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Foreword This thesis stems from a CIFRE agreement! with Asclepios research
team at INRIA Sophia Antipolis, http://www-sop.inria.fr/asclepios, and the
company Mauna Kea Technologies, Paris, http://www.maunakeatech. com, which
is specialized in the development of in vivo cellular imaging systems for biomedical
and medical applications.

French summary

L’Endomicroscopie Confocale par Minisondes (ECM) est une technologie récente
qui permet 'observation dynamique des tissus au niveau cellulaire, in vivo et in situ,
pendant une endoscopie. Grace d ce nouveau systeme d’imagerie, les médecins en-
doscopistes ont la possibilité de réaliser des “biopsies optiques” non invasives. Les
biopsies traditionnelles impliquent le diagnostic ex vivo d’images histologiques par
des médecins pathologistes. Le diagnostic in vivo d’images ECM est donc un vérita-
ble challenge pour les endoscopistes, qui ont en général seulement un peu d’expertise
en anatomopathologie. Les images ECM sont néammoins de nouvelles images, qui
ressemblent visuellement auzx images histologiques. Cette thése a pour but princi-
pal d’assister les endoscopistes dans l’interprétation in vivo des séquences d’images
ECM, en mettant a leur disposition un systeme de reconnaissance de vidéos endomi-
croscopiques. Nous proposons de construire un atlas intelligent, capable d’extraire
automatiquement dans une base de données, plusieurs vidéos ECM qui ont une ap-
parence similaire a la vidéo requéte, mais qui ont déja été annotées avec différentes
métadonnées telles que par exemple le diagnostic histologique.

!CIFRE (Convention Industrielle de Formation par la Recherche / Industrial Agreement for
Training via Research) agreements aim at fostering innovative processes and technology transfer
between public research organizations and industry by supporting a young researcher based in
industry, to complete the PhD. They are administered by ANRT (Association Nationale de la
Recherche Technique / National Association for Technical Research), http://www.anrt.asso.
fr.
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2 Chapter 1. Introduction

Figure 1.1: Left: pCLE miniprobe inserted through the working channel of a stan-
dard endoscope. Right: Setup of pCLE imaging system (Cellvizio, Mauna Kea Tech-
nologies).

1.1 A Smart Atlas for Endomicroscopy: How to Sup-
port In Vivo Diagnosis of Gastrointestinal Can-
cers?

In the last decade, the visualization of epithelial tissues at cellular level has been
made possible in the living organism by the use of fibered confocal microscopy.
In particular, probe-based Confocal Laser Endomicroscopy (pCLE) enables the in
vivo microscopic imaging of the epithelium during ongoing endoscopy, at real-time
frame-rate, and in situ, i.e. in contact with the region of interest. The pCLE
imaging system is illustrated in Fig. 1.1: a confocal miniprobe, made of tens of
thousands of optical fibers, is inserted through the working channel of a standard
endoscope to image an optical plane at a fixed distance below the surface of the
tissue. The pCLE miniprobe is connected to a proximal laser scanning unit which
uses two mirrors to emit, along each optical fiber, an excitation light that is locally
absorbed by fluorophores in the tissue. The light which is then emitted by the
fluorophores at a longer wavelength is transferred back along the same fiber to a
mono-pixel photodetector. As a result, pCLE images with field-of-view ranging
from 200 to 600 um are acquired at a rate of 9 to 18 frames per second, composing
image sequences called pCLE videos.

For the endoscopists, the pCLE imaging system is a revolutionary tool which
gives them the opportunity to perform non-invasive “optical biopsies”, and thus
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to establish in vivo diagnosis of epithelial cancers. Using pCLE, endoscopists are
provided online with new images that visually look like the histological images, as
shown in Fig. 1.2. Histological images are usually diagnosed offline by pathologists.
Today, histology remains the “gold standard” for cancer diagnosis. However, ex vivo
histological diagnosis implies invasive procedures that are potentially dangerous
for the patient, and a large proportions of unnecessary biopsies associated with a
significant cost. In [Wang 07], Wang and Camilleri pointed out that pCLE enables
combined diagnosis and treatment during the endoscopy procedure:

The ultimate goal should be that the gastroenterologist-endoscopist be
in the driver’s seat in the management of patients presenting with mu-
cosal lesitons that are appraised thoroughly with endoscopic procedures
including histologic characterization, assessment of depth of invasion
and surrounding tissues and lymph nodes, and, ultimately, resection in
toto using submucosal dissection if necessary. (p. 1260)

Thus, the in vivo diagnosis of epithelial cancers is a challenge for the endoscopists.
In particular, the early diagnosis of gastrointestinal cancers, that are a leading
cause of cancer death worldwide, is one of the critical challenges. Currently, pCLE
is relatively new to many physicians, who are still in the process of defining a
taxonomy of the pathologies seen in pCLE images: for a given pathological class,
there is a high variability in the appearance of pCLE images. The main goal of this
thesis is to assist the endoscopists in the interpretation of pCLE image sequences.

The subjective experience of understanding the pathologies observed in pCLE
images would undoubtedly benefit from an objective tool that provides clinically
interpretable information to guide the interpretation. When establishing a patho-
logical diagnosis from a new image, physicians typically use similarity-based rea-
soning: they implicitly rely on wisually similar cases they have seen in the past.
This is the reason why we propose to investigate, for diagnosis support, content-
based image retrieval (CBIR) approaches that manipulate low-level visual features.
Following the query-by-example model, we aim at developing a retrieval system
which automatically extracts, from a training database, several pCLE videos that
are visually similar to the pCLE video of interest, but that have been previously
annotated with metadata. A suitable training database for pCLE retrieval would
contain a sufficiently large number of representative pCLE videos together with
their attached metadata, including pathological diagnosis. Such a pCLE retrieval
system would thus act like a “Smart Atlas” that opens for the endoscopist a com-
prehensive book of already diagnosed and annotated pCLE cases at the right pages.
The proposed solution is not only an “Atlas” defined by the annotated database,
but a “Smart Atlas” able to extract the relevant information. By guiding the en-
doscopists in making informed decisions during the procedure, the retrieval system
would help them in establishing more accurate pCLE diagnoses. The concept of a
“Smart Atlas” for pCLE is illustrated in Fig. 1.3.

Because establishing a pCLE diagnosis is an everyday practice for the endo-
scopist, the retrieval tools may also be used as a training tool that assists the
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Figure 1.2: Top: pCLE mosaic image obtained from the “optical biopsy” of a sus-
picious polyp in the colon. Bottom: Corresponding histological image obtained from
the real biopsy of the same suspicious polyp. The suspicious polyp was diagnosed
as tubular adenoma (i.e. malignant). Whereas histological cuts provides images in a
transverse plane, pCLE produces images in an “en-face” plane (i.e. a frontal view).
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Smart Atlas Concept
“Open a book at the right pages”

Figure 1.3: Schematic example illustrating the “Smart Atlas” concept for
PCLE. The example images are typical pCLE images of colonic polyps. Three anno-
tated pCLE images, visually similar to the query image, are automatically extracted
from an annotated training database represented by the “Smart Atlas” book. These
extracted images are annotated with metadata, such as their pathological diagnosis.

endoscopists in shortening their learning curve. For example, a difficulty level for
the interpretation of pCLE videos could be estimated to complement the retrieval
outputs. Furthermore, high-level clinical knowledge, such as the visual similarity
perceived between pCLE videos or the semantic concepts used to describe pCLE
videos, could be included to define an adequate similarity distance between pCLE
videos, where similarity is thought in terms of visual content and semantic annota-
tions. On the relevance of the learned similarity distance would depend the naviga-
tion of the endoscopist through the multimodal training database. A relevant pCLE
retrieval system would also require the training database to be sufficiently repre-
sentative of the variability in the appearance of pCLE cases. Besides, the training
database could be enriched over time by the endoscopists who may add or anno-
tate new pCLE cases that were never seen before. This should support not only
knowledge sharing between the endoscopists, but also pCLE knowledge discovery.
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1.2 From Computer Vision to Medical Applications

The CBIR techniques, inherited from the computer vision field, were initially ap-
plied to non-medical image databases and for classification purpose. A large review
of the state of the art in CBIR is presented by Smeulders et al. [Smeulders 00], who
pointed out the need for large representative databases, the problem of retrieval
evaluation, and the existence of the semantic gap.

In computer vision, many CBIR methods have been developed. Some are more
object-oriented, some are texture-oriented. Boureau et al. [Boureau 10| identified
two important phases in CBIR: the coding phase which decomposes the original
image features on a dictionary according to desirable properties, e.g. invariance,
compactness, sparseness, statistical independence, and the pooling phase which
summarizes the resulting codes into a single image signature. Using two annotated
databases of natural scenes and objects, they provided a comprehensive evaluation
of several combinations of the coding modules, e.g. hard and soft vector quantiza-
tion or sparse coding, and the pooling schemes, e.g. average-based or maximum-
based pooling. In particular, the Bag-of-Visual-Words (BoW) method proposed by
Sivic and Zisserman [Sivic 06] is a CBIR method that uses a visual vocabulary,
based on vector quantized viewpoint invariant descriptors. The BoW method is
relevant for texture retrieval. Indeed, Zhang et al. [Zhang 07] achieved excellent
classification results by applying the BoW method to a database of natural tex-
ture images. Lazebnik et al. [Lazebnik 06] extended the BoW model to a spatial
pyramid matching model that manipulates histograms of image features over im-
age subregions. By extracting both spectral features using the “gist” descriptor
of Oliva and Torralba [Oliva 01], and gradient features using the SIFT descriptor
of Lowe [Lowe 04], the spatial pyramid matching method achieves high classifica-
tion accuracy on a large annotated database of fifteen natural scene categories.
Proposing another design, Chehade et al. [Chehade 09] used Haralick features de-
scriptors [Haralick 79] for the texture classification of vegetation types in aerial
color infra-red images.

Various medical applications of CBIR were proposed in the literature. For ex-
ample, the Neurobase project, proposed by Barillot et al. [Barillot 04], aims at
building an information system that would allow multimodal similarity search in
neuroimaging. Miiller et al. [Miiller 08] presented a benchmark for the evaluation of
multimodal CBIR methods on medical databases, according to the “ImageCLEF”
medical image retrieval task that includes heterogeneous medical images, from ra-
diography and electrocardiograms to histopathology. The application of CBIR
to uterine cervix images was investigated by Greenspan [Greenspan 09] in order
to facilitate training and research on uterine cancers. More recently, Simonyan
et al. [Simonyan 11] proposed a visual search framework using regions of interest
for the immediate retrieval of medical images and the simultaneous localization of
anatomical structures. The choice of the appropriate CBIR method highly depends
on the targeted medical application. Because discriminative information is dense
in the pCLE images, which have a similar appearance to texture images, we will
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explore in this thesis a dense version of the BoW model in order to achieve pCLE
retrieval.

1.3 Manuscript Organization and Contributions

The present thesis is organized along our published and submitted studies, on which
it is largely based. The resulting manuscript progresses from the development of an
objective tool for diagnosis support to the learning of higher-level clinical knowledge
for training support.

Chapter 2, based on [André 11e], focuses on the main methodological contribu-
tions that adjust the standard BoW method for the retrieval of pCLE videos. Built
from our submitted clinical article [André 11a], Chapter 3 presents the clinical appli-
cation of pCLE video retrieval on colonic polyps. This study was presented in a clin-
ical abstract [André 10b] copied in Appendix B. Chapter 4, based on [André 10a],
proposes an automated estimation of the difficulty to interpret pCLE videos, from
the retrieval results obtained on two different pCLE video databases, the Colonic
Polyps and the Barrett’s Esophagus. This study was presented in a second clinical
abstract [André 11b] shown in Appendix C. Finally, in Chapter 5 based on our
submitted article [André 11c|, more clinical knowledge is included in order to learn
semantic and visual similarity between pCLE videos.

We start in Chapter 2 by analyzing the image properties of pCLE videos. Ob-
serving that epithelial tissues are characterized by the regularity of the cellular and
vascular architectures, we aim at retrieving discriminative texture information cou-
pled with shape information by applying local operators on pCLE images. To serve
that purpose, we revisit the BoW method which has been successfully used in many
applications of computer vision. The standard BoW method consists of detecting
salient image regions from which continuous features are extracted and discretized
into “visual words”. In order to capture all the discriminative information which is
densely distributed in pCLE images, we propose a dense BoW description of these
images. Further methodological contributions, using multi-scale description, visual
word weighting and the co-occurrence matrix of visual words, are then investigated.
Knowing that the images composing a pCLE video are mostly related by viewpoint
changes, we leverage a video-mosaicing technique to build a single visual word signa-
ture per video. Because of the subjective appreciation of visual similarities between
images, it is difficult to have a ground truth for CBIR. If no visual similarity ground
truth is available, an objective method to evaluate retrieval performance is nearest
neighbor classification. We thus evaluate the resulting pCLE retrieval method in
an indirect manner, using first a binary pathological classification and then a finer
multi-class pathological classification. To avoid bias, leave-one-patient-out cross-
validations were performed, where the pathological class of each video is its pCLE
diagnosis confirmed by histology. These indirect retrieval evaluations show that, on
the pCLE video database of colonic polyp, our retrieval method outperforms with
statistical significance several state-of-the-art methods in CBIR.
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Chapter 3 presents a clinical application of the methodology described in Chap-
ter 2, that specifically addresses the binary classification between malignant and
non-malignant colonic polyps. The proposed CBIR-based classification is applied
to an extended pCLE video database of colonic polyps, that also contains the videos
for which the pCLE diagnosis was in contradiction with the histological diagnosis.
Histology was used as gold standard for the differentiation between neoplastic (i.e.
malignant) and non-neoplastic (i.e. non-malignant) polyps. We demonstrate that,
in terms of binary pathological classification, the performance of the pCLE re-
trieval system is rather high (accuracy 89.6%, sensitivity 92.5%, specificity 83.3%)
and equivalent, with statistical significance, to the offline diagnosis performance of
two human expert endoscopists. This chapter also provides a deeper insight into
the clinical procedures, from pCLE acquisition protocol and pCLE examination to
histological examination.

As pCLE diagnosing is a challenging everyday practice that benefits from ex-
perience, our objective in Chapter 4 is to help the endoscopists in shortening their
learning curve in pCLE diagnosis. We propose a method to estimate, based on the
retrieval results, the difficulty to interpret a pCLE video. Such an estimator could
thus be used in a structured training simulator that features difficulty level selec-
tion. As a first step toward clinical evaluation, we show that there is a significant
relationship between the estimated difficulty and the diagnosis difficulty which has
been experienced by multiple endoscopists.

Because our pCLE retrieval method provides visual word signatures that ad-
equately represent pCLE videos, the use of a standard distance on these visual
signatures already provides relevant results. However, little clinical knowledge has
been included to obtain these results. This is the reason why we investigate in Chap-
ter 5 how the incorporation of prior clinical information could enable the learning
of the visual similarity distance and of pCLE semantics. For the generation of a
visual similarity ground truth, we develop an online survey tool that allows multiple
observers, who are experts in pCLE, to qualitatively estimate the visual similarity
that they perceive between pCLE videos. From the perceived similarity data, we
are able to learn an adjusted visual similarity distance which we prove to be better
than the original retrieval distance. We also use this sparse visual similarity ground
truth to define “sparse recall” curves and perform direct retrieval evaluations, the
results of which confirm our first results from indirect retrieval evaluations. Finally,
in order to learn pCLE semantics, we leverage semantic information from multiple
concepts used by the endoscopists to describe pCLE videos. In a first attempt to
bridge the semantic gap, we build visual-word-based semantic signatures which ex-
tract, from low-level visual features, a higher-level clinical knowledge that is directly
interpretable by the endoscopist and consistent with respect to perceived similarity.

1.4 List of Publications

This thesis is largely based on the following publications and submitted articles:
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To support the challenging task of early epithelial cancer diagnosis from in
vivo endomicroscopy, we propose a content-based video retrieval method that uses
an expert-annotated database. Motivated by the recent successes of mon-medical
content-based image retrieval, we first adjust the standard Bag-of-Visual-Words
method to handle single endomicroscopic images. A local dense multi-scale descrip-
tion is proposed to keep the proper level of invariance, in our case to translations,
in-plane rotations and affine transformations of the intensities. Since single im-
ages may have an insufficient field of view to make a robust diagnosis, we introduce
a video-mosaicing technique that provides large field-of-view mosaic images from
input video sequences. To remowve potential outliers, retrieval is followed by a geo-
metrical approach that captures a statistical description of the spatial relationships
between the local features. Building on image retrieval, we then focus on efficient
video retrieval. Our approach avoids the main time-consuming parts of the video-
mosaicing by relying on coarse registration results only to account for spatial overlap
between images taken at different times. To evaluate the retrieval, we perform a sim-
ple nearest neighbor classification with leave-one-patient-out cross-validation. From
the results of binary and multi-class classification, we show that our approach out-
performs, with statistical significance, several state-of-the art methods. We obtain a
binary classification accuracy of 94.2%, which is quite close to clinical expectations.

French summary

Afin d’aider les endoscopistes dans le diagnostic des cancers précoces de ’épithélium
a partir de ’endomicroscopie in vivo, nous proposons une méthode de reconnais-
sance de vidéos par le contenu qui s’appuie sur une base de données annotée par
des experts. Motivés par les succes récents de la reconnaissance d’images par le con-
tenu dans le domaine non médical, nous commencons par ajuster la méthode des
Sacs de Mots Visuels pour la reconnaissance d’images endomicroscopiques isolées.
Une description dense multi-échelle est proposée pour assurer le niveau d’invariance
recherché, a savoir dans notre cas l’tnvariance par translation, par rotation dans le
plan et par transformation affine des intensités. Etant donné que le champ de vue
des images isolées peut s’avérer insuffisant pour l’établissement d’un diagnostic ro-
buste, nous introduisons une technique de mosaicage produisant des images de grand
champ a partir de séquences vidéos. Afin d’éliminer d’éventuels intrus, I’étape de
reconnaissance est suivie par une étape de vérification géométrique qui utilise une
description statistique des relations spatiales entre les mots visuels. La reconnais-
sance d’images isolées étant résolue, nous visons alors une méthode efficace pour
la reconnaissance de vidéos. Notre approche contourne le probléeme du temps de
calcul relativement long du mosaicage en ne prenant en compte que les résultats de
translation, obtenus en temps réel, pour calculer le recouvrement spatial entre les
images prises a différents instants. A partir des résultats de classification binaire
et multi-classe, nous montrons que notre approche surpasse de maniére significative
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plusieurs méthodes de l’état de l’art. Pour la classification binaire, nous obtenons
une précision de 94.2%, ce qui est trés proche des exigences cliniques.

2.1 Introduction

Standard endoscopic imaging allows only the diagnosis of disease states with mod-
erate levels of certainty, as pointed out by Norfleet et al. [Norfleet 88, Rastogi 09].
Consequently, biopsies are frequently performed during endoscopy procedures in
order to establish, ex vivo, a definitive diagnosis. However, biopsies are invasive
procedures which may be unnecessary, as some resected specimens are ultimately
found to be normal tissue. Furthermore, the need for confirmatory biopsy delays
the diagnosis and often requires a separate endoscopic procedure to be performed
for treatment.

With the recent technology of probe-based confocal laser endomicroscpy (pCLE),
physicians are able to image the epithelium at microscopic level and in real time
during an ongoing endoscopy procedure. As mentioned by Wallace and Fock-
ens [Wallace 09], the main task for the endoscopists is to establish a diagnosis in vivo
from the acquired pCLE videos, by relating a given appearance of the epithelium
to a specific pathology.

A ﬂ..ﬂﬂl«
Hﬂﬂm?‘ﬂﬂ

Neoplastic £13 |l

Figure 2.1: pCLE image samples from our database of colonic polyps. The
pCLE images have a diameter of approximately 500 pixels that corresponds to a field
of view of 240 um. Images of the polyps diagnosed as benign are on the top, whereas
those diagnosed as neoplastic are on the bottom. The closer to the boundary the
images are, the less obvious is their diagnosis according to their visual appearance. In
particular, the two framed images might look similar although they belong to different
pathological classes. This panel also illustrates the large intra-class variability, within
the benign class as well as within the neoplastic class.
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Figure 2.2: pCLE mosaic samples from our database of colonic polyps. These
mosaics were built from image sequences using a video-mosaicing technique with non-
rigid registration [Vercauteren 06]. Scale bars provide a cue on the field of view size.
On top (resp. bottom) are the mosaics of the polyps diagnosed as non-neoplastic (resp.
neoplastic) indicated by B (resp. N). The closer to the boundary the mosaics are, the
less obvious is their diagnosis according to their visual appearance. The two framed
mosaics might look similar although they belong to different pathological classes.
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Currently, pCLE is relatively new to many physicians, who are still in the pro-
cess of defining a taxonomy of the pathologies seen in the image sequences. To
support the endoscopist in establishing a diagnosis, we aim to extract, from a train-
ing database, endomicroscopic videos that have a similar appearance to a video of
interest but have been previously annotated by expert physicians with a textual
diagnosis confirmed by histology. Our main objective is Content-Based Image Re-
trieval (CBIR) applied to pCLE videos. However, it is difficult to have a ground
truth for CBIR, because of the subjective appreciation of visual similarities. An
objective indirect method to evaluate retrieval performance is classification. In our
approach, we make a clear distinction between retrieval, which is the target of this
study, and classification, which is the indirect means that we choose to evaluate
the retrieval performance. For didactic purposes, we explore the image retrieval
approach as a first step and we then move progressively to video retrieval which is
our final goal.

In the clinical field, the important need for medical image retrieval has been
clearly expressed in the scientific literature, for example by Long et al. [Long 09],
Miiller et al. [Miiller 04], and Smeulders et al. [Smeulders 00]. Particularly, the
medical image retrieval task of “ImageCLEF”, presented in [Miiller 08], proposes
a publicly-available benchmark for the evaluation of several multimodal retrieval
systems. However the application of retrieval for endomicroscopy has not yet been
investigated. Histological images are the closest in appearance to pCLE images.
In histology analysis, many efforts have been made to automate pathological dif-
ferentiation: by Gurcan et al. in [Gurcan 09], by Kong et al. in [Kong 09], or by
Doyle et al. in [Doyle 06]. Recently, the “PR in HIMA” Contest, launched in 2010,
addresses the issue of pattern recognition in digital histology images. Nevertheless,
many standard computer-aided diagnosis features that are commonly employed in
histology image analysis cannot be used in our retrieval application because they are
simply not visible. For example, the nuclear-cytoplasmic ratio cannot be computed
because nuclei and membranes are hardly visible in pCLE images.

Observing that epithelial tissues are characterized by the regularity of the cel-
lular and vascular architectures, our objective is to retrieve discriminative texture
information coupled with shape information by applying local operators on pCLE
images. To serve that purpose, we revisit in Section 2.3 the Bag-of-Visual-Words
(BoW) method, proposed by Sivic and Zisserman [Sivic 06], which has been suc-
cessfully used in many applications of computer vision: from the categorization of
textures and objects, as presented by Zhang et al. [Zhang 07], to the recognition
of human actions in movies, as presented by Laptev et al. [Laptev 08]. To appre-
hend the large intra-class variability of our pCLE database, we refer the reader to
Fig. 2.2, where single images of colonic polyps belong to either neoplastic epithe-
lium, i.e. the pathological class, or non-neoplastic epithelium, i.e. the benign class.
We can also observe small inter-class differences: Two pCLE images may have a
quite similar appearance but with an opposite diagnosis. We looked at describing
discriminative information in pCLE images, by taking into account the physics of
the acquisition process explained in Section 2.2.1, as well as the type of invariance
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necessary for their retrieval. By adjusting the image description to these invariants
in Section 2.3, we were able to considerably improve the retrieval and provide more
relevant similar images. Our other main adjustments consist of choosing a dense
detector that captures the densely distributed information in the image field, sim-
ilarly to what was proposed by Leung and Malik [Leung 01] with texture patches,
and performing a local multi-scale image description that extracts microscopic as
well as mesoscopic features.

Because the field of view (FoV) of single images may not be large enough to
perform a robust diagnosis, expert physicians focus in practice on several images
for the interpretation. To solve the FoV problem but still be able to work on images
rather than videos, we consider, as objects of interest for the retrieval, larger mosaic
images that are built from the image sequences using the video-mosaicing technique
of Vercauteren et al. [Vercauteren 06]. The high degree of variability in appearance
also holds for the resulting mosaic images, as shown in Fig. 2.1. To improve the
state of the art in CBIR, we define an efficient similarity metric based on the visual
words, taking into account their discriminative power with respect to the different
pathological classes. One intrinsic limitation of the standard BoW representation
of an image is that spatial relationships between local features are lost. However,
as the spatial organization of cells is highly discriminative in pCLE images, we aim
at measuring a statistical representation of this geometry. By exploiting the co-
occurrence matrix of visual words, we extract a geometrical measure that is applied
after the retrieval to remove possible outliers.

Building mosaic images using non-rigid registration tools requires a substantial
amount of time, which is undesirable for supporting diagnosis in near real-time.
In Section 2.5, to reach the objective of interactive CBIR, we take advantage of
the coarse registration results provided by the real-time mosaicing proposed by
Vercauteren et al. [Vercauteren 08]. We include, in the retrieval process, the possible
spatial overlap between the images from the same video sequence. A histogram
summation technique also reduces retrieval runtime.

