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Abstract

Calibrating a camera means determining the geometric properties of the imaging
process, i.e., the transformation that maps a three-dimensional point, expressed
with respect to a reference frame, onto its two-dimensional image whose coordinates
are expressed in pixel units. This process is required when recovering 3D informa-
tion. More precisely, we have to know the translation and rotation of the visual
sensor with respect to the rest of the frame system (extrinsic parameters), and the
different parameters of the lens, such as focal length, magnitude factors and the
optical center retinal location (intrinsic parameters).

Although the camera calibration problem is well understood, no method allowing
the robust direct on-line self-calibration for any central omnidirectional camera is
known. Existing self-calibration techniques attempt to calibrate from point cor-
respondences, lines, circles or a specific camera motion. Even though interesting
results can be achieved, self-calibration still suffers from some limitations such as
small number of feature points, difficult detection of lines, undesirable camera mo-
tion and taking into account a specific mirror. Consequently, the aim of this thesis
is to propose a new algorithm that overcomes these limitations and that can be
adopted by any robotic application or by any other practical implementation in
which the calibration process is not straightforward. This algorithm works directly
with the image intensity, makes the minimum of assumptions about the particular
structure of the scene being viewed, stays valid for all central catadioptric systems
and needs no prior knowledge about extrinsic and intrinsic parameters.

Also, part of this thesis is dedicated to formalizing the uniqueness of the solution
for the calibration problem of central catadioptric omnidirectional cameras. For the
greatest part of the work on omnidirectional camera calibration it has been observed
that, in the case of a non-planar mirror, two images acquired from different points
of view suffice to calibrate an omnidirectional camera. However, to our knowledge,
no theoretical proof of the uniqueness of the solution has been provided yet. In
this thesis the calibration problem is formalized by using a unified model that is
valid for all central catadioptric omnidirectional cameras. It is also shown that the
uniqueness of the problem can be derived from the solution of non-linear equations.
However, due to the complexity of the non-linear equations to be solved for the
general case, this thesis devises the uniqueness of the solution for the particular case
of a parabolic mirror when the camera’s movement is a rotation plus a translation.
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Chapter 1

Introduction

Engineers, scientists, and business men are increasingly turning towards nature for
design inspirations. The reason is simple. Nature, through billions of years of
trial and error, has produced effective solutions to innumerable complex real-world
problems. The rigorous competition of natural selection means waste and efficiency
are not tolerated in natural systems, unlike many of the technologies devised by
humans. When scientits wished to build a device to obtain a large field of view, they
started by asking the question: Are there any existing systems with such capabilities?
The answer is yes. In fact, nature offers a wide range of examples - in particular in
the insect kingdom (ants, spiders, houseflies, etc.). For instance, the vision system of
insects equipped with compound eyes are considered as omnidirectional sensors (See
Figure 1.1). Compound eyes are found among the arthropods and are composed of
many simple facets, which depending on the details of anatomy, may give either a
single pixelated image or multiple images, per eye. Each sensor has its own lens and
photosensitive cell. Some eyes have up to 28,000 such sensors, which are arranged
hexagonally, and which can give a full 360 degrees field of view.

Figure 1.1: Housefly’s compound eye.

1.1 Omnidirectional Vision in Science

In science, the term omnidirectional vision refers to vision sensors with a very large
field of view (sensor with a horizontal field of view of 360 degrees and a variable
vertical field of view usually between 60 and 150 degrees). Omnidirectional vision
involves capture and automatic interpretation of images usually depicting full 360 de-
grees (horizontal panoramas) view of the surroundings. Sometimes the field of view
band can be aligned vertically, or in any other plane, usually by means of deploying a
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circularly symmetrical mirror aligned in the required direction. Hemispherical fields
of view (360 degrees by 180 degrees) are also used, usually by deploying a fish-eye
lens. Finally, separate views can be combined, thus forming the ideal full spherical
projection.

1.1.1 Different sensors for capturing wide fields of view

The modern omnidirectional sensors used in computer vision and robot vision can
be devided into three main groups:

1. Panoramic cameras;

2. Compound-eye cameras;

3. Omnidirectional cameras.

1.1.1.1 Panoramic cameras

Panoramic cameras are sensors with the ability to produce perspective panoramic
views by using only single camera. Most of these sensors pan a camera around the
vertical axis passing through the focal point of the camera (See Figure 1.2). These
panoramic cameras provides high definition panoramic images. However, very fine
calibration and synchronization of the camera movements are required. Some of the
sensors do not have such requirement. Instead of rotating around its focal point,
they rotate around a vertical axis at a certain distance from its focal point. Rough
range panoramic images are obtained by matching the views of object from different
positions. The main drawback is that this technique is very slow and not suitable
for use in a dynamic environment. In a dynamic environment, we need cameras
capable of capturing a global view in one shot in order to have, at any time in the
field of view, all the moving objects (e.g. omnidirectional cameras).

Figure 1.2: Panoramic camera.
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1.1.1.2 Compound-eye cameras

Compound-eye cameras use multiple cameras to grab pictures from different direc-
tions and then stitch them together to produce a global view of the environment
(Figure 1.3). The advantages of these cameras are the high resolution that can be
achieved and the possibility of grabbing pictures from different directions at the
same time. However, the disadvantage is the complexity of the system and the need
of an accurate calibration process.

Figure 1.3: Compound-eye camera.

1.1.1.3 Omnidirectional cameras

Omnidirectional cameras are sensors that capture light from all directions covering
a full sphere. In practice, however, most omnidirectional cameras cover only ap-
proximately a semi-sphere, or the full 360 degrees along the equator of the sphere
but exclude the poles of the sphere.

Omnidirectional cameras can be central or non-central. A camera is central, or
has a single viewpoint, if all rays intersect in a single point. The rays may be
completely independent for an arbitrary camera, in particular, they do not have to
intersect in a single viewpoint. The reason why a single viewpoint is so desirable is
because the projection models, and therefore the algorithms, are simple. Also, this
property allows to generate pure perspective images from the observed ones.

Omnidirectional cameras that use only the refractive effect of the lens to inflect
the light are called dioptric cameras1. Cameras that use the combined effects of
reflection from a mirror and refraction from a lens are called catadioptric cameras.

1Dioptrics is the study of the refraction of light by lenses. Telescopes that create their image
with an objective that is a convex lens (refractors) are said to be ”dioptric” telescopes.
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Omnidirectional cameras can be grouped into two categories: cameras that use a
special lens and cameras that use a convex mirror and a set of lenses.

Special lens cameras. Special lens cameras (also called fish-eye cameras) are
imaging systems combining a fish-eye lens and a conventional camera2. Thanks
to the fish-eye lens, they can acquire almost a hemispherical view (See Figure 1.4).
Their main advantage with respect to catadioptric sensors is that they do not exhibit
a dead area. The drawback is that the resolution of the images is good at the centre
but very low at the periphery. This is not good for robot navigation, where the
objects to locate lie on the floor and they appear at the horizon or below. In other
words, the resolution is very good at the ceiling but poor at the horizon.

Figure 1.4: Special lens camera. Left. Fish-eye camera. Right. Fish-eye shot.

Convex mirror cameras. Convex mirror cameras or catadioptric cameras are
the most widely used in robotics to obtain omnidirectional images. The sensor is
composed by a perspective camera pointed upward to the vertex of a convex mirror
(See Figure 1.5). The optical axis of the camera and the geometrical axis of the
mirror are aligned. This system is usually fixed on top of a mobile robot. Mirrors
with different shapes can be used. The most common are: conical, hemispherical,
hyperboloidal and paraboloidal. Every shape presents different properties that one
has to take into account when choosing the mirror for a particular task.

Sometimes catadioptric cameras tend to be big in comparison to conventional cam-
eras. This is due to the fact that capturing a wide unobstructed field of view requires
the lens and the mirror to be adequately separated from each other. To overcome
this limitation, folded catadioptric cameras (cameras combining several mirrors and

2In photography, a fish-eye lens is a wide-angle lens that takes in an extremely wide, hemi-
spherical image. Originally developed for use in meteorology to study cloud formation and called
whole-sky lenses, fish-eye lenses quickly became popular in general photography for their unique,
distorted appearance. They are often used by photographers shooting broad landscapes to capture
the curvature of the Earth.
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a set of lens) were developed. They use the optical folding method to fold the optical
path between the curved mirror and the lens system. Folding with a curved mirror
creates an 180 degrees fold and can reduce undesired optical effects.

Figure 1.5: Convex mirror camera. Left. A convex mirror camera or catadioptric
camera composed by a perspective camera and a parabolic mirror. Right. Omnidi-
rectional images taken with a catadioptric camera.

1.1.2 Omnidirectional vision in computer vision and robotics

Omnidirectional vision is a technique for capturing the world in an image. It is not
mature yet for commercial applications, but its use is growing quickly. More and
more laboratories around the world are developing new sensors and new applica-
tions for or with omnidirectional vision. Applications include all situations where
large fields of view are needed, such as video-conferencing, site modeling, wide area
surveillance, virtual reality, navigation and guidance of (autonomous) vehicles, track-
ing and motion detection, visual odometry and simultaneous localization and map-
ping (SLAM), among others [DGSW00, RCS02, Gre85, BS, Yag99, BK01, EMW01].

Due to its ability to capture a 360 degree view, omnidirectional vision has found the
largest application in the domain of mobile robotics (Figure 1.6 illustrates a mobile
robot with a catadioptric panoramic camera). It is easier to recognize previously
observed places. Also, it is much easier to deal with the rotation of the camera
mounted on a robot, as this will not make objects disappear from view but only
change their positions in the image. Egomotion estimation algorithms are simpler
when using omnidirectional images, since the rotation and translation components
of a movement can be decoupled. Also, the accuracy of self-localisation is largely
influenced by the locations of the landmarks relative to the robot. Only omnidi-
rectional vision allows selection of landmarks all around the robot. Additionally,
omnidirectional vision lends itself to a particularly simple stereo epipolar geometry
and consequently to instantaneous range finding that is not limited by a narrow
field of view. As we can see, omnidirectional cameras offer a number of significant
benefits. Nevertheless, their practical use is often burdened by the calibration phase.
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Figure 1.6: Mobile robot Left. The mobile robot with a catadioptric panoramic
camera. Middle. The detail view of the camera. Right. The panoramic image shows
how the camera sees itself and occludes a part of the ceiling.

1.2 Camera calibration

Camera calibration is a way of examining several images, or a video, and deducing
what the camera situation was at the time the images were captured. Camera cali-
bration is used primarily in robotic applications, and when modeling scenes virtually
based on real input.

One of the main uses of camera calibration is to determine where a camera was
in relation to a scene in an image. Camera calibration achieves this, by using for-
mulas to essentially work backwards, and deduce where the camera was relative to
the scene.

Camera calibration can also be used to figure out other things about the cam-
era in relation to the scene. For example, we can infer the focal length used to
photograph the scene. We can also deduce the skew factor of the image, and any
lens distortion that may have been introduced, creating a barrel effect, pincushion
effect or mustache effect. We can also deduce whether the actual camera pixels were
square, and the horizontal and vertical scaling factors for the pixels might have been.

We can also use camera calibration to take an image sent to a computer, and deduce
where various coordinates are in the real world. This type of deduction is crucial to
the functioning of robots that are meant to interact visually with the physical world.
These robots can then use an image, or video input device and calibrate in order to
figure out where objects it sees might actually be in the real world, in actual terms
of distance and vector.
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This is one of the major areas of study in robotics, as faster, more accurate, methods
of calibrating allow robots to interact with the world in more sophisticated ways. A
robot with a poor ability to discern the distance of objects will have to rely largely
on trial and error to move over terrain or manipulate an object, whereas one that is
able to accurately model its own place in the world in relation to other objects, is
able to move seamlessly in the world.

Many approaches to estimate the calibration of catadioptric omnidirectional cam-
eras have been proposed. Those approaches can be divided into two main groups.
The first group includes methods which exploit prior knowledge about the scene,
such as the presence of calibration patterns [GSB09, SB08, BPS+08, MBMR06,
SMS06, DWW07, CBDD00], lines [GD02, BA05, YZ05, WLH06], points [Vas04,
Ali01, WH05], sphere images [YH03, XY05] or polarized images [MSF07]. The
second group covers techniques that do not use this knowledge. This includes cali-
bration methods from pure rotation [BP02] or planar motion of the camera [GN98]
and self-calibration procedures [GD01, Kan00, MP04, FTB02, SR04, BV08].

1.3 Motivation

Although the camera calibration problem is well understood, no method allowing
the robust on-line self-calibration for any central omnidirectional camera is known.
Existing self-calibration techniques attempt to calibrate from point correspondences,
lines, circles or a specific camera motion. Even though interesting results can be
achieved, self-calibration still suffers from some limitations such as small number of
features points, difficult detection of lines, undesirable camera motion and taking
into account of a specific type of mirror. Consequently, the motivation of this thesis is
to propose a new algorithm that overcomes these limitations. This algorithm works
directly with the image intensity, makes the minimum of assumptions about the
particular structure of the scene being viewed, stays valid for all central catadioptric
systems and needs no prior knowledge about extrinsic and intrinsic parameters.

1.4 Goal of the thesis

The aim of this thesis is to develop an on-line self-calibration algorithm for the sim-
plification of the calibration process required by any central omnidirectional camera.
This method can be adopted by any robotic application or by any other practical
implementation in which the calibration process is not straightforward.

1.5 Methodology

In order to achieve the main goal of this thesis, the following methodology is ap-
plied: Firstly, a unified model that is valid for all central omnidirectional cameras is
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adopted. This stage is followed by an algorithm that accomplishes the visual tracking
of a plane. Experiments with synthetic as well as real data are performed to validate
the visual tracking method. Secondly, the visual tracking algorithm is applied to the
on-line self-calibration of the catadioptric omnidirectional sensor. Finally, different
catadioptric omnidirectional sensors are employed to test the proposed algorithm.

1.6 Contributions of this thesis

The main contribution of this thesis is to show that an on-line self-calibration method
based only on planar tracking works for any central omnidirectional camera in a
robust manner. This can be very helpful in any application where camera calibration
is impossible or hard to obtain. Further, the following are proposed in the thesis:

An algorithm for visual tracking of a plane with an uncalibrated cata-
dioptric camera. An algorithm to efficiently track a plane in an omnidirectional
image without requiring the prior calibration of the sensor is proposed. The ap-
proach deals with a nonlinear optimization problem that can be solved for small
displacements between two images acquired at a video rate.

Proof of the uniqueness of the solution for the calibration of central cata-
dioptric omnidirectional cameras For the greatest part of the work on omni-
directional camera calibration, it has been observed that, in the case of a non-planar
mirror, two images acquired from different points of view suffice to calibrate an
omnidirectional camera. However, to our knowledge, no theoretical proof of the
uniqueness of the solution has been provided yet. Hence, part of this work is ded-
icated to formalizing the uniqueness of the solution for the calibration problem of
central catadioptric omnidirectional cameras.

1.7 Structure of the thesis

Chapter 2 deals with the theory of omnidirectional camera geometry. It describes the
omnidirectional camera projection model, the image formation and the camera cal-
ibration methods which exploit prior knowledge about the scene. Chapter 3 begins
with an overview of tracking approaches in the literature using omnidirectional cam-
eras. Then, an algorithm for efficiently tracking a plane in an omnidirectional image
without requiring the prior calibration of the sensor is presented. Chapter 4 focuses
on the main goal of this thesis, the on-line self-calibration of central catadioptric
omnidirectional cameras. First, a brief state of the art of self-calibration methods is
presented. Then, the on-line self-calibration approach is shown and tested with syn-
thetic data and real data for different types of omndirectional cameras. Finally, the
mathematical proof to the uniqueness of the solution for the calibration problem of a
central para-catadioptric omnidirectional camera is presented. General conclusions
and directions for future work are given in Chapter 5. Theorical demonstrations are
included in the appendices.



Chapter 2

Central Catadioptric
Omnidirectional Cameras

This chapter is dedicated to central catadioptric cameras. First, we present a brief
overview of catadioptric camera through its history. Then, we describe how to link
the image in the sensor to the light rays emitted by a region of space. In this part,
we show that wide-angle sensors impose a different view of the world through spher-
ical perspective projection. We also present the unified projection model which uses
spherical perspective projection. We focus on this model because it presents a com-
promise between genericity and over-parameterisation and its parameters are easily
identifiable; therefore, we use it throughout this work in order to accomplish all the
experiments and to provide reliable results. Finally, we analyse a state of the art of
existing calibration methods which exploits prior knowledge about the scene, such as
the presence of calibration patterns, lines, points or sphere images.

2.1 Overview

The concept of catadioptric camera already appeared in the presentation of René
Descartes in 1637 in Discours de la Methode [DS37]. He showed that refractive as
well as reflective ovals (conical lenses and mirrors) focus light into a single point.
The idea was later re-phrased by Feynman et al. in 1963 [RPFS63]. The first cata-
dioptric cameras were composed of lenses rotating around a given axis (swing lens
cameras). Because the camera was stationary, the acquired field of view was lim-
ited between 120 degrees and 150 degrees. Rotating cameras, created shortly after,
did not have this limitation and made it possible to create 360 degrees views of
the environment. However, if we can process the images, as is done regularly with
computers nowadays, a way of capturing large field of views without any moving
parts can be achieved. Two main approaches have been used: (1) a mirror system
constructed from several planar mirrors, where a camera is assigned to each mirror
plane; (2) one camera observes convex or concave mirror. Rees [Ree70] was the first
to patent the combination of a perspective camera and a convex mirror (in this case
a hyperbolic mirror). In his US patent, he described how to capture omnidirectional
images that can be transformed to correct perspective views (no parallax). Jeffrey
R. Charles designed a mirror system for his Single Lens Reflex (SLR) camera. He
proposed a darkroom process to transform a panoramic image to a cylindrical pro-
jection [Cha76]. It is much later, in the 90’s, that omnidirectional vision became
an active research topic in computer and robot vision. Chahl and Srinivasan de-
signed a convex mirror with regard to quality imaging [CS97]. Geb proposed an
imaging sensor with a spherical mirror for teleoperational navigation on a mobile
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vehicle [Geb98]. Kawanishi et al. proposed an omnidirectional sensor covering a
whole viewing sphere [TKY98]. They designed an hexagonal mirror assembled with
6 cameras. Two such catadioptric cameras were symmetrically connected back to
back to observe the whole surroundings. Yagi et al. used a conic-shaped mirror.
Vertical edges in the panoramic image were extracted and with acoustic sensor coop-
eration a trajectory of a mobile robot was found [YYY95]. Yamazawa et al. detected
obstacles using a catadioptric sensor with a hyperbolic mirror [YY00]. Under the
assumption of planar motion they computed the distance between the sensor and
the obstacle. Their method was based on a scale invariant image transformation.
In [DSR96], the authors proposed a catadioptric system with a double lobed mirror.
The shape was not precisely defined. Hamit [Ham97] described various approaches
to get omnidirectional images using different types of mirrors. Nayar et al. presented
several prototypes of catadioptric cameras using a parabolic mirror in combination
with ortographic cameras [Nay97]. Hicks and Bajcsy presented a family of reflective
surfaces that provided a wide field of view while preserving the geometry of a plane
perpendicular to their axis of symmetry [HB99]. Their mirror design had the ability
to give a normal camera a birds eye view of its surroundigs. In the last decade
many other systems have been and continue to be designed, as new applications,
technological opportunities or research results. For instance, Layerle Jean-Francois
[LSEM08] has proposed the design of a new catadioptric sensor using two different
mirror shapes for a simultaneous tracking of the driver’s face and the road scene.
They showed how the mirror design allows the perception of relevant information in
the vehicle: a panoramic view of the environment inside and outside, and a sufficient
resolution of the driver’s face for a gaze tracking.

2.2 Image Formation

By image formation we will understand the formation of a digital image from a
surrounding scene through an optical (including mirrors) and a digitization process.
This is the basic step for using vision sensors but it is not a straightforward task:
sensors are not perfect and we need to model small errors of design.

