Synthèse, caractérisation et criblage biologique de nouveaux dérivés ferrocéniques des flavonoïdes: chalcones, aurones, flavones et flavonols

Jean-Philippe Monserrat

To cite this version:

HAL Id: pastel-00661343
https://pastel.archives-ouvertes.fr/pastel-00661343
Submitted on 19 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse de doctorat
de l’université Pierre et Marie Curie (Paris VI)

Présentée par Jean-Philippe Monserrat
Pour obtenir le grade de docteur de l’université Paris VI

Synthèse, caractérisation et criblage biologique de nouveaux dérivés ferrocéniques des flavonoïdes : chalcones, aurones, flavones et flavonols

Soutenue le 23 Septembre 2011,
devant le jury composé de

Pr. Giovanni Poli, Professeur à l’UPMC
Dr. John Spencer, Reader à l’université de Greenwich, UK
Dr. Christian Hartinger, Assistant Professor à l’université de Vienne, Autriche
Pr. Gérard Jaouen, Professeur à Chimie ParisTech
Dr. Anne Vessières, Directrice de Recherche à Chimie ParisTech
Dr. Elizabeth Hillard, Chargée de Recherche à Chimie ParisTech

Examinateur
Rapporteur
Rapporteur
Directeur de thèse
Invitée
Invitée

Préparée à l’École nationale supérieure de chimie de Paris
The most exciting phrase to hear in science, the one that heralds new discoveries, is not “Eureka!” (I found it!) but “That's funny ...”

Isaac Asimov
Acknowledgments

I owe my deepest gratitude to Elizabeth Hillard for being a great boss. Her ideas and tremendous support had a major influence on this thesis. I learned a lot from her in science as well as how to become a scientist. She also spent a lot of time correcting my manuscript, and giving me advice.

It was an honor for me to work under Gérard Jaouen’s supervision. His wide knowledge and his availability made me feel secure anytime.

I would like to thank Anne Vessières for having welcomed me in her laboratory, and for all the enriching discussions we have had, concerning my thesis and everything else.

I would like to express my deep gratitude to Giovanni Poli, John Spencer and Christian Hartinger for having accepted to be members of my jury. Thank you for sharing your expertise and evaluating my work.

A special thanks to Keshri Tiwari, who has worked with me at the bench for two years. Keshri’s experience made me learn a lot about organic synthesis, as well as about Indian culture.

This thesis would not have been possible without our collaborators: Marie-Noëlle Rager and Sophie Walmé for NMR spectroscopy, Céline Fosse and Claudine Fleurant for mass spectrometry, Michel Huché for docking experiments, Nouri Neamati for HIV tests, Guy Chabot for antiproliferative and antiangiogenic tests and finally Claude Jolivalt and Carine Ganem-Elbaz for anti-bacterial tests. My greatest thanks to them all.

I am indebted to my many of my colleagues for their everyday help. I especially remember Didier Hamels, my elder and friend, who showed me the true face of the PhD, Michèle Salman and Nathalie Durand who helped me with the UV/visible spectroscopy, Siden Top and Pascal Pigeon for having shared their extended experience and for having always been available when I needed them, and Marie-Aude Richard, who helped me with my lab duties
while I was at home writing this thesis. Of course, I also thank all the members of the lab that I haven’t cited.

I would also like to thank all the internship students that have worked under my direction, for having helped me on this project, and all my students at the university, who taught me a lot. I hope to have been a good teacher, because as Ernest Boyer says, “A poor surgeon hurts 1 person at a time. A poor teacher hurts 130”.

Finally, I want to thank my whole family, and especially my companion Maria Proetto and my sister Delphine Monserrat, who assisted me a lot during the writing of this dissertation.
Résumé

Introduction

Les flavonoïdes sont d’origine essentiellement végétale et forment l’une des familles les plus étendues d’antioxydants.1 Leur histoire commence à l’ère primaire, au moment de la colonisation des continents par les êtres vivants. Leur origine semble être la conséquence d’un dévoiement d’activité cellulaire : les gènes codant certaines enzymes responsables de la biosynthèse des flavonoïdes ont une séquence proche de ceux codant des enzymes du métabolisme primaire.2

Les flavonoïdes sont des molécules de faible poids moléculaire, dont la structure comporte deux cycles phényles reliés par un pont comportant trois atomes de carbones. Différentes sous-classes de flavonoïdes existent et ont une nomenclature propre ; les plus importantes d’entre-elles sont présentées en Figure 1.

\textbf{Figure 1.} Principales sous-classes de flavonoïdes

Les flavonoïdes ont des rôles très divers au sein des organismes végétaux. Ils sont par exemple utilisés comme colorants : la couleur des fleurs est la conséquence de la présence...
de molécules dérivées de l’ion flavylium, présenté en Figure 1.1 Ils peuvent également avoir une fonction de protection contre les rayons UV : les mutants incapables d’effectuer la biosynthèse des flavonoïdes sont généralement très sensibles au rayonnement solaire.3 D’un point de vue métabolique, les flavonoïdes sont impliqués dans le transport d’auxines qui sont des phytohormones nécessaires au développement des plantes : les mutants déficients ont des malformations.4 Ces molécules ont également un rôle très important dans la reproduction.5

Chez les animaux, les flavonoïdes ont avant tout un effet de protection de l’organisme, ce qui leur a valu d’être considérés comme « alicament ».6 En effet, ils préviennent l’apparition de certaines maladies, principalement le cancer et les maladies cardiovasculaires. Les effets des flavonoïdes sur ces dernières sont illustrés par le concept de « paradoxe français » qui part d’une simple observation : de par leur alimentation, les français consomment en général des graisses saturées, mais ne sont pour autant pas affectés par les maladies cardiovasculaires autant qu’ils le devraient.7 Ce phénomène semble être la conséquence de la présence de flavonoïdes dans le vin, ces derniers ayant un effet protecteur sur l’organisme.8

Les flavonoïdes sont des antioxydants et à ce titre ils interagissent avec les radicaux libres.9 Leur structure phénolique leur permet de subir des oxydations au contact de ces derniers. Leur combinaison avec une autre entité réactive sur le plan redox semblait donc une voie intéressante à explorer.

Notre choix s’est porté sur le ferrocène dont la structure est présentée en Figure 2. Il est composé de deux ions cyclopentadiényles et d’un atome de fer. Le ferrocène est un complexe organométallique isolé dans les années 1950,10 dont la stabilité et la facilité de manipulation en ont fait l’initiateur de la chimie organométallique moderne.

\textbf{Figure 2.} Structure du ferrocène
D’un point de vue pharmaceutique, le ferrocène a prouvé ses qualités de groupement de choix : son insertion dans le squelette organique de différentes molécules bioactives s’est traduite par une augmentation de l’activité et/ou un élargissement du spectre thérapeutique, ainsi que par un contournement du phénomène de résistance aux médicaments.

Un exemple de ce phénomène est illustré par la ferroquine,11 dérivé ferrocénique de la chloroquine ; ces deux molécules sont présentées en Figure 3. La chloroquine est un antipaludique découvert dans les années 1930 qui connaît beaucoup de problèmes de souches résistantes. La ferroquine est au contraire active sur plusieurs de ces souches,12 ce qui en fait l’antipaludique numéro un de Sanofi-Aventis. La ferroquine est en phase II de tests cliniques.

![Figure 3. Structures de la chloroquine et de la ferroquine](image)

Un autre exemple de molécule ferrocénique biologiquement active est le ferrocifène, dérivé ferrocénique du tamoxifène. Les métabolites actifs de ces deux molécules sont présentés en Figure 4. Le tamoxifène est un antagoniste de certains récepteurs à œstrogènes situés dans le sein, et à ce titre il enraye la prolifération du cancer du sein hormono-dépendant ; la prolifération de celui-ci est rythmée par la détection d’œstrogènes par ces récepteurs. Le spectre thérapeutique du tamoxifène est donc limité, à l’inverse de celui de son analogue ferrocénique qui est actif sur tout type de cancer du sein.13 La source de l’activité de ces dérivés ferrocéniques semble être les propriétés redox du ferrocène, qui permettent une oxydation intramoléculaire produisant ainsi un métabolite toxique.14
Ainsi, la combinaison du ferrocène et des flavanoïdes semble être une voie prometteuse pour l’obtention de molécules bioactives. Les chalcones ferrocéniques sont connues depuis les années 1950, bien que leurs activités biologiques n’aient été explorées que récemment. Cependant, aucune des autres sous-classes de flavonoïdes n’avait été précédemment décrites ; l’objectif de ce travail a donc été de synthétiser plusieurs de ces sous-classes, ainsi que d’en explorer leurs propriétés, tant sur le plan chimique que biologique.

Résultats et discussion

Synthèse
Les chalcones étant les précurseurs chimiques et biochimiques des autres sous-classes de flavonoïdes, elles constituent le point de départ de notre étude. Par une simple condensation aldolique entre une acétophénone et l’aldehyde du ferrocène, une série de 10 chalcones ferrocéniques, nommée série 1, a été obtenue, et est présentée en Figure 5.
Leurs adduits qui possèdent une entité BF₂ présentent un intérêt particulier vis-à-vis du SIDA. Ces molécules, présentées en Figure 6, ont donc été synthétisées et représentent la série 2.

Dans l’optique d’accéder aux autres sous-classes de flavonoïdes, nous avons ensuite cherché à cycliser ces chalcones. La première série obtenue dans ces conditions a été la série des aurones ferrocéniques, nommée série 3, qui résulte d’une cyclisation oxydante des chalcones. La synthèse de cette série est présentée en Figure 7. Nous avons aussi développé une procédure à partir de sels d’argent qui est ineffective sur les chalcones organiques.

Au contraire des aurones organiques, les aurones ferrocéniques soumises à une base forte se réarrangent en dérivés ynones. Trois représentants de cette famille ont été synthétisés, et sont présentés sous le nom de série 4 en Figure 8.
Ces dérivés, quand ils sont soumis à une base de type alcolate, se cyclisent en flavones uniquement, série 5. Cette sélectivité est également propre aux dérivés ferrocéniques : en série organique, un mélange flavone-aurone est obtenu, et l’utilisation d’un catalyseur permet l’obtention exclusive de l’aurone. Ceci étant, ce moyen de synthétiser les flavones n’est pas le plus efficace, et le traitement direct des aurones avec un alcolate, ou encore leur isomérisation assistée par des sels de cyanure, présentée en Figure 9, est plus avantageuse.

Enfin, certains flavonols ferrocéniques, série 7, ont également été obtenus et ce à partir de la série 5. Ce protocole ne constitue pas le protocole de choix dans la littérature, cependant les réactifs utilisés pour la synthèse de flavonols à partir de chalcones se sont révélés
incompatibles avec la présence du ferrocène. La synthèse de la série 7 est présentée en Figure 10.

![Synthèse de la série 7](image)

Figure 10. Synthèse de la série 7

Aspect analytique des composés

Les composés appartenant aux différentes séries ont été décrits par les techniques usuelles, telles que la RMN, la spectrométrie de masse, les spectroscopies UV/visible et infrarouge, et enfin la cyclovoltamétrie. Plusieurs structures cristallographiques obtenues par diffraction des rayons X sont présentées dans ce travail. Leurs représentations réalisées avec le logiciel Mercury sont présentées en Figure 11.

![Représentation des structures RX](image)

Figure 11. Représentation des structures RX de 2a (en haut à gauche), 3c (en haut à droite), 4a (en bas à gauche) et 5c (en bas à droite) réalisées avec le logiciel Mercury
Propriétés biologiques des composés

Les effets biologiques de ces molécules sur plusieurs cibles ont été évalués. Les molécules ont notamment été soumises au test MTT avec des cellules de mélanome de souris, lignée B16, afin d’évaluer leur potentiel antiprolifératif. Elles ont également été soumises à des expériences d’arrondissement de cellules endothéliales de type EA·hy 926, la présence duquel est indicatrice d’effets antiangiogéniques. Les molécules ont également été évaluées comme inhibiteurs de la protéine HIV intégrase, centrale dans le cycle de vie du SIDA. Enfin, leurs effets antibactériens ont été évalués sur une souche d’Escherichia coli et sur trois souches de Staphylococcus aureus. Pour chaque famille, seuls les résultats marquants sont présentés dans ce résumé.

La série 1 n’a pas présenté d’intérêt biologique majeur, mais plutôt un intérêt synthétique. Au contraire, les composés de la série 2 se sont remarquablement bien illustrés pour leurs qualités d’inhibiteurs d’HIV intégrase. Cette enzyme tire son nom de sa fonction qui est d’intégrer le génome pro-viral dans le génome hôte. Ce phénomène se décompose en deux processus : 3’P, qui prépare le génome pro viral, et ST, qui l’insère. L’activité des séries 1 et 2 à cet égard est présentée en Table 1.

Table 1. IC₅₀ (µM) de 1a-j et 2a-j pour l’inhibition de HIV intégrase

<table>
<thead>
<tr>
<th>Composé</th>
<th>R</th>
<th>3’P</th>
<th>ST</th>
<th>IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>H</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
</tr>
<tr>
<td>2a</td>
<td>10.7 ± 4.25</td>
<td>6.0 ± 2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>n.d.</td>
<td>n.d.</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>5-Cl</td>
<td>5.6 ± 4.13</td>
<td>6.0 ± 4.36</td>
<td>1.1</td>
</tr>
<tr>
<td>1c</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>5-Br</td>
<td>4.6 ± 0.53</td>
<td>5.7 ± 4.73</td>
<td>1.2</td>
</tr>
<tr>
<td>1d</td>
<td>n.d.</td>
<td>n.d.</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2d</td>
<td>3,5-diCl</td>
<td>7.8 ± 2.93</td>
<td>0.7 ± 0.14</td>
<td>0.1</td>
</tr>
<tr>
<td>1e</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2e</td>
<td>3,5-diBr</td>
<td>4.3 ±2.52</td>
<td>3.6 ±3.84</td>
<td>0.8</td>
</tr>
<tr>
<td>1f</td>
<td>12</td>
<td>6.2</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2f</td>
<td>3,5-diF</td>
<td>5.0 ± 2.83</td>
<td>2.0 ±0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>1g</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2g</td>
<td>4-OMe</td>
<td>4.7 ± 1.53</td>
<td>2.6 ±1.15</td>
<td>0.5</td>
</tr>
<tr>
<td>1h</td>
<td>14</td>
<td>10.3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2h</td>
<td>5-OMe</td>
<td>8.7 ± 1.53</td>
<td>7.3 ± 4.6</td>
<td>0.8</td>
</tr>
<tr>
<td>1i</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2i</td>
<td>6-OMe</td>
<td>16.3 ± 7.52</td>
<td>9.3 ±2.31</td>
<td>0.6</td>
</tr>
<tr>
<td>1j</td>
<td>>33</td>
<td>11.6</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2j</td>
<td>4,6-diOMe</td>
<td>10.5 ± 5.6</td>
<td>7.6 ±5.56</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Les auronnes ferrocéniques, série 3, se sont quant à elles illustrées pour leurs propriétés antibactériennes, comme le montre la table 2 qui présente les CMI (concentrations minimales inhibitrices) pour différentes souches bactériennes. Les résultats sur *S. aureus* se trouvant entre 5 et 10 μM sont très intéressants. D’une manière générale, les composés sont plus actifs sur la souche MsrA, qui est une souche résistante surexprimant une pompe d’efflux, tout comme la souche 1199B. Le meilleur résultat est obtenu pour le composé 3j, avec une CMI de 5 μM sur la souche MsrA.

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus MsrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>100</td>
<td>100/25</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>3g</td>
<td>44/22</td>
<td>11</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>3h</td>
<td>88</td>
<td>22</td>
<td>44</td>
<td>22</td>
</tr>
<tr>
<td>3i</td>
<td>44</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>3j</td>
<td>40/20</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Les flavones ferrocéniques, série 5, se sont quant à elles démarquées en raison de leur caractère prometteur contre le cancer. Leurs résultats d’activité sont présentés avec ceux de la série 6, équivalent organique de la série 5. Les premiers tests ayant été menés concernent les effets antiprolifératifs des séries 5 et 6 sur des cellules de mélanome (B16) chez la souris. Les résultats sont présentés en Figure 12. Bien que plus actives que leurs analogues organiques, les molécules de la série 5 ont des effets antiprolifératifs très faibles.

![Figure 12. Valeurs d’IC₅₀ (μM) des composés 5a-j et 6a-j sur des cellules B16 de mélanome chez la souris](image-url)
Les effets antiangiogéniques de ces molécules ont également été évalués, par arrondissement de cellules endothéliales. Les résultats des séries 5 et 6 sont présentés en figure 13.

Figure 12. Concentration minimum (µM) pour l’arrondissement de cellules EA-hy 926 par 5a-j and 6a-j

La première observation est que les valeurs obtenues sont basses, ce qui est la preuve d’une grande activité. De plus, aucun parallèle ne peut être établi entre la série 5 et la série 6, ce qui suggère que la présence du ferrocène induit un mode d’action différent pour ces molécules. Enfin, un intérêt particulier doit être porté à la molécule 5e qui possède une concentration minimale d’arrondissement très basse, ainsi qu’une très faible cytotoxicité sur les cellules B16 : cette molécule semble donc être un agent purement antiangiogénique.

Conclusion

Les flavonoides forment une des familles d’antioxydants les plus étendues. Ils présentent une incroyable diversité de propriétés biologiques, aussi bien sur les organismes végétaux qu’animaux. Du fait de leur caractère antioxydant, ils protègent les mammifères contre toute sorte d’agressions et de maladies, comme par exemple le cancer.
La combinaison de molécules bioactives avec une entité ferrocénique est connue en chimie médicinale pour augmenter aussi bien leur activité que leur spectre thérapeutique. C’est cette stratégie qui nous a conduit à la synthèse des premiers dérivés flavones, aurones et flavonols ferrocéniques, à partir des chalcones. Ce travail présente la conception, la synthèse et la caractérisation chimique et biologique de tels composés.

De même que pour les dérivés organiques, les effets biologiques des flavonoides ferrocéniques sont très variés, et certaines molécules sortent du lot pour chacun des maux testés ; ces dérivés sont présentés en Figure 13. Le dérivé 2d possède d’intéressantes propriétés en tant qu’inhibiteur de l’enzyme HIV-intégrase. Le dérivé 3j est un agent antibactérien prometteur, efficace contre la souche résistante S. aureus MsrA. Enfin, le dérivé 5e possède d’intéressantes caractéristiques antiangiogéniques.

Figure 13. Composés possédant les activités biologiques les plus intéressantes.

Ce travail montre que la combinaison du ferrocène avec un squelette flavonoïde donne accès à d’intéressantes molécules bioactives. De plus, la chimie développée pour la synthèse de ces composés est originale et présente de nouvelles réactivités et sélectivités.
Références

2 : Rausher, M. D. *The science of flavonoids* 2006 chap.7; New York: Springer, 2006

Table of contents

Chapter 1 Flavonoids and ferrocene-containing molecules as bioactive agents 1

A. Flavonoids 1

1. Flavonoids: definition and nomenclature 2
2. Flavonoids in the plant kingdom 4
 2.1. Biosynthesis 4
2.2. Role of flavonoids in plants 8
 2.2.a. Nucleus level 8
 2.2.b. Enzyme activity and hormonal function 9
 2.2.c. Role in reproduction 10
 2.2.d. Extraorganism level 10
3. Flavonoids in the animal kingdom 11
 3.1. Flavonoids and proteins 12
 3.1.a. Flavonoids and cell membranes 12
 3.1.b. HIV proteins 13
 3.1.c. Flavonoid-kinase interactions 14
 3.1.d. Flavonoids and the immune system 16
 3.2.e. Flavonoids and other proteins related to cancer 17
 3.2. Flavonoids as antioxidants 19
 3.2.a. Enzymatic approach 21
 3.2.b. Radical scavenging 23
 3.2.c. Metal chelation 25

B. Ferrocene 27

1. Generalities 27
2. Ferrocene in medicinal chemistry 28
 2.1. Anti-cancer properties 28
 2.1.a. Hydroxyferrocifens 28
 2.1.b. Raloxifens 30
 2.1.c. Anti-androgens 31
 2.1.d. Ferrocenyl curcuminoids 33
 2.1.e. JAHAs 35
 2.1.f. Kinase inhibition 36
 2.2. Anti-HIV properties 37
 2.3. Anti-bacterial properties 38
 2.4. Anti-parasitic properties 38
 2.4.a. Ferroquine 39
 2.4.b. Ferrocenyl chalcones 39

References 41
Chapter 2 Ferrocenyl chalcones and their adducts Synthesis and biological properties

A. Background

B. Aims of the study

C. Synthesis and chemical properties of ferrocenyl chalcone derivatives
 1. Synthesis
 1.1. Ferrocenyl chalcones
 1.2. Ferrocenyl chalcone adducts
 2. Characterization
 2.1. Crystal structure of 2a
 2.2. UV/visible spectroscopy of 1a-j
 2.3 IR spectroscopy
 2.4 Electrochemistry
 3. Stability of the chalcone adducts

D. Biological properties
 1. Antiproliferative effects on B16 melanoma cells
 2. Antiangiogenic effects EA·hy 926 endothelial cells
 3. HIV-integrase inhibitors
 4. Antibacterial properties

E. Experimental

References
Chapter 3 Ferrocenyl Aurones Synthesis and biological properties 92
A. Aurones in the literature 92
 1. Roles of aurones in animals 94
 1.1. Aurones in cancer therapy 94
 1.1.1. Aurones as Pgp inhibitors 94
 1.1.2. Aurones as CDK inhibitors 95
 1.1.3. Aurones as chemopreventive agents 96
 1.2. Other uses of aurones as bioactive agents 97
 1.2.1. Aurones as anti-parasitic agents 97
 1.2.2. Aurones as anti-diabetes agents 99
 1.2.3. Aurones as anti-microbial agents 99
 2. Synthesis of aurones 100
 2.1. Functionalization of the benzofuranone core 100
 2.2. Oxidative cyclisation of chalcones 102
 2.2.1. Metal-free oxidative cyclisation of chalcones 102
 2.2.2. Oxidative cyclization of chalcones with metal assistance 103
 2.3. Aurones from alkynes 104
B. Synthesis, chemical reactivity and analytical properties of ferrocenyl aurones 105
 1. Synthesis 106
 2. Chemical reactivity 112
 3. Characterization 114
 3.1. Crystal structure of 3c 114
 3.2. UV/visible spectroscopy of 3a-j 115
 3.3. IR spectroscopy 116
 3.4. Electrochemistry 117
C. Biological properties of ferrocenyl aurones 119
 1. Antiproliferative effects on B16 melanoma cells 119
 2. Antiangiogenic effects EA-hy 926 endothelial cells 120
 3. Antibacterial properties 121
D. Experimental 123
References 131
Chapter 4 Ferroceny1 Flavones and Flavonols Synthesis and biological properties

A. Synthesis of flavones in the literature
 1. From chalcones
 1.1. Selenium
 1.2. DDQ
 1.3. Bromine
 1.4. Iodine
 1.5. Indium
 2. From yrones
 3. From aurones

B. Synthesis of flavonols in the literature
 1. From chalcones
 2. From flavones
 2.1. PIDA
 2.2. LDA / Hydrogen peroxide
 2.3. DMDO
 2.4. Oxone

C. Synthesis, analytical and biological properties of ferroceny1 flavones
 1. Synthesis
 1.1. From yrones
 1.2. From aurones
 2. Characterization
 2.1. Crystal structure of 5c
 2.2. UV/visible spectroscopy of 5a-j
 2.3. IR spectroscopy
 2.4. Electrochemistry
 2.5. Structural comparison between flavones and aurones
 3. Biological properties
 3.1. Antiproliferative effects on B16 melanoma cells
 3.2. Antiangiogenic effects EA-hy 926 endothelial cells
 3.3. Antibacterial properties

D. Synthesis and analytical properties of ferroceny1 flavonols
 1. Synthesis
 2. Characterisation
 2.1. UV/visible spectroscopy of 7a, c and g
 2.2. IR spectroscopy
 3. Biological properties

E. Experimental

References

Conclusion
Chapter 1

Flavonoids and ferrocene-containing molecules as bioactive agents

A. Flavonoids

“Flavonoids may have existed in nature for over 1 billion years and thus have interacted with evolving organisms over the eons. ... The very long association of plant flavonoids with various animal species and other organisms throughout evolution may account for the extraordinary range of biochemical and pharmacological activities of these chemicals in mammalian and other biological systems”. T.C. Theoharides

Indeed, with over 9000 natural known derivatives, flavonoids are omnipresent in the plant kingdom, where they are produced, as well as in animal kingdom, where they are taken in via the diet. Being synthesized since the appearance of the very first plants on Earth, these secondary metabolites are crucial at all stages of the plant and animal life cycle, and subsequently interact with many biological entities. The beneficial effects of flavonoids on human health are also well-known, and have become a very popular field of study. Typing “flavonoid” in Scifinder results in more than 88 000 answers, including more than 40 000 since 2005. Companies selling parapharmaceutical products often use “flavonoids” in their
advertising, as this term has become synonymous with health. For example, Figure 1.1 presents a nutritional supplement of the brand “Flavin 7”.

