P. Laplace, Traité de mécanique céleste, Editions Jacques Gabay, pp.1843-1846, 2006.

P. G. De-gennes, Wetting: statics and dynamics, Reviews of Modern Physics, vol.57, issue.3, pp.827-863, 1985.
DOI : 10.1103/RevModPhys.57.827

C. Neinhuis and W. Barthlott, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Annals of Botany, vol.79, issue.6, pp.667-677, 1997.
DOI : 10.1006/anbo.1997.0400

J. Bico, C. Marzolin, and D. Quéré, Pearl drops, Europhysics Letters (EPL), vol.47, issue.2, pp.220-226, 1999.
DOI : 10.1209/epl/i1999-00548-y

A. Biance, Gouttes inertielles : de la caléfaction à l'étalement, 2004.

J. G. Leidenfrost, De aquae communis nonnullis qualitatibus tractatus, p.1756

J. G. Leindenfrost, C. Wares, and K. J. Bell, On the fixation of water in diverse fire, International Journal of Heat and Mass Transfer, vol.9, issue.11, pp.1153-1166, 1966.
DOI : 10.1016/0017-9310(66)90111-6

B. S. Gottfried, C. J. Lee, and K. J. Bell, The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate, International Journal of Heat and Mass Transfer, vol.9, issue.11, pp.1167-1187, 1966.
DOI : 10.1016/0017-9310(66)90112-8

A. Biance, C. Clanet, and D. Quéré, Leidenfrost drops, Physics of Fluids, vol.15, issue.6, pp.1632-1637, 2003.
DOI : 10.1063/1.1572161

URL : https://hal.archives-ouvertes.fr/hal-00014747

Y. Couder, E. Fort, C. Gautier, and A. Boudaoud, From Bouncing to Floating: Noncoalescence of Drops on a Fluid Bath, Physical Review Letters, vol.94, issue.17, p.177801, 2005.
DOI : 10.1103/PhysRevLett.94.177801

URL : https://hal.archives-ouvertes.fr/hal-00016476

G. P. Neitzel, Optical levitation and transport of microdroplets : proof of concept, Physics of Fluids, vol.20, 2008.

L. Mahadevan and Y. Pomeau, Rolling droplets, Physics of Fluids, vol.11, issue.9, pp.2449-2453, 1999.
DOI : 10.1063/1.870107

Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir, vol.18, issue.15, pp.5818-5822, 2002.
DOI : 10.1021/la020088p

M. Reyssat, D. Richard, C. Clanet, and D. Quéré, Dynamical superhydrophobicity, Faraday Discussions, vol.102, pp.19-33, 2010.
DOI : 10.1039/c000410n

URL : https://hal.archives-ouvertes.fr/hal-01020655

V. S. Nikolayev and D. A. Beysens, Boiling crisis and non-equilibrium drying transition, Europhysics Letters (EPL), vol.47, issue.3, p.345, 1999.
DOI : 10.1209/epl/i1999-00395-x

URL : https://hal.archives-ouvertes.fr/hal-01261249

M. and L. Merrer, Dissipation aux interfaces : caléfaction, sillages, filaments visqueux, Thèse de doctorat, École Polytechnique, 2010.

D. L. Oliver and J. N. Chung, Flow about a fluid sphere at low to moderate Reynolds numbers, Journal of Fluid Mechanics, vol.152, issue.-1, pp.1-18, 1987.
DOI : 10.1175/1520-0469(1972)029 2.0.CO;2

J. Dewar, Collected papers of Sir James Dewar, 1927.

E. Becquerel, De l'action du magnétisme sur tous les corps Annales de Chimie et de Physique, t. XXVIII, p. 283 ; t. XXXII, pp.68-1849

R. Pictet, Mémoire sur la liquéfaction de l'oxygène, la liquéfaction et la solidification de l'hydrogène, et sur les théories des changements des corps, J. Sandoz, p.1878

L. Cailletet, THE LIQUEFACTION OF OXYGEN, Science, vol.6, issue.128, pp.51-52
DOI : 10.1126/science.ns-6.128.51

K. Olszewski, Transvasement de l'oxygène liquide. Bulletin International de l'académie de Cracovie, pp.176-178, 1890.

J. S. Rowlinson, James Joule, William Thomson and the concept of a perfect gaz. Notes Rec, Roy. Soc, vol.64, pp.43-57, 2010.

