Y. Développement, Nouvelles technologies avancées pour la réalisation de LED blanches et leur impact sur le marché de l'éclairage, Conférence Eclairage, 2008.

. Nanomarket and . Net, New Reports from Nanomarket Foresees Continued Growth in the Zinc Oxide Electronics, 2009.

D. Rogers, F. Hosseini-teherani, and M. Razeghi, Encyclopedia of Materials: Science and Technology, ZnO: From Transparent Conducting Oxide to Transparent Electronics, pp.1-5, 2010.

Y. Chen, D. Bagnall, and T. Yaochen, ZnO as a novel photonic material for the UV region, Materials Science and Engineering: B, vol.75, issue.2-3, p.190, 2000.
DOI : 10.1016/S0921-5107(00)00372-X

D. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen et al., High temperature excitonic stimulated emission from ZnO epitaxial layers, Applied Physics Letters, vol.73, issue.8, p.1038, 1998.
DOI : 10.1063/1.122077

M. Yamada, Y. Narukawa, and T. Mukai, Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 3A, p.246, 2002.
DOI : 10.1143/JJAP.41.L246

C. Bayram, F. Hosseini-teherani, D. J. Rogers, and M. Razeghi, A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN, Applied Physics Letters, vol.93, issue.8, p.81111, 2008.
DOI : 10.1063/1.2975165

T. Kondo, A. Suzuki, F. Teramae, T. Kitano, Y. Kaneko et al., Enhancement of light extraction efficiency of blue-light-emitting diodes by moth-eye structure, Gallium Nitride Materials and Devices V, pp.76021-76022, 2010.
DOI : 10.1117/12.841518

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-heji et al., High internal and external quantum efficiency InGaN/GaN solar cells, Applied Physics Letters, vol.98, issue.2, p.21102, 2011.
DOI : 10.1063/1.3540501

R. G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bulletin, vol.426, issue.08, pp.52-59, 2000.
DOI : 10.1143/JJAP.33.L1693

G. F. Boesen and J. E. Jacobs, ZnO field-effect transistor, Proceedings of the IEEE, vol.56, issue.11, pp.2094-2099, 1968.
DOI : 10.1109/PROC.1968.6813

R. L. Hoffman, B. J. Norris, and J. F. Wager, ZnO-based transparent thin-film transistors, Applied Physics Letters, vol.82, issue.5, pp.733-738, 2003.
DOI : 10.1063/1.1542677

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol.26, issue.7016, pp.488-92, 2004.
DOI : 10.1002/adma.200304947

. Gordon, Criteria for Choosing Transparent Conductors, MRS Bulletin, vol.426, issue.08, pp.52-59, 2000.
DOI : 10.1143/JJAP.33.L1693

J. Boesen and . Proc, ZnO field-effect transistor, Proceedings of the IEEE, vol.56, issue.11, pp.2094-2099, 1968.
DOI : 10.1109/PROC.1968.6813

. Hoffmann, ZnO-based transparent thin-film transistors, Applied Physics Letters, vol.82, issue.5, pp.733-738, 2003.
DOI : 10.1063/1.1542677

. Nomura, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol.26, issue.7016, pp.488-92, 2004.
DOI : 10.1002/adma.200304947

. Neufeld, High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap, Applied Physics Letters, vol.93, issue.14, p.143502, 2008.
DOI : 10.1063/1.2988894

. Ougazzaden, Epitaxial MOVPE growth of highly c-axis oriented InGaN/GaN films on ZnO-buffered Si (111) substrates, Oxide-based Materials and Devices, pp.76031-76032, 2010.
DOI : 10.1117/12.846664

URL : https://hal.archives-ouvertes.fr/hal-00554294

C. Klingshirn, ZnO: Material, Physics and Applications, ChemPhysChem, vol.143, issue.342, pp.782-803, 2007.
DOI : 10.1002/cphc.200700002

D. J. Rogers and F. H. Teherani, Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN, Applied Physics Letters, vol.91, issue.7, p.71120, 2007.
DOI : 10.1063/1.2770655

URL : https://hal.archives-ouvertes.fr/hal-00492030

G. Zhang, A. Nakamura, and T. Aoki, Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Applied Physics Letters, vol.90, issue.20, p.203515, 2007.
DOI : 10.1063/1.2741052