Let I be an image of the world obtained through an optical device. We will consider
I to be a two-dimensional finite array containing intensity values (irradiance). I can
be seen as a function:

I : Ω ⊂ R2 −→ R+

(u, v) 7−→ I(u, v)
(2.1)

The irradiance at an image point p = (u, v) is due to the energy emitted from
a region of space determined by the optical properties of the device. In the case
of a central device with a unique viewpoint, the direction of the energy source is
represented by a projective ray (a half-line) with initial point the optical center (or
the focus) of the device (noted C in Figures 2.1 and 2.2).
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2.3 Projection Models

As we said in the previous chapter, catadioptric omnidirectional cameras are sensors
composed of a perspective camera pointed upwards to the vertex of a convex mirror.
Therefore, the image formation of this kind of sensor is described by the well known
perspective camera model complemented by a non linear part given by a function
due to the mirror standing between the world scene and the camera. Let us present
how the planar perspective projection model and the spherical perspective projection
can be related to model the image formation for this kind of a sensor.

2.3.1 Planar perspective projection

The most common way to model a single camera is to use the well known perspective
projection model [Fau93, HZ00]. The standard perspective camera model maps all
scene points X (3D point) from a line passing through an optical center of a camera
to one image point p. Figure 2.1 depicts the standard perspective projection model.
Let the optical center of the device be the camera reference frame, so point X
becomes XC = (X,Y, Z)⊤ and its projection is made as follows :

1. The point XC = (X,Y, Z)⊤ is projected to the normalised plane πm by the
following equation:

m = (x, y, 1)⊤ =




1
Z

0 0
0 1

Z
0

0 0 1
Z


 (X,Y, Z)⊤ =

(
X

Z
,
Y

Z
, 1

)⊤

2. Let α1 = kuf be the horizontal focal length in pixels and α2 = kvf the vertical
focal length in pixels, where f is the focal length, ku and kv are the scaling
factors for row pixels and column pixels (camera pixels are not necessarily
square). s the skew factor (represents the non-ortogonality between rows and
columns of the sensor cells) and (u0, v0) the principal point (it is typically not
at (width/2, height/2) of image), then the projection of m in homogeneous
coordinates to the image plane πp is obtained linearly by :

p = (u, v, 1)⊤ = PXC = Km =




α1 s u0

0 α2 v0

0 0 1


m

This model is not adapted for a field of view greater than 180 degrees. Real om-
nidirectional cameras project points in front of the camera to one point and points
behind the camera to a different point. The representation of image points by lines
assigns to a single image point p points on a ray passing trough an optical center
that are in front as well as behind of the camera. Thus, all points from the ray
project to the same point in the projection plane. It allows to represent only scene
points lying in a halfspace including an image plane as a border. So, the perspective
model is sufficient for directional cameras which cannot see two halfspaces divided
by the plane containing the optical center at the same time, but it cannot be used
for omnidirectional cameras.
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1

C

~x

~y

X

K

m

~z

πp

πm

p

Figure 2.1: Planar perspective projection.

2.3.2 Spherical perspective projection

The spherical perspective projection model maps all scene points X on the unit
sphere S2 = {Xs ∈ R3|‖Xs‖ = 1}. The constraint that the scene points are in front
of the camera can be imposed even for a field of view greater than 180 degrees.
The scale factor λ relating points on the sphere to the 3D points must be positive:
∃Xs ∈ S2 =⇒ ∃λ > 0|X = λXs.

From the unit sphere, we can then apply the projection function noted Π that
depends on the intrinsic parameters of the sensor : Π : Υ ( S2 → Ω ⊂ R2. Π is
not defined on all of S2 because we wish Π to be bijective which cannot be the case
between S2 and R2 as they do not share the same topology. If Π is bijective, Π−1

will relate points from the image plane to their projective rays.

2.3.3 Omnidirectional projection

Recalling the standard projection model p = PX. Where p is the projection of the
world point X, P is the projection matrix which comprises the intrinsic parameters
and the projection of the world point to a normalised plane [Fau93, HZ00]. For om-
nidirectional cameras one has: p = PF(X) . Where F is the function introduced
by the reflection of the light rays at the mirror. This function depends on the mirror
shape and is in general non-linear. Stated simply it determines the point of the
mirror where the ray coming from the 3D point X is reflected and directed towards
the camera’s optical center.

Depending on the particular camera and mirror setup, the light rays incident to
the mirror surface may all intersect at a virtual point. In this case the system is re-
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Figure 2.2: Spherical perspective projection.

ferred as having a Single Projection Centre. A single projection centre is a desirable
property as it permits the generation of geometrically correct perspective images
from the pictures captured by the omnidirectional camera. This is possible because,
under the single view point constraint, every pixel in the sensed image measures
the irradiance of the light passing through the viewpoint in one particular direction.
When the geometry of the omnidirectional camera is known, that is, when the cam-
era is calibrated, one can precompute this direction for each pixel. Therefore, the
irradiance value measured by each pixel can be mapped onto a plane at any distance
from the viewpoint to form a planar perspective image.

Baker and Nayar derived the complete class of central catadioptric sensors that
have a single viewpoint under the assumption of the pinhole camera model. They
identified four possible configurations of camera and mirror that are non degener-
ate and two configurations that are degenerate. Figure 2.3 depicts the four non
degenerate configurations combined an ortographic camera with a parabolic mirror
or a perspective camera associated to a hyperbolic, elliptical or planar mirror. The
degenerate configurations (spherical mirror and conical mirror ) cannot be used to
construct cameras with a single effective view point. Indeed, a sphere can be seen
as the limit of an ellipse when the two focal points concide; thus, to obtain the
single viewpoint property, we would need to place the camera in the center of the
sphere. We would then only see the camera itself. By putting the camera in another
position, we obtain a caustic. Similarly, a conical mirror is an interesting example
of the limit of the pinhole camera model. The single viewpoint constraint imposes
that the cone be situated in front of the camera with the vertex at the focal point.
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For a pinhole camera, this would mean no light reaches the imager.

2.3.4 Unified Projection Model

A unifying theory for all central catadioptric systems was proposed by Geyer and
Daniilidis [GD00, Gey03]. They showed and proved that every catadioptric (parabolic,
hyperbolic, elliptical) and standard perspective projection is isomorphic to a pro-
jective mapping from a sphere (centered in the effective viewpoint) to a plane with
the projection center on the perpendicular to the plane. Figure 2.3 shows the entire
class of central catadioptric sensors. Table 2.1 details the equations of the 3D sur-
faces and the relation between the standard (a, b) parameterisation and the (p, d)
parameters used in Barreto’s model [Bar03].

d (any)

α

d
4p

α

α

dαα

Elliptical Planar

Parabolic Hyperbolic

d

α
α

4p 4p

x
z

x
z

x
z

x
z

F

F

F F

a

Figure 2.3: Classes of central catadioptric sensors with a single viewpoint.

Barreto introduced a modified version of this unifying model [Bar03]. The right
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side of Figure 2.4 depicts this model. The mapping between points in the 3D world
points and points in the catadioptric image plane is split into three steps. The left
side of Figure 2.4 shows this mapping. World points are mapped into an oriented
projective plane by a linear function described by a 3 × 4 matrix (similar to the
projective camera model refered in [HZ00]). The oriented projective plane is then
transformed by a non-linear function h(). The last step is a collineation in the
plane depending on the mirror parameters, the pose of the camera is relative to
the reflective surface and the camera intrinsic parameters. Matrix Mc and function
h() are respectively provided by (2.2) and (2.3). Matrix Mc only depends on the
mirror type and shape. Parameters ξ and ϕ appear in Table 3.1. Kc is the matrix
of camera intrinsic parameters. Matrix Rc is a 3 × 3 rotation matrix which models
the possible rotations of the camera with respect to the coordinate system of the
camera (See Figure 2.5).

The model obtained is general, intuitive and isolates the non-linear characteris-
tics of general catadioptric image formation in a single function h(). Function h()
transforms oriented projective points x in sensor coordinates into points x. This non-
linear transformation, presented in (2.3), has the following interpretation. Without
loss of generality, consider that the world and the sensor coordinates system are the
same, with origin O in the effective viewpoint, and an unit sphere centered in O
(See Figure 2.4). To each visible scene point Xh corresponds an oriented projective
ray x joining the 3D point with the effective projection center. The projective ray
intersects the unit sphere in a single point Xc. Consider a point Oc with coordinates
(0, 0,−ξ)⊤ in the sensor coordinates system. To each x corresponds an oriented pro-
jective ray x joining Oc with the intersection point Xc in the sphere surface. The
non-linear mapping h corresponds to projecting the scene in the unit sphere surface
and then re-projecting the points on the sphere into a plane from a novel projection
center Oc. Points in the catadioptric image plane x̂ are obtained after a collineation
Hc of the 2D projective points x.

The novel projection center Oc = (0, 0,−ξ)⊤ only depends on the mirror parameter
ξ. For a parabolic mirror ξ = 1 and Oc belongs to the unit sphere surface. For
hyperbolic and elliptical case Oc is inside the unit sphere along the negative z-axis.
The planar mirror is a degenerate case of central catadioptric projection where ξ = 0
and Oc is coincident with O. We thus fall back to the standard projection model
with an extra normalization to the sphere.

Mc =




ϕ − ξ 0 0
0 ξ − ϕ 0
0 0 1


 (2.2)

h(x) =




x√
x2+y2+z2

y√
x2+y2+z2

z√
x2+y2+z2

+ ξ


 (2.3)
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Table 2.1: Conic equations

Parabola
√

x2 + y2 + z2 = 2p − z

Hyperbola
(z− d

2
)2

a2 − x2

b2
− y2

b2
= 1

Ellipse
(z− d

2
)2

a2 + x2

b2
+ y2

b2
= 1

Plane z = d
2

a = ∓1/2(
√

d2 + 4p2 ± 2p). Negative for a hyperbola. Positive for an ellipse.

b = ∓
√

p(
√

d2 + 4p2 ± 2p). Negative for a hyperbola. Positive for an ellipse.

Figure 2.4: Left. Steps of Barreto’s projection model. Right. Barreto’s unifified
projection model for central catadioptric image formation.

Recently, this projection model has been very useful in central catadioptric cam-
era applications due to its simplicity. This thesis work is not an exception. A
slightly modified version of this projection model will be used throughout this work.
The difference from the model of Barreto, is the use of a generalised focal length
that depends on the focal length of the camera and on the mirror shape; so that
we consider the sensor to be a single imaging device and not the combination of a
camera and a mirror. We will present in detail the projection model that will be
used in this work in the Section 3.2.1 Warping Function of the next chapter.
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Table 2.2: Unified model parameters

ξ ϕ
Parabolic 1 1 + 2p

Hyperbolic d√
d2+4p2

d+2p√
d2+4p2

Elliptical d√
d2+4p2

d−2p√
d2+4p2

Planar 0 1
d: distance between focal points

4p: latus rectum

Figure 2.5: Image formation process. Hyperbolic situation (courtesy of Barreto
[Bar03]).

2.4 Classical Calibration

Camera calibration is the process of modeling the mapping between 3D objects and
their 2D images. This process if often required when recovering 3D information from
2D images. More precisely, we have to know the intrinsic parameters and extrinsic
parameters.

The intrinsic parameters describe the imaging geometric characteristics of the cam-
era. They depend of the used projection model. Among the intrinsic parameters
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that most approaches estimate we find :

• The focal length, f .

• The scaling factors for row pixels and column pixels, ku and kv.

• The skew factor, s.

• The aspect ratio, r = ku

kv
.

• The principal point, (u0, v0).

• The tangential and radial distortion parameters 1.

• The mirror shape parameter(s).

The extrinsic parameters represent the orientation and position of the camera with
respect to the world coordinate system. These paremeters include a rotation matrix
R between the coordinate system from 3D world coordinates to 3D camera coor-
dinates and a translation vector t between the coordinate system from 3D world
coordinates to 3D camera coordinates.

Classical calibration techniques, as opposed to self-calibration techniques, proceed
by analyzing an image of one or several reference objects whose geometry is accu-
rately known. They work in two steps:

1. Some features are extracted from the images by means of standard image
analysis techniques. These features are generally points, lines or conics.

2. The features are given as input to an optimization process which searches for
the projection parameters that best project the three-dimensional model onto
them.

In what follows, we will give a brief overview of the different methotds that have
been developed classically.

2.4.1 Pattern Calibration techniques

Methods based on point features lying on a calibration grid (normally a checkboard)
require the user to take one picture of the pattern shown covering most of the image
[SB08, BPS+08, CBDD00] or several pictures of the pattern shown at a few different
positions and orientations around the mirror [MBMR06, SMS06, DWW07, GSB09].

1Nonlinear intrinsic parameters such as lens distortion are also important although they cannot
be included in the linear camera model described by the intrinsic parameter matrix. Modern
camera calibration algorithms estimate these intrinsic parameters as well.
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Then, the corner points of the checkboard are detected manually. Figure 2.6 shows
sample images of a checkerboard used to calibrate an omnidirectional camera.

Corner extraction for calibration grids, despite being trivial for perspective cameras,
is still problematic for images with strong non-linear distortions. In the perspective
case we typically indicate the area of interest by manually clicking 4 corners; they
enable the estimation of a homography and the projection of the grid onto the image.
The final positions of all corners are accurately determined by refining the initial
estimate using image processing techniques. Such a procedure has not been possible
until now for non-conventional imagery with non-perspective distortions.

In [MBMR06], like in the perspective case, the user is asked to click on the four
grid corners of each image, but some steps (considering drawbacks) must be made
before in order to make a first calibration approach of the camera’s intrinsic param-
eters. Among these steps we can find : first, the user is asked to say what shape of
mirror was used to get the images; second, the user must click in the center and the
border of the image mirror. Finally, the user must click three no-radial points in a
given pattern image. Although this calibration method has some drawbacks, accu-
rate calibration for all the variety of central catadioptric cameras and fish-eye lenses
can be done because the authors adopted the well-known sphere camera model to
describe the catadioptric projection.

The proposed method in [SMS06], unlike [MBMR06] only needs the intervention of
the user when its automatic corner detection is not capable to detect all the corners
due to bluring or heavy distortions in the images. The user must click the remain-
ing corners. Since the mirror shape is described by a polynomial, this algorithm
stays valid for all central catadioptric cameras and fish-eye lenses. Both methods,
[MBMR06] and [SMS06], compute a least square linear minimization method to find
the intrinsic and extrinsic parameters.

In [GSB09] calibration for all central catadioptric cameras is feasible. Like in
[MBMR06] the authors adopted the sphere camera model to describe the catadiop-
tric projection. The authors showed that, using the so-called lifted coordinates, a
linear relation mapping the grid points to the corresponding points on the image
plane can be written as a 6 × 6 matrix Hcata, which acts like the classical 3 × 3 ho-
mography for perspective cameras. They showed how to compute the image of the
absolute conic (IAC) from at least 3 homographies and how to recover from it the
intrinsic parameters of the catadioptric camera. Altough the algorithm considers a
linear relation, at least three images from a checkboard pattern with more than 48
corners are necessary and their corners have to be manually detected.

In [SB08] the authors proposed a work similar to [GSB09]. They showed that in the
case of paracatadioptric cameras one homography could be enough for estimating
the IAC, thus allowing the calibration from a single image.

In [BPS+08] the authors compute calibration using three perpendicular checkboard



22 Chapter 2. Central Catadioptric Omnidirectional Cameras

patterns. This work uses the sphere camera model, so it is able to calibrate every
single-viewpoint catadioptric system. The algorithm needs a minimun of twenty
points distributed in the three different planes to estimate the generic 6 × 10 pro-
jection matrix, which lifts coodinates for the image and the 3D points. The authors
show how to decompose this projection matrix to obtain intrinsic and extrinsic pa-
rameters. Moreover, they use this estimation of parameters followed by a non-linear
optimization to calibrate various types of cameras.

In [CBDD00] the authors use a pattern calibration which is a hollow cube with four
interior vertical sides made up of a repetitive square motive. To perform calibration
of the conical mirror, the authors select the non-radial points in the image. They
characterize all horizontal straight lines of the pattern calibration, projecting them
in the picture under the shape of the curve. Next, the authors approximate with
elliptic functions all curves in the picture. Then, radial straight line intersections
with these curves are calculated. These intersections give the set of 2D calibration
points. The set of 2D and 3D calibration points give an overdetermined system. A
non-linear minimization method is utilised to solve this system.

Figure 2.6: Sample images of a checkerboard pattern used to calibrate an omnidirec-
tional camera.

2.4.2 Line based calibration

Methods based on lines calibrate omnidirectional cameras using geometric proper-
ties of the conic. They detect lines either automatic or manually, thus calibration
is performed. Figure 2.7 depicts detections of lines in omnidirectional images for
calibration purposes.

Geyer and Daniilidis [GD02] calibrated para-catadioptric cameras from at least three
line images. The authors showed that vanishing points lie on a conic section which
encodes the entire calibration information. Thus, projections of two sets of parallel
lines suffice for intrinsic calibration. Howewer, this property does not apply to non-
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parabolic mirros. Therefore, the proposed technique cannot be easily generalized to
other kinds of sensors.

In [BA05] Barreto and Araujo studied the geometric properties of line images under
the central catadioptric model, and gave a calibration method for all kinds of central
catadioptric cameras. Both methods [GD02, BA05] involve conic fitting, therefore,
errors can occur when only a partial contour is available.

Wu et al. [WLH06] introduced a shift from the central catadioptric model to the pin-
hole model. The constraint that image points belonging to a space line is collinear is
used to calibrate paracatadioptric-like cameras. This method does not need fitting
of partially visible conic and is totally linear.

In [YZ05] the method starts by quantizing the intrinsic parameters in their value
ranges and then, for each calibration set, a line detection algorithm is performed in
sphere space. The best parameters are those maximizing a cost function defined as
the number of pixels that belong to the 3 most dominant lines. One of the disadvan-
tages is that the search space is analyzed exhaustively whereas it is extremely huge
(5 dimensions of real values). Moreover, the line extraction algorithm is based on the
Hough transform which is known to be slow and sensitive to parameters sampling.

Figure 2.7: Detection of lines for calibration purposes.
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2.4.3 Points based calibration

Calibration techniques based on points exploit known 3D space points to calibrate
the sensor. Figure 2.8 shows a calibration system where the 3D positions of points
in the enviroment are well known.

In [Ali01] Aliaga proposed an approach to estimate camera intrinsic and extrin-
sic parameters for a paraboloidal catadioptric system, where the mirror center was
manually determined. Their model relaxes the requirement of a perfect orthographic
projection, integrates radial distortion correction, and compensates for minor mirror
misalignment.

Vasseur and Mouaddib [Vas04] calculated intrinsic parameters by a non-linear method
with 3D space points. The authors placed the catadioptric system in an opened cube
with a grid of points on each side. In this way, the points of the pattern were dis-
tributed over the whole catadioptric image. The pattern contained 112 points and
the authors calculated six extrinsic parameters as well as the intrinsic parameters of
the camera. The optimization was performed by the minimization of the quadratic
error between the selected points and those computed by the model.

Wu and Hu [WH05] introduced the invariants of 1D, 2D and 3D space points and
then used them to compute the camera’s principal point with a quasi-linear method.

Figure 2.8: Point based calibration system. The 3D positions of the points in the
calibration pattern are well known (P. Vasseur [Vas04]).
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2.4.3.1 Sphere based calibration

Sphere based calibration techniques detect sphere shapes and then their contours
are exploited to calibrate the sensor. Figure 2.9 shows an omnidirectional image
with a sphere for calibration purposes.

Ying and Hu [YH03] analyzed the relation of the camera intrinsic parameters and
the sphere imaged contour. Then, they applied the relation to calibrating central
catadioptric cameras. The minimum number of sphere images (three) for the cali-
bration of different types of central catadioptric cameras was clarified in this paper.
In order to efficiently solve the non-linear equations of the intrinsic parameters, the
authors presented a two-stage calibration technique which divided the intrinsic pa-
rameters into two groups and used the Levenberg-Marquardt algorithm to perform
the minimization to estimate the intrinsic parameters. One important observation
in this paper is that the methods based on the projection of spheres are more robust
and have higher accuracy than those using the projection of lines.