![Flavin 7 Advertising](image)

Figure 1.1. Advertising for the brand “Flavin7”

1. **Flavonoids: definition and nomenclature**

Flavonoids are low molecular weight molecules, with a structure consisting of two phenyl rings, ring A and ring B, linked by a three carbon atom bridge. This class of molecules is divided into several subgroups, depending on the functions present in the structure. The main subgroups are presented in figure 1.2.
Chalcones are the chemical and biochemical precursors of all the other subclasses of flavonoids. The prefix “flav” derives from the Latin “flavus”, meaning “yellow”, and corresponds to the three carbon atom chain in the form of an unsaturated 6-membered ring (in red). By contrast, the prefix “flavan” corresponds to the same ring, but in its saturated form. The suffix “on” or “one” refers to the presence of a ketone function (in green). Similarly, the suffix “ol” corresponds to the presence of a hydroxy group on the heterocycle. Aurones are flavone isomers, possessing a benzofuranone instead of a benzopyranone motif. Anthocyanidins, flavylium ion derivatives, correspond to the aromatized form of the three carbon chain. Finally, neoflavone and isoflavone are isomers of flavone, possessing the B-ring and/or the ketone function in different positions of the three carbon atom chain.
2. Flavonoids in the plant kingdom

2.1. Biosynthesis

Flavonoids are only biosynthesized by plants. They are secondary metabolites, meaning that they are not essential for short-term plant survival. Indeed, several studies in the literature compare mutants that do not produce certain flavonoids with the wild-type organism. Although weakened by the lack of flavonoids, the mutants are able to survive.³

In fact, it even seems that flavonoids appeared by “mistake”,⁴ during the era when the earliest forms of plants, the bryophytes⁵, emerged from the sea and started to colonize the land. Bryophytes possess the first three enzymes of the flavonoid biosynthetic pathway: chalcone synthase (CHS) chalcone-flavanone isomerase (CHI) and flavanone 3-hydroxylase (F3H), and thus can biosynthesize chalcones, flavanones and flavanonols. Similarities between the genetic sequence coding for these enzymes and the sequence coding for enzymes of primary metabolism strongly suggest that their appearance is due to a mutation of the original genetic sequence of another enzyme. For example, the CHS genetic sequence exhibits strong similarities with genes coding for polyketide synthases in bacteria,⁵ and their function is in fact very similar.

As with any evolutionary phenomenon, the production of such molecules led to favorable effects on early plants. The initial advantages given by flavonoids remain unclear and two schools of thought exist on this subject. One suggests that plants used flavonoids for their UV absorption properties,⁶ so that they acted as a protective sunscreen. This hypothesis is supported by several facts: flavonoids appeared with the very first organisms present on earth, even the simplest flavonoids absorb UV light, and mutants that do not produce flavonoids are very sensitive to UV light.⁷,⁸ The other hypothesis suggests that flavonoids first regulated plant hormones.⁹ For example, their contribution to auxin transport has been shown in angiosperms (more specific examples are detailed in section 2.2.b).¹⁰,¹¹

The flavonoid pathway is a branch of the phenylpropanoid pathway, which uses phenylalanine as a primary substrate. Through evolution, plants have created many other enzymes, even lost some, and the flavonoid pathway has become quite intricate.³ This

³ The term “bryophyte” is still employed for current plants, like mosses for example.
complexity can be seen even in a highly simplified representation of flavonoid synthesis in *Arabidopsis*, a small flowering plant often used as a model in biology (Figure 1.3).

![Flavonoid Pathway Diagram](image)

Figure 1.3: The flavonoid pathway in *Arabidopsis*.

The first step of the flavonoid pathway involves chalcone synthase (CHS). In *Arabidopsis*, the second step involves chalcone-flavanone isomerase (CHI), whose role is to cyclize the chalcone to form a bicyclic system. In the presented pathway, the molecule obtained
following the scheme is naringenin. The third step of this pathway involves the action of flavanone-3-hydroxylase (F3H), thus resulting in the production of a flavanonol, in this case dihydrokaempferol. This combination of these three enzymes constitutes the foundation of flavonoid biosynthesis.

From the flavanonols, many different structural modifications are possible, some of which are detailed in Figure 1.3. The presence of dihydroflavonol 4-reductase (DFR) results in the production of a flavan-3,4-diol, in this case leucocyanidin. The action of leucoanthocyanidin dioxygenase (LDOX), gives the cyanidin salt, which can then be reduced by anthocyanidin reductase (ANR) thus producing epi-afrelechin, which belongs to the flavan-4-ol subclass.

Another branch of the flavonoid pathway, starting from dihydrokaempferol, results in the synthesis of quercetin, which is without any doubt the most well-known flavonoid derivative. The action of flavonoid 3’-hydroxylase (F3’H) in grafting a hydroxyl group on the B-ring of dihydrokaempferol results in the production of dihydroquercetin, which is then oxidized into the flavonol quercetin by flavone synthase (FLS).

Although well investigated through the analysis of several mutants, the Arabidopsis flavonoid pathway is quite limited; for example, Arabidopsis doesn’t produce isoflavone, which is however present in legumes. Indeed, the presence of chalcone reductase (CHR), whose action is inverted compared to F3’H, together with isoflavone synthase (IFS) allow some plants to biosynthesize isoflavones, such as daidzein.

The least extended subclass of flavonoids is without any doubt the aurone subclass. Their name comes from “aurum”, gold in Latin, due to their bright yellow color. In 2001, Nakamaya isolated the enzyme responsible for their biosynthesis, aureusidin synthase, from Antirrhinum majus. 12

The schematic biosynthetic pathway presented previously explains the formation of most of the flavonoid skeletons, and also shows the addition of hydroxyl groups in different positions of the molecules. However, natural flavonoids often present methoxy groups instead of hydroxyl groups, or exhibit a complex glycosylation pattern. 13 These substitutions are responsible for the very broad structural and functional diversity of these molecules. Indeed, these modifications often result in the ultimate bioactive properties of flavonoids,
modulating their color and enhancing their reactivity and solubility. Moreover, the enzymes being very species-specific, structural modifications permit the regulation of the biosynthetic pathway itself.

The two main classes of enzymes implicated in these last modifications are flavonoid methyltransferases and flavonoid glycotransferases. These enzymes are very regiospecific. As an example, the action of a flavonoid O-methyltransferase (OMT) isolated from *Mesembryanthemum crystallinum* is presented in Figure 1.4.14

![Diagram](image)

\textbf{Figure 1.4:} Action of OMT on 6-hydroxy quercetin

The solubility of flavonoids is crucial in their transport and storage in biological media. Therefore, glycosylation is a key step at the last stage of their biosynthesis. An example of glycosylation sequence is shown in Figure 1.5. In this Figure, rhamnosylisoorientin, a poly-glycosylated form of luteolin, is obtained \textit{via} the action of two flavonoid glycotransferases, glucosyl transferase (GT) and rhamnosyl transferase (RT).15 Glycosylation is at the heart of some controversy concerning the beneficial effects of flavonoids in the human diet. Because flavonoids can also be glycosylated in animals, they are rapidly excreted in urine and are not available to cells.
2.2. Role of flavonoids in plants

The huge diversity in structure, through both the different subclasses and the different substitutions, generates a similar diversity in the roles of flavonoids. Flavonoids are present in all parts of the plant, and at all stages of the plants life cycle. That said, while many of their activities have been experimentally measured, the precise mechanisms of action often remain elusive.

2.2.a. Nucleus level

Several biological entities are known to be molecular targets of flavonoids. The influence of flavonoids on plants starts inside the nucleus of the cell itself, by affecting primary biological functions, such as genetic transcription. Many reports of flavonoids found inside the nucleus of plant cells can be found in the literature, and they mainly concern flavonol and flavanol derivatives. More precisely, Feucht and coworkers have shown that catechins (flavan-3-ol derivatives) have the ability to bind with histone, suggesting their involvement in genetic transcription. He has also reported the presence of flavonoids in the nucleus of a number of plants.

In addition, naringenin chalcone and apigenin (Figure 1.6) may influence flavonoid biosynthesis by regulating the transcription of flavonoid biosynthesis enzymes. Finally, Winkel and coworkers have shown the presence of CHS and CHI in both the cytoplasm and the nucleus of Arabidopsis thaliana.
2.2.b. Enzyme activity and hormonal function

One of the most remarkable influences of flavonoids in plants is their impact on the plant's architecture, principally due to their effects on auxin transport.25 Auxin is a growth phyt hormone that is absolutely necessary for plant development. Buer and coworkers studied wild-type \textit{Arabidopsis thaliana} and its mutant form,26 where the flavonoid biosynthetic pathway had been genetically modified. He demonstrated that the architecture of the plant is dependant on flavonoid biosynthesis, and that different mutations affecting this pathway produce different phenotypes. From root growth to the number of flowers, the consequences of these mutations implicate, for example, the stature of the plant and seed density. Supplementation with flavonoids restored the wild-type characteristics, showing the unambiguous source of these variations.3

The distribution of auxin throughout the plant begins in the roots, from which it is then transported to the other parts of the plant. Inside the cells, auxin can only be transported \textit{via} anionic efflux carriers. Flavonoids are known to be able to compete with other efflux inhibitors (like NPA), thus suggesting their ability to control auxin efflux.27 Bernasconi has shown that genistein (Figure 1.7) could modulate the phosphorylation state of proteins associated with auxin efflux, through inhibition of kinases.28 The observation that flavonoids, and especially flavonols, can interact and modulate PID (a protein kinase needed for proper organ formation) has been well documented.11
2.2.c. Role in reproduction

Flavonoids play a major role in the reproduction of a number of plant species. They accumulate in most flowers and pollen, and flavonoid-deficient mutants are generally sterile males, like in the case of petunia.29, 30 In other plants, such as Arabidopsis, such mutants are fertile, but exhibit a reduced seed set.31 Kaempferol intake promotes pollen germination in these mutants, showing the flavonoid-dependant character of this process.

More externally, certain flavonoids, especially anthocyanidins and flavonols, also contribute to reproduction by influencing the appearance of the plant. The anthocyanidins are strongly colored, and are present in most flower petals. Natural pollinators, such as bees or birds, will often prefer a colored flower, thus enhancing the reproduction yield of the concerned plant.32, 33 In addition, UV-fluorescent flavonols act as nectar guide for bees and other insects.34

2.2.d. Extraorganism level

The effects on reproduction are not the only example of flavonoid-mediated interactions with other organisms. Certain symbioses between plants and fungi need flavonoids to operate. For example, Arbuscular mycorrhizae, a fungus found in plant roots, causes an accumulation of quercetin and rhamnetin (Figure 1.8) in clover roots, while this phenomenon doesn’t occur in non-symbiotic clover.35 This suggests that flavonoids may play a role in the infection of the clover by the fungi. Similarly, under low phosphate conditions, melons produce certain flavonoids that increase mycorrhizal colonization, and subsequently enhance phosphate uptake.36

![Figure 1.8: Structure of rhamnetin](image-url)
Flavonoids are also able to protect plants from infectious fungi, such as in the case of taxifolin (Figure 1.9), a flavonol known to be an antifungal agent in pine.37, 38, 39

![Figure 1.9: Structure of taxifolin]

Plant-microbe interactions are very similar to plant-fungi interactions. The flavonoid can either act as an antimicrobial agent in the case of pathogens,40 or favor symbiosis. A good example of such symbiosis is nodulation. This phenomenon occurs when legumes (pea or clover for example), in association with Rhizobia bacteria, form nitrogen-fixing nodules to enhance the legumes’ nitrogen intake. For nodulation to occur, the legume must possess flavonoids that are perceived by the bacteria as a signal to activate the transcription of the nod gene, and subsequently form a nodule. This recognition is flavonoid-specific: naringenin induces nodulation by Rhizobium leguminosarum in pea, while quercetin inhibits nodulation.41

Flavonoids are very versatile molecules, and the plant kingdom uses them for many purposes, exploiting their structural properties as well as their photochemical properties. One of the main impacts of flavonoids is their interactions with proteins, such as with kinases for example.11, 28 Another important property is the antioxidant character of these molecules, which protect organisms against ROS.25 In this regard, some parallels between the plant and animal kingdom can be found.

3. Flavonoids in the animal kingdom

Although flavonoids are only produced by plants, they have a variety of activities in all types of organisms. In this section, we will be more specifically interested in their role in
mammals. As mentioned previously, parallels can be established between the animal and the plant world, especially concerning flavonoid-protein interactions and their antioxidant behavior. The present section will detail these two aspects more specifically, using selected examples.

3.1. Flavonoids and proteins

3.1.a. Flavonoids and cell membranes

Cell membranes present many proteins on their surface, some of them regulating what enters or leaves the cell. Similar to PIN proteins, the channels implicated in auxin transport, permeability glycoproteins (PGPs) are efflux proteins in mammals. Efflux proteins are often responsible for drug multiresistance in tumor cells. To circumvent this phenomenon is a great medical challenge. Flavonols and isoflavones such as quercetin, kaempferol or daizein, are known to alter the function of PGPs. For example, they have been shown to sensitize colon epidermal carcinoma KB-V1 cells to chemotherapeutic agents, such as paclitaxel or vinblastine, without having any impact on equivalent PGP-lacking KB3.1 cell lines.42 In this case, we can observe that the addition of a non-cytotoxic sensitizing agent to an existing therapy can extend its therapeutic spectrum, and provide a solution to the multiresistance problem.

Glucose transporters, (GLUTs) are a family of membrane-spanning proteins that are responsible for insulin-mediated glucose uptake in cells. Flavonoids, such as quercetin, myricetin and catechin-gallate (Figure 1.10) are known to inhibit glucose uptake mediated by GLUT4, a predominant member of this family of transporters in isolated rat adipocytes.43 Morover, genistein, quercetin, myricetin, rhamnetin and isorhamnetin (Figure 1.10) inhibit GLUT1-mediated glucose transport through a direct interaction with this protein.44
Introduction

Figure 1.10: Structures of myricetin and catechin gallate and isorhamnetin

In addition to the regulation of membrane proteins, flavonoids are also able to directly influence the nature of the lipid bilayer of the membrane, by modifying its fluidity.45

3.1.b. HIV proteins

A remarkable example of flavonoid-enzyme interactions pertaining to a very crucial subject for current medicine is their interactions with HIV proteins. HIV treatment strategies are mostly oriented towards the inhibition of the three main enzymes of the HIV life cycle: reverse transcriptase (RT), integrase (IN) and protease (PR). Current treatments for HIV usually contain a combination of RT and PR inhibitors.

HIV belongs to the retrovirus family, meaning that its original genetic material is RNA. The role of RT is to produce DNA from RNA, in order to transfer its genes into the host cells. Kitamura has shown that the flavone baicalin (Figure 1.11) inhibits the replication of the HIV virus, probably due to the demonstrated affinity of this molecule for RT.46 Other examples of inhibition of non-HIV RT by flavonoids are widely described in the literature.47

Once the proviral DNA is produced, it is inserted into the host DNA via the enzyme IN. Fesen has shown that quercetin is able to inhibit IN,48 and has performed a structure-activity relationship study on the subject.49 Inhibition of IN will be more widely detailed in a further section.
Once the viral genes are implanted in the host cell genome, the cell produces polyproteins. Another crucial step of the HIV replication is the transformation of the newly created polyproteins in mature proteins, which confers to the virions their infectious properties. This step corresponds to the PR action. Therefore, the inhibition of this protein would leave the virions non infectious, and would block HIV proliferation. Several flavonols, such as fisetin, morin (Figure 1.12), quercetin and myricetin have been shown to inhibit PR.50

3.1.c. Flavonoid-kinase interactions

As a consequence of their structural similarities with adenosine triphosphate (ATP), flavonoids, and especially flavones, flavonols13 and aurones51 possess good affinity with ATP-binding proteins, such as protein kinases. These enzymes catalyze the phosphorylation of proteins from ATP, and are therefore crucial for cell signaling. Their functions are extremely varied, for example they are implicated in cell growth, cell proliferation and apoptosis.13 Protein kinase inhibitors are therefore excellent candidates to treat diseases
caused by cell growth dysregulation, such as cancer or polycystic kidney disease, for which the protein kinase inhibitor PLX5568 is currently under clinical trials.

There are many examples of flavonoid kinase inhibition. Protein kinase C (PKC), a family of mammalian kinases, control the function of other proteins via phosphorylation; their impact is extremely broad, affecting for example tumor promotion, secretory processes, and T lymphocyte function.52 Similarly, phosphoinositide 3-kinases (PI 3-kinases) are a family of enzymes that specifically catalyze the phosphorylation of inositol lipids, and play a crucial role in cell signaling and in regulating cellular functions, including proliferation, apoptosis and cytoskeleton organization among others.53, 54 Flavonoids have been shown to inhibit PKC \textit{in vitro},55 while Middleton and coworkers have shown that fisetin and luteolin blocks the ATP binding site on the catalytic unit of PKC.56

Myosin light chain kinase (MLCK), which plays a crucial role in the proliferation and the migration of human breast cancer cells,57 has been extracted from bovine aorta and exposed to different flavonoids. Kaempferol was shown to be a specific inhibitor.58 Protein tyrosine kinase (PTK), which is implicated in many different biological functions, such as cell growth, gene expression and cell mobility,59 is inhibited by genistein;60 rabbit muscle phosphorylase kinase is inhibited by quercetin and fisetin, while the flavanone hesperetin (Figure 1.13) stimulates this enzyme.61

![Figure 1.13: Structure of hesperetin](image)

Some protein kinases are also involved in the generation of cancer cells, such as members of the mitogen-activated protein kinase (MAPK) family. When activated by external stimuli, such as stress or UV-irradiation, they play a critical role in transmitting signals to tumor
promoters. Evidence strongly suggest that the activation of MAPKs by such promoters plays a functional role in malignant transformation.62 Different flavonoids, such as epigallocatechin (Figure 1.14), inhibit the activation of MAPKs.63

![Figure 1.14: structure of epigallocatechin](image)

3.1.d. Flavonoids and the immune system

The immune system is a highly complex machine, constituted of many different types of cells that are essential to good health. The cells of the immune system can either interact directly with other cells (cell-cell interactions), or via signaling compounds, such as hormones or cytokines. Flavonoids can interact at different levels of this system, especially by interacting with protein kinases involved in inflammatory processes, as presented below.

T lymphocytes belong to the family of white blood cells. Their action is broad, including for example T-cell-mediated immunity. Their growth is thought to be induced by protein tyrosine kinases (PTKs), such as p56.64 Atluru and coworkers have shown that genistein inhibits T cell proliferation without any toxic effect.65 PTKs are known to be generally sensitive to flavonoids. However, their action is not universal, since flavonoids do not have the same impact depending on their substitutions or on the cellular source of PTKs. For example, genistein is inactive against purified bovine thymocyte PTK (p40).66

Natural killer cells (NKC) are a type of cytotoxic lymphocyte that play a major role against tumors. When activated, they release proteins such as perforine and granzyme causing apoptosis of the target cell. In this case, again, the influence of flavonoids can be observed. Flavone acetic acid (Figure 1.15), also called FAA, is a synthetic flavonoid that reached phase
Il clinical trials as anti-cancer agent. FAA exhibits antitumor activity against renal tumors in mice, and enhances NKC activity in vivo.67,68

![Structure of flavone acetic acid (FAA)](image)

Figure 1.15: Structure of flavone acetic acid (FAA)

Mast cells are found in many types of tissues, and are known for their implication in allergic responses.69 They are considered to be part of the immune system, since they are very similar to basophil granulocytes, which belong to the white blood cell family. Mast cells possess granules containing histamine, which is secreted when the cell is activated, thus producing characteristic symptoms of the allergic reaction. It has been shown that the flavone baikalein inhibits mast cell proliferation, and that genistein as well as quercetin, kaempferol and myricetin inhibits the histamine release of the same mast cells.70, 71 Involvement of PTKs in mast cell histamine release has been documented.72

3.1.e. Flavonoids and other proteins related to cancer

One of the most common characteristics among cancer cells is their inability to undergo apoptosis, or programmed cell death. Some anticancer drugs induce apoptosis in cancer cells. For example, the naturally occurring flavone tangeritin (Figure 1.16) induces apoptosis in HL-60 leukemia cells.73 The induction of apoptosis by quercetin has also been well documented; this has been shown to proceed via heat shock proteins in several cell lines.74 Genistein also induces apoptosis in HL-60 and M07e leukemia cells.75
Aromatase is an enzyme responsible for the conversion of androgens into estrogens, by aromatizing a part of the steroid skeleton. Aromatase inhibitors are often used in the treatment of hormono-dependent cancers, such as breast cancer for example, where proliferation is enhanced by the presence of estrogens. There are several reports of aromatase inhibition by naturally occurring flavonoids, such as the flavones chrysin and apigenin (Figure 1.17). A structure-activity relationship study of synthetic flavonoids was performed on the inhibition of the aromatization of androstenedione. Flavone and flavanones exhibited the best results, with IC$_{50}$ values in the low micromolar range. Kaempferol has also been shown to inhibit aromatase activity in a human preadipocytes.

Decreasing tumor size is not generally the main goal of anti-cancer therapy. Solid tumors can usually be surgically removed, and local treatments such as radiotherapy applied. The main difficulty of cancer therapy is the development of metastasis. Since all solid tumors need nutrients to survive, a vascular system is required which comes about via angiogenesis. Genistein has been shown to inhibit endothelial cell proliferation stimulated
by bFGF (fibroblast growth factor: a glycoprotein essential for angiogenesis) in vitro, and also to inhibit angiogenesis in vivo.\(^7\) bFGF is a well known growth factor; its function is to produce a plasminogen activator called urokinase-type plasminogen activator, which ultimately induces the production of plasmin protein from its proenzyme plasminogen. Plasmin subsequently starts the neovascularization process. Genistein has been shown to reduce the production of plasminogen activator, suggesting that it interacts with bFGF.\(^7\) Other flavonoids such as fisetin, apigenin, and luteolin also inhibit the proliferation of normal and tumor cells, in addition to inhibiting in vitro angiogenesis.\(^8\)

Other proteins are implicated in the metastasis process, such as extracellular matrix proteins, which are related to cell adhesion and migration. Laminins belong to this class of proteins, and catechin has been shown to bind laminins. The treatment of a laminin-coated surface with catechin abrogates their effects on different cell types.\(^8\) In addition, it has been reported that the invasion of an embryonic chick heart fragment by MO4 murine fibrosarcoma cells is inhibited by tangeretin in vitro; this inhibition is reversible by simply removing the tangeretin from the culture medium.\(^8\) Related studies show that genistein inhibits the invasion of BALB/c mammary carcinoma on a basement membrane-like material without affecting the cellular growth.\(^8\)

Tubulin is a family of globular proteins responsible for the formation of microtubules, which are constitutive elements of the cytoskeleton. Tubulin is a target for several anti-cancer drugs, such as paclitaxel.\(^8\) Direct interactions between quercetin and tubulin have been shown, resulting in the inhibition of microtubule polymerization and causing depolymerization of microtubules made from purified tubulin in vitro. A conformational change of tubulin due to binding with quercetin has been shown, suggesting that quercetin inhibits cancer cell proliferation at least in part by perturbing microtubule function.\(^8\)

3.2. Flavonoids as antioxidants

Another extensive area of flavonoid activity concerns the inhibition of enzymes involved in the production of reactive oxygen species (ROS). Indeed, part of the beneficial effects of the flavonoids found in our diet is due to their antioxidant properties that protect the
metabolism against ROS. For this reason, flavonoids are considered to be “nutraceuticals” and are receiving much attention for their positive effects on health.