D. J. Rogers, Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN, Applied Physics Letters, vol.91, issue.7, p.71120, 2007.
DOI : 10.1063/1.2770655

URL : https://hal.archives-ouvertes.fr/hal-00492030

M. Zerdali, S. Hamzaoui, F. Hosseini-teherani, and D. Rogers, Growth of ZnO thin film on SiO2/Si substrate by pulsed laser deposition and study of their physical properties, Materials Letters, vol.60, issue.4, p.504, 2006.
DOI : 10.1016/j.matlet.2005.09.024

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi et al., Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Applied Physics Letters, vol.90, issue.20, p.203515, 2007.
DOI : 10.1063/1.2741052

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, vol.98, issue.4, p.41301, 2005.
DOI : 10.1063/1.1992666

Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, vol.16, issue.25, p.829, 2004.
DOI : 10.1088/0953-8984/16/25/R01

Z. Li, R. Yang, M. Yu, F. Bai, C. Li et al., Cellular Level Biocompatibility and Biosafety of ZnO Nanowires, The Journal of Physical Chemistry C, vol.112, issue.51, p.20114, 2008.
DOI : 10.1021/jp808878p

D. J. Rogers, ambient, physica status solidi (c), vol.6474, issue.9, p.3084, 2008.
DOI : 10.1002/pssc.200779315

URL : https://hal.archives-ouvertes.fr/hal-00292362

R. Nishimura, T. Sakano, T. Okato, T. Saiki, and M. Obara, Catalyst-Free Growth of High-Quality ZnO Nanorods on Si(100) Substrate by Two-Step, Off-Axis Pulsed-Laser Deposition, Japanese Journal of Applied Physics, vol.47, issue.6, p.4799, 2008.
DOI : 10.1143/JJAP.47.4799

V. A. Coleman, J. E. Bradby, C. Jagadish, and M. R. Phillips, Observation of enhanced defect emission and excitonic quenching from spherically indented ZnO, Applied Physics Letters, vol.89, issue.8, p.82102, 2006.
DOI : 10.1063/1.2338552

Z. Li, F. Xu, X. Sun, and W. Zhang, Oriented Attachment in Vapor: Formation of ZnO Three-Dimensional Structures by Intergrowth of ZnO Microcrystals, Crystal Growth & Design, vol.8, issue.3, p.805, 2008.
DOI : 10.1021/cg060830+

H. Hou, Y. Xiong, Y. Xie, Q. Li, J. Zhang et al., Structure-direct assembly of hexagonal pencil-like ZnO group whiskers, Journal of Solid State Chemistry, vol.177, issue.1, p.176, 2004.
DOI : 10.1016/S0022-4596(03)00395-5

G. Z. Wang, Y. Wang, M. Y. Yau, C. Y. To, C. J. Deng et al., Synthesis of ZnO hexagonal columnar pins by chemical vapor deposition, Materials Letters, vol.59, issue.29-30, p.3870, 2005.
DOI : 10.1016/j.matlet.2005.07.023

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Applied Physics Letters, vol.78, issue.4, pp.407-2001
DOI : 10.1063/1.1342050

S. A. Studenikim, N. Golego, and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, Journal of Applied Physics, vol.84, issue.4, p.2287, 1998.
DOI : 10.1063/1.368295

D. J. Rogers, Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN, Applied Physics Letters, vol.91, issue.7, p.71120, 2007.
DOI : 10.1063/1.2770655

URL : https://hal.archives-ouvertes.fr/hal-00492030

M. Zerdali, Growth of ZnO thin film on SiO2/Si substrate by pulsed laser deposition and study of their physical properties, Materials Letters, vol.60, issue.4, pp.504-508, 2006.
DOI : 10.1016/j.matlet.2005.09.024

Y. F. Gu, Visible???blind ultra-violet detector based on n-ZnO/p-Si heterojunction fabricated by plasma-assisted pulsed laser deposition, Solid State Communications, vol.143, issue.8-9, pp.421-424, 2007.
DOI : 10.1016/j.ssc.2007.06.014

W. J. Zhong, Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Applied Physics Letters, vol.90, issue.20, p.203515, 2007.
DOI : 10.1063/1.2741052