In [XY05] the authors discovered that each sphere image is tangent to the mod-
ified image of the absolute conic (MIAC) at two double-contact image points, and
a linear calibration method using sphere images is derived from this observation.
This algorithm requires three sphere images and recovers all five intrinsic parame-
ters without making assumptions, such as zero-skew or unitary aspect ratio.

Figure 2.9: Sphere image used for calibration purposes.



26 Chapter 2. Central Catadioptric Omnidirectional Cameras

2.4.4 Polarized images calibration

These techniques are based on polorization imaging. Figure 2.10 depicts a polariza-
tion system and the needed images to compute the calibration parameters.

Morel and Fofi [MSF07] use the generic calibration concept introduced by Sturm
and Ramalingam [SRL06]. The concept considers an image as a collection of pixels,
and each pixel measures the light along a particular 3D ray. Thus, calibration is
the determination of the coordinates of all pixels’ rays. To get the 3D-rays the 3D
surface of the mirror has to be computed. The authors compute this 3D surface
thanks to the Frankot-Chellappa algorithm. To calibrate the system, the rotating
polarizer is placed between the lens and the mirror, and a white paper sheet cylinder
is placed around the mirror in order to get unpolarized light. Each light intensity
of the pixels is linked to the angle of the polarizer (called α) and the polarization
parameters I, Ψ and ρ are computing with at least three images taken with different
orientations of the polarizer. To get an automatic calibration of the catadioptric
system, a liquid-crystal polarization rotator is used instead of the polarizer. Af-
ter automatically computing the polarization parameters, by knowing the refractive
indexs of the material, the calibration is directly done for every pixel. No image
proccesing and no calibration pattern are required.

Figure 2.10: Polarized images calibration system. Left. Polarization system. Middle
and right. Images of the polarization parameters that are needed to reconstruct the
mirror shape (Morel and Fofi [MSF07]).

2.4.5 Classical calibration drawbacks

Some remarks can be made for these kind of techniques. All of them differ mainly
by the type of mirror taken into account (e.g. hyperbolic and parabolic) and the
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considered intrinsic parameters (skewness, aligment, . . . ) of the projection model.
Even though, methods based in a calibration grid are capable of performing accurate
calibration for all central catadioptric cameras (provided the calibration pattern is
carefully set), corner extraction for calibration grids is still problematic for images
with strong non-linear distortions; consequently, manual extraction is often required.
It is not possible to calibrate the camera on-line when it is already involved in a vi-
sual task (in many applications a calibration pattern is not available). However, even
when the camera performs a task, the intrinsic parameters can change intentionally
or not ( e.g. adjustment of the focal length, mechanical or thermal variations).
Methods based on projection of lines have the advantage that a calibration pattern
is optional (lines from the real world can be used instead). However, the image of
a line can be a line, circle, ellipse, hyperbola or parabola, and in general only a
small arc of the conic is visible in the image and it is known that fitting a generic
conic when its type is unknown is hard. Therefore traditional fitting methods lead
to inaccurate results. The accuracy of the estimated intrinsic parameters depends
highly on the accuracy of the extracted conics. Methods based on sphere images
permits a more accurate conic fitting since the whole sphere contour is visible. How-
ever, it requires the presence of spheres in the scene which cannot be applied in real
world applicactions. Finally, methods based on polarized images work for any shape
or mirror (regular or not) but errors can occur in the top of the mirror where the
normals are oriented near the optical axis. Morever, a calibration pattern is not
required but a complex polarized system is required.

In chapter 4, we will detail how to self-calibrate omnidirectional cameras on-line
based on the image intensity. Before achieving this objective, we will show in the
following chapter how to efficiently track a plane in an omnidirectional image with-
out requiring the prior calibration of the sensor. This will give us the basis for
self-calibrating omndirectional cameras on-line by using several of the tracked views.





Chapter 3

Uncalibrated Visual Tracking

In this chapter we will show how to efficiently track a plane in an omnidirectional
image without requiring the prior calibration of the sensor. We will start by giving an
overview of tracking approaches to set the context for our work on omnidirectional
plane-based visual tracking. We will then concentrate more specifically on sum of
squared differences (SSD) tracking. We will explain why SSD tracking is particularly
well suited for robotics tasks. Then, we will explain in detail the uncalibrated visual
tracking algorithm. Finally, we will present experimental results. These results will
show that our method is able to track planar objects with an uncalibrated catadioptric
camera and thus can be helpful in robotic applications where camera calibration is
impossible or hard to obtain.

3.1 Visual Tracking

Visual tracking is a critical task in many computer vision applications such as surveil-
lance, robotics, human computer interaction, vehicle tracking, medical imaging, etc.
The challenges in designing a robust visual tracking algorithm come from the pres-
ence of noise, occlusion, varying viewpoints and illumination changes. A variety of
tracking algorithms have been proposed to overcome these difficulties.

Although it is not always obvious how to characterise an approach, visual track-
ing approaches can be classified according to several properties as:

• 3D model-based/model-free tracking.

• Matching-based/direct tracking.

• 2D/3D tracking.

In 3D model-based/model-free tracking techniques, we can either assume that the
tracked object can be parameterised by a certain surface or structure (planes, quadrat-
ics, cubes, . . . ), or we characterise it only by its properties (color, texture, rigid or
deformable, . . . ).

In matching-based/direct tracking techniques, we can either extract features in the
image and then look for similar features in the incoming image without using prior
knowledge of the camera motion, or the approach assumes small displacements be-
tween frames and processes the image information directly.

In 2D/3D tracking techniques, we can either track an object in the image or es-
timate the 3D motion of the object in the scene from its image.
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In real-time applications, the main requirements of a tracking algorithm are effi-
ciency, accuracy and robustness. Visual tracking techniques such as tracking by
matching and recursive tracking achieve these requirements. Lets discuss them in
order to set the context for our work on omnidirectional plane-based visual tracking.

3.1.1 Tracking by matching

Tracking by matching techniques work in three steps. First, features are extracted
in the first image. Second, features are extracted in the second image and third,
features are associated in the two images through a distance measure.

These techniques do not search for the points extracted in the first image directly
in the second image because it is supposed to obtain a gain in terms of computation
and robustness. For example, if we use Harris points [HZ00], we only need to corre-
late between features instead of searching in the whole image. Furthermore there is
a smaller chance of having bad associations since we only correlate between features
that we expect to be able to associate. Of course, if there are a lot of features and
that the distance measure is not very discriminating, we can expect to have many
outliers. Matching in the whole image also has the disadvantage of being computa-
tionally expensive but has the advantage of making it possible to match over large
distances. The efficiency and robustness of the data association can be enforced
using a priori knowledge of the motion of the camera or of the tracked object.

Outlier rejection is an essential process in these type of methods. For example,
if we are estimating the motion of the camera from feature points, we might use the
epipolar constraint (through the essential matrix or fundamental matrix) to remove
outliers. The constraint is imposed by the properties of projective geometry. It is
also possible to add constraints such as planarity (planar homography matrix) or
even search for specific objects.

The outlier rejection process and the salient feature extraction can make it difficult to
obtain frame-rate tracking. RANSAC [FB81] is often used but it is time-consuming.
Improvements have been made to the standard RANSAC approach [MC02] and mod-
ern computers make it possible to obtain high frame rate computation even with
these processing steps. Furthermore, SIFT points [Low04] and learning-based tech-
niques [LLF05] produce fewer outliers, the downside being a higher computational
burden compared to Harris points. However fewer outliers can remove altogether
the need for RANSAC. Faster robust estimators (Tukey, Huber) are then sufficient.
The advantages of these approaches come from the robustness to occlusion and to
change in intensity, and also from the possibility of tracking objects with large dis-
placements in the image.

These methods have been applied successfully for tracking planes [SFZ00], head
pose [TMdCM02] or deformable objects [PLF05].
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3.1.2 Direct tracking

Recursive tracking algorithms between two images work in four steps as follows :

1. features are extracted in the first image,

2. the features are projected in the second image,

3. a distance measure between the information in the second image and the fea-
tures from the first image is applied and

4. a direction that will minimise the error is found.

These tracking techniques assume that the motion of the features in the image
between the subsequent frames is small and that the objects are considered as Lam-
bertian1. This assumption is reasonable if the camera frame rate is high compared
to the object motion and if the computation of steps 2, 3 and 4 hold within the
frame rate.

The approach is however generally more sensitive to occlusion and less well adapted
to fast motion.

One of the first recursive tracking techniques was an edge-based tracking. An edge
is extracted in an image and reprojected in the following image. The distance to
minimise is then typically obtained by searching edge points along the normals to
the initial edge. The advantage of edge-tracking is its robustness to changes in in-
tensity but it is sensitive to occlusion. The minimisation can either be image-based
or 3D (we minimise the 3D pose of the object according to the projection of its edges
in the image).

Sum of squared differences (SSD) tracking can be traced back to the work by Lu-
cas and Kanade [LK81] and later Tomasi [ST94b]. SSD measures the difference in
intensity between a portion of the first image reprojected in the second image. The
minimisation (based on the image gradient) can be imaged-based (2D) for example
searching for the translation that gives the smallest reprojection error. It can also
be 3D or model-based by reprojecting a 3D object and minimising the difference in
the image over the position (rotation and translation). The advantage of this ap-
proach is precision (all the information is being used) and speed. This is why these
techniques are particularly well adapted to robotic tasks such as motion estimation
and vision-based robot control. Compared to matching approaches, SSD tracking
is generally faster and more precise. The downside is the need for a strong overlap
between the reprojected and the real object for the system to converge.

1A surface exhibits Lambertian reflectance if light falling on it is scattered such that the apparent
brightness of the surface to an observer is the same regardless of the observer’s angle of view. More
technically, the surface luminance is isotropic. For example, unfinished wood exhibits roughly
Lambertian reflectance, but wood finished with a glossy coat of polyurethane does not, since
specular highlights may appear at different locations on the surface.
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The tracking algorithm that we will describe in this Chapter is a plane-based 3D
SSD visual tracking using an uncalibrated omnidirectional sensor. A brief overview
of the different approaches found in the literature will be described next.

3.1.2.1 Overview of SSD Visual Tracking with Omnidirectional Sensors

Visual tracking with omndirectional sensors is not a straightforward task. The non-
linear projection model resulting in changes of shape in the image makes the direct
use of methods such as KLT [LK81, ST94b] nearly impossible. Therefore, in the
literature, only a few works on SSD tracking for omnidirectional sensors have been
developed [MBMR06, BMH02, JO02].

Let us describe these approaches a bit and show how parametric models such as the
homography-based approach presented in [MBMR06, TG04, HAMAM05] as well as
the one described in this chapter are well adapted to this problem.

In [BMH02], Barreto et al. proposed a method for tracking omnidirectional lines
using a contour-to-point tracker to avoid the problem of quadric-based catadiop-
tric line fitting (See Figure 3.1). The authors have shown how the method can be
adapted for every kind of catadioptric omndirectional sensor using the unified pro-
jection model on the sphere.

Figure 3.1: A tracking sequence. The rectangular object moves towards the camera
and in a direction perpendicular to the camera (Courtesy of Barreto [BMH02]).
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In [JO02], Jun Okamoto and Valdir Grassi proposed a method for tracking a moving
target on an omnidirectional vision system (See Figure 3.2). This algorithm assumes
that the deformation suffered by the target image region at each incoming image
can be modelled by an affine transformation. Since the affine transformation model
does not hold for the acquired omnidirectional image, the tracking algorithm does
not work on the omnidirectional image directly. Morever, the method works only
for hyperbolic mirrors.

Figure 3.2: A tracking target. Moving target in an omnidirectional image (Courtesy
of Jun Okamoto [JO02]).

In [MBMR08], which is the closest work to our approach, C. Mei et al. proposed
a direct method for tracking piecewise planar objects with any central catadioptric
camera. The approach deals with a nonlinear optimization problem based on the
image intensity. It assumes that the motion of the features in the images from subse-
quent frames is small. The objects are considered as Lambertian. This assumption
is reasonable if the camera frame rate is high compared to the object motion and
if the computation of steps two to four hold within the frame rate. The authors
extended the standard notion of homography to omnidirectional cameras using the
unified projection model on the sphere. With this approach, the difficulty of tracking
with these devices due to the non-linear projection model was completely avoided
(See Figure 3.3).

We want to point out, even if it has not been mentioned in the overview, that
the existing algorithms need a precisely calibrated omnidirectional sensor. Here lies
the importance of our approach. The tracking algorithm that we will present does
not need prior knowledge of the sensor parameters.
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Figure 3.3: Tracking of a plane. Moving plane in an omnidirectional image (Cour-
tesy of C. Mei [MBMR06]).

Our approach is based on [MBMR08]. But let us remark that the optimization
problem we address is much more challenging than the problem in [MBMR08] be-
cause [MBMR08] uses a calibrated camera and therefore the intrinsic parameters are
known. We have to also estimate the intrinsic parameters which makes our problem
much more challenging.

3.2 Uncalibrated Visual Tracking Algorithm

The visual tracking algorithm will essentially be an image registration problem which
will be related directly to the grey-level brightness measurements in the catadioptric
images. Figure 3.4 illustrates an example for a monocular camera. Let I0 be the
catadioptric reference image and a region of size R of I0 be the reference plane. This
region of size R corresponds to the projection of a 3D planar region of the scene.
Let all possible unknown parameters be collected together in x. Once we find the
optimal parameters x1 to align the image I1 with the reference template R we look
for the incremental parameters x to align the image I2 with R, and so on. If we are
able to converge at each step, we obtain the optimal parameters estimation between
the first and the last view without drift.

It is well understood that, throughout the sequence, the reference plane would even-
tually need to be updated (e.g. when the overlap between the reprojected object
and the reference object is small).
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Figure 3.4: Incremental image registration.

3.2.1 Warping Function

The function which relates the image points p belonging to a planar region in a
reference image I with the points p′ of this planar region in a current image I ′ will
be called warping and will be denoted by w. It depends on a homography H, the
mirror parameter ξ and the perspective camera parameters K :

w : SL(3) × R × R5 × R2 −→ R2

(H, ξ,K,p) 7−→p
′

= w (H, ξ,K,p) .

The warping function basically includes three transformations (See Figure 3.5) :

1. The transformation between the image plane and the unit sphere.

2. The transformation between spheres.

3. The transformation between the unit sphere and the image plane.
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Figure 3.5: Warping.

In the following section we will describe these transformations as well as the pa-
rameters to be estimated in the tracking algorithm.

3.2.1.1 The transformation between the image plane and the unit sphere

Let c−1 denote the transformation between the image plane and the unit sphere

c−1 : R × R5 × P2 −→ S2

(ξ,γ,p) 7−→ Xs = c−1(ξ,γ,p)

This transformation carries a point p = (u , v , 1)⊤ measured in the image plane to
the unit sphere as follows :

The first step is to apply the inverse projection induced by K−1 to obtain a point
q = k−1(γ,p) = K−1p on the normalized plane. K is a generalised camera pro-
jection matrix. A generalized camera projection matrix indicates that the sensor
is considered as a global device instead of a separate camera and mirror. This is
particularly important for calibration because it shows that f ( the camera focal
length ) and and η cannot be estimated independently. η is a parameter obtained
from mirror parameters of Table 3.1).
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Table 3.1: Unified model parameters

ξ ϕ η = ξ − φ
Parabolic 1 1 + 2p −2p

Hyperbolic d√
d2+4p2

< 1 d+2p√
d2+4p2

−2p√
d2+4p2

Elliptical d√
d2+4p2

< 1 d−2p√
d2+4p2

2p√
d2+4p2

Planar 0 1 -1
d: distance between focal points

4p: latus rectum

K =




kuf 0 u0

0 kvf v0

0 0 1


Mc =




kuη 0 u0

0 kvη v0

0 0 1


 =




β1 0 u0

0 β2 v0

0 0 1


 (3.1)

ku and kv are the scaling factors for row pixels and column pixels. (u0, v0) the princi-
pal point. The skew factor s is considered zero (a perfect orthogonality of the array
camera matrix elements). β1 = kufη and β2 = kvfη are the generalized focal lengths.

In the function k−1(γ,p), γ = [β1, β2, u0, v0]
⊤ contains the camera intrinsic pa-

rameters.

The second step projects the point q = (x , y , 1)⊤, obtained in the previous step,

using the inverse function α =
ξ+
√

(1−ξ2)(x2+y2)

x2+y2+1
proposed by Barreto [BA05] to ob-

tain a point Xs = h−1(ξ,q) = (αx, αy, α − ξ)⊤ on the unit sphere. ξ contains the
mirror parameter. This parameter defines the shape of the used omnidirectional
mirror (See Table 3.1).

The unified projection model has been shown to be valid for fish-eye lenses [CMEM07].
In [CMEM07] the authors have proved that the unified projection model for cata-
dioptric systems can model fish-eye cameras with distortions directly included in its
parameters. The validity of this assumption is discussed and compared with other
existing models. The authors calibrate their camera using the method designed for
central catadioptric cameras proposed in [MR07]. From their analysis one can con-
clude that a value of ξ bigger than the unity represents a fish-eye camera. Therefore,
since we estimate the value of ξ, our method can be useful to track planar objects
using a fish-eye camera.

3.2.1.2 The transformation between spheres

Let s be the function that transforms the points between the spheres

s : SL(3) × S2 −→ S2

(H(z),Xs) 7−→ X
′

s = s(H(z),Xs)



38 Chapter 3. Uncalibrated Visual Tracking

This transformation is performed through an homography. The standard notion
of homography2 can be well adapted for points belonging to the sphere of the
unified projection model [MBMR06, HAMAM05]. Therefore, the projection be-
tween points Xs and X

′

s, belonging to a planar region of the scene are related by
X

′

s = s(H(z),Xs) = HXs

‖HXs‖
. z = [h1, h2, h3, h4, h5, h6, h7, h8, h9]

⊤ contains the ho-
mography parameters. The homography matrix can be expresed as follows:

H =




h11 h12 h13

h21 h22 h23

h31 h32 h33




A homography is defined up to a scale factor. In order to fix the scale, we choose all
the homographies belonging to the special linear subgroup of dimension 3 defined
as SL(3) = {H ∈ GL(3) | det(H) = 1}.

3.2.1.3 The transformation between the unit sphere and the image plane

Let c be the transformation between the sphere and the image plane

c : R × R5 × S2 −→ P2

(ξ,γ,X
′

s) 7−→ p′ = c(ξ,γ,X
′

s)

This transformation lifts a point X
′

s = (X
′

s , Y
′

s , Z
′

s)
⊤ on the unit sphere to the

image plane as follows :
First, the point X

′

s is changed to a new reference frame centered in Cp = (0, 0,−ξ).
Then, the point is projected to the normalised plane to obtain q′ = h(ξ,X

′

s) =(
X

′

s

Z
′

s−ξ
, Y

′

s

Z
′

s−ξ
, 1

)⊤

. Finally, the camera projection matrix K is applied to obtain the

point p′ = (u′, v′, 1)⊤ = k(γ,q′) = Kq′.
If expressions in sections (3.2.1.1), (3.2.1.2) and (3.2.1.3) are combined, the warping
function can be written as

p′ = w(H, ξ,K,p) = k(γ,h(ξ, s(H(z),h−1(ξ,k−1(γ,p))))) (3.2)

3.2.2 Optimization problem

In this section we will consider that the observed scene is Lambertian and static
with respect to the light sources. We will suppose that x = (z, ξ,γ) exist such that
the current image can be registered with the reference image I ′(w(x,pi)) = I(pi).

Let us suppose that we have an initial approximation x̂ of the true parameters
x. The incremental image registration problem can be formulated as the solution of
the following non-linear system :

fi(x̂ ◦ x(z, ξ,γ),pi) = I ′(w(x̂ ◦ x(z, ξ,γ),pi)) − I(pi) = 0

2Two points X′ and X associated with a homography H satisfy ρ′X′ = ρHX. The standard
planar homography matrix H is defined up to a scale factor: H ∼ R + tn∗⊤

d
, where R ∈ SO(3) is

the rotation matrix of the camera and t its translation vector, n∗

d
= n∗/d∗ is the ratio between the

normal vector of the plane n∗ and the distance d∗ of the plane to the origin of the reference frame.
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where i = {1, 2, . . . ,R} (R is the size of the reference image or template ). pi rep-
resents the coordinates of the pixels of the reference template.