DeFelice coined the term “nutraceutical” in 1979 and defined a nutraceutical as “food or parts of food that provides medical or health benefits, including the prevention and treatment of disease.” Flavonoids currently represent the major active nutraceutical ingredients in food plants. A good illustration of the nutraceutical concept is the French paradox: French people, while consuming a diet high in saturated fat, are relatively protected against cardiovascular diseases. This is thought to be the consequence of the antioxidant procyanidin flavonoids present in red wine.

Reactive oxygen species include free radicals, such as superoxide (\(O_2^-\)) and hydroxyl radical (\(\cdot OH\)) but also non-radical species, like hydrogen peroxide (\(H_2O_2\)). They are constantly produced in the body, by a variety of different enzymatic or non-enzymatic pathways. For example, mitochondria are a source of cellular ROS, which are generated during the oxidative phosphorylation process. As with any energy-associated process, side events can occur, and when electrons escape the mitochondrial electron transport chain, their reaction with molecular oxygen results in the production of superoxide. This is the case for approximately 2% of the oxygen used by mitochondria. The superoxide ions can then be converted into hydrogen peroxide and other ROS. ROS can also have an enzymatic origin, such as NADPH oxidases. ROS seem to affect cell proliferation and apoptosis of prostate cancer cells. Due to their reactive properties, ROS represent the main source of DNA damage. This damage can cause malfunction of the respiratory chain and further amplify the generation of ROS, and therefore promote mutations and genetic instability. ROS have very deep implication in a number of diseases, especially cancer.

In general, cancer cells produce more superoxide ions than normal cells, so they are under higher oxidative stress than normal cells. This difference creates a specific vulnerability. Criteria differentiating cancer cells and normal cells are very precious, since the selectivity of anti-cancer agents is currently one of the biggest challenges in anti-cancer therapy. There are several ways for flavonoids to modulate ROS production and ROS levels inside the cells.
3.2.a. Enzymatic approach

Much like pH, the redox status of the cell is buffered, primarily by the GSSG (glutathione disulfide)/GSH (glutathione) ratio. GSH is most present in the cells is its reduced form. When GSH reacts with an oxidant, it is oxidized to GSSG. The concentration of GSH in a normal cell is about 1 mmol, and the cell’s “redox potential” rises when the level of GSSG increases. A rapid decrease in GSH is associated with cell death for both normal and cancer cells.96 GSSG can be reduced back to GSH by the enzyme glutathione reductase (GSR or GR) and the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH).97 Therefore, inhibiting GSR undermines the cellular redox buffer.

![Structure of GSH](image)

\textbf{Figure 1.18.} Structure of GSH

Paradoxically, quercetin and other flavonoids have been shown to inhibit GSR, and an extensive structure-activity relationship study involving the main class of flavonoids has been conducted.98 However, these inhibition properties appear only at relatively high concentrations (> 25 \(\mu\)M). At lower concentrations, around 10 \(\mu\)M, quercetin significantly increases the GSH level of murine L1210 leukemia cells, while galangin (Figure 1.19) has no effect.99 Later, it was shown that quercetin is able to increase the activity of the rate-limiting synthesizing enzyme of the GSH metabolism, glutamate cysteine ligase (GCL).100

Green tea is a well-known nutraceutical, and it is very rich in flavonoids, especially in catechins and flavonols. When the tea has been allowed to ferment for a longer period of time, black tea is obtained. The fermentation has a very important effect on the tea’s flavonoid derivatives, which are chemically modified to more complex structures, the teaflavins (Figure 1.19). These teaflavins inhibit another ROS-producing enzyme called xanthine oxidase (XO).
XO’s function is to oxidize hypoxanthine into xanthine and then xanthine into uric acid from oxygen, thus releasing hydrogen peroxide (Figure 1.20). Teatflavins reduce the production of superoxide in HL-60 cells, and therefore reduce their oxidative stress.101

Since superoxide is naturally produced, and because of its high toxicity, cells possess pathways for its removal: superoxide dismutases (SODs). SODs are a family of metalloenzymes whose role is to induce the dismutation of superoxide ions into less toxic species, hydrogen peroxide and dioxygen. Therefore, they are essential components of the biological antioxidant system, as well as a target for redox chemotherapeutics.102
In green tea, polyphenols account for up to 30% of the dry weight, and most of them are flavonoids. An up-regulation of the SOD activity caused by green tea has been observed in rats. When fed with green tea (up to 2.5% of their diet), during extended periods of time (63 weeks), the rats exhibited no lesions in the liver, and they showed a decrease of weight of about 10-18%, together with a decrease of triglycerides and total cholesterol of about 25-30%, clearly showing a hypolipidemic effect. In addition, the increase of SOD activity was superior to 100%. This could help explain the observed chemopreventive effects of green tea.103

By affecting the enzymes that constitute the cellular antioxidant machinery, flavonoids have an indirect impact on ROS. The flavonoid-enzyme interaction is not the only source of the preventative effects of these molecules. For example, their polyphenolic skeleton confers them radical scavenging properties.

\textbf{3.2.b. Radical scavenging}

Radical scavenging is a crucial issue for the protection of the body. The deactivation of highly aggressive species, like hydroxyl radical, is not the only aim. Scavenging the less aggressive superoxide ion is also important, since O_2^- can produce hydroxyl radicals via the Fenton and Haber-Weiss reactions.104

Due to their polyphenolic structures, flavonoids possess several sites that are sensitive to oxidation by ROS.105 Moreover, the radical created by the oxidation of a flavonoid skeleton can be delocalized all over the pi-system, therefore giving rise to a stabilized aroxy radical. An example of this is presented in Figure 1.21, using 3',4'-dihydroxyflavone as an example. The fate of the radical species can follow two different paths. The ideal case is when a second monoelectronic oxidation of the aroxy radical occurs due to its reaction with another radical, thus scavenging another equivalent of undesirable free radical. However, in the presence of free metals in high concentration, the aroxy radical can interact with dioxygen to release superoxide. In this case not only has the ROS problem not been solved, but quinones are created. This event is thought to be responsible for the observed
prooxidant behavior of flavonoids. The problem of metals reacting with ROS and their deactivation by chelation is the subject of the following section.

Radical scavenging properties have been reported for most flavonoids, and many structure-activity relationship studies have been conducted. For example, in 2006, Asres and coworkers identified some crucial fragments inducing high radical scavenging properties: the ease of the phenol deprotonation and the ease of the termination step. It should be specified that some flavonoids, such as morin, do not scavenge either superoxide or hydroxyl ions, but still exhibit antioxidant properties. This shows that radical scavenging properties are not always essential in the antioxidant activity of a compound.

![Diagram](image)

Figure 1.21. Mono-electronic oxidation of the 3',4'-dihydroxyflavone, delocalization of the radical over the skeleton, and termination resulting in a quinone structure.

The importance of the flavonoid radical scavenging properties toward hydroxyl radicals has not convinced the entire scientific community, although it generally is recognized. In 1997, Wu and coworkers published a study on five well-known flavonoids: baicalin, hesperidin, naringin, quercetin and rutin, in order to determine the origin of their antioxidant properties. The authors concluded that the scavenging properties towards hydroxyl radicals are very limited, and that antioxidant properties of flavonoids are mainly due to their iron chelation properties.
3.2.c. Metal chelation

Free iron is known to have harmful effects, especially through Fenton chemistry:

\[
\begin{align*}
\text{Fe}^{3+} + \text{O}_2^- & \rightarrow \text{Fe}^{2+} + \text{O}_2 \\
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \text{HO}^- + \text{HO} \\
\text{O}_2^- + \text{H}_2\text{O}_2 & \rightarrow \text{HO}^- + \text{HO}^+ + \text{O}_2
\end{align*}
\]

In order to avoid these effects, iron is “protected” in vivo, that is to say sequestered via complexation with transferrin, ferritin or heme proteins.109 However, iron can transiently be found in forms where it is free enough to interact with ROS in the labile iron pool (LIP), whose deregulation is harmful.110

Treatment of GSH-lacking erythrocytes with different oxidizing agents, such as phenylhydrazine or acrolein, results in the production of free iron. This phenomenon and its subsequent production of ROS provide a good platform for studying the relationship between antioxidant effects and metal chelation. As a consequence of this oxidative stress, different harmful phenomena are observed, for example lipid peroxidation.110 The addition of quercetin decreases these negative effects, probably by the chelation of iron. At concentrations comparable to those used in the in vitro experiment, quercetin has been shown to chelate iron in buffer solution. When added to the free iron releasing erythrocyte, it decreases lipid peroxidation, and eliminates it completely when two equivalents of quercetin are added. Depending on the flavonoid, the stoichiometry of the chelation can vary, as shown in Figure 1.22. Quercetin, kaempferol, myricetin and morin chelate iron with a stoichiometry of 2:1, baicalein with a stoichiometry 1:1 and 3-hydroxyflavone 3:1. These proportions may vary with pH.111
As nutraceuticals, flavonoids protect the cell from damaging ROS, either by preventing their formation or by destroying them when already formed. In this regard, the preventive effect of flavonoids is obvious. However, from a therapeutic point of view, the antioxidant effect does not represent the only approach to redox-active drugs design. It is known that, as a consequence of their intrinsic high oxidative stress, the biological antioxidant system of cancer cells is often saturated. Therefore, since an exaggerated level of ROS inside a cell results in its death, a prooxidant approach for redox-active chemotherapeutics has therefore been investigated. In addition, Boots and coworkers highlighted the singular behavior of the flavonoid quercetin that she called the “quercetin paradox”. She has shown that as a consequence of its protective reaction with hydrogen peroxide, quercetin forms toxic electrophilic quinoid metabolites. Therefore, it can be hypothesized that beneficial effects of the quercetin can be partially attributed to the death induced in undesirable cells.

Following the same concept, Jaouen and coworkers have developed a ferrocenyl derivative of the anti-cancer metabolite hydroxytamoxifen, called hydroxyferrocifen (Figure 1.23), which is thought to behave similarly. Its behavior will be detailed in a following section.
B. Ferrocene

1. Generalities

In 1951, Kealy first reported a new compound made of an iron atom together with two
cyclopentadienyl moieties. The first property that was recognized was its high stability,
which was in contrast with other attempts to make similar compounds. The correct
structure was proposed the following year by Wilkinson and Fisher, and the name
“ferrocene” was invented by Woodward the same year, for its resemblance with benzene.

The discovery of ferrocene marked the birth of modern organometallic chemistry. Nowdays, an incredible diversity of organometallic complexes exists, and they are used for
all imaginable purposes. Ferrocene, however, still remains a special case. Its external surface
resembling an aromatic core, it can easily be functionalized, using for example Friedel-Craft
or lithiation reactions. Moreover, it is stable in physiological conditions, in non-oxidizing
environments, and it is lipophilic and compact. Ferrocene is non-toxic: No deaths were
observed for dogs daily fed with 300 mg.kg\(^{-1}\) of ferrocene for 6 months, although an iron
overload was observed. In this regard, a ferrocene compound has been used to treat iron
deficiency in the clinic, thanks to its lipophilicity. In addition, ferrocene possesses a stable
and reversible Fe\(^{II}\)/Fe\(^{III}\) couple, which adds to its characteristics a redox behavior. All these
parameters make it a suitable isostere for pharmaceutical uses; those where it replaces an existing group in a biomolecule, particularly a phenyl ring, will be studied in this section.

2. Ferrocene in medicinal chemistry

Ferrocene-containing bioactive molecules possess activities against all kind of diseases, and these activities take advantage of different properties of the ferrocene moiety. An overview of this subject will be presented below. One of the major uses of ferrocene-containing molecules as bio-active agentd concerns the field of oncology. Many other uses of ferrocene in medicinal chemistry have been investigated, but they will not be detailed here. This section is not meant to be exhaustive, but rather aims to give an overview of ferrocene relating to topics that we interested ourselves in during this study. Comprehensive reviews exist on the subject.121, 122

2.1. Anti-cancer properties

Although ferrocene itself doesn’t possess anti-cancer properties, its oxidized form, ferricenium, has been shown to be anti-proliferative against Ehrlich ascite tumors in 1984.123,124 Later on, Neuse proposed that ferrocenyl compounds could be oxidized in vivo, so that both ferricenium- and ferrocene-containing compounds could exhibit cytotoxic properties.125 This concept was most fully demonstrated by Jaouen and coworkers’ discovery of the hydroxyferrocinfs.126, 127

2.1.a. Hydroxyferrocinfs

Hormone-dependent breast cancer cells over express the estrogen receptor (ER) on the cell surface, and breast cancer cell proliferation is linked to the interaction of the ER with its agonist estradiol. Such hormone-dependent cases represent approximately two thirds of the diagnoses, and subsequent treatment involves ER antagonists, such as tamoxifen, which is metabolized in vivo to the active agent hydroxytamoxifen.128, 129 However, drug resistance
is an important phenomenon with such selective estrogen receptor modulators (SERMs), and treatment with tamoxifen is only efficient for one-third of all breast cancer patients over the long term. Moreover, tamoxifen exhibits side effects, such as the increased risk of uterine cancer. So while the treatment options available for hormone-dependent breast cancers are still better than those for hormone-independent cancers, progress still needs to be made on both fronts.

The “hydroxyferrocifens” were designed to be bi-functional drugs, exhibiting both anti-estrogenic and cytotoxic (or cytostatic) properties. On one hand, because of the resemblance of ferrocene with a phenyl ring, it was hoped that the affinity with the ER and therefore the antiestrogenic effect could be maintained. On the other hand, additional cytotoxic effects induced by the ferrocene moiety were desired. On MCF-7, a hormone-dependent breast cancer cell line, the antiproliferative behavior of hydroxyferrocifen ($n = 3$) is greater than that of hydroxytamoxifen. The addition of estradiol shows an incomplete reversal of the phenomenon, indicating the contribution of a partial cytotoxic effect.130 Moreover, on MDA-MB-231, a hormone-independent cancer cell line, hydroxyferrocifen (with $n=3$) had an IC_{50} value of 0.5 μM, while OH-Tam was completely inactive. From this observation, it is clear that the hydroxyferrocifens exhibit cytotoxic effects that involve the ferrocene moiety. A family of compounds has been synthesized on the hydroxyferrocifien model, by replacing the amino chain by different substituents.

The mode of action of these compounds seems to be the consequence of an intracellular redox activation of the ferrocene moiety, causing an intramolecular electron transfer and a subsequent oxidation of the hydroxyferrocifen derivatives into a quinone methide form, as shown in Figure 1.24.114 As in the case of quercetin oxidation, this electrophilic product is cytotoxic.131

Moreover, hydroxyferrocifen derivatives show selectivity toward cancer cells. Bernard and coworkers have shown a selective cytotoxic effect of these compounds for several melanoma cell lines vs. melanocytes.132 Similarly, Benoit and coworkers have shown that the compound where $R = \text{OH}$ displays cytotoxic effects on 9L glioma cells, with an IC_{50} of 0.6 μM. The same compound was not active on normal brain cells at concentrations inferior to 10 μM.133 The selectivity of this molecule for cancer cells can be explained by its selective
activation in high oxidative stress condition, which is known to be the case for most of the cancer cells.112

\textbf{Figure 1.24.} Oxidation of hydroxyferrocifens

\textbf{2.1.b.} Raloxifens

Another original candidate for the treatment of hormone-dependent breast cancer was raloxifen,134 shown in Figure 1.25. Raloxifen acts similarly to tamoxifen, but is somewhat less active; the main advantage of this molecule is its ability to maintain bone density, unlike tamoxifen.135, 136 Ferrocenyl derivatives of raloxifen (Figure 1.25) have been synthesized and evaluated against several cancer cell lines, such as ovarian (2008, C13*, RH4), cervical (A431), lung (A549), colon (HCT-15) and breast (MCF-7, MCF-7 ADR), exhibiting IC\textsubscript{50} values in the low micromolar range.137
The piperazinyl derivatives (framed in Figure 1.25) exhibit the best results, and its ability to activate caspase-3 in ovarian cells suggests a mode of action via induction of apoptosis.

2.1.c. Anti-androgens

Like breast cancer, prostate cancer can be hormone-dependent. In this case, androgen receptors are activated by dihydrotestosterone (DHT), the active metabolite of testosterone, and therefore induce proliferation. Hormone-dependent forms of prostate cancer represent the majority of the cases, at least at the initial development of the tumour.138 Thus, anti-androgens such as flutamide, nilutamide and bicalutamide have been designed (Figure 1.26). However, resistance phenomena have subsequently appeared, similar to what has been observed for breast cancer.
Following the example of the hydroxyferrocefin, but here grafting the ferrocene moiety onto the skeleton of a known molecule, several nilutamide derivatives have been synthesized (Figure 1.27) and biologically evaluated on hormone-independent prostate cancer cells (PC-3). PC-3 cells were exposed to 10 µM of each compound.

![Image of compounds A and B]

Figure 1.27. Ferrocenyl nilutamide derivatives

In these experiments, bicalutamide showed a weak anti-proliferative effect (15%), compounds A in Figure 1.27 exhibited a better anti-proliferative effect (37–34%), and compounds B showed almost no anti-proliferative effect (less than 10%).

The ferrocene derivatives of testosterone shown in Figure 1.28 have also been synthesized and tested against prostate cancer cells. On PC-3 hormone-independent cells, these compounds exhibited an antiproliferative effect with IC₅₀ values ranging from 4.7 to 12.2 µM. Compound A in Figure 1.28, with an IC₅₀ value of 4.7, is one of the most active organometallic complexes of an androgen or anti-androgen.¹³⁹
For both breast and prostate cancer, the presence of ferrocene in the structure of existing receptor-modulating molecules resulted in an additional cytotoxic component. This characteristic is particularly useful in extending the therapeutic spectrum of drugs, and to avoid problems of drug resistance.

2.1.d. Ferrocenyl curcuminoids

Curcumin (Figure 1.29) is a natural compound, found in important quantities in the rhizome *Curcuma longa*. It is present in turmeric, where it is a yellow pigment. Its biological activities have long been recognized, especially in Asian traditional medicine. Different properties such as antioxidant, chemopreventive and antitumor activities on several cancer types have been reported for this compound.140
Recently, ferrocenyl curcuminoids have been synthesized, and some of their biological properties have been evaluated, such as cytotoxicity on B16 melanoma cells, and antiangiogenic effects such as inhibition of tubulin polymerization and rounding-up of endothelial cells. In general, the ferrocenyl moiety improved the curcuminoids’ biological effects, the spacer between the curcuminoid skeleton and the ferrocenyl moiety playing a central role.

For example, curcuminoids possessing a methylene linker (Figure 1.30A) exhibit the best cytotoxic effects on murine B16 cells, with IC₅₀ between 2.2 and 7.1 μM, whereas a propenone linker (Figure 1.30B) results in the best tubulin polymerization inhibition and the lowest concentrations for the rounding up of endothelial cells.¹⁴¹ In this case, the ferrocene moiety’s behavior is more complex, and two different biological effects are induced; its mode of connection to the curcumin’s skeleton modulates the nature of the curcuminoids’ biological properties.

![Figure 1.29. Structure of curcumin](image)

![Figure 1.30. Structures of some ferrocenyl curcuminoids](image)
2.1.e. JAHAs

From a purely steric point of view, ferrocene and phenyl possess a major difference, namely, ferrocene is three-dimensional. In some cases, such as using ferrocene-containing compounds as enzyme inhibitors, this characteristic is crucial. An illustration of this concept is the design of ferrocene derivatives of suberoyl anilide hydroxamic acid (SAHA), shown in Figure 1.31.

![Figure 1.31. Structure of SAHA](image)

In cell nuclei, DNA is packaged into the nucleosome, which is a segment of DNA wound around a histone protein core. For genetic transcription to occur, the DNA has to be released by histone for the transcription enzyme to reach the DNA strand. The winding dynamics are ruled by acetylation-deacetylation process. Histone acetyl transferase (HAT) enzymes induce unwinding of the DNA strain, while histone desacetylases (HDAC) induce the winding, thus allowing genetic transcription. In cancer, some of the transcription processes are silenced, particularly those resulting in the production of pro-apoptotic and growth arrest proteins.

Inhibiting HDAC could thus restore these functions, and therefore represent a promising approach for the design of new anti-cancer agents. SAHA is a HDAC inhibitor, which is currently in clinical trials for the treatment of cutaneous T-cell lymphoma.

Very recently, Spencer and coworkers designed ferrocenyl derivatives of SAHA (Figure 1.32), and tested them against MCF-7 breast cancer cells. Docking experiments on the compound figure 1.32.A show a good fitting of the ferrocenyl moiety with the cavity of HDAC8, this part of the cavity being known to be malleable, and therefore adaptable to different ligands. Compounds 1.32.A and B display an IC₅₀ concentration in the low micromolar range for the inhibition of HDAC8, as well as SAHA. The compound 1.32.C, on the other hand, presented...
an IC\textsubscript{50} value of 2 nm. The IC\textsubscript{50} values of these compounds for MCF-7 cell proliferation were in the low micromolar range.142

![Chemical structures](attachment:image.png)

Figure 1.32. Ferrocenyl derivatives of SAHA

2.1.f. Kinase inhibition

Receptor tyrosine kinase (RTK) is a family of proteins known for their implication in cancer development, particularly the transformation process associated with human cancers.143 The oxindole motif is found in several anticancer agents, and has been shown to be an interesting core for PTK inhibition.144

![Chemical structure](attachment:image.png)

Figure 1.33. Structure of the ferrocene oxindole derivatives (Z and E isomers)

Spencer and coworkers have developed ferrocene 1,3-dihydro-2H-indol-2-one (oxindole) derivatives, shown in Figure 1.33. Ferrocene oxindoles selectively inhibited the vascular endothelial growth factor receptor VEGFR-2, a PTK receptor whose activation influences endothelial cell mitogenesis and cell migration. Ferrocene oxindoles exhibited an IC\textsubscript{50} value
against VEGFR-2 of 200 nM, and also displayed antiproliferative properties against B16 melanoma in mice and Vero (African Green Monkey Kidney Epithelia), with an IC$_{50}$ value of 0.7-1.2 μM.145

2.2. Anti-HIV properties

Topoisomerases are enzymes that control the topological structure of DNA, by cutting one (topoisomerase I) or both (topoisomerase II) DNA strands. They play a central role in cellular division and transcription. The inhibition of topoisomerases is an important target in anticancer drug discovers, as well as in anti-HIV therapy. Indeed, it has also been shown that topoisomerase II activity is required for HIV-1 replication.146

Thiomorpholide amido methyl ferrocene and azalactone ferrocene (Figure 1.34) are selective topoisomerase II inhibitors, and display IC$_{50}$ values for the inhibition of catalytic activity of 50 and 100 μM, respectively.147 Kondapi and coworkers further studied the impact of azalactone ferrocene and thiomorpholide amido methyl ferrocene on cell proliferation and also on various events of HIV-1 replication cycle. The two topoisomerase II inhibitors showed significant anti-HIV activity on the nanomolar scale against an Indian isolate of HIV-193IN101 in the Sup-T1 cell line, together with inhibition of the proviral DNA synthesis as well as the formation of pre-integration complexes.146

![thiomorpholine amido methyl ferrocene and azalactone ferrocene](image)

Figure 1.34. Structures of thiomorpholide amido methyl ferrocene and azalactone ferrocene
2.3. Anti-bacterial properties

Some known β-lactam antibiotics have also been modified by insertion of a ferrocene moiety in their structure. For example, penicillin and cephalosporin ferrocene derivatives were created in the 1970s (Figure 1.35).148

\textbf{Figure 1.35.} Structures of penicillin, cephalosporin, and the corresponding ferrocene derivatives

Not only have the ferrocene derivatives of these families of antibiotics been shown to maintain their biological properties for many different bacteria lines, but they also exhibit activity for penicillinase producing strains. Penicillinase is a subfamily of enzyme belonging to the β-lactamase family, which are responsible for resistance of bacteria against β-lactam antibiotics. The ferrocene derivatives of penicillin and cephalosporin contravert this drug resistance by acting as β-lactamase inhibitors.149

2.4. Anti-parasitic properties

Malaria is an infectious disease caused by parasites of the genus \textit{Plasmodium}, which is transmitted by the mosquito, and primarily affects populations living in tropical climate zones. Among the four species of \textit{Plasmodium} invading humans, the most deadly is
Plasmodium falciparum. Malaria causes millions of deaths every year; therefore its treatment is of great importance.