R. Nishimura, T. Sakano, T. Okato, T. Saiki, and M. Obara, Catalyst-Free Growth of High-Quality ZnO Nanorods on Si(100) Substrate by Two-Step, Off-Axis Pulsed-Laser Deposition, Japanese Journal of Applied Physics, vol.47, issue.6, p.4799, 2008.
DOI : 10.1143/JJAP.47.4799

T. Monteiro, A. J. Neves, M. C. Carmo, M. J. Soares, J. Peres et al., Near-band-edge slow luminescence in nominally undoped bulk ZnO, Journal of Applied Physics, vol.98, issue.1, p.13502, 2005.
DOI : 10.1063/1.1946200

R. Dingle, Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide, Physical Review Letters, vol.23, issue.11, p.579, 1969.
DOI : 10.1103/PhysRevLett.23.579

V. E. Sandana, D. J. Rogers, F. H. Teherani, R. Mcclintock, C. Bayram et al., Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.27, issue.3, pp.1678-1683, 2009.
DOI : 10.1116/1.3137990

URL : https://hal.archives-ouvertes.fr/hal-01144828

M. Peres, M. J. Soares, A. J. Neves, T. Monteiro, V. E. Sandana et al., Morphological and optical studies of self-forming ZnO nanocolumn and nanocone arrays grown by PLD on various substrates, physica status solidi (b), vol.23, issue.7, pp.1695-1698, 2010.
DOI : 10.1002/pssb.200983685

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi et al., Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Applied Physics Letters, vol.90, issue.20, p.203515, 2007.
DOI : 10.1063/1.2741052

S. Gautier, J. Ould-saad, A. Martin, A. Sirenko, and A. Ougazzaden, GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3, Journal of Crystal Growth, vol.298, p.428, 2007.
DOI : 10.1016/j.jcrysgro.2006.10.064

URL : https://hal.archives-ouvertes.fr/hal-00334614

F. Scholz, V. Harle, F. Steuber, H. Bolay, A. Dornen et al., Low pressure MOVPE of GaN and heterostructures, Journal of Crystal Growth, vol.170, issue.1-4, p.321, 1997.
DOI : 10.1016/S0022-0248(96)00606-9

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Applied Physics Letters, vol.78, issue.4, p.407, 2001.
DOI : 10.1063/1.1342050

G. F. Boesen and J. E. Jacobs-proc, ZnO field-effect transistor, Proceedings of the IEEE, vol.56, issue.11, pp.2094-2099, 1968.
DOI : 10.1109/PROC.1968.6813

. P. Carcia, Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering, Applied Physics Letters, vol.82, issue.7, pp.1117-1126, 2003.
DOI : 10.1063/1.1553997

. R. Hoffmann, ZnO-based transparent thin-film transistors, Applied Physics Letters, vol.82, issue.5, pp.733-738, 2003.
DOI : 10.1063/1.1542677

K. Nomura, Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor, Science, vol.300, issue.5623, pp.1269-72, 2003.
DOI : 10.1126/science.1083212

K. Nomura, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol.26, issue.7016, pp.488-92, 2004.
DOI : 10.1002/adma.200304947

M. Zerdali, Growth of ZnO thin film on SiO2/Si substrate by pulsed laser deposition and study of their physical properties, Materials Letters, vol.60, issue.4, pp.504-508, 2006.
DOI : 10.1016/j.matlet.2005.09.024

. D. Rogers, ZnO thin film templates for GaN-based devices, Quantum Sensing and Nanophotonic Devices II, pp.412-416, 2005.
DOI : 10.1117/12.596912

R. G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bulletin, vol.426, issue.08, pp.52-59, 2000.
DOI : 10.1143/JJAP.33.L1693

E. P. Denton, H. Rawson, and J. E. Stanworth, Vanadate Glasses, Nature, vol.126, issue.4413, pp.1030-1032, 1954.
DOI : 10.1002/zaac.19291840134

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol.26, issue.7016, pp.488-92, 2004.
DOI : 10.1002/adma.200304947

H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, Journal of Non-Crystalline Solids, vol.352, issue.9-20, pp.851-859, 2006.
DOI : 10.1016/j.jnoncrysol.2006.01.073

E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves et al., Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs, physica status solidi (RRL) ??? Rapid Research Letters, vol.17, issue.291, pp.34-40, 2007.
DOI : 10.1002/pssr.200600049

