L. Dans-tous and . Cas, essayer de lancer le calcul sans méthode de stabilisation avant de l'appliquer (selon [19])

«. Stabilize, ». Energie, . Stabilize, and . Damping, il faut l'appliquer à partir de la sous étape de charge avant le point de divergence En plus, il faut choisir tout d'abord l'option Cette option permet d'assurer plus facilement un taux de dissipation d'énergie de résultat inférieur à 1% à la fin de chaque étape de charge. Durant le calcul, si la variation de la valeur du taux de dissipation d'énergie qui est entrée par l'utilisateur n'améliore pas la situation, Dans le cas où la méthode de stabilisation est utilisée

. Dans-ce-cas, la valeur initiale à entrer pour le coefficient d'amortissement est prise égale à celle qui est issue du calcul de l

. Après-chaque-Étape-de-charge, évaluer le taux de l'énergie de stabilisation par rapport à l'énergie potentielle. S'il dépasse 1%, refaire le calcul de cette étape de charge avec une valeur plus petite du coefficient d

. Dans-leur-Étude, Lin et al. ont confirmé que l'influence de la présence des armatures sur la distribution de la température dans la section transversale est très petite. Ainsi, cette distribution est presque identique entre la poutre 1 et la poutre 3, Cette remarque est aussi retrouvée dans nos calculs. Ci-après, on vérifie les résultats numériques en les comparant avec les résultats thermiques de la série 1

]. P. Bibliographie, E. Gambarova, . R. Giuriani-m, . L. Romdhane-g, C. U. Balazs et al., Discussion: Fracture mechanics of bond in reinforced concreteCaractérisation et modélisation numériques de l'interface acier-bétonEtude de la liaison acier-béton. De la modélisation du phénomène à la formulation d'un élément fini enrichi ''Béton ArméDamage accumulation on deformed steel bar to concrete interaction detected by acoustic emissiontechniqueDeveloppement of a plasticity bond model for steel reinforcementLocal bond stress-slip relationships of deformed bars under generalized excitationsFinite element formulations of one-dimensional elements with bond-slipModeling bond-slip deformations in reinforced concrete beam-column joints, Journal of the American Concrete Institute: Ecole Nationale des Ponts et Chaussées Magazine of Concrete Research Proceedings of the seventh European Conference on Earthquake Engineering, pp.244-251, 1971.

A. Ayoub and F. C. Filippou, Mixed Formulation of Bond-Slip Problems under Cyclic Loads, Journal of Structural Engineering, vol.125, issue.6, pp.661-671, 1999.
DOI : 10.1061/(ASCE)0733-9445(1999)125:6(661)

G. Monti, F. C. Filippou, and E. Spacone, Finite Element for Anchored Bars under Cyclic Load Reversals, Journal of Structural Engineering, vol.123, issue.5, pp.614-623, 1997.
DOI : 10.1061/(ASCE)0733-9445(1997)123:5(614)

G. Monti and E. Spacone, Reinforced Concrete Fiber Beam Element with Bond-Slip, Journal of Structural Engineering, vol.126, issue.6, pp.654-661, 2000.
DOI : 10.1061/(ASCE)0733-9445(2000)126:6(654)

P. G. Gambarova and G. P. Rosati, Bond and splitting in bar pull-out: behavioural laws and concrete cover role, Magazine of Concrete Research, pp.99-110, 1997.
DOI : 10.1680/macr.1997.49.179.99

S. Limkatanyu and E. Spacone, Reinforced Concrete Frame Element with Bond Interfaces. I: Displacement-Based, Force-Based, and Mixed Formulations, Journal of Structural Engineering, vol.128, issue.3, pp.346-355, 2002.
DOI : 10.1061/(ASCE)0733-9445(2002)128:3(346)

U. Diederichs and U. Schneider, Bond strength at high temperatures, Magazine of Concrete Research, pp.75-84, 1981.
DOI : 10.1680/macr.1981.33.115.75

P. D. Morley and R. Royles, Response of the Bond in Reinforced Concrete to High Temperatures, Magazine of Concrete Research, pp.67-74, 1983.
DOI : 10.1680/macr.1983.35.123.67

H. Rami and G. Linda, Post-fire behaviour of bond between high strength pozzolanic concrete and reinforcing steel, Construction and Building Materials, vol.18, pp.425-435, 2004.