2.4.a. Ferroquine

One of the leading treatments of malaria is a molecule called chloroquine (Figure 1.36). However, its intensive use has led to the appearance of chloroquine-resistant strains of *Plasmodium*. The concept of introducing a ferrocene moiety in order to avoid resistance problems is perfectly illustrated with the synthesis of ferroquine (Figure 1.36) by Brocard and coworkers.\(^{150}\)

![Figure 1.36. Structures of chloroquine and ferroquine](image)

In vitro, ferroquine displays similar results to chloroquine for chloroquine-sensitive strains, but is also very active against chloroquine-resistant strains of *P. falciparum*. *In vivo*, ferroquine is as efficient as chloroquine on a short-term period in *P. berghei N.* and *P. NS*. However, ferroquine prevents all recrudescence phenomena over a long-term period, while recrudescence is always observed in case of chloroquine.\(^{150}\) A later study has shown an *in vivo* improvement for ferroquine vs chloroquine in *P. vinckeii* and in *P. falciparum*.\(^{151}\) Ferroquine is currently in phase II clinical trials.

2.4.b. Ferrocenyl chalcones

Another study on ferrocene-based anti-malarial agents focused on ferrocenyl chalcone derivatives. Two compounds, shown in Figure 1.37, were identified as lead compounds
when tested against a chloroquine-resistant strain of *Plasmodium falciparum*, with moderate IC₅₀ values of 4-5 μM.¹⁵²

![Figure 1.37. Structures of the leads ferrocenyl chalcones](image)

The authors specifically studied the influence of the ferrocenyl moiety on the anti-malarial activity of these chalcone-based compounds. Radical scavenging properties of the ferrocenyl chalcones and the formation of hydroxyl radical adducts was demonstrated. Moreover, a parallel between the anti-malarial activity and oxidation properties of the ferrocene moiety was established: Surprisingly, the most active compounds were the ones where the ferrocene was more resistant to oxidation. Therefore, a purely structural role of ferrocene seems unlikely.¹⁵³

Ferrocene chalcones were first synthesized in the 1950s.^{154, 155} It is interesting to note that it was only fifty years later that scientists became interested in their biological properties. Indeed, as we have seen, there exist many examples of ferroene-containing molecules with interesting biological activity. Often, as the case of the hydroxyferrocifens or the ferroenyl chalcones, the ferrocene group plays a role via its redox behavior. Flavonoids, which are the most extended family of natural antioxidants, and interact with all kinds of biological targets, also display biologically-relevant redox behavior. Therefore, from a bioorganometallic perspective, the extension of ferrocenyl chalcones to the other classes of the flavonoid family seems very promising for the elaboration of new bioactive molecules.
References

6: Shirley, B. W. “Flavonoids biosynthesis “new” function for an “old” pathway” *Trends Plant. Sci.* **1996** 1, 377-382

7: Li, J.; Ou-Lee, T. M.; Raba, R.; Amundson, R. G.; Last, R. L. ”*Arabidopsis* flavonoid mutants are hypersensitive to UV-B radiation” *Plant Cell* **1993** 5, 171-179

11: Peer, W. A.; Bandyopadhyay, A.; Blakeslee, J. JU.; Makam, S. N.; Chen, R. J.; Masson, P. H.; Murphy, A. S. ”Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in *Arabidopsis thaliana*” *Plant Cell* **2004** 16, 1898-1911

14: Vogt, T. “RegiospecifiCcity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain” *FEBS Lett.* **2004** 561 159-162

21: Feucht, W.; Dithmar, H.; Polster, J. “Nuclei of tea flowers as targets for flavanols” *Plant Biol.* **2004** 6, 696-701

23: Pelletier, M. K.; Burbulis, I. E.; Winkel-Shirley, B. “Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in *Arabidopsis* seedlings” *Plant Mol. Biol.* **1999** 40, 45-54
Introduction

42: Limtrakul, P.; Khantamat, O.; Pintha, K. « Inhibition of P-glycoprotein function and expression by kaempferol and quercetin » J. Chemother. 2005 17, 86-95

47: Spedding, G.; Ratty, A.; Middleton, E. “Inhibition of reverse transcriptases by flavonoids” Antiviral Res. 1989 12, 99-110

50: Brinkworth, R. I.; Stoermer, M. J.; Fairlie, D. P. “Flavones are inhibitors of HIV-1 proteinase” Biochem Biophys Res Commun 1992 2, 631–637

53: Toker, A.; Cantley, L. C.; “Signaling through the lipid products of phosphoinositide-3-OH kinase” Nature 1997 387, 673–676

56: Ferriola, P.C.; Cody, V.; Middleton, E. “Protein kinase C inhibition by plant flavonoids, kinetic mechanism and structure-activity relationships” Biochem Pharmac 1989 38, 1617–1624

63: Dong, Z.; Ma, W.; Huang, C.; Yang, C. S. “Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins” *Cancer Res* **1997** 57, 4414–4419

Introduction

76: Kellis, J. T.; Vickery, L. E. “Inhibition of human estrogen synthetase (aromatase) by flavones” Science 1984 225, 1032–1034

86: Ferrière, J. “The French paradox: lessons for other countries” Heart 2004 90, 107-111

100: Lavoie, S.; Chen, Y.; Dalton, T. P.; Gysin, R.; Cuénod, M.; Steullet, P.; Do, K. Q. “Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit” *Journal of neurochemistry* **2009** 108(6), 1410-1422

102: Wondrak, G. T. “Redox-Directed Cancer Therapeutics: Molecular Mechanisms and Opportunities” *Antioxidants & Redox Signaling* **2009** 11(12), 3013-3069

103: Lin, Y.-L.; Chen, P.-C.; Lin, Y.-P.; Lau, Y.-W.; Juan, I-M.; Lin, J.-K. “Hypolipidemic Effect of

104: Koppenol, W. H. “The Haber-Weiss cycle—70 years later” *Redox Rep.* **2001** 6(4), 229-234

168,1039-1040
120: Nesmeyanov, A. N.; Bogomolova, L.G.; Viltchevskaya, V.; Palitsyne, N.; Andrianova, I.; Belozerova, O. “Ferrocerone” 1971 US Patent 119356

134: Clemens, J. A.; Bennett, D.R.; Black, L. J.; Jones, C. D. “Effects of a new antiestrogen, keoxifene (LY156758), on growth of carcinogen-induced mammary tumors and on LH and prolactin levels” *Life Sci.* **1983** 32, 2869–2875

new organometallicbenzo[b]thiophene derivatives with potential antitumor properties”

Organometallics **2009** 28, 5412–5423

143: Plowman, G. D.; Ullrich, A.; Shawver, L. K. “Identification of receptors and signaling molecules that play crucial roles in proliferative, endocrine and immune disease processes will provide exciting opportunities for targeted drug discovery” *DN&P* **1994** 7(6), 334-339

151: Delhaes, L.; Abessolo, H.; Biot, C.; Berry, L.; Delcourt, P.; Maciejewski, L.A.; Brocard, J. S.; Camus, D.; Dive, D. “*In vitro* and *in vivo* antimalarial activity of ferrochloroquine, a ferrocenyl analogue of chloroquine against chloroquine-resistant malaria parasites” *Parasitol. Res.* **2001** 87(3), 239-244

Chapter 2

Ferrocenyl chalcones and their adducts

Synthesis and biological properties

A. Background

Ferrocenyl chalcones were first described in 1957. These studies were made in a fundamental context, that is to say, to simply explore ferrocene reactivity. The first synthesis was achieved in five steps using ferrocene as a starting material.\(^1\)\(^2\) The first four steps resulted in the preparation of ferrocene carboxaldehyde, as shown in Figure 2.1.

![Diagram](image)

Figure 2.1. First synthesis of ferrocene carboxaldehyde
Ferrocene was first reacted with formadehyde and dimethyl amine in acetic acid to give \(N,N \)-dimethylaminomethylferrocene (A). The amine function of A was then methylated using methyl iodide in methanol, affording (B), which, in a basic aqueous solution becomes hydroxymethylferrocene (C). Finally, C was oxidized to ferrocene carboxaldehyde using manganese dioxide in chloroform.\(^2\)

Nowadays, ferrocene carboxaldehyde is synthesized in one step from ferrocene, using a lithium reagent. The functionalization of ferrocene using its lithium salt as an intermediate was described in 1995 by Guillaneux and Kagan.\(^3\) Once the ferrocene lithium salt is formed, a simple quenching by dry DMF affords ferrocene carboxaldehyde.

From the ferrocene carboxaldehyde, the ferrocenyl chalcone was made by aldol condensation with acetophenone in a mixture of water and ethanol, using sodium hydroxide. The synthetic scheme is presented in Figure 2.2.

![Figure 2.2. First synthesis of ferrocenyl chalcone](image)

Later on, the ferrocenyl chalcones shown in Figure 2.3 were shown to be suitable for the development of chemosensors for \(\text{Ca}^{2+} \) and \(\text{Ba}^{2+} \). When the chalcones interact with \(\text{Ca}^{2+} \) and \(\text{Ba}^{2+} \), their UV/visible absorption bands shift in energy, together with their NMR signature. Moreover, the ferrocene oxidation potential is also modified in the case of chelation with \(\text{Ca}^{2+} \) and \(\text{Ba}^{2+} \), allowing electrochemical detection.\(^4,5\)
The biological properties of ferrocenyl chalcones have only been studied in the last ten years. In 2002, Go and coworkers became interested in the antiplasmodial activity of these compounds. The authors suspected that these compounds could be active in this regard according to prior work on antiplasmodial ferrocene derivatives such as ferroquine (see chapter 1), and wished to investigate the role of ferrocene on antiplasmodial activity. This work resulted more recently in a more complete study of ferrocenyl chalcones, which was presented in chapter 1 section B.2.4.b.

Another study by Sohár and coworkers examined the antitumor activity of ferrocenyl chalcones and their glycosides on HL60 leukemia cells. The four compounds represented on Figure 2.4 possess IC$_{50}$ values between 1 and 4 μM.
Other chalcones shown in Figure 2.5, where the A ring has been replaced by a ferrocene moiety, have also shown interesting effects. They have been tested against tumoral and normal cells. On normal HEF human fibroblasts and L929 mouse fibroblasts, both compounds induced less than 50% growth inhibition at a concentration of 1 mM. On F10 mouse melanoma cells, the compounds demonstrated IC₅₀ values of 90 μM for the compound A and 75 μM for compound B. On human carcinoma Hep2 cells, IC₅₀ values of 4 μM for compound A and 2.5 μM for compound B were found.

![Chemical Structures](image)

Figure 2.5. Ferrocenyl chalcones active on Hep2 carcinoma cells and F10 melanoma cells

The authors attribute the selectivity for cancer cells to the redox properties of ferrocene, and show the interest of these molecules as selective anti-cancer agents.⁹

Ferrocenyl chalcones have also shown a nematocidal effect on *Caenorhabditis elegans*.¹⁰ Nematodes, or roundworms, are parasites which cause diseases such as elephantiasis. In this experiment, they were exposed to organic chalcones and their ferrocenyl analogues, and two parameters were studied using SAR techniques. First, the direct toxicity of the compounds was evaluated and it was found that the organic chalcones were more active than their ferrocenyl analogues. The authors attribute this behavior to the difference in lipophilicity of the two series of compounds. The organic derivatives being more lipophilic, they possess a better ability to penetrate the protective cuticle on the nematode embryos.
The second subject of study was the inhibition of nematode reproduction. In this regard, the ferrocenyl derivatives were more active than their organic analogues.

B. Aims of the study

We decided to synthesize a series of ferrocene chalcone derivatives for two major purposes. The first interest was the evaluation of their biological properties against diseases other than malaria, which had been previously well studied by Go and coworkers. We chose for our study an evaluation of the effects of ferrocenyl chalcones against cancer, bacteria and HIV. The second interest in synthesizing these molecules concerns obtaining access to other members of the flavonoid family. As discussed before, none of the ferrocene flavonoid subclasses other than chalcones have ever been synthesized, and, in principle, ferrocene chalcones can serve as starting materials for the other ferrocenyl flavonoids.

We designed a series of ferrocenyl chalcones whose general pattern is shown in Figure 2.6. In these molecules ferrocene has replaced the B ring and the A ring is diversely substituted. The 2-hydroxy substitution on the A ring is absolutely essential to access the other families of flavonoids, although there is only one report of a ferrocenyl chalcone possessing this function in the literature, corresponding to \(R = H \).\(^7\)

![Figure 2.6. General pattern of our ferrocenyl chalcone derivatives](image)

Our choice to screen these molecules against cancer cells was motivated by our hypothesis that the addition of an additional redox-active group to the flavonoid skeleton could improve, or at least modify, their antiproliferative effects. As discussed in chapter 1, redox-active compounds in the treatment of cancer is a growing field of interest, since cancer cells
generally produce more ROS than normal cells. Both ferrocene and flavonoids are known to
be activated by oxidation; therefore their combination may provide interesting results. B16
murine melanoma cells are very robust and aggressive and constitute a good model for the
determination of anti-cancer properties. The IC\textsubscript{50} values of compounds 1a-j and 2a-j were
determined using the standard MTT test, described in a further section.

The compounds’ antiangiogenic properties were also evaluated. The design of
antiangiogenic compounds is currently a subject of great interest in the discovery of new
anti-cancer agents. As previously discussed, angiogenesis is the growth of new blood vessels
from pre-existing vessels. Tumor cells induce angiogenesis for the tumor to receive nutrients
and oxygen that are essential for the tumor growth. Moreover, the creation of new vessels
allows the dissemination of cancer cells throughout the organism, creating metastases.
Therefore, antiangiogenic agents both weaken the tumor and help prevent metastases
formation. Two main types of antiangiogenic agents exist: angiogenesis inhibitors and
vascular disrupting agents (VGA), which destroy vessels directly. This latter class of
molecules is more active on tumor vessels than on normal vessels, since it takes advantage
of differences existing between the two; tumor vessels exhibit increased permeability and
reduced blood flow when compared to normal ones.

Flavonoids are an important class of VGAs11 and one compound, flavone acetic acid (FAA),
has undergone phase II clinical trials for this purpose. Its mechanism of action as a VGA
seems to be due to apoptosis induction in tumor blood vessel endothelial cells.12 FAA was
abandoned in phase II due to its inactivity on humans.13 One of its derivatives, (5,6-Dimethyl-
9-oxo-9H-xanthen-4-yl)-acetic acid (ASA404), also based on a flavonoid skeleton, is
presented in Figure 2.7. ASA404 is the first VGA entering in phase III clinical trials.14

\begin{center}
\includegraphics[width=0.2\textwidth]{asa404.png}
\end{center}

\textit{Figure 2.7.} Structure of ASA404
Tests evaluating antiangiogenic abilities of all presented molecules have been performed, the technique and results will be presented in a further section.

The interest of using ferrocene in the design of anti-HIV agents was presented in section B.2.2 of chapter 1. Moreover, chalcones have been studied in this regard in studies conducted by Neamati and coworkers. This work showed the potential of chalcones as IN inhibitors,15 which is currently an emerging target for HIV treatment. IN catalyzes the insertion of HIV proviral DNA into the host genome. This integration occurs via a multi-step process, in which the cleavage of two nucleotide bases from each 3’-end of the proviral DNA (3’- processing) and the subsequent insertion of the shortened strand into the host genome (strand transfer) are the key catalytic functions of the enzyme.16 Compounds inhibiting IN block one or both of these steps.

It is important to mention that the major problem of IN inhibition concerns very fast acquired resistance. Thus molecules like Elvitegravir (GS-9137), shown in Figure 2.8, although still in advanced clinical trials, already face this problem.17 Therefore, designing such inhibitors possessing a ferrocene moiety, known to help avoid drug-resistance problems, seemed promising.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{elvitegravir.png}
\caption{Structure of Elvitegravir}
\end{figure}

The major disadvantage with chalcone derivatives as IN inhibitors is their rather poor activity. However, the addition of a BF\textsubscript{2} moiety on a molecule possessing a 1,3-ketol motif is known to result in an enhanced activity, Such as in the case of the pyr-R molecules shown in Figure 2.9. These molecules seem to have a better affinity for IN than analogous compounds
lacking the BF$_2$ group, as demonstrated for pyr-Br and pyr-F, were the inhibition abilities are 7 to 25 times higher than their free acid analogs.18

![Chemical Structure](image1)

Figure 2.9. Structures of IN inhibitors, pyr-R = Br, F

Thus, we synthesized a series of ferrocene chalcone adducts possessing the BF$_2$ motif; their general pattern is presented in Figure 2.10. Their ability to inhibit IN was then measured, using an IN-specific *in vitro* assay created by Nouri Neamati at the University of Southern California; this test will be described in a further section.

![Chemical Structure](image2)

Figure 2.10. General pattern of BF$_2$ ferrocenyl chalcone adducts
C. Synthesis and chemical properties of ferrocenyl chalcone derivatives

1. Synthesis

1.1. Ferrocenyl chalcones

The synthesis of the ferrocenyl chalcones presented in Figure 2.11 was accomplished by a simple aldolic condensation as described in the literature. The protocol consists in refluxing a diversely substituted 2-hydroxyacetophenone and ferrocene carboxaldehyde in ethanol for 2 h in the presence of excess NaOH. Compounds 1a-1j were obtained in good yield after purification by silica gel column chromatography.

![Diagram of ferrocenyl chalcone synthesis]

Figure 2.11. General synthesis of the ferrocenyl chalcones

Concerning the purification, silica gel column chromatography was performed using a mixture of DCM and petroleum ether. The acetophenones are pale yellow to colorless, ferrocene carboxaldehyde is orange-red and compounds 1a-j are red-violet. Therefore, following the separation using TLC analysis was not required, since the separation of the different fractions was clearly visible. In order to obtain crystalline solids, 1a-j were recrystallized from a mixture of DCM and pentane.
1.2. Ferrocenyl chalcone adducts

The further grafting of a BF₂ unit on compounds 1a-j resulted in compounds 2a-j. This step was achieved by simply deprotonating 1a-j with NaH, and then adding an excess of BF₃.OEt₂ in DCM at room temperature, as shown in Figure 2.12.

In this case, the purification was not always accomplished by column chromatography. Especially for 2a-f, the stability of the compounds on silica gel was very limited, and a fast loss of BF₂ was observed. More precisely, when 2a-j were left a couple of hours on silica, their characteristic green color turned to violet, and TLC analysis showed the new compounds to be the corresponding chalcones 1a-j. Moreover, 2a-j also exhibited poor stability in ethyl acetate, which we originally selected as a co-eluent for chromatographic separation. Therefore, compounds 2a-j were purified by recrystallization only, using a mixture of DCM and pentane at +4 °C.

2. Characterization

All compounds were unambiguously characterized using routine techniques, that is to say NMR spectroscopy, mass spectrometry, elemental analysis and so on (c.f. experimental
section). The \(E \) configuration of the enone in all compounds was determined by \(^1 \)H NMR, where the coupling constants of the vinylic protons were between 14 and 15 Hz.

2.1. Crystal structure of 2a

A crystal structure was obtained by X-ray diffraction for compound 2a; unfortunately its quality was not sufficient for publication in the peer-reviewed literature (R factor = 0.1116 and \(wR_2 \) factor = 0.2624). This structure and associated data are presented in Figure 2.13 and Table 2.1.

![Structure of compound 2a](image)

Figure 2.13. Structure of compound 2a created by Hg software.

Table 2.1. Crystal data for molecule 2a.

<table>
<thead>
<tr>
<th></th>
<th>2a</th>
<th>Z</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>(\text{C}{19}\text{H}{15}\text{BF}_2\text{FeO}_2)</td>
<td>T</td>
<td>200</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>No. reflections</td>
<td>15527</td>
</tr>
<tr>
<td>Space group</td>
<td>C1c1</td>
<td>No. independent reflections</td>
<td>4489</td>
</tr>
<tr>
<td>a ((\text{Å}))</td>
<td>13.634(3)</td>
<td>(R_{\text{int}})</td>
<td>0.045</td>
</tr>
<tr>
<td>b ((\text{Å}))</td>
<td>13.6158(17)</td>
<td>(2\theta)</td>
<td>60.02°</td>
</tr>
<tr>
<td>c ((\text{Å}))</td>
<td>10.3428(11)</td>
<td>(R_1) (all data)</td>
<td>0.1116</td>
</tr>
<tr>
<td>(\beta) (°)</td>
<td>118.901(11)</td>
<td>(wR_2) (all data)</td>
<td>0.2624</td>
</tr>
<tr>
<td>V ((\text{Å}^3))</td>
<td>1680.9(5)</td>
<td>(R_1) (with cutoff)</td>
<td>0.0941</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(wR_2) (with cutoff)</td>
<td>0.2513</td>
</tr>
</tbody>
</table>
2.2. UV/visible spectroscopy of 1a-j

One remarkable aspect of the ferrocenyl chalcones is their highly saturated color. Indeed, the color changes depending on the substitution pattern of the chalcones, going from violet for the most electron-withdrawing substituents (the dihalogenated compounds) to red-violet for the compounds with the most electron-donating substituents (the methoxylated compounds). These colors are a big advantage at the bench, facilitating column purification and reaction monitoring by TLC. Moreover, they are the sign of an altered electronic structure compared to the organic chalcones, which are pale yellow.

The color of the ferrocenyl chalcones suggests the presence of a strong absorption in the visible region. UV-visible absorption spectra of 1a-j were therefore recorded, and the molar extinction coefficients (ε) at \(\lambda_{\text{max}} \) in the visible region were calculated for each molecule. The results are summarized in Table 2.2.

Table 2.2. Molar absorptivity values at \(\lambda_{\text{max}} \) (in the visible or near UV) for series 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>ε</th>
<th>Compound</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>342</td>
<td>6715</td>
<td>1f</td>
<td>353</td>
<td>16923</td>
</tr>
<tr>
<td></td>
<td>526</td>
<td>1741</td>
<td></td>
<td>544</td>
<td>5027</td>
</tr>
<tr>
<td>1b</td>
<td>365</td>
<td>12310</td>
<td>1g</td>
<td>353</td>
<td>15564</td>
</tr>
<tr>
<td></td>
<td>538</td>
<td>3827</td>
<td></td>
<td>513</td>
<td>2734</td>
</tr>
<tr>
<td>1c</td>
<td>344</td>
<td>9685</td>
<td>1h</td>
<td>351</td>
<td>7685</td>
</tr>
<tr>
<td></td>
<td>535</td>
<td>2567</td>
<td></td>
<td>526</td>
<td>1789</td>
</tr>
<tr>
<td>1d</td>
<td>354</td>
<td>14818</td>
<td>1i</td>
<td>344</td>
<td>12937</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>4059</td>
<td></td>
<td>519</td>
<td>2646</td>
</tr>
<tr>
<td>1e</td>
<td>355</td>
<td>13779</td>
<td>1j</td>
<td>349</td>
<td>21835</td>
</tr>
<tr>
<td></td>
<td>552</td>
<td>4013</td>
<td></td>
<td>512</td>
<td>3578</td>
</tr>
</tbody>
</table>
The UV/visible spectra of substituted organic chalcones have been calculated by a variety of theoretical methods, all semi-empirical. The first DFT study on chalcone spectral properties identified the lowest energy transition (around 300-400 nm) as having $\pi \rightarrow \pi^*$ character.19 In the ferrocenyl chalcones, strong peaks are also observed in this region. The position of these peaks is not strongly influenced by substitution on the A ring, consistent with previous reports.19 The lower energy peaks between 510 and 550 nm observed in the visible region of the ferrocene chalcones are not present in the organic series. They likely correspond to a metal to ligand charge transfer involving a Fe-based HOMO and a π^* LUMO.