T. Sashabayashi, N. Ito, E. Nishimura, M. Kon, P. K. Song et al., Comparative study on structure and internal stress in tin-doped indium oxide and indium-zinc oxide films deposited by r.f. magnetron sputtering, Thin Solid Films, vol.445, issue.2, pp.219-242, 2003.
DOI : 10.1016/j.tsf.2003.08.047

P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes, Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering, Applied Physics Letters, vol.82, issue.7, pp.1117-1126, 2003.
DOI : 10.1063/1.1553997

R. L. Hoffmann, D. J. Norris, and J. F. Wager, ZnO-based transparent thin-film transistors, Applied Physics Letters, vol.82, issue.5, pp.733-738, 2003.
DOI : 10.1063/1.1542677

K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano et al., Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor, Science, vol.300, issue.5623, pp.1269-72, 2003.
DOI : 10.1126/science.1083212

J. F. Wager, APPLIED PHYSICS: Transparent Electronics, Science, vol.300, issue.5623, pp.1245-1251, 2003.
DOI : 10.1126/science.1085276

R. Wang, ZnO hexagonal arrays of nanowires grown on nanorods, Applied Physics Letters, vol.86, issue.25, p.251104, 2005.
DOI : 10.1063/1.1948522

D. Pastre and J. , Resolution in scanning near-field cathodoluminescence microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, pp.1138-1143, 2000.
DOI : 10.1116/1.591349

J. Bubendorff and D. Pastre, Cathodoluminescence imaging and spectroscopy by near-field detection, Journal of Microscopy, vol.199, issue.3, pp.191-196, 2000.
DOI : 10.1046/j.1365-2818.2000.00728.x

E. Hichou, M. Addou, J. Ebothé, and M. Troyon, Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis, Journal of Luminescence, vol.113, issue.3-4, pp.183-190, 2005.
DOI : 10.1016/j.jlumin.2004.09.123

J. L. Bubendorff, J. Ebothe, R. Dounia, A. Hichou, and M. Addou, Luminescent spectroscopy and imaging of textured sprayed Er-doped ZnO films in the near ultraviolet and visible regions, Journal of Applied Physics, vol.100, issue.1, pp.14505-14506, 2006.
DOI : 10.1063/1.2211347

URL : https://hal.archives-ouvertes.fr/hal-00136790

J. L. Bubendorff, N. Grandjean, B. Damilano, and M. Troyon, Cathodoluminescence study of the excitons localization in AlGaN/GaN and InGaN/GaN quantum wells grown on sapphire, Journal of Crystal Growth, vol.247, issue.3-4, pp.284-290, 2003.
DOI : 10.1016/S0022-0248(02)01994-2

H. Fan, Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence, Nanotechnology, vol.15, issue.11, pp.1401-1404, 2004.
DOI : 10.1088/0957-4484/15/11/003

J. L. Bubendorff, D. Pastre, and &. , Cathodoluminescence imaging and spectroscopy by near-field detection, Journal of Microscopy, vol.199, issue.3, pp.191-196
DOI : 10.1046/j.1365-2818.2000.00728.x

B. K. Meyer, Bound exciton and donor???acceptor pair recombinations in ZnO, physica status solidi (b), vol.241, issue.2, p.231, 2007.
DOI : 10.1002/pssb.200301962

D. Vogel, electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials, Physical Review B, vol.52, issue.20, p.14316, 1995.
DOI : 10.1103/PhysRevB.52.R14316

J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Physical Review B, vol.62, issue.3, p.1660, 2000.
DOI : 10.1103/PhysRevB.62.1660

G. Bastard, Wave mechanics applied to semiconductor heterostructures, Les Editions de Physique, 1992.

C. Benoît-À-la-guillaume, Cours sur les processus de recombinaison radiative dans le semiconducteur , Laboratoire de Physique de l'École Normale Supérieure, 1998.

H. Mathieu, Physique des semi-conducteurs et des composants électroniques, Les Editions Dunod, 1997.

N. Consulting, R. Inc, . Advisors, S. Inc, and I. , Report on Solid-State Lighting Research and Development Building Technologies Program, 2009.