C. S. Barrett, L. Meyer, and J. Wasserman, Antiferromagnetic and Crystal Structures of Alpha???Oxygen, The Journal of Chemical Physics, vol.47, issue.2, p.592, 1967.
DOI : 10.1063/1.1711936

E. J. Wachtel and R. G. Wheeler, Antiferromagnetic Solid Oxygen, Journal of Applied Physics, vol.42, issue.4, p.1581, 1971.
DOI : 10.1063/1.1660353

G. D. Morris, J. H. Brewer, S. R. Dunsiger, and M. Montour, Antiferromagnetism in solid oxygen Date. Magneto-volume effect of liquid oxygen, Hyperfine Interactions, vol.104, issue.1/4, pp.381-3853444, 1987.
DOI : 10.1023/A:1012641624313

K. Katsumata, The giant magneto-volume effect in solid oxygen, Journal of Physics: Condensed Matter, vol.17, issue.23, p.235, 2005.
DOI : 10.1088/0953-8984/17/23/L03

M. Takeda and K. Nishigaki, Measurements of the Surface Tension of Liquid Oxygen in High Magnetic Fields, Journal of the Physical Society of Japan, vol.61, issue.10, pp.3631-3635, 1991.
DOI : 10.1143/JPSJ.61.3631

Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Dynamical phenomena: Walking and orbiting droplets, Nature, vol.9, issue.7056, p.208, 2005.
DOI : 10.1103/PhysRevLett.82.3847

D. Rabaud, P. Thibault, M. Mathieu, and P. Marmottant, Acoustically Bound Microfluidic Bubble Crystals, Physical Review Letters, vol.106, issue.13, 2011.
DOI : 10.1103/PhysRevLett.106.134501

URL : https://hal.archives-ouvertes.fr/hal-00582406

F. Li and F. Mugele, How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage, Applied Physics Letters, vol.92, issue.24, p.92, 2008.
DOI : 10.1063/1.2945803

D. J. Mannetje, C. U. Murade, D. Van-den-ende, and F. Mugele, Electrically assisted drop sliding on inclined planes, Applied Physics Letters, vol.98, issue.1, p.98, 2011.
DOI : 10.1063/1.3533362.1

J. Bacri, A. Cebers, and R. Perzynski, Behavior of a magnetic fluid microdrop in a rotating magnetic field, Physical Review Letters, vol.72, issue.17, pp.2705-2708, 1994.
DOI : 10.1103/PhysRevLett.72.2705

S. Afkhami, A. J. Tyler, Y. Renardy, M. Renardy, T. G. St et al., Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields, Journal of Fluid Mechanics, vol.14, pp.358-384, 2010.
DOI : 10.1016/S0021-9290(02)00034-9

N. Pamme, Magnetism and microfluidics, Lab Chip, vol.20, issue.8, pp.24-38, 2006.
DOI : 10.1039/B513005K

N. Nguyen, K. M. Ng, and X. Huang, Manipulation of ferrofluid droplets using planar coils, Applied Physics Letters, vol.89, issue.5, 2006.
DOI : 10.1063/1.2335403

Y. Zhao, J. Fang, H. Wang, X. Wang, and T. Lin, Nanoparticles, Advanced Materials, vol.3, issue.6, pp.707-710, 2010.
DOI : 10.1002/adma.200902512

URL : https://hal.archives-ouvertes.fr/hal-01438853

Z. Guo, F. Zhou, J. Hao, Y. Liang, W. Liu et al., stick and slide" ferrofluidic droplets on superhydrophoboc surfaces, Applied Phys. Lett, p.89, 2006.

B. W. Holmes, Putting: How a golf ball and hole interact, American Journal of Physics, vol.59, issue.2, pp.129-136, 1991.
DOI : 10.1119/1.16592

A. A. Bartlett and C. W. Hord, The slingshot effect: explanation and analogies, The Physics Teacher, vol.23, issue.8, pp.466-473, 1985.
DOI : 10.1119/1.2341882

A. Brunini, On the satellite capture problem, CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY, vol.239, issue.1-2, pp.79-92, 1996.
DOI : 10.1007/BF00051607

C. Clanet, C. Béguin, D. Richard, and D. Quéré, Maximal deformation of an impacting drop, Journal of Fluid Mechanics, vol.517, pp.199-208, 2004.
DOI : 10.1017/S0022112004000904