The binary classification results show that our retrieval method achieves sub-
stantially better accuracy than several state-of-the art methods, and that using
video data provides a statistically significant improvement when compared to us-
ing single images independently. A finer retrieval evaluation based on multi-class
classification is proposed in Section 2.6, with encouraging results.

2.2 Context of the Study

2.2.1 Probe-based Confocal Laser Endomicroscopy

During an ongoing endoscopy procedure, pCLE consists of imaging the tissue at
microscopic level, by inserting, through the standard endoscope, a miniprobe made
of tens of thousands of optical fibers. A proximal part laser scanning unit uses
two mirrors to emit, along each fiber, an excitation light that is locally absorbed
by fluorophores in the tissue; the light which is then emitted by the fluorophores
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at a longer wavelength is transferred back along the same fiber to a mono-pixel
photodetector, as illustrated in Fig. 2.3. As a result, endomicroscopic images are
acquired at a rate of 9 to 18 frames per second, composing video sequences. From the
irregularly-sampled images that are acquired, an interpolation technique presented
by Le Goualher et al. [Le Goualher 04] produces single images of diameter 500
pixels, which corresponds to a FoV of 240 um, as illustrated in Fig. 2.6. All the
pCLE video sequences that are used for this study have been acquired by the
Cellvizio system of Mauna Kea Technologies.

Considering a video database of colonic polyps, our study focuses on supporting
the early diagnosis of colorectal cancers, more precisely for the differentiation of
neoplastic and non-neoplastic polyps.

2.2.2 Endomicroscopic Database

At the Mayo Clinic in Jacksonville, Florida, USA, 68 patients underwent a surveil-
lance colonoscopy with pCLE for fluorescein-aided imaging of suspicious colonic
polyps before their removal. For each patient, pCLE was performed of each de-
tected polyp with one video corresponding to each particular polyp. All polyps
were removed and evaluated by a pathologist to establish the “gold standard” di-
agnosis. In each of the acquired videos, stable sub-sequences were identified by
clinical experts to establish a diagnosis. They differentiate pathological patterns
from benign ones, according to the presence or not of neoplastic tissue which con-
tains some irregularities in the cellular and vascular architectures. The resulting
Colonic Polyp database is composed of 121 videos (36 benign, 85 neoplastic) split
into 499 video sub-sequences (231 benign, 268 neoplastic), leading to 4449 endomi-
croscopic images (2292 benign, 2157 neoplastic). For all the training videos, the
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Figure 2.3: Physics of acquisition for pCLE imaging.
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pCLE diagnosis, either benign or neoplastic, is the same as the “gold standard”
established by a pathologist after the histological review of biopsies acquired on the
imaging spots.

More details about the acquisition protocol of the pCLE database can be found
in the studies of Buchner et al. [Buchner 08], [Buchner 09b], which included a video
database of colonic polyps comparable to ours, and demonstrated the effectiveness
of pCLE classification of polyps by experts endoscopists.

2.2.3 State-of-the-Art Methods in CBIR

In the field of computer vision, Smeulders et al. [Smeulders 00] presented a large
review of the state of the art in CBIR. At the macroscopic level, Héfner et al.
[Héfner 09] worked on endoscopic images of colonic polyps and obtained rather good
classification results by considering 6 pathological classes. At the microscopic level,
Désir et al. [Désir 10] investigated the classification of pCLE images of the distal
lung. However, the goal of these two studies is classification for computer-aided
diagnosis, whereas our main objective is retrieval. Petrou et al. [Petrou 06] proposed
a solution for the description of irregularly-sampled images, which could be defined
by the optical fiber positions in our case. Nevertheless, we chose for the time being
not to work on irregularly-sampled images, but rather on the interpolated images,
for two reasons: first, we plan to retrieve pCLE mosaics which are interpolated
images, and second, most of the available retrieval tools from computer vision are
based on regular grids. The following paragraphs present several state-of-the-art
methods that can be easily applied to endomicroscopic images and that will be used
as baselines in this study to assess the performance of our proposed solutions.

In addition to the BoW method presented by Zhang et al. [Zhang 07] which is
referred to as the HH-SIFT method combining sparse feature extraction with the
BoW model, we will take as references the two following methods for CBIR method
comparison: first, the standard approach of Haralick features [Haralick 79] based on
global statistical features and experimented by Srivastava et al. [Srivastava 08] for
the identification of ovarian cancer in confocal microendoscope images, and second,
the texture retrieval Textons method of Leung and Malik [Leung 01] based on dense
local features.

The Haralick method computes global statistics from the co-occurrence ma-
trix of the image intensities, such as contrast, correlation or variance, in order to
represent an image by a vector of statistical features; this method is worth being
compared with, because of its global scope. The Textons method defines for each
image pixel p a “texton”, as the response of a patch centered on p to a texture
filter which is composed of orientation and spatial-frequency selective linear filters.
While only texture information is extracted by this method, the fact that its ex-
traction procedure is dense makes it interesting for method comparison, as shown
in Section 2.3.
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2.2.4 Framework for Retrieval Evaluation

Assessing the quality of content-based data retrieval is a difficult problem. In this
paper, we focus on a simple but indirect means to quantify the relevance of retrieval:
we perform classification. We chose one of the most straightforward classification
method, the k-nearest neighbors (k-NN) method, even though any other method
could be easily plugged in our framework. We first consider two pathological classes,
benign (C' = —1) and neoplastic (C' = +1), then we propose a multi-class evaluation
of the retrieval in Section 2.6. As an objective indicator of the retrieval relevance,
we take the classification accuracy (number of correctly classified samples / total
number of samples).

In order to determine if the improvement from one retrieval method to another
is statistically significant, we will perform the McNemar’s test [Sheskin 11] based on
the classification results obtained by the two methods at a fixed number of nearest
neighbors. We refer the reader to the Appendix A for a detailed description of the
McNemar’s test.

Given the small size of our database, we need to learn from as much data as
possible. We thus use the same database both for training and testing but take great
care into not biasing the results. If we only perform a leave-one-out cross-validation,
the independence assumption is not respected because several videos are acquired
on the same patient. Since this may cause bias, we chose to perform a leave-one-
patient-out (LOPO) cross-validation, as introduced by Dundar et al. [Dundar 04]:
All videos from a given patient are excluded from the training set before being
tested as queries of our retrieval and classification methods. Even though we tried
to ensure unbiased processes for learning, retrieval and classification, it might be
argued that some bias is remaining because splitting and selection of video sub-
sequences were done by one single expert. For our study we can consider this bias
as negligible.

It is worth mentioning that, in the framework of medical information retrieval,
some scenarios require predefined sensitivity or specificity goals, depending on the
application. Some applications, such as brain surgery, may require a predefined high
specificity. For our application, physicians prefer to have a false positive caused by
the misdiagnosis of a benign polyp, which could lead for example to unnecessary
but well supported polypectomy, than to have a false negative caused by the misdi-
agnosis of a neoplastic polyp, which may have serious consequences for the patient.
Thus, our goal is to reach the predefined high sensitivity, while keeping the highest
possible specificity. For this reason, we introduce a weighting parameter 6 € [—1, 1]
to trade-off the cost of false positives and false negatives. Given the pathological
classes CI€{1-2kt € {1, 41} of the k nearest neighbors and the similarity distances
A€k} from them to the query, the query is classified as neoplastic if and only if:

e @
7‘: @ > g (2.1)

i=1g
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The default value of the additive threshold 6 is & = 0, which corresponds to the
situation where the pathological votes of all the k£ neighbors have the same weight.
Negative values of 6 correspond to putting more weight to neoplastic votes. The
closer 0 is set to —1 (resp. +1), the more weight we give on the neoplastic votes
(resp. the benign votes) and the larger the sensitivity (resp. the specificity) is. ROC
curves can thus be generated by computing the couple (specificity, sensitivity) at
each value of § € [—1, 1], which provides another way to evaluate the classification
performance of any of the retrieval methods.

One may argue that our methodology uses an ad-hoc number of visual words and
is thus dependent on the clustering results. This is the reason why, in Section 2.5.2,
we will compare the classification performances of our retrieval method with those of
a simple yet efficient image classification method, the Naive-Bayes Nearest-Neighbor
(NBNN) classifier of Boiman et al. [Boiman 08], that uses no clustering but was
proven to outperform BoW-based classifiers. For each local region of the query
the NBNN classifier computes, in the description space, its distances respectively
to the closest region of the benign and neoplastic training data sets. If the sum
of the benign distances Dp is smaller than the sum of the neoplastic distances
Dy, the query is classified as benign, otherwise as neoplastic [Boiman 08]. The
construction of ROC curves for the NBNN classification method requires the use
of a multiplicative threshold Oxgnn € [0, 400[ according to which the query is
classified as neoplastic if and only if:

DN < eNBNN DB (2.2)

The default value of the multiplicative threshold OxgnN is OngNn = 1, which corre-
sponds to the situation where the pathological votes of all the k neighbors have the
same weight. Values of OnypnN greater than 1 correspond to putting more weight to
neoplastic votes. The larger (resp. smaller) OxpNN is set, the more weight we give
on the neoplastic votes (resp. the benign votes) and the larger the sensitivity (resp.
the specificity) is.

Another characteristic of our application is that pCLE videos diagnosed as neo-
plastic may contain some benign patterns whereas benign epithelium never contains
neoplastic patterns. Therefore, it seems logical to put more weight on the neoplas-
tic votes, being more discriminative than benign votes. The weighting parameters
0 and Onpnn may also be useful to compensate for our unbalanced dataset, which
contains more benign images than pathological ones.

2.3 Adjusting Bag-of-Visual-Words for Endomicroscopic
Images

2.3.1 Standard Bag-of-Visual-Words Method

As one of the most popular recent methods for image retrieval, the standard BoW
method consists of detecting salient image regions from which continuous features
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are extracted and discretized. All features are clustered into a finite number of
bins called “visual words”, whose number of occurrences in an image constitute
the image signature. As illustrated in Fig. 2.4, the BoW retrieval process can thus
be decomposed into four main steps: salient region detection, region description,
description vectors clustering, and similarity measurement based on the signatures.
After the description step, the image is typically represented in a high-dimensional
space by a set of description vectors. To reduce the dimension of the description
space, a standard K-Means clustering step builds K clusters, from the union of
the description vector sets gathered across all the images of the training database.
K visual words are then defined, each one being the mean of a cluster in the
description space. Each description vector counts for one visual word, and one
image is represented by a signature of size K which is its histogram of visual words,
normalized by the total number of local regions. Given the image signatures, the
similarity distance between two images can be defined as an appropriate distance
between their signatures.

The advantage of the simple metric provided by the y? pseudo-distance is that
it is only based on the comparison between the values within the same histogram
bin. If Hy = (wl,..,wk) and H; = (w{,...,wy},) are the histograms of the two

images I and J, where w! (i) is the frequency of the i*" visual word in the image I,
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Figure 2.4: Overview of the retrieval pipeline.
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then the similarity distance between I and J is defined as:

1 K (w-I —w‘.])2
2 7 [
H; Hj) == E 2.

i:l,win;]>0

In these conditions, as explained by Sivic and Zisserman [Sivic 06], similarity mea-
surement is quite efficient and can be approximated by the term frequency - inverse
document frequency (TF-IDF) technique for a fast retrieval runtime. Nister and
Stewenius [Nister 06] showed that, combined with a hierarchical clustering, the in-
verted file indexing enables large-scale data retrieval. With the same purpose of
k-NN approximation, Muja and Lowe [Muja 09] developed the Fast Library for
Approximate Nearest Neighbors (FLANN) available in OpenCV. Among the more
sophisticated metrics, the Earth Mover’s Distance (EMD) proposed by Rubner et
al. [Rubner 00] may be more relevant than the x? metric because it accounts for
the full vector representation of the visual words in the SIFT space. But standard
EMD is less computationally efficient than x? because it needs to compute distances
in high-dimensional space in order to calculate the transportation costs from one
visual word to another. Nevertheless, it would be interesting to test the fast imple-
mentation of EMD that has been recently presented by Pele and Werman [Pele 09].
For the classification step that quantifies the similarity results, the votes of the
k-nearest neighbors can be weighted by the inverse of their y? pseudo-distance to
the tested image signature, so that the closest images are the most discriminant.

Recognized as a powerful feature extraction method in computer vision, the
HH-SIFT method uses the Harris-Hessian (H-H) detector coupled with the Scale
Invariant Feature Transform (SIFT) descriptor proposed by Lowe [Lowe 04]. When
applied to the non medical UIUCTex database of textures, which is admittedly a
rather easy database, the HH-SIFT method of Zhang et al. [Zhang 07] achieves
excellent retrieval results and yields a classification accuracy close to 98% for 25
texture classes. However, when we applied this method, as well as other state-of-the-
art methods, on our pCLE database, we obtained rather poor retrieval results and
we observed the presence of many outliers in the retrieval. This was confirmed by
the associated low classification results presented in Fig. 2.7: when considering only
2 classes, the accuracy is below 67%, which is not acceptable for clinical use. We will
show that even though the standard BoW method is not adapted for the retrieval
of endomicroscopic images, the adjustments that we propose can turn it into a
powerful tool for our needs. For instance by taking into account the pCLE imaging
system, we can leverage the constraints that characterize our retrieval application.
Our first contributions are presented in Sections 2.3 and 2.4. We explored them in
a preliminary study [André 09a].

2.3.2 Moving to Dense Detection of Local Regions

It is worth noticing that the endoscopists examine, in the colonic epithelium, goblet
cells and crypts which are round-shaped or tubular-shaped, as illustrated in Fig. 2.6.
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For this reason, we first looked at extracting blob features in the images by applying
sparse detectors. Sparse detectors extract salient regions in the image, i.e. regions
containing some local discriminative information. In particular, the H-H operator
detects corners and blobs around key-points with high responses of intensity deriva-
tives for at least two distinct gradient directions. Other sparse detectors like the
Intensity-Based Regions (IBR) of Tuytelaars and Van Gool [Tuytelaars 00] and the
Maximally Stable Extremal Regions (MSER) of Matas et al. [Matas 04] are also
specialized for the extraction of blob features.

However, while testing on pCLE videos the numerous sparse detectors listed
in [Mikolajczyk 05, Tuytelaars 08|, we observed that a large number of salient re-
gions do not persist between two highly correlated successive images taken from
the same video, as shown in Fig. 2.5. In fact, these detectors have been designed
for computer vision applications and seem to be inadequate for our medical appli-
cation because of their sparse nature: they fail to capture all the discriminative
information which is densely distributed in pCLE images. This may explain the
poor retrieval results on pCLE images of the HH-SIFT method, which uses the
sparse H-H detector.

To capture all the interesting information, we decided to apply a dense detector
made of overlapping disks of constant radius. These disk regions are localized on a
regular grid, such that each disk covers a possible image pattern at a microscopic
level, as illustrated in Fig. 2.6. With the regular dense operator, we will show
already promising results in the following section. The benefits of a dense operator
for image retrieval have also been demonstrated with the pixel-wise approach of
"TextonBoost“ by Shotton et al. [Shotton 06], who were mainly interested in object
categorization and segmentation problems.

Using the BoW method with dense detection enables the dense visualization
of visual words on the entire image field. In each described image, we decided

» time

Figure 2.5: Salient regions (ellipses) extracted by the sparse MSER detector
on three successive frames of a benign video sequences. Some regions, like the
one framed in dark, are correctly followed by the detector, but many others, like those
framed in bright, are lost. This shows the inconsistency of the sparse detector for the
description of pCLE images.
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to map the visual words to different colors and to superimpose on the image the
local disk regions filled with the color of their visual word index. In the description
space, the relative distances between the visual words is missing in their arbitrary
numbering after the clustering process. As we wanted the colors to convey a feeling
on these distances, we decided to project the high-dimensional clusters representing
the visual words onto the three-dimensional RGB space, using a simple Principal
Component Analysis (PCA). Then, each of the K visual words is mapped to a
specific color. As a result, the superimposed colors are highlighting the geometrical
structures in the images, as illustrated in Fig. 2.17.

For qualitative interpretation, we wanted to be able to visually compare the
spatial distributions of the visual words in two image queries that may come from
different patients. So, for the display of the colored visual words only, we did
not apply the LOPO procedure according to which, for each patient, a different
clustering process must be done that excludes the patient from the training dataset
and generates different visual words. Instead, we generated the K = 100 visual
words only once for the visualization, by performing a single clustering process on
the total number of SIFT vectors that describe the images associated with all the
patients of the database.

2.3.3 Multi-Scale Description of Local Regions

Let us now look at what kind of invariants are necessary for the description of pCLE
images. The distance of the probe’s optical center to the tissue does not change while
imaging, so the only possible motions of the pCLE probe along the tissue surface
are translations and in-plane rotations. For this reason, we aim at describing pCLE
images in an invariant manner with respect to translation and in-plane rotation.
Besides, as the rate of fluorescein injected before imaging procedure is decreasing
through time, we want this description to be also reasonably invariant to intensity
changes. For this purpose, the standard SIFT description appeared to be the most
appropriate since it extracts a local image description which, when coupled with
an invariant detector, is invariant to affine transformations of the intensity and
some viewpoint changes, e.g., translations, rotations and scaling. Indeed, the SIFT
descriptor computes, for each salient region, a 128-bin description vector which is
its gradient histogram at the optimal scale provided by the detector, the gradient
orientations being normalized with respect to the principal orientation of the salient
region. We refer the reader to the study of Zhang et al. [Zhang 07] for a survey of
the SIFT descriptor or other powerful ones. In particular, the Speeded Up Robust
Features (SURF) descriptor of Bay et al. [Bay 06] is more efficient than SIFT in
terms of runtime, but was not considered in this study.

There is no scale change in the pCLE imaging system because the distance from
the probe to the tissue is fixed: a given clinical pattern should have the same scale
in all the images in which it is present. In colonic polyps, however, mesoscopic
crypts and microscopic goblet cells both have a rounded shape, but are different
objects characterized by their different sizes. This is the reason why we need a scale
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dependent description, instead of the standard scale invariant description. In order
to capture information at different scales, we define local disk regions at various
scales using fixed values, for example by choosing a microscopic scale for individual
cell patterns and a mesoscopic scale for larger groups of cells. This leads us to
represent an image by several sets of description vectors that are scale-dependent,
resulting in several signatures for the image that are then concatenated into one
larger signature.

For our experiments on the dense description, we considered disk regions of
radius 60 pixels to cover groups of cells. We then chose 20 pixels of grid spacing to
get a reasonable overlap between adjacent regions and thus be nearly invariant with
respect to translation. Besides, among the values from 10 to 30000 that we found in
the literature for the number K of visual words provided by the K-Means clustering,
the value K = 100 yielded satisfying classification results on our relatively small
database. The classification results that quantify the retrieval of single images are
presented in Fig. 2.7 where we observe that, compared to the standard HH-SIFT
method, the dense detector brings a gain of accuracy of 17.1 percentage points
at k = 10 neighbors, with a resulting accuracy of 81.7% (78.0% sensitivity, 85.1%
specificity). The McNemar’s tests show that, with statistical significance, our dense
method is better than the other methods (p-value < 1079 for k € [1,10]), Texton is
better than Haralick (p-value < 0.0040 for k € [1,10]), and Haralick is better than
HH-SIFT (p-value < 1076 for k € [1,10]).

Figure 2.6: Small and large disk regions on a dense regular grid, applied
on a benign image (left), and on a neoplastic image (right). Small disks of
radius 30 pixels cover microscopic information like individual cells, whereas large disks
of radius 60 pixels cover mesoscopic information like groups of cells. The images have
a diameter of approximately 500 pixels that corresponds to a FoV of 240 pm.
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Figure 2.7: Left: LOPO classification of single pCLE images by the meth-
ods, with the default value § = 0. Right: Corresponding ROC curves at
k = 10 neighbors with 6 € [—1,1]. 6 trades off the cost of false positives and false
negatives.

For our experiments on the bi-scale description, a large disk radius of p; = 60
pixels is suitable to cover groups of cells, while a smaller disk of radius p» = 30
pixels allows to cover at least one cell in the images, as shown in Fig. 2.6. For the
classification of single images, we observe in Fig. 2.7 that, when compared to the
one-scale description of the Dense-Scale-60 (D-S-60) method, the bi-scale descrip-
tion of the Dense-Bi-Scale-30-60 (D-BS-30-60) method brings an additional gain
of accuracy of 2.5 percentage points at £ = 10 neighbors, with a resulting accu-
racy of 84.2% (80.8% sensitivity, 87.4% specificity). Besides, McNemar’s tests show
that this classification improvement is statistically significant (p-value < 1076 for
k € [1,10]), thanks to the complementarity of our two scale-dependent descriptors.

2.4 Contributions to the State of the Art

2.4.1 Solving the Field-of-View Issues using Mosaic Images

In the retrieved single images, we often observed single images with a similar ap-
pearance to the query but attached to the opposite diagnosis. One important reason
is that, on a single pCLE image, some discriminative patterns, e.g. an elongated
crypt, may only be partially visible and so unable to characterize the pathology. To
address this FoV issue, we aimed at performing the retrieval beyond single images.
In our pCLE video database, the dynamic motion within the tissue can be neglected
when compared to the global motion of the probe sliding along the tissue surface.
In stable video sequences, the miniprobe is in constant contact with the tissue,



2.4. Contributions to the State of the Art 27

so the distance of the probe’s optical center to the tissue is fixed. As successive
images from the same video are mostly related by viewpoint changes, we can use
the video-mosaicing technique of Vercauteren et al. [Vercauteren 06], to project the
temporal dimension of a video sequence onto one mosaic image with a larger FoV
and of higher resolution. Even if time information is lost after the mosaicing, Becker
et al. [Becker 07] showed that the mosaic image produced by this video-mosaicing
technique has a clinical interest in endomicroscopy. Several applications of video-
mosaicing as a support for pCLE interpretation have been presented, for example by
De Palma et al. [De Palma 10] on the colon and by Thiberville et al. [Thiberville 07]
on the lung.

Thus, instead of single images, we considered mosaic images as objects of interest
for the retrieval. All videos of the database were first split into stable video sub-
sequences identified by expert physicians. These stable subsequences remain after
the removal of unreliable parts of the videos that correspond either to fast motions
of the probe leading to motion artifacts, or to the moments when the probe has
lost contact with the tissue. Then we built mosaics on these video sub-sequences
and we applied the dense BoW method directly on the produced mosaic images.
As the discriminative information that we extracted in the single images is kept in
the mosaic images, we chose the same values of parameters for the radii of 30 and
60 pixels of the disk regions and for the number K = 100 of visual words. However,
as larger discriminative patterns may be present in mosaic images, we thought
that larger scale features should capture them. For this purpose, we evaluated,
without cross-validation as a first step, mosaic retrieval using successively the D-S-
80 method (dense regions of radius 80 pixels), the D-S-100 method (dense regions
of radius 100 pixels), and the D-BS-60-80 method that concatenates the mosaic
signatures of D-S-60 and D-S-80. The classification results without cross-validation
showed that D-S-80 and D-BS-60-80 are comparable to D-S-60, and that D-S-100
performs worse than D-S-60. For this reason, we decided to evaluate only D-S-30,
D-S-60 and D-BS-30-60 with LOPO cross-validation. We think that a reason why
larger scale features fail to capture larger discriminative patterns in mosaic images
may be the trade-off between smoothing and region size in the SIFT description.
Besides, the larger the size of the regions is, the more discriminative the shape of
the regions is in the image description, and our circular-shaped regions may not
be adequate anymore. Indeed, at scales larger than 60 pixels of radius, ellipsoidal
regions should better capture elongated patterns such as abnormal crypts.

The accuracy results for the classification of mosaic images are presented in
Fig. 2.8. They show that the compared retrieval methods follow the same order of
performance as the one we observed on single images. Besides, our dense retrieval
methods achieve more satisfying classification results for the retrieval of mosaic
images than for the retrieval of single images. With statistical significance, D-S-60
is better than Texton (p-value < 1075 for k € [1,10]), and Texton is better than
Haralick (p-value < 0.0057 for k € [1,2]). For k € [1,10] the performances of
Haralick and HH-SIFT are comparable; for more neighbors, Haralick outperforms
HH-SIFT with statistical significance (p-value < 0.032 for k € [15,20]). However, for
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the comparison between D-S-60 and D-BS-30-60 (p-value > 0.11 for k£ € [1,10]), the
performance differences are not statistically significant. A possible reason is that,
on our database, all the discriminative information may have already been captured
at the scale 60. We hope that, with a larger pCLE database, the bi-scale description
will significantly improve retrieval performance. The best result for the classification
of mosaic images is reached by the dense bi-scale description method denoted by
D-BS-30-60, at k& = 6 neighbors, with an accuracy of 88.2% (sensitivity 91.0%,
specificity 84.9%). These results are close to the clinical expectations. Nevertheless,
we will show that we can still improve them for our clinical application.

2.4.2 Similarity Metric based on Visual Words

The similarity metric defined by the x? pseudo-distance is efficient but highly sen-
sitive to the frequency of each visual word in an individual image with respect to
its frequency in the whole set of images. More importantly, the ability of the re-
trieved images to represent the pathological class of the query is thus sensitive to
the discriminative power of the visual words with respect to the pathological classes.