In general, electron-withdrawing groups decrease the energy of the visible λ_{max}, while electron-donating groups increase it relative to the unsubstituted molecule. Moreover, we can see that in both cases, the effects on disubstituted molecules are stronger than the effects on monosubstituted ones. This is likely due to a destabilization of the π^* molecular orbital by electron-donating groups. This is consistent with the DFT calculations indicating that electron-donating groups cause increasing MO energy and electron withdrawing groups cause decreasing MO energy.

For ferrocene, the molar absorption coefficient (ε) at about 450 nm is very weak, around 100 L.mol$^{-1}$.cm$^{-1}$, because it corresponds to a forbidden iron d-d* transition.20 In the case of compounds 1a-j, the molar absorption coefficient of the lowest energy transition is much too high to be a purely ferrocene-centered transition.

2.3 IR spectroscopy

In order to study the effect of the BF$_2$ moiety on the C=O and the C=C double bonds, IR spectra of 1a-j and 2a-j were recorded. The results are summarized in Table 2.3. The first observation that can be made is that, with the exception of 2j, the energy of the C=O stretch decreases (by 5-35 cm$^{-1}$) when the BF$_2$ moiety is present. Likewise, in the case of C=C stretching, ν decreases when the BF$_2$ moiety is present in all cases, except for 2a. The range of shifts is however larger, from 5 to 65 cm$^{-1}$. These bathochromic shifts in the presence of the BF$_2$ group suggests that this electron-withdrawing moiety is polarizing and thus weakening the C=O and C=C bonds. For series 2, another band, corresponding to the B-F
stretch, appears in the same region. In this case, the values are rather constant, the major substituent influence being in the case of 2f, where the difluoro substitution induces a shift of 22cm⁻¹ when compared to the unsubstituted 2a.

<table>
<thead>
<tr>
<th></th>
<th>Series 1 chalcones</th>
<th>Series 2 chalcone adducts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C=O</td>
<td>C=C</td>
</tr>
<tr>
<td>a</td>
<td>1627</td>
<td>1554</td>
</tr>
<tr>
<td>b</td>
<td>1630</td>
<td>1555</td>
</tr>
<tr>
<td>c</td>
<td>1628</td>
<td>1573</td>
</tr>
<tr>
<td>d</td>
<td>1631</td>
<td>1550</td>
</tr>
<tr>
<td>e</td>
<td>1629</td>
<td>1550</td>
</tr>
<tr>
<td>f</td>
<td>1624</td>
<td>1566</td>
</tr>
<tr>
<td>g</td>
<td>1630</td>
<td>1574</td>
</tr>
<tr>
<td>h</td>
<td>1646</td>
<td>1618</td>
</tr>
<tr>
<td>i</td>
<td>1616</td>
<td>1550</td>
</tr>
<tr>
<td>j</td>
<td>1618</td>
<td>1551</td>
</tr>
</tbody>
</table>

2.4 Electrochemistry

The oxidation chemistry of 1a-j was analyzed by cyclic voltammetry. The results are presented in Table 2.4. As a general tendency, electron-withdrawing groups increase the oxidation potential of the ferrocene moiety, while electron-donating groups decrease it. For compound 3h, the substitution doesn’t seem to have any influence on the oxidation potential of the ferrocene moiety.

The shift in oxidation potentials is the direct consequence of the electronic effects on the ferrocenyl moiety. With the assumption that the visible transition is a MLCT transition, the stability of the ferrocene-based molecular orbital should also impact the energy of this transition.
To understand the influence of the substituents on the relative energies of the frontier orbitals, we plotted the energy corresponding to this transition as a function of the ferrocene oxidation potential for each molecule. The graph is presented in Figure 2.14.

Figure 2.14. Plot of the wavenumber in function of the ferrocene moiety oxidation potential for each compound of series 1.

In general, the visible transition becomes less energetic with increasing redox potential. The increasingly positive redox potential is due to a stabilization of the ferrocene-based orbital towards ionization. However, increasing stabilization of this orbital appears to be
accompanied by a decrease in the transition energy. Therefore, as predicted by published calculations, it appears the electron-withdrawing substituents also stabilize the \(\pi^* \) orbital, and that substituents have a stronger effect on stabilization of the \(\pi^* \) orbital than they do towards the ferrocene-based HOMO. This is as expected when one considers the geometry of the molecule.

3. Stability of the chalcone adducts

In our attempts to analyze compound 2a-j using \(^{13}\text{C} \) NMR spectroscopy, we faced a solubility problem in deuterated chloroform. Therefore, we decided to use another deuterated solvent, DMSO, to make this analysis. When we dissolved the compounds of series 2 in DMSO, we noticed that the deep green solution slowly become brown, and then completely orange when exposed to light.

From this observation, we selected the compound for which the conversion seemed the slowest, 2j, and we performed a photodecomposition study using simple solar irradiation, followed by UV-visible absorption spectroscopy. The result of this study is presented in Figure 2.15.

In Figure 2.15, the arrows represent the general evolution of each band. \(t = 0 \) corresponds to the sample without irradiation, i.e. when 2j is intact. Large absorption bands around 630 nm and 410 nm were observed. These two absorptions provide to 2j its characteristic deep green color. At \(t = 300\text{s} \), 2j has completely disappeared. At first glance, the observation of the point framed in red suggests a clean conversion in another species, characterized by an isosbestic point. However, the evolution framed in green shows a more complex pattern, particularly the shift of the peak at 420 to 440 nm suggesting the presence of a stable intermediate.

Our attempts to characterize the photodecomposition products were not very conclusive. \(^{11}\text{B} \) NMR spectroscopy of 2j in deuterated DMSO after irradiation by ambient light showed the presence of at least 3 species, one being the starting boron adduct.
Control experiments suggested that solvated BF$_3$ was not one of the decomposition products. Likewise, the 1H NMR spectrum of 2j in deuterated DMSO showed a very complex mixture, where the ferrocene signature was absent. Mass spectrometry also gave ambiguous results. For example, the analysis of the decomposition product of 2a by electron impact (EI) at 20 eV gave a peak with m/z = 2a + 18, suggesting a decooordination of the ketone from the boron atom, and its replacement by a molecule of water. However, the same sample in ESI shows no peak at higher than 300 m/z, while the original chalcone 1a has a molecular weight of 332 g.mol$^{-1}$. ESI being a very mild technique, it is surprising to not see any species corresponding to the intact chalcone. This could be due to the use of an HPLC column in sample preparation.

Another experiment was performed to check the stability of the compounds in the dark, i.e. under the conditions of the IN inhibition assay. Compounds 2b, 2f and 2j were dissolved in DMSO-d$_6$ and incubated in NMR tubes at 37°C for 2 h. 1H NMR spectra after incubation
showed the almost total decomposition of \(2b\) and \(2f\), while \(2j\) was stable over the incubation period. This demonstrates the strong influence of substituents on the coordinating power of the chalcone ligand.

D. Biological properties

1. Antiproliferative effects on B16 melanoma cells

In collaboration with Guy G. Chabot from Paris-Descartes University, the antiproliferative effects of \(1a-j\) and \(2a-j\) on murine B-16 melanoma cells were evaluated by the MTT test. The principle of this test is to use the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a yellow tetrazole that is reduced as a consequence of mitochondrial activity. Mitochondrial reductase enzymes have the ability to reduce MTT to formazan, which is purple.\(^{21}\) The reduction process is presented in Figure 2.16.

![Figure 2.16. Reduction of MTT in formazan](image)

This transformation only occurs in the presence of active mitochondria; therefore the production of formazan is proportional to the number of living cells and to mitochondrial activity. The measurement of the absorption density at the specific formazan wavelength (562 nm) thus indicates the relative quantity of living cells that are metabolically active. The use of a control permits the measurement and quantification of the impact of a drug on cell
proliferation. This test was performed at different concentrations of the compounds, and IC₅₀ values were calculated from these results.

The results are presented in Figure 2.16. Except for compound 2b, all the compounds’ IC₅₀ values are above 25 μM and thus they cannot be considered to be strongly cytotoxic compounds. On average, the activities of series 1 and 2 are on the same order of magnitude, although the boron adducts displayed slightly higher cytotoxicities.

![Graph showing IC₅₀ values for compounds 1a-j and 2a-j on B16 murine melanoma cells]

Figure 2.16. IC₅₀ values of compounds 1a-j and 2a-j on B16 murine melanoma cells

2. Antiangiogenic effects EA-hy 926 endothelial cells

Angiogenesis is required in the formation process of metastases, the new vessels acting as carriers for cancer cells. Although not directly affecting the tumor cells, blocking angiogenesis indirectly blocks the tumors growth and dispersion. A high rate of endothelial cell proliferation is a characteristic of tumor vessels. Endothelial cells compose the innermost layer of blood vessels at the interface with the blood. Therefore, a morphological change of these cells upon treatment with a VDA should have important effects on blood vessels, such as their porosity.
The laboratory of G. Chabot also tested 1a-j and 2a-j against EA-hy 926 endothelial cells, and the minimal concentrations inducing “rounding-up” of EA-hy 926 endothelial cells were determined by direct observation through a light microscope. Chemically-induced morphological changes, specifically “rounding up” are indicative of tubulin polymerization inhibition. This parameter toward EA-hy 926 human umbilical vein cells are often used as a predictive model for antivascular antitumor activity. The lower the inhibitory concentration, the better the activity of the molecule. The results are summarized in Figure 2.17.

![Figure 2.17](image-url)

Figure 2.17. Minimal concentration of 1a-j and 2a-j for rounding up of EA-hy 926 cells

Similarly to their antiproliferative effects, we can see that these two series of compounds are not very promising as cytotoxics or VDAs. Therefore, we decided to investigate other biological properties, especially the inhibition of IN.

3. HIV-integrase inhibitors

Before assessing the activity of the compounds against IN, we performed a theoretical docking study in collaboration with Michel Huché using Titan and Odyssey software
(Wavefunction Society) on the crystal structure of IN co-crystalized with 5-CITEP.23 Only the amino acids constituting the cavity wall were conserved and hydrogen atoms were added as necessary. The 5-CITEP molecule was digitally removed from the cavity and replaced by compound 2a after geometry optimization. With all heavy atoms of the cavity being immobilized, the best position for the test molecule was obtained using the semi-empirical method PM3 energy minimization routine. The energy of the test molecule-protein complex was then determined and compared to the enthalpy of geometry-optimized test molecule alone after energy minimization, thereby allowing the calculation of the enthalpy of the docking reaction. This processes yielded a binding enthalpy of -12.2 kcal.mol-1 for 2a, and -6.5 kcal.mol-1 for the standard molecule 5-CITEP, suggesting that 2a binds more strongly to IN than 5-CITEP. Figure 2.18 shows the orientation of these representative compounds in the active site of IN. The stronger affinity of 2a for the cavity seems to be due to the hydrogen bonding interaction of the fluoride of 2a with ASP116 of the cavity, with a calculated distance of 2.072 Å and a bond energy of -8.8 kcal.mol-1.

![Figure 2.18. Representation of 5-CITEP (left) and 2a (right) in the IN cavity](image)

Comparatively, the hydrogen bond between the amine of the triazole group of 5-CITEP and LYS159 was calculated as 2.432 Å and -3.4 kcal.mol-1. Although the cavity can accommodate the ferrocene, no particular non-covalent interactions between the cavity and the metalloocene were observed.
Inhibition of the IN catalytic activities were measured using an IN-specific in vitro assay, using wild-type IN in the presence of different concentrations of test compounds. The inhibition of the catalytic functions of IN were measured using a 32P-labeled IN substrate and the concentrations where these functions were inhibited by 50% (IC$_{50}$) were then calculated. Table 2.5 presents the IC$_{50}$ values for 3' P and ST inhibition for compound series 1 and 2.

Table 2.5. IC$_{50}$ (μM) of 1a-j and 2a-j for IN inhibition

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>3' P</th>
<th>ST</th>
<th>SI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>H</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
</tr>
<tr>
<td>2a</td>
<td></td>
<td>10.7 ± 4.25</td>
<td>6.0 ± 2</td>
<td>0.6</td>
</tr>
<tr>
<td>1b</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>--</td>
</tr>
<tr>
<td>2b</td>
<td>5-Cl</td>
<td>5.6 ± 4.13</td>
<td>6.0 ± 4.36</td>
<td>1.1</td>
</tr>
<tr>
<td>1c</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>5-Br</td>
<td>4.6 ± 0.53</td>
<td>5.7 ± 4.73</td>
<td>1.2</td>
</tr>
<tr>
<td>1d</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>--</td>
</tr>
<tr>
<td>2d</td>
<td>3,5-diCl</td>
<td>7.8 ± 2.93</td>
<td>0.7 ± 0.14</td>
<td>0.1</td>
</tr>
<tr>
<td>1e</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2e</td>
<td>3,5-diBr</td>
<td>4.3 ± 2.52</td>
<td>3.6 ± 3.84</td>
<td>0.8</td>
</tr>
<tr>
<td>1f</td>
<td>12</td>
<td>6.2</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2f</td>
<td>3,5-diF</td>
<td>5.0 ± 2.83</td>
<td>2.0 ± 0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>1g</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2g</td>
<td>4-OMe</td>
<td>4.7 ± 1.53</td>
<td>2.6 ± 1.15</td>
<td>0.5</td>
</tr>
<tr>
<td>1h</td>
<td>14</td>
<td>10.3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2h</td>
<td>5-OMe</td>
<td>8.7 ± 1.53</td>
<td>7.3 ± 4.6</td>
<td>0.8</td>
</tr>
<tr>
<td>1i</td>
<td>>20</td>
<td>>20</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2i</td>
<td>6-OMe</td>
<td>16.3 ± 7.52</td>
<td>9.3 ± 2.31</td>
<td>0.6</td>
</tr>
<tr>
<td>1j</td>
<td>>33</td>
<td>11.6</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2j</td>
<td>4,6-diOMe</td>
<td>10.5 ± 5.6</td>
<td>7.6 ± 5.56</td>
<td>0.7</td>
</tr>
</tbody>
</table>

*Selectivity Index (SI) : ST/3'P
In all cases, the borates 2a-j showed significantly better inhibitory activities compared to the free ferrocenyl chalcones 1a-j. With IC\(_{50}\) values in the low micromolar range for both processes, it appears that the cavity of IN can tolerate diverse aromatic substituents. While only moderate variability in 3’P activities were observed for 2a-j (IC\(_{50}\) values between 4 and 16 \(\mu\)M), ST activities varied over an order of magnitude, with IC\(_{50}\) values between 0.7 and 9 \(\mu\)M.

These activities are similar or higher than those previously reported for difluoridoborate 3-acetyl-4-hydroxy-2-pyranone derivatives,\(^{18}\) and are significantly higher than those found for most organic chalcones.\(^{15,24}\) With similar activities for 3’P and ST, these compounds are not selective, except for 2d, which shows excellent ST inhibition (IC\(_{50}\) = 0.7 \(\mu\)M). This is in contrast with previous observations that diketo acids typically act selectively against the ST process.

In order to assess the general influence of ferrocene on the inhibition of IN, a series of some 40 ferrocenyl derivatives based for the most part on the diphenylbutene skeleton, were evaluated. These compounds were randomly selected from our library of compounds studied for their antiproliferative effects against cancer. None of the compounds showed inhibitory activity at concentrations lower than 20 \(\mu\)M, suggesting that the presence of a ferrocene group alone is not sufficient for inhibitory activity.

In summary, 2a-j showed moderate to good 3’ processing and strand transfer inhibition, better than that of their parent chalcones and a randomly generated library of some 40 ferrocenyl compounds. Compounds 2a-j, generally showed only mild antiproliferative effects against B16 cancer cells, with IC\(_{50}\) values greater than 25 \(\mu\)M for nine out of ten of the compounds and weak effects on the morphology of endothelial cells. The dichloro compound 2d is a particularly promising lead for IN inhibition, with nanomolar ST inhibition and low toxicity towards human cells.

4. Antibacterial properties

Compounds of series 1 have also been evaluated as anti-bacterial agents, in collaboration with Claude Jolivalt from Chimie ParisTech. The compounds have been tested against 4
bacterial lines: *Escherichia coli* ATCC35922 (bacteria of reference), *Staphylococcus aureus* ATCC25923 (bacteria of reference), *Staphylococcus aureus* 1199B (bacteria line over-expressing the efflux pump NorA), *Staphylococcus aureus* MsrA (bacteria line over-expressing the efflux pump MsrA). The activities for 1a-j at a concentration of 100 mg/mL are presented in Table 2.6.

Table 2.6. Screening of series 1 at 100 μg/mL

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus MsrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
</tr>
<tr>
<td>1b</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1d</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>1e</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1f</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>n.d.</td>
</tr>
<tr>
<td>1g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>1i</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1j</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

The code ++ indicates a growth inferior to 5% when compared with the control, the code + a growth inferior to 10% when compared with the control. The code - means the growth was superior to 10% when compared with the control. From the table, we can see that at this concentration, only 3 compounds are very active, but two of them, 1d and 1h, are active against a resistant bacterial line.

A second screening was performed for 1a-j, at a concentration of 20mg/mL. The results are presented in Table 2.7. At this concentration, only low activity was observed. From these results, it seems clear that these particular ferrocenyl chalcones are not adapted for antibacterial applications.
Table 2.7. Screening of series 1 at 20 μg/mL

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus MsrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>1e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
</tr>
<tr>
<td>1f</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>1g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1i</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1j</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

E. Experimental

General comments. All aldol condensation reactions were performed under argon atmosphere, using a standard Schlenk line. 1H and 13C NMR spectra were recorded with a 300 or 400 MHz Bruker Avance spectrometer, and δ are given in ppm and referenced to the residual solvent peaks (1H, δ 7.26 and 13C{1H}, δ 77.1 for CDCl₃ and 1H, δ 2.05 and 13C{1H}, δ 29.7 for Acetone-d₆). High-resolution mass spectra were determined by ESI/ESCI-TOF using a Waters LCT Premier XE or a Thermo Fischer LTQ-Orbitrap XL. Melting points were determined using an Electrothermal 9100 apparatus.

Synthesis

General preparation of 1a-j. Ferrocene carboxaldehyde (1 equiv, 50-200 mg) and the appropriate 2-hydroxyacetophenone (1 equiv) were dissolved in absolute EtOH in a round
bottom flask. After stirring the mixture 10 to 15 min at r.t., NaOH (3 equiv) was added, and the solution was stirred at reflux for 2 hours. The mixture was poured into water and HCl 12 M, extracted with DCM, and washed with water. The organic phase was dried over MgSO₄, filtered, and the solvent removed by evaporation. The product was purified by silica gel chromatography, using a mixture of petroleum ether/DCM 4:1 as an eluent, and again using HPLC in MeCN/water (90:10). After HPLC purification, the acetonitrile was removed under reduced pressure and the aqueous phase extracted with DCM. The NMR spectra of all purified compounds showed residual DCM, even after being dried under vacuum for several hours.

(E)-1-(2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1a. Violet solid. δₕ (300 MHz; CDCl₃) 4.20 (s, 5H, C₅H₅), 4.55 (s, 2H, C₅H₄), 4.64 (s, 2H, C₅H₄), 6.93 (t, J = 7.7 Hz, 1H, Aromatic), 7.02 (d, J = 7.8 Hz, 1H, Aromatic), 7.25 (d, J = 15.1 Hz, 1H, Vinyl), 7.48 (t, J = 7.8 Hz, 1H, Aromatic), 7.86 (d, J = 7.7 Hz, 1H, Aromatic), 7.90 (d, J = 15.1 Hz, 1H, Vinyl). δₓ (75 MHz; CDCl₃) 69.3 (C₅H₄), 69.9 (C₅H₅), 71.8 (C₅H₄), 78.9 (C₅H₄ ipso), 116.7 (Aromatic), 118.6 (Aromatic), 118.7 (Aromatic), 120.0 (Vinyl), 129.3 (Aromatic), 135.9 (Aromatic), 147.9 (Vinyl), 162.6 (Aromatic), 192.7 (C=O). MS (APCI) m/z 332.07 [M+H]⁺. Elemental analysis: Found: C 64.43, H 4.89. Calc. for C₁₉H₁₆O₂Fe·0.35 DCM: C 64.22, H 4.65.

(E)-1-(5'-chloro-2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1b. Violet solid. δₕ (300 MHz; CDCl₃) 4.22 (s, 5H, C₅H₅), 4.51 (s, 2H, C₅H₄), 4.66 (s, 2H, C₅H₄), 6.96 (d, J = 9 Hz, 1H, Aromatic), 7.14 (d, J = 15 Hz, 1H, Vinyl), 7.42 (dd, J = 9 Hz, J = 2.4 Hz, 1H, Aromatic), 7.80 (d, J = 2.4 Hz, 1H, Aromatic), 7.94 (d, J = 15 Hz, 1H, Vinyl). δₓ (75 MHz; CDCl₃) 69.5 (C₅H₄), 70.0 (C₅H₅), 72.2 (C₅H₄), 78.6 (C₅H₄ ipso), 115.9 (Aromatic), 120.2 (Aromatic), 120.7 (Aromatic), 123.3 (Vinyl), 128.5 (Aromatic), 135.6 (Aromatic), 149.4 (Vinyl), 162.1 (Aromatic), 191.7 (C=O). MS (APCI) m/z 366.03 [M+H]⁺. Elemental analysis: Found: C 61.75, H 4.02. Calc. for C₁₉H₁₅O₂FeCl·0.06 DCM: C 61.59, H 4.1.

(E)-1-(5'-bromo-2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1c. Violet solid. δₕ (300 MHz; CDCl₃) 4.22 (s, 5H, C₅H₅) 4.58 (s, 2H, C₅H₄), 4.66 (s, 2H, C₅H₄), 6.92 (d, J = 8.1 Hz, 1H, Aromatic), 7.13 (d, J = 14.5 Hz, 1H, Vinyl), 7.55(d, J = 8.1 Hz, 1H, Aromatic), 7.92 (m, 1H, Aromatic), 7.94 (d, J = 14.4 Hz, 1H, Vinyl). δₓ (75 MHz; CDCl₃) 69.5 (C₅H₄) 70.1 (C₅H₅), 72.3
(C₅H₄), 78.6 (C₅H₄ ipso), 110.3 (Aromatic), 115.9 (Aromatic), 120.6 (Aromatic), 121.3 (Vinyl), 131.6 (Aromatic), 138.4 (Aromatic), 149.4 (Vinyl), 162.5 (Aromatic), 191.6 (C=O). MS (APCI) m/z 410.05 [M+H]+. Elemental analysis: Found: C 55.04, H 3.73. Calc. for C₁₉H₁₅O₂FeBr·0.05 DCM: C 55.09, H 3.66.

(E)-1-(3′,5′-dichloro-2′-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1d. Violet solid. δₜ (300 MHz; CDCl₃) 4.23 (s, 5H, C₅H₅), 4.62 (s, 2H, C₅H₄), 4.67 (s, 2H, C₅H₄), 7.01 (d, J = 15 Hz, 1H, Vinyl), 7.57 (s, 1H, Aromatic), 7.74 (s, 1H, Aromatic), 8.00 (d, J = 15 Hz, 1H, Vinyl). δ₀ (75 MHz; CDCl₃) 68.7 (C₅H₄), 69.1 (C₅H₅), 71.6 (C₅H₄), 77.3 (C₅H₄ ipso), 114.2 (Vinyl), 120.2 (Aromatic), 122.0 (Aromatic), 122.9 (Aromatic), 126.1 (Aromatic), 134.1 (Aromatic), 149.8 (Vinyl), 157.0 (Aromatic), 190.2 (C=O). MS (APCI) m/z 400.08 [M+H]+. Elemental analysis: Found: C 55.72, H 3.49. Calc. for C₁₉H₁₄O₂FeCl₂·0.125 DCM: C 55.80, H 3.49.