URL : https://hal.archives-ouvertes.fr/hal-00014912

I. V. Roisman, E. Berberovic, and C. Tropea, Inertia dominated drop collisions. I. On the universal flow in the lamella, Physics of Fluids, vol.21, issue.5, 2009.
DOI : 10.1063/1.3129282

J. De-ruiter, R. E. Pepper, and H. A. Stone, Thickness of the rim of an expanding lamella near the splash threshold, Physics of Fluids, vol.22, issue.2, p.22, 2010.
DOI : 10.1063/1.3313360

G. I. Taylor, The Dynamics of Thin Sheets of Fluid. III. Disintegration of Fluid Sheets, Proc. R. Soc. Lond. A, pp.313-321, 1959.
DOI : 10.1098/rspa.1959.0196

F. E. Culick, Comments on a Ruptured Soap Film, Journal of Applied Physics, vol.31, issue.6, pp.1128-1130, 1960.
DOI : 10.1063/1.1735765

W. R. Mcentee and K. J. Mysels, Bursting of soap films. I. An experimental study, The Journal of Physical Chemistry, vol.73, issue.9, pp.3018-3028, 1969.
DOI : 10.1021/j100843a042

D. Richard, Situations de mouillage nul, 2000.

A. Biance, F. Chevy, C. Clanet, G. Lagubeau, and D. Quéré, On the elasticity of an inertial liquid shock, Journal of Fluid Mechanics, vol.554, issue.-1, pp.47-66, 2006.
DOI : 10.1017/S0022112006009189

S. P. Harrold, Purification of sodium dodecyl sulfate, Journal of Colloid Science, vol.15, issue.3, pp.280-282, 1959.
DOI : 10.1016/0095-8522(60)90029-5

K. J. Mysels, Surface tension of solutions of pure sodium dodecyl sulfate, Langmuir, vol.2, issue.4, pp.423-428, 1986.
DOI : 10.1021/la00070a008

K. Lunkenheimer and G. Czichocki, On the Stability of Aqueous Sodium Dodecyl Sulfate Solutions, Journal of Colloid and Interface Science, vol.160, issue.2, pp.509-510, 1993.
DOI : 10.1006/jcis.1993.1429

W. C. Griffin, Classification of surface-active agents by HLB, J. Soc. Cosmet. Chem, vol.1, pp.311-326, 1949.

R. Itri and Q. Amaral, Distance distribution function of sodium dodecyl sulfate micelles by x-ray scattering, The Journal of Physical Chemistry, vol.95, issue.1, pp.423-427, 1991.
DOI : 10.1021/j100154a074

C. Chang and E. I. Franses, Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.100, pp.1-45, 1995.
DOI : 10.1016/0927-7757(94)03061-4

R. L. Kao, D. T. Wasan, A. D. Nikolov, and D. A. Edwards, Mechanisms of oil removal from a solid surface in the presence of anionic micellar solutions, Colloids and Surfaces, vol.34, issue.4, pp.389-398, 1988.
DOI : 10.1016/0166-6622(88)80163-X

A. W. Sonesson, T. H. Callisen, U. M. Elofsson, and H. Brismar, Imaging the Detergency of Single Cotton Fibers with Confocal Microscopy: the Effect of Surfactants and Lipases, Journal of Surfactants and Detergents, vol.54, issue.4, pp.211-218, 2007.
DOI : 10.1007/s11743-007-1033-7

T. H. Vaughn and H. F. Suter, Principles of performance testing of laundry detergents, Journal of the American Oil Chemists Society, vol.33, issue.7, pp.249-257, 1950.
DOI : 10.1007/BF02634900

K. Laitala and H. M. Jensen, Cleaning Effect of Household Laundry Detergents at Low Temperatures, Tenside Surfactants Detergents, vol.47, issue.6, pp.413-420, 2010.
DOI : 10.3139/113.110096

. Austad, Chemical flooding of oil reservoirs 8. Spontaneous oil expulsion from oil- and water-wet low permeable chalk material by imbibition of aqueous surfactant solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.137, issue.1-3, pp.117-129, 1998.
DOI : 10.1016/S0927-7757(97)00378-6

B. Levich, Physicochemical hydrodynamics, 1962.

C. Ybert and J. Meglio, Ascending air bubbles in protein solutions, The European Physical Journal B, vol.4, issue.3, pp.313-319, 1998.
DOI : 10.1007/s100510050385

F. P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, vol.194, issue.02, pp.166-188, 1961.
DOI : 10.1021/ie50601a051