To address this problem, we propose to weight, according to their discriminative
power, the contributions of the visual word frequencies to the metric. For each class
C € {—1,+1} of images, we considered the distribution p(i|C) of the frequencies of
the ¢*® visual word in the images belonging to the class C'. We define the discrimi-
native power g(i) of the i*" visual word using the Fisher criterion between the two
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Figure 2.8: Left: LOPO classification of pCLE mosaic images by the meth-
ods, with the default value § = 0. Right: Corresponding ROC curves at
k = 5 neighbors with 6 € [—1,1]. 0 trades off the cost of false positives and false
negatives. The mosaic images have been built with non-rigid registration.
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distributions p(i|C' = —1) and p(i|C = +1):

g(z) _ (:U’—l(?’) B N+1(i))2 (24)

o-1(i)? + 041(i)?

where pc(i) and o¢(i)? are respectively the mean and the variance of the distri-
bution of the frequencies of the i*" visual word in the images belonging to class C,
with C' € {—1,+1}. Our approach, that combines L!-normalization applied to the
visual word histograms, and Fisher weighting applied to the visual words, could
be composed with other similarity metrics than x2, some of which are presented
in [Sivic 09]. Besides, it is close to other approaches exploiting discriminative con-
text information, such as the TF-IDF technique, or the Fisher kernels method which
is used by Perronnin and Dance [Perronnin 07] as an extension of the BoW method
for image categorization. Discriminative vocabulary learning was also investigated
by Winn et al. [Winn 05], who proposed pair-wise merging of visual words to derive
an original statistical measure of the discriminative power.

An alternative to visual word weighting is the selection of the most discrimina-
tive visual words, i.e. those minimizing the intra-class distances while maximizing
the inter-class distances. This corresponds to a binary weighting, which decreases
the size of image signatures by reducing the number of visual words, so the image
retrieval and classification processes run faster. For our experiments, the K’ most
discriminative visual words are selected from the K = 100 original ones by applying
on their discriminative power a threshold A. Changing the value of A may have an
influence on the classification accuracy based on these signatures. After testing
the whole training set without cross-validation we chose A = 0.7, so that 20% to
25% of the visual words are selected, which ensures both significantly shorter sig-
natures and better classification accuracy. This threshold X is applied inside each
cross-validation sub-set for which it selects a certain number of discriminative visual
words. The mean value of K’ over all cross-validation sub-sets is 23.2.

The classification of mosaic images presented in Fig. 2.9 shows that, coupled
with the dense detector and the biscale description, the visual word binary selection
brings an additional gain of accuracy of 2.0 percentage points at k = 5 neighbors,
with a resulting accuracy of 88.8% (91.0% sensitivity, 86.2% specificity). Although
we established that this classification improvement is not statistically significant
(p-value > 0.15 for k € [1,10]), the binary selection reduces retrieval runtime while
reaching comparable performance with less than one-fourth of the original visual
words. On the other hand, compared to the dense bi-scale description, weighting
the power of visual words improves the classification in a statistically significant
manner (p-value < 0.032 for k € [3,5]): it brings an additional gain of accuracy of
3.4 percentage points at k = 5 neighbors, with a resulting accuracy of 90.2% (93.7%
sensitivity, 86.2% specificity).
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Figure 2.9: LOPO classification of pCLE mosaic images (with the default
value 6 = 0) using the discriminative power of the visual words. The mosaic
images have been built with non-rigid registration.

2.4.3 Statistics on Spatial Relationship between Local Features

Endoscopists establish their diagnosis on pCLE images from the examination of mi-
croscopic texture and shapes, but also of more macroscopic patterns. This suggests
that the spatial organization of the goblet cells must be included in the retrieval
process because it is essential to differentiate benign from neoplastic tissues. In the
field of computer vision, several CBIR methods have been proposed that account
for the spatial relationship between local image features. For example, Lazebnik
et al. [Lazebnik 06] presented a spatial pyramid framework for the recognition of
scene categories based on global geometric correspondence. More recently, Jegou
et al. [Jegou 08] proposed to add a geometrical verification that takes spatial infor-
mation into account. However, these methods are based on the assumption that
they want to retrieve images of the exact same scene, which is not the case for our
application.

Our objective in this section is to introduce a geometrical verification process
after the retrieval process to remove possible retrieval outliers. A retrieval outlier
should be defined as an image which is not visually similar to the query image.
However, for this database, we do not have any quantitative measure of perceived
similarity with respect to the query image. For this reason, we estimate outliers
based on criteria that are complementary to the visual word signatures. In this
study, outlier estimation is based on a supervised criterion that uses the most
discriminative spatial relationships between visual features.

In order to introduce spatial information, we define the co-occurrence between
two visual words using the natural 8-adjacency graph between the corresponding
disk regions that compose the detection grid. Thus, we are able to store in a co-
occurrence matrix M of size K x K the probability for each pair of visual words of
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being adjacent to each other, as illustrated in Fig. 2.10. We investigated this idea in
a prior study [André 09b]. Due to the symmetric property of M, its dimensionality
is equal to K (K +1)/2 = 5050. By construction, the normalized co-occurrence ma-
trix is a histogram, so the vector of its lower triangular elements defines a spatial
signature. Then, one could use this spatial signature for a mosaic image, or its con-
catenation with the standard visual word signature. However, given the relatively
small number of mosaic images, 499 exactly in our database, the 5050 elements of
the spatial signature are too numerous to parameterize a mosaic image: using them
for the retrieval would lead to over-fitting.

To focus on the discriminative information in the co-occurrence matrix but
reduce its dimensionality, we chose to apply a linear discriminant analysis (LDA).
Using the textual diagnostic information in the database, we aim at differentiating,
in a supervised manner, the images of the benign class from the images of the
pathological class. The lower triangular elements of the co-occurrence matrix M
are stored in a [ x 1 dimensional vector denoted by m, where [ is equal to the
number of lower triangular elements. The LDA weights, represented as a [ x 1
dimensional vector denoted by L, satisfy:

L = 57 (41— p2) (2.5)

where the [ x | dimensional matrix ¥ is the covariance matrix of the vector m
associated with all training images, and where the [ x 1 dimensional vector p; is
the mean of the vector m associated with all the training images belonging to the
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Figure 2.10: Example of a co-occurrence matrix M associated with a benign
image. M is a symmetric matrix of size K x K where K is the number of visual words.
Considering 2 visual words, respectively associated with the colors blue and red, black
edges link the blue-labeled regions and the red-labeled regions that are adjacent to
each other in the image. The number of these edges, after normalization, gives the
probability that these 2 visual words are adjacent to each other in the image.
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class C. Then, the most discriminative linear combination of the elements of m is
the scalar value a which is given by the dot product: o = L.m.

After the retrieval, outliers can be rejected during the verification process by
thresholding on the absolute difference between the a value of the query and the
a value of each retrieved image. Given a query image, every training image is a
candidate neighbor of the query. Any training image which is estimated as an outlier
with respect to the query is removed from the set of candidate neighbors. Then,
the k nearest neighbors to the query are computed from the set of the remaining
candidate neighbors, as shown in Fig. 2.11.

In practice, to prevent from over-fitting on our database, the number of LDA
weights in the computation of the spatial criterion « had to be restricted. For
this reason, we only performed a one-scale description and stored the K = 100
diagonal elements of the matrix M in the vector m for the LDA. The values of
the threshold A\, were chosen by analyzing the distribution of a across the benign
and pathological images: A, = 2.6 when considering only the disks of radius 60
pixels, and A, = 2.4 when considering only the disks of radius 30 pixels. For
the classification of mosaic images, Fig. 2.12 shows that, when added to the one-
scale description with disks of radius 30 pixels, the outlier removal improves the
classification accuracy, with statistical significance (p-value < 0.045 for k € [1,4]).
At k = 3 neighbors, the corresponding gain of accuracy is 2.6 percentage points,
with a resulting accuracy of 83.2% (82.8% sensitivity, 83.6% specificity). Besides,
when added to the one-scale description but with disks of radius 60 pixels, the
outlier removal brings an additional gain of accuracy. However, we established that
this gain is not statistically significant (p-value > 0.30 for k£ € [1,10]). This might
be due to the size of our database: more information is captured at scale 60, so
more data is needed to represent the variability of spatial relationships.
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Figure 2.11: Overview of the retrieval pipeline followed by a the geometrical
verification process performing outlier rejection.
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In fact, the efficiency of our geometrical outlier removal method highly depends
on the size and the representativity of the training database, which is still not large
enough with respect to the high dimensionality of the co-occurrence matrix of visual
words. More work is thus needed to better exploit the co-occurrence statistics. In
particular, it would be relevant to use the correlatons proposed by Savarese et
al. [Savarese 06], which are built from clustering correlogram elements. Indeed,
correlograms are able to capture spatial co-occurrences of visual words at multiple
scales, and their clustering is a way to solve the over-fitting issue by reducing the
dimensionality.

The performance of our outlier removal process based on geometrical verification
can also be qualitatively appreciated in Figs. 2.13, 2.14 and 2.15, showing some
typical results as well as worst results.
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Figure 2.12: LOPO classification of pCLE mosaic images (with § = 0) using
outlier removal. The mosaic images have been built with non-rigid registration.
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B. Query Correct Correct Correct Correct

B. Query Correct Correct Correct Outlier

Figure 2.13: Typical image retrieval results provided by our method from two benign
queries. B. indicates Benign and N. Neoplastic. From left to right on each row: the
queried image, and its k-NNs on the top layer, and their respective colored visual words
on the bottom layer. An outlier is indicated by Outlier if it has been rejected by the
spatial verification process, and by Error otherwise. FoV of the images: 240 pm.
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A
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Figure 2.14: Typical image retrieval results provided by our method from two neo-
plastic queries. B. indicates Benign and N. Neoplastic. An outlier is indicated by
Outlier if it has been rejected by the spatial verification process, and by Error oth-
erwise.



36 Chapter 2. Adjusting BoW for pCLE Video Retrieval

Error Correct

Figure 2.15: Worst image retrieval results provided by our method. The benign query
on the top is a rare benign variety which is not represented in the training dataset.
The neoplastic query on the bottom contains on its top left corner a partially visible
elongated crypt which could not be totally described. B. indicates Benign and N.
Neoplastic. An outlier is indicated by Qutlier if it has been rejected by the spatial
verification process, and by Error otherwise.
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2.5 Endomicroscopic Videos Retrieval using Implicit
Mosaics

2.5.1 From Mosaics to Videos

Although the retrieval of mosaic images instead of single images provided quite sat-
isfying retrieval results, the non-rigid registration of the mosaicing process requires
a long runtime. On average, the whole video-mosaicing process takes approximately
2 seconds per frame, which is incompatible with a routine clinical practice. Besides,
the temporal information of videos, which is lost in the mosaic image representation,
may be used by the endoscopists, who consider the videos as useful for real-time
diagnosis. It would therefore be of interest to keep this information in our retrieval
system.

For this reason, we investigated Content-Based Video Retrieval (CBVR) meth-
ods to retrieve similar videos instead of similar images. Our idea, which we pre-
viously explored in a preliminary study [André 10c|, consists of including in the
retrieval process the possible spatial overlap between the images from the same
video sequence. For an efficient video retrieval, our objective is to build one short
signature per video, which not only enables a reasonable memory space to store
training data, but also considerably reduces the retrieval run-time. We looked at a
more effective method which could only use the coarse registration results of mo-
saicing, i.e. the translation results between successive frames, that are computed
in real-time [Vercauteren 08] during the image acquisition time. Another means of
dealing with the large computational resources required by the complete mosaicing
algorithm might be to rely on highly efficient implementations of the underlying
registration algorithms. Graphical processing units (GPU) have for example been
successfully applied for such purpose by Modat et al. [Modat 10]. More work is
needed to see whether these implementations would allow for a real-time imple-
mentation of the complete mosaicing algorithm.

To reach our objective of efficient video retrieval, we first compute independently
the visual words in all the images belonging to the database of video sub-sequences.
Then, for each sub-sequence, we use the translation results to build a map of the
overlap scores of all local regions belonging to the images of the sequence, as il-
lustrated Fig. 2.16 on the right: for each region, the overlap score is the number
of overlapping input images in the region. To define the signature Hg of a video
sub-sequence .S, we propose to take, for each image I of the sequence, the number
7 of overlapping images in each densely detected region r of I, and to weight the
contribution of r to the frequency of its visual word by 1/7. Let i be an index of
one of the K visual words. i(.) is a function that associates a region r to the index
of the visual word to which the region r is mapped. I'(.) is a second function that
associates a region r to the number of overlapping images in this region. The visual
word histogram of the video sub-sequence is then defined by:

Hsli) = 5 33 " (26)

IeSrel
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In this formula,  is the Kronecker notation and Z is a normalization factor, intro-
duced to normalize the visual word histogram. Z corresponds to the total number
of physical regions in the overlapping area. More precisely:

- 8(i(r), )
Z:Z(ZZW) (2.7)
i=1 IeSrel

From the video sub-sequence signatures, we define a full video signature by
considering the normalized sum of the signatures of the constitutive sub-sequences
of the video. Thanks to this histogram summation technique, the size of a video
signature remains equal to the number of visual words, which reduces both retrieval
runtime and training memory. We call our method the “Bag of Overlap-Weighted
Visual Words” (BoWW) method.

For our experiments, we perform a one-scale dense SIF'T description with a grid
spacing of 20 pixels, a disk radius of 60 pixels and K = 100 visual words. Retrieval
results of our BoOWW method applied on pCLE sub-sequences can be qualitatively
appreciated, for benign and neoplastic queries, in Figs. 2.17, 2.18, 2.19, 2.20, 2.21,
2.22, 2.23, 2.24, 2.25 and 2.26.

Figure 2.16: From left to right: Neoplastic pCLE mosaic obtained with
non-rigid registration; Colored visual words mapped to the disk regions of
radius 60 pixels in the mosaic image ; Overlap scores of the local regions in
the mosaic space, according the translation results of mosaicing.
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Figure 2.17: The 10 most similar pCLE video sub-sequences (right) for a
benign query (left), retrieved by the LOPO Weighted-ImOfMos method.
The pCLE video sub-sequences are represented by their corresponding fused mosaic
image built with non-rigid registration, and are shown together with their visual words.
B indicates Benign and N Neoplastic (not present here). For visualization purposes,
the displayed visual words have been computed on the mosaic image on disks of radius
60 pixels. As a result, these colors are highlighting the geometrical structures in the
mosaic images.
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Figure 2.18: The 10 most similar pCLE video sub-sequences (right) for a
neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method.
B indicates Benign (not present here) and N Neoplastic
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Figure 2.19: The 10 most similar pCLE video sub-sequences (right) for a
benign query (left), retrieved by the LOPO Weighted-ImOfMos method. B
indicates Benign and N Neoplastic.



42 Chapter 2. Adjusting BoW for pCLE Video Retrieval

Figure 2.20: The 10 most similar pCLE video sub-sequences (right) for a
benign query (left), retrieved by the LOPO Weighted-ImOfMos method. B
indicates Benign and N Neoplastic.
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Figure 2.21: The 10 most similar pCLE video sub-sequences (right) for a
neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method.
B indicates Benign and N Neoplastic. This query is a rare variety of the neoplastic
class. This is one of the worst retrieval results, that are due to the relatively small size
and weak representativity of the training database.
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Figure 2.22: The 10 most similar pCLE video sub-sequences (right) for a
benign query (left), retrieved by the LOPO Weighted-ImOfMos method.
The pCLE video sub-sequences are represented by their corresponding fused mosaic
image built with non-rigid registration. B indicates Benign and N Neoplastic (not
present here).
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Figure 2.23: The 10 most similar pCLE video sub-sequences (right) for a
benign query (left), retrieved by the LOPO Weighted-ImOfMos method. B
indicates Benign and N Neoplastic. Such bad retrieval result appears when the query
is a rare variety of its pathological class, and is explained by the relatively small size
and weak representativity of the training database.
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Figure 2.24: The 10 most similar pCLE video sub-sequences (right) for a
neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method.
B indicates Benign (not present here) and N Neoplastic.
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Figure 2.25: The 10 most similar pCLE video sub-sequences (right) for a
neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method.
B indicates Benign and N Neoplastic.
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Figure 2.26: The 10 most similar pCLE video sub-sequences (right) for a
neoplastic query (left), retrieved by the LOPO Weighted-ImOfMos method.
B indicates Benign and N Neoplastic.
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2.5.2 Method Comparison for Video Retrieval

In the previous sections, we have proposed different pCLE video retrieval tech-
niques, such as overlap weighting and histogram summation, depending on the
representation of the object of interest for the retrieval. The object of interest was
either a video sub-sequence or a full video, and its representation was based on
either single images or fused mosaic images. In order to evaluate these techniques,
we define several methods that we will compare to each other. To establish sta-
tistical significance, the number of objects of interest that we classify needs to be
sufficient to perform the McNemar’s test, as explained in the Appendix A. This
is always the case excepted for the 121 full videos for which statistical significance
cannot be tested because the sum of differences is too small. A full video will either
be considered as set of independent video sub-sequences or a set of independent
single images. Then, each video sub-sequence will either be considered as a set of
independent single images, a fused mosaic image, or an implicit mosaic made of the
overlap-weighted single images.

For the classification of video sub-sequences, we call: “Weighted-ImOfMos” the
method using the BOWW technique; “ImOfMos” the same method without overlap
weighting (7 = 1); “Mos” the method of Section 2.4.1 describing the single fused mo-
saic image obtained with non-rigid registration; and “AverageVote-Im” the method
describing all the images independently and averaging their individual votes. For
the classification of the full videos, the prefix “Sum-" means that we extended the
methods with the signature summation technique to retrieve full videos as entities;
“Sum-Im” is the method summing all the individual image signatures of the full
video.

In this section, we also decide to compare the classification performances of our
pCLE video retrieval methods with those of an efficient classification method: the
NBNN classifier of Boiman et al. [Boiman 08|, which was described in Section 2.2.4.
Although NBNN classifies images, we can easily extend it to a “Weighted-NBNN”
method for the classification of video sub-sequences, by weighting the closest dis-
tance computed for each region by the inverse of its overlap score. Then, by sum-
ming the accumulated distances, we can define the “Sum-Weighted-NBNN” method
for the classification of full videos.

When comparing the methods for the classification of video sub-sequences,
Fig. 2.28 shows that the accuracy of “Weighted-ImOfMos” is better than the ac-
curacies of “AverageVote-Im” and “Weighted-NBNN”, with statistical significance
(p-value < 0.021 for k£ € [3,10]). For the classification of full videos, Fig. 2.29
shows that, from & = 3 neighbors, “Sum-Weighted-ImOfMos” has an accuracy
which is better than the one of “Sum-Im”, and equal or better than the one of
“Sum-ImOfMos” and “Sum-Mos”. The best full video classification result observed
before 10 neighbors is achieved by “Sum-Weighted-ImOfMos” at k = 9, with an
accuracy of 94.2% (sensitivity 97.7%, specificity 86.1%). At less neighbors, “Sum-
Weighted-ImOfMos” already achieves a quite satisfying accuracy, e.g. 93.4% for 3
neighbors.
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Figure 2.27: Accuracy rate for the classification of pCLE video sub-
sequences by the LOPO Weighted-ImOfMos method, at £ = 5 neighbors,
depending on the value of the weighting threshold 6 € [-1,1] that trades
off the cost of false positives and false negatives. The slight accuracy peak
at the negative value § = —0.17 reflects the fact that neoplastic features are more
discriminative than the benign ones.

Besides, for each retrieval method and for a fixed number of neighbors, a peak of
classification accuracy is reached at a 6 value which is usually negative, as illustrated
in Fig. 2.27 for the “Weighted-ImOfMos” method with a slight accuracy peak at
0 = —0.17 at k = 5 neighbors. This reflects the fact that neoplastic features
are more discriminative than the benign ones, as described in Section 2.2.4. In
fact, putting more weight on neoplastic patterns leads to increase the classification
sensitivity, which is clinically important since it reduces the rate of false negatives.

Figs. 2.28 and 2.29 show that the ROC curves of the classification method
“Weighted-NBNN" are not as good as the ROC curves of all the retrieval methods.
with statistical significance for the classification of video sub-sequences (p-values
< 0.05). Besides, the best classification accuracies of video sub-sequences (resp.
full videos) by “Weighted-NBNN” (resp. “Sum-Weighted-ImOfMos”) are reached
for Ny = 1.017 > 1 (resp. Onpnny = 1.038 > 1). This is also confirming that
local neoplastic features are more discriminative than the benign ones, as described
in Section 2.2.4.
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Figure 2.28: Left: LOPO classification of pCLE video sub-sequences, with

the default value 6§ = 0. The classification accuracy of “Weighted-NBNN” is 58.5%

at the default value Oxgny = 1, but it reaches 80.2% at the optimal value Oy =

1.017. Right: Corresponding ROC curves at & = 5 neighbors with § € [—1,1] and
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Figure 2.29: Left: LOPO classification of full pCLE videos, with the default
value 6§ = 0. The classification accuracy of “Sum-Weighted-NBNN” is 40.5%
at the default value OngnN = 1, but it reaches 89.3% at the optimal value
OnBNN = 1.038. Right: Corresponding ROC curves at &k = 5 neighbors with
0 € [-1,1] and OnBNN € [0,+00[. € and Onpnn trade off the cost of false positives
and false negatives.
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2.6 Finer Evaluation of the Retrieval

2.6.1 Diagnosis Ground Truth at a Finer Scale

In the previous sections, we used only two classes for retrieval evaluation because bi-
nary classification has a clinical meaning based on the distinction between neoplastic
and non-neoplastic lesions, and thus delivers numbers that are easily interpretable
by physicians. Nevertheless, in order to refine the quantitative evaluation of the
retrieval, we decided to exploit diagnosis annotations available at a finer scale, and
to perform a multi-class classification.

From the 121 videos of our database, 116 have been annotated at a finer scale
by expert endoscopists, who define five subclasses to better characterize the colonic
polyps. The benign class is subdivided into two classes: “purely benign lesion” (14
videos) and “hyperplastic lesion” (21 videos). The neoplastic class is subdivided
into three classes: “tubular adenoma” (62 videos), “tubulovillous adenoma” (15
videos) and “adenocarcinoma” (4 videos).

2.6.2 Multi-Class Classification and Comparison with State of the
Art

Based on the finer diagnosis ground truth, we perform a k-NN 5-class classifica-
tion using LOPO cross-validation, and consider the overall classification accuracy
(number of all correctly classified samples / total number of samples) as the evalua-
tion criterion. For comparison with the state-of-the-art methods, the video sample
size (116 annotated videos) is not sufficiently large to generate enough differences
in the McNemar’s test, as explained in the Appendix A. To be able to measure
a statistical significance, we take as objects of interest mosaic images instead of
videos, and we consider the 491 mosaics built from the 116 videos and we apply
our Dense-Scale-60 method. The resulting evaluation of the methods for mosaic
image retrieval using 5-class classification is shown in Figs. 2.30 and 2.31. Our an-
notated database is quite unbalanced with respect to the five subclasses, the most
represented class (“tubular adenoma”) being the pathology of highest prevalence.
However, we checked that the naive classification method, which classifies all the
queries in the class “tubular adenoma” and reaches an overall accuracy of 41.3%,
is outperformed by the Dense-Scale-60 method from k£ = 1, and with statistical
significance from k = 3. Although the overall accuracy of 56.8% reached by our
method may appear low in terms of classification, it is a closer indicator of our
retrieval performance. Moreover, we demonstrate that our mosaic retrieval method
outperforms the state-of-the-art CBIR methods (Haralick, Texton, HH-SIFT) and
the NBNN classifier, with statistical significance from 3 nearest neighbors.
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Figure 2.30: 5-class LOPO classification of pCLE mosaic images by the

methods.

images have been built with non-rigid registration.

The NBNN classification accuracy does not depend on k. The mosaic

Method | Dense-Scale-60 Textons Haralick HH-SIFT NBNN
k=10 k=10 k=10 k=10
Accuracy | 56.8 % 46.8 % 44.4 % 40.9 % 36.7 %
Statistical significance of | p-value < 0.0073 | p-value < 0.0022 | p-value < 0.00063 | p-value < 0.0063
Dense-Scale-60’s gain for k >3 for k>1 for k> 1 for k> 1

Figure 2.31: 5-class LOPO classification of pCLE mosaic images by the
methods at k nearest neighbors. The statistical significance of the gain of the
Dense-Scale-60 method is measured with the McNemar’s test, as explained in the
Appendix A.
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2.7 Conclusion

To the best of our knowledge this study is the first approach to retrieve endomi-
croscopic image sequences by adapting a recent and powerful local image retrieval
method, the Bag-of-Visual-Words method, introduced for recognition problems in
computer vision.

By first designing a local image description at several scales and with the proper
level of density and invariance, then by taking into account the spatio-temporal re-
lationship between the local feature descriptors, the first retrieved endomicroscopic
images are much more relevant. When compared to learning and retrieving images
independently, our “Bag of Overlap-Weighted Visual Words” method using a video-
mosaicing technique improves the results of video retrieval and classification in a
statistically significant manner. With the vote of the £ = 9 most similar videos,
it reaches more than 94% of accuracy (sensitivity 97.7%, specificity 86.1%), which
is clinically pertinent for our application. Moreover, fewer neighbors are necessary
to classify the query at a given accuracy. This is relevant for the endoscopist, who
will examine only a reasonably small number of videos, i.e. typically 3 to 5 similar
videos. Besides, the video retrieval method is based on histogram summations that
considerably reduce both retrieval runtime and training memory. This will allow
us to provide physicians during ongoing endoscopy with whole annotated videos,
similar to the video of interest. Such a pCLE video retrieval system potentially sup-
ports diagnostic decision and avoids unnecessary polypectomies of non-neoplastic
lesions.