In others words, the problem is to find the incremental transformation of z, ξ and γ,
that minimizes the sum of squared differences over all the pixels of the cost function

c = min
bx◦x(z,ξ,γ)

1

2

R∑

i=1

(fi(x̂ ◦ x(z, ξ,γ),pi))
2 =

1

2
‖fi(x̂x(z, ξ,γ))‖2 (3.3)

where
fi(x̂ ◦ x(z, ξ,γ)) = I ′(w(ĤH(z), ξ̂ + ξ, γ̂ + γ,pi)) − I(pi) (3.4)

The homography and intrinsic parameters of the imaging device are then updated
as follows:

Ĥ ← ĤH(z)

ξ̂ ← ξ̂ + ξ
γ̂ ← γ̂ + γ

(3.5)

Like in [MBMR06], the incremental homography and the intrinsic camera parame-
ters updated are paremetrized with local coordinates of the Lie algebra ∼⋖(3).

Note that the set of parameters does not necessarily correspond to the true pa-
rameters. However, this is not important since our goal is to align the images to
obtain a visual tracking of the plane.

Also note that, due to image discretisation, we will have to calculate an approxi-
mate intensity in the new position. Several standard techniques exist such as nearest
neighbour, bilinear interpolation, cubic interpolation. Even though nearest neigh-
bour interpolation has the advantage of being fast and cubic interpolation is a higher
order approximation, we observed that bilinear interpolation gave much better re-
sults in our tracking tests, for this reason, in all the following experiments, we will
use bilinear interpolation.

3.2.2.1 Application of the Efficient Second-order Method (ESM)

The aim is to minimise the objective criterion defined previously in (3.3) in an
accurate and robust manner. As this is a non-linear function of the unknown pa-
rameters, an iterative procedure is employed. Let x = (z, ξ,γ) be the state vector

and let x̃ = (z̃, ξ̃, γ̃) be the optimal increment such that we obtain the exact solution
of the problem: x = x̂−1x = x̃. Therefore, the objective function is minimized by:
∇xfi(x)|x=ex = 0, where ∇x is the gradient operator with respect to the unknown
parameters and there exists a stationary point x = x̃ which is the global minimum
of the cost function.
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Since both the reference image and current image are available it is possible to
use the efficient second-order approximation method (ESM) [Mal04] to solve the
optimization problem. In this case the current and reference Jacobians are

J(0) = JI′Jw

[
JcJsHJHz

(0) Jcξ
(0) + JcJsJc

−1

ξ
(0) Jcγ

(0) + JcJsJc
−1
γ

(0)
]

(3.6)

J(x̃) = JIJew

[
JecJesHJ eHz

(x̃) Jecξ
(x̃) + JecJesJec

−1

ξ
(x̃) Jecγ

(x̃) + JecJesJec
−1
γ

(x̃)
]

(3.7)

Thanks to the left invariance property J(x̃)x̃ ≈ J(0)x̃, the reference jacobian J(x̃)x̃
can be partially calculated without knowing the true value of x̃ (this is the basis of
the ESM algorithm). Then, our second-order least-squares minimiser is the solution
to

x̃ =

((
JI + JI′

2

)
Jw

[
JcJsHJHz

(0) Jcξ
(0) + JcJsJc

−1

ξ
(0) Jcγ

(0) + JcJsJc
−1
γ

(0)
])+

f(0)

(3.8)

The symbol ’+’ indicates the pseudo-inverse matrix. JI is the Jacobian of the image
reference and therefore only needs to be calculated once. The rest of Jacobians are
recomputed at each iteration.

The current Jacobian and reference Jacobian are detailed in the Appendix A.

3.3 Experimental Results

In order to assess the performance of the proposed method, we have performed ex-
periments with synthetic and real data. For the synthetic data we have created
image sequences considering different configurations of perspective camera and mir-
ror shape (parabolic, hyperbollic and elliptic). For the real data we have tested the
algorithm with the two kinds of catadioptric omnidirectional cameras (parabolic and
hyperbolic) that we have at INRIA Sophia Antipolis Méditerranée (See Figure 3.6).

Also, the proposed method has been compared with the closest work in the lit-
erature, that of C. Mei et al. [MBMR08] (calibrated visual tracking with an omnidi-
rectional camera). This comparison serves to highlight the differences between the
proposed method and [MBMR08], where since a calibrated camera is considered the
intrinsic parameters are known. In this comparison we see the increased complex-
ity of our problem when we use the approach in [MBMR08] with an uncalibrated
camera where the intrinsic parameters are unknown. Our tracking approach works
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both when a calibrated camera or an uncalibrated camera is considered. However,
the approach in [MBMR08] fails when an uncalibrated camera is considered. This
highlights the difficulties that arise when dealing with an uncalibrated camera.

Figure 3.6: Left. A para-catadioptric camera consisting of a S80 parabolic mirror
from RemoteReality with telecentric lens and a perspective camera with an image
resolution of 1024 × 768. Right. A hyper-catadioptric camera consisting of a hyper-
bolic mirror from Accowle Vision and a perspective camera with an image resolution
of 1024 × 768.

3.3.1 Synthetic data

In the following we will show a series of experiments with synthetic data. We have
simulated the cases of an omnidirectional camera using a parabolic, hyperbolic and
elliptical mirror. The planar mirror was not considered because it does not make
sense to build an omnidirectional camera using a planar mirror. However, this case
can be approximated to the perspective case wich has been vastly used for tracking
tasks. Some works with uncalibrated tracking using a perspective camera can be
found in http://esm.gforge.inria.fr/ESM.html.

3.3.1.1 Omnidirectional Parabolic camera

Our experimental setup consists of an image sequence composed of 40 images. To
create this sequence we transformed a real parabolic image (See Figure 3.7) assum-
ing constant intrinsic parameters such as a catadioptric camera with a parabolic
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mirror (ξ = 1), a generalized focal length β1 = −250, β2 = −250 and an image
center u0 = 512 and v0 = 384. The images were spaced by the homography param-
eters depicted in Figure 3.8. There is noise due to discretisation. An approximate
intensity in the new position is computed by bilinear interpolation.

Figure 3.7: Catadioptric image. Image taken with a para-catadioptric camera con-
sisting of a parabolic mirror, telecentric lens and a perspective camera.

In order to compare our algorithm with the algorithm proposed by C. Mei et al.
[MBMR08], we have performed two experiments.

First experiment

In this experiment, we have considered known intrinsic parameters. To start the
minimization the intrinsic parameters for both methods were ξ = 1, β1 = −250,
β2 = −250 , u0 = 512 and v0 = 384. For the method in [MBMR08] these parame-
ters are constants. It only computes the homography parameters. The initial guess
for the homography parameters was given by the 3 × 3 identity matrix. Figure 3.9
shows the reprojection error (RMS) using the proposed visual tracking algorithm in
[MBMR08] (left) and for the proposed method in this chapter (right). For the en-
tire sequence, the reprojection errors are indistinguishable. Figure 3.10 shows some
images of the test sequence with the tracked image region marked in red.

Second experiment

This experiment tests the goal of our algorithm, therefore, we have considered un-
known the intrinsic parameters to start the minimization method, so we gave an
initial guess of ξ = 0.75, β1 = −350, β2 = −340, u0 = 497 and v0 = 402. The initial
guess for the homography parameters was given by the 3×3 identity matrix. Figure
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Figure 3.8: Homography parameters. These parameters were used to create the para-
catadioptric image sequence of the first experiment with synthetic data in Section
3.3.1.1.
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Figure 3.9: Reprojection error. This figure shows the result of tracking 40 para-
catadioptric images in the first experiment with synthetic data in Section 3.3.1.1.
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Figure 3.10: Visual tracking of synthetic para-catadioptric images in the first exper-
iment of Section 3.3.1.1. Top. Reference plane. Bottom. Some images from the
tracking output sequence using our method. The same output is obtained using the
method in [MBMR08].
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3.11 shows the reprojection error (RMS) using the visual tracking algorithm pro-
posed in [MBMR08] (left) and for the method proposed in this paper (right). The
reprojection erros are very different. Figure 3.12 shows some images of the test se-
quence with the tracked image region marked in blue for the method in [MBMR08].
Figure 3.13 shows some images of the test sequence with the tracked image region
marked in red for our method. As we can see, the method proposed in [MBMR08]
is not able to track accurately the expected path along the sequence. On the other
hand, even if the camera is not calibrated, the proposed algorithm is capable of
tracking accurately the chosen plane along the sequence.
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Figure 3.11: Reprojection error. This figure shows the result of tracking 40 images
in the second experiment with synthetic data in Section 3.3.1.1.

3.3.1.2 Omnidirectional Hyperbolic or Elliptical camera

In this case, the experimental setup consists of a image sequence composed of 120
images. To create this sequence we transformed the image from Figure 3.7 assuming
constant intrinsic parameters such as a hyperbolic or elliptical camera (ξ = 0.89),
a generalized focal length β1 = −400, β2 = −370 and an image center u0 = 522
and v0 = 369. The images were spaced by the homography parameters depicted
in Figure 3.14. The choice of ξ = 0.89 was made because from our experience of
omnidirectional camera calibration the ranges of ξ for these divices are between 0.80
to 0.95. Again, there is noise due to the approximation of intensity by bilinear in-
terpolation.
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Figure 3.12: Visual tracking of synthetic para-catadioptric images in the second
experiment of Section 3.3.1.1. Top. Reference plane. Bottom. Some images from
the tracking output sequence using the method proposed in [MBMR08].
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Figure 3.13: Visual tracking of synthetic para-catadioptric images in the second
experiment of Section 3.3.1.1. Top. Reference plane. Bottom. Some images from
the tracking output sequence using the proposed visual tracking algorithm.
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Figure 3.14: Homography parameters. These parameters were used to create the
hyper(elliptic)-catadioptric image sequence of the first experiment with synthetic data
in Section 3.3.1.2.

Like in the previous section, we conducted two experiments in order to compare
our algorithm with the algorithm proposed by C. Mei et al. [MBMR08].

First experiment

In this experiment, we have considered known intrinsic parameters. To start the
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minimization the intrinsic parameters for both methods were ξ = 0.89, β1 = −400,
β2 = −370 , u0 = 522 and v0 = 369. For the method in [MBMR08] these parameters
are constants. It only computes the homography parameters. The initial guess for
the homography parameters was given by the 3 × 3 identity matrix. Figure 3.15
shows the reprojection error (RMS) using the proposed visual tracking algorithm in
[MBMR08] (left) and for the proposed method in this chapter (right). For the en-
tire sequence, the reprojection errors are indistinguishable. Figure 3.16 shows some
images of the test sequence with the tracked image region marked in red.
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Figure 3.15: Reprojection error. This figure shows the result of tracking 120 images
in the first experiment with synthetic data in Section 3.3.1.2.

Second experiment

For this experiment we considered the case with unknown intrinsic parameters. To
start the minimization method we gave an initial guess of ξ = 0.5, β1 = −100,
β2 = −100, u0 = 500 and v0 = 390. The initial guess for the homography parame-
ters was given by the 3×3 identity matrix. Figure 3.17 shows the reprojection error
(RMS) using the proposed visual tracking algorithm in [MBMR08] (left) and for the
proposed method in this chapter (right). The reprojection erros are very different.
Figure 3.18 shows some images of the test sequence with the tracked image region
marked in blue for the method in [MBMR08]. Figure 3.19 shows some images of the
test sequence with the tracked image region marked in red for the proposed method.
Again, as the reader can see, the method proposed in [MBMR08] is not able to track
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Figure 3.16: Visual tracking of synthetic hyper(elliptic)-catadioptric images in the
first experiment of Section 3.3.1.2. Top. Reference plane. Bottom. Some images
from the tracking output sequence using our method. The same output is obtained
using the method in [MBMR08].



52 Chapter 3. Uncalibrated Visual Tracking

accurately the expected path along the sequence. On the other hand, even if the
camera is not calibrated, the proposed algorithm is capable of tracking accurately
the chosen plane along the sequence.
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Figure 3.17: Reprojection error. This figure shows the result of tracking 120 images
in the second experiment with synthetic data in Section 3.3.1.2.

3.3.2 Real data

In the following we will show a series of experiments with real data. Two types of
omnidirectional cameras have been considered (parabolic and hyperbolic).

3.3.2.1 Omnidirectional Parabolic camera

Our experimental setup consists of two image sequences (120 and 1000 images each)
of size 1024 × 768 combining a perspective camera with a telecentric lens and a
parabolic mirror (See left side of Figure 3.6). Here, our algorithm has been compared
against the algorithm in [MBMR08] just for the first sequence. Also, we considered
only the case with unknown parameters (uncalibrated camera).

First sequence

To start the minimization method we gave an initial guess of ξ = 0.9, β1 = −80,
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Figure 3.18: Visual tracking of synthetic hyper(elliptic)-catadioptric images in the
first experiment of Section 3.3.1.2. Top. Reference plane. Bottom. Plane tracked
using the method proposed in [MBMR08].
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Figure 3.19: Visual tracking of synthetic hyper(elliptic)-catadioptric images in the
first experiment of Section 3.3.1.2. Top. Reference plane. Bottom. Some images
from the tracking output sequence using the proposed visual tracking algorithm.
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β2 = −80, u0 = 512 and v0 = 384. The initial guess for the homography param-
eters was given by the 3 × 3 identity matrix. Figure 3.20 shows the reprojection
error (RMS) using the proposed visual tracking algorithm in [MBMR08] (left) and
for the proposed method in this chapter (right). Figure 3.21 shows some images of
the real sequence with the tracked image region marked in blue for the method in
[MBMR08]. Figure 3.22 shows some images of the real sequence with the tracked
image region marked in red for our algorithm. Again, like the synthetic data, the
proposed method in [MBMR08] is not robust for tracking the sequence with un-
known intrinsic parameters. That means that the homography matrix is not enough
to minimise the reprojection error between the reference image and the current im-
age while the displacement is increasing. On other hand, even if the camera is not
calibrated, the proposed algorithm is capable of tracking accurately the choosen
plane along the sequence.
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Figure 3.20: Reprojection error. This figure shows the result of tracking 120 images
in the first experiment with real data in Section 3.3.2.1.

Second sequence

To start the minimization method we gave an initial guess of ξ = 1.0, β1 = −100,
β2 = −100, u0 = 512 and v0 = 384. The initial guess for the homography parame-
ters was given by the identity 3×3 matrix. Figure 3.23 shows the reprojection error
(RMS) for the proposed method in this chapter. Figure 3.24 shows some images of
the real sequence with the tracked image region marked in red for our algorithm.
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Figure 3.21: Visual tracking of real para-catadioptric images in the first experiment
of Section 3.3.2.1. Top. Reference plane. Bottom. Some images from the tracking
output sequence using the method proposed in [MBMR08].
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Figure 3.22: Visual tracking of real para-catadioptric images in the first experiment
of Section 3.3.2.1. Top. Reference plane. Bottom. Some images from the tracking
output sequence using the proposed visual tracking algorithm.
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Again, the proposed algorithm is capable of tracking accurately the choosen plane
along the sequence.
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Figure 3.23: Reprojection error. This figure shows the result of tracking 120 images
in the second experiment with real data in Section 3.3.2.1.

3.3.2.2 Omnidirectional Hyperbolic Camera

Our experimental setup consists of one image sequence with 300 images of size 640
× 480 combining a perspective camera with a hyperbolic mirror (See Figure 3.6).
In this experiment, we have only considered the case with unknown parameters (un-
calibrated camera).

The minimization method was initialised with the following guesses for intrinsic
parameters ξ = 0.9, β1 = −100, β2 = −100, u0 = 320 and v0 = 240. The ini-
tial guess for the homography parameters was given by the 3 × 3 identity matrix.
Figure 3.25 shows the reprojection error (RMS) using our algorithm. Figure 3.26
shows some images of the real sequence with the tracked image region marked in
red for our algorithm. Again, like synthetic data, the proposed algorithm is capable
of tracking accurately the choosen plane along the sequence.
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Figure 3.24: Visual tracking of real para-catadioptric images in the second experiment
of Section 3.3.2.1. Top. Reference plane. Bottom. Some images from the tracking
output sequence using the proposed visual tracking algorithm.
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Figure 3.25: Reprojection error. This figure shows the result of tracking 300 images
in the experiment with real data in Section 3.3.2.2. The error is increasing because
the light changes in the images (See Figure 3.26).
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Figure 3.26: Visual tracking of real hyper-catadioptric images in the experiment of
Section 3.3.2.2. Top. Reference plane. Bottom. Some images from the tracking
output sequence using the proposed visual tracking algorithm.
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3.4 Conclusion

In this chapter, we have shown how to efficiently track a plane in an omnidirectional
image without requiring the prior calibration of the sensor. A set of required pa-
rameters are estimated on-line for each new image to align the current image with a
reference template. The approach is novel because the estimated parameters are in-
tegrated into a single global warping function and we developed the Jacobian matrix
of this warping function in easy modular parts. Furthermore, the efficient second
order minimisation technique was applied, which allowed us to minimise a highly
redundant non-linear function with high precision.

In the following chapter, we will detail how to self-calibrate omndirectional cam-
eras by using several of the tracked views. This also enables us to fix the values
being estimated, providing a faster and more robust algorithm. It will be shown
that the unified projection model leads to a flexible calibration approach and is well
adapted to central catadioptric calibration for precise robotic applications.



Chapter 4

Direct On-line Self-Calibration

In this chapter we will present a calibration method that can be carried out using the
same images required for performing the visual task. The algorithm works directly
with the image intensity. It stays valid for all central catadioptric systems and needs
no prior knowledge about extrinsic, camera, lens or mirror parameters. The only
requirement is to select a plane in the image scene. Then, on-line self-calibration
is performed by tracking the target region (selected plane) in several incoming images.

Also, we will formalize the uniqueness of the solution for the calibration problem
of central catadioptric omnidirectional cameras. The calibration problem is formal-
ized by using a unified model that is valid for all central catadioptric omnidirectional
cameras and can be extended to traditional cameras when a planar mirror is consid-
ered. Besides, we show that the uniqueness of the problem can be derived from the
solution of non-linear equations.

4.1 Self-calibration of Omnidirectional cameras

Visual sensor calibration is the problem of determining the parameters of the trans-
formation between the 3D information of the imaged object in space and the 2D
observed image. Such a relationship is mandatory for 3D vision ( 3D information
can be infered from 2D information, and vice-versa ). More precisely, in order to
obtain meaningful geometric information from a camera, two calibration procedures
must be completed. The first is intrinsic calibration, that is, determining the internal
camera parameters (e.g., focal length, principal point, and skew coefficients), which
affect the image measurements. The second is extrinsic calibration, which is the
process of computing the transformation between the camera and a base frame of
reference. In a surveillance application, the base frame may be the room or building
coordinate system, whereas on a mobile robot, the base frame could be the robot-
body frame.

The problem of the self-calibration of omnidirectional cameras has attracted the
attention of researchers in the computer vision community because, often, no in-
formation about mirror or lens parameters and no calibration objects are available.
Then, unlike classical calibration problem (knowledge about the scene), the algo-
rithms for self-calibration make no or few assumptions about the particular structure
of the scene being viewed. Instead, they attempt to find the intrinsic parameters
and extrinsic parameters of the camera by exploiting constraints imposed over these
parameters from epipolar or trilinear relations, from specific camera motions or
from correspondences between multiple views. In fact, the word self-calibration for
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a visual sensor is applicable when the method allows the system to calibrate (1)
automatically, (2) without any semantic knowledge of the observed objects and (3)
without a complete knowledge of the self-motion.

Several works have addressed camera self-calibration [BP02, GN98, GD01, Kan00,
MP04, FTB02, BV08]. In the following section we briefly review the state of the art
of these techniques and set the context for the algorithm that we are proposing for
self-calibrating an omnidirectional camera.