H. B. Kupfer and K. H. Gerstle, Behavior of concrete under biaxial stresses, J Engng Mech Div ASCE, vol.99, pp.853-866, 1973.

S. L. Parvanova, K. S. Kazakov, I. G. Kerelezova, G. K. Gospodinov, and M. P. Nielsen, Modelling the nonlinear behaviour of R/C beams with moderate shear span and without stirrups using Ansys, Proc. of Scientific International Conference, 2005.

K. Hibino, T. Kojima, and N. Takagi, FEM study on the shear behavior of RC beam by the use of discrete model," presented at 3rd Diana world conference on finite elements in civil engineering application, 2002.

D. Kchalakev, T. Miller, K. Chansawat, and T. Potisuk, Finite element modeling of reinforced concrete structures strengthened with FRP laminates, Oregon Department of Transportation United States of America, 2001.

L. C. Hollaway, M. K. Chryssanthopoulos, and S. S. Moy, Advanced Polymer Composites for structural applications in construction, 2004.
DOI : 10.1533/9781845690649

D. M. Ozcan, A. Bayraktar, A. Sahin, T. Haktanir, and T. Turker, Experimental and finite element analysis on the steel fiber-reinforced concrete (SFRC) beams ultimate behavior, Construction and Building Materials, vol.23, issue.2, pp.1064-1077, 2009.
DOI : 10.1016/j.conbuildmat.2008.05.010

A. M. Ibrahim and M. S. Mahmood, Finite Element Modeling of Reinforced Concrete Beams Strengthened with FRP Laminates, European Journal of Scientific Research, vol.30, pp.526-541, 2009.

I. Eurocode, Calcul des structures en béton -Partie 1-2: Règles générales -Calcul du, 1992.

J. H. Fellinger, Shear and Anchorage Behaviour of Fire Exposed Hollow Core Slabs, 2004.

T. D. Lin, B. Ellingwood, and O. Piet, Flexual and shear behavior of reinforced conrete beams during fire tests Porland Cement Association, 1988.

J. Cai, I. Burgess, and R. Plank, A generalised steel/reinforced concrete beam-column element model for fire conditions, Engineering Structures, vol.25, issue.6, pp.817-833, 2003.
DOI : 10.1016/S0141-0296(03)00019-1

T. Z. Harmathy, M. A. Sultan, and J. W. Maclaurin, Comparaison of Severity of Exposure in ASTM E 119 and ISO 834 Fire Resistance Tests, Journal of Testing and Evaluation, vol.15, pp.371-375, 1987.

J. Coleman and E. Spacone, Localization Issues in Force-Based Frame Elements, Journal of Structural Engineering, vol.127, issue.11, pp.1257-1265, 2001.
DOI : 10.1061/(ASCE)0733-9445(2001)127:11(1257)

H. G. Kwak and S. P. Kim, Bond???slip behavior under monotonic uniaxial loads, Engineering Structures, vol.23, issue.3, pp.298-309, 2001.
DOI : 10.1016/S0141-0296(00)00008-0

J. Lemaitre and J. L. Chaboche, Mécanique des matériaux solides, 2004.

J. A. Uijl, Bond modelling of prestressing strand, ACI Special Publication, pp.145-169, 1998.

C. V. Veen, Cryogenic bond behavior tension stiffening, CONCRETE : FROM RESEARCH TO PRACTICE, International conference, Latvia, 1992.

R. Tepfers, Cracking of concrete cover along anchored deformed reinforcing bars, Magazine of Concrete Research, pp.3-12, 1979.
DOI : 10.1680/macr.1979.31.106.3

B. M. Luccioni, D. E. Lopez, and R. F. Danesi, Bond-Slip in Reinforced Concrete Elements, Journal of Structural Engineering, vol.131, issue.11, pp.1690-1698, 2005.
DOI : 10.1061/(ASCE)0733-9445(2005)131:11(1690)

T. P. Tassios, Properties of Bond Between Concrete and Steel Under Load Cycles Idealizing SeismicActions, Bulletin d'Information du Comité Euro-International du Béton, pp.67-121, 1979.

T. P. Tassios and P. J. Yannopoulos, Etudes analytiques sir m'adhérence acier-béton et la fissuration du béton armé sous charges cycliques, Annales de l'Institut Technique du Bâtiment et des Travaux Publics, pp.47-62, 1981.