Besides, our generic framework could be reasonably applied to other organs
or pathologies, and also extended to other image or video retrieval applications.
Another clinical application would be the detection of neoplasia in patients with
Barrett’s esophagus, for which Pohl et al. [Pohl 08] already demonstrated the in-
terest of endomicroscopy. Sharma et al. [Sharma 11| recently demonstrated that,
when added to high-definition white-light endoscopy, pCLE significantly improved
the ability to detect neoplasia in patients with Barrett’s esophagus. Therefore, in
Chapter 4, we will apply our video retrieval method to a pCLE database on the
Barrett’s esophagus.

Despite the lack of a direct objective ground truth for video retrieval, we eval-
uated our content-based retrieval method indirectly on a valuable database. By
taking the k-NN classification accuracy as a surrogate indicator of the retrieval
performance, we demonstrated that our retrieval method outperforms the state-of-
the-art methods with statistical significance, on both binary and multi-class clas-
sification. Beyond classification-based evaluation, our goal in Chapter 5 will be to
generate a perceptual similarity ground truth and directly evaluate the retrieval.

For future work, we plan to work on more complex description spaces, for exam-
ple based on ellipsoidal regions, to better capture the elongated patterns in pCLE
videos. We also plan to enlarge the training database. Indeed, a larger training
database would not only improve the classification results if all the characteristics
of the image classes are better represented, it would also allow us to exploit a larger
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number of description attributes without facing the over-fitting issue. For example,
the whole matrices of visual word co-occurrence at several scales could be better ex-
ploited. Potential ways of doing so include their incorporation into the description
as proposed by Zhang et al. [Zhang 09], or their extraction at hierarchical scales in
the image as described in the Hyperfeatures of Agarwal and Triggs [Agarwal 08].
On the other hand, the co-occurrence matrix could be better analyzed by more
generic tools than Linear Discriminant Analysis. For example, a more complete
spatial geometry between local features could be learned by considering the visual
words as a Markov Random Fields model, whose parameters could be estimated
using a method such as the one presented in [Descombes 99]. We also plan, for the
testing process, to either use all the images of the tested video or to automate the
splitting and the selection of video sub-sequences of interest. Besides, the learning
process could leverage the textual information of the database. As for incorporat-
ing the temporal information, a more robust approach would not only consider the
fused image of a mosaic but the 2D + t volume of the registered frames compos-
ing the mosaic. This would allow us to work on more accurate visual words and
better combine spatial and temporal information. We could for example introduce
spatio-temporal features, as those presented by Wang et al. [Wang 09], or as the
3-dimensional SIFT descriptor proposed by Scovanner et al. [Scovanner 07].

To conclude, the binary classification results that we obtained on our colonic
polyp database compare favorably with the accuracy of pCLE diagnosis established
on the same videos, among non-expert and expert endoscopists, for the differen-
tiation between neoplastic and non-neoplastic lesions. Considering 11 non-expert
endoscopists, the study of Buchner et al. [Buchner 09a] showed an interobserver
agreement with an average accuracy of 72% (sensitivity 82%, specificity 53%).
Considering 3 expert endoscopists, Gomez et al. [Gomez 10] obtained an average
accuracy of 75% (sensitivity 76%, specificity 72%). The learning curve pattern of
pCLE in predicting neoplastic lesions was demonstrated with improved accuracies in
time as observers’ experience increased. Thus, prospectively, our endomicroscopic
video retrieval approach could be valuable not only for diagnosis support, but also
for training support to improve the learning curve of the new endoscopists, and
for knowledge discovery to better understand the biological evolution of epithelial
cancers.
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Based on: [André 11a] B. André, T. Vercauteren, A. M. Buchner, M. Krishna,
N. Ayache and M. B. Wallace. Video retrieval software for automated classification

of probe-based confocal laser endomicroscopy on colorectal polyps. 2011. Article in
submission. Presented in the clinical abstract [André 10b).

Introduction: Whereas in the previous chapter we proposed a methodology for

pCLE video retrieval, this chapter focuses on classification as a clinical application

of our methodology. The objective of this chapter is to support in vivo diagnosis of
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colonic polyps, by designing a software for the binary classification between neoplas-
tic and non-neoplastic lesions. We work on a database of pCLE wvideos of colonic
polyps which is an extension of the pCLE database used in the previous chapter, be-
cause it includes new polyps for which the histological diagnosis is in contradiction
with the pCLE diagnosis.

Methods: Intravenous fluorescein pCLE imaging of colorectal lesions was per-
formed on patients undergoing screening and surveillance colonoscopies, followed
by polypectomies. All resected specimens were reviewed by a referemnce gastroin-
testinal pathologist blinded to pCLE information. Histopathology was used as gold
standard for the differentiation between neoplastic and non-neoplastic lesions. The
pCLE video sequences, recorded for each polyp, were analyzed offline by 2 expert
endoscopists who were blinded to the endoscopic characteristics and histopathology.
These pCLE videos, along with their histopathology diagnosis, were used to train the
automated classification software which is a content-based retrieval technique fol-
lowed by k-nearest neighbor classification. The performance of offline expert pCLE
diagnosis was compared with that of automated pCLE classification. All evaluations
were performed using leave-one-patient-out cross-validation.

Results: 135 colorectal lesions were imaged in 71 patients. Based on histopathol-
oqy, 93 of these 135 lesions were diagnosed as neoplastic and 42 as benign. Com-
pared to offline expert pCLE diagnosis, automated pCLE classification has statisti-
cally equivalent accuracy, sensitivity and specificity (respectively 89.6 %, 92.5% and
83.3%). Moreover, the automated pCLE classification software provides, as inter-
mediate results, several annotated videos that are visually similar to the pCLE video
of interest and immediately tangible to the endoscopist.

Discussion: This study demonstrates that diagnostic performance of the auto-
mated method for classification of pCLE videos is high and comparable to the offline
diagnostic performance of expert endoscopists. The automated pCLE classification
software could thus help endoscopists in diagnosing pCLE videos online. In partic-
ular, it could be used as a second-reader tool to support pCLE diagnosis. Further
studies are warranted to evaluate the impact of using the automated pCLE retrieval
and classification software on the diagnostic performance of the endoscopists.

French summary

Introduction : Si dans le chapitre précédent nous avons proposé une méthodolo-
gie pour la reconnaissance de vidéos ECM, ce chapitre considére la classification
comme une application clinique de notre méthodologie. L’objectif de ce chapitre est
d’assister le diagnostic in vivo des polypes du colon, en développant un systéme pour
la classification binaire entre les lésions néoplasiques et non néoplasiques. Nous tra-
vaillons sur une base de données de vidéos ECM sur les polypes du colon, qui est une
extension de la base de données ECM utilisée dans le chapitre précédent. En effet,
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la mouvelle base inclut de nouveaux polypes pour lesquels le diagnostic histologique
est en contradiction avec le diagnostic ECM.

Methodes : L’imagerie ECM des lésions colorectales a été réalisée, apreés in-
jection de fluorescéine intraveineuse, sur des patients qui ont eu une coloscopie de
dépistage et de surveillance, suivie de polypectomies. Tous les spécimens réséqués
ont été examinés par un médecin pathologiste de référence, en aveugle des in-
formations ECM. L’histopathologie a été utilisée comme étalon pour la différen-
ciation entre les lésions néoplasiques et non néoplasiques. Les séquences vidéo
ECM enregistrées pour chaque polype ont été analysées par 2 endoscopistes ex-
perts, lors d’un examen hors-ligne, en aveugle des caractéristiques endoscopiques et
histopathologiques. Ces vidéos ECM, ainsi que leur diagnostic histologique, ont été
utilisés pour lapprentissage de la classification automatique, qui repose sur une tech-
nique de reconnaissance par le contenu suivie d’une classification par plus proches
voisins. La performance du diagnostic ECM établi hors-ligne par les endoscopistes
experts a été comparée a celle de la classification ECM automatique. Toutes les
évaluations ont été effectuées en utilisant la validation croisée de type “leave-one-
patient-out cross-validation”.

Resultats : 135 lésions colorectales ont été imagées dans 71 patients. D’aprés
U’histopathologie, 93 lésions parmi les 135 Iésions ont été diagnostiquées comme néo-
plasiques et 42 d’entre elles comme bénignes. En comparaison avec le diagnostic
ECM établi hors-ligne par les endoscopistes experts, la classification ECM automa-
tique a une précision, une sensibilité et une spécificité statistiguement équivalentes
(respectivement 89.6 %, 92.5% et 83.3%). D’autre part, le systéme de classification
ECM automatique fournit, comme résultats intermédiaires, plusieurs vidéos ECM
annotées qui sont visuellement similaires a la vidéo d’intérét et immeédiatement
tangibles pour l’endoscopiste.

Discussion : Cette étude démontre que la performance diagnostique de la
méthode de classification automatique des vidéos ECM est élevée et comparable a la
performance du diagnostic ECM établi hors-ligne par les endoscopistes experts. Le
systéme de classification ECM automatique pourrait ainsi aider les endoscopistes
a diagnostiquer en ligne les vidéos ECM. En particulier, il pourrait étre utilisé
comme un outil de deuxiéme lecture pour assister le diagnostic ECM. Des études
supplémentaires sont nécessaires pour évaluer limpact de utilisation du systéme
de reconnaissance et de classification ECM sur les performances diagnostiques de
l’endoscopiste.

3.1 Introduction

Colorectal cancer is the second leading cause of cancer-related death in the United
States [Hawk 05]. Its development includes several morphological stages, from be-
nign to adenomatous polyps with low grade dysplasia to adenocarcinoma. Suspi-
cious lesions are usually detected with standard colonoscopy by the endoscopists
who either perform confirmatory biopsy, or if high certainty exists, perform imme-
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diate therapy such as resection or ablation of diseased tissue. Because standard
endoscopic imaging can only diagnose disease states with moderate levels of cer-
tainty [Norfleet 88, Rastogi 09], histopathology remains the gold standard for final
diagnosis [Winawer 06]. However, the requirement for ex vivo histology implies a
large proportion of unnecessary polypectomies and often requires a separate en-
doscopic procedure to be performed for treatment. It also increases the cost of
colorectal cancer screening.

Probe-based Confocal Laser Endomicroscpy (pCLE) enables the endoscopist
to image the epithelial tissue in wvivo, at the microscopic level with a confocal
miniprobe, and in real-time during ongoing endoscopy. Preliminary findings by
Meining et al. [Meining 07] demonstrated the applicability of pCLE in diagnosing
colorectal neoplasia in vivo with high sensitivity and specificity (93% and 92% re-
spectively) in 13 patients with colorectal lesions. In a recent study including a large
pool of 75 patients, Buchner et al. [Buchner 10] compared offline pCLE diagnosis
to virtual chromoendoscopy (NBI and FICE) and showed that offline pCLE had
higher sensitivity (91% versus 77%) with similar specificity (76%). As noted by
Wallace and Fockens [Wallace 09], the current challenge for the endoscopists is in
vivo diagnosis using pCLE.

In order to provide an objective support for pCLE diagnosis, we aim at design-
ing a computer-based system for the automated classification of colonic polyps into
neoplastic and non-neoplastic lesions. For this application, a content-based image

)

retrieval (CBIR) approach is relevant because, contrary to “black box” classifica-
tion systems, a CBIR-based classification system extracts, from a training database,
annotated pCLE videos that are visually similar to the video of interest and imme-
diately tangible to the endoscopist. The pathology of the video query is estimated
from the histopathological votes of these already diagnosed videos. Another ad-
vantage of CBIR-based classification is that the extracted similar videos can be
presented to the endoscopist in a second reader paradigm to better support pCLE
diagnosis. Thus, even though CBIR-based classification is not the most powerful
way of performing classification, it offers a second reading of the pCLE data.

The main goal of this study is to compare, using the same database of colonic
polyps, the clinical performances of our automated pCLE classification software
with those of offline pCLE diagnosis by endoscopists expert in pCLE, with histopathol-
ogy remaining the gold standard reference.

3.2 Patients and Materials

3.2.1 Patients

The patients included in the study were enrolled between November 2007 and March
2009 for previous studies approved by Mayo Clinic Institutional Review Board, and
from which we collected all available data to ensure an as large as possible sample
size. These patients were enrolled for the study of Buchner et al. [Buchner 10]
and for further studies of the same Mayo Clinic group. Only the patients with
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complete diagnostic data are considered in our study. All study participants gave
full written consent. Patients were enrolled if they were due for surveillance or
screening colonoscopies, evaluation of known or suspected polyps on other imaging
modalities, and endoscopic mucosal resection of larger flat colorectal neoplasia.
Exclusion criteria were patients with non corrected coagulopathy, women who were
pregnant or breast feeding, documented allergy to fluorescein, and patients with
no colorectal lesions found during a study colonoscopy. Twenty-four hours before
the procedure, patients were prepped with 2 — 4L polyethylene glycol solution.
Conscious sedation was performed with intravenous administration of midazolam
and meperidine.

3.2.2 Endoscopy Equipment and Procedure

All procedures were performed by either Michael B. Wallace or Anna M. Buchner
using a high-definition colonoscope (Fujinon EC450HL5 or 490 ZW, Fujinon, Ft
Wayne, NJ; Olympus CFH180, Olympus, Center Valley, NY). The system was
equipped with the EPX 4400 processor (Fujinon Inc) or CV 180 Exera (Olympus,
Co). The primary screening method was white-light high-definition colonoscopy.
Then, either FICE mode 4 with Fujinon colonoscope or NBI with Olympus 180
series scope was used to characterize lesions in all patients.

The surface pit pattern of the lesion was classified according to the Kudo clas-
sification [Kudo 96] which is presented in Fig. 3.1. Anatomical site and mor-
phological class of lesions were recorded in accordance with the Paris classifica-
tion [ParisWorkshop 03] which is shown in Fig. 3.2. Fluorescein sodium 2.5—5.0 mL
10% (AK Fluor, Akorn Pharmaceutical, Lake Forest, IL) solution was administered
intravenously after the first polyp was identified. Immediately after fluorescein in-
jection, pCLE video sequences of the lesions were acquired and recorded. According
to the visual examination of both endoscopic and pCLE images, real biopsies were
targeted to the most suspicious parts of the polyp. Appropriate treatment proce-
dures, ranging from simple polypectomies to complex endoscopic mucosal resection
of lesions, were then performed.

3.2.3 pCLE Acquisition Protocol

During a pCLE acquisition protocol, the endoscopist inserts, through the working
channel of a standard endoscope, a confocal miniprobe (Coloflex UHD, Cellvizio
GI) of external diameter 2.5 mm, which is made of 30,000 optical fibers bundled
together. The pCLE imaging setup is shown in Fig. 3.3. As a result, pCLE images
of field-of-view 240 um are acquired and reconstructed at a rate of 9 to 12 frames
per second. In stable pCLE video sequences the miniprobe is in constant contact
with the tissue. Representative endoscopic, pCLE, and histopathology images of
tubular adenoma are shown in Fig. 3.3.

Prior to pCLE evaluation of the study polyps, the 2 expert endoscopists (Michael
B. Wallace, Anna M. Buchner) viewed extensive published material on pCLE and
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performed a self-calibration on training pCLE videos of 20 polyps of known pathol-
ogy (10 adenoma and 10 benign). These “training” polyps were evaluated by a
gastrointestinal pathologist (Murli Krishna) and came from 9 patients not included
in the study. Once acquired, the pCLE videos of the study lesions were evaluated
offline and in random order by the 2 experts, who were blinded to histology diag-
nosis and endoscopic appearance of the lesion. Offline pCLE diagnosis was made
based on the established modified Mainz criteria [Kiesslich 04] for diagnosis of col-
orectal neoplasia, according to pit pattern and overall crypt and vessel architecture.
Of the whole pCLE video imaging a polyp, the sequence of the video containing
the most malignant pCLE features was considered to represent the polyp.
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Figure 3.1: Modified Kudo criteria. Colonic polyps are classified into pit pat-
tern types according to their endoscopic appearance in “en-face” view, using HMCC
(High Magnification Chromoscopic Colonoscopy). Type I and II are designated as
non-neoplastic patterns whereas the other types are designated as neoplastic. Figure
taken from [Hurlstone 08].
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3.2.4 Histopathology as Gold Standard Diagnosis

All resected specimens were reviewed by a reference gastrointestinal pathologist
(Murli Krishna) blinded to the pCLE information. Only the size and anatomic
location were provided, which is the routine clinical practice at the Mayo Clinic
institution. Intraepithelial neoplasia was defined using modified Vienna criteria
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Figure 3.2: The Paris classification. Colonic polyps are classified into Paris
classes according to their histological appearance in transverse view. Figure taken
from [Hurlstone 08].



64 Chapter 3. Clinical Application: Classification of pCLE Videos

[Schlemper 00, Rubio 06]: hyperplastic polyps were classified as benign lesions,
while tubular adenoma, villous adenoma, tubulovillous adenoma and adenocarci-
noma were classified as neoplastic lesions.

Figure 3.3: (A) Setup of pCLE imaging system (Cellvizio, Mauna Kea Technologies).
(B) Endoscopic image of tubular adenoma, and the pCLE miniprobe. (C) An image
of the pCLE video sequence. (D) A pCLE mosaic image built with the video mosaicing
tool. (E) Histopathology image.
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3.3 Methods

This section provides for the physicians a brief description of the methodology
presented in Chapter 2 for pCLE video retrieval.

As the endoscopists use perceptual similarities between pCLE videos of known
diagnosis to establish a diagnosis on a new pCLE video, we propose a content-
based retrieval approach to design the automated pCLE video classification method.
We revisited the standard Bag-of-Visual-Words (BoW) technique which has been
successfully used in many content-based image retrieval applications in computer
vision [Zhang 07].

3.3.1 Standard BoW Technique for Content-Based Image Retrieval

Standard BoW technique for image retrieval can be decomposed into four steps:
region detection on the image, description of the regions, discretization of the feature
space and similarity measuring between images. The detection step extracts salient
regions in the image using sparse detectors. During the description step, a descriptor
computes for each salient region its description vector. Then, the discretization step
uses the result of a clustering method that builds K clusters, i.e. K visual words,
from the union of the description vector sets gathered across all the images of
the training database. Each description vector counts for one visual word, so an
image can be represented by a signature of size K which is the histogram of its
visual words. By construction, image signatures are invariant by viewpoint changes
(image translation, rotation and scaling) and affine illumination changes. Finally,
the similarity measuring step defines the similarity distance between two images
as the as an adequate distance between their signatures: the most similar training
images to the image of interest are defined as being the closest ones in terms of this
distance.

3.3.2 Adjusting BoW Technique for pCLE Video Retrieval

First, we observed that discriminative information is densely distributed in pCLE
images. Second, we noticed that several pCLE image patterns have the same shape
but represent different objects characterized by their different size (e.g. mesoscopic
crypts and microscopic goblet cells both have a rounded shape). So pCLE image
description must not be invariant by scaling. To avoid scale invariance and to ex-
tract all the image information, we decided to apply, instead of standard sparse
detectors, a dense detector that is made of overlapping disks having a fixed radius
of 60 pixels and localized on a dense regular grid every 20 pixels. We maintained
the invariance by in-plane translation and rotation, because the pCLE miniprobe
translates and rotates along the tissue surface. Besides, as the diffusion rate of flu-
orescein administered before imaging procedure decreases through time, invariance
by affine illumination changes was also preserved.

Expert endoscopists pointed out that the field of view of single still images
may not be large enough to make a robust diagnosis. So we decided to retrieve
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not single images but complete videos, by using the video mosaicing technique
presented in [Vercauteren 06, Becker 07] and available in the Cellvizio software,
to account for spatial overlap between time-related images. Examples of mosaics
built with the video mosaicing tool are shown in Figs. 3.3, 3.5 and 3.6. To ensure
online retrieval, we used the translation results of the real-time version of the video-
mosaicing technique to weight the contribution of each local image region to its
visual word. Then, we computed the video signatures with a histogram summation
technique. Fig. 3.4 presents the whole pipeline of our retrieval-based classification
framework, which can be run online during ongoing colonoscopy.

3.3.3 Classification of pCLE Videos using Similarity Distance

Once the visual signature of the video query was computed, the k-Nearest Neighbor
(k-NN) search step identified the k closest training videos to the video query, by
relying on the similarity distance between the video signatures. We then used the
known histopathology diagnosis of these training videos to classify the query video,
either as neoplastic or as non-neoplastic. Each of the k most similar training videos
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Figure 3.4: Pipeline of the pCLE retrieval-based classification framework,
from the acquisition of the pCLE video query by the Cellvizio system to
the online automated diagnosis estimation.
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delivered a “histopathological” vote which is weighted by the inverse of its similarity
distance to the video query.

Given the relatively small size of our pCLE database, we needed to learn from as
much data as possible. We thus used the same database both for training and testing
with cross-validation to avoid bias. As there were several videos acquired on the
same patient, we performed a leave-one-patient-out cross-validation [Dundar 04]:
all videos from a given patient are excluded from the training set before being
tested as queries of our retrieval and classification methods. This also allowed us
to find the optimal number of nearest neighbors, & = 9, which is the one that
maximizes the accuracy of the retrieval-based classification results.

3.3.4 Statistical Analysis

To test for statistical difference between the two methods of interest, namely au-
tomated classification and offline classification by experts, we used McNemar’s
tests [Sheskin 11] and show the corresponding power calculations with a type I
error « = 0.05. Two-sided p-values < 0.05 were assumed to indicate statistical
significance.

In order to assess statistical equivalence between the two methods, we used
the two-sided Z-test between proportions [Jones 96] and computed 95% confidence
intervals.

We refer the reader to the Appendix A for a detailed description of the Mc-
Nemar’s test and on the two-sided Z-test between proportions. Because the 135
pCLE videos constitute a small sample size, we used a correction for continuity for
the McNemar’s test.

The statistics on overall accuracy are dependent on the relative fraction of be-
nign and neoplastic lesions examined, which in this study are 31.1% and 68.9%,
respectively. Even though observations were made for more than one polyps in
some patients, for the purposes of statistical analysis individual polyps (and their
corresponding videos) were assumed to constitute independent observations. It is
recognized that there was multiple testing of outcome data arising from individual
polyps. Since the statistical tests were meant to highlight differences and since cor-
rection by Bonferroni’s method would not have affected statistical significance in
any of the comparisons, all p-values are presented uncorrected for multiple testing.

3.4 Results

3.4.1 Study Population and Colorectal Lesion Characteristics

Table 3.1 summarizes the demographic and general characteristics of the study
population. None of the 71 patients experienced any endoscopic complications
or adverse reaction to sodium fluorescein, with the exception of transient yellow
discoloration of the skin and urine, which resolved by the time of discharge from the
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recovery room (skin) or within 24 hours (urine). Histopathology and morphological
classification of the 135 analyzed colorectal lesions are also provided in Table 3.1.

3.4.2 Qualitative Results: Visual Similarities between pCLE Videos

The pCLE database contains 135 pCLE videos representing each of the 135 polyps.
The pCLE appearance of neoplastic lesions, compared to benign and hyperplastic
lesions, included dilated irregular vessels, fluorescein leakage, cellular features of ep-
ithelial mucin depletion, and histological features of villiform crypts with increased
optical density along epithelial border.

As the automated pCLE classification method is a similarity-based system that
classified pCLE videos based on the votes of visually similar videos, its clinical
relevance can be qualitatively evaluated by examining the intermediate results of

Study Population Summary (n = 71 patients)

Age, median (min, ¢1, ¢3, max)

Gender, % 75(46, 68,79, 93)
Male 49
Female 51

History of colon cancer, % 9

Family history of colon cancer, % 10

Colorectal Lesions Summary (n = 135 lesions)

Polyp size (mm), median (min, g1, ¢3, max) 8(1, 5,20, 60)

Polyp location, %

Cecum 24
Rectum 20
Ascending 18
Sigmoid 14.5
Transverse 15
Descending 5.5
Splenic flex 3

Histopathology diagnosis, %

Hyperplastic 31
Tubular adenoma 52
Tubulovillous adenoma 11.5
Hyperplastic and adenomatous features 2.5
Adenocarcinoma 3

Neoplastic lesion, simplified histopathology, % 69

Paris classification, %
1p 1
1s 57
2a 32
2b 5
2c 1
2a/c 4

Table 3.1: Study Population and Colorectal Lesions Characteristics g1 and
q3 indicate respectively the first and the third quartiles.
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video retrieval. Fig. 3.5 shows 4 typical results of the automated pCLE retrieval
software. We observe that, despite the high variability in appearance of a given
histopathological class (neoplastic or non-neoplastic), the automatically retrieved
videos called “neighbors” look quite similar to the video queries, respectively Q1,
@2, Q3 and Q4. Besides, we notice that the closer the neighbor is to the query, the
more similar it is to it.

In terms of classification, the pathological class is estimated by the weighted
votes of the 3 retrieved neighbors. Video queries @1, 02, 3 and @4 have been
correctly classified with respect to histopathology, both by automated classification
and by expert endoscopists.

Fig. 3.6 shows 3 other results that reveal some limitations of the automated
pCLE retrieval software. Video query ()5 corresponds to a rare variety of hyper-
plastic polyp correctly classified as non-neoplastic by the experts, but misclassified
by the automated classification because it is not represented in the training database
for retrieval. Video query Q6 corresponds to the ambiguous serrated adenoma case,
correctly classified as non-neoplastic by the automated classification, but misclas-
sified by the experts who consider serrated adenomas as malignant. Video query
Q7 corresponds to a tubulovillous adenoma misclassified as non-neoplastic both by
the experts and by the automated classification (this may be explained if a sam-
pling error occurred and the corresponding biopsy was not performed exactly on
the imaging spot).