4.1.1 Self-calibration techniques

In [Kan00] two self-calibration techniques are proposed for parabolic mirros. The
first one is the so-called circle-based self-calibration. The idea is to identify the
bounding circle of the omnidirectional image. This can be done manually or auto-
matically by using a predefined threshold, by finding the boundary, and by fitting a
circle to the resulting boundary. The center of the circle is deemed to be the image
principal point. Since the field of view of the omnidirectional device is known, the
camera’s parabolic parameter can then be directly computed using the radius of the
circle. This technique is simple to implement and does not need any knowledge of
the scene or extraction of features in the scene. Only one image is necessary to
calibrate the sensor. However, if the circle must be automatically extracted, finding
the optimal threshold is difficult due to changing lighting conditions. In addition,
a single static threshold may not be sufficient, due to directional lighting that may
make one side brighter than the other. The second technique is based on point
feature tracks across an omnidirectional image sequence. An example of a collection
of feature tracks generated is shown in Figure 4.1. It uses consistency of pairwise
correspondence for an imaging device and considers a paraboloid mirror and an or-
thographic camera. Thus, the method cannot be implemented for different kinds
of omnidirectional mirrors. The algorithm works as follows: First, point tracks are
obtained using a tracker developed in [ST94a]. Then, it estimates the essential ma-
trix E from point correspondences for some intrinsic parameters. The calibration
parameters are obtained by minimizing the algebraic or geometric error of point cor-
respondences to the epipolar curves using the Nelder-Mead simplex search algorithm
[Num02].
In [MP04], the authors presented a para-catadioptric camera self-calibration method
from point correspondences and epipolar constraints. The method is philosophically
the same as the one in [Kan00] but it provides a closed-form solution to a poly-
nomial eigenvalue problem and therefore no iterative minimizing process has to be
used. The closed form solution allows one to apply a 9-point RANSAC robust es-
timation technique to handle outliers in matches. Even though the method was
designed for a parabolic mirror the authors showed that it can be applied (after a
linearization of the model) with sufficient accuracy for a hyperbolic mirror. Figure
4.2 shows the outliers detection during the calibration process.
In [GD01], Geyer and Daniilidis performed calibration of a paracatadioptric camera
from point correspondences (Figure 4.3). The authors assume that there are three
unknown intrinsic parameters: the combined focal length of the mirror and lens and
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Figure 4.1: Kang’s method. Example of tracking points in a real office scene for
self-calibration porpuses.

Figure 4.2: Micusik’s method. Example of outliers detection. Left. Tentative corre-
spondences. Right. Validated inliers and their matches in the next image.

the intersection of the optical axis with the image. They introduce a new represen-
tation for images of points and lines in catadioptric images which they call the circle
space. This circle space includes imaginary circles, one of which is the image of the
absolute conic. They formulate the epipolar constraint in this space and establish a
new 4 × 4 catadioptric fundamental matrix. Then, calibration is performed in two
steps : first, they estimate the fundamental matrix F from manual point correspon-
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dences and second, from F, they extract the intrinsic parameters via the image of
the absolute conic.

Figure 4.3: Geyer’s method. Points used to calibration purposes.

Fabrizio et al. [FTB02] proposed a calibration method which estimates the intrin-
sic parameters of the CCD camera and the pose parameters of the CCD camera
with respect to the mirror (misalignment). The method is based on the ingenious
and simple idea that the mirror’s external and internal bounderies can be used as
a 3D calibration pattern (See Figure 4.4) . The calibration method is based on the
principle used for planar cameras. In this technique, two different 3D planes are
required for calibration. Therefore, in this work, the authors use the boundaries of
two circles: the circular edge of the upper mirror, and the edge of the intersection of
the black needle with the mirror. These two circles lie on two paralel planes which
are used by the authors to calibrate the sensor. The proposed algorithm can be ap-
plied on most catadioptric sensors if the parameters of the mirror surface are known.

In [BV08], the last reviewed paper, the authors propose a method for automatic cal-
ibration of a catadioptric camera. The authors use this kind of sensor in Unmanned
Aerial Vehicles (UAV), therefore, the calibration algorithm can be run before mount-
ing the camera on the UAV or even during the flight. The method is against vibra-
tions and shocks. The approach is similar to [YZ05] but it determines, by particle
filtering, the most probable calibration parameters with respect to two geometric
constraints of lines. First, if the calibration parameters are known, then the conic
equation is more constrained and thus the line image can be fitted more accurately.
The second constraint is based on the following properties: a line is simply projected
as a great circle in the sphere, the great circles associated to parallel lines intersect
in two antipodal points in the sphere and the antipodal points (or vanishing points)
associated to orthogonal sets of parallel lines are also orthogonal in the sphere. The
drawback of this method is the need for estimating the equivalent sphere (i.e. the
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Figure 4.4: Fabrizio’s method. Each of the circles in the image corresponds to a
known section of the mirror. They are used as a calibration pattern.

calibration parameters) that permits one to verify the geometric constraints of the
vanishing points associated to parallel and orthogonal lines. Figure 4.5 shows the
final result of vanishing point extraction on real data after calibration using the
proposed particle filter algorithm.

Figure 4.5: Bazin’s method. Lines are used to calibration purposes.
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At this point, we explain the importance and motivation of this thesis. Like tradi-
tional calibration techniques, the rewieved self-calibration techniques present some
limitations such as dependence on a specific mirror and on the usage of the mirror.
Thus, it is not straightforward to implement the same calibration technique for a
different mirror. Also, they require feature point correspondences which is not an
easy problem because of the high distortions due to the mirror and the repetitive
texture in urban enviroments. Therefore, regarding the existing limitations on cata-
dioptric camera self-calibration techniques, we were motivated to propose a new
algorithm. The method is based on the tracking of a plane, it stays valid for all
central catadioptric systems and needs no prior knowledge about camera, lens or
mirror parameters. The only requeriment is to select or detect a plane in the image
scene. Then, calibration is done automatically. In the next section we will explain
the details of our method.

4.2 Proposed Direct Self-Calibration Method

The contribution of this thesis is aimed at an on-line self-calibration employing sev-
eral views in a tracked sequence.

From Chapter 3 (Section 3.2.1), we remind: γ contains the camera intrinsic parame-
ters β1, β2, u0, v0, ξ contains the mirror parameter ξ and z contains the homography
parameters h1, h2, h3, h4, h5, h6, h7, h8, h9 .

Let ξ, γ be the true intrinsic parameters of the sensor and z be the homogra-
phy parameters. The interest is to find the set of parameters ξ̂, γ̂ and ẑ, that fits
best with the true sensor parameters such that the current image is aligned with
the reference template. Therefore, when Equation (4.1) is satisfied, the calibration
of the sensor is achieved.

I ′(w(ẑ, ξ̂, γ̂,p)) = I(p) (4.1)

In order to achieve the goal, our algorithm is based on the work that has been
shown in Chapter 3. In Chapter 3, a planar region in the scene was tracked using
an uncalibrated central catadioptric camera. The aim was not to recover the true
intrinsic parameters but to align the image regions along the sequence with whatever
intrinsic and extrinsic parameters that did the job the best. Now, we focus on how
to update the parameters. In the experiments of the previous chapter, we have
seen that shadows and specularities diminished the performance of the algorithm
in terms of quality of the estimates. The reprojection error increases with either
shadows or specularities. Therefore, in order to improve the least-square estimates,
reprojection errors after alignment are verified. If the reprojection error between two
consecutive images is bigger than a certainly threshold, intrinsic parameters are not
updated. The set of intrinsic parameters remains unchanged until the moment when
a reprojection error smaller than the threshold occurs. Then, the threshold takes the
value of the last reprojection error and the intrinsic parameters are updated. This
process continues all along the sequence. The final calibration values are obtained
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at the end of the sequence.

4.2.1 Calibration parameters

4.2.1.1 Intrinsic parameters

The intrinsic parameters to be recovered are essentially the mirror parameter ξ and
these from Equation (3.1) -the generalized focal lengths β1 = kufη and β2 = kvfη,
the principal point ( u0, v0 ) and the skew s. The skew parameter takes into account
the fact that, if the retinal plane of the CCD is not orthogonal to the optical axis of
the lens, a CCD element (a pixel) will not be projected as an orthogonal rectangle,
but as a parallelogram [Fau93]. Most often, for commercial cameras, we can assume
s = 0 [Tsa89]. So, it is not necessary to introduce more complications to the model
by assuming that the skew is not zero. The aspect ratio (r = β1

β2

), on the other hand,

is not always 1 (β1 = β2 ) as is commonly assumed. Nevertheless, whatever is the
true value of the aspect ratio, this is a remarkably stable parameter, and will not
change due to zooming or focusing. If the cameras used in the acquisition of the
images are known or are available, it is possible to calibrate for this parameter once,
and use reliably the value found in any other occasion. For images with unknown
origin, this procedure is not possible, and the assumption of the aspect ratio being
equal to 1 cannot be blindly used.

4.2.1.2 Extrinsic parameters

We will compute an homography instead of R and t directly. Although this approach
does not use the minimal amount of parameters and could lead to a less stable
estimate, it circumvents the issue of choosing the correct homography decomposition
(for each homography, a translation t up to a scale factor and a rotation R can be
extracted).

4.2.2 Experimental Results

In order to validate the proposed self-calibration method we performed experiments
with synthetic data and real data. For the synthetic data we have created an image
sequence considering a perspective camera and a parabolic mirror shape. No syn-
thetic experiments with hyperbolic and elliptical mirror shapes have been reported
because we obtained results similar to the parabolic mirror shape. Therefore, we
considered more important to report experiments with real sensors. For the real
data we have tested the algorithm with the two kinds of catadioptric omnidirec-
tional cameras (parabolic and hyperbolic) that we have at INRIA Sophia Antipolis
Méditerranée (See Figure 3.6).

4.2.3 Synthetic data

In the following we will show a series of experiments with synthetic data. We have
simulated the case of an omndirectional camera using a parabolic mirror.
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4.2.3.1 Omnidirectional Parabolic camera

Our experimental setup consists of an image sequence composed of 120 images.
To create this sequence we transformed a real parabolic image assuming constant
intrinsic parameters such as a catadioptric camera with a parabolic mirror (ξ = 1),
a generalized focal length β1 = −250, β2 = −250 and an image center u0 = 512
and v0 = 384. The images were spaced by the homography parameters depicted in
Figure 4.6. There is noise due to discretisation. An approximate intensity in the
new position is computed by bilinear interpolation.
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Figure 4.6: Homography parameters. These parameters were used to create the para-
catadioptric image sequence of the self-calibration experiment with synthetic data in
Section 4.2.3.1.

Since the objective is to validate the self-calibration approach, we considered un-
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knonwn intrinsic parameters to start the minimization. The initial guess for the
intrinsic parameteres was ξ = 0.8, β1 = −125, β2 = −125, u0 = 522 and v0 = 394.
The initial guess for the homography parameters was given by the 3 × 3 identity
matrix. Figure 4.7 shows 6 calibration images of the test sequence with the tracked
image region marked in red. Figures 4.8 shows the estimated homography param-
eters during the tracking sequence. Figures 4.9 to 4.13 in this section show the
estimated intrinsic parameters. In the beginning of the estimation, the intrinsic pa-
rameters are not computed because the homography is the identity. That means that
the camera has not moved, therefore, the intrinsic parameters may take any value.
To avoid this, we skip a few images to ensure the camera has moved and the intrinsic
parameters will take reasonable values that allow a correct convergence. To smooth
the noise due to discretisation we applied Kalman filtering to the convergence curve.
As we can see the estimation is stabilized after 50 images and subsequent informa-
tion does not have a strong influence. The final calibration values are obtained by
computing the average value of the last 50 estimates. Table 4.1 shows the calibration
results for the intrinsic parameters of the sensor.

Table 4.1: Intrinsic parameters. Calibration results for the experiment with the
synthetic para-catadioptric image sequence described in Section 4.2.3.1.

ξ β1 β2 u0 v0

Ground truth 1.00 -250.00 -250.00 512.00 384.00
Estimated 0.99 -249.99 -249.99 511.99 384.13

4.2.4 Real data

In the following we will show experiments with real data. Two different catadioptric
omnidirectional cameras will be considered.

4.2.4.1 Omnidirectional Parabolic camera

The image sequence is composed of 250 images of size 1024 × 768 combining a
camera with a parabolic mirror. To show that the proposed method finds a good
aproximation of the true intrinsic parameters, calibration of the sensor was pursued
according to [MBMR06]. Determined intrinsic parameters for the real data sequence
are ξ = 1.0, β1 = −295 , β2 = −294, u0 = 519 and v0 = 382.

Since the objective is to validate the self-calibration approach, we considered the
following guess of parameters to star the minimization. The initial guess for the
intrinsic parameteres was ξ = 1.0, β1 = −100 , β2 = −100, u0 = 512 and v0 = 384.
The initial guess for the homography parameters was given by the 3 × 3 identity
matrix. Figure 4.21 shows 6 calibration images of the test sequence with the tracked
image region marked in red. Figures 4.22 shows the estimated homography param-
eters during the tracking sequence. Figures 4.23 to 4.27 in this section show the
estimated intrinsic parameters. In the beginning of the estimation, the intrinsic
parameters are not computed because the homography is the identity. That means
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Figure 4.7: Calibration sequence. Some images of the synthetic calibration sequence
described described in Section 4.2.3.1.
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Figure 4.8: Estimated homography parameters. Parameters obtained after the self-
calibration experiment with the synthetic para-catadioptric image sequence described
in Section 4.2.3.1.
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Figure 4.9: Estimated parameter ξ for the experiment with the synthetic para-
catadioptric image sequence described in Section 4.2.3.1. The initial guess has been
set to ξ = 0.8.
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Figure 4.10: Estimated parameter β1 for the experiment with the synthetic para-
catadioptric image sequence described in Section 4.2.3.1. The initial guess has been
set to β1 = −125.
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Figure 4.11: Estimated parameter β2 for the experiment with the synthetic para-
catadioptric image sequence described in Section 4.2.3.1. The initial guess has been
set to β2 = −125.
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Figure 4.12: Estimated parameter u0 for the experiment with the synthetic para-
catadioptric image sequence described in Section 4.2.3.1. The initial guess has been
set to u0 = 522.
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Figure 4.13: Estimated parameter v0 for the experiment with the synthetic para-
catadioptric image sequence described in Section 4.2.3.1. The initial guess has been
set to v0 = 394.

that the camera has not moved, therefore, the intrinsic parameters may take any
value. To avoid this, we skip a few images to ensure the camera has moved and the
intrinsic parameters will take reasonable values that allow a correct convergence. To
smooth the noise due to discretisation we applied Kalman filtering to the conver-
gence curve. As we can see, the estimation, for some parameteres, stabilizes after 50
images and the subsequent information does not have strong influence. The strong
variance of parameters u0 and v0 is symptomatic of a sensitive parameter. It may
be due to illumination changes and blur effect. From synthetic data we have seen
that if noise due to illumination and blur effect are not present the convergence of
parameters stabilizes after 50 images, therefore, in order to provide a better estima-
tion of parameters, we considered image sequences with more than 200 images. The
final calibration values are obtained by computing the average value of the last 100
estimates. Table 4.2 shows the calibration results for the intrinsic parameters of the
sensor.

Table 4.2: Intrinsic parameters. Calibration results for the experiment with the
para-catadioptric image sequence described in Section 4.2.4.1.

ξ β1 β2 u0 v0

Our method 1.13 -315.32 -313.75 513.88 378.86
[MBMR06] 1.00 -295.00 -294.00 519.00 382.00
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Figure 4.14: Calibration sequence. Some images of the calibration para-catadioptric
image sequence described in Section 4.2.4.1.
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Figure 4.15: Estimated homography parameters. Parameters obtained after the self-
calibration experiment with the para-catadioptric image sequence described in Section
4.2.4.1.
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Figure 4.16: Estimated parameter ξ for the para-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to ξ = 0.8.
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Figure 4.17: Estimated parameter β1 for the para-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to β1 = −100.
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Figure 4.18: Estimated parameter β2 for the para-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to β2 = −100.
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Figure 4.19: Estimated parameter u0 for the para-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to u0 = 512.
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Figure 4.20: Estimated parameter v0 for the para-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to v0 = 384.

4.2.4.2 Omnidirectional hyperbolic camera

The image sequence is composed of 250 images of size 640 × 480 combining a cam-
era with a hyperbolic mirror. To show that the proposed method finds a good
aproximation of the true intrinsic parameters, calibration of the sensor was pursued
according to [MBMR06]. Determined intrinsic parameters for the real data sequence
are ξ = 0.88, β1 = −141.66 , β2 = −141.82, u0 = 315.77 and v0 = 244.52.

In order to star the minimization, the initial guess for the intrinsic parameteres
was ξ = 0.9, β1 = −100 , β2 = −100, u0 = 320 and v0 = 220. The initial guess
for the homography parameters was given by the 3 × 3 identity matrix. Figure
4.21 shows 6 calibration images of the test sequence with the tracked image region
marked in red. Figures 4.22 shows the estimated homography parameters during the
tracking sequence. Figures 4.23 to 4.27 in this section show the estimated intrinsic
parameters. In the beginning of the estimation, the intrinsic parameters are not
computed because the homography is the identity. That means that the camera has
not moved, therefore, the intrinsic parameters may take any value. To avoid this, we
skip a few images to ensure the camera has moved and the intrinsic parameters will
take reasonable values that allow a correct convergence. To smooth the noise due to
discretisation we applied Kalman filtering to the convergence curve. As we can see
the estimate, for some parameteres, stabilize after 150 images and the subsequent
information does not have strong influence. The variance of the intrinsic parameters
is due to illumination changes (See Figure 4.21). In order to provide a better esti-
mation of parameters, we considered image sequences with more than 200 images.
The final calibration values are obtained by computing the average value of the last
100 stimates. Table 4.3 shows calibration results for the intrinsic parameters of the
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sensor.

Table 4.3: Intrinsic parameters. Calibration results for the experiment with the
hyper-catadioptric image sequence described in Section 4.2.4.2.

ξ β1 β2 u0 v0

Our method 0.92 -133.05 -135.10 333.25 225.01
[MBMR06] 0.88 -141.66 -141.82 315.77 244.52

Figure 4.21: Calibration sequence. Some images of the calibration hyper-catadioptric
image sequence described in Section 4.2.4.2.
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Figure 4.22: Estimated homography parameters.Parameters obtained after the self-
calibration experiment with the para-catadioptric image sequence described in Section
4.2.4.2.
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Figure 4.23: Estimated parameter ξ for the hyper-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to ξ = 0.9.
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Figure 4.24: Estimated parameter β1 for the hyper-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to β1 = −100.
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Figure 4.25: Estimated parameter β2 for the hyper-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to β2 = −100.
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Figure 4.26: Estimated parameter u0 for the hyper-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to u0 = 320.
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Figure 4.27: Estimated parameter v0 for the hyper-catadioptric image sequence de-
scribed in Section 4.2.4.1. The initial guess has been set to v0 = 240.

4.3 On the Uniqueness of the Solution for the Cal-

ibration of Catadioptric Omndirectional Cam-

eras

Problem statement. In the literature review, different calibration methods have
been proposed. Although these approaches have provided appropiate results, none
of them has proven the uniqueness of solution for the problem of camera calibration.
Therefore, this section aims at providing a proof the uniqueness of solution for the
calibration method proposed in this thesis. However, it is worth mentioned that
this technique could be extended to different existing methods because the involved
parameters are relatively similar.