M. Yamada, T. Narukawa, and J. Mukai, Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 3A, p.246, 2002.
DOI : 10.1143/JJAP.41.L246

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi et al., Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Applied Physics Letters, vol.90, issue.20, p.203515, 2007.
DOI : 10.1063/1.2741052

W. Shockley, Junction Transistors, Bell System Technical Journal, vol.28, issue.3, pp.435-489, 1949.
DOI : 10.1002/j.1538-7305.1949.tb03645.x

K. Lehovec, C. A. Accardo, and E. Jamgochian, Injected Light Emission of Silicon Carbide Crystals, Physical Review, vol.83, issue.3, pp.603-607, 1951.
DOI : 10.1103/PhysRev.83.603

J. D. Brown, J. Li, P. Srinivasan, J. Mathews, and J. F. Schetzina, Solar-Blind AlGaN Heterostructure Photodiodes, MRS Internet Journal of Nitride Semiconductor Research, vol.51, issue.1, p.9, 2000.
DOI : 10.1063/1.116144

A. Yasan, R. Mcclintock, K. Mayes, S. R. Darvish, P. Kung et al., Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm, Applied Physics Letters, vol.81, issue.5, p.801, 2002.
DOI : 10.1063/1.1497709

K. Mayes, A. Yasan, R. Mcclintock, D. Shiell, S. R. Darvish et al., High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well, Applied Physics Letters, vol.84, issue.7, p.1046, 2004.
DOI : 10.1063/1.1647273

D. J. Rogers, F. Hosseini-teherani, A. Yasan, K. Minder, P. Kung et al., Electroluminescence at 375nm from a ZnO???GaN:Mg???c-Al2O3 heterojunction light emitting diode, Applied Physics Letters, vol.88, issue.14, p.141918, 2006.
DOI : 10.1063/1.2195009

J. Lee, K. K. Kim, H. Tampo, A. Yamada, and S. Niki, Ohmic Contact to Phosphorous-Doped ZnO Using Pt???Ni???Au for p-n Homojunction Diode, Journal of The Electrochemical Society, vol.153, issue.12, p.1047, 2006.
DOI : 10.1149/1.2357710

X. Shao, S. L. Rommel, B. A. Orner, J. Kolodzey, and P. R. Berger, A p-Ge/sub 1-x/C/sub x//n-Si heterojunction diode grown by molecular beam epitaxy, IEEE Electron Device Letters, vol.18, issue.9, p.411, 1997.
DOI : 10.1109/55.622513

N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe et al., Blue-emitting InGaN???GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A???cm2, Applied Physics Letters, vol.91, issue.24, p.243506, 2007.
DOI : 10.1063/1.2807272

Y. H. Cho, S. K. Lee, H. S. Kwack, J. Y. Kim, K. S. Lim et al., Carrier loss and luminescence degradation in green-light-emitting InGaN quantum wells with micron-scale indium clusters, Applied Physics Letters, vol.83, issue.13, p.2578, 2003.
DOI : 10.1063/1.1613043

I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim et al., Green light-emitting diodes with self-assembled In-rich InGaN quantum dots, Applied Physics Letters, vol.91, issue.13, p.133105, 2007.
DOI : 10.1063/1.2790783

C. Bayram, F. H. Teherani, D. Rogers, and M. Razeghi, A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN, Applied Physics Letters, vol.93, issue.8, p.81111, 2008.
DOI : 10.1063/1.2975165

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, and S. Nakamura, Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm, Applied Physics Letters, vol.70, issue.8, p.981, 1996.
DOI : 10.1063/1.118455

M. Takeguchi, M. R. Mccartney, and D. J. Smith, Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure, Applied Physics Letters, vol.84, issue.12, p.2103, 2004.
DOI : 10.1063/1.1689400

S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition, Applied Physics Letters, vol.70, issue.4, p.420, 1996.
DOI : 10.1063/1.118322

I. Ho and G. B. Stringfellow, Solid phase immiscibility in GaInN, Applied Physics Letters, vol.69, issue.18, p.2701, 1996.
DOI : 10.1063/1.117683

B. Van-daele, G. Van-tendeloo, K. Jacobs, I. Moerman, and M. R. Leys, Formation of metallic In in InGaN???GaN multiquantum wells, Applied Physics Letters, vol.85, issue.19, p.4379, 2004.
DOI : 10.1063/1.1815054