(E)-1-(3′,5′-dibromo-2′-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1e. Violet solid. δₜ (400 MHz; CDCl₃) 4.23 (s, 5H, C₅H₅), 4.62 (s, 2H, C₅H₄), 4.67 (s, 2H, C₅H₄), 7.10 (d, J = 14.7 Hz, 1H, Vinyl), 7.86 (d, J = 1.8 Hz, 1H, Aromatic), 7.91 (d, J = 1.8 Hz, 1H, Aromatic), 7.99 (d, J = 14.7 Hz, 1H, Vinyl). δ₀ (75 MHz; CDCl₃) 69.7 (C₅H₄), 70.1 (C₅H₅), 72.6 (C₅H₄), 78.37 (C₅H₄ ipso) 110.1 (Aromatic), 113.3 (Aromatic), 115.1 (Vinyl), 121.7 (Aromatic), 130.8 (Aromatic), 140.7 (Aromatic), 150.8 (Vinyl), 159.3 (Aromatic), 191.0 (C=O). MS (APCI) m/z 488.01 [M+H]+. Elemental analysis: Found: C 45.24, H 2.70. Calc. for C₁₉H₁₄O₂FeBr₂·0.25 DCM: C 45.23, H 2.86.

(((E)-1-(3′,5′-difluoro-2′-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1f. Violet solid. δₜ (400 MHz; CDCl₃) 4.22 (s, 5H, C₅H₅), 4.61 (s, 2H, C₅H₄), 4.66 (s, 2H, C₅H₄), 7.06 (m, 1H, Vinyl, Aromatic), 7.34 (s, 1H, Aromatic), 7.98 (d, J = 15 Hz, 1H, Vinyl). δ₀ (100 MHz; CDCl₃) 69.7 (C₅H₄), 70.2 (C₅H₅), 72.6 (C₅H₄), 78.4 (C₅H₄ ipso), 109.6 (d, J = 23 Hz, Aromatic), 110.5 (dd, J = 26 Hz, J = 21 Hz, Aromatic), 115.7 (Vinyl), 120.9 (Aromatic), 148.8 (d, J = 11.9 Hz, Aromatic), 150.5 (Vinyl), 151 (Aromatic overlap), 153.3 (dd, J = 238.6 Hz, J = 9 Hz, Aromatic), 191.6 (C=O). MS (APCI) m/z 368.07 [M+H]+. Elemental analysis: Found: C 60.25, H 4.04. Calc. for C₁₉H₁₂O₂FeF₂·0.2 DCM: C 59.88, H 3.77.
(E)-1-(4’-methoxy-2’-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one, 1g. Violet solid, mp 142°C; δH (300 MHz; CDCl₃) 3.81 (s, 3H, OMe), 4.14 (s, 5H, C₅H₅), 4.46 (s, 2H, C₅H₄), 4.56 (s, 2H, C₅H₄), 6.39-6.43 (m, 2H, Aromatic), 7.11 (d, J = 15.0 Hz, 1H, Vinyl), 7.71 (d, J = 9.5 Hz, 1H, Aromatic), 7.78 (d, J = 15.0 Hz, 1H, Vinyl), 13.63 (s, 1H, phenol). δC (100 MHz; CDCl₃) 55.6 (OMe), 69.1 (C₅H₄), 69.9 (C₅H₅), 71.6 (C₅H₄), 79.1 (C₅H₄ ipso), 101.0 (Aromatic), 107.5 (Vinyl), 114.0 (Aromatic), 116.9 (Aromatic), 131.0 (Aromatic), 146.6 (Vinyl), 165.8 (Aromatic), 166.6 (Aromatic), 191.1 (C=O). HRMS (ESI) calcd. for C₂₀H₁₈FeO₃⁺: 362,06054, found: 362,05999.

(E)-1-(5’-methoxy-2’-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one, 1h. Violet solid, mp 173°C; δH (300 MHz; CDCl₃) 3.85 (s, 3H, OMe), 4.20 (s, 5H, C₅H₅), 4.55 (s, 2H, C₅H₄), 4.63 (s, 2H, C₅H₄), 6.96 (d, 1H, J = 8.9 Hz, Aromatic), 7.11-7.25 (m, 2H, Aromatic+Vinyl), 7.31 (s, 1H, Aromatic), 7.90 (d, 1H, J = 14.7 Hz, Vinyl), δC (75 MHz; CDCl₃) 56.2 (OMe), 69.3 (C₅H₄), 70.0 (C₅H₅), 71.9 (C₅H₄), 78.9 (C₅H₄-C₋₅), 113.1 (Aromatic), 116.7 (Vinyl), 119.2 (Aromatic), 119.7 (Aromatic), 123.0 (Aromatic), 148.1 (Vinyl), 151.6 (Aromatic), 157.9 (Aromatic), 192.4 (C=O). (Cl NH₃) m/z 362.0 (MH⁺). HRMS (ESI) calcd. for C₂₀H₁₈FeO₃Na⁺: 362,06054, found: 362,04976.

(E)-1-(6’-methoxy-2’-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one, 1i. Violet solid, mp 136°C; δH (300 MHz; CDCl₃) 3.86 (s, 3H, OMe), 4.11 (s, 5H, C₅H₅), 4.41 (s, 2H, C₅H₄), 4.50 (s, 2H, C₅H₄), 6.34-6.35 (m, 1H, Aromatic), 6.53 (d, J = 6.6 Hz, 1H, Aromatic), 7.24-7.27 (m, 1H, Aromatic), 7.40 (d, J = 15.3 Hz, 1H, Vinyl), 7.72 (d, J = 15.3 Hz, 1H, Vinyl), 13.27 (s, 1H, phenol). δC (100 MHz; CDCl₃) 55.9 (OMe), 69.2 (C₅H₄), 69.9 (C₅H₅), 71.4 (C₅H₄), 79.6 (C₅H₄ ipso), 101.6 (Aromatic), 110.9 (Vinyl), 112.0 (Aromatic), 124.6 (Aromatic), 135.4 (Aromatic), 145.5 (Vinyl), 160.9 (Aromatic), 164.8 (Aromatic), 193.4 (C=O). HRMS (ESI) calcd. for C₂₀H₁₈FeO₃⁻: 362,06054, found: 362,05999.

(E)-1-(4,6-dimethoxy-2’-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one, 1j. Violet solid, mp 131°C; δH (400 MHz; CDCl₃) 3.78 (s, 3H, OMe), 3.83 (s, 3H, OMe), 4.13 (s, 5H, C₅H₅), 4.41 (s, 2H, C₅H₄-H₈), 4.52 (s, 2H, C₅H₄-H₈), 5.90 (s, 1H, Aromatic), 6.05 (s, 1H, Aromatic), 7.46 (d, J = 15.3 Hz, 1H, Vinyl), 7.70 (d, J = 15.3 Hz, 1H, Vinyl), 14.47 (s, 1H, phenol). δC (100 MHz; CDCl₃) 55.6 (OMe), 55.8 (OMe), 69.1 (C₅H₄), 69.9 (C₅H₅), 71.2 (C₅H₄), 80.0 (C₅H₄ ipso), 91.3 (Aromatic), 93.9 (Vinyl), 106.2 (Aromatic), 124.5 (Aromatic), 144.6 (Vinyl), 162.4 (Aromatic),
165.8 (Aromatic), 168.4 (Aromatic), 191.8 (C=O). HRMS (ESI) calcd. for C_{20}H_{18}FeO_{3}^{+}: 392,07110, found: 392,07055.

General Synthesis of 2a-j. To a solution of 10-50 mg 1a-j in 50 mL of distilled CH_{2}Cl_{2} were added 3 eq. of NaH. The reaction mixture was stirred for 10 min. Three eq. of BF_{3}OEt_{2} were added dropwise to the reaction mixture, which immediately became green. The reaction mixture was extracted with a solution of hydrochloric acid (37% in water). Then the aqueous phase was extracted 3 times with 100 mL CH_{2}Cl_{2}. The organic phase was dried over MgSO_{4}, and distilled off using a rotary evaporator at 650 mbar. The crystals were purified by recrystallization: crystals were dissolved in a few drops of dichloromethane, and a large excess of petroleum spirit was added on the mixture. The mixture was then placed at 4°C during 10 minutes, filtered by means of a Büchner funnel and rinsed with petroleum spirit.

[1-(2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate, 2a. Green solid, mp 220°C; δ_{H} (300 MHz; CDCl_{3}) 4.31 (s, 5H, C_{5}H_{5}), 4.81 (s, 2H, C_{2}H_{4}), 4.95 (s, 2H, C_{2}H_{4}), 6.9-7.1 (m, 2H, Aromatic+Vinyl), 7.11 (d, J = 8.7 Hz, 1H, Aromatic), 7.70 (t, J = 7.5 Hz, 1H, Aromatic), 7.8-7.9 (m, 1H, Aromatic), 8.61 (d, J = 14.4 Hz, 1H, Vinyl); m/z (EI 20 eV) 380,0 (M^+). HRMS (ESI) calcd. for C_{19}H_{15}FeO_{2}BF_{2}-NH_{4}^{+}: 398.0826, found: 398.0810.

[1-(5-chloro-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate, 2b. Green solid, mp 190°C; δ_{H} (300 MHz; CDCl_{3}): 4.36 (s, 5H, C_{5}H_{5}), 4.87 (s, 2H, C_{2}H_{4}), 5.06 (s, 2H, C_{3}H_{4}), 6.94 (d, J = 14.0 Hz, 1H, Vinyl), 7.06 (d, J = 8.4 Hz, 1H, Aromatic), 7.61 (d, J = 8.4 Hz, 1H, Aromatic), 7.76 (s, 1H, Aromatic), 8.66 (d, J = 14.0 Hz, 1H, Vinyl); (EI 20 eV) 414.17 (M^+). HRMS (ESI) calcd. for C_{19}H_{14}ClFeO_{2}BF_{2}-NH_{4}^{+}: 412.0140, found: 412.0143.

[1-(5-bromo-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate, 2c. Green solid, mp 222°C; δ_{H} (300 MHz; Acetone-d_{6}) 4.43 (s, 5H, C_{5}H_{5}), 5.18 (t, J = 1.7 Hz, 2H, C_{3}H_{4}), 5.25 (t, J = 1.7 Hz, 2H, C_{3}H_{4}), 7.01 (d, J = 8.9 Hz, 1H, Aromatic), 7.62 (d, J = 14.5 Hz, 1H, Vinyl), 7.88 (dd, J = 2.3 Hz, J = 8.9 Hz, 1H, Aromatic), 8.39 (d, J = 2.3 Hz, 1H, Aromatic), 8.75 (d, 1H, J = 14.5 Hz, Vinyl); (EI 20 eV) m/z 458.05-460.05 (M^+); HRMS (ESI) calcd. for C_{19}H_{14}BrFeO_{2}BF_{2}-Na^{+}: 479.9554, found: 479.9548.
[1-(3,5-dichloro-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate,
2d. Green solid, mp 172°C; δδ (300 MHz; CDCl₃): 4.46 (s, 5H, C₅H₅), 5.30 (s, 4H, C₅H₄), 7.57 (d, J = 14.2 Hz, 1H, Vinyl), 7.94 (d, J = 2.5 Hz, 1H, Aromatic), 8.26 (d, J = 2.5 Hz, 1H, Aromatic), 8.85 (d, J = 14.2 Hz, 1H, Vinyl); ([E] 20 eV) 448.14 (M⁺). HRMS (ESI) calcd. for C₁₉H₁₃BCl₂F₂FeO₂-NH₄⁺: 465.0083, found: 465.0070.

[1-(3,5-dibromo-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate,
2e. Green solid, mp 192°C; δδ (300 MHz; Acetone-d₆): 3.88 (s, 5H, C₅H₅), 4.70 (s, 2H, C₅H₄), 4.71 (s, 2H, C₅H₄), 7.00 (d, J = 14.3 Hz, 1H, Vinyl), 7.60 (d, J = 2.3 Hz, 1H, Aromatic), 7.83 (d, J = 2.3 Hz, 1H, Aromatic), 8.26 (d, J = 14.3 Hz, 1H, Vinyl); ([E] 20 eV) 538.06 (M⁺). HRMS (ESI) calcd. for C₁₉H₁₃BBr₂F₂FeO₂-NH₄⁺: 535.8693, found: 535.8688.

[1-(3,5-difluoro-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate,
2f. Green solid, mp 183°C; δδ (300 MHz; CDCl₃): 4.38 (s, 5H, C₅H₅), 4.87 (s, 2H, C₅H₄), 5.13 (s, 2H, C₅H₄), 6.85 (d, J = 12.0 Hz, 1H, Vinyl), 7.7-7.4 (m, 2H, Aromatic, 8.76 (d, J = 12.0 Hz, 1H, Vinyl); ([E] 20 eV) m/z 416.17 (M⁺). HRMS (ESI) calcd. for C₁₉H₁₃BF₂FeO₂-NH₄⁺: 433.0674, found: 433.0690.

[1-(4-methoxy-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate,
2g. Green solid, mp 220°C; δδ (300 MHz; Acetone-d₆): 3.98 (s, 3H, OCH₃), 4.40 (s, 5H, C₅H₅), 4.97 (s, 2H, C₅H₄), 5.16 (s, 2H, C₅H₄), 6.52 (d, J = 2.4 Hz, 1H, Aromatic), 6.64 (dd, J = 2.4 Hz, J = 9.2 Hz, 1H, Aromatic), 7.49 (d, J = 14.5 Hz, 1H, Vinyl), 8.15 (d, J = 9.2 Hz, 1H, Aromatic), 8.40 (d, J = 14.5 Hz, 1H, Vinyl); ([E] 20 eV) 410.22 (M⁺). HRMS (ESI) calcd. for C₂₀H₁₇BF₂FeO₃-NH₄⁺: 428.0932, found: 428.0939.

[1-(5-methoxy-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate,
2h. Green solid, mp 190°C; δδ (300 MHz; CDCl₃) 4.85 (s, 3H, OCH₃), 4.34 (s, 5H, C₅H₅), 4.84 (s, 2H, C₅H₄), 4.96 (s, 2H, C₅H₄), 6.94 (d, J = 14.4 Hz, 1H, Vinyl), 7.0-7.1 (m, 2H, Aromatic), 7.35 (d, J = 8.1 Hz, 1H, Aromatic), 8.55 (d, J = 14.4 Hz, 1H, Vinyl); ([E] 20 eV) 410.21 (M⁺). HRMS (ESI) calcd. for C₂₀H₁₇BF₂FeO₃-NH₄⁺: 428.0932, found: 428.0919.

[1-(6-methoxy-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O] difluoridoborate,
2i. Green solid, mp 220°C; δδ (300 MHz; CDCl₃): 3.98 (s, 3H, OCH₃), 4.30 (s, 5H, C₅H₅), 4.73 (s, 2H, C₅H₄), 4.85 (s, 2H, C₅H₄), 6.41(d, J = 7.8 Hz, 1H, Aromatic), 6.66 (d, J = 8.4 Hz, 1H,
Aromatic), 7.58 (m, 2H, Vinyl+Aromatic), 8.53 (d, J = 14.4 Hz, 1H, Vinyl); (EI 20 eV) m/z 410.20 (M⁺). HRMS (ESI) calcd. for C₂₀H₁₂BF₂FeO₃NH₄⁺: 428.0932, found: 428.0939.

[1-(4,6-dimethoxy-2-hydroxyphenyl)-3-(ferrocenyl)-2-propen-1-onato-O,O]

difluoridoborate, 2j. Green solid, mp 220°C; δH (300 MHz; CDCl₃): 3.89 (m, 6H, OCH₃), 4.26 (s, 5H, C₅H₅), 4.68 (s, 2H, C₅H₅), 4.73 (s, 2H, C₅H₅), 5.95 (d, J = 9.0 Hz, 1H, Aromatic), 6.14 (m, 1H, Aromatic), 7.55 (d, J = 14.8 Hz, 1H, Vinyl), 8.37 (d, J = 14.8 Hz, 1H, Vinyl); (EI 20 eV) m/z 440.19 (M⁺). HRMS (ESI) calcd. for C₂₁H₁₉BF₂FeO₄-NH₄⁺: 458.1038, found: 458.1038.

Biological Assays

IN inhibition. All compounds were dissolved in DMSO, and stock solutions were stored at -20°C. γ-[³²P]-ATP was purchased either from Amersham Biosciences or ICN. The expression system for wild-type IN was a generous gift of Dr. Robert Craigie, Laboratory of Molecular Biology, NIDDK, NIH (Bethesda, MD).

21-mer oligonucleotides [top strand (5’-GTGTGGAAATCTCTAGCAGT-3’) and bottom strand (5’-ACTGCTAGAGATTTCCAC-3’)] were purchased from Norris Comprehensive Cancer Center Microsequencing Core Facility (University of Southern California) and purified by UV shadowing on a polyacrylamide gel. To analyze the extent of 3’-processing and strand transfer with 5’-end labeled substrates, the 21-mer top strand was 5’-end labeled using T₄ polynucleotide kinase (Epicentre, Madison, WI) and γ-[³²P]-ATP (Amersham Biosciences or ICN). The kinase was heat-inactivated and the bottom strand was added in 1.5 M excess. The mixture was then heated to 95°C, allowed to slowly cool to room temperature, and purified through a spin 25 minicolumn (USA Scientific, Ocala, FL) to separate annealed double-stranded oligonucleotide from unincorporated material.

To determine the extent of 3’-processing and strand transfer, wild-type IN was preincubated at a final concentration of 200 nM with the inhibitor in a reaction buffer [50 mM NaCl, 1 mM HEPES (pH 7.5), 50 µM EDTA, 50 µM dithiothreitol, 10% glycerol (w/v), 7.5 mM MnCl₂, 0.1 mg mL⁻¹ bovine serum albumin, 10 mM 2-mercaptoethanol, 10% dimethyl sulfoxide, and 25 mM MOPS (pH 7.2)] at 30°C for 30 min. Next, 20 nM of the 5’-end ³²P-labeled linear oligonucleotide substrate was added, and the incubation was resumed for an additional 1 h.
Reactions were quenched by the addition of 50x of loading dye (98% deionized formamide, 10 mM EDTA, 0.025% xylene cyanol, and 0.025% bromophenol blue). An aliquot (5 μL) was subjected to electrophoresis on a denaturing polyacrylamide gel (0.09 M Tris–borate, pH 8.3, 2 mM EDTA, 20% acrylamide, 8 M urea). The gels were dried under vacuum, exposed in a PhosphorImager cassette, and visualized with a Typhoon 8610 Variable Mode Imager (Amersham Biosciences). Quantification was done with Image Quant 5.2 software. Percent inhibition (%l) was calculated using the following equation:

\[
\%l = 100 \times \frac{1 - (D - C)}{(N - C)}
\]

where C, N, and D are the fractions of 21-mer substrate converted into 19-mer (product of 3’-processing) or strand-transfer products for DNA alone, DNA plus IN, INwith drug, respectively.

IC\textsubscript{50} values were determined by plotting the logarithm of drug concentration as a function of %l to obtain the concentration that produced 50% inhibition.

Cytotoxicity. Murine B16 melanoma was grown in Dulbecco’s modified essential medium (DMEM) containing 2 mM l-glutamine, 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin 37°C, 5% CO\textsubscript{2}). Exponentially growing cancer cells were plated onto 96-well plates at 5,000 cells per well in 200 μL DMEM; and 24 h later, the cells were exposed for 48 h to the solvent alone or to the test compound at the indicated concentrations. Viability was assessed using the MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium) test, and absorbance was read at 562 nm in a microplate reader (BioKinetics Reader, EL340, Fisher Bioblock Scientific, Illkirch, France). Control cells were exposed to 1% DMSO. Experiments were run in triplicate and repeated 3 times. Results are presented as the inhibitory concentrations for 50% (IC\textsubscript{50}) of cells for a 48 h exposure time.

Morphologic Effects on EA-hy 926 Endothelial Cells. To assess the effect of 3a-j on the morphology of endothelial cells EA-hy 926 endothelial cells were used. Cells were grown in DMEM containing 2 mM l-glutamine, 10% fetal bovine serum, 100 U/mL penicillin, and 100
μg/mL streptomycin (37°C, 5% CO₂). Exponentially growing cells were plated onto 96-well plates at 5,000 cells/200 μL/well. Twenty-four h after plating, the medium was aspirated, and 100 μL of medium containing the test compound was added to the well (triplicate) at the indicated final concentrations (37°C, 5% CO₂), and 2 h later digital photographs were recorded of representative center areas of each well at a magnification of ×320. Results are presented as the efficacious concentration for the change in cell shape for 50% of cells for a 2 h exposure time (EC₅₀) relative to controls.

Antibacterial activity

The inhibitory potential of the flavonoid derivatives was tested on four bacteria strains:

- **E. coli** ATCC 25922 (Gram negative strain)
- **Staphylococcus aureus** (ATCC 25923, sensitive Gram positive strain),
- **Staphylococcus aureus** 11998: resistant to fluoroquinolones due notably to the overexpression of the NorA efflux pump (G. W. Kaatz, S. M. Seo, *Antimicrob. Agents Chemother.* 1995, 39, 2650-2655)
- **Staphylococcus aureus** RN4220/pUL5054: resistant to erythrocycin by overexpressing the efflux pump MsrA from the high-copy pUL5054 plasmid (JL Ross, EA Eady, JH Cove, S Baumberg, Gene 1996, 183, 143-148).

The compounds were firstly solubilized in DMSO at 10 mg/mL and screened for their antibacterial activity in 96 wells at 100 and 20 mg/L. However, the high absorbance of some of the tested compounds interfered with the measurement of bacterial growth that was assayed at 620 nm.

Flavonoid derivatives were dispensed in a 96-wells microplate by dilutions in Muller-Hinton medium (MH, Bio Rad) using a Biomek 2000 (Beckman) handling robot. 100 μL of the bacterial inoculum (an overnight culture at 37 °C in 5 mL MH diluted 100-fold) was then added in each well. The total volume was 200 μL in each well and the final bacteria concentration 10⁶ CFU/mL (CFU: colony forming unit). Growth was assayed with a microplate reader by monitoring absorption at 620 nm after 1, 2, 5, 7 and 24 h incubation at 37°C. In addition, the plates were read visually after 24 hours incubation. The activity of the
compounds was determined after 24 h incubation at 37°C. Control wells were MH broth containing 5μL of DMSO. In addition, two controls containing a sub-inhibitory or a inhibitory antibiotic concentration for the tested strain were performed. The antibiotics used were ampicillin (0.5 and 32 μg/mL) for *E. coli*, kanamycin (0.5 and 16 μg/mL) for *S. aureus* ATCC 25923, ciprofloxacin (4 and 64 mg/L) for *S. aureus* 1199B and erythromycin (16 and 256 mg/L) for *S. aureus* RN4220/pUL5054.
References

2: Hauser C. R.; Lindsay, J. K. “Aminomethylation of Ferroceneto Form N,N Dimethylaninomethylferrocene and Its Conversion to the Corresponding Alcohol and Aldehyde” J. Org. Chem. 1957 22(4), 355-358

5: Delavaux-Nicot, B.; Maynadie, J.; Lavabre, D.; Fery-Forgues, S. “Two electroactive ferrocenyl chalcones as original optical chemosensors for Ca^{2+} and Ba^{2+} cations in CH_{3}CN” J. Organomet. Chem. 2007 692(16), 3351-3362

12: Siemann, D. W. “The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor-Vasculature Disrupting Agents” Cancer Treat Rev. 2011 37, 63-74

14: Rehman, F.; Rustin, G. “ASA404: update on drug development” Expert Opin. Investig. Drugs 2008 17(10), 1547-1551

A. Aurones in the literature

Aurones are without any doubt the smallest subclass of the known natural flavonoids. They are flavone isomers, but their skeleton, presented in Figure 3.1, possesses a benzofuranone motif, unlike the other flavonoids.