Let [ξ,K,H] and [ξ̂, K̂, Ĥ], with ξ, ξ̂ ∈ R+, H, Ĥ ∈ SL(3) and K, K̂ upper triangular
matrices, be the set of the true parameters and the set of the estimated parameters
respectively. Given these two set of parameters, we are interested in verifying that
the estimated values converge to the true parameters. The calibration method pro-
posed in this thesis performances calibration as an image registration problem. Thus,
the following relation should be verified: I(w(ξ,K,H,p)) = I(w(ξ̂, K̂, Ĥ,p)) ∀p ∈
R2. Considering the assumption made by pixel based calibration algorithms, one
has I+(I(w(H, ξ,K,p)) = w(Ĥ, ξ̂, K̂,p). Therefore, if this assumption is verified,
then Conjecture 1 should be satisfied.
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Conjecture 1. Let [ξ,K,H] be the set of true parameters and [ξ̂, K̂, Ĥ]
be the set of estimated parameters generated by our calibration algorithm;
where 0 < ξ, ξ̂ ≤ 1 , K, K̂ are invertible upper triangular matrices and
H, Ĥ ∈ SL(3)\SO(3). Then, the following condition

w(H, ξ,K,p) = w(Ĥ, ξ̂, K̂,p) ,∀p ∈ R2 (4.2)

is satisfied if and only if ξ̂ = ξ , K̂ = K and Ĥ = H.

Remark. Our calibration method uses a unified model that is valid for all central
catadioptric omnidirectional cameras. It can be aproximated to traditional cameras
when a planar mirror is considered, ξ = 0. However, Conjecture 1 does not include
ξ = 0 and consequently ξ̂ = 0 because when ξ = ξ̂ = 0 one has exactly the case
of a perspective camera with an extra normalization of the point on the normalised
plane. As it is well known, there are different solution for the homography matrix.
It can be written as Ĥ = MHM−1. Therefore the case ξ = ξ̂ = 0 does not have an
unique solution.

In order to verify Condition (4.23), in what follows we proceed the warping of a
point p using the two sets of parameters (true parameteres of the sensor and the
estimated parameters after calibration process) detailed hereafter. Thus, let us in-
troduce some definitions and properties:

• q̂ , (x̂, ŷ, 1)⊤ where q̂ = K̂−1p = K̂−1I3p = K̂−1KK−1p = Mq with M ,

K̂−1K. One easily verify that M is also an upper triangular matrix, and let
us denote

M ,




m11 m12 m13

0 m22 m23

0 0 1


 . (4.3)

where m11 > 0 and m22 > 0 because m11 = ku

bku

and m22 = kv

bkv

. The calibration

method takes into account the sign of this parameters, that means sign(ku) =

sign(k̂u) and sign(kv) = sign(k̂v). Therefore, m11 and m22 are positive.

• H is a true homography matrix represented by

H =




h⊤
1

h⊤
2

h⊤
3


 =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 . (4.4)

• Ĥ is an estimated homography matrix represented by

Ĥ =




ĥ⊤
1

ĥ⊤
2

ĥ⊤
3


 =




ĥ11 ĥ12 ĥ13

ĥ21 ĥ22 ĥ23

ĥ31 ĥ32 ĥ33


 . (4.5)



88 Chapter 4. Direct On-line Self-Calibration

In this thesis we set det(H) = 1 in order to fix the scale factor of the homography.

Therefore, throughout this proof we respect the constraint that det(H) = det(Ĥ) =

1. This constraint also indicates that hi 6= 0 and ĥi 6= 0 for all i ∈ {1, 2, 3}.

4.3.1 Warping using the true parameters.

The warping function relates every point p of an image frame (p belongs to a planar
region on the scene) with a point p′ in a consecutive image frame as follows

p′ = w(H, ξ,K,p) = K




h⊤

1
Xs

h⊤

3
Xs−ξ‖HXs‖

h⊤

2
Xs

h⊤

3
Xs−ξ‖HXs‖

1




(4.6)

where

Xs =




α x
α y

α − ξ


 (4.7)

and

α =
ξ +

√
1 + (1 − ξ2)(x2 + y2)

x2 + y2 + 1
(4.8)

From (4.7) and using the true parameters of the sensor one obtains

Xs =
α

ξ +
√

A2

Xs (4.9)

with

Xs = ξ




x
y

−x2 − y2


 +

√
A2




x
y
1


 (4.10)

and

A2 = 1 + (1 − ξ2)(x2 + y2) (4.11)

Replacing (4.9) into (4.6) one obtains the coordinates of the warped point p′ as
follows

p′ = K




h⊤

1
Xs

h⊤

3
Xs−ξ‖HXs‖

h⊤

2
Xs

h⊤

3
Xs−ξ‖HXs‖

1




(4.12)
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4.3.2 Warping using the estimated parameters.

Now, we proceed the warping of the point p using the estimated parameters. From
(4.7) one obtains

X̂s =




α̂ (m11x + m12y + m13)
α̂ (m22y + m23)

α̂ − ξ̂


 (4.13)

X̂s =
α̂

ξ̂ +

√
Â2

X̂s (4.14)

with

α̂ =
ξ̂ +

√
1 + (1 − ξ̂2)((m11x + m12y + m13)2 + (m22y + m23)2)

(m11x + m12y + m13)2 + (m22y + m23)2 + 1

X̂s = ξ̂




m11x + m12y + m13

m22y + m23

−(m11x + m12y + m13)
2 − (m22y + m23)

2




+

√
Â2




m11x + m12y + m13

m22y + m23

1


 (4.15)

and

Â2 = 1 + (1 − ξ̂2)((m11x + m12y + m13)
2 + (m22y + m23)

2) (4.16)

Again, replacing (4.14) into (4.6) one obtains the warping of the point p as follows

p̂′ = K̂




bh⊤

1

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

bh⊤

2

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

1




(4.17)

Now, let us look for conditions on ξ̂, K̂ and Ĥ so that (4.23) is satisfied. From
(4.23), (4.12), (4.17) and the definition of w(•) one deduces

K̂




bh⊤

1

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

bh⊤

2

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

1




= K




h⊤

1
Xs

h⊤

3
Xs−ξ‖HXs‖

h⊤

2
Xs

h⊤

3
Xs−ξ‖HXs‖

1




(4.18)
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Since K̂ is invertible, multiplying both sides of (4.18) by K̂−1 one obtains



bh⊤

1

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

bh⊤

2

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

1




= K̂−1K




h⊤

1
Xs

h⊤

3
Xs−ξ‖HXs‖

h⊤

2
Xs

h⊤

3
Xs−ξ‖HXs‖

1




(4.19)

Replacing (4.3) into (4.19), one obtains



bh⊤

1

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

bh⊤

2

b
Xs

bh⊤

3

b
Xs−bξ‖ bH

b
Xs‖

1




=




m11 m12 m13

0 m22 m23

0 0 1







h⊤

1
Xs

h⊤

3
Xs−ξ‖HXs‖

h⊤

2
Xs

h⊤

3
Xs−ξ‖HXs‖

1




(4.20)

which implies that

ĥ⊤
1 X̂s

ĥ⊤
3 X̂s − ξ̂‖ĤX̂s‖

= m11
h⊤

1 Xs

h⊤
3 Xs − ξ‖HXs‖

+ m12
h⊤

2 Xs

h⊤
3 Xs − ξ‖HXs‖

+ m13 (4.21)

ĥ⊤
2 X̂s

ĥ⊤
3 X̂s − ξ̂‖ĤX̂s‖

= m22
h⊤

2 Xs

h⊤
3 Xs − ξ‖HXs‖

+ m23 (4.22)

In order to prove Conjecture 1, we have to prove that (4.21) and (4.22) have a unique

solution for ξ̂, K̂ and Ĥ. Due to the complexity of the problem, let us for instance
consider a simplified version for which ξ and ξ̂ are known in advance and is equal to
1 (parabolic mirror). More precisely, supposed that the estimated mirror parameter

ξ̂ is identically to the true mirror parameter ξ. Thus, we only consider K̂ and Ĥ as
variables for equations (4.21) and (4.22).

Let us analys for ξ̂ = ξ̂ = 1 (parabolic mirror).

4.3.3 Parabolic mirror

In this section we will study the uniqueness of the solution for the calibration prob-
lem of central catadioptric cameras when a parabolic mirror is used.

Theorem 1 Let [K,H] be the set of true parameters and [K̂, Ĥ] be the set

of estimated parameters generated by the calibration algorithm; where K, K̂ are
invertible upper triangular matrices and H, Ĥ ∈ SL(3)\SO(3). Then, the fol-
lowing condition

w(H,K,p) = w(Ĥ, K̂,p), ∀p ∈ R2, (4.23)

is satisfied if and only if K̂ = K and Ĥ = H.
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Proof of Theorem 1. Using (4.21) and (4.21) with ξ = ξ̂ = 1 one obtains

ĥ⊤
1 X̂s

ĥ⊤
3 X̂s − ‖ĤX̂s‖

= m11
h⊤

1 Xs

h⊤
3 Xs − ‖HXs‖

+ m12
h⊤

2 Xs

h⊤
3 Xs − ‖HXs‖

+ m13 (4.24)

ĥ⊤
2 X̂s

ĥ⊤
3 X̂s − ‖ĤX̂s‖

= m22
h⊤

2 Xs

h⊤
3 Xs − ‖HXs‖

+ m23 (4.25)

From (4.24) and (4.25) one verifies

(
m11h

⊤
1 Xs + m12h

⊤
2 Xs + m13

(
h⊤

3 Xs − ‖HXs‖
))

(ĥ⊤
2 X̂s)

=
(
m22h

⊤
2 Xs + m23

(
h⊤

3 Xs − ‖HXs‖
))

(ĥ⊤
1 X̂s)

(4.26)

As the reader can notice, we have to solve a non-linear system of 2N equations (N ,
number of pixels) with 14 unknown terms: 9 estimated homography parameters and

5 estimated intrinsic parameters (i.e. Ĥ, M). The objective is to prove that Ĥ = H

and M = I. Due to the square root terms ‖HXs‖ and ‖ĤX̂s‖ the problem is not
trivial. Let us define the following bivariate polynomials of x, y for i = 1, 2, 3





P i
1 , h⊤

i




x
y
1




P i
2 , h⊤

i




x
y

−x2 − y2




P̂ i
1 , ĥ⊤

i




m11x + m12y + m13

m22y + m23

1




P̂ i
2 , ĥ⊤

i




m11x + m12y + m13

m22y + m23

−(m11x + m12y + m13)
2 − (m22y + m23)

2




(4.27)

In view of (4.26) and (4.27) one deduces the compact form of (4.26)

C2,1 + C3,1 + C3,2 + C4 = (C1 + C2,2)
√

B3 + B4 (4.28)

with 



B3 , 2
3∑

i=1

P i
1P

i
2

B4 ,

3∑

i=1

(P i
1)

2 +
3∑

i=1

(P i
2)

2

(4.29)
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and 



C2,1 , P̂ 1
1

3∑

i=2

m2iP
i
1 − P̂ 2

1

3∑

i=1

m1iP
i
1

C3,1 , P̂ 1
1

3∑

i=2

m2iP
i
2 − P̂ 2

1

3∑

i=1

m1iP
i
2

C3,2 , P̂ 1
2

3∑

i=2

m2iP
i
1 − P̂ 2

2

3∑

i=1

m1iP
i
1

C4 , P̂ 1
2

3∑

i=2

m2iP
i
2 − P̂ 2

2

3∑

i=1

m1iP
i
2

C1 , −m13P̂
2
1 + m23P̂

1
1

C2,2 , −m13P̂
2
2 + m23P̂

1
2

(4.30)

Equations (4.24), (4.25) and (4.28) will be used hereafter to deduce the unknown
terms.

For the sake of the analysis, let us introduce the following properties whose proofs
are given in the Appendix B. The proof of Property 3 is not given because is trivial.

Property 1 Let A2, B2 be bivariate polynomials of order 2 and A4, B4 be bivariate
polynomials of order 4. If A2, B2 are irreducible, and

√
A4,

√
B4 are not polynomials,

and A2

√
A4 = B2

√
B4, then there exists a non-null constant η ∈ R such that A2 =

ηB2 and
√

B4 = η
√

A4.

Property 2 Let Pm , Pn and Pl be bivariate polynomials of order m , n and l, re-
spectively, with m,n, l ∈ N+. If Pm = Pn

√
Pl and

√
Pl is not a bivariate polynomial,

then Pm and Pn are identically null.

Property 3 Let Pm and Pn be two bivariate polynomials of order m,n ∈ N+. Then,
PmPn is identically null if and only if Pm or Pn is identically null.

Property 4 Any polynomial A2 of the form: a1x+a2y+a3 +a4(x
2 +y2), with some

constants a1,2,3,4 ∈ R, is irreducible.

In what follows, we calculate the solution of the unknown terms of the equations
(4.24) and (4.25). Let us consider (4.28) and state Lemma 1. The proof of Lemma
1 is given in the Appendix B.

Lemma 1 The term
√

B3 + B4 in (4.28) is a polynomial if and only if H ∈ SO(3).

From Lemma 1 and the assumption that H /∈ SO(3) made in Theorem 1, one
deduces that

√
B3 + B4 is not a polynomial. This fact implies that

√
B3 + B4 is

a polynomial only if the camera’s movement is a pure rotation. If H ∈ SO(3)
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then H 6= R + tn⊤. Therefore, if the camera’s movement is a rotation combined
with a translation then

√
B3 + B4 is not a polynomial. In [MV07], is shown how

the two valid physically solutions of the homography decomposition are related.
Using the notation in [MV07], one has H = Ra + tan

⊤
a = Rb + tan

⊤
b and tb =

‖ta‖
ρ

Ra(2na + R⊤
a ta). So, if ta = 0 then tb = 0. If tb = 0 then ta = 0 because

2na 6= −R⊤
a ta (see pages 37 to 38 in [MV07]). Nevertheless, since our calibration

method and most other camera calibration methods perform calibration when the
camera’s movements are composed of a rotation combined with a translation, we
will show the uniqueness of the solution for this kind of motion.

4.3.3.1 Camera’s rotational coupled with translation movement

Since
√

B4 + B3 is not a polynomial, from (4.28) and Property 2, one has

{
C1 + C2,2 = 0
C2,1 + C3,1 + C3,2 + C4 = 0

From C1 + C2,2 = 0 and (4.30) one has

m13ĥ
⊤
2




2(m11x + m12y + m13)
2(m22y + m23)

1 − (m11x + m12y + m13)
2 − (m22y + m23)

2




= m23ĥ
⊤
1




2(m11x + m12y + m13)
2(m22y + m23)

1 − (m11x + m12y + m13)
2 − (m22y + m23)

2




(4.31)

Equalizing the coefficients of x2 and y2 in the left-hand side (LHS) and right-hand
side (RHS) of (4.31), one verifies that

{
m13m

2
11ĥ23 = m23m

2
11ĥ13

m13(m
2
12 + m2

22)ĥ23 = m23(m
2
12 + m2

22)ĥ13

(4.32)

Then, from (4.32) and the fact that m11 > 0 one deduces

m13ĥ23 = m23ĥ13 (4.33)

From (4.31) and (4.33) one has

m13

(
ĥ21

ĥ22

)⊤ (
m11x + m12y + m13

m22y + m23

)
= m23

(
ĥ11

ĥ12

)⊤ (
m11x + m12y + m13

m22y + m23

)

(4.34)
Equalizing the coefficients of x, y and constant term in the LHS and RHS of (4.34),
one obtains

m13ĥ21 = m23ĥ11 (4.35)
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m13(m12ĥ21 + m22ĥ22) = m23(m12ĥ11 + m22ĥ12) (4.36)

m13(m13ĥ21 + m23ĥ22) = m23(m13ĥ11 + m23ĥ12) (4.37)

From (4.35) , (4.36) and the fact that m22 > 0 one deduces

m13ĥ22 = m23ĥ12 (4.38)

From Equations (4.33), (4.35) and (4.38) one obtains

m23




ĥ11

ĥ12

ĥ13


 = m13




ĥ21

ĥ22

ĥ23


 (4.39)

From (4.39) one deduces that if either m13 or m23 is not null then ĥ1 × ĥ2 = 0

which implies det(Ĥ) = ĥ⊤
3 (ĥ1 × ĥ2) = 0. But, this contradicts with the fact that

det(Ĥ) = 1. As a consequence, one ensures that

m13 = m23 = 0 (4.40)

Using the fact that
√

B3 + B4 (= ‖HXs‖ ) is not a polynomial, we will prove that

‖ĤX̂s‖ is not a polynomial neither. Let us prove this by contradiction. Assume

that ‖ĤX̂s‖ is a polynomial. Then, from (4.25) (with m23 = 0) one has

ĥ⊤
2 X̂s

(
h⊤

3 Xs − ‖HXs‖
)

= m22h
⊤
2 Xs(ĥ

⊤
3 X̂s − ‖ĤX̂s‖)

which is equivalent to

ĥ⊤
2 X̂sh

⊤
3 Xs−m22h

⊤
2 Xs(ĥ

⊤
3 X̂s−‖ĤX̂s‖) = ĥ⊤

2 X̂s‖HXs‖ (4.41)

From (4.41), the facts that ‖ĤX̂s‖ is a polynomial and ‖HXs‖ is not a polynomial,

and Property 2, one deduces that ĥ⊤
2 X̂s ≡ 0. This is impossible since this equality

is not verified for all x, y. This can be directly verified using (4.13) and the fact

that ĥ2 6= 0. The resulting contradiction implies that ‖ĤX̂s‖ is not a polynomial.
From here, let us continue to study (4.41). First, (4.41) can be rewritten in a more
compact form as

D4 + A2,1

√
A4,1 = A2,2

√
A4,2, (4.42)

with A2,1 , m22h
⊤
2 Xs, A2,2 , ĥ⊤

2 X̂s, A4,1 , ‖ĤX̂s‖2, A4,2 , ‖HXs‖2, and

D4 , ĥ⊤
2 X̂sh

⊤
3 Xs−m22h

⊤
2 Xsĥ

⊤
3 X̂s.



4.3. On the Uniqueness of the Solution for the Calibration of
Catadioptric Omndirectional Cameras 95

One easily verifies that A2,1 and A2,2 are not identically null. Powering the LHS and
RHS of (4.42) by two, one deduces

D2
4 + A2

2,1A4,1 − A2
2,2A4,2 = −2D4A2,1

√
A4,1.

Using this relation and the fact that
√

A4,1 is not a polynomial, one verifies from
Property 2 that D4A2,1 ≡ 0. Then, using the latter relation and the fact that A2,1 is
not identically null, one verifies from Property 3 that D4 ≡ 0 which in turn implies
that

A2,1

√
A4,1 = A2,2

√
A4,2. (4.43)

From the definitions of Xs and X̂s and from Property 4, one can verify that all

polynomials h⊤
i Xs and ĥ⊤

i X̂s, with i ∈ {1, 2, 3} are irreducible. This indicates that
A2,1 and A2,2 are irreducible and non null (proved previously). Using this and the
facts that

√
A4,1 and

√
A4,2 are not polynomials, one verifies from Property 1 and

(4.43) the existence of a constant η 6= 0 such that

‖ĤX̂s‖ = η‖HXs‖ (4.44)

Then, from (4.41) and Property 2, one deduces that

(ĥ⊤
2 X̂s)(h

⊤
3 Xs) = m22(h

⊤
2 Xs)(ĥ

⊤
3 X̂s) (4.45)

(ĥ⊤
2 X̂s) = η m22(h

⊤
2 Xs) (4.46)

Replacing (4.40) into (4.46), one obtains




ĥ21

ĥ22

ĥ23




⊤ 


2(m11x + m12y)
2m22y

1 − (m11x + m12y)2 − m2
22y

2


 = ηm22




h21

h22

h23




⊤ 


2x
2y

1 − x2 − y2




(4.47)
Equalizing the constant terms in the LHS and RHS of (4.47), one gets

ĥ23 = ηm22h23 (4.48)

For all circumstances, there exist only two possible cases:

• Case 1: h23 6= 0.

• Case 2: h23 = 0.

Now, let us consider the Case 1 where h23 6= 0:

From (4.48), if h23 6= 0 then ĥ23 6= 0 since η 6= 0 and m22 > 0. Then, equaliz-
ing the coefficients of xy, x2, and y2 in the LHS and RHS of (4.47), one obtains





m11m12 = 0
m2

11 = 1
m2

12 + m2
22 = 1

(4.49)
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From (4.49) and the facts that m11 > 0 and m22 > 0, one easily deduces
{

m11 = m22 = 1
m12 = 0

(4.50)

From (4.40) and (4.50), one already obtains M = I which in turn indicates that

K̂ = K. It remains to prove that Ĥ = H. From (4.47) and (4.50), one deduces
{

X̂s = Xs

ĥ2 = ηh2

(4.51)

From (4.45) and (4.51), one deduces ηh⊤
3 Xs = ĥ⊤

3 X̂s = ĥ⊤
3 Xs, which implies that

ĥ3 = ηh3.