J. Ratuloswki and H. C. Chang, Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries, Journal of Fluid Mechanics, vol.107, issue.-1, pp.303-328, 1990.
DOI : 10.1017/S0022112061000159

B. Dollet and I. Cantat, Deformation of soap films pushed through tubes at high velocity, Journal of Fluid Mechanics, vol.25, pp.529-539, 2010.
DOI : 10.1039/b903276b

URL : https://hal.archives-ouvertes.fr/hal-00990004

B. Scheid, J. Delacotte, B. Dollet, E. Rio, F. Restagno et al., The role of surface rheology in liquid film formation, EPL (Europhysics Letters), vol.90, issue.2, p.24002, 2010.
DOI : 10.1209/0295-5075/90/24002

URL : https://hal.archives-ouvertes.fr/hal-00495481

D. Quéré, A. De-ryck, and O. Ou-ramdane, Liquid coating from a surfactant solution, Europhysics Letters (EPL), vol.37, issue.4, pp.305-310
DOI : 10.1209/epl/i1997-00147-6

L. E. Scriven and V. Sternling, The Marangoni Effects, Nature, vol.2, issue.6, pp.186-188, 1960.
DOI : 10.1039/tf9585401712

M. I. Kohira, Y. Hayashima, M. Nagayama, and S. Nakata, Synchronized Self-Motion of Two Camphor Boats, Langmuir, vol.17, issue.22, pp.7124-7129, 2001.
DOI : 10.1021/la010388r

S. Nakata, Y. Doi, and Y. Hayashima, Intermittent Motion of a Camphene Disk at the Center of a Cell, The Journal of Physical Chemistry B, vol.106, issue.44, pp.11681-11684, 2002.
DOI : 10.1021/jp021675m

G. Billard and C. Bruyant, Sur un mode particulier de locomotion de certains stenus, C. R. Soc. Biol, vol.59, p.102, 1905.

K. E. Linsenmair and R. Jander, Das ?Entspannungsschwimmen? von Velia und Stenus, Die Naturwissenschaften, vol.7, issue.6, p.231, 1963.
DOI : 10.1007/BF00639292

URL : https://opus.bibliothek.uni-wuerzburg.de/files/3773/Linsenmair_Entspannungsschwimmen.pdf

J. W. Bush and D. L. Hu, WALKING ON WATER: Biolocomotion at the Interface, Annual Review of Fluid Mechanics, vol.38, issue.1, pp.339-369, 2006.
DOI : 10.1146/annurev.fluid.38.050304.092157

Y. Sumino, N. Magome, T. Hamada, and K. Yoshikawa, Self-Running Droplet: Emergence of Regular Motion from Nonequilibrium Noise, Physical Review Letters, vol.94, issue.6, p.94, 2005.
DOI : 10.1103/PhysRevLett.94.068301

E. Lajeunesse and G. M. Homsy, Thermocapillary migration of long bubbles in polygonal tubes. II. Experiments, Physics of Fluids, vol.15, issue.2, pp.308-314, 2003.
DOI : 10.1063/1.1531617

M. G. Pollack, R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications, Applied Physics Letters, vol.77, issue.11, pp.1725-1726, 2000.
DOI : 10.1063/1.1308534

J. Bico and D. Quéré, Self-propelling slugs, Journal of Fluid Mechanics, vol.467, pp.101-127, 2002.
DOI : 10.1017/S002211200200126X

N. , L. Grand, A. Daerr, and L. Limat, Shape and motion of drops sliding down an inclined plane, J. Fluid Mech, vol.541, pp.293-315, 2005.

J. Bico and D. Quéré, Falling Slugs, Journal of Colloid and Interface Science, vol.243, issue.1, p.262, 2001.
DOI : 10.1006/jcis.2001.7891

A. F. Ward and L. Tordai, Time???Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time???Effects, The Journal of Chemical Physics, vol.14, issue.7, pp.453-461, 1946.
DOI : 10.1063/1.1724167

K. J. Mysels, Diffuslon-controlled adsorption kinetics. general solution and some application, J. Am. Chem Soc, vol.86, pp.4648-4651, 1982.