3.4.3 Quantitative Results: Comparison with Expert Endoscopists

Classification accuracy, sensitivity and specificity of the two methods, automated
pCLE classification (first method) and offline pCLE diagnosis of 2 experts (second
method), are listed in Table 3.2. Automated classification reached a sensitivity
of 92.5%, a specificity of 83.3% for a resulting accuracy of 89.6%. Expert review
reached a sensitivity of 91.4%, a specificity of 85.7% and the same accuracy of
89.6%.

When testing for statistical difference, the p-values provided by McNemar’s tests
show that the differences between the 2 methods are not statistically significant (p-
values > 0.05), and that there is very low power (< 6%) to detect the observed
differences.

When testing for statistical equivalence, the 95% confidence intervals provided
by two-sided Z-tests between proportions are: —0.073 to 0.073 for the accuracy,
—0.068 to 0.089 for the sensitivity and —0.18 to 0.13 for the specificity. These
intervals include zero and are sufficiently small to suggest that the methods are
equivalent. In particular, the —0.18 lower bound for the specificity is acceptable if
the automated pCLE classification software is only taken as a second-reader tool to
support pCLE diagnosis.
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Figure 3.5: Typical results of automated pCLE video retrieval. The pCLE
videos are represented by mosaic images; they are annotated with their histopathology
diagnosis. Video queries are highlighted in gray and followed by their 3 most similar
videos. Automated classification (hyperplastic versus neoplastic) of query videos is
based on the votes of the similar videos. With respect to histopathology, both the au-
tomated classification and the pCLE diagnosis by experts are correct for these queries.
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Figure 3.6: Results of automated pCLE video retrieval represented as mo-
saics. With respect to histology: the automated classification is correct for video query
@6 but incorrect for video queries @5 and @7, whereas the offline pCLE diagnosis by
experts is correct for video queries @5 but incorrect for video queries Q6 and Q7 (for
which this disagreement is marked by x).
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® ®)
Automated Retrieval-based | Offline pCLE Diagnosis
pCLE Classification of 2 Expert Endoscopists
Accuracy
% 89.6 89.6
Fraction 121/135 121/135
Sensitivity
% 92.5 91.4
Fraction 86/93 85/93
Specificity
% 83.3 85.7
Fraction 35/42 36/42

Statistical significance
between (1) and (2)
McNemar’s test, « = 0.05
for Accuracy: (p-value, power)
for Sensitivity: (p-value, power)
for Specificity: (p-value, power)

(1, 2.5%)
(0.82, 6.5%)
(0.87, 5.2%)

Statistical equivalence
between (1) and (2)
Two-sided Z-test
95% CI for Accuracy
95% CI for Sensitivity
95% CI for Specificity

—0.073 to 0.073
—0.068 to 0.089
—0.18 to 0.13

Table 3.2: Comparison of Accuracy, Sensitivity and Specificity between Au-
tomated Retrieval-based pCLE Classification and Offline pCLE Diagnosis
by 2 Expert Endoscopists. CI stands for Confidence Interval.
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3.5 Discussion

The present study demonstrates that, using a fairly representative database of
colonic polyps, our automated method for the pCLE video classification had overall
high accuracy, sensitivity and specificity, that are comparable to those of the offline
pCLE diagnosis established by two endoscopists expert in pCLE. As the automated
classification software can be run online during ongoing colonoscopy, it could be
used as a second-reader tool to support and improve not only offline but also online
pCLE diagnosis of endoscopists with various levels of expertise. In the majority
of cases the second reader would agree with a moderately experienced endoscopist,
who would be thus comforted in his/her diagnosis. For cases when they disagree,
the endoscopist would have the opportunity to rethink his/her diagnosis and have
more accurate in vivo interpretation. Besides, especially for small polyps, this
second-reader tool could assist the endoscopist in adopting the “Diagnose, Resect
and Discard Strategy” that dispenses with histopathological examination.

Gomez et al. [Gomez 10] analyzed in vivo pCLE interpretation in distinguish-
ing between neoplastic and non-neoplastic lesions among 3 expert endoscopists and
estimated an average accuracy of 75% (sensitivity 76%, specificity 72%) with good
to moderate interobserver agreement. Buchner et al. [Buchner 09a] demonstrated
that accurate interpretation of pCLE images by 11 endoscopists, considered as
non expert in pCLE, can be learned rapidly with a short 2 hour training session.
The learning curve pattern of pCLE in predicting neoplastic lesions was demon-
strated with improved accuracies in time from 63% to 86% as observers’ experience
increased. Thus, prospectively, the automated classification method could be valu-
able not only for in vivo diagnosis support, but also for training support to improve
the learning curve of the new endoscopists.

One of the advantages of our computer-based classification method is that it is
not a “black box” but an informative tool based on the query by example model:
it produces, as intermediate results, visually similar annotated videos that are im-
mediately tangible to the endoscopist. From the qualitative observations of visual
similarities between pCLE videos, we infer that the visually convincing results of
the intermediate video retrieval step account for the relevance of the whole pCLE
classification software. As few similar videos (less than 10) are necessary to clas-
sify a video query with a high accuracy, this visual information should be clinically
useful for the endoscopist.

Further limitations of the classification software may include three main issues.
First, a large training database is needed to be sufficiently representative of non-
typical pCLE cases. This is even more challenging since the practice of pCLE is
evolving and that new cases with atypical pCLE features may be still encountered.
Second, the definition of “gold standard” for colorectal cancer screening is debatable
because expert endoscopists and pathologists do not always agree. This could be il-
lustrated by many examples of hyperplastic polyps redefined later as sessile serrated
lesions by gastrointestinal pathologists, as in the study of Khalid et al. [Khalid 09].
The third limitation is that an obtained biopsy may be acquired unintentionally
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from the area that does not correspond with the obtained pCLE imaging.

The task of the automated pCLE classification method is not to replace the
endoscopist nor the pathologist but to assist the endoscopist in taking an informed
decision. Before using the classification tool during an ongoing endoscopy proce-
dure, more work is needed to improve its accuracy and to develop underlying tools
that are both ergonomic and complementary. In particular, the online display of
the retrieval outputs, for instance of the 3 most similar videos to the video query,
together with their histopathology and possible multimodal clinical data, may be a
precious underlying indicator for diagnosis decision. Such a sophisticated “Smart
Atlas” for pCLE would allow the endoscopists in different centers to share and enrich
their pCLE knowledge during ongoing endoscopy. Further studies are warranted to
evaluate the impact of using automated pCLE retrieval and classification software
on the pCLE learning curve and diagnostic performance of the endoscopists.
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Barrett’s Esophagus
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Based on: [André 10a] B. André, T. Vercauteren, A. M. Buchner, M. W.
Shahid, M. B. Wallace and N. Ayache. An image retrieval approach to setup dif-
ficulty levels in training systems for endomicroscopy diagnosis. In Proceedings of
the 13th International Conference on Medical Image Computing and Computer As-
sisted Intervention (MICCAI'10), pages 480-487, 2010. Presented in the clinical
abstract [André 11b] with selected video abstract http://www.youtube.com/watch?
v=RVy-0Bxx9EQ.

Learning medical image interpretation is an evolutive process that requires mod-
ular training systems, from non-expert to expert users. Our study aims at developing
such a system for endomicroscopy diagnosis. It uses a difficulty predictor to try and
shorten the physician learning curve. As the understanding of video diagnosis relies
on similarity-based reasoning, we propose a content-based video retrieval approach
to estimate the level of interpretation difficulty. In addition to the pCLE database
on colonic polyps used in the previous chapters, we introduce in this chapter a new
pCLE database, on the Barrett’s esophagus, to show the genericity of our retrieval
method. Typical pCLE mosaic images of the Barrett’s esophagus are illustrated
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in Fig. 4.1. The retrieval performance is evaluated indirectly using binary classi-
fication between pathological and non pathological cases. As shown in Chapter 2
on the Colonic Polyp database, we demonstrate that, on the Barrett’s Esophagus
database, our retrieval method outperforms several state of the art methods. From
our retrieval results, we then learn a difficulty predictor against a ground truth
given by the percentage of false diagnoses among several physicians. Our experi-
ments show that, for the two different databases, there is a significant correlation
between our retrieval-based difficulty estimation and the difficulty experienced by
the physicians.

French summary

Apprendre a interpréter des images médicales est un processus évolutif qui néces-
site des systémes d’auto-formation modulaires, pour des utilisateurs non experts a
experts. Notre étude vise a développer un tel systéme d’auto-formation pour le di-
agnostic en endomicroscopie. Ce systéme utilise un prédicteur de difficulté dans le
but de raccourcir la courbe d’apprentissage des médecins. Comme la compréhension
du diagnostic établi sur des vidéos repose sur un raisonnement par similarité, nous
proposons d’utiliser les résultats de la reconnaissance de vidéos par le contenu afin
d’estimer la difficulté d’interprétation. En plus de la base de donmnées ECM sur
les polypes du colon, utilisée dans les chapitres précédents, nous introduisons dans
ce chapitre une nouvelle base de données ECM, sur l’esophage de Barrett, pour
montrer la généricité de notre méthode de reconnaissance. Des mosaiques ECM
typiques de l’eesophage de Barrett sont présentées dans la figure 4.1. La perfor-
mance de notre méthode de reconnaissance est évaluée indirectement en utilisant
la classification binaire entre les cas pathologiques et non pathologiques. Comme
nous l’avons montré dans le chapitre 2 sur la base de données des polypes du cdlon,
nous démontrons que sur la base de données de l’esophage de Barrett notre méth-
ode de reconnaissance surpasse plusieurs méthodes de ’état de l'art. A partir de
nos résultats de reconnaissance, nous apprenons ensuite un prédicteur de difficulté
en utilisant, comme vérité terrain sur la difficulté expérimentée, le pourcentage de
faux diagnostics ECM parmi plusieurs médecins endoscopistes. Nos expériences dé-
montrent que, pour les deux bases de données, il existe une corrélation significative
entre la difficulté estimée da partir de la reconnaissance et la difficulté expérimentée
par les endoscopistes.

4.1 Introduction

Objective

Several training simulators have been proposed for the medical community, for
example by Rhienmora et al. [Rhienmora 11] for dental surgery, by Pernod et
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Figure 4.1: 6 mosaic images of the Barrett database (B: Benign, N: Neoplas-
tic).

al. [Pernod 11] to support heart radio-frequency ablation, and by de Visser et
al. [de Visser 10] for the next generation colonoscopy. Having a simulator for pCLE
gesture training would be also interesting but gesture training is another problem,
different from the one addressed in this chapter. Our focus is supporting the physi-
cian’s interpretation.

The understanding of pathologies through the analysis of image sequences is a
subjective learning experience which may be supported by modular training sys-
tems. Particularly, the early diagnosis of epithelial cancers from in vivo endomi-
croscopy is a challenging task for many non-expert endoscopists. Our objective is
to develop a modular training system for endomicroscopy diagnosis, by adapting
the difficulty level according to the expertise of the physician.

The training simulator, illustrated in Fig. 4.2, consists in a quiz. Given a level
of difficulty, a pool of endomicroscopic videos whose average difficulty matches the
current level is randomly chosen from the set of the training videos. By iterating this
process with increasing levels of interpretation difficulty, the physician may be able
to learn faster. The physician may also want to select the difficulty level in order
to reinforce his/her diagnostic skills. For surgical skills, evidences of the efficiency
of self-guided learning have been provided in the thesis of Brydges [Brydges 09],
but further investigation is needed for the extension of learning effect analysis to
diagnostic skills.
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Cellvizio Tr ck to menu Esophagus

All the sequences presented in this section were acquired with probe-
based Confocal Laser Endomicroscopy (PCLE) using the GastroFlex
type UHD probe on patients with suspected Barrett's Esophagus.

How would you interpret the following sequences?
Please choose one answer among the following ones.

20 um

L 0014y D04 AL

Figure 4.2: Screenshot of www.cellvizio.net Self-Learning Tool, with the
added difficulty level information.

State of the art in estimating interpretation difficulty

Typical studies on query difficulty estimation consider textual queries, and not
image queries. Besides, they usually do not predict the difficulty of the query inter-
pretation but rather the performance of the query in order to estimate the quality
of its retrieval results. However, given the tight analogy between text retrieval and
image retrieval based on “visual words”, the difficulty criteria used by these meth-
ods, most of which were presented in a survey by Hauff et al. [Hauff 08], may also be
useful for our study. In particular, Zhao et al. [Zhao 08] estimated the performance
of a textual query from similarity scores, but also from term frequency - inverse
document frequency (TF-IDF) weights [Salton 88] extracted during the indexing
time. In all these studies, the predictor validation process takes as ground truth an
indicator of the performance of the retrieval system, such as the Average Precision
(AP). Nevertheless, Scholer and Garcia [Scholer 09] demonstrated that the correla-
tion between the estimated difficulty and the measured retrieval performance highly
depends on the chosen retrieval system. Considering human performance in rating
x-ray images as a ground truth, Schwaninger et al. [Schwaninger 07] proposed a
statistical approach to estimate the image query difficulty solely from image mea-
surements. Turpin and Scholer [Turpin 06] highlighted the fact that it is not easy
to establish, for simple tasks like instance recall or question answering, a significant
relationship between human performance and the performance of a retrieval system
that uses precision-based measures to predict the query difficulty.

For our study, we consider videos as queries. We propose to learn a query dif-
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ficulty predictor using relevant attributes from a Content-Based Video Retrieval
(CBVR) method. We have two types of ground truth. For video retrieval, a diag-
nosis ground truth is the set of histological diagnoses of the biopsies associated to
all the videos of the database. For interpretation difficulty, a difficulty ground truth
is given by the percentage of false video-based diagnoses among several physicians
on a subset of the video database. Histological diagnosis and video-based diagnosis
both consist in differentiating benign from neoplastic (i.e. pathological) lesions.
In these conditions, we aim at establishing a relationship between the physicians
performance and our predictor.

Materials

Probe-based confocal laser endomicroscopy (pCLE) allows the endoscopist to image
the epithelial tissue in vivo, at microscopic level with a miniprobe, and in real-time
(18 frames per second) during an ongoing endoscopy.

The first pCLE database is of the Colon database used in 2, which contains
121 videos (36 benign, 85 neoplastic) split into 499 stable video sub-sequences (231
benign, 268 neoplastic). 11 endoscopists, among whose 3 experts and 8 non-experts,
individually established a pCLE diagnosis on 63 videos (18 benign, 45 neoplastic) of
the database. On the non-expert diagnosis database, interobserver agreement was
assessed in the study of Buchner et al. [Buchner 09a], with an average accuracy of
72% (sensitivity 82%, specificity 53%). On the expert diagnosis database, Gomez et
al. [Gomez 10] showed an interobserver agreement with an average accuracy of 75%
(sensitivity 76%, specificity 72%). Thus, although pCLE is relatively new to many
physicians, the learning curve pattern of pCLE in predicting neoplastic lesions was
demonstrated with improved accuracies in time as observers’ experience increased.

The second pCLE database is related to a different clinical application, namely
the Barrett’s Fsophagus, and was provided by the multicentric “DONT BIOPCE”
[DONT BIOPCE 10] study (Detection Of Neoplastic Tissue in Barrett’s esopha-
gus with In vivO Probe-based Confocal Endomicroscopy). Our resulting Barrett
database includes 76 patients and contains 123 videos (62 benign, 61 neoplastic)
split into 862 stable video sub-sequences (417 benign, 445 neoplastic). 21 endo-
scopists, among whose 9 experts and 12 non-experts, individually established a
pCLE diagnosis on 20 videos (9 benign, 11 neoplastic) of the database.

For all these training videos, the pCLE diagnosis, either benign or neoplastic,
is the same as the gold standard established by a pathologist after the histological
review of biopsies acquired on the imaging spots.

4.2 Applying pCLE Retrieval to a New Database, the
“Barrett’s Esophagus”

In the current chapter, we apply for the first time our video retrieval method on
a new pCLE database, different from the Colon database used in Chapter 2: the
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Query

Visual words are mapped to colors
and superimposed

Figure 4.3: Typical video retrieval result of the “Dense-Scale-20” method
applied to the Barrett’s esophagus. B indicates Benign (i.e. non-neoplastic) and
N Neoplastic (not present here). The pCLE videos are represented by their corre-
sponding fused mosaic image built with non-rigid registration, and are shown together
with their visual words. As observed on the Colon database in Chapter 2, the colored
visual words are highlighting the geometrical structures in the mosaic images of the
Barrett database.

Barrett database. We propose to use our dense video retrieval method presented
in Chapter 2, which decomposes each video as a set of fused mosaic images built
with non-rigid registration. Whereas we used disk regions of radius 60 pixels for
the dense image description on the Colon database, we consider disk regions of
radius 20 pixels in order to describe the images of the Barrett database whose
discriminative patterns appear at a finer scale. As we did for the Colon database,
we choose 20 pixels of grid spacing and K = 100 visual words for Barrett database,
which will yield satisfying classification results given the relatively small size of the
database. “Dense-Scale-60" is the retrieval method applied to the Colon database,
and “Dense-Scale-20” the one applied to the Barrett database. As for the Colon
database, the whole Barrett database is used both for training and testing, but
leave-one-patient-out (LOPO) cross-validation is performed, as detailed in Chap-
ter 2, for bias correction. A typical video retrieval result of the “Dense-Scale-
20” method applied to the Barrett database can be qualitatively appreciated on
Fig. 4.3.

For method comparison, we take as references the following CBIR methods,
which we extended to CBVR by applying our signature summation technique: the
HH-SIFT method presented by Zhang et al. [Zhang 07] a sparse detector, the stan-
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Figure 4.4: Left: Method comparison for the LOPO classification of pCLE videos on
the Barrett database, with the default values # = 0 and Oygny = 1. Right: Method
comparison for the LOPO classification of pCLE videos on the Colon database, with
the default values 8 = 0 and Ongnn = 1.

dard approach of Haralick features, the texture retrieval Textons method of Leung
and Malik [Leung 01], and an efficient image classification method presented by
Boiman et al. [Boiman 08|, referred as NBNN, that uses no clustering. As an
indirect means to evaluate retrieval performance we use k-nearest neighbor classi-
fication, for which we consider two pathological classes, benign (vote = —1) and
neoplastic (vote = +1).

The accuracy results of video classification on the Barrett database are pre-
sented in Fig. 4.4. In agreement with the ROC curves shown in Fig. 4.5, the
accuracy results obtained on the Colon database are even better. Our retrieval
method outperforms all the compared methods with a gain of accuracy greater
than 12 percentage points on the Colon database, and greater than 9 percentage
points on the Barrett database. McNemar’s tests show that, when the number
k of neighbors is fixed, the improvement of our method with respect to all others
is statistically significant: p-value < 0.011 for k£ € [1,10] on the Colon database
and p-value < 0.043 for k € [1,2] U [4,8] on the Barrett database. This shows
the genericity of our retrieval method, which is successfully applied to two different
clinical application, with: 93.4% of accuracy (sensitivity 95.3%, specificity 88.9%)
at k = 3 neighbors on the Colon database, and 85.4% of accuracy (sensitivity
90.2%, specificity 80.7%) at k = 7 neighbors on the Barrett database.
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Figure 4.5: Left: ROC curves at k = 5 neighbors from LOPO video classification
on the Barrett database, with 6 € [—1,1] and Oxpnn € [0, +00[. Right: ROC curves
at k = 5 neighbors from LOPO video classification on the Colon database, with
0 € [-1,1] and OnpNN € [0, +00]. 0 and OnpNN, introduced in Chapter 2, trade off the
cost of false positives and false negatives.

4.3 Estimating the Interpretation Difficulty

For difficulty estimation, our ground truth is given by the percentage, for each
query video, of false diagnoses among the physicians. As the understanding of
video diagnosis by the physicians is driven by similarity-based reasoning, it makes
sense to predict the query difficulty based on similarity results of video retrieval.

To learn a difficulty predictor, our idea is to exploit, as relevant attributes, the
results of our video retrieval method applied to the training database. Potential
relevant attributes are the class C; € {—1,+1} of the video query g, the classes
CIE{LkY € (1,41} of its k nearest neighbors and the similarity distances from
them to the query. Given the small number of videos tested by the involved physi-
cians, too many attributes for difficulty learning may lead to over-fitting. For this
reason, we decided to extract, from the retrieval results, one efficient and intuitive
difficulty attribute a which reflects the contextual discrepancies between the video
query and its similarity neighborhood. For each query video, we thus considered
the retrieval error between the class of the query and a weighted average of its
neighbors’ votes:

Z‘];Zl C] el
k
Ej:l zCi
where z_1 = 1 and z4; is a constant weight applied to the neoplastic votes. By

default z41 = 1, which corresponds to putting the same weight to neoplastic and
non-neoplastic votes. Introducing zy; allows us to take into account the possible

a,=1-¢, (4.1)
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Figure 4.6: Left: Difficulty ground-truth histograms on the Barrett database.
Right: Joint histograms on the Barrett database; z-axis is the difficulty experienced
by all the physicians and y-axis is our estimated difficulty. On the Barrett database,
21 physicians, 9 expert and 12 non expert, individually diagnosed 20 videos.

emphasis of neoplastic votes with respect to the benign votes. Our query difficulty
predictor P is thus defined as P(q) = «a, for each query video ¢. Its relevance can
be evaluated by a simple correlation measure between the estimated difficulties of
all tested videos and their ground-truth values. In this case, as there is no learning
process, cross-validation is not necessary.

4.4 Results of the Difficulty Estimation Method

4.4.1 Results on the Barrett database

We experiment our difficulty predictor presented in Section 4.3 on the Barrett
database. The best Pearson correlation coefficients are obtained with £ = 10 neigh-
bors and a neoplastic weight z;; = 0.4. The correlation coefficients reach 0.78 with
respect to the difficulty experienced by all the physicians, 0.63 (resp. 0.80) with
respect to the difficulty experienced by the experts only (resp. the non-experts
only). The corresponding joint histogram is presented in Fig. 4.6, along with the
histogram of the difficulty ground-truth values.

Permutation tests demonstrate that there a significant correlation (p-value <
0.005) between the ground truth and our proposed difficulty estimation, which con-
firms the efficiency of our retrieval-based attribute for intuitive difficulty estimation.
We refer the reader to the Appendix A for a detailed description of the permutation
test.

Because the video subset for which we have the difficulty ground truth is limited
to 20 videos, which is insufficient for learning purpose, we cannot perform the
learning of the interpretation difficulty on the Barrett database. However, difficulty
learning will be explored on the Colon database, for which the ground-truth data
contains three times more videos.
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4.4.2 Results on the Colon database

On the Colon database, the difficulty estimation results are not as good as on the
Barrett database. With k£ = 10 neighbors and a neoplastic weight z4; = 6, the
Pearson correlation coefficients reach 0.45 with respect to the difficulty experienced
by all the physicians, 0.30 (resp. 0.45) whit respect to the difficulty experienced by
the experts only (resp. the non-experts only). Permutation tests demonstrate, how-
ever, that there a significant correlation (p-value < 0.005) between this estimated
difficulty and the experienced difficulty.

In order to improve the correlation results, we propose to investigate a machine
learning-based approach, which will need more relevant attributes. As the video
subset for which we have the difficulty ground truth is relatively small, i.e. 63
videos, we decide to add only one attribute S that measures the intrinsic ambiguity
of the video query with respect to the two pathological classes. We then learn
the difficulty predictor from the two attributes a and 8 by using a robust linear
regression model. Our intrinsic attribute g reflects the standard deviation of the
"signed” discriminative power of the query signature, with respect to the benign
and the neoplastic classes:

1 K K
B = \l K Z(wz gs(i) — ij 9s(7))? (4.2)
i=1 Jj=1

where w; is the frequency of the i'! visual word in the video query and g4(4) is its
“signed” discriminative power given by the adapted Fisher criterion:
1 (u_q(d) — i _1(d) — i

(1=1(2) = p41(9)) lp—1(2) — pga (9] (4.3)

SR R AL

where pc(i) and o¢(i) are respectively the mean and the variance of the frequency
distribution of the i** visual word in the videos belonging to class C, with C' €
{=1,+1}.

The Pearson correlation coefficients obtained by the robust linear regression
model with cross-validation reach 0.48 when learning from the difficulty experienced
by all the physicians, 0.33 (resp. 0.47) when learning from the difficulty experienced
by the experts only (resp. the non-experts only). Even if these correlation results
are less convincing than those obtained on the Barrett database, the correlation
coefficient has been improved by learning. The corresponding joint histogram is
presented in Fig. 4.7. According to the permutation tests, the correlation between
this learned difficulty and the experienced difficulty remains statistically significant
(p-value of < 0.005).

To automate the optimal attributes selection and to explore potentially more
relevant attributes for difficulty estimation, further experiments based on model
selection need to be investigated, for example using the Akaike information crite-
rion [Akaike 74] or the Bayesian information criterion [Schwarz 78|. Besides, selec-
tion criteria commonly used in active learning [Hoi 08] may help to provide a better
difficulty estimation. However, this requires larger training databases.
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Figure 4.7: Left: Difficulty ground-truth histograms on the Colon database. Right:
Joint histograms on the Colon database; xz-axis is the difficulty experienced by all the
physicians and y-axis is our estimated difficulty. On the Colon database, 11 physicians,
3 expert and 8 non expert, individually diagnosed 63 videos.

