heat transfer characteristics in curved tubes, Renewable and Sustainable Energy Reviews, vol.10, issue.5, pp.463-490, 2006.
DOI : 10.1016/j.rser.2004.09.014

A. Richmond, Handbook of Microalgal Culture, Biotechnology and Applied Phycology, 2004.

E. Shaughnessy, I. Katz, and J. Schaffer, Introduction to fluid mechanics, 2005.

M. Tobajas, E. Garcia-calvo, M. Siegel, and S. Apitz, Hydrodynamics and mass transfer prediction in a three-phase airlift reactor for marine sediment biotreatment, Chemical Engineering Science, vol.54, issue.21, pp.5347-5354, 1999.
DOI : 10.1016/S0009-2509(99)00262-6

L. Travieso, D. Hall, K. Rao, F. Benitez, E. Sanchez et al., A helical tubular photobioreactor producing Spirulina in a semicontinuous mode, International Biodeterioration & Biodegradation, vol.47, issue.3, pp.151-155, 2001.
DOI : 10.1016/S0964-8305(01)00043-9

K. Van-'t-riet and J. Tramper, Basic Bioreactor Design, 1991.

G. Wallis, One-Dimensional Two Phase Flow, 1969.

R. Xin, A. Awwad, Z. Dong, and M. Ebadian, An investigation and comparative study of the pressure drop in air-water two-phase flow in vertical helicoidal pipes, International Journal of Heat and Mass Transfer, vol.39, issue.4, pp.735-743, 1996.
DOI : 10.1016/0017-9310(95)00164-6

S. Aslan and I. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecological Engineering, vol.28, issue.1, pp.64-70, 2006.
DOI : 10.1016/j.ecoleng.2006.04.003

E. Becker, Microalgae: biotechnology and microbiology, 1994.

. Biopact, An in-depth look at biorefinery concepts [online] Available from: http://news.mongabay.com/bioenergy, 2007.

L. Brennan and O. Owende, Biofuels from microalgae???A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and Sustainable Energy Reviews, vol.14, issue.2, pp.557-577, 2010.
DOI : 10.1016/j.rser.2009.10.009

J. Cadoret and O. Bernard, La production de biocarburant lipidique avec des microalgues??: promesses et d??fis, Journal de la Soci??t?? de Biologie, vol.202, issue.3, pp.201-211, 2008.
DOI : 10.1051/jbio:2008022

F. Camacho, F. Acien, J. Sanchez, F. Garcia, and E. Molina, Prediction of dissolved oxygen and carbon dioxide concentrations profiles in tubular photobioreactors for microalgal culture, Biotechnology and Bioengineering, vol.62, pp.71-86, 1999.

P. Campbell, T. Beer, and D. Batten, Life cycle assessment of biodiesel production from microalgae in ponds, Bioresource Technology, vol.102, issue.1, 2010.
DOI : 10.1016/j.biortech.2010.06.048

J. Chisti, Biodiesel from microalgae, Biotechnology Advances, vol.25, issue.3, pp.294-306, 2007.
DOI : 10.1016/j.biotechadv.2007.02.001

A. Clarens, E. Resurreccion, M. White, and L. Colosi, Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks, Environmental Science & Technology, vol.44, issue.5, 2009.
DOI : 10.1021/es902838n

E. Danesi, C. Rangel, J. Carvalho, and S. Sato, Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis, Biomass and Bioenergy, vol.26, issue.4, pp.329-335, 2004.
DOI : 10.1016/S0961-9534(03)00127-2

L. De-bashan and Y. Bashan, Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997???2003), Water Research, vol.38, issue.19, pp.4222-4246, 2004.
DOI : 10.1016/j.watres.2004.07.014

A. Dermibas, Use of algae as biofuel sources. Energy Conversion and Management 51, pp.2738-2749, 2010.

T. M. Essam, Biological treatment of industrial wastes in a photobioreactor, Water Science Technology, vol.53, pp.117-125, 2006.

J. Ferrel and V. Sarisky-reed, National Algal Biofuels, p.173, 2010.

L. Gonzalez, R. Canizares, and S. Baena, Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus, Bioresource Technology, vol.60, issue.3, pp.259-262, 1997.
DOI : 10.1016/S0960-8524(97)00029-1

Y. Goswami and F. Kreith, Energy Conversion, Boca Raton, 2008.
DOI : 10.1201/NOE0849397516-9

M. Habib, M. Parvin, T. Huntington, and M. Hasan, A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish, 2008.

G. Hodaifa, M. Martinez, and S. Sanchez, Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus, Bioresource Technology, vol.99, issue.5, pp.1111-1118, 2008.
DOI : 10.1016/j.biortech.2007.02.020

K. Kadam, Environmental implications of power generation via coal-microalgae cofiring, Energy, vol.27, issue.10, pp.905-922, 2002.
DOI : 10.1016/S0360-5442(02)00025-7

Q. Kong, L. Li, B. Martinez, P. Chen, and R. Ruan, Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production, Applied Biochemistry and Biotechnology, vol.15, issue.1, pp.9-18, 2010.
DOI : 10.1007/s12010-009-8670-4

L. Lardon, A. Helias, B. Sialve, J. Steyer, and O. Bernard, Life-Cycle Assesment of Biodiesel production from Microalgae, Environmental Science and Technology, pp.6475-6481, 2009.