P. Aussillous and D. Quéré, Quick deposition of a fluid on the wall of a tube, Physics of Fluids, vol.12, issue.10, pp.2367-2371, 2000.
DOI : 10.1063/1.1289396

L. W. Schwartz, H. M. Princen, and A. D. Kiss, On the motion of bubbles in capillary tubes, Journal of Fluid Mechanics, vol.10, issue.-1, pp.259-275, 1986.
DOI : 10.1063/1.864406

F. Fairbrother and A. E. Stubbs, 119. Studies in electro-endosmosis. Part VI. The ???bubble-tube??? method of measurement, J. Chem. Soc., vol.0, issue.0, pp.527-529, 1935.
DOI : 10.1039/JR9350000527

G. I. Taylor, Deposition of a viscous fluid on the wall of a tube, Journal of Fluid Mechanics, vol.10, issue.02, pp.161-165, 1961.
DOI : 10.1039/jr9350000527

E. Yamaguchi and B. J. Smith, ??-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble, Experiments in Fluids, vol.100, issue.5, pp.309-320, 2009.
DOI : 10.1007/s00348-009-0662-1

K. J. Stebe, D. Barthès-biesel, S. Ishizaki, T. Takahashi, H. Yui et al., Marangoni effects of adsorption???desorption controlled surfactants on the leading end of an infinitely long bubble in a capillary, Journal of Fluid Mechanics, vol.396, issue.-1, pp.25-48298, 1995.
DOI : 10.1016/0021-9797(86)90313-9

N. M. Kovalchuck and D. Vollhardt, Marangoni instability and spontaneous non-linear oscillations produced at liquid interfaces by surfactant transfer, Advances in Colloid and Interface Science, vol.120, issue.1-3, pp.1-31, 2006.
DOI : 10.1016/j.cis.2006.01.001

R. Lucas, Ueber das Zeitgesetz des kapillaren Aufstiegs von Fl??ssigkeiten, Kolloid-Zeitschrift, vol.23, issue.1, 1918.
DOI : 10.1007/BF01461107

E. W. Washburn, The Dynamics of Capillary Flow, Physical Review, vol.17, issue.3, pp.273-283, 1921.
DOI : 10.1103/PhysRev.17.273

D. Quéré, Inertial capillarity, Europhysics Letters (EPL), vol.39, issue.5, pp.533-538, 1997.
DOI : 10.1209/epl/i1997-00389-2

B. Lavi, A. Marmur, and J. Bachmann, Porous Media Characterization by the Two-Liquid Method:?? Effect of Dynamic Contact Angle and Inertia, Langmuir, vol.24, issue.5, pp.1918-1923, 2008.
DOI : 10.1021/la702090x

N. Fries and M. Dreyer, The transition from inertial to viscous flow in capillary rise, Journal of Colloid and Interface Science, vol.327, issue.1, pp.125-128, 2008.
DOI : 10.1016/j.jcis.2008.08.018

N. Fries and M. Dreyer, An analytic solution of capillary rise restrained by gravity, Journal of Colloid and Interface Science, vol.320, issue.1, pp.259-263, 2008.
DOI : 10.1016/j.jcis.2008.01.009

A. Hamraoui, K. Thuresson, T. Nylander, and V. Yaminsky, Can a Dynamic Contact Angle Be Understood in Terms of a Friction Coefficient?, Journal of Colloid and Interface Science, vol.226, issue.2, pp.199-204, 2000.
DOI : 10.1006/jcis.2000.6830

A. Marmur, Penetration of a small drop into a capillary, Journal of Colloid and Interface Science, vol.122, issue.1, pp.209-219, 1988.
DOI : 10.1016/0021-9797(88)90304-9

D. J. Durian, D. A. Weitz, and D. J. Pine, Scaling behavior in shaving cream, Physical Review A, vol.44, issue.12, pp.7902-7905, 1991.
DOI : 10.1103/PhysRevA.44.R7902

K. Guevorkian, M. Colbert, M. Durth, S. Dufour, and F. Brochard-wyart, Aspiration of Biological Viscoelastic Drops, Physical Review Letters, vol.104, issue.21, p.218101, 2010.
DOI : 10.1103/PhysRevLett.104.218101

URL : https://hal.archives-ouvertes.fr/hal-01020626

R. A. Sampson, On Stokes's Current Function, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.182, issue.0, pp.449-518, 1891.
DOI : 10.1098/rsta.1891.0012

F. C. Johansen, Flow through Pipe Orifices at Low Reynolds Numbers, Proc. R. Soc. Lond. A, pp.231-245, 1930.
DOI : 10.1098/rspa.1930.0004