4.5 Conclusion

To our knowledge this study proposes the first approach to learn, for endomi-
croscopy training, the interpretation difficulty experienced by human experts, based
on an original method of Content-Based Video Retrieval. Our experiments have
demonstrated that there is a significant relationship between our retrieval-based
difficulty estimation and the difficulty experienced by the physicians. Moreover, we
showed the promising genericity of our difficulty estimation method by applying it
on two different clinical databases, one on the Barrett’s Esophagus and the other
on colonic polyps. Our method could also be potentially applied to other imaging
applications.

On one hand we have the diagnosis ground truth for all the videos belonging to
our two large databases, on the other hand we have the difficulty ground truth on a
small subset of each database. The method proposed in this work can then be used
to estimate the interpretation difficulty on the remaining videos. It is worth noticing
that, if no difficulty ground truth is available, or if it is not large enough for learning,
as it is the case for the database on Barrett’s esophagus, we are still able to estimate
the interpretation difficulty of any video. The full pCLE databases, completed with
the difficulty estimation, could then be used in a self-training simulator that features
difficulty level selection. For example, given a difficulty level x, query videos can be
randomly drawn by the simulator according to a Gaussian probability distribution
centered at x and of suitable variance. Such a structured training simulator should
make endomicroscopy training more relevant. Finally, a clinical validation would be
required to see whether the self-training simulator could help shorten the physician
learning curve.
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Based on: [André 11c¢| B. André, T. Vercauteren, A. M. Buchner, M. B. Wal-
lace and N. Ayache. Learning semantic and visual similarity for endomicroscopy

video retrieval. 2011. Article in submission. Additional material available in
[André 11d].

Traditional CBIR systems only deliver visual outputs, i.e. images having a sim-
ilar appearance to the query, which is not directly interpretable by the physicians.
Our objective is to provide a system for endomicroscopy video retrieval which de-
livers both visual and semantic outputs that are consistent with each other. In
Chapter 2, we developed the “Dense-Sift” method for endomicroscopy retrieval that
computes, for each video represented as a set of fused mosaic images, a single visual
signature. In this study, we first leverage semantic ground-truth data to transform

87
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these visual signatures into semantic signatures that reflect how much the presence
of each semantic concept is expressed by the visual words describing the videos. Us-
ing cross-validation, we demonstrate that our visual-word-based semantic signatures
enable a recall performance which is slightly lower than that of the visual signatures

7

computed by “Dense-Si, Nevertheless, the relevance of the semantic signatures
is shown by the fact that their recall performance remains significantly higher than
those of several state-of-the-art methods in CBIR. In a second step, we propose to
improve retrieval relevance by learning, from a perceived similarity ground truth,
an adjusted similarity distance. QOur distance learning method allows to improve,
with statistical significance, the correlation with the perceived similarity. Although
semantic signatures and visual signatures have comparable performances in terms
of correlation with the perceived similarity, the semantic signatures communicate
high-level medical knowledge while being consistent with the low-level visual signa-
tures and much shorter than them. Qur resulting retrieval system is efficient in
providing both visual and semantic information that are correlated with each other

and clinically interpretable by the endoscopists.

French summary

Les systémes de CBIR traditionnels ne délivrent que des sorties visuelles, c’est a
dire des images ayant une apparence similaire d la requéte. Or une sortie visuelle
n’est pas directement interprétable par le médecin dans son propre langage. Notre
objectif est de fournir un systéme de reconnaissance de vidéos endomicroscopiques
délivrant des sorties d la fois visuelles et sémantiques qui sont consistantes entre
elles. Dans le chapitre 2, nous avons développé la méthode “Dense-Sift” pour la
reconnaissance en endomicroscopie. Celle-ci calcule, pour chaque vidéo représentée
par un ensemble de mosaiques, une unique signature visuelle. Dans cette étude,
nous exploitons tout d’abord une vérité terrain sémantique pour transformer ces
stgnatures visuelles en signatures sémantiques qui reflétent a quel point la présence
de chaque concept sémantique est exprimée par les mots visuels décrivant les vidéos.
En utilisant la validation croisée, nous démontrons que nos signatures sémantiques
fondées sur les mots visuels permettent d’obtenir une performance de rappel légére-
ment inférieure a celle des signatures visuelles calculées par la méthode “Dense-
Sift”, mais supérieure de maniére significative auz performances de rappel obtenues
par plusieurs méthodes de ’état de l’art en CBIR. Dans un deuxiéme temps, nous
proposons d’améliorer la pertinence de la reconnaissance an apprenant, a partir
d’une vérité terrain sur la similarité percue, une distance de similarité ajustée.
Notre méthode d’apprentissage de la distance permet d’améliorer, de maniére signi-
ficative, la corrélation avec la similarité per¢ue. Bien que les signatures sémantiques
et les signatures visuelles aient des performances comparables en termes de corréla-
tion avec la similarité percue, les signatures sémantiques communiquent des con-
naissances médicales de haut niveau, tout en étant consistantes avec les signatures
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visuelles de bas niveau et beaucoup plus courtes qu’elles. Notre systéme de recon-
naissance final est efficace dans Uextraction d’informations visuelles et sémantiques
corrélées entre elles et interprétables sur le plan clinique par les endoscopistes.

5.1 Introduction

The expanding application of Content-Based Image Retrieval (CBIR) methods of
computer vision in the medical diagnosis field faces the semantic gap, which was
pointed out by Smeulders et al. in [Smeulders 00] and by Akgiil et al. in [Akgul 11],
as a critical issue. In CBIR, the semantic gap is the disconnection between the
reproducible computational representation of low-level visual features in images
and the context-dependent formulation of high-level knowledge, or semantics, to
interpret these images. Two medical images being highly similar in appearance
may have contradictory semantic annotations. So a CBIR system, which would be
only based on visual content, might lead the physician toward a false diagnosis.
Conversely, two medical images having exactly the same semantic annotations may
look visually dissimilar. So a CBIR system, for which the semantics of the query is
unknown, might not retrieve all clinically relevant images. In fact, when interpreting
a new image for diagnostic purposes, the physician uses similarity-based reasoning,
where similarity includes both visual features and semantic concepts. To mimic this
process, we aim at capturing the visual content of images using the Bag-of-Visual-
Words (BoW) method, and at estimating the expressive power of visual words with
respect to multiple semantic concepts. The consistency of the induced visual-word-
based semantic retrieval could then be tested against perceived similarity ground
truth.

Our medical application is the retrieval of probe-based Confocal Laser Endomi-
croscopy (pCLE) videos to support the early diagnosis of colonic cancers. pCLE
is a recent imaging technology that enables the endoscopist to acquire in vivo mi-
croscopic video sequences of the epithelium, and thus to establish a diagnosis in
real time. In particular, the in wvivo diagnosis of colonic polyps using pCLE is
still challenging for many endoscopists, because of the high variability in the ap-
pearance of pCLE videos and the presence of atypical cases such as serrated ade-
noma [Khalid 09]. Fig. 5.1 shows an illustration of the semantic gap in endomi-
croscopy retrieval, with several examples of mosaic images extracted from pCLE
videos. In Chapter 2 we have developed a dense BoW method, called “Dense-Sift”,
for the content-based retrieval of pCLE videos. We showed that, when evaluated
in terms of pathological classification of pCLE videos, “Dense-Sift” significantly
outperforms several state-of-the-art CBIR methods. Parts of this chapter are ex-
tensions of a preliminary study [André 11d] where we explored pCLE retrieval eval-
uation and distance learning in terms of perceived visual similarity. Here, our
objective is to learn the pCLE similarity distance both in terms of visual appear-
ance and semantic annotations, in order to provide the endoscopists with semantic
insight into the retrieval results.



90 Chapter 5. Learning pCLE Semantic and Visual Similarity
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Figure 5.1: Illustration of the semantic gap: content-based retrieval of
visually similar pCLE videos having dissimilar semantic annotations. The 5
most similar pCLE videos are retrieved by the “Dense-Sift” method that only relies on
visual features. Semantic concepts which were annotated as present in a given video
are underlined. For each video, the pathological diagnosis, either malignant or non-
malignant, is indicated below the semantic concepts. For illustration purposes, videos
are represented by mosaic images.

To this purpose, we introduce in Section 5.2 two new types of ground truth,
which are different from the diagnosis ground truth and the difficulty ground truth
used in the previous chapters. The first new type of ground truth contains vi-
sual similarities perceived by endoscopists between pCLE videos, evaluated on a
four-point Likert scale. The second new type of ground truth contains multiple
binary semantic concepts identified by experts in pCLE videos. These eight binary
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concepts, illustrated in Fig. 5.2, have been defined to support the in vivo pCLE di-
agnosis of colonic polyps. From the visual signatures computed by our “Dense-Sift”
retrieval method, and from the semantic ground truth, we build visual-word-based
semantic signatures using a Fisher-based approach detailed in Section 5.4. We
evaluate the relevance of the resulting semantic signatures, first from the sole se-
mantic point of view, with ROC curves showing classification performances for each
semantic concept, and then from the perceptual point of view, with sparse recall
curves showing the ability of the induced retrieval system to capture video pairs
perceived as very similar. Retrieval performance is also evaluated by measuring the
correlation of the induced similarity distance with the perceived similarity ground
truth. In order to improve retrieval relevance, we propose in Section 5.5 a method
to learn an adjusted similarity distance from the perceived similarity ground truth.
A linear transformation of video signatures is optimized, that minimizes a margin-
based cost function differentiating very similar video pairs from the others. The
results shown in Section 5.6 show that the visual-word-based semantic signatures
yield a recall performance which is slightly lower than that of the original visual
signatures computed by “Dense-Sift”, but significantly higher than those of several
state-of-the-art methods in CBIR. In terms of correlation with the perceived sim-
ilarity, the retrieval performance of semantic signatures is better, with statistical
significance, than those of the state-of-the-art methods, and comparable to that of
the original visual signatures. For both semantic signatures and wvisual signatures,
the distance learning method allows to improve, with statistical significance, the
correlation with the perceived similarity. Our resulting pCLE retrieval system, of
which visual and semantic outputs are consistent with each other, should better
assist the endoscopist in establishing a pCLE diagnosis.
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Figure 5.2: Examples of training pCLE videos represented by mosaic images
and annotated with the 8 semantic concepts. The two mosaics on the top show
neoplastic (i.e. malignant) colonic polyps, while the two mosaics on the bottom show
non-neoplastic (i.e. non-malignant) colonic polyps.

5.2 Ground Truth for Perceived Visual Similarity and
for Semantics

5.2.1 pCLE database

Our video database is a large subset of the Colonic Polyp database used in Chap-
ter 2, from which all the polyps having incomplete semantic data have been ex-
cluded. The resulting database contains 118 pCLE videos of colonic polyps that
were acquired from 66 patients. The lengths of the acquired pCLE videos range from
1 second to 4 minutes. Each pCLE video is represented as a set of fused mosaic im-
ages built with the video-mosaicing technique of Vercauteren et al. [Vercauteren 06].
Dabizzi et al. [Dabizzi 11] and De Palma et al. [De Palma 10] recently showed that
pCLE mosaics have the potential to replace pCLE videos for a comparable diagno-
sis accuracy and a significantly shorter interpretation time. For this reason, pCLE
mosaic images will not only be used as input for our retrieval system, but also as
retrieval outputs attached to the extracted similar videos.
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5.2.2 Ground Truth for Perceived Visual Similarity

To generate a pairwise similarity ground truth between pCLE videos, we designed
an online survey tool, called VSS [VSS 11], which is available online at http://
smartatlas.maunakeatech.com for testing purpose (login: MICCAI-User, password:
MICCAI2011). The VSS tool allows multiple observers, who are fully blinded to the
video metadata such as the pCLE diagnosis, to qualitatively estimate the perceived
visual similarity degree between videos. For each video couple, the following four-
point Likert scale are proposed by the survey tool: very dissimilar, rather dissimilar,
rather similar and very similar. Because interpreting whole video sequences is time
consuming, the VSS supports this task by making available both the whole video
content and for each video, the corresponding set of static mosaic images providing
a visual summary. A screenshot of the online VSS tool is shown in Fig. 5.3. Each
scoring process, as illustrated in Fig. 5.4, is characterized by the random drawing of
3 video couples (1o, I1), (Iy, I2) and (I, I3), where the candidate videos Iy, I and
I3 belong to patients that are different from the patient of the reference video I,
in order to exclude any patient-related biases. 17 observers, ranging from middle
expert to expert in pCLE diagnosis, performed as many scoring processes as they
could. Our generated ground truth can be represented as an graph where the
nodes are the videos and where each couple of videos may be connected by zero,
one or several edges representing the similarity scores. As less than 1% of these
video couples were scored by more than 4 distinct observers, it was not relevant to
measure inter-observer variability. In total, 4,836 similarity scores were given for
2,178 distinct video couples. Thus 16.2% of all 13,434 distinct video couples were
scored. Compared to our preliminary study [André 11d] where 14.5% of all possible
video couples were scored, the perceived similarity ground truth was enriched for
this study in order to better differentiate potentially very similar video pairs from
the others, a goal which is closer to our retrieval purpose.

If the video couples were randomly drawn with a uniform non-informative prior
by the VSS tool, we would have drawn much more video pairs perceived as dissimilar
than video pairs perceived as very similar. The resulting perceived similarity ground
truth would have been too far from our clinical application which aims at extracting
highly similar videos. For this reason, we use the a priori similarity distance dy;s
computed by the “Dense-Sift” method to enable two modes for the drawing of
video pairs: while the first mode biases the drawing by the use of the similarity
distance dpior computed by “Dense-Sift”, the second mode only allows the drawing
of nearest neighbors defined by “Dense-Sift”.

o In the first mode, the probability of drawing a video couple (I;, I;) is propor-
tional to the inverse of the density of d ior (1, I;).

« In the second mode, the video I; is one of the 5 nearest neighbors of the video
I; according to the retrieval distance dyis.

A total of 3,801 similarity scores was recorded with the first mode, and 1,035 with
the second mode.
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Figure 5.3: Screenshot of the online VSS tool: visual similarity scoring between the
reference Video Query and the candidate Video 3. Each video is summarized by a set
of mosaic images. Vertical scrollbars allow to see more mosaics of the Video Query (on
the left), or the two other candidate videos 1 and 2 with their mosaics (on the right).
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Figure 5.4: Schematic outline of the online “Visual Similarity Scoring” tool
showing the example of a scoring process, where 3 video couples (I, ),

(Io,I2) and (Ip,I3) are proposed. Each video is summarized by a set of mosaic
images.
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’Semantic concept ‘Indicator of representativity
cl. abnormal nuclei 46.6 %
c2. abnormal nuclei density 63.6 %
3. blood vessel 475 %
c4. normal goblet cell 72.0 %
¢5. round crypt 475 %
c6. elongated crypt 64.4 %
¢7. lumen 27.1 %
c8. star-shaped opening 18.6 %

Table 5.1: Indicator of the representativity of each semantic concept. The
representativity of each semantic concept is measured by the percentage of the videos
in the database where the concept is annotated as visible.

Although the resulting similarity graph remains very sparse, we will show in Sec-
tion 5.6 that it constitutes a valuable ground-truth database for retrieval evaluation
and for perceived similarity learning.

5.2.3 Ground Truth for Semantic Concepts

All the acquired pCLE videos were manually annotated with M = 8 binary semantic
concepts describing the observed colonic polyps. These concepts are illustrated on
pCLE mosaic images in Fig. 5.2. In a given pCLE video, each semantic concept is
defined as either visible, potentially several times, or not visible at all in the video.
The first two concepts, abnormal nuclei (c1) and abnormal nuclei density (c2), which
are the most difficult to identify, were annotated by two expert endoscopists. With
the support of the modified Mainz criteria identified by Kiesslich et al. [Kiesslich 04]
six other concepts were annotated: blood vessel (c3), normal goblet cell (c4), round
crypt (cs), elongated crypt (cg), lumen (c7) and star-shaped opening (cg). If the
semantic j*" concept is visible in the video then cj = Ll else ¢; = 0. Table 5.1 shows,
for each semantic concept, the percentage of the videos in the database where the
concept is annotated as visible.

5.3 From pCLE Videos to Visual Words

“Dense-Sift” is the pCLE video retrieval method developed in Chapter 2 that uses
a dense description based on a disk radius of 60 pixels and that decomposes a
video as a set of fused mosaic images. As a result, “Dense-Sift” computes a visual
word signature Ais(I) = (wi,...,wk) for each pCLE video I, where w! is the
frequency of the i*" visual word in the video I. We define the visual similarity

distance dyis(I,J) between two videos I and J as the x? pseudo-distance between



96 Chapter 5. Learning pCLE Semantic and Visual Similarity

their visual word signatures computed by “Dense-Sift”:

dVis(Ia J) - XQ(yVis(I)wais(‘]))
1 (wf —w])?

= 3 2ie{1,.. K} wlw! >0 wl +w (5.1)

As in Chapter 2, we will compare the retrieval performances of our “Dense-
Sift” method with the following three competitive CBIR methods: “HH-Sift” of
Zhang et al. [Zhang 07], “Textons” of Leung and Malik [Leung 01], and “Haral-
ick” [Haralick 79]. Our “Dense-Sift” method was proved in Chapter 2 to be the
best method in terms of pathological classification of pCLE videos. “Dense-Sift”
will also be proved to be the best method in terms of correlation with the perceived
visual similarity, as shown in Section 5.6. For these reasons, we decide to build
the semantic signatures of pCLE videos from the visual signatures computed by
“Dense-Sift”.

5.4 From Visual Words to Semantic Signatures

Among the approaches in bridging the semantic gap, recent methods based on
random-walk processes on visual-semantic graphs were proposed by Poblete et al.
[Poblete 10] and by Ma et al. [Ma 10]. Latent semantic indexing approaches have
also been investigated, for example by Caicedo et al. [Caicedo 10] to improve medi-
cal image retrieval. Rasiwasia et al. [Rasiwasia 07, Rasiwasia 10] proposed a proba-
bilistic method which we consider as a reference method for performing a semantic
retrieval which is based on visual features. In particular, their approach estimates
for each semantic concept the probability that, given a visual feature vector in an
image, the semantic concept is present in the image. In [Kwitt 11], Kwitt et al.
recently applied this method for learning pit pattern concepts in endoscopic im-
ages of colonic polyps. These pit pattern concepts at the macroscopic level can be
seen as corresponding to our semantic concepts at the microscopic level. In order
to learn semantic concepts from visual words in endomicroscopic videos, we pro-
pose a rather simple method providing satisfactory results. The application of a
probabilistic method such as the one in [Rasiwasia 07] on our data was not suc-
cessful, certainly because of our relatively small sample size, but we plan to further
investigate it. Our proposed method is a Fisher-based approach that estimates
the expressive power of each of the K visual words with respect to each of the M
semantic concepts.

Let D@ he the set of training videos. Given the i*® visual word and the 5
semantic concept, we estimate the discriminative power of the i*" visual word with
respect to j'' semantic concept using the signed Fisher criterion:

o Ml(’b?.]) — /’LO(Z7])
i,j — . A
T 0t(i, ) + 03 (i, )
where 11,(4, ) (resp. ag (4,7)) is the mean (resp. the variance) of the visual word
frequencies {w{, c]I» =p, I € D"} withp = 0 or p = 1. We call F the re-

(5.2)
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Figure 5.5: An example of a star plot based on the 8 semantic concepts.
The coordinate value along the j*" radius corresponds to the normalized value of the
semantic signature at the j*™ concept.

sulting matrix of Fisher’s weights. Given a video I of visual signature (1) =
(w{, o wf(), we define the semantic weight of I with respect to j™ semantic concept
as the following linear combination: S]I- = YK F;jw!. Thus, the transformation
from the visual signature #is(I) into its visual-word-based semantic signature
Fsem(I) = (s],...,8L,) is given by the equation:

Fsem(I) = FT A (1) (5.3)

The signed value sjl- reflects how much the presence of the j'™ semantic concept is
expressed by the visual words describing the video I. Finally, a visual-word-based
semantic similarity distance between two videos I and J can be defined for example
using the L? norm:

dSem(Ia J) = HySem(I) _tjﬂSem(J)HL2 (5‘4)

It thus becomes possible to use our short semantic signature of size M = 8 in or-
der to retrieve pCLE videos that are the closest to a video query according to the
semantic distance dgen. In Section 5.6 we demonstrate that, in terms of correla-
tion with the perceived visual similarity, the retrieval performance of the semantic
distance dgen is comparable to that of the visual distance dyis.

In order to provide the endoscopists with a qualitative visualization of seman-
tic signatures, we provide an intuitive representation of any semantic signature
using a star plot of M radii, as shown in Fig. 5.5. Given a video I and the j*®
semantic concept, we normalize the semantic weight s]I- into (SJI - min{s‘j] ,J €
Dreiny) /(max{s],J € D"} —min{s/,J € D""}) in order to obtain the co-
ordinate value of I along the j* radius of the star plot. For example, in Fig. 5.6
the star plots represent, from some tested videos, the visual-word-based semantic
signatures that have been learned from annotated training videos, such as the ones
shown in Fig. 5.2.
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Figure 5.6: Examples of tested pCLE videos, represented by mosaic images,
and visualization of their learned semantic signatures using the star plot, as
explained in Fig. 5.5. The font size of each written semantic concept is proportional
to the value of the concept coordinate in the star plot. Underlined concepts are those
which were annotated as present in the semantic ground truth. From top to bottom,
the first three mosaics show non-neoplastic (i.e. non-malignant) colonic polyps and the
fourth mosaic shows a neoplastic (i.e. malignant) colonic polyp.



5.5. Distance Learning from Perceived Similarity 99

5.5 Distance Learning from Perceived Similarity

Similarity distance learning has been investigated by recent studies to improve
classification or recognition methods. Yang et al. [Yang 10] proposed a boosted
distance metric learning method that projects images into a Hamming space where
each dimension corresponds to the output of a weak classifier. Weinberger and
Saul [Weinberger 09] explored convex optimizations to learn a Mahalanobis trans-
formation such that distances between nearby images are shrunk if the images
belong to the same class and expanded otherwise. At the level of image descriptors,
Philbin et al. [Philbin 10] have a similar approach that transforms the description
vectors into a space where the clustering step more likely assigns matching descrip-
tors to the same visual word and non-matching descriptors to different visual words.
In order to model the perceived visual similarity between digital mammograms, El
Naga et al. [El-Naga 04] proposed a hierarchal similarity learning approach, based
on neural networks and support vector machines, which allows the incorporation of
relevance feedback.

In order to improve the relevance of pCLE retrieval, our objective is to shorten
the distances between very similar videos and to enlarge the distances between non-
very similar videos. As the approach of Philbin et al. [Philbin 10] is closer to our
pairwise visual similarity ground truth, we propose a generic distance learning tech-
nique inspired from their method. We aim at finding a linear transformation matrix
W which maps given video signatures to new signatures that better discriminate
very similar video pairs from the other video pairs. We thus consider two groups:
D is the set of N training video couples that have been scored with +2 and D_
is the set of N_ training video couples that have been scored with +1, —1 or —2.
We optimize the transformation W by minimizing the following margin-based cost
function f:

NlJFZ(LJ)em g(B—dW L (I),W Z(J)))

oy % S nen. 9dW S (1), W F(J)) - B)

fW,B8,7) =

(5.5)

where .#(I) is the signature of the video I, d(.,.) is the chosen distance between
the video signatures, e.g. L? or x?, and g(z) = log(1 + e~?) is the logistic-loss
function. The cost function f has the three following parameters: the transfor-
mation matrix W, the margin 8 and the constant parameter v that potentially
penalizes either non-very similar nearby videos or very similar remote videos. We
could optimize f with respect to all 3 parameters, but this would make the search
for the optimum more sensitive to local minima. We therefore decide to fix the
value of the margin § using an intuitive heuristic: we take as a relevant value for
0B the threshold on the distances between video signatures that maximizes the clas-
sification accuracy between D, and D_. All possible values of the parameter
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are then discretized into a finite number of values, at which the cost function f is
optimized according to W. As long as the distance d(.,.) is differentiable, f can be
differentiated with respect to W. Given a pCLE video I, its signature .7 (1) of size
X is mapped to the transformed signature WP . (I), where W is the optimized
transformation matrix of size X x X. The learned similarity distance between two
pCLE videos I and J is then defined as:

d'eern (1, J) = (WL (1), W7 (J))) (5.6)

The optimal value of v, determined using cross-validation, is the one that maximizes
the Pearson correlation coefficient between the learned similarity distance d“¢*™™ and
the perceived similarity.

The application of this generic distance learning scheme to the semantic sig-
natures of size X = 8 is straightforward: the transformation matrix W is of size
X x X =64, .Y = Ssem, the intuitive distance is d(z,y) = ||z — y||2. Our
experiments with cross-validation led to v = 10.