R. Levine, M. Costanza, and G. Spatafora, Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiese feedstock productionl, Biomass and Bioenergy, 2010.

L. Lin, G. Chan, B. Jiang, and C. Lan, Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment, Waste Management, vol.27, issue.10, pp.1376-1382, 2007.
DOI : 10.1016/j.wasman.2006.09.001

J. Liu and X. Ma, The analysis on energy and environmental impacts of microalgae-based fuel methanol in China, Energy Policy, vol.37, issue.4, pp.1479-1488, 2009.
DOI : 10.1016/j.enpol.2008.12.010

K. Loubiere, E. Olivo, G. Bougaran, J. Pruvost, R. Robert et al., A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow, Biotechnology and Bioengineering, vol.8, issue.5, pp.132-147, 2008.
DOI : 10.1002/bit.22035

T. Mata, A. Martins, and N. Caetano, Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, vol.14, issue.1, pp.217-232, 2010.
DOI : 10.1016/j.rser.2009.07.020

A. Melis, Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency, Plant Science, vol.177, issue.4, pp.272-280, 2009.
DOI : 10.1016/j.plantsci.2009.06.005

J. Menendez, A. Dominguez, M. Inguanzo, and J. Pis, Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue, Journal of Analytical and Applied Pyrolysis, vol.74, issue.1-2, pp.406-412, 2005.
DOI : 10.1016/j.jaap.2004.10.013

R. Munoz and B. Guieysse, Algal???bacterial processes for the treatment of hazardous contaminants: A review, Water Research, vol.40, issue.15, pp.2799-2815, 2006.
DOI : 10.1016/j.watres.2006.06.011

S. Nouals and A. Isambert, Modelling of a photobioreactor for microalgae piloting. Chatenay- Malabry: Ecole centrale des arts et manufactures, p.174, 2000.

R. Orpez, M. Martinez, G. Hodaifa, F. El-yousfi, N. Jbari et al., Growth of the microalga Botryococcus braunii in secondarily treated sewage, Desalination, vol.246, issue.1-3, pp.625-630, 2009.
DOI : 10.1016/j.desal.2008.07.016

A. Richmond, Handbook of Microalgal Culture, Biotechnology and Applied Phycology, 2004.

K. Sander and G. Murthy, Life cycle analysis of algae biodiesel, The International Journal of Life Cycle Assessment, vol.2, issue.2, pp.704-714, 2010.
DOI : 10.1007/s11367-010-0194-1

N. Sazdanoff, Modeling and Simulation of the Algae to Biodiesel Fuel Cycle, 2006.

J. Sheehan, V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri, Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus, 1998.
DOI : 10.2172/1218369

J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, A Look Back at the U.S. Department of Energy's Aquatic Species Program?Biodiesel from Algae, 1998.

H. Shimamatsu, Mass production of Spirulina, an edible microalga, Hydrobiologia, pp.39-44, 2004.

B. Sialve, N. Bernet, and O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances, vol.27, issue.4, pp.409-416, 2009.
DOI : 10.1016/j.biotechadv.2009.03.001

URL : https://hal.archives-ouvertes.fr/hal-00854465

K. Skjanes, G. Knutsen, T. Kallqvist, and P. Lindblad, H2H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design, International Journal of Hydrogen Energy, vol.33, issue.2, pp.511-521, 2008.
DOI : 10.1016/j.ijhydene.2007.09.040

K. Skjanes, P. Lindblad, and J. Muller, BioCO2 ??? A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products, Biomolecular Engineering, vol.24, issue.4, pp.405-413, 2007.
DOI : 10.1016/j.bioeng.2007.06.002

M. Stals, R. Carleer, G. Reggers, S. Schreurs, and J. Yperman, Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: Characterisation of biomass, pyrolysis oil and char/ash fraction, Journal of Analytical and Applied Pyrolysis, vol.89, issue.1, pp.22-29, 2010.
DOI : 10.1016/j.jaap.2010.05.001

D. Stepan, R. Shockey, T. Moe, and R. Dorn, Substak 2.3 -Carbon dioxide sequestering using microalgal systems, Dakota: U.S. Department of Energy, 2002.

A. Stephenson, E. Kazamia, J. Dennis, C. Howe, S. Scott et al., Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors, Energy & Fuels, vol.24, issue.7, pp.4062-4077, 2010.
DOI : 10.1021/ef1003123

L. P. Travieso, BIOALGA reactor: preliminary studies for heavy metals removal, Biochemical Engineering Journal, vol.12, issue.2, pp.87-91, 2002.
DOI : 10.1016/S1369-703X(02)00045-1

L. Travieso, R. Canizares, R. Borja, F. Benitez, A. Dominguez et al., Heavy Metal Removal by Microalgae, Bulletin of Environmental Contamination and Toxicology, vol.62, issue.2, pp.144-151, 1999.
DOI : 10.1007/s001289900853

A. Vonshak, Spirulina Platensis (Arthrospira): Physiology, Cell-biology and Biotechnology, 1997.

R. Wijffels and M. Barbosa, An Outlook on Microalgal Biofuels, Science, vol.329, issue.5993, pp.796-799, 2010.
DOI : 10.1126/science.1189003

H. Yen and D. Brune, Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresource Technology, vol.98, issue.1, pp.130-134, 2007.
DOI : 10.1016/j.biortech.2005.11.010