T. Tate, On the magnitude of a drop of liquid formed under different circumstances, Philos. Mag, vol.27, p.176, 1864.

M. Dupeyrat and E. Nakache, 205 - Direct Conversion of Chemical Energy Into Mechanical Energy at an Oil Water Interface, Bioelectrochemistry and Bioenergetics, vol.5, issue.1, pp.134-141, 1978.
DOI : 10.1016/0302-4598(87)87013-7

E. Nakache, M. Dupeyrat, and M. Vignes-adler, Experimental and theoretical study of an interfacial instability at some oil???water interfaces involving a surface-active agent, Journal of Colloid and Interface Science, vol.94, issue.1, pp.187-200, 1983.
DOI : 10.1016/0021-9797(83)90249-7

Y. Matsubara and K. Yoshikawa, Spontaneous oscillation of ph and electrical potential in an oil-water system, J. Am. Chem Soc, vol.105, pp.5967-5969, 1983.

N. Magome and K. Yoshikawa, Nonlinear Oscillation and Ameba-like Motion in an Oil/Water System, The Journal of Physical Chemistry, vol.100, issue.49, pp.19102-19105, 1996.
DOI : 10.1021/jp9616876

V. Pimienta, R. Etchenique, and T. Buhse, On the Origin of Electrochemical Oscillations in the Picric Acid/CTAB Two-Phase System, The Journal of Physical Chemistry A, vol.105, issue.44, pp.10037-10044, 2001.
DOI : 10.1021/jp013350w

M. Szpakowska, E. Plocharska-jankowska, and O. B. Nagy, Molecular Mechanism and Chemical Kinetic Description of Nitrobenzene Liquid Membrane Oscillator Containing Benzyldimethyltetradecylammonium Chloride Surfactant, The Journal of Physical Chemistry B, vol.113, issue.47, pp.15503-15512, 2009.
DOI : 10.1021/jp9066873

M. Nagayama, M. Yadome, M. Murakami, N. Kato, J. Kirisaka et al., Bifurcation of self-motion depending on the reaction order, Phys. Chem. Chem. Phys., vol.39, issue.7, pp.1085-1090, 2009.
DOI : 10.1039/B815677H

V. I. Kovalchuk, H. Kamusewitz, D. Vollhardt, and N. M. Kovalchuck, Auto-oscillation of surface tension, Physical Review E, vol.60, issue.2, pp.2029-2036, 1999.
DOI : 10.1103/PhysRevE.60.2029

N. M. Kovalchuck and D. Vollhardt, Autooscillations of Surface Tension in Water???Alcohol Systems, The Journal of Physical Chemistry B, vol.104, issue.33, pp.7987-7992, 2000.
DOI : 10.1021/jp001582+

N. M. Kovalchuck and D. Vollhardt, Theoretical description of repeated surface-tension auto-oscillations, Physical Review E, vol.66, issue.2, p.66, 2002.
DOI : 10.1103/PhysRevE.66.026302

N. J. Suematsu, Y. Ikura, M. Nagayama, H. Kitahata, N. Kawagishi et al., Mode-Switching of the Self-Motion of a Camphor Boat Depending on the Diffusion Distance of Camphor Molecules, The Journal of Physical Chemistry C, vol.114, issue.21, pp.9876-9882, 2010.
DOI : 10.1021/jp101838h

R. Dans-cette-thèse, aide de plusieurs expériences la dynamique de gouttes non-mouillantes dans des situations où la gravité n'intervient pas, mais où d'autres forces, moins communes, sont à l'oeuvre. La première partie porte sur l'étude de gouttes d'oxygène liquide qui, en plus d'être en caléfaction sur un support à température ambiante, ont la particularité d'être susceptibles à la présence d'un champ magnétique. Nous étudions la force magnétique exercée sur ces gouttes ultra-mobiles et nous

. Dans-la-deuxième-partie-de-ce-travail, nous avons étudié une situation inverse, où nous avons cherché à mettre en mouvement une goutte non-mouillante initialement au repos. La goutte est cette fois faite d'huile se trouvant dans un tube capillaire rempli d'eau, et nous avons montré qu'un gradient de concentration en tensioactif provoque un mouvement spontané et permet à la goutte d'huile de s'échapper du tube. Cette expérience réalise ainsi une situation modèle de détergence, Une dynamique très particulière est mise en évidence à temps long : le mouvement est continu ou intermittent selon les paramètres de l'expérience