However, for the application on the visual signatures of size X = 100, .%¥ = His
and the X x X = 10,000 coeflicients of the transformation matrix W should be
positive in order to maintain the positiveness of visual word frequencies. Besides,
as our sample size is relatively small, there is a risk of overfitting if all the 10,000
coefficients of W are involved in the optimization process. For this reason, we only
consider the optimization of diagonal matrices W, which amounts to optimize K =
100 visual word weights. Finally, the x? pseudo-distance, initially used between
visual word signatures, is an intuitive distance d(., .) between the transformed visual
word signatures which should be L'-normalized before x? measures are performed:

W Ans(I) W HAis(J)

. . = 2
d(W yVIS(I)7W yVlS(J)) X (HW yViS(I)||L17 HW yVis(J)HLl

) (BT

Due to the choice of the x? pseudo-distance, the differentiation of the cost function
f with respect to W is less straightforward but feasible. We also tried the L?
distance for the distance d(.,.) but we did not retain it because the results were not
as good as with the y? pseudo-distance. Our experiments with cross-validation for
the visual signatures also led to v = 10.

5.6 Evaluation and Results

5.6.1 Cross-validation

In order to exclude any learning bias or patient-related bias, we used m x g-fold
cross-validation, i.e. m random partitions of the database into ¢ subsets, such that:
each subset contains approximately the same number of patients, and all the videos
of a same patient are in the same subset. Each of these subsets is successively
the testing set and the union of the ¢ — 1 others is the training set. Given our
sparse ground truth for perceived similarity, ¢ must be small enough in order to
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have enough similarity scores in the testing set, and large enough to ensure enough
similarity scores in the training set. For our experiments, we performed m = 30
random partitions of our pCLE video database into ¢ = 3 subsets. When computing
any performance indicator, we will consider as a robust indicator value the median
of all the indicator values computed with cross-validation.

5.6.2 Evaluation of Semantic Concept Extraction
Methodology

In order to evaluate, from the semantic point of view, our visual-word-based seman-
tic extraction method, we propose to measure the performance of each of the M = 8
semantic weights contained in the semantic signature, using classification. For the
7 semantic concept, we compute a ROC curve that shows the matching perfor-
mance of the learned semantic weight s; with respect to the semantic ground truth
c¢j. The obtained ROC curves reflect how well the presence of semantic concepts

can be learned from the visual words.

Results

From the semantic point of view, the performance of the semantic signature can
be appreciated in the ROC curves shown in Fig. 5.7. The semantic concepts, from
the best classified to the worst classified, are: elongated crypt, round crypt, ab-
normal nuclei density, normal goblet cell, abnormal nuclei, lumen, blood vessel and
star-shaped opening. The fact that the concept elongated crypt is very well classified
shows that the visual words clearly express whether this concept is present or not in
pCLE videos. As the presence of elongated crypts in a pCLE video is a typical cri-
terion of malignancy for the endoscopists, we deduce that semantic signatures could
be successfully used for pCLE classification between malignant and non-malignant
colonic polyps. Although the concepts blood vessel and star-shaped opening are
poorly classified, they contribute to the clinical relevance of the visual-word-based
semantic retrieval because their ROC curves are above the diagonal. Indeed, we will
show in the next sections that these concepts act as “weak classifiers” for boosting
similarity distance learning.

As the semantic classification deriving from semantic signatures is based on a
rather intuitive Fisher-based linear method, it is worth to be compared with more
sophisticated classification method, such as Support Vector Machines (SVM). We
thus test the classification performance of a linear SVM and a non-linear SVM
based on radial basis functions, which we feed with the visual word signatures. The
resulting ROC curves are shown in Figs. 5.8 and 5.9. According to the areas under
the ROC curves shown in Table 5.2, most of the ROC curves obtained with the linear
SVM and with the non-linear SVM are statistically worse than those obtained with
our intuitive method, and none of them are statistically better. These comparison
results demonstrate the relevance of our intuitive Fisher-based method in terms of
semantic classification, and thus the relevance of the semantic signatures.
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Figure 5.7: ROC curves showing, for each semantic concept, the classifica-
tion performance of the semantic signature .#sem. Each ROC curve associated
with a concept ¢; is the median of the ROC curves computed with 303 cross-validation
by thresholding on the semantic weight s;.
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Figure 5.9: ROC curves showing the semantic classification performed by
a linear SVM fed with the visual word signatures. Each ROC curve associated
with a concept ¢; is the median of the ROC curves computed with 30 x 3 cross-

validation.

Semantic AUC AUC AUC
concept Non-linear SVM | Linear SVM | Our method
cl. abnormal nuclei 51.4 % 62.9 % 75.6 %
c2. abnormal nuclei density 65.8 % 75.7 % 81.8 %
3. blood vessel 53.6 % 55.0 % 66.2 %
c4. normal goblet cell 69.8 % 73.6 % 71.6 %
¢5. round crypt 58.9 % 62.0 % 86.3 %
6. elongated crypt 89.6 % 94.2 % 96.7 %
c7. lumen 64.7 % 65.5 % 68.6 %
c8. star-shaped opening 57.0 % 59.4 % 62.8 %

Table 5.2: Area under the ROC curves (AUC) for each classification method
according to each semantic concept. The corresponding ROC curves are shown
in Figs. 5.9, 5.8 and 5.7. According to the AUC comparisons, our proposed intuitive
Fisher-based method outperforms the linear SVM method (with statistical significance
for all semantic concepts except ¢4). Besides, our method outperforms the non-linear
SVM method for all semantic concepts except ¢4 (for which the performance is not
statistically worse) and statistical significance is demonstrated for the concepts cl, ¢2,
c3 and cb.
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5.6.3 Retrieval Evaluation Tools
Methodology

Standard recall curves are a common means of evaluating retrieval performance.
However, because of the sparsity of our perceived similarity ground truth, it is not
possible to compute them in our case. As an alternative, we define sparse recall
curves. At a fixed number k of nearest neighbors, we define the sparse recall value
of a retrieval method as the percentage of L-scored video couples, with L = +2 (or
L >=1), for which one of the two videos has been retrieved among the k nearest
neighbors of the other video. The resulting sparse recall curve shows the ability of
the retrieval method to extract, among the first nearest neighbors, videos that are
perceived as wvery similar to the video query.

The evaluation of a retrieval method against perceived similarity ground truth

can be qualitatively illustrated by four superimposed histograms H,,
L € {-2,-1,41,+2}. Hp is defined as the histogram of the similarity distances
which were computed by the retrieval method in the restricted domain of all L-
scored video couples, where L is one of the four Likert points: wvery dissimilar
(L = —2), rather dissimilar (L = —1), rather similar (L = +1) and very simi-
lar (L = +2). The more separated these four histograms are, the more likely the
distance computed by the retrieval method will be correlated with perceived simi-
larity ground truth. We use the Bhattacharyya distance as a separability measure
between each pair of histograms.

Possible indicators of the correlation between the distance computed by a re-
trieval method and the perceived similarity ground truth are Pearson correlation ,
Spearman p and Kendall 7. Compared to Pearson m which measures linear depen-
dence based on the data values, Spearman p and Kendall 7 are better adapted to the
psychometric Likert scale because they measure monotone dependence based on the
data ranks [Barnett 91]. Kendall 7 is less commonly used than Spearman p but its
interpretation in terms of probabilities is more intuitive. To assess statistical signif-
icance for the comparison between two correlation coefficients associated with two
retrieval methods, we have to perform the adequate statistical test. First, ground-
truth data lying on the four-point Likert scale can obviously not be characterized by
a normal distribution. Data ranks should be used instead of data values. Second,
the rank correlation coefficients measured for two methods are themselves corre-
lated because they both depend on the same ground-truth data. For these reasons,
we decide to perform Steiger’s Z-tests, as recommended by Meng et al. [Meng 92],
and we apply it to Kendall 7. We refer the reader to the Appendix A for a detailed
description of the Steiger’s Z-test.

Results

For our experiments, we compared the retrieval performances of “Dense-Sift” with
those of “HH-Sift”, “Haralick” and “Textons” presented in Section 5.3 which are
considered as state of the art in CBIR. We call “Semantic” the visual-word-based
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Figure 5.10: Sparse recall curves associated with the retrieval methods in
L-scored domains where L = +2 (left) or L >=1 (right).
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Figure 5.11: Sparse recall curves, before and after distance learning using
cross-validation, in L-scored domains where L = +2 (left) or L >=1 (right).
Each sparse recall curve is the median of the sparse recall curves computed with 30 x 3
cross-validation.

semantic retrieval method, “30x3-Semantic” the same method with 30 x 3 cross-
validation and “30x3-Dense-Sift” the “Dense-Sift” with 30 x 3 cross-validation.
“30x3-Semantic+Learn” (resp. “30x3-Semantic+Learn”) is the “30x3-Semantic”
method (resp. “30x3-Dense-Sift+Learn” method) improved with distance learning.

In terms of sparse recall performances, we observe in Figs. 5.10 and 5.11 that the
retrieval methods from best to worst are: “Dense-Sift+Learn”, “Dense-Sift”, “Se-
mantic+Learn”, “Semantic”, “Textons”, “HH-Sift” and “Haralick”. In particular,
perceived similarity distance learning allows to slightly improve recall performance.
The fact that “Dense-Sift” outperforms “Semantic” before and after distance learn-
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Bhattacharyya distance | L=+2|L=+4+2|L=42|L=+1|L=+1|L=-1
between Hist(L) and||L'=+4+1|L'=-1|L=-2|L'=-1|L'=-2|L"'=-2
Hist(L')

10x3-Sem+-Learn 0.024 0.175 0.468 0.078 0.294 0.072
10x3-Sem 0.018 0.145 0.441 0.071 0.299 | 0.075
10x3-DS+Learn 0.036 | 0.236 | 0.500 | 0.087 | 0.254 0.047
10x3-DS 0.030 0.205 0.412 0.084 0.219 0.036
Semantic (Sem) 0.046 0.200 | 0.571 0.090 | 0.352 | 0.102
Dense-Sift (DS) 0.051 | 0.257 | 0.519 | 0.096 | 0.251 0.051
Textons 0.030 0.152 0.193 0.067 0.095 0.023
Haralick 0.042 0.089 0.206 0.038 0.125 0.048
HH-Sift 0.037 0.098 0.102 0.047 0.042 0.027

Table 5.3: Measures of separability, using Bhattacharyya distance, between
the four L-scored histograms H; shown in Figs 5.12 and 5.13 for each re-
trieval method. For the retrieval methods using 30 x 3 cross-validation, we computed
the median of the Bhattacharyya distances.

ing might be explained by the small size of the semantic signatures (M = 8) with
respect to the larger size of the wisual signatures (K = 100): semantic signatures
might be too short to discriminate very similar video pairs with the same perfor-
mance as visual signatures.

On the superimposed histograms shown in Figs. 5.12 and 5.13, we observe qual-
itatively that “Dense-Sift” and “Semantic” globally better separate the four his-
tograms than “HH-Sift”, “Haralick” and “Textons”, and that perceived similarity
distance learning allows to better separate the histogram H.s from the other his-
tograms. These observations are quantitatively confirmed by the Bhattacharyya
distances shown in Table 5.3. The correlation results shown in Tables 5.4 and
5.5 also confirm these findings and demonstrate that, with statistical significance,
the similarity distances computed by “Dense-Sift” and “Semantic” are better cor-
related with the perceived similarity than the similarity distances computed by
“HH-Sift”, “Haralick” and “Textons”. Besides, with statistical significance, the
learned similarity distances are better correlated with the perceived similarity than
the original distances. These results also show that the correlation performance of
“30x3-Semantic+Learn” (resp. “30x3-Semantic”) is comparable to that of “30x3-
Dense-Sift+Learn” (resp. 30x3-Dense-Sift”), as their difference is not statistically
significant.
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Figure 5.12: Superimposed histograms H;, of the similarity distances in each
L-scored domain. From top left to bottom right: “HH-Sift” method, “Haralick”

method, “Textons” method, “Dense-Sift” method, “Semantic” method.
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Figure 5.13: Superimposed histograms Hj; of the similarity distances in
each L-scored domain. On the top: “30x3-Dense-Sift” method (left) and “30x3-
Dense-Sift+Learn” method (right). On the bottom: “30x3-Semantic” method (left)
and “30x3-Semantict+Learn” method (right). Each histogram is the median of the
histograms computed with 30 x 3 cross-validation.

Retrieval M1 M2 M3 M4 M5
method Sem DS Textons | Haralick | HH-Sift
Pearson 54.6 % 51.6 % 353% | 354% | 158 %
Spearman p 55.3 % 55.7 % 382% | 345% | 228 %
Kendall 7 49.4 % 50.0 % 341 % 304 % |20.0%
> M3,M4|> M3,M4| > M4 | > M5
Steiger’s Z-test > M5 > M5 > M5
on 7; p-value || p<107 | p <1079 |p <104 |p < 10715
~ M2
p = 0.486

Table 5.4: Indicators of correlation between the similarity distance com-
puted by the retrieval methods and the ground truth. > M indicates that the
improvement from method M is statistically significant, ~ M indicates that it is not.
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Retrieval M1” M1’ M2” M2’
method 10x3-Sem+Learn | 10x3-Sem | 10x3-DS+Learn | 10x3-DS
Pearson 55.7 % 53.3 % 53.4 % 51.4 %
o 0.3 % 0.2 % 0.2 % 0.2 %
Spearman p 56.6 % 53.8 % 58.2 % 55.5 %
o 0.3 % 0.2 % 0.2 % 0.3 %
Kendall 7 50.9 % 48.1 % 52.4 % 49.8 %
o 0.3 % 02 % 0.2 % 02 %
> M1’ > M1’
Steiger’s Z-test > M2’
on 7; p-value p =0.022 p < 0.003
~ M2”,M2’ ~ M2’ ~ M1”
p > 0.05 p=0.163 p > 0.05

Table 5.5: Indicators of correlation between the similarity distance com-
puted by the retrieval methods and the ground truth. After performing 30 x 3

cross-validation, we compute and show the median of correlation coefficients.

The

standard deviation o of each correlation estimator can be computed from the standard
deviation of the n samples osqmpies = V12 — 1lo. We also show the median of p-values
when comparing two retrieval methods using 30 x 3 cross-validation. > M indicates
that the improvement from method M is statistically significant, ~ M indicates that

it is not.
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5.6.4 Discussion

Looking at the sparse recall curves, although the results based on semantic signa-
tures are not as good as those based on wvisual signatures, the curve of semantic
signatures is much closer to the curve of visual signatures than the curves of state-of-
the-art methods. We can therefore be rather confident in the fact that the semantic
signatures are informative. Sparse recall is only a means to evaluate the relevance
of the semantic signatures. Indeed, we want to base the retrieval of pCLE videos
on visual content and not on semantic annotations, otherwise the retrieval system
might retrieve videos that are semantically related but not similar in appearance,
in which case the physician might lose trust in the retrieval system. In order to
ensure both the higher recall of the visual word retrieval method after distance
learning, and the clinical relevance of the semantic information contained in the
semantic signature, we propose a pCLE retrieval system where the most similar
videos are extracted using the “Dense-Sift+Learn” method, and where the star
plots representing semantic signatures are displayed. Figs. 5.14 and 5.15 shows
some typical results of our pCLE retrieval system with 5 nearest neighbors, with
the added semantic ground truth represented by underlined concepts. In clinical
practice, the semantic ground truth is not known for the video query, but in these
retrieval examples it is disclosed for illustration purposes. The extracted pCLE
videos, represented as mosaic images, look quite similar in appearance to the query,
the first neighbor being more visually similar than the last one. On each star plot,
the font size of each written semantic concept is proportional to the normalized
value of its semantic weight. Semantic concepts written in large characters may
or may not be in agreement with the underlined concepts present in the ground
truth. Most importantly, if for a given pCLE video, the semantic ground truth is
very different from the estimated semantic signature, then the difficulty to inter-
pret the video for diagnosis purpose might be high, because visual content is not
correlated with semantic annotations. Our visual-word-based semantic signature
would thus have the potential to distinguish ambiguous from non-ambiguous pCLE
videos. The remaining disagreements between the learned semantic information
and the semantic ground truth show that, even though we have achieved encourag-
ing results in extracting semantics from visual words, further investigations are still
needed to bridge the semantic gap between low-level visual features and high-level
clinical knowledge.
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Figure 5.14: Examples of pCLE retrieval results from a non-neoplastic video
query. The 5 most similar videos are retrieved by “30x3-Dense-Sift+Learn” method.
For each video, the star plot representation of its semantic signature is provided. The
font size of each written semantic concept is proportional to the value of the con-
cept coordinate in the star plot. Underlined concepts are those which were annotated
as present in the semantic ground truth. In practice, the semantic ground truth is
not known for the video query, but it is disclosed here for illustration purposes. For
illustration purposes, videos are represented by mosaic images.
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Figure 5.15: Examples of pCLE retrieval results from a neoplastic video
query. The 5 most similar videos are retrieved by “30x3-Dense-Sift+Learn” method.
For each video, the star plot representation of its semantic signature is provided. For
illustration purposes, videos are represented by mosaic images.
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5.7 Conclusion

The pCLE retrieval system proposed in this study provides the endoscopists with
clinically relevant information, both visual and semantic, that should be easily
interpretable to make an informed pCLE diagnosis. Our main contributions in
this chapter are: (1) a Fisher-based method that builds short visual-word-based
semantic signatures, (2) an intuitive representation of these semantic signatures
using star plots, (3) the creation of an online tool to generate a relevant ground truth
for visual similarity perceived by multiple endoscopists between pCLE videos, (4)
a method for distance learning from perceived visual similarity to improve retrieval
relevance, and (5) the implementation of several tools to evaluate retrieval methods,
such as correlation measures and sparse recall curves. Moreover, this proposed
methodology could be applied to other medical or non-medical databases, as long
as ground-truth data is available.

Despite our relatively small pCLE database and despite the sparsity of the
perceived similarity ground truth, our evaluation experiments show that the visual-
word-based semantic signatures extract, from low-level visual features, a higher-
level clinical knowledge which is consistent with respect to perceived similarity.
Possible disagreements between the semantic estimation, based on visual features,
and the semantic ground truth could be investigated in order to estimate the inter-
pretation difficulty of pCLE videos, which we explored in Chapter 4 only based on
visual words. Future work will focus on more sophisticated methods to learn jointly
visual and semantic similarity. Our long-term objective is the clinical evaluation of
our visual-semantic retrieval system to see whether it could help the endoscopists
in making more accurate pCLE diagnosis.






CHAPTER 6

Conclusions

Table of Contents

6.1 Contributions and Clinical Applications . . . . ... ... .. 115
6.2 Perspectives. . . . . . . . . . i i s e e e e 118

French summary

Notre but a travers ce manuscrit a été de démontrer comment le diagnostic endomi-
croscopique in vivo des cancers gastro-intestinaux peut étre facilité par un systéme
de reconnaissance d’images par le contenu, ajusté et combiné avec l’apprentissage
de connaissances cliniques de plus haut niveau. Ce systéme de reconnaissance,
complété par estimation de caractéristiques non visuelles telles que la difficulté
d’interprétation et les concepts sémantiques, constitue notre atlas intelligent. Les
applications cliniques de cet atlas intelligent couvrent l'aide au diagnostic, la for-
mation et le partage des connaissances en endomicroscopie.

Les principales perspectives que avons identifiées pour la suite de cette thése sont
la validation clinique, la généralisation d d’autres organes et a d’autres applications,
une meilleure utilisation des informations spatio-temporelles, et ’élaboration d’un
systeme multimodal de reconnaissance capable d’inclure, en plus des images endoms-
croscopiques, des images endoscopiques et histologiques, ainsi que des métadonnées
textuelles.

6.1 Contributions and Clinical Applications

Our goal throughout this manuscript has been to show how the in vivo endomi-
croscopy diagnosis of gastrointestinal cancers can be supported by a content-based
image retrieval approach that is adjusted and combined with the learning of higher-
level clinical knowledge. The resulting pCLE retrieval system, augmented with the
estimation of non-visual features such as interpretation difficulty and semantic con-
cepts, is our proposed “Smart Atlas”. The clinical applications of the “Smart Atlas”
include pCLE diagnosis support, training support and knowledge sharing.

Our successive contributions have developed generic and objective tools, rang-
ing from low-level to high-level feature extraction tools, in order to guide the en-
doscopists in their subjective interpretation of pCLE video sequences. Although
these retrieval tools could be easily extended for other medical or non-medical
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applications, we have presented in this thesis, their concrete applications to the
early diagnosis of gastrointestinal cancers, using two different pCLE databases: the
Colonic Polyps and the Barrett’s Esophagus. This has resulted in several clini-
cal publications [André 10b, André 10b, André 11a]. Our evaluation methods for
measuring retrieval performance have also evolved, from indirect evaluations using
classification in [André 09a, André 10c, André 1le], to direct evaluations using a
perceived similarity ground truth in [André 11d, André 11c]. Despite the relatively
small size of the annotated pCLE databases and despite the sparsity of our per-
ceived similarity ground truth, these evaluation results are quite encouraging and
constitute a robust proof-of-concept before further clinical evaluations.

Our first main contribution has been the adjustment of the bag-of-visual-words
method for the retrieval of single pCLE images in [André 09a], and of full pCLE
videos represented as a set of mosaic images in [André 09b, André 10c]. Most im-
portantly, the choice of a dense image descriptor and the manipulation of “implicit
mosaics” has allowed us to efficiently build one short visual word signature per pCLE
video. As these visual signatures adequately represent the pCLE videos, the use
of a standard distance between them provides relevant retrieval results which can
be qualitatively appreciated. We have also investigated several orthogonal meth-
ods, including multi-scale description, visual word discriminative power and spatial
relationships between local features. Unfortunately, probably due to the relatively
small size of the database, we did not manage to demonstrate a significant impact
of these methods on the retrieval performances. We thus consider these original
methods as relevant proofs of concept until we have larger databases. Using leave-
one-patient-out cross-validation, we have demonstrated that, on two different pCLE
databases, our pCLE retrieval method outperforms several state-of-the-art meth-
ods CBIR, with statistical significance. In [André 1la], we have also shown that
our pCLE retrieval method is comparable to the offline pCLE diagnosis of expert
endoscopists.

Another important contribution of this thesis has been the automated estima-
tion, based on retrieval results, of the interpretation difficulty attached to a pCLE
video. In [André 10a], a significant relationship has been shown between the esti-
mated difficulty and the diagnosis difficulty experienced by multiple endoscopists.
Such a difficulty estimator can be used for the development of a self-training simula-
tor featuring difficulty level selection in order to help the endoscopists in shortening
their learning curve in pCLE diagnosis. Difficulty estimation can also be used to
complement the outputs of video retrieval by indicating a confidence level associated
to the query.

Regarding retrieval evaluation, we have succeeded in moving beyond a criti-
cal issue which was the lack of an objective ground truth for CBIR. Indeed, we
have developed an online survey tool in [André 11d] which allows multiple experts
in pCLE to individually evaluate the visual similarity that they perceive between
pCLE videos. Thanks to the resulting ground truth for perceived similarity, direct
evaluations and comparisons of retrieval performances have then been possible, by
measuring the correlation between retrieval distance and perceived similarity, or by
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generating what we have defined as “sparse recall” curves.

Having a ground truth for perceived similarity has also allowed, in [André 11d],
us to learn an adequate visual similarity distance between pCLE videos, which we
have proved to be more accurate, with statistical significance, than the original
retrieval distance. This learned visual similarity distance can be used to define the
“typicality” of a pCLE video based on its average distance to a given number of
neighboring pCLE videos. The relevance of typicality estimation highly depends
on the representativity of the training database, i.e. on how well the variability
in the appearance of typical pathologies is represented by training pCLE videos.
Furthermore, clustering pCLE videos according to the similarity distance would
enable the hierarchical navigation of the endoscopists through the training video
database at several levels of typicality.

Our last contribution, in [André 11c|, has been the incorporation of clinical
expertise for the visual-word-based learning of pCLE semantics. We have been
able to transform the wvisual signatures into semantic signatures that reflect how
much the presence of semantic concepts is expressed by the visual features in the
videos. Thus, from low-level visual features, a higher-level clinical knowledge has
been extracted, which is directly interpretable by the endoscopists and consistent
with respect to perceived similarity. Ultimately, we have suggested to leverage the
possible disagreements, between visual-word-based semantic estimation and seman-
tic ground truth, for the automated estimation of the visual-semantic ambiguity in
pCLE videos.

It is worth mentioning that the contributions of the “Smart Atlas” should help
to answer important clinical questions which have been recently identified by the
ASGE (American Society for Gastrointestinal Endoscopy) PIVI (Preservation and
Incorporation of Valuable endoscopic Innovations) initiative on real-time endoscopic
assessment of the histology of diminutive colorectal polyps [Rex 11]:

Certainly, a large set of broad-style questions about unknowns with feed-
back explaining the answers could be developed and made widely available
to remote trainees over the web. Improved broadband access should allow
such materials to incorporate video clips for an experience that more re-
alistically approrimates the real time decision making required to make
optical biopsies. In particular, a comprehensive image database with
path correlation for “difficult to interpret” small polyps would be most
important to develop in order to help trainees reduce the percentage
of lesions which they can interpret only with low confidence. Another
suggestion that would require significant effort on the part of the en-
doscope manufacturers would be to develop real time pop up image at-
lases to assist endoscopists with interpretation as they are performing
the examination. Similar to the tool available during reading of cap-
sule endoscopy, this might become possible with future generations of
endoscope systems. More technically feasible for the present would be
the development and dissemination of very good posters to be hung in



118 Chapter 6. Conclusions

the endoscopy suites detailing the features of adenomatous and hyper-
plastic polyps using various imaging modalities. Whichever materials
are ultimately utilized, these will be helpful both in initial training and
in ongoing reinforcement of interpretation skills. The development of
approved teaching materials by the ASGE with industry support, along
with an approved and validated teaching program will clearly accelerate
the acceptance of optical diagnosis in clinical practice.