R. Tepfers, Bond stress along lapped reinforcing bars, Magazine of Concrete Research, pp.135-142, 1980.

R. Lackner and H. A. Mang, Scale Transition in Steel-Concrete Interaction. I: Model, Journal of Engineering Mechanics, vol.129, issue.4, pp.393-402, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:4(393)

Z. P. Bazant and R. Desmorat, Size Effect in Fiber or Bar Pullout with Interface Softening Slip, Journal of Engineering Mechanics, vol.120, p.19451962, 1994.

L. Vanalli, R. R. Paccola, and H. B. Coda, A simple way to introduce fibers into FEM models, Communications in Numerical Methods in Engineering, vol.22, issue.3, pp.585-603, 2007.
DOI : 10.1002/cnm.983

E. Spacone and E. T. Sherif, Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art, Journal of Structural Engineering, vol.130, issue.2, pp.159-168, 2004.
DOI : 10.1061/(ASCE)0733-9445(2004)130:2(159)

S. Limkatanyu and E. Spacone, Reinforced Concrete Frame Element with Bond Interfaces. II: State Determinations and Numerical Validation, Journal of Structural Engineering, vol.128, issue.3, pp.356-364, 2002.
DOI : 10.1061/(ASCE)0733-9445(2002)128:3(356)

K. Salah and H. Smail, Bond-slip analysis of reinforced concrete members, Revue européenne de génie civil, 2005.
DOI : 10.1061/(ASCE)0733-9445(1992)118:8(2118)

S. Limkatanyu and E. Spacone, Effects of reinforcement slippage on the nonlinear response under cyclic loadings of RC frame structures, Earthquake engineering and structural dynamics, pp.2407-2424, 2003.

U. Schneider, Bond strength, Chapter 6: Analytical modelling, Properties materials at high temperatures concrete, 1985.

B. Wu, X. P. Su, H. Li, and J. Yuan, Effect of high temperature on residual mechanical properties of confined and unconfined high-strength concrete, ACI Materials Journal, vol.99, pp.399-407, 2002.

K. Hertz, The anchorage capacity of reinforcing bars at normal and high temperatures, Magazine of Concrete Research, pp.213-220, 1982.
DOI : 10.1680/macr.1982.34.121.213

A. J. Wolanski, Flexural behavior of reinforced and prestressed concrete beams using finite element analysis, 2004.

A. Ibrahimbegovic, Mécanique non linéaire des solides déformables, 2006.

G. Stoychev, FE Analysis of Gray Cast Iron Structural Elements," presented at 50th Anniversary of the Faculty of Technical Sciences, 2010.

P. Fanning, Nonlinear Models of Reinforced and Post-tensioned Concrete Beams, Electronic Journal of Structural Engineering, pp.111-119, 2001.

S. Kaewunruen and A. Remennikov, Nonlinear finite element modelling of railway prestressed concrete sleeper, 2006.

S. Elavenil and V. Chandrasekar, Analysis of Reinforced Concrete Beams Strengthened with Ferrocement, International Journal of Applied Engineering Research, vol.2, pp.431-440, 2007.

A. E. Ahmed, A. H. Al-shaikh, and T. I. Arafat, Residual compressive and bond strengths of limestone aggregate concrete subjected to elevated temperatures, Magazine of Concrete Research, pp.117-125, 1992.
DOI : 10.1680/macr.1992.44.159.117

R. Royles and P. D. Morley, Further responses of the bond in reinforced concrete to high temperatures, Magazine of Concrete Research, pp.157-163, 1983.
DOI : 10.1680/macr.1983.35.124.157

E. Giuriani, G. Plizzari, and C. Schumm, Role of Stirrups and Residual Tensile Strength of Cracked Concrete on Bond, Structural Concrete -Textbook on behaviour, design and performance, pp.1-18, 1991.
DOI : 10.1061/(ASCE)0733-9445(1991)117:1(1)

F. S. Rostasy and H. Sager, Influence of high temperatures on the bond behaviour of ribbed reinforcing bars, Betonwerk + Fertigteil -Technik, pp.663-738, 1982.

J. H. Fellinger, J. W. Stark, and J. C. Walraven, Bond Model for Prestressed Strands in Fire Exposed Concrete, High Performance Materials in Bridges, pp.21-33, 2001.
DOI : 10.1061/40691(2003)3