![Figure 3.1. General pattern of aurone derivatives](image)

Their name comes from their bright yellow color, “aurum” meaning gold in Latin, and they are plant pigments that are, for example, responsible for the color of Coreopsis flowers (also
called tickseed), shown in Figure 3.2. The most well-known aurone may be the pigment aureusidin, presented in Figure 3.2, found in a variety of plants, such as in *Cyperaceous*, a large family of flowering plants that include cottongrass for example.

![Figure 3.2. Coreopsis flower, and structure of aureusidin](image)

In addition to their role in pigmentation, aurones have other functions in the plant kingdom, such as combating infections. For example, when treated with elicitor, a substance inducing a plant immune response, the cells of the cactus *Cephalocereus senilis* produce an aurone called cephalocerone, shown in Figure 3.3. Cephalocerone exhibits toxic properties on a variety of bacteria, such as *Pseudomonas aeruginosa* and *Escherichia coli*.

![Figure 3.3. Structure of cephalocerone](image)

The biological properties of aurones are not limited to the plant kingdom, and we will be more specifically interested in their role in animals.
1. Roles of aurones in animals

Compared to the extensive studies on the biological properties of flavones and flavonols, the application of aurones in medicine is still in its infancy. However, some very important activities have been discovered.

1.1. Aurones in cancer therapy

One of the most remarkable properties of aurones is their ability to bind with proteins. This characteristic is shared with all classes of flavonoids, but has been of particular interest for the aurone subclass. As we will see further, the five-membered ring included in the aurone skeleton endows a structural similarity to other biomolecules known for their protein interactions, such as ATP. Thus, their use as enzyme inhibitors and their action on cancer related proteins has been studied.

1.1.1. Aurones as Pgp inhibitors

As mentioned in chapter 1, one of the biggest challenges in cancer therapy is to avoid the onset of drug resistance. Efflux proteins, among which P-glycoprotein (Pgp) is the most well-known, are responsible for resistance phenomena by preventing therapeutics from accumulating inside cells. Therefore, molecules that can prevent Pgp action are very promising in combination with cytotoxic agents. A series of aurones were designed in this regard, and their affinities with the nucleotide-binding domain of Pgp (crucial for Pgp activity) were evaluated. The compound exhibiting the best activity, presented in Figure 3.4., was found to exhibit a higher affinity ($K_D = 0.15$) than the most active flavonols or chalcones tested.\(^3\)

Further studies focused on the impact of this molecule on Pgp inhibition. K562 leukemia cells were incubated with the fluorescent probe rhodamine-123, in the presence and absence of the aurone shown in figure 3.4. The aurone dramatically increased intracellular rhodamine-123 accumulation, showing the inhibitory effect of these molecules on Pgp activity.\(^4\)
1.1.2. Aurones as CDK inhibitors

Cyclin-dependent kinases (CDK) are enzymes involved in the regulation of the cell cycle, and are therefore implicated in the replication of cancer cells. Therefore, designing CDK inhibitors is of interest in the search for antiproliferative agents. Flavopiridol, shown in Figure 3.5, is a well-known CDK inhibitor, and is currently in clinical trials for the treatment of several different types of cancer, such as leukemia, lymphoma, lung, and esophageal, and pleural cancer.

The affinity of flavopiridol for CDK is due to its structural similarities with ATP; the benzopyranone moiety of flavopiridol resembles adenine. Aurone derivatives, of the general pattern presented in Figure 3.6, have been designed for CDK inhibition, and some have been found to be even more potent and selective than flavopiridol. The best results were obtained for the molecule where R = p-SO₂NH₂. Affinity for this molecule with CDK2 was
calculated by docking experiments, which gave a binding energy of -20.6 kcal.mol\(^{-1}\), slightly better than that of flavopiridol (-19.3 kcal.mol\(^{-1}\)). Moreover, flavopiridol exhibited IC\(_{50}\) values for CDK inhibition of 0.10, 0.22 and 0.40 \(\mu\)M for CDK1, CDK2 and CDK4, respectively, while the same aurone sulfamidine derivative yielded values of 0.009, 0.03 and 1.87 \(\mu\)M. The observed selectivity for CDK2 over CDK4 is particularly interesting. Although structurally very similar, these kinases possess a specific role in the cell life cycle, therefore finding selective inhibitors can provide a broader palette of treatment options.

![Aurone Structure](image)

Figure 3.6. General pattern of flavopiridol mimics based on the aurone skeleton

1.1.3. Aurones as chemopreventive agents

As mentioned in chapter 1, flavonoids are generally considered to be beneficial to health, especially due to their radical scavenging behavior. Aurones also possess such antioxidant properties. For example, when polyphenols were isolated from the tree *Cotinus coggygria*, most of them were found to be aurone derivatives. The most potent isolated antioxidant is the dimer of 3\(^{\prime}\)\,,4\(^{\prime}\)\,-trihydroxyaurone depicted in Figure 3.7.\(^7\)

![Aurone Dimer Structure](image)

Figure 3.7. Structure of the most potent antioxidant isolated from *Cotinus coggygria*
Enzyme-based mechanisms can also be involved in chemoprevention processes. For example, the enzyme NADPH quinone oxidoreductase 1 (NQO1) is involved in the detoxification of xenobiotics, therefore its induction protects cells against exterior attack. Moreover, NQO1 stabilizes the tumor suppressor p53 in response to DNA-damaging stimuli. Aurones were shown to induce NQO1 in Hepa1c1c7 murine hepatoma cells *in vitro*. For example, the 3'-chloro-5-hydroxyaurone presented in Figure 3.8 tripled the NQO1 activity at a concentration of 10 \(\mu \text{M} \).

![Structure of an aurone inducing NQO1 activity.](image)

1.2. Other uses of aurones as bioactive agents

Similarly to other flavonoids, the impact of aurones on animal biology is very broad and thus they have been investigated in the treatment of a variety of diseases. Some of these studies will be detailed below.

1.2.1. Aurones as anti-parasitic agents

Aurones, like other flavonoid subclasses such as chalcones, are known to act as anti-parasitic agents. For example, a series of aurones and auronols were investigated against the parasitic protist *Cryptosporidium parvum*. *C. parvum* is an opportunistic protozoan, which attacks the intestinal epithelial cells of AIDS-infected patients, and for which there is no current

* Protists are eukaryotic microorganisms that don’t belong to animal, plant or fungus kingdom. For example, foraminifera are protists.
treatment. The tested compounds were all active at concentrations between 25 to 100 μM. They inhibited the intracellular growth by more than 90% at concentrations that posed an acceptable toxicity for host cells. The most active compound, 3′,4′,6-trihydroxyaurone, is presented in Figure 3.9.9

![Figure 3.9. Structure of 3′,4′,6-trihydroxyaurone](image)

The same authors also investigated the activity of aurones on *Plasmodium falciparum*, using both chloroquine-resistant and chloroquine-sensitive strains. Some aurones were very active, with IC₅₀ values in the nanomolar range. Remarkably, the chloroquine resistant strain was more sensitive to the aurones than the chloroquine sensitive strain. A structure activity relationship study was performed, and aurones possessing several hydroxy, methoxy and/or acetyl groups showed the best activity. For example, 4,6,4′-triacetyl-3′,5′-dimethoxyaurone shown in Figure 3.10 exhibited an IC₅₀ of 7 nM.10

![Figure 3.10. Structure of 4,6,4′-triacetyl-3′,5′-dimethoxyaurone](image)
1.2.2. Aurones as anti-diabetes agents

Diabetes mellitus is a group of metabolic diseases where glucose levels are dysregulated due to a low production of or a resistance to the hormone insulin. Type 1 diabetes is an autoimmune disease, which causes the destruction of insulin-producing pancreatic β-cells. A key step in this harmful process implicates the activation of the nuclear factor-kappa B (NF-κB), a transcription factor linked to immune response. Sulfuretin, shown in Figure 3.11, is known to suppress the NF-κB pathway and its ability to protect β-cells in case of type 1 diabetes mellitus have been evaluated. RINm5F cells (a rat pancreatic β-cell line) were exposed to cytokines in order to simulate an immune response and were evaluated in the presence and absence of sulfuretin. Sulfuretin clearly showed a protective effect on these cells: sulfuretin pretreated cells exhibited normal insulin secretion in response to glucose at the end of the experiment by suppressing the NF-κB pathway. Moreover, in vivo experiments were performed on mice, for which streptozotocin was used as a model of Type 1 diabetes mellitus induction. When pretreated with sulfuretin, mice were not affected by streptozotocin.

![Figure 3.11. Structure of sulfuretin](image)

1.2.3. Aurones as anti-microbial agents

Aurones have also been evaluated as anti-microbial agents, and some of them enjoy patent protection. Compounds whose general formula is presented in Figure 3.12 have been tested in vivo on mice infected with a pathogenic strain of Candida albicans, an infection-causing fungus. Mice sensitive and resistant to the antifungal fluconazole were used. All untreated
control animals died after 16 days. Fluconazole sensitive mice treated with fluconazole, had a survival rate of about 30%, while the survival in the group treated with the aurone was about 60% to 70% depending on the mode of administration (40 mg/kg body weight by oral administration or 20 mg/kg body weight by intra peritoneal injection). The survival for fluconazole-resistant mice treated with the aurone (40 mg/kg body weight by oral administration) was 80% after 20 days, whereas untreated animals or those treated with fluconazole all died in the same period of time.

![Figure 3.12. Structure of aurones used as anti-microbial agents](image)

2. Synthesis of aurones

As a consequence of the low aurone abundance in nature, most of the aurone derivatives that have been evaluated as bioactive agents are from synthetic origin. Three main methods exist to build this skeleton.

2.1. Functionalization of the benzofuranone core

The first approach, shown in Figure 3.13, requires a key intermediate, benzofuran-3(2H)-one (also called 3-coumaranone), obtained from a substituted phenol. Subsequent condensation with a benzaldehyde yielded the desired aurones in 60 % to quantitative yields.¹³
The formation of the coumaranone is achieved in two steps from the phenol, detailed in Figure 3.14. The first step is a Friedel-Craft acylation, using a halogeno-acetonitrile and zinc chloride, followed by the hydrolysis of the of the newly created imine, molecule A, to generate the ketone, molecule B. The second step consists of the intramolecular cyclization of B in basic medium, affording the coumaranone C.

Once the coumaranone is obtained, a simple condensation addition of a benzaldehyde yields the desired aurone. This condensation can be catalyzed either by acid or base. Microwave assistance and solvent-free conditions have also been described. In fact, the original condensation was carried out on the surface of alumina particles.

This approach presents several disadvantages. The synthesis is multi-step, and the first step is done in harsh conditions, thus limiting yields and the choice of the substitution pattern on the phenol.
2.2. Oxidative cyclization of chalcones

The second, and most common, way of synthesizing aurones uses chalcones as a key intermediate, similarly to the biosynthetic process. This approach can be classified in two categories: with or without metal assistance.

2.2.1. Metal-free oxidative cyclization of chalcones

This approach consists in the cyclization of an oxidized form of the chalcone. The first example of this synthetic pathway was described by Donnelly and coworkers in 1977. The dibrominated chalcone core, compound A, was first synthesized, and after elimination of HBr, the bromochalcone B was obtained. A cycloaddition can then result in the aurone derivative, as shown in Figure 3.15.

![Figure 3.15. Synthesis of aurones from chalcones using Donnelly’s protocol](image)

This method has serious drawbacks, particularly due to the fact that the elimination reaction is not selective. Compound A can lose one or the other Br atoms, depending on the nature of the phenyl substituents. Therefore, a mixture of flavones and aurones is generally obtained. To obtain regioselectivity, a similar protocol was proposed by Khan and coworkers in 2001. By adding non-identical substituents over the double bond, as shown in Figure 3.16, the yield of the aurone was enhanced, although the formation of flavone was still observed.
2.2.2. Oxidative cyclization of chalcones with metal assistance

Various methods of direct oxidative cyclization of chalcones are described in the literature. For example, the use of thallium(III) led to a mixture of aurones and isoflavones.18 Lead(IV) tetraacetate or manganese(II) acetate gave predominantly the aurones, but generally in low yield.19,20 The most well-known synthesis using a metal reagent was achieved using mercury(II) acetate in acetic acid21 as described in Figure 3.17, although flavanone is also formed during this reaction. A protocol using other solvents, such as pyridine, was later described.22 The mechanism of this reaction still remains elusive and will be discussed in a further section.

Other metals have been used in a similar fashion, and as we will see in the next chapter, the ratio between aurone and flavone obtained depends on the nature of the metal. Some metal systems produce the flavones as the major product.
2.3. Aurones from alkynes

The last main synthetic strategy to form aurones is the use of a key intermediate possessing a triple bond. Miranda and coworkers first explored this strategy in 1986.23 The authors prepared compound C in Figure 3.18 in two steps. This first step is a condensation of phenylpropynoic acid with a substituted phenol, giving the ester A. A simple irradiation of A afforded B as major photoproduct. The cyclization of B yielded the aurone C. The base-dependence of the cyclization of the ynone B to the aurone C was the subject of study and it was found that NaOEt in EtOH gave the highest yield of aurones.

![Figure 3.18. Synthesis of aurone using Miranda and coworkers method](image)

Another study exploiting the properties of triple bonds was performed in 2007.24 As shown in the Figure 3.19, the first step formed the ynol derivative A. The key step of this synthesis is the cyclization of A to B, catalyzed by gold(I), with yields of up to 86%. The oxidation of B generated the aurone C. The main advantage of this synthesis is the regioselectivity of the cyclization step.
B. Synthesis, chemical reactivity and analytical properties of ferrocenyl aurones

With a series of ten substituted ferrocenyl chalcones in hand, we first tried to obtain flavanone derivatives using different literatures’ protocols. Protocols in basic media, using piperidine and NaOH in water,25 acetate in ethanol26 or pyridine27 in methanol and water gave only decomposition products and starting material. Protocols in acidic media, either by refluxing a chalcone in acetic acid28 or by addition of HCl29 were also carried out, but only led to decomposition products. Finally, protocols using amino acids such as alanine25 or proline30 only gave starting material. The reactivity of the vinylic carbon adjacent to the ferrocene seems to be greatly modified by its presence. The multiple failures to obtain this series made us investigate oxidative cyclisations of chalcones rather than standard cyclisations. This approach was a success and the ferrocenyl aurones possessing the general structure shown in Figure 3.20 were obtained.
1. Synthesis

The literature procedure22 using mercury(II) acetate in pyridine for a couple of hours was successfully used in order to obtain compound 3a-j shown in Figure 3.21. This series of ten compounds represents the first examples of ferrocenyl aurones, obtained in excellent yields.

![Diagram of ferrocenyl aurones synthesis](image)

Figure 3.20. General pattern of ferrocenyl aurones

Figure 3.21. First examples of ferrocenyl aurones

Although efficient, this protocol presents the major disadvantage of using a toxic oxidizing agent and solvent. Another protocol, using silver triflate and sodium hydride in THF at the room temperature gave compounds 3a-f in excellent yields in only ten minutes. Unfortunately, this protocol was not applicable to molecules possessing methoxy...
substitution. This seems to be due to the high reactivity of this oxidant, which degrades the parent chalcone.

Apart from some minor degradation, aurones are the only species obtained using both sets of conditions, in excellent yields. The use of Ag salts in this type of reaction is unprecedented, probably because it is not effective in the cyclization of organic chalcones. This suggests the reactions with Hg(OAc)$_2$/pyridine and AgOTf/NaH/THF may follow two different mechanisms of action, and that the presence of a ferrocene group is necessary for the formation of aurones with AgOTf/NaH/THF.

In order to follow the reaction of the chalcone with Hg(OAc)$_2$, 1H proton NMR spectra were collected at r.t. over 16 hours of a solution containing 1c and an excess of Hg(OAc)$_2$ in pyridine-d^5. As shown in figure 3.22, at t = 1 h, signals corresponding to chalcone 1c and the aurone 3c (in a 3:2 ratio) were observed. Over time, those signals corresponding to the chalcone diminished and those corresponding to the aurone intensified. No signals of any intermediate structure or any other product were observed. This suggests that the rate-limiting step is the formation of an intermediate that is too reactive to be observed or that the cyclization follows a concerted mechanism.

![Figure 3.22](image_url)

Figure 3.22. 1H NMR spectrum of the ferrocene region of 1c in pyridine-d_6 and Hg(OAc)$_2$. Diamonds = 3c and stars = 1c; a) after 1 h; b) after 12 h; c) after 18 h
In another effort to characterize a possible intermediate, we attempted to halt the cyclization by methylation of the phenol group of the chalcone. Methylation of 1c was effected with Mel/NaH in THF at room temperature after 6 h. The new compound, (E)-1-(5'-methoxy-2’-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one, was dissolved in pyridine-d5 and an excess of Hg(OAc)2 was added. The solution was monitored at room temperature by 1H NMR over 13 h. No change in the spectrum was observed, suggesting Hg does not interact with the double bond of the enone, and more generally, with the compound. Finally, the interaction of 1c and Hg(OAc)2 was examined in the absence of base. Likewise, no reaction was observed via 1H NMR in MeOD over 12 h. These results suggest that the mechanism of cyclization involves coordination of Hg to the oxygen atom of the phenolate, as previously proposed.

We further investigated the reaction of the chalcone in pyridine by replacing Hg(OAc)2 with randomly selected metal salts. We screened five metal salts using TLC: CuCl2, AuCl3, CuSO4, ZnSO4 and PdCl2 and except for CuCl2, these conditions yielded only starting material and/or decomposition products (Table 3.1, experiments 1-5). Using CuCl2, we observed traces of aurone among primarily decomposition products, as determined by TLC.

As previously mentioned, the AgOTf/NaH system in THF is very efficacious in the transformation of ferrocenyl chalcones to aurones. Looking at other solvent/base combinations, we found that DMF does not support the formation of aurones in any case. NaOH, piperidine and tBuOK are effective in EtOH, MeOH, CH2Cl2 and MeCN, while sodium carbonate was only effective in CH2Cl2 (Table 3.1, experiments 6-25).

All of these reactions were very fast; the reaction was complete after about 5 min., although conversion did not reach 100%, such as observed with the AgOTf/NaH/THF system. The only exception was the use of tBuOK in EtOH, which was furthermore effective in the synthesis of methoxy-substituted 3h. Modifying the metal (or oxidant) system, but using the standard THF/NaH solution did not lead to the formation of aurone (Table 3.1, experiments 26-36).
Table 3.1. Reaction of 1a with different metal, solvent and base systems.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Metal or oxidant</th>
<th>Solvent</th>
<th>Base</th>
<th>Aurone</th>
<th>Exp. No.</th>
<th>Metal or oxidant</th>
<th>Solvent</th>
<th>Base</th>
<th>Aurone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl₂</td>
<td>pyridine</td>
<td>pyridine</td>
<td>Traces</td>
<td>21</td>
<td>AgOTf</td>
<td>EtOH</td>
<td>'BuOK</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>AuCl₃</td>
<td>pyridine</td>
<td>pyridine</td>
<td>-</td>
<td>22</td>
<td>AgOTf</td>
<td>MeOH</td>
<td>'BuOK</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>CuSO₄</td>
<td>pyridine</td>
<td>pyridine</td>
<td>-</td>
<td>23</td>
<td>AgOTf</td>
<td>DMF</td>
<td>'BuOK</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ZnSO₄</td>
<td>pyridine</td>
<td>pyridine</td>
<td>-</td>
<td>24</td>
<td>AgOTf</td>
<td>CH₂Cl₂</td>
<td>'BuOK</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>PdCl₂</td>
<td>pyridine</td>
<td>pyridine</td>
<td>-</td>
<td>25</td>
<td>AgOTf</td>
<td>MeCN</td>
<td>'BuOK</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>AgOTf</td>
<td>EtOH</td>
<td>NaOH</td>
<td>+</td>
<td>26</td>
<td>KMnO₄</td>
<td>EtOH</td>
<td>'BuOK</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>AgOTf</td>
<td>MeOH</td>
<td>NaOH</td>
<td>+</td>
<td>27</td>
<td>AgPF₆</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>AgOTf</td>
<td>DMF</td>
<td>NaOH</td>
<td>-</td>
<td>28</td>
<td>AgNO₃</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>AgOTf</td>
<td>CH₂Cl₂</td>
<td>NaOH</td>
<td>+</td>
<td>29</td>
<td>Ag₂O</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>AgOTf</td>
<td>MeCN</td>
<td>NaOH</td>
<td>+</td>
<td>30</td>
<td>AuCl₃</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>AgOTf</td>
<td>EtOH</td>
<td>piperidine</td>
<td>+</td>
<td>31</td>
<td>NiCl₂</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>AgOTf</td>
<td>MeOH</td>
<td>piperidine</td>
<td>+</td>
<td>32</td>
<td>CuI</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>AgOTf</td>
<td>DMF</td>
<td>piperidine</td>
<td>-</td>
<td>33</td>
<td>SnCl₂</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>AgOTf</td>
<td>CH₂Cl₂</td>
<td>piperidine</td>
<td>+</td>
<td>34</td>
<td>DDQ</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>AgOTf</td>
<td>MeCN</td>
<td>piperidine</td>
<td>+</td>
<td>35</td>
<td>Ti(NO₃)₃</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>AgOTf</td>
<td>EtOH</td>
<td>NaCO₃</td>
<td>+</td>
<td>36</td>
<td>NOBF₄</td>
<td>THF</td>
<td>NaH</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>AgOTf</td>
<td>MeOH</td>
<td>NaCO₃</td>
<td>-</td>
<td>37</td>
<td>AgOTf</td>
<td>THF</td>
<td>---</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>AgOTf</td>
<td>DMF</td>
<td>NaCO₃</td>
<td>-</td>
<td>38</td>
<td>AgOTf</td>
<td>pyridine</td>
<td>pyridine</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>AgOTf</td>
<td>CH₂Cl₂</td>
<td>NaCO₃</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>AgOTf</td>
<td>MeCN</td>
<td>NaCO₃</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The use of AgOTf in the oxidative cyclization of chalcones is unprecedented and, surprisingly, it is not effective in the cyclization of organic chalcones, suggesting that the presence of a ferrocene group is necessary for the formation of aurones with AgOTf/NaH/THF. Therefore, we hypothesized that oxidation of the ferrocene group could be the first step in the reaction. However, reaction with the chalcone 1c with AgOTf in THF gave only a brown, diamagnetic product that could not be eluted on a TLC plate.

We subsequently investigated if an inductive effect by the ferrocene group modified the electronic structure of the α,β unsaturated ketone enough to favor aurone formation. The 1H and 13C NMR of 1a, c and h together with their organic analogues is shown in Table 3.2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ (H2)</th>
<th>δ (H3)</th>
<th>δ (C1)</th>
<th>δ (C2)</th>
<th>δ (C3)</th>
<th>δ (C1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>7.67</td>
<td>7.93</td>
<td>193.8</td>
<td>120.2</td>
<td>145.6</td>
<td>120.1</td>
</tr>
<tr>
<td>Organic a</td>
<td>7.25</td>
<td>7.90</td>
<td>192.8</td>
<td>116.7</td>
<td>148.0</td>
<td>120.1</td>
</tr>
<tr>
<td>1c</td>
<td>7.56</td>
<td>7.94</td>
<td>192.8</td>
<td>119.4</td>
<td>146.7</td>
<td>121.3</td>
</tr>
<tr>
<td>Organic c</td>
<td>7.13</td>
<td>7.93</td>
<td>191.6</td>
<td>115.9</td>
<td>149.5</td>
<td>121.4</td>
</tr>
<tr>
<td>1h</td>
<td>7.59</td>
<td>7.92</td>
<td>193.4</td>
<td>120.2</td>
<td>145.7</td>
<td>119.7</td>
</tr>
<tr>
<td>Organic h</td>
<td>7.20</td>
<td>7.90</td>
<td>192.4</td>
<td>116.7</td>
<td>148.1</td>
<td>119.7</td>
</tr>
</tbody>
</table>

On this table, we observe that C3 (adjacent to the ferrocenyl group) is shielded ($\Delta \delta = -2.4$-2.8 ppm), and C2 is deshielded ($\Delta \delta = +3.5$ ppm) relative to the organic compound. This suggests that the mesomeric effect of the enone conjugation is decreased in the case of the ferrocenyl compounds, and that the double bond is indeed less polarized than that found in the organic compounds. However, while it appears that the presence of ferrocene lessens the partial negative charge on C2 compared to the phenyl group, C3 remains by far the more electrophilic atom of the two, with $\Delta \delta$ between C3 and C2 of +26 ppm.
We also attempted to perform the chalcone cyclization with AgOTf in pyridine, which led only to decomposition (Table 3.1, exp. 37-38).