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, GaInN???GaN growth optimization for high-power green light-emitting diodes, Applied Physics Letters, vol.85, issue.6, p.866, 2004.
DOI : 10.1063/1.1779960

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures, Japanese Journal of Applied Physics, vol.34, issue.Part 2, No. 7A, pp.797-799, 1995.
DOI : 10.1143/JJAP.34.L797

S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu et al., InGaN-GaN multiquantum-well blue and green light-emitting diodes, IEEE Journal of Selected Topics in Quantum Electronics, vol.8, issue.2, p.278, 2002.
DOI : 10.1109/2944.999181

Y. D. Qi, H. Liang, D. Wang, Z. D. Lu, W. Tang et al., Comparison of blue and green InGaN???GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.86, issue.10, p.101903, 2005.
DOI : 10.1063/1.1866634

D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer et al., Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy, Applied Physics Letters, vol.77, issue.10, p.1464, 2000.
DOI : 10.1063/1.1308057

P. Kozodoy, J. P. Ibbetson, M. Marchand, P. T. Fini, S. Keller et al., Electrical characterization of GaN p-n junctions with and without threading dislocations, Applied Physics Letters, vol.73, issue.7, p.975, 1998.
DOI : 10.1063/1.122057

D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang et al., Dependence of leakage current on dislocations in GaN-based light-emitting diodes, Journal of Applied Physics, vol.96, issue.2, p.1111, 2004.
DOI : 10.1063/1.1763234

C. Bayram, J. L. Pau, R. Mcclintock, and M. Razeghi, Comprehensive study of blue and green multi-quantum-well light-emitting diodes grown on??conventional and??lateral epitaxial overgrowth??GaN, Applied Physics B, vol.78, issue.2, p.307, 2009.
DOI : 10.1007/s00340-008-3321-y

S. Tomiya, K. Funato, T. Asatsuma, T. Hino, S. Kijima et al., Dependence of crystallographic tilt and defect distribution on mask material in epitaxial lateral overgrown GaN layers, Applied Physics Letters, vol.77, issue.5, p.636, 2000.
DOI : 10.1063/1.127069

A. E. Romanov, P. Fini, and J. S. Speck, Modeling the extended defect evolution in lateral epitaxial overgrowth of GaN: Subgrain stability, Journal of Applied Physics, vol.93, issue.1, p.106, 2003.
DOI : 10.1063/1.1524013

H. Marchand, J. P. Ibbetson, P. T. Fini, S. Keller, S. P. Denbaars et al., Mechanisms of lateral epitaxial overgrowth of gallium nitride by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol.195, issue.1-4, p.328, 1998.
DOI : 10.1016/S0022-0248(98)00591-0

D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy et al., Anisotropic epitaxial lateral growth in GaN selective area epitaxy, Applied Physics Letters, vol.71, issue.9, p.1204, 1997.
DOI : 10.1063/1.119626

H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy et al., Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition, Applied Physics Letters, vol.73, issue.6, p.747, 1998.
DOI : 10.1063/1.121988

X. Xu, R. P. Vaudo, J. Flynn, and G. R. Brandes, Acid etching for accurate determination of dislocation density in GaN, Journal of Electronic Materials, vol.67, issue.5, p.402, 2002.
DOI : 10.1007/s11664-002-0091-x

A. Sakai, H. Sunakawa, and A. Usui, Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth, Applied Physics Letters, vol.73, issue.4, p.481, 1998.
DOI : 10.1063/1.121907

P. Fini, H. Marchand, J. P. Ibbetson, S. P. Denbaars, U. K. Mishra et al., Determination of tilt in the lateral epitaxial overgrowth of GaN using X-ray diffraction, Journal of Crystal Growth, vol.209, issue.4, p.581, 2000.
DOI : 10.1016/S0022-0248(99)00634-X

J. Z. Domagala, Z. R. Zytkiewicz, B. Beaumont, J. Kozlowski, R. Czernetzki et al., X-ray diffraction studies of epitaxial laterally overgrown (ELOG) GaN layers on sapphire substrates, Journal of Crystal Growth, vol.245, issue.1-2, p.37, 2002.
DOI : 10.1016/S0022-0248(02)01705-0