Replacing (4.40), (4.50), (4.44), and (4.51) into (4.24), one obtains

ĥ⊤
1 Xs

η(h⊤
3 Xs − ‖HXs‖)

=
h⊤

1 Xs

h⊤
3 Xs − ‖HXs‖

.

From here, using Property 2 and the fact that ‖HXs‖ is not a polynomial, one

deduces ĥ⊤
1 Xs = ηh⊤

1 Xs, which in turn yields ĥ1 = ηh1. Then, using the fact that

det(H) = det(Ĥ) = 1, one deduces

ĥ⊤
1 (ĥ2 × ĥ3) = ηh⊤

1 (ηh2 × ηh3) = 1.

Therefore, one can deduce η3 = 1 and, subsequently, η = 1. This implies that
ĥ1 = h1, ĥ2 = h2, and ĥ3 = h3, or equivalently Ĥ = H.

Now, let us consider Case 2 where h23 = 0 :

From (4.48), one deduces that ĥ23 = 0 since η 6= 0. Then, using (4.40) and (4.44)
and equalizing the coefficients of x and y in the LHS and RHS of (4.47) one deduces

m11ĥ21 = ηm22h21, (4.52)

m12ĥ21 + m22ĥ22 = ηm22h22. (4.53)

From (4.24), (4.40), (4.44) and Property 2, one deduces

(ĥ⊤
1 X̂s) = η(m11h

⊤
1 Xs + m12h

⊤
2 Xs), (4.54)

(ĥ⊤
2 X̂s)(h

⊤
3 Xs) = (m11h

⊤
1 Xs + m12h

⊤
2 Xs)(ĥ

⊤
3 X̂s). (4.55)

From (4.54) one has



ĥ11

ĥ12

ĥ13




⊤ 


2(m11x + m12y)
2m22y

1 − (m11x + m12y)2 − m2
22y

2


 =

η




m11h11 + m12h21

m11h12 + m12h22

m11h13 + m12h23




⊤ 


2x
2y

1 − x2 − y2




(4.56)
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Equalizing the constant terms in the LHS and RHS of (4.56), one obtains

ĥ13 = ηm11h13, (4.57)

which conveys to the two following subcases:

• Subcase 2.1: h13 6= 0.

• Subcase 2.2: h13 = 0.

Consider Subcase 2.1 where h13 6= 0 :

From (4.57), if h13 6= 0 then ĥ13 6= 0 since η,m11 6= 0. Therefore, from the co-
efficient of xy, x2 and y2 of (4.56) one deduces

ĥ13m11m12 = 0, (4.58)

m2
11ĥ13 = η(m11h13 + m12h23), (4.59)

(m2
22 + m2

12)ĥ13 = η(m11h13 + m12h23). (4.60)

From (4.57), (4.58), (4.59), (4.60) and the fact that ĥ13 6= 0, m11 > 0 and m22 > 0
one deduces {

m11 = m22 = 1
m12 = 0

(4.61)

Subsequently, from (4.40) and (4.61) one deduces M = I, so that K̂ = K. From
(4.61) and (4.56), one deduces {

X̂s = Xs

ĥ1 = ηh1

(4.62)

From (4.52), (4.53), and (4.54), one deduces ĥ2 = ηh2 and ĥ3 = ηh3. From here,

analogously to Case 1, one can deduce that η = 1 and, subsequently, Ĥ = H.

Finally, consider Subcase 2.2 where h13 = 0 :

From (4.57) if h13 = 0 then ĥ13 = 0 . Then, from (4.56) and the fact that h23 = 0,
one has (

ĥ11

ĥ12

)⊤(
m11x + m12y

m22y

)
=η

(
m11h11 + m12h21

m11h12 + m12h22

)⊤(
x
y

)
(4.63)

From the coefficients of x and y in (4.57) and (4.63) one has

m11ĥ21 = ηm22h21, (4.64)

m12ĥ21 + m22ĥ22 = ηm22h22, (4.65)

m11ĥ11 = η(m11h11 + m12h21), (4.66)
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m12ĥ11 + m22ĥ12 = η(m11h12 + m12h22). (4.67)

From the fact ĥ13 = h13 = 0, det(H) = det(Ĥ) = 1, m11 > 0, m22 > 0 and equations
(4.44), (4.64), (4.65), (4.66), (4.67) it is straightforward to find that M = I and

η = 1, and, subsequently K̂ = K, Ĥ = H (end of proof of Theorem 1).

Remark: The proof of Theorem 1 ensures the uniqueness of solution of the es-
timated parameters for the calibration method proposed in this thesis when the
camera’s movement is composed of a rotation combined with a non-null transla-
tion. The technique presented here could be extended for methods involving similar
calibration parameters and projection model [MBMR06, WLH06, DWW07, YZ05,
BA05, Vas04, YH03].

4.4 Conclusion

We have shown a direct approach to the self-calibration of omnidirectional cameras.
Synthetic data have shown that under certainly conditions, no illumination changes
and blur effect, the estimated parameters converge to the correct value after a few
images. On other hand, experiment with real data have shown that the estimation
of parameters can be unobservables because of noise.

We have studied the uniqueness of the solution for the calibration problem of central
catadioptric omnidirectional cameras when a planar mirror or a parabolic mirror are
used. We have showed that when a planar mirror is used the solution could not be
unique. In the case when parabolic mirror is used we have showed that the solution
is unique when the camera’s movement is a rotation plus a translation.



Chapter 5

Conclusion and Future research

Omnidirectional cameras have provided important improvements in recent research
in computer vision and mobile robotics. The field of view of omnidirectional cam-
eras is well suited for motion estimation and obstacle avoidance. Objects do not
dissapear from the field of view but only change their image positions. Therefore,
it is much easier to deal with applications such as selection of landmarks, tracking
and motion detection. However, the use of an omnidirectional camera has always
been limited by the calibration process. Most of the approaches to calibrate cata-
dioptric omnidirectional cameras require awkward calibration steps or need known
3D calibration patterns that unable an on-line self-calibration.

This thesis addressed some of the issues of calibrating catadioptric omndirectional
cameras by a novel approach: tracking of a plane in an image sequence. The im-
age sequence can be the one used by the robot to performe its task. The choice
for considering planes for calibrating cameras is because planes are very common
in man-made environments, and often easily identifiable and rather accurately pla-
nar. Furthermore, planes are simple to process and allow very reliable and precise
intensity-based matching, by fitting the homographies between image pairs.

The unified projection model by Geyer and Barreto was adapted to enable cali-
bration of a wide variety of sensors used in robotics and computer vision. Compared
to other models present in the literature, this model has easily identifiable parame-
ters and presents a compromise between generecity and over-parameterization.

In this thesis, we neglected radial and decentering distortion because we observed
that a complex projection model makes the cost function in the optimazation prob-
lem highly non-linear. Therefore, it not only would not help us but also would cause
numerical instability.

This thesis also analysed visual tracking using an uncalibrated omnidirectional cam-
era. We showed how visual tracking could be adapted to uncalibrated central cata-
dioptric omndirectional cameras by using parametric models (in this case homogra-
phies) combined with the spherical perspective model. The approach can be used
in applications where camera calibration is not necessary.

The convergence to the correct value of the estimated parameters is affected by
illunination changes and blur effects. Therefore, it is recomended that the user pro-
vides image sequences with neither strong illumination changes nor blur effects.

We formulated the problem of uniqueness of the solution in the framework of a
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non-linear equation system, such that the solution of this equations confirms the
uniqueness of the solution. The framework we formulated was for the general case
(all catadioptric sensors). We solved these general equations under certain condi-
tions, namely for a paraboloid mirror. So, we were able to show analytically that
the solution is unique when the camera’s movement is composed of a rotation plus
coupled with a translation. We remark here that in the greatest of cases robotics
applications tend to use paraboloid mirrors, therefore this proof is of great impor-
tance. However, for the most general case the equations are complex and very hard
to solve. In fact we were not capable of solving the general equations without the
particular assumption on the mirror and a specific motion, i.e. the case we have
shown. Therefore, the general case still remains unsolved. We suspect, like most in
our community, that it is true even in the general case, but even in our formulation,
the uniqueness of the solution still remains an unsolved problem.

5.1 Future Research

In Chapter 3, we discussed an efficient way of tracking a planar shape with an un-
calibrated camera. SSD is however limited to small inter-frame motion. Ways of
initialising the tracking, extending the convergence domain and recovering from to-
tal occlusion are important steps for applying the approach in general real-world
situations.

In Chapter 4, we were not able to explore in detail the problem of illumination
changes. Robust techniques such as Tukey or Huber were considered in order to
improve the quality of the estimates. However, the results did not improve. On
the contrary, the number of iterations increased drastically. Techniques such the
one proposed by Silveira and Malis can be considered to improve the quality of the
estimates and reduce the number of iterations.

The proposed calibration algorithm does not include lens distortions -radial and
tangential. It would be useful to have a self-calibration method that could estimate
these parameters.

In Chapter 4, we studied the uniqueness of the solution for calibrating catadiop-
tric omnidirectional cameras. In spite of the efforts to prove for all mirror shapes,
we have not achieved the task. Thus, a harder mathematical work can be considered
with the objective of provides the solution for the general case.



Appendix A

Current Jacobian and Reference
Jacobian

A.1 Current Jacobian

The current Jacobian is the derivative of the cost function in (3.4) when x =
(z, ξ,γ) = 0. Therefore we must computate the following derivative

J(0) =
[
∇xI

′
(
w

(
ĤH(z), ξ̂ + ξ, γ̂ + γ,pi

))
− I(p)

]
x=0

The function I ′ can be expanded as follows

I ′
(
w

(
ĤH(z), ξ̂ + ξ, γ̂ + γ,p

))
= I ′(w(Ĥ, ξ̂, γ̂,w−1(Ĥ, ξ̂, γ̂,w(ĤH(z), ξ̂+ξ, γ̂+γ,p))))

Let q = w−1(Ĥ, ξ̂, γ̂,w(ĤH(z), ξ̂ + ξ, γ̂ + γ,p)). Thus, using the chain rule for
derivatives one obtains

∂I ′(w(Ĥ, ξ̂, γ̂,q))

∂x

∣∣∣∣∣
x=x0

=
∂I ′(w(Ĥ, ξ̂, γ̂,q))

∂q

∣∣∣∣∣
q=p

∂w−1(Ĥ, ξ̂, γ̂,w(ĤH(z), ξ̂ + ξ, γ̂ + γ,p))

∂x

∣∣∣∣∣
x=0

It is important to note that the first part of the derivative is a (1×2) vector that can
be computed directly from the current image data. The vector contains the gradient
of the warped image (i.e. the image being warped with w(Ĥ, ξ̂, γ̂,p) computed at

p ). This derivative will be noted JI′ . Let r = w(ĤH(z), ξ̂ + ξ, γ̂ + γ,p), thus the
second part of the derivative can be decomposed into two parts as follows

∂w−1(Ĥ, ξ̂, γ̂, r)

∂x

∣∣∣∣∣
x=x0

=
∂w−1(Ĥ, ξ̂, γ̂, r)

∂r

∣∣∣∣∣
r=p′

∂w(ĤH(z), ξ̂ + ξ, γ̂ + γ,p)

∂x

∣∣∣∣∣
x=0

(A.1)

The first part of Equation (A.1) is

∂w−1(Ĥ, ξ̂, γ̂, r)

∂r

∣∣∣∣∣
r=p′

=


∂w(Ĥ, ξ̂, γ̂, r)

∂r

∣∣∣∣∣
r=p




−1

(A.2)
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This derivative is a (2 × 2) matrix which represents the coordinates variation from
a point p′ in the current image I ′ with respect to the coordinates of a point p in
the reference image I. This derivative will be noted Jw. In order to compute this
derivative, we will use the warping expression from (3.2), thus the derivative to be
computed is

∂w(Ĥ, ξ̂, γ̂, c(ξ̂ + ξ, γ̂ + γ, s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p))))

∂r

∣∣∣∣∣
r=p

Thus, using the chain rule for derivatives one obtains

∂w(Ĥ, ξ̂, γ̂, r)

∂r

∣∣∣∣∣
r=p

=
∂c(ξ̂ + ξ, γ̂ + γ,A)

∂A

∣∣∣∣∣
A=X

′

s

∂s(ĤH(z),B)

∂B

∣∣∣∣∣
B=Xs

∂c−1(ξ̂ + ξ, γ̂ + γ,q)

∂r

∣∣∣∣∣
r=p

For the purpose of saving space and to show the entire current Jacobian in a single
row, we will denote these derivatives as Jc, Js and Jc−1 . The first part is

Jc =
∂c(ξ̂ + ξ, γ̂ + γ,A)

∂A

∣∣∣∣∣
A=X

′

s

=
∂k(γ̂ + γ,h(ξ̂ + ξ,A))

∂A

∣∣∣∣∣
A=X

′

s

Then one obtains

Jc =
∂c(ξ̂ + ξ, γ̂ + γ,A)

∂A

∣∣∣∣∣
A=X

′

s

=
∂k(γ̂ + γ, a)

∂a

∣∣∣∣∣
a=q

′

∂h(ξ̂ + ξ,A)

∂A

∣∣∣∣∣
A=X

′

s

The second part is

Js =
∂s(ĤH(z),B)

∂B

∣∣∣∣∣
B=Xs

The third part is

Jc−1 =
∂c−1(ξ̂ + ξ, γ̂ + γ, r)

∂r

∣∣∣∣∣
r=p

=
∂h−1(ξ̂ + ξ,k−1(γ̂ + γ, r))

∂r

∣∣∣∣∣
r=p

Then one obtains
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Jc−1 =
∂c−1(ξ̂ + ξ, γ̂ + γ, r)

∂r

∣∣∣∣∣
r=p

=
∂h−1(ξ̂ + ξ,b)

∂b

∣∣∣∣∣
b=q

∂k−1(γ̂ + γ, r)

∂r

∣∣∣∣∣
r=p

This last derivative allows us to write Equation (A.2) as the inverse of the product
of three Jacobians.

Jw = (JcJsJc−1)−1 (A.3)

Now, we procede to compute the second part of Equation (A.1). This derivative
will be computed considering the different sets of parameters in the warping func-
tion (mirror parameter, intrinsic parameters and homography parameters). This
process allows to find a modular Jacobian which will be easily modifiable for the
set or number of parameters to be estimated. Let us start with the homography
parameters.

A.1.1 Homography parameters Jacobian

The derivative to be computed is

∂c(ξ̂ + ξ, γ̂ + γ, s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p)))

∂z

∣∣∣∣∣
z=z0

Let A = s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p)). Thus one has

∂c(ξ̂ + ξ, γ̂ + γ,A))

∂z

∣∣∣∣∣
z=z0

=
∂c(ξ̂ + ξ, γ̂ + γ,A)

∂A

∣∣∣∣∣
A=X

′

s

∂s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p))

∂z

∣∣∣∣∣
z=z0

The first part is the Jacobian Jc which has already been computed. The second
part is

∂s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p))

∂z

∣∣∣∣∣
z=z0

=
∂s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p))

∂H(z)

∣∣∣∣∣
H(z)=I

∂ĤH(z)

∂z

∣∣∣∣∣
z=z0

These derivatives end up with the homography parameters Jacobian. We will note
them as JsH and JHz

. Thus, the homography parameters Jacobian can be written
as

JI′JwJcJsHJHz
(0) (A.4)
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A.1.2 Mirror parameter Jacobian

Now, we will compute the mirror parameter Jacobian. Similarly to the last Jacobian,
the derivative to be computed is

∂c(ξ̂ + ξ, γ̂ + γ, s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p)))

∂ξ

∣∣∣∣∣
ξ=ξ0

Again, let A = s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p)), thus one has

∂c(ξ̂ + ξ, γ̂ + γ,Xs))

∂ξ

∣∣∣∣∣
ξ=ξ0

=
∂c(ξ̂ + ξ, γ̂ + γ,A)

∂ξ

∣∣∣∣∣
ξ=ξ0

+JcJs

∂c−1(ξ̂ + ξ, γ̂ + γ,p)

∂ξ

∣∣∣∣∣
ξ=ξ0

The first part is

Jcξ
=

∂c(ξ̂ + ξ, γ̂ + γ,Xs)

∂ξ

∣∣∣∣∣
ξ=ξ0

=
∂k(γ̂ + γ, a)

∂a

∣∣∣∣∣
a=q

′

∂h(ξ̂ + ξ,Xs)

∂ξ

∣∣∣∣∣
ξ=ξ0

The last part is

Jc
−1

ξ
=

∂c−1(ξ̂ + ξ, γ̂ + γ,p)

∂ξ

∣∣∣∣∣
ξ=ξ0

=
∂h−1(ξ̂ + ξ,Xs)

∂ξ

∣∣∣∣∣
ξ=ξ0

Thus, the mirror parameter Jacobian is

JI′Jw

[
Jcξ

(0) + JcJsJc
−1

ξ
(0)

]
(A.5)

A.1.3 Intrinsic parameters Jacobian

The last Jacobian to be computed is the intrinsic parameters Jacobian. It is com-
puted as the derivative

∂c(ξ̂ + ξ, γ̂ + γ, s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p)))

∂γ

∣∣∣∣∣
γ=γ0

With A = s(ĤH(z), c−1(ξ̂ + ξ, γ̂ + γ,p)) one has
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∂c(ξ̂ + ξ, γ̂ + γ,Xs))

∂γ

∣∣∣∣∣
γ=γ0

=
∂c(ξ̂ + ξ, γ̂ + γ,A)

∂γ

∣∣∣∣∣
γ=γ0

+JcJs

∂c−1(ξ̂ + ξ, γ̂ + γ,p)

∂γ

∣∣∣∣∣
γ=γ0

The first part is

Jcγ
=

∂k(γ̂ + γ,q′)

∂γ

∣∣∣∣∣
γ=γ0

The second part is

Jc
−1
γ

=
∂c−1(ξ̂ + ξ, γ̂ + γ,p)

∂γ

∣∣∣∣∣
γ=γ0

=
∂h−1(ξ̂ + ξ, e)

∂e

∣∣∣∣∣
e=q

∂k−1(γ̂ + γ,p)

∂γ

∣∣∣∣∣
γ=γ0

Thus, the intrinsic parameters Jacobian is

JI′Jw

[
Jcγ

(0) + JcJsJc
−1
γ

(0)
]

(A.6)

A.2 Reference Jacobian

Like the current Jacobian, the reference Jacobian is obtained by computing the
derivative of the cost function in (3.4) when x = (z, ξ,γ) = x̃.

J(x̃) =
[
∇xI

′
(
w

(
ĤH(z), ξ̂ + ξ, γ̂ + γ,p

))
− I(p)

]
x=x̃

Let us expand the function I ′ as follows

I
′

(
w

(
ĤH(z), ξ̂ + ξ, γ̂ + γ,p

))
= I

′

(w(H, ξ,γ,q))

where q = w−1(H, ξ,γ,w(HH̃−1H(z), ξ − ξ̃ + ξ,γ − γ̃ + γ,p))

In the optimal increment x̃ the exact solution is supposed to be obtained; there-
fore, we can verify that H̃ = Ĥ−1H, ξ̃ = ξ − ξ̂ and γ̃ = γ − γ̂.

As for the current Jacobian, the derivative can be decomposed into two parts

∂I ′(w(H, ξ,γ,q))

∂x

∣∣∣∣∣
x=ex

=
∂I ′(w(H, ξ,γ,q))

∂q

∣∣∣∣∣
q=p

∂w−1(H, ξ,γ, r))

∂x

∣∣∣∣∣
x=ex

Again, the first part of the Jacobian is a (1 × 2) vector which can be computed
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directly from the reference image data. The vector contains the gradient of the
warped image. It is very important to remark that the gradient of the reference
image can be computed without explicity knowing the true solution x = (z, ξ,γ).