6.2 Perspectives

The following perspectives, regarding both research directions and clinical applica-
tions, are worth to be explored.

In order to ensure the clinical validation of the “Smart Atlas” tool, further
clinical evaluations are required. Short-term evaluations will measure the impact
of using the tool on self-training and on offline diagnosis. Long-term evaluations
will measure its impact on online diagnosis, established during ongoing endoscopy,
which implies more ergonomic and runtime constraints. In both cases, we suggest
to use evaluation protocols based on the Second Reader Paradigm (SRP), which can
be used in two ways SRP1 and SRP2. In the SRP1 way, the endoscopist establishes
first a blinded diagnosis on a pCLE video of interest and then a second diagnosis
on the same video but with the additional diagnostic information predicted by the
“Smart Atlas”. In case of disagreement with the “Smart Atlas”, the endoscopist
may wish to revise her judgment and see the retrieval results of the “Smart Atlas”,
as proposed by the SRP2 way. In the SRP2 way, a further diagnosis is established
with the additional retrieval information of annotated pCLE videos, visually similar
to the query, that are extracted by the “Smart Atlas”. By comparing the diagnosis
performances of the endoscopist, without and with the “Smart Atlas” support, we
can measure whether the “Smart Atlas” help to improve the accuracy of pCLE
diagnosis.

We plan to improve the performances of the “Smart Atlas”, by training on
pCLE video databases that are more representative of the atypical cases, and of
the variability in the appearance of pathologies. To this purpose, we will include
more pCLE videos to enlarge our two current databases, on colonic polyps and on
Barrett’s esophagus. We also plan to test the “Smart Atlas” on other other organs
or other pathologies, as far as their appearance in pCLE videos contains sufficiently
discriminative shape and texture information. It is the case of many medical appli-
cations of pCLE, for instance the duodenum or the Endoscopic Mucosal Resection
(EMR).

Further steps towards bridging the semantic gap, between low-level visual fea-
tures and high-level clinical knowledge, could be performed. For example, we will
look at more sophisticated methods to jointly learn visual and semantic similarity
distance between pCLE videos. Besides, some of the semantic concepts, which are
not too scattered in pCLE images, could be automatically segmented in the videos,
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from the analysis of their visual expressions. We may also consider a semantic query
for the “Smart Atlas” that expects, from a given semantic concept, the extraction of
multiple pCLE videos that are representative of the concept. In addition to visual
queries, such semantic queries would create another way of navigating through the
annotated pCLE databases, and thus constitute another training support.

We would like to investigate more advanced methods for spatio-temporal re-
trieval of pCLE videos. Although the full temporal information of pCLE videos
is not exploited in mosaic images, it may be captured by 2D + t retrieval tech-
niques. This would be an interesting approach to support the pCLE diagnosis of
some pathologies that are characterized by discriminative motions within the ob-
served region of interest. It is for example the case of chronic inflammations that
are associated to the visible motion of blood cells in the vessels. Besides, in order to
exploit the spatial relationship between local visual features in pCLE images, more
advanced methods could also be explored. In particular, if a sufficiently large pCLE
database is available, the spatial information contained in multi-scale co-occurrence
matrices of visual words can be incorporated into the image descriptors, without
the risk of overfitting.

Another important perspective would be multimodal information retrieval. In-
deed, all pCLE databases could be enriched with multimodal information, including
both image and text information. In addition to pCLE image sequences, the im-
age information could be composed of the histological images and the endoscopic
images, potentially with zoom endoscopy or narrow-band imaging. In addition to
textual pCLE diagnoses, the text information could be composed of the histological
diagnosis, with Paris or Kudo classification, the patient information such as age and
history, and the location and the size of the suspicious area. Multimodal retrieval
methods could then be developed by leveraging all these informations. However, a
multimodal retrieval that uses both pCLE and endoscopic images would require a
robust correspondence between the microscopic view of pCLE and the macroscopic
view of endoscopy. Some research teams have already worked on this co-localization
problem, from example Allain et al. [Allain 10] who proposed a system based on
epipolar geometry for biopsy site re-targeting. Another issue of multimodal retrieval
is that the heterogeneous database may be sparsely populated. Indeed, having an
incomplete database implies the definition of a more complex distance on potentially
missing attributes. Such a similarity distance could be for example derived from
the random forests model, as the one suggested by Iglesias et al. [Iglesias 11], which
is able to deal with missing data. The resulting multimodal retrieval system would
be highly valuable for the cross-disciplinary understanding of cancer diagnosis.

An interesting application of pCLE retrieval would be, given a set a pathological
categories, the extraction of the closest pCLE video in each of these categories.
This would make the physician more aware of the potential ambiguity of the query
video. In this application, we can expect large distances between the query and
some extracted videos, for example if the query is a benign colonic polyp and one
pathological category is adenocarcinoma. Consequently, pCLE retrieval in this
case must be accurate not only for short-range distances but also for long-range
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distances, which requires suitable distance learning techniques, such as manifold
learning. Manifold learning would also be a quite relevant method to estimate the
distances between pCLE videos of the same patient at different time points. Such a
longitudinal approach should help in quantifying tumor evolution in a given patient,
which would be useful for cancer surveillance.

Finally, the “Smart Atlas” tool could be a valuable aid not only to endoscopist
users, but also to users from other medical disciplines, such as histopathology and
surgery. Three different scenarios can be identified. First, the most straightforward
extension of the “Smart Atlas” would be its application to other types of images, in
particular the histological images. A “Smart Atlas” extended to histological data
should support the pathologists in making a more accurate diagnosis. Second, a
multimodal “Smart Atlas” based on both pCLE and histological data should also
be useful to the pathologists: it would assist them in the interpretation of pCLE
images that are new to them and that correspond to biopsies performed by the
endoscopists. Third, during surgical procedures, where the surgeon does not want to
take the responsibility of diagnosing the pathologies, the “Smart Atlas” could be an
indirect support. Indeed, the recently created PERSEE project [PERSEE 10] would
allow the surgeon and the pathologist to work in concert by connecting diagnosis
and treatment with a telemedicine system. A “Smart Atlas” tool compatible with
real-time conditions could thus support the pathologist in diagnosing pCLE data
that are acquired by the surgeon during ongoing procedure. In return, the surgeon
would be able to make more informed choices about how to treat cancer patients
to ultimately improve their outcomes.



Appendix A: Statistical
Analysis Methods

This appendix provides a description of the statistical tests used in the thesis,
based on Sheskin’s book “Handbook of Parametric and Nonparametric Statistical
Procedures” [Sheskin 11].

McNemar’s Test: is there a statistically significant dif-
ference?

The McNemar’s test is a nonparametric statistical test employed to compare two
experiments, in which each of n subjects contributes two scores, one for each ex-
periment, on a dichotomous dependent variable, i.e. scores must fall within one of
two mutually exclusive categories, c¢; and cs.

For example: the n subjects are pCLE images, the two experiments are two
classification methods, and the score of an image given a method is equal to 1
(resp. to 0) if the image has been correctly classified (resp. misclassified) by the
method, according to the diagnosis ground-truth. The null hypothesis is that there
no significant difference between the two experiments, i.e. classification methods.

Let n12 be the number of subjects having a score ¢; for the first experiment,
and a score ¢y for the second experiment. Let ng 1 be the number of subjects having
a score co for the first experiment, and a score ¢y for the second experiment. Then
the McNemar’s test statistic is given by:

0- (n1,2 — n21)? )
B n12 +Noj

Under the null hypothesis, @ has a x? distribution with one degree of freedom and
the associated p-value provides the statistical relevance.

In our example and for a statistical significance level a = 5%: if p-value< 0.05,
the null hypothesis is rejected, which means that the difference between the two
classification methods is statistically significant.

Since the McNemar’s test uses a continuous distribution to approximate the
discrete binomial distribution, a correction for continuity is recommended with
small sample size, usually when nj s + no 1 < 20. The continuity-corrected version
of the McNemar’s test statistic is:

Qcorr =

(In12 — naa| —1)°
n12 + N2

(2)
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For extremely small sample sizes, the McNemar’s test should not be employed.

Two-Sided Z-Test Between Proportions: is there a sta-
tistically significant equivalence?

The two-sided Z-test between proportions allows to test if there a statistically sig-
nificant equivalence between two experiments. It requires the assumption that the
data are normally distributed. As pointed out by Jones et al. [Jones 96], absolute
equivalence cannot be demonstrated: it is only possible to assert that the true
difference is unlikely to be outside a predefined range of equivalence [—A, +A].

For example: we have n observations on two variables X; and X5, one for
each experiment, with respective means p1 and po and variances o7 and o3. The
null hypothesis is that an absolute difference of at least A exists between the two
experiments.

The two sided 95% confidence interval of the two-sided Z-test statistic is given

by:
Clgs = ( — 2) + 1.96 ( — 2) 5 (3)

where 1.96 is the Z-value corresponding with 95% of the area under the standard
normal distribution.

In our example and for a statistical significance level @ = 5%: if the 95%
confidence interval Clgs, centered on the observed difference p1 — uo, lies entirely
within the predefined range of equivalence [—A, +A], then there is a statistically
significant equivalence between the two experiments.

Permutation test: is there a statistically significant cor-
relation?

The permutation test is a nonparametric statistical test in which the distribution
of the test statistic under the null hypothesis is obtained by calculating all possi-
ble values of the test statistic under random rearrangements of the labels on the
observed data points. The advantage of the permutation test is that it does not
require any a priori assumption about the distribution of the data, as it generates
all possible permutations of the data to represent the data distribution.

For example: we have n observations on two variables X7 and X5, where X1 is
the estimation and X is the ground-truth. r 2 is the Pearson correlation coefficient
between X; and Xs. The null hypothesis is that there is no significant correlation
between X7 and X5, i.e. X7 is an estimation of X5 that is not better than random.

The p-value of the permutation test is equal to the proportion of sample per-
mutations of X for which the Pearson correlation with X is larger than r; o.
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In our example and for a statistical significance level o = 5%: if p-value< 0.05,
the null hypothesis is rejected, which means that the correlation between X; and
Xo is statistically significant.

Steiger’s Z-test: is there a statistically significant differ-
ence between two correlated correlation?

The Steiger’s Z-test, proposed by Meng et al. [Meng 92|, allows to test if the dif-
ference between two correlated correlation coefficients is statistically significant, in
the case where the coefficient values are not normally distributed.

For example: we have n observations on three variables X1, X2 and X3, where
X1 and Xy are two estimations and X3 is the ground-truth. rq2 is the Kendall
correlation coefficient between the variables X; and Xz, and 713 is the Kendall
correlation coefficient between the variables X7 and X3. Then X3 is the dependent
variable and the statistical test considers the Kendall correlation coefficient 73 3
between the variables X5 and X3. The null hypothesis is that there no significant
difference between the two correlation coefficients.

The Steiger’s Z-test is the equivalent of the Hotelling’s ¢ test [Sheskin 11]
for non-normally distributed data: it uses the Fisher’s transformation is z;; =
1 1+ T4
Z 1n(7ﬂ
2 1-— Tij
The Steiger’s Z-test statistic is given by:

) which converts the correlation coefficients to a normal distribution.

n—3
Z=(z12-213) = F Tovs (4)
2(1—-r T
(1 =r23) (5 — )
3, + 12 1-—
with rave = L1223 and f= -T2 Under the null hypothesis, Z has a
2 2 (1 —7ravg)

normal distribution and the associated p-value provides the statistical relevance.

In our example and for a statistical significance level a = 5%: if p-value< 0.05,
the null hypothesis is rejected, which means that the difference between the two
correlation coefficients r1 2 and ry 3 is statistically significant.
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Clinical Abstract

Based on: [André 10b] B. André, T. Vercauteren, A. M. Buchner, M. B. Wal-
lace and N. Ayache. Endomicroscopic video retrieval approach to support diagnostic
differentiation between neoplastic and non-neoplastic colonic polyps. Gastroenterol-
ogy (DDW 2010), volume 138, number 5 Suppl, pages S-514, May 2010

Background: Probe-based confocal laser endomicroscopy (pCLE) enables dy-
namic imaging of the gastrointestinal epithelium In Vivo during ongoing endoscopy
and, as of today, relies on the endoscopist for image understanding. The subjective
nature of pCLE video semantics suggests the need for a standardized and more
automated method for image sequence interpretation.

Aims: To support the diagnosis of a newly acquired pCLE video, we aim at
retrieving from a training database videos that have a similar appearance to the
video of interest and that have been previously diagnosed by expert physicians with
confirmed histology. As a model system, we used distinction of adenomatous and
hyperplastic colorectal polyps.

Methods: 68 patients underwent colonoscopy with pCLE for fluorescein-aided
imaging of suspicious colonic polyps before their removal. The resulting database
is composed of 121 videos (36 non-neoplastic, 85 neoplastic) and 499 edited video
sub-sequences (231 non-neoplastic, 268 neoplastic) annotated by clinical experts
with a pathological diagnosis. To quantify the relevance of video retrieval, we per-
formed an unbiased classification with leave-one-patient-out cross-validation, based
on the voting of the k£ most similar videos. The Bag-of-Visual-Words method from
computer vision extracts local continuous image features and clusters them into
a finite number of visual words to build an efficient image signature. In order to
retrieve videos and not only isolated images, we revisited this method and analyzed
the impact of including spatial overlap between time-related images. We first used
the results of a video-mosaicing technique to weight the contribution of each local
image region to its visual word. Then, we computed the video signatures with a
histogram summation technique, which reduces both retrieval runtime and training
memory.

Results: Video classification results show that our method achieves, when using
the votes of the k = 9 most similar videos, a sensitivity of 97.7% and a specificity of
86.1% for a resulting accuracy of 94.2%. When compared to using the still images
independently, using video data improves the results in a statistically significant
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manner (McNemar’s test: p-value= 0.021 when using the votes of the k¥ = 3 most
similar videos). Moreover, fewer similar videos are necessary to classify the query
at a given accuracy, which is clinically relevant for the physician.

Conclusion: Our method using the results of video-mosaicing for content-based
video retrieval appears to be highly accurate for pCLE videos. It may provide the
endoscopist with diagnostic decision support and avoid unnecessary polypectomy
of non-neoplastic lesions.



Appendix C: DDW 2011
Clinical Abstract

Based on: [André 11b] B. André, T. Vercauteren, A. M. Buchner, M. W.
Shahid, M. B. Wallace and N. Ayache. Toward a structured training system for
probe-based confocal laser endomicroscopy (pCLE) on Barrett’s esophagus: a video
retrieval approach to estimate diagnosis difficulty. Gastrointestinal Endosccopy
(DDW 2011), volume 73, number 4 Suppl, page AB398, 2011. Selected Video
Abstract available at http://www.youtube.com/watch?v=RVy-0Bxx9EQ

Background: pCLE (Cellvizio, Mauna Kea Technologies) allows the endo-
scopist to image the epithelial surface in vivo, at microscopic level and in real-time
(12 frames per second) during an ongoing endoscopy. Early diagnosis of epithelial
cancers with pCLE may be perceived as a challenging task for many new endo-
scopists. There is a crucial need to provide objective methods to diagnose neoplasia,
estimate confidence levels, and to shorten the learning curve.

Aims: Our long-term objective is to develop a modular training system for
pCLE diagnosis, by adapting the difficulty level according to the endoscopist’s ex-
pertise. This study aims at providing an automated estimation of the diagnosis
difficulty. As the understanding of pCLE video diagnosis is driven by perceived
visual similarity, we propose a content-based video retrieval approach toward this
goal.

Methods: Our database contains annotated pCLE videos of BE that were
provided by the multicentric study NCT00795184. It includes 76 patients and 123
videos (62 benign, 61 neoplastic) split into 862 stable video subsequences. 20 of these
videos (9 benign, 11 neoplastic) were graded offline by 21 endoscopists, including
9 pCLE experts and 12 non-experts, who individually established a blinded pCLE
diagnosis for each lesion. A single expert GI pathologist reviewed all the biopsies
acquired on the imaging spots and provided a reference diagnosis. The percentage of
false pCLE diagnosis established on a video among the endoscopists is our “ground
truth” for the diagnosis difficulty of the video. We first applied to the video database
a video retrieval method that we developed especially for this task. We then used the
retrieval results to extract a relevant difficulty criterion that measures contextual
discrepancies between the video query and its most visually similar videos.

Results: Our video retrieval method, objectively evaluated using k-nearest
neighbor classification, outperforms several state-of-the-art methods on the BE
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database (acc. 85.4%, sens. 90.2%, spec. 80.7%). Our estimated diagnosis dif-
ficulty has a correlation of 0.78 (p-value < 0.0002) with the ground truth difficulty
measured for all the endoscopists, 0.63 (p-value < 0.003) with those measured for
the experts only, and 0.80 (p-value < 0.0001) with those measured for the non-
experts only.

Conclusion: Our experiments demonstrate that there is a noticeable relation-
ship between our retrieval-based difficulty estimation and the difficulty experienced
by the endoscopists. The complete video database with estimated difficulty could
thus be used to identify lesions for which an optical diagnosis will be difficult, and to
develop a training simulator that features difficulty level selection. Finally, a clini-
cal validation will be required to assess whether such a structured training system
will eventually help shorten the pCLE learning curve.
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Smart Atlas for Endomicroscopy Diagnosis Support:
A Clinical Application of Content-Based Image Retrieval

Abstract: Probe-based Confocal Laser Endomicroscopy (pCLE) enables in vivo microscopic imaging
of the epithelium during ongoing endoscopy, in situ and at real-time frame rate. Thanks to this novel
imaging system, the endoscopists have the opportunity to perform non-invasive “optical biopsies”. Tra-
ditional biopsies result in histological images that are usually diagnosed ex vivo by pathologists. The in
vivo diagnosis of pCLE images is therefore a critical challenge for the endoscopists who typically have
only little pathology expertise. The main goal of this thesis is to assist the endoscopists in the in vivo
interpretation of pCLE image sequences.

When establishing a diagnosis, physicians typically rely on similarity-based reasoning. To mimic
this process, we explore content-based image retrieval (CBIR) approaches for diagnosis support. Our
primary objective is to develop a system which automatically extracts several videos that are visually
similar to the pCLE video of interest, but that are annotated with metadata such as textual diagnosis.
Such a retrieval system should help the endoscopist in making an informed decision and therefore a
more accurate pCLE diagnosis.

For this purpose, we investigate the Bag-of-Visual-Words (BoW) method from computer vision.
Analyzing the image properties of pCLE data leads us to adjust the standard BoW method. Not only
single pCLE images, but full pCLE videos are retrieved by representing videos as sets of mosaics. In
order to evaluate the methods proposed in this thesis, two different pCLE databases were constructed,
one on the colonic polyps and one on the Barrett’s esophagus. Due to the initial lack of a ground
truth for CBIR of pCLE, we first performed an indirect evaluation of the retrieval methods, using
nearest-neighbor classification. Then, the generation of a sparse ground truth, containing the similarities
perceived between videos by multiple experts in pCLE, allowed us to directly evaluate the retrieval
methods, by measuring the correlation between the retrieval distance and the perceived similarity. Both
indirect and direct retrieval evaluations demonstrate that, on the two pCLE databases, our retrieval
method outperforms several state-of-the-art methods in CBIR. In terms of binary classification, our
retrieval method is shown to be comparable to the offline diagnosis of human expert endoscopists on
the Colonic Polyps database.

Because establishing a pCLE diagnosis is an everyday practice, our objective is not only to support
one-shot diagnosis but also to accompany the endoscopists in their progress. Using retrieval results,
we estimate the difficulty to interpret a pCLE video. We show that there is a correlation between the
estimated difficulty and the diagnosis difficulty experienced by multiple endoscopists. The proposed
difficulty estimator could thus be used in a self-training simulator, with difficulty level selection, which
should help the endoscopists in shortening their learning curve.

The standard visual-word-based distance already provides adequate results for pCLE retrieval. Nev-
ertheless, little clinical knowledge is embedded in this distance. By incorporating prior information
about the similarity perceived by pCLE experts, we are able to learn an adjusted visual similarity
distance which we prove to be better than the standard distance. In order to learn pCLE semantics,
we then leverage multiple semantic concepts used by the endoscopists to describe pCLE videos. As a
result, visual-word-based semantic signatures are built which extract, from low-level visual features, a
higher-level clinical knowledge that is expressed in the endoscopist own language.

Keywords: probe-based Confocal Laser Endomicroscopy (pCLE); Gastrointestinal cancers; Content-
Based Image Retrieval (CBIR); Bag-of-Visual-Words (BoW) method; Difficulty of pCLE video inter-
pretation; Similarity distance learning; Semantic gap.
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Atlas Intelligent pour Guider le Diagnostic en Endomicroscopie :
Une Application Clinique de la Reconnaissance d’Images par le Contenu

Résumé : L’Endomicroscopie Confocale par Minisondes (ECM) permet 'observation dynamique des
tissus au niveau cellulaire, in vivo et in situ, pendant une endoscopie. Grace a ce nouveau systeme d’im-
agerie, les médecins endoscopistes ont la possibilité de réaliser des “biopsies optiques” non invasives. Les
biopsies traditionnelles impliquent le diagnostic ex vivo d’images histologiques par des médecins pathol-
ogistes. Le diagnostic in vivo d’images ECM est donc un véritable challenge pour les endoscopistes, qui
ont en général seulement un peu d’expertise en anatomopathologie. Les images ECM sont néammoins
de nouvelles images, qui ressemblent visuellement aux images histologiques. Cette thése a pour but
principal d’assister les endoscopistes dans I'interprétation in vivo des séquences d’images ECM.

Lors de I’établissement d’un diagnostic, les médecins s’appuient sur un raisonnement par cas. Afin de
mimer ce processus, nous explorons les méthodes de Reconnaissance d’Images par le Contenu (CBIR)
pour l'aide au diagnostique. Notre premier objectif est le développement d’un systéeme capable d’extraire
de maniére automatique un certain nombre de vidéos ECM qui sont visuellement similaires a la vidéo
requéte, mais qui ont en plus été annotées avec des métadonnées comme par exemple un diagnostic
textuel. Un tel systéme de reconnaissance devrait aider les endoscopistes a prendre une décision éclairée,
et par la-méme, a établir un diagnostic ECM plus précis.

Pour atteindre notre but, nous étudions la méthode des Sacs de Mots Visuels, utilisée en vision par
ordinateur. L’analyse des propriétés des données ECM nous conduit a ajuster la méthode standard.
Nous mettons en ceuvre la reconnaissance de vidéos ECM completes, et pas seulement d’images ECM
isolées, en représentant les vidéos par des ensembles de mosaiques. Afin d’évaluer les méthodes pro-
posées dans cette theése, deux bases de données ECM ont été construites, I'une sur les polypes du célon,
et 'autre sur I’oesophage de Barrett. En raison de I’absence initiale d’une vérité terrain sur le CBIR ap-
pliquée a 'ECM, nous avons d’abord réalisé des évaluations indirectes des méthodes de reconnaissance,
au moyen d’une classification par plus proches voisins. La génération d’une vérité terrain éparse, con-
tenant les similarités pergues entre des vidéos par des experts en ECM, nous a ensuite permis d’évaluer
directement les méthodes de reconnaissance, en mesurant la corrélation entre la distance induite par la
reconnaissance et la similarité percue. Les deux évaluations, indirecte et directe, démontrent que, sur
les deux bases de données ECM, notre méthode de reconnaissance surpasse plusieurs méthodes de 1’état
de ’art en CBIR. En termes de classification binaire, notre méthode de reconnaissance est comparable
au diagnostic établi offline par des endoscopistes experts sur la base des Polypes du Cdlon.

Parce que diagnostiquer des données ECM est une pratique de tous les jours, notre objectif n’est
pas seulement d’apporter un support pour un diagnostique ponctuel, mais aussi d’accompagner les
endoscopistes dans leurs progres. A partir des résultats de la reconnaissance, nous estimons la difficulté
d’interprétation des vidéos ECM. Nous montrons l'existence d’une corrélation entre la difficulté estimée
et la difficulté de diagnostic éprouvée par plusieurs endoscopistes. Cet estimateur pourrait ainsi étre
utilisé dans un simulateur d’entrainement, avec différents niveaux de difficulté, qui devrait aider les
endoscopistes a réduire leur courbe d’apprentissage.

La distance standard fondée sur les mots visuels donne des résultats adéquats pour la reconnaissance
de données ECM. Cependant, peu de connaissance clinique est intégrée dans cette distance. En incorpo-
rant I'information a priori sur les similarités percues par les experts en ECM, nous pouvons apprendre
une distance de similarité qui s’avere étre plus fidele que la distance standard & la similarité pergue.
Dans le but d’apprendre la sémantique des données ECM, nous tirons également profit de plusieurs
concepts sémantiques utilisés par les endoscopistes pour décrire les vidéos ECM. Des signatures séman-
tiques fondées sur mots visuels sont alors construites, capables d’extraire, & partir de caractéristiques
visuelles de bas niveau, des connaissances cliniques de haut niveau qui sont exprimées dans le propre
language de I’endoscopiste.

Mots clés : Endomicroscopie Confocale par Minisondes (ECM) ; Cancers gastrointestinaux ; Recon-
naissance d’images par le contenu; Méthode des sacs de mots visuels; Difficulté d’interprétation des
vidéos ECM ; Apprentissage de la distance de similarité ; Fossé sémantique.
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