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva et al., The Composition Pulling Effect in MOVPE Grown InGaN on GaN and AlGaN and its TEM Characterization, MRS Internet Journal of Nitride Semiconductor Research, vol.2, p.6, 1997.
DOI : 10.1016/S0038-1101(96)00155-4

M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, Effect of threading defects on InGaN???GaN multiple quantum well light emitting diodes, Applied Physics Letters, vol.91, issue.23, p.231107, 2007.
DOI : 10.1063/1.2822395

D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, Low-frequency noise and performance of GaN p-n junction photodetectors, Journal of Applied Physics, vol.83, issue.4, p.2142, 1998.
DOI : 10.1063/1.366950

D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, Origin of conductivity and low-frequency noise in reverse-biased GaN p-n junction, Applied Physics Letters, vol.72, issue.11, p.1365, 1998.
DOI : 10.1063/1.121056

J. W. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. Chu et al., Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes, Applied Physics Letters, vol.78, issue.12, p.1685, 2001.
DOI : 10.1063/1.1356450

S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays, Applied Physics Letters, vol.92, issue.12, p.121108, 2008.
DOI : 10.1063/1.2903153

Y. I. Aliyov, J. E. Van-nostrand, and D. C. Look, Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes, Applied Physics Letters, vol.83, issue.14, p.2943, 2003.
DOI : 10.1063/1.1615308

C. Bayram, J. L. Pau, R. Mcclintock, and M. Razeghi, Delta-doping optimization for high quality p-type GaN, Journal of Applied Physics, vol.104, issue.8, p.83512, 2008.
DOI : 10.1063/1.3000564

M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador et al., ???type GaN, Applied Physics Letters, vol.68, issue.14, p.1883, 1996.
DOI : 10.1063/1.116282

E. F. Schubert, Light-Emitting Diodes, (Cambridge, 2003.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano et al., Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect, Applied Physics Letters, vol.73, issue.12, p.1691, 1998.
DOI : 10.1063/1.122247

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu et al., Microstructure and electronic properties of InGaN alloys, physica status solidi (b), vol.240, issue.2, p.273, 2003.
DOI : 10.1002/pssb.200303527

D. J. Eaglesham and M. Cerullo, Dislocation-free Stranski-Krastanow growth of Ge on Si(100), Physical Review Letters, vol.64, issue.16, p.1943, 1990.
DOI : 10.1103/PhysRevLett.64.1943

M. Petroff, A. Lorke, and A. Imomoglu, Epitaxially Self-Assembled Quantum Dots, Physics Today, vol.54, issue.5, p.46, 2001.
DOI : 10.1063/1.1381102

K. Tachibana, T. Someya, and Y. Arakawa, Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol.74, issue.3, p.383, 1999.
DOI : 10.1063/1.123078

B. Damilano, N. Grandjean, S. Dalmasso, and J. Massies, Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth, Applied Physics Letters, vol.75, issue.24, p.3751, 1999.
DOI : 10.1063/1.125444

O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, Narrow photoluminescence peaks from localized states in InGaN quantum dot structures, Applied Physics Letters, vol.76, issue.17, p.2361, 2000.
DOI : 10.1063/1.126346

Y. K. Su, S. J. Chang, L. W. Ji, C. S. Chang, L. W. Wu et al., InGaN/GaN blue light-emitting diodes with self-assembled quantum dots, Semiconductor Science and Technology, vol.19, issue.3, p.389, 2004.
DOI : 10.1088/0268-1242/19/3/016

V. Ranjan, G. Allan, C. Priester, and C. Delerue, Self-consistent calculations of the optical properties of GaN quantum dots, Physical Review B, vol.68, issue.11, p.115305, 2003.
DOI : 10.1103/PhysRevB.68.115305

URL : https://hal.archives-ouvertes.fr/hal-00146611

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III???V compound semiconductors and their alloys, Journal of Applied Physics, vol.89, issue.11, p.5815, 2001.
DOI : 10.1063/1.1368156

S. L. Chuang and C. S. Chang, k???p method for strained wurtzite semiconductors, Physical Review B, vol.54, issue.4, p.2491, 1996.
DOI : 10.1103/PhysRevB.54.2491

M. Grundmann, O. Stier, and D. Bimberg, InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure, Physical Review B, vol.52, issue.16, p.11969, 1995.
DOI : 10.1103/PhysRevB.52.11969