Let r = w(HH̃−1H(z), ξ − ξ̃ + ξ,γ − γ̃ + γ,p). Thus, the second part of the
derivative is again decomposed into two parts

∂w−1(H, ξ,γ, r)

∂x

∣∣∣∣∣
x=ex

=
∂w−1(H, ξ,γ, r)

∂q

∣∣∣∣∣
r=p′

∂w(HH̃−1H(z), ξ − ξ̃ + ξ,γ − γ̃ + γ,p)

∂x

∣∣∣∣∣
x=ex

(A.7)

The first part of Equation (A.7) is

∂w−1(H, ξ,γ, r)

∂r

∣∣∣∣∣
r=p′

=


∂w(H, ξ,γ, r)

∂r

∣∣∣∣∣
r=p




−1

(A.8)

This derivative is a (2 × 2) matrix which represents the coordinates variation from
a point p′ in the current image I ′ with respect to the coordinates of a point p in
the reference image I. This derivative will be noted Jew. In order to compute this
derivative, we will use the warping expression from (3.2), thus the derivative to be
computed is

∂w(H, ξ,γ, c(ξ − ξ̃ + ξ,γ − γ̃ + γ, s(HH̃−1H(z), c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p))))

∂r

∣∣∣∣∣
r=p

For the purpose of saving space and to show the entire reference Jacobian in a
single row, let x̃1 = (ξ− ξ̃ +ξ,γ − γ̃ +γ). Thus, using the chain rule for derivatives
one obtains

∂w(H, ξ,γ, r)

∂r

∣∣∣∣∣
r=p

=
∂c(x̃1,A)

∂A

∣∣∣∣∣
A=X

′

s

∂s(HH̃−1H(z),B)

∂B

∣∣∣∣∣
B=Xs

∂c−1(x̃1, r)

∂r

∣∣∣∣∣
r=p

We will denote these derivatives as Jec, Jes and Jec−1 . The first part is

Jec =
∂c(x̃1,A)

∂A

∣∣∣∣∣
A=X

′

s

=
∂k(γ − γ̃ + γ,h(ξ − ξ̃ + ξ,A))

∂A

∣∣∣∣∣
A=X

′

s

Then, one obtains
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Jec =
∂c(x̃1,A)

∂A

∣∣∣∣∣
A=X

′

s

=
∂k(γ − γ̃ + γ, a)

∂a

∣∣∣∣∣
a=q

′

∂h(ξ − ξ̃ + ξ,A)

∂A

∣∣∣∣∣
A=X

′

s

The second part is

Jes =
∂s(HH̃−1H(z),B)

∂B

∣∣∣∣∣
B=Xs

The third part is

Jec−1 =
∂c−1(x̃1, r)

∂r

∣∣∣∣∣
r=p

=
∂h−1(ξ − ξ̃ + ξ,k−1(γ − γ̃ + γ, r))

∂r

∣∣∣∣∣
r=p

Then, one obtains

Jec−1 =
∂c−1(x̃1, r)

∂r

∣∣∣∣∣
r=p

=
∂h−1(ξ − ξ̃ + ξ,b)

∂b

∣∣∣∣∣
b=q

∂k−1(γ − γ̃ + γ, r)

∂r

∣∣∣∣∣
r=p

This last derivative allows us to write Equation (A.8) as the inverse of the product
of three Jacobians.

Jew = (JecJesJec−1)−1 (A.9)

Now, we procede to computing the second part of the Equation (A.7). This deriva-
tive will be computed considering the different sets of parameters in the warping
function (mirror parameter, intrinsic parameters and homography parameters). Let
us start with the homography parameters.

A.2.1 Homography parameters Jacobian

The derivative to be computed is

∂c(ξ − ξ̃ + ξ,γ − γ̃ + γ, s(HH̃−1H(z), c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p)))

∂z

∣∣∣∣∣
z=ez
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Let A = s(HH̃−1H(z), c−1(ξ− ξ̃ +ξ,γ− γ̃ +γ,p)) and x̃1 = (ξ− ξ̃ +ξ,γ− γ̃ +γ).
Thus, one has

∂c(x̃1,A))

∂z

∣∣∣∣∣
z=ez

=
∂c(x̃1,A)

∂A

∣∣∣∣∣
A=X

′

s

∂s(HH̃−1H(z), c−1(x̃1,p))

∂z

∣∣∣∣∣
z=ez

The first part is the Jacobian Jec which has already been computed. The second
part is

∂s(HH̃−1H(z), c−1(x̃1,p))

∂z

∣∣∣∣∣
z=ez

=
∂s(HH̃−1H(z), c−1(x̃1,p))

∂H(z)

∣∣∣∣∣
H(z)= eH

∂HH̃−1H(z)

∂z

∣∣∣∣∣
z=ez

These derivatives end up with the homography parameters Jacobian. We will note
them as JesH and J eHz

. Thus, the homography parameters Jacobian can be written
as

JIJewJecJesHJ eHz
(x̃) (A.10)

A.2.2 Mirror parameter Jacobian

Now, we will compute the mirror parameter Jacobian. Similarly to the last Jacobian,
the derivative to be computed is

∂c(ξ − ξ̃ + ξ,γ − γ̃ + γ, s(HH̃−1H(z), c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p)))

∂ξ

∣∣∣∣∣
ξ=eξ

Again, let A = s(HH̃−1H(z), c−1(ξ−ξ̃+ξ,γ−γ̃+γ,p)) and x̃1 = (ξ−ξ̃+ξ,γ−γ̃+γ)
as the previous Jacobian. Then, one has

∂c(x̃1,Xs))

∂ξ

∣∣∣∣∣
ξ=eξ

=
∂c(ξ − ξ̃ + ξ,γ − γ̃ + γ,A)

∂ξ

∣∣∣∣∣
ξ=eξ

+JecJes

∂c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p)

∂ξ

∣∣∣∣∣
ξ=eξ

The first part is

Jecξ
=

∂c(ξ − ξ̃ + ξ,γ − γ̃ + γ,A)

∂ξ

∣∣∣∣∣
ξ=eξ

=
∂k(γ − γ̃ + γ, a)

∂a

∣∣∣∣∣
a=q

′

∂h(ξ − ξ̃ + ξ,Xs)

∂ξ

∣∣∣∣∣
ξ=eξ
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The last part is

J
ec
−1

ξ
=

∂c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p)

∂ξ

∣∣∣∣∣
ξ=eξ

=
∂h−1(ξ̂ + ξ,Xs)

∂ξ

∣∣∣∣∣
ξ=eξ

Thus, the mirror parameter Jacobian is

JIJew

[
Jecξ

(x̃) + JecJesJec
−1

ξ
(x̃)

]
(A.11)

A.2.3 Intrinsic parameters Jacobian

The last Jacobian to be computed is the intrinsic parameters Jacobian. It is com-
puted with the next derivative

∂c(ξ − ξ̃ + ξ,γ − γ̃ + γ, s(HH̃−1H(z), c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p)))

∂γ

∣∣∣∣∣
γ=eγ

Let x̃1 and A be the same than the previous section. Thus one has

∂c(x̃1,Xs))

∂γ

∣∣∣∣∣
γ=γ̃

=
∂c(ξ − ξ̃ + ξ,γ − γ̃ + γ,A)

∂γ

∣∣∣∣∣
γ=eγ

+JecJes

∂c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p)

∂γ

∣∣∣∣∣
γ=eγ

The first part is

Jecγ
=

∂k(γ − γ̃ + γ,q′)

∂γ

∣∣∣∣∣
γ=γ̃

The second part is

J
ec
−1
γ

=
∂c−1(ξ − ξ̃ + ξ,γ − γ̃ + γ,p)

∂γ

∣∣∣∣∣
γ=eγ

=
∂h−1(ξ − ξ̃ + ξ, e)

∂e

∣∣∣∣∣
e=q

∂k−1(γ − γ̃ + γ,p)

∂γ

∣∣∣∣∣
γ=eγ

Thus, the intrinsic parameters Jacobian is

JIJew

[
Jecγ

(x̃) + JecJesJec
−1
γ

(x̃)
]

(A.12)
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Theoretical demonstrations

B.1 Proof of Property 1

Proof of Property 1. From relation A2

√
A4 = B2

√
B4 one deduces A2

2A4 = B2
2B4.

Since A2, B2 are irreducible, the relation A2
2A4 = B2

2B4 indicates that either B2

divides A2 or B4 divides A2. Let us consider these two cases.

• If B2 divides A2, then there exists a constant η 6= 0 such that A2 = ηB2. From
here, it is straightforward to deduce that

√
B4 = η

√
A4.

• If B4 divides A2, then there exists a second order polynomial B2a such that
B4 = A2B2a. From here, one deduces from the relation A2

2A4 = B2
2B4 that

A2A4 = B2
2B2a. This latter relation and the facts that A2, B2 are irreducible

imply that either B2 divides A2 or B2a divides A2. Let us study these two cases:

1) If B2 divides A2, then analogously to what have been shown previously
one easily deduces the desired property.

2) If B2a divides A2, then there exists a constant α such that B2a = αA2. From
here, one deduces that B4 = A2B2a = αA2

2 which implies that
√

B4(= ±√
αA2)

is a polynomial. However, this is a contradiction with the assumption made
in Property 1.

All cases lead to the desidere property. ¤

B.2 Proof of Property 2

Proof of Property 2. Let us prove Property 2 by contradiction. Assume that Pm 6= 0,
Pn 6= 0. Powered by 2 relation Pm = Pn

√
Pl one obtains P 2

m = P 2
nPl. From this

expression one deduces that P 2
m is divisible by P 2

n thus Pm is divisible by Pn. As
a consequence

√
Pl musbe a polynomial. The recently contradiction indicates that

Pn ≡ Pm ≡ 0. ¤

B.3 Proof of Property 4

Proof of Property 4. Let us consider two possible cases:

Case 1: Assume that a4 = 0. Then, A2 = a1x + a2y + a3 which implies that
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A2 is irreducible.

Case 2: Consider the case a4 6= 0 and proceed the proof by contradiction. Assume
that A2 is an irreducible polynomial; so thatA2 = (α1x + α2y + α3)(β1x + β2y + β3)
for some constants α1,2,3 , β1,2,3. From the coefficients in xy, x, y, x2, y2 and the
constant term of A2 one deduces the following relations

α1β2 + α2β1 = 0 (B.1)

α1β3 + α3β1 = a1 (B.2)

α1β3 + α3β2 = a2 (B.3)

α3β3 = a3 (B.4)

α1β1 = a4 (B.5)

α2β2 = a4 (B.6)

Then, from (B.1) one deduces β2 = (−α2β1)/α1. From (B.5) and (B.6) one has
α1β1 = α2β2. From this one has α2

1β1 = −α2
2β1. If β1 6= 0 one deduces that

α1 = α2 = 0, therefore A2 = α3(β1x+β2y +β3) is irreducible. If β1 = 0, then a4 = 0
which implies that A2 is irreducible. ¤

B.4 Proof of Lemma 1

Proof of Lemma 1. If
√

B3 + B4 is a poylomial one verifies B3 +B4 = (a1x
2 +a2y

2 +
a3xy + a4x + a5y + a6)

2 with some constants a1,2,3,4,5,6. From (4.29) one has

B3 + B4 =
3∑

i=1

((P i
1) + (P i

2))
2

From (4.27) one has P i
1 = hi1x + hi2y + hi3 and P i

2 = hi1x + hi2y + hi3(−x2 − y2).
Therefore,

3∑

i=1

(
2hi1x + 2hi2y + hi3(1 − x2 − y2)

)2
= (a1x

2 + a2y
2 + a3xy + a4x + a5y + a6)

2
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then

3∑

i=1

4h2
i1x

2 +
3∑

i=1

4h2
i2y

2 +
3∑

i=1

h2
i3(1 + x4 + y4 + 2x2y2 − 2x2 − 2y2)

+
3∑

i=1

4hi1hi2xy +
3∑

i=1

4hi1hi3(−x3 − xy2 + x) +
3∑

i=1

4hi2hi3(−x2y − y3 + y)

= a2
1x

4 + a2
2y

4 + a2
3x

2y2 + a2
4x

2 + a2
5y

2 + a2
6 + 2a1a2x

2y2 + 2a1a3x
3y + 2a1a4x

3

+2a1a5x
2y + 2a1a6x

2 + 2a2a3xy3 + 2a2a4xy2 + 2a2a5y
3 + 2a2a6y

2 + 2a3a4x
2y

+2a3a5xy2 + 2a3a6xy + 2a4a5xy + 2a4a6x + 2a5a6y
(B.7)

From the coefficients of x4, y4 and the constant term of (B.7) one has

a2
1 = a2

2 = a2
6 =

3∑

i=1

h2
i3 (B.8)

Since det(H) 6= 0,
3∑

i=1

h2
i3. Therefore, one deduces that |a1| = |a2| = |a6|.

From the coefficients of x and y of (B.7) one has

a4a6 = 2
3∑

i=1

hi1hi3 (B.9)

a5a6 = 2
3∑

i=1

hi2hi3 (B.10)

From the coefficients of x2 and y2 of (B.7) one has

a2
4 + 2a1a6 = −2

3∑

i=1

h2
i3 + 4

3∑

i=1

h2
i1 (B.11)

a2
5 + 2a2a6 = −2

3∑

i=1

h2
i3 + 4

3∑

i=1

h2
i2 (B.12)

From the coefficients of x3 and y3 of (B.7) one has

a1a4 = −2
3∑

i=1

hi1hi3 (B.13)

a2a5 = −2
3∑

i=1

hi2hi3 (B.14)

From the coefficients of x3y and xy3 of (B.7) one has
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a1a3 = 0 (B.15)

a2a3 = 0 (B.16)

From (B.15) and (B.16) one deduces that a3 = 0, since a1 6= 0 and a2 6= 0 (proved
previously).

Looking for x2y2 of (B.7) one has

a1a2 =
3∑

i=1

h2
i3 (B.17)

From (B.8) and (B.17) one deduces a1 = a2 6= 0.

From the coefficients of xy of (B.7) one has

a4a5 = 2
3∑

i=1

hi1hi2 (B.18)

From the coefficients of xy2 and x2y of (B.7) one has

a2a4 = −2
3∑

i=1

hi1hi3 (B.19)

a1a5 = −2
3∑

i=1

hi2hi3 (B.20)

Now, let us prove that both a4,a5 are equal to zero or different from zero. Let us
consider two cases:

1) Case a4 6= 0: From (B.9), (B.19) one has a4a6 = −a4a2. Since a4 6= 0, one
has a6 = −a2 6= 0. Thus, from (B.8) one deduces that

a2a6 = −
3∑

i=1

h2
i3 (B.21)

From (B.21) and (B.12) one obtains

a2
5 = 4

3∑

i=1

h2
i2 6= 0 (B.22)

This implies that a5 6= 0.

2) Case a5 6= 0: From (B.10), (B.20) one has a5a6 = −a5a1. Since a5 6= 0, one
has a6 = −a1 6= 0. Thus, from (B.8) one deduces that
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a1a6 = −
3∑

i=1

h2
i3 (B.23)

From (B.23) and (B.11) one obtains

a2
4 = 4

3∑

i=1

h2
i1 6= 0 (B.24)

This implies that a4 6= 0.

These two cases conclude the mentioned above remark that both a4, a5 are equal to
zero or both different from zero.

Let us assume that a4 6= 0 and a5 6= 0 and show that this case is impossible.
Relations (B.21), (B.22), (B.23), (B.24) are valid. Besides, one has a1 = a2 = −a6.

From (B.8), (B.24), and (B.13) one has

1

4
a2

1a
2
4 =

3∑

i=1

h2
i1h

2
i3 =

(
3∑

i=1

h2
i1h

2
i3

)2

(B.25)

Besides, one verifies that for all x1, x2, x3, y1, y2, y3 ∈ R,

(x2
1 + x2

2 + x2
3)(y

2
1 + y2

2 + y2
3) ≥ (x1y1 + x2y2 + x3y3)

2

Where equality occurs only if there exists a constant k such that [x1, x2, x3]
⊤ =

k[y1, y2, y3]
⊤. This property and (B.25) indicates that there exists a constant k

such that [h11, h21, h31]
⊤ = k[h13, h23, h33]

⊤. But this implies that det(H) = 0.
This resulting contradiction with the fact that det(H) = 1 ensures that a4 = a5 = 0.

Now, we consider the case that a4 = a5 = 0. From (B.9), (B.18) and (B.11) one has

3∑

i=1

hi1hi3 = 0 (B.26)

3∑

i=1

hi1hi2 = 0 (B.27)

2a1a6 = −2
3∑

i=1

h2
i3 + 4

3∑

i=1

h2
i1 (B.28)

Since
3∑

i=1

hi1, from (B.28) and (B.8) one easily deduces

a1 = a6 (B.29)

Then, from (B.28) and (B.29) one has
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3∑

i=1

h2
i3 =

3∑

i=1

h2
i1 (B.30)

In summary, from (B.26), (B.10), (B.27), (B.8), (B.30) and (B.12) one has





3∑

i=1

hi1hi3 = 0

3∑

i=1

hi2hi3 = 0

3∑

i=1

hi1hi2 = 0

a1 = a2 = a6
3∑

i=1

h2
i1 =

3∑

i=1

h2
i2 =

3∑

i=1

h2
i3

Let us denote u = (h11; h21; h31), v = (h12; h22; h32), and w = (h13; h23; h33). One
deduces





‖u‖ = ‖v‖ = ‖w‖
< u,v >= 0
< v,w >= 0
< u,w >= 0

(B.31)

Which means that u ⊥ v , u ⊥ w, and v ⊥ v and det(H) = (u×v)⊤w = ‖u‖3 = 1.
So, one deduces that ‖u‖ = ‖v‖ = ‖w‖ = 1 which in this implies that H ∈ SO(3) .
¤
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INSTITUT DES SCIENCES ET TECHNOLOGIES

Direct Self-Calibration of Central Catadioptric Omnidirectional Cameras

Abstract:

Calibrating a camera means determining the geometric properties of the imaging pro-
cess, i.e., the transformation that maps a three-dimensional point, expressed with respect to
a reference frame, onto its two-dimensional image whose coordinates are expressed in pixel
units. This process is required when recovering 3D information. More precisely, we have to
know the translation and rotation of the visual sensor with respect to the rest of the frame
system (extrinsic parameters), and the different parameters of the lens, such as focal length,
magnitude factors, optical center retinal location (intrinsic parameters).

Although the camera calibration problem is well understood, no method allowing the ro-
bust direct on-line self-calibration for any central omnidirectional camera is known. Existing
self-calibration techniques attempt to calibrate from point correspondences, lines, circles or
a specific camera motion. Even though interesting results can be achieved, self-calibration
still suffers from some limitations such as small number of feature points, difficult detection of
lines, undesirable camera motion and taking into account a specific mirror. Consequently, the
aim of this thesis is to propose a new algorithm that overcomes these limitations and can be
adopted by any robotic application or by any other practical implementation in which the cal-
ibration process is not straightforward; this algorithm works directly with the image intensity,
makes the minimum of assumptions about the particular structure of the scene being viewed,
stays valid for all central catadioptric systems and needs no prior knowledge about extrinsic
and intrinsic parameters.

Also, part of this thesis is dedicated to formalize the uniqueness of the solution for the
calibration problem of central catadioptric omnidirectional cameras. For the greatest part of
the work on omnidirectional camera calibration it has been observed that, in the case of a
non-planar mirror, two images acquired from different points of view suffice to calibrate an
omnidirectional camera. However, to our knowledge, no theoretical proof of the uniqueness
of the solution has been provided yet. In this thesis the calibration problem is formalized by
using a unified model that is valid for all central catadioptric omnidirectional cameras. It is
also shown that the uniqueness of the problem can be derived from the solution of non-linear
equations. However, due to the complexity of the non-linear equations to be solved for the
general case, this thesis devises the uniqueness of the solution for the case of a parabolic
mirror when the camera’s movement is a rotation plus a translation.

Keywords: on-line self-calibration, central catadioptric omnidirectional camera, uncalibrated
visual tracking, uniqueness of solution.