C. G. Van-de-walle, M. D. Mccluskey, C. P. Master, L. T. Romano, and N. M. Johnson, Large and composition-dependent band gap bowing in InxGa1???xN alloys, Materials Science and Engineering: B, vol.59, issue.1-3, p.274, 1999.
DOI : 10.1016/S0921-5107(98)00340-7

V. A. Fonoberov and A. A. Balandin, Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1???xN quantum dots, Journal of Applied Physics, vol.94, issue.11, p.7178, 2003.
DOI : 10.1063/1.1623330

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multiquantum well structures, Applied Physics Letters, vol.69, issue.27, p.4188, 1996.
DOI : 10.1063/1.116981

E. D. Jones, Light Emitting Diodes for General Illumination, 2001.

S. C. Allen and A. J. Stecki, A nearly ideal phosphor-converted white light-emitting diode, Applied Physics Letters, vol.92, issue.14, p.143309, 2008.
DOI : 10.1063/1.2901378

C. Huang, C. Lu, T. Tang, J. Huang, and C. C. Yang, Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN???GaN quantum wells, Applied Physics Letters, vol.90, issue.15, p.151122, 2007.
DOI : 10.1063/1.2723197

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang et al., Cool white III-nitride light emitting diodes based on phosphor-free indium-rich InGaN nanostructures, Applied Physics Letters, vol.92, issue.26, p.261909, 2008.
DOI : 10.1063/1.2952459

R. A. Oliver, M. J. Kappers, C. J. Humphreys, and G. A. Briggs, Growth modes in heteroepitaxy of InGaN on GaN, Journal of Applied Physics, vol.97, issue.1, p.13707, 2005.
DOI : 10.1063/1.1823581

A. Ougazzaden, Epitaxial MOVPE growth of highly c-axis oriented InGaN/GaN films on ZnO-buffered Si (111) substrates, Oxide-based Materials and Devices, pp.76031-76032
DOI : 10.1117/12.846664

URL : https://hal.archives-ouvertes.fr/hal-00554294

E. Sandana, (f) (a) Georgia Institute of Technology/GT-Lorraine-UMI 2958 Georgia Tech-CNRS, 2-3 rue Marconi, (b) Nanovation SARL, 103 bis Rue de Versailles (c) LMOPS -UMR CNRS 7132 (d) GEMAC, Université de Versailles-Saint-Quentin1, place Aristide Briand, 92195 Meudon Cedex France (e) LMEN, University of Reims Champagne-Ardennes, 21 rue Clement Ader, pp.51685-51697

N. Golego, S. A. Studenkin, and M. Cocivera, Sensor Photoresponse of Thin-Film Oxides of Zinc and Titanium to Oxygen Gas, Journal of The Electrochemical Society, vol.147, issue.4, p.1592, 2000.
DOI : 10.1149/1.1393400

S. C. Jain, M. Willander, J. Narayan, and R. Van-overstraeten, III???nitrides: Growth, characterization, and properties, Journal of Applied Physics, vol.87, issue.3, p.965, 2000.
DOI : 10.1063/1.371971

A. Ougazzaden, D. J. Rogers, F. Hosseini-teherani, T. Moudakir, S. Gautier et al., Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates, Journal of Crystal Growth, vol.310, issue.5, p.944, 2008.
DOI : 10.1016/j.jcrysgro.2007.11.137

URL : https://hal.archives-ouvertes.fr/hal-00322269

S. Wang, N. Li, E. Park, S. Lien, Z. C. Feng et al., Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates, Journal of Applied Physics, vol.102, issue.10, p.106105, 2007.
DOI : 10.1063/1.2817482

S. Gautier, C. Sartel, S. Ould-saad, J. Martin, A. Sirenko et al., GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3, Journal of Crystal Growth, vol.298, p.428, 2007.
DOI : 10.1016/j.jcrysgro.2006.10.064

URL : https://hal.archives-ouvertes.fr/hal-00334614

N. Li, S. Wang, E. Park, Z. C. Feng, A. Valencia et al., Growth of InGaN with high indium content on ZnO based sacrificial substrates, Seventh International Conference on Solid State Lighting, pp.66690-66693, 2007.
DOI : 10.1117/12.741932