Mechanistic investigations on the formation of organic aurones have been previously conducted. In 1975, Grundon and coworkers identified the intermediate presented in Figure 3.23, resulting from an anti-Markovnikov addition of the mercury phenolate on the double bond.31

![Figure 3.23. Structure of the isolated intermediate to the aurone formation](image)

Thus, a coordination of the mercury with the double bond as presented in Figure 3.24 might occur, even if it hasn’t been observed experimentally.

![Figure 3.24. Probable transition state for the formation of aurone.](image)

Unfortunately, the similarity between organic and ferrocenyl aurone can only be postulated, since no intermediate state can be identified in the ferrocenyl case. Moreover, it should also be mentioned that metallic mercury was observed at the end of the reaction, instead of the HgIOAc reportedly isolated in the organic reaction.

In case of monoelectronic oxidants, like silver salts, another study was found in the literature using manganese acetate, as shown in Figure 3.25. The manganese phenolate transition
state (1) has been suspected, followed by a homolysis of the Mn-O bond that leads to a phenoxy radical (2). The radical would then attack the C-H bond, resulting in aurone formation.23

Figure 3.25. Suspected mechanism for the formation of aurone with manganese acetate

2. Chemical reactivity

Treatment of the ferrocenyl aurones 3a, 3c and 3h with lithium diisopropylamide (LDA) in THF yielded, after workup, deep red solids which were identified as 1-(2-hydroxyphenyl)-3-ferrocenylprop-2-yn-1-one derivatives as shown in Figure 3.36. Presumably, deprotonation of the vinyl proton leads to a rearrangement and ring-opening, and ynones 4a, 4c and 4h were the sole products obtained in about 70% purified yield. Conversely, it has been previously observed that organic aurones do not react readily with LDA, although some minor ynone product has been detected.32

Figure 3.26. Synthesis of ferrocene ynones

4a: R=H (78%)
4c: R=Br (65%)
4h: R=OMe (73%)
Ferrocneryl ynone have also been synthesized by Pd catalyzed coupling of ethynyl ferrocene and acyl chlorides,33 and although the protocol described herein requires more steps than the coupling reaction, it is very economical from the point of view of the ferrocenyl starting material (ferrocene carboxyaldehyde).

A crystal structure by X-ray diffraction was obtained for compound 4a. This structure and associated data are presented in Figure 3.27 and Table 3.3.

![Figure 3.27](image)

Figure 3.27. Two views of the structure of compound 4a created by Hg software. Cif data has been deposited with the Cambridge Structure Database number 823195

<table>
<thead>
<tr>
<th>Table 3.3. Crystal data for molecule 4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>a (Å)</td>
</tr>
<tr>
<td>b (Å)</td>
</tr>
<tr>
<td>c (Å)</td>
</tr>
<tr>
<td>β (°)</td>
</tr>
<tr>
<td>V (Å3)</td>
</tr>
</tbody>
</table>
3. Characterization

All compounds were unambiguously characterized using routine techniques, that is to say NMR spectroscopy, mass spectrometry, elemental analysis and so on.

The structural similarity between aurones and flavones made the structural attribution non-trivial. A comparative 2D NMR study between ferrocenyl aurones and ferrocenyl flavones addresses this point, and will be presented in the next chapter.

3.1. Crystal structure of 3c

A crystal structure by X-ray diffraction was obtained for compound 3c. This structure and associated data are presented in Figure 3.28 and Table 3.4.

<table>
<thead>
<tr>
<th>Table 3.4. Crystal data for 3c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>a (Å)</td>
</tr>
<tr>
<td>b (Å)</td>
</tr>
<tr>
<td>c (Å)</td>
</tr>
<tr>
<td>β (°)</td>
</tr>
<tr>
<td>V (Å^3)</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>No. reflections</td>
</tr>
<tr>
<td>No. independent reflections</td>
</tr>
<tr>
<td>R_{int}</td>
</tr>
<tr>
<td>2θ</td>
</tr>
<tr>
<td>R_{1} (all data)</td>
</tr>
<tr>
<td>wR_{2} (all data)</td>
</tr>
<tr>
<td>R_{1} (with cutoff)</td>
</tr>
<tr>
<td>wR_{2} (with cutoff)</td>
</tr>
</tbody>
</table>
3.2. UV/visible spectroscopy of 3a-j

Similarly to ferrocenyl chalcones, the spectral properties of ferrocenyl aurones are quite different from those of their organic analogs. UV-visible absorption spectra of 3a-j were therefore recorded, and the molar extinction coefficients (ϵ) at λ_{max} in the visible region were calculated for each molecule. The results are summarized in Table 3.5.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max} (nm)</th>
<th>ϵ</th>
<th>Compound</th>
<th>λ_{max} (nm)</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>386</td>
<td>7595</td>
<td>3f</td>
<td>395</td>
<td>16944</td>
</tr>
<tr>
<td></td>
<td>545</td>
<td>2144</td>
<td></td>
<td>575</td>
<td>5625</td>
</tr>
<tr>
<td>3b</td>
<td>394</td>
<td>16624</td>
<td>3g</td>
<td>365</td>
<td>16563</td>
</tr>
<tr>
<td></td>
<td>565</td>
<td>5485</td>
<td></td>
<td>534</td>
<td>3813</td>
</tr>
<tr>
<td>3c</td>
<td>392</td>
<td>10043</td>
<td>3h</td>
<td>400</td>
<td>4719</td>
</tr>
<tr>
<td></td>
<td>559</td>
<td>2713</td>
<td></td>
<td>545</td>
<td>2019</td>
</tr>
<tr>
<td>3d</td>
<td>397</td>
<td>15698</td>
<td>3i</td>
<td>390</td>
<td>17347</td>
</tr>
<tr>
<td></td>
<td>581</td>
<td>12384</td>
<td></td>
<td>536</td>
<td>4554</td>
</tr>
<tr>
<td>3e</td>
<td>394</td>
<td>14400</td>
<td>3j</td>
<td>368</td>
<td>17301</td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>4400</td>
<td></td>
<td>522</td>
<td>3599</td>
</tr>
</tbody>
</table>
The color of ferrocenyl aurones is even more saturated than that of ferrocenyl chalcones, ranging from violet for the most electron-donating substituents, to blue for the most electron-withdrawing substituents. Similar to the chalcones, ferrocenyl aurones present a supplementary absorption band whose wavelength is superior to 500 nm, induced by the presence of ferrocene. The molar extinction coefficients for the least energetic absorption band are somewhat larger as those found for the ferrocenyl chalcones. For the same absorption band, the evolution in wavelength similarly follows the nature of the substituents: the more electron-withdrawing, the less energetic the transition.

3.3. IR spectroscopy

IR spectra of 3a-j were recorded, and the characteristic stretching values are presented in Table 3.6.

<table>
<thead>
<tr>
<th></th>
<th>C=O</th>
<th>C=C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>1698</td>
<td>1642</td>
</tr>
<tr>
<td>3b</td>
<td>1700</td>
<td>1639</td>
</tr>
<tr>
<td>3c</td>
<td>1701</td>
<td>1639</td>
</tr>
<tr>
<td>3d</td>
<td>1697</td>
<td>1635</td>
</tr>
<tr>
<td>3e</td>
<td>1697</td>
<td>1639</td>
</tr>
<tr>
<td>3f</td>
<td>1701</td>
<td>1654</td>
</tr>
<tr>
<td>3g</td>
<td>1685</td>
<td>1639</td>
</tr>
<tr>
<td>3h</td>
<td>1689</td>
<td>1632</td>
</tr>
<tr>
<td>3i</td>
<td>1700</td>
<td>1643</td>
</tr>
<tr>
<td>3j</td>
<td>1693</td>
<td>1643</td>
</tr>
</tbody>
</table>

The first observation that can be made is that the different substitutions don’t seem to have a strong effect on the strength of the two studied bonds. The strongest shift observed for
the ketone bond is the case of compound 3g, with a shift of 13 cm⁻¹ compared to the unsubstituted compound. For the alkene bond, the strongest shift is observed for 3f, with a 12 cm⁻¹ difference when compared to the unsubstituted compound. A more interesting comparison to make is the one between series 3 and series 1. Indeed, the average of frequencies for the stretching of the ketone function in series 1 is around 1630 cm⁻¹, while around 1700 cm⁻¹ for series 3. The same effect is even stronger on the alkene bond, with average values of 1560 cm⁻¹ for series 1 versus 1640 cm⁻¹ for series 3. This effect can be explained by the newly created C-O bond between the phenol moiety and the position α of the ketone. The oxygen of the phenol acts as an electron-withdrawing group on the carbon in α of the ketone, therefore decreasing the polarization of each double bond around, increasing their strength, as well as their stretching frequencies.

3.4. Electrochemistry

The oxidation chemistry of 3a-j was analyzed by cyclic voltammetry. The results are presented in Table 3.7.

<table>
<thead>
<tr>
<th>Compound</th>
<th>E₁/₂ (Fc+/Fc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>0.156</td>
</tr>
<tr>
<td>3b</td>
<td>0.174</td>
</tr>
<tr>
<td>3c</td>
<td>0.161</td>
</tr>
<tr>
<td>3d</td>
<td>0.197</td>
</tr>
<tr>
<td>3e</td>
<td>0.191</td>
</tr>
<tr>
<td>3f</td>
<td>0.187</td>
</tr>
<tr>
<td>3g</td>
<td>0.118</td>
</tr>
<tr>
<td>3h</td>
<td>0.153</td>
</tr>
<tr>
<td>3i</td>
<td>0.125</td>
</tr>
<tr>
<td>3j</td>
<td>0.103</td>
</tr>
</tbody>
</table>
As previously seen for the ferrocenyl chalcones, electron-withdrawing groups increase the oxidation potential of the ferrocene moiety, while electron-donating groups decrease it. The only exceptions to this rule are the case of 3h, where R₃ = OMe: the substitution does not seem to have any effect when compared to the unsubstituted derivative 3a, and the case of 3b and 3d, where R₃ = Cl and R₁ = R₃ = Cl respectively: the impact of chloro substitutions seems more important than any other substitution by halogens.

As for ferrocenyl chalcones, we plotted the energy of the visible electronic transition as a function of the ferrocene moiety potential for each molecule. The graph is presented in Figure 3.29. From the graph, we can see that the correlation is clear; once again, the more electron-withdrawing the substituents, the higher the oxidation potential, and the less energetic the transition. The electron-withdrawing substituents have a greater role in stabilizing the π* LUMO, than they do towards the ferrocene-based HOMO.

![Figure 3.29. Plot of the wavenumber in function of the ferrocene moiety oxidation potential for each compound of series 3,](image_url)
C. Biological properties of ferrocenyl aurones

1. Antiproliferative effects on B16 melanoma cells

Similarly to series 1 and 2, the antiproliferative effects of compounds 3a-j were evaluated by the MTT test on murine B-16 melanoma cells in collaboration with Guy G. Chabot. The results are presented in Figure 3.30, together with the chalcone results already presented in the previous chapter, for comparison.

![Graph showing IC50 values (µM) of compounds 3a-j on B16 murine melanoma cells](image)

Figure 3.30. IC50 values (µM) of compounds 3a-j on B16 murine melanoma cells

Methoxy substituents induced rather poor antiproliferative effects, while halogen substitution give rise to better activity, with IC50 values in the low micromolar range. What is particularly remarkable is the differences in activity between series 1 and series 3 for the dihalogenated compounds. For example, in the case of 1d/2d or 1e/2e, the aurone is more than 6 times more active than the corresponding chalcone.
2. Antiangiogenic effects EA·hy 926 endothelial cells

Antiangiogenic properties have also been measured for series 3. The minimal rounding up concentrations against EA·hy 926 endothelial cells are presented, together with the results for series 1, in Figure 3.31.

![Graph showing minimal concentration (μM) of 1a-j and 3a-j for rounding up of EA·hy 926 cells](image)

Figure 3.31. Minimal concentration (μM) of 1a-j and 3a-j for rounding up of EA·hy 926 cells

From this graph, it is clear that compounds 3h and 3i are more potent than the parent chalcones. The minimal rounding up concentrations are less than 10 μM, rendering these compounds as good candidates for antiangiogenic applications. Moreover, their antiproliferative abilities being quite poor (IC₅₀ values around 50 μM), these molecules can be considered as pure antiangiogenic agents.

From these biological results, it is clear that aurones are more potent candidates for anticancer applications than the chalcones.
3. Antibacterial properties

Similarly to series 1, compounds of series 3 have been evaluated as anti-bacterial agents, in collaboration with Claude Jolivalt from Chimie ParisTech. The results of the test at 100 mg/mL are presented in Table 3.8.

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus MsrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>3c</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>3d</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>3e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
</tr>
<tr>
<td>3f</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3g</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3h</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3i</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3j</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

From this table, it is clear that the series 3 is generally very active against all 4 bacterial lines. For the drug-sensitive line of S.aureus, only two compounds were not active, and the drug-resistant lines of S. aureus are also susceptible to the tested aurones. For 1199B, six compounds of the 10 tested were active, and on MsrA, all the nine compounds tested were active. It is remarkable that in the case of series 3 like in the case of series 1, the S.aureus MsrA line is more strongly affected by the compounds than the sensitive strain.

The same experiment was also conducted at a concentration of 20 mg/mL, and the results are presented in Table 3.9. At this lower concentration, the activities of 3a-j are still very interesting. The effects of four compounds, 3a, 3g, 3h and 3l on the three different lines of S.
aureus is particularly interesting, since the mutations of the bacteria don’t seem to play a role in the compounds’ activity. Moreover, we can see that the most active compounds are the non-substituted and the methoxy-substituted compounds; none of the halogen-substituted derivatives present interesting activity.

Table 3.9. Screening of series 3 at 20 µg/mL

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus MsrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>3e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3f</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3g</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3h</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3i</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>3j</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
</tbody>
</table>

The non-halogenated molecules presenting an exceptional behavior, the minimal inhibition concentrations (MIC) of 3a and 3g-j were determined by successive dilutions. The results are presented in Table 3.10. The compounds are all active on *S. aureus* MsrA, and their MIC is in the low micromolar range. The best results are obtained for 3g and 3j, with respective MIC of 5.5 and 5 µM, respectively. For the two other lines of *S. aureus*, the activity of the compounds is also high, generally in the low micromolar range. The compounds are however less active on *E. coli*. In all, these results show the potential of methoxy-substituted ferrocenyl aurones as antibacterial agents.
Table 3.10. Determination of the MIC of lead compounds in series 3 (µM)

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus MsrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>100</td>
<td>100/25</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>3g</td>
<td>44/22</td>
<td>11</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>3h</td>
<td>88</td>
<td>22</td>
<td>44</td>
<td>22</td>
</tr>
<tr>
<td>3i</td>
<td>44</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>3j</td>
<td>40/20</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

D. Experimental

General preparation of ferrocenyl aurones (Method A)

Ferrocene chalcone, 1a-j, (10 mg) was dissolved in 15 mL of THF in a 50 mL two-necked round bottom flask. NaH (3 equiv) was added and the solution went from deep violet to a light red. After stirring for 5 min at room temperature, AgOTf (2.5 eq.) was added, and the mixture was stirred for another 5 min, before being poured into H₂O (100 mL) and HCl 12 M (15 mL). The mixture was extracted with DCM (3x50 mL), and washed with water. The organic phase was dried over MgSO₄, filtered and evaporated. The product was purified by silica gel column chromatography with a mixture of petroleum ether/DCM 1/1 to afford 3a-j.

General preparation of ferrocenyl aurones (Method B)

Ferrocene chalcone, 1a-j, (10 mg) was dissolved in pyridine (15 mL) in a 50 mL two-necked round bottom flask. After stirring for 5 min at room temperature, Hg(OAc)₂ (2.5 equiv) was added, and the mixture was stirred at reflux until the starting chalcone was consumed (2-3h). The reaction mixture was then poured into a H₂O (100 mL) and HCl 12 M (15 mL). The mixture was extracted with CH₂Cl₂ (3x50 mL), and washed with water. The organic phase was dried over MgSO₄, filtered and evaporated. The product was purified using a silica gel column, using a mixture of petroleum ether/ethyl acetate 4/1 as an eluent.
(Z)-2-(ferrocenyldiene)benzofuran-3-one 3a. Yield with AgOTf/NaH in THF: 8.0 mg, 80%. Violet solid. δ_H (300 MHz; CDCl₃) 4.22 (s, 5H, C₅H₅), 4.60 (s, 2H, C₅H₄), 4.92 (s, 2H, C₅H₄), 6.89 (s, 1H, vinyl), 7.19 (t, J = 7.5 Hz, 1H, Aromatic), 7.29 (d, J = 7.2 Hz, 1H, Aromatic), 7.64 (t, J = 7.2 Hz, 1H, Aromatic), 7.80 (d, J = 7.5 Hz, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 70.0 (C₅H₅), 71.5 (C₅H₄), 71.8 (C₅H₄), 75.1 (C₅H₄ ipso), 112.9 (Aromatic), 116.4 (vinyl), 122.6 (Aromatic), 123.1 (Aromatic), 124.5 (Aromatic), 136.1 (Aromatic), 146.0 (vinyl), 165.4 (Aromatic), 182.9 (C=O). MS (APCI) m/z 331.07 [M+H]+ Found: C 67.60, H 4.66. Calc. for C₁₉H₁₄O₂Fe·0.5 H₂O: C 67.28, H 4.46.

(Z)-5-chloro-2-(ferrocenyldiene)benzofuran-3-one 3b. Yield with AgOTf/NaH in THF: 7.8 mg, 78%. Violet solid. δ_H (300 MHz; CDCl₃) 4.24 (s, 5H, C₅H₅), 4.63 (s, 2H, C₅H₄), 4.91 (s, 2H, C₅H₄), 6.92 (s, 1H, vinyl), 7.24 (m, 1H, Aromatic), 7.57 (dd, 4J = 2.1 Hz, 3J = 8.7 Hz, 1H, Aromatic), 7.77 (d, J = 2.1 Hz, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 70.0 (C₅H₅), 71.6 (C₅H₄), 72.2 (C₅H₄), 74.7 (C₅H₄ ipso), 114.2 (Aromatic), 117.9 (vinyl), 123.8 (Aromatic), 124.0 (Aromatic), 128.8 (Aromatic), 135.8 (Aromatic), 146.1 (vinyl), 163.5 (Aromatic), 181.4 (C=O). MS (APCI) m/z 364.02 [M+H]+ Found: C 61.65, H 3.67. Calc. for C₁₉H₁₃O₂FeCl·0.25 H₂O: C 61.66, H 3.69.

(Z)-5-bromo-2-(ferrocenyldiene)benzofuran-3-one 3c. Yield with AgOTf/NaH in THF: 6.4 mg, 64%. Violet solid. δ_H (300 MHz; CDCl₃) 4.19 (s, 5H, C₅H₅), 4.60 (m, 2H, C₅H₄), 4.86 (m, 2H, C₅H₄), 6.94 (s, 1H, vinyl), 7.20 (d, J = 8.7 Hz, 1H, Aromatic), 7.72 (dd, 4J = 2.1 Hz, 3J = 8.7 Hz, 1H, Aromatic), 7.93 (d, J = 2.1 Hz, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 70.1 (C₅H₅), 71.7 (C₅H₄), 72.2 (C₅H₄), 74.7 (C₅H₄ ipso), 114.7 (Aromatic), 115.9 (Aromatic), 118.0 (vinyl), 124.4 (Aromatic), 127.1 (Aromatic), 138.5 (Aromatic), 145.9 (vinyl), 163.9 (Aromatic), 181.2 (C=O). MS (APCI) m/z 408.08 [M+H]+ Found: C 55.77, H 3.65. Calc. for C₁₉H₁₃O₂FeBr·0.165 H₂O: C 55.39, H 3.26.

(Z)-5,7-dichloro-2-(ferrocenyldiene)benzofuran-3-one 3d. Yield with AgOTf/NaH in THF: 6.2 mg, 62%. Blue solid. δ_H (300 MHz; CDCl₃) 4.22 (s, 5H, C₅H₅), 4.66 (s, 2H, C₅H₄), 4.93 (s, 2H, C₅H₄), 7.06 (s, 1H, Vinyl), 7.64 (d, J = 2.1 Hz, 1H, Aromatic), 7.69 (d, J = 2.1 Hz, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 69.2 (C₅H₅), 71.0 (C₅H₄), 71.7 (C₅H₄), 73.3 (C₅H₄ ipso), 118.4 (Aromatic), 118.9 (Vinyl), 121.4 (Aromatic), 124.1 (Aromatic), 127.9 (Aromatic), 134.0 (Aromatic), 144.8 (Vinyl), 158.2 (Aromatic), 179.3 (C=O). MS (APCI) m/z 398.00 [M+H]+ Found: C 56.05, H 3.31. Calc. for C₁₉H₁₂O₂FeCl₂·0.5 H₂O: C 55.93, H 3.21.
(Z)-5,7-dibromo-2-(ferrocenylidene)benzofuran-3-one 3e. Yield with AgOTf/NaH in THF: 8.0 mg, 80%. Blue solid. δH (300 MHz; CDCl3) 4.22 (s, 5H, C5H5), 4.67 (s, 2H, C5H4), 4.93 (s, 2H, C5H4), 7.03 (s, 1H, Vinyl), 7.86 (d, J = 1.5 Hz, 1H, Aromatic), 7.92 (d, J = 1.5 Hz, 1H, Aromatic). δC (75 MHz; CDCl3) 69.2 (C5H5) 71.0 (C5H4), 71.7 (C5H4), 73.3 (C5H4 ipso), 115.0 (Aromatic), 119.0 (Vinyl), 124.5 (Aromatic), 125.0 (Aromatic), 129.8 (Aromatic), 139.2 (Aromatic), 144.4 (Vinyl), 159.9 (Aromatic), 179.3 (C=O). MS (APCI) m/z 485.99 [M+H]+ Found: C 46.47, H 2.60. Calc. for C19H12O2FeBr2: 0.25 H2O: C 46.34, H 2.56.

(Z)-5,7-difluoro-2-(ferrocenylidene)benzofuran-3-one 3f. Yield with AgOTf/NaH in THF: 8.6 mg, 86%. Violet-blue solid. δH (400 MHz; CDCl3) 4.22 (s, 5H, C5H5), 4.65 (s, 2H, C5H4), 4.91 (s, 2H, C5H4), 7.02 (s, 1H, Vinyl), 7.22 -7.15 (m, 1H, Aromatic), 7.31-7.29 (m, 1H, Aromatic). δC (100 MHz; CDCl3) 70.2 (C5H5), 71.9 (C5H4), 72.6 (C5H4), 74.3 (C5H4 ipso), 105.5 (dd, 2J = 23.8 Hz, 4J = 4.1 Hz, Aromatic), 110.9 (dd, 2J = 19.7 Hz, 4J = 24.3 Hz, Aromatic), 119.8 (Vinyl), 125.6 (d, 3J = 7.7 Hz, Aromatic), 145.9 (Vinyl), 148.1 (dd, 1J = 254.7 Hz, 3J = 11.2 Hz, Aromatic), 148.8 (d, 2J = 11.3 Hz, Aromatic), 157.9 (dd, 1J = 246.5 Hz, 3J = 7.3 Hz, Aromatic), 180.7 (C=O). MS (APCI) m/z 366.04 [M+H]+ Found: C 61.04, H 3.22. Calc. for C19H12O2FeF2: 0.5 H2O: C 60.83, H 3.49.

(Z)-6-methoxy-2-(ferrocenylidene)benzofuran-3-one 3g: mp 142°C, violet solid. δH (300 MHz; CDCl3) 3.93 (s, 3H, OMe), 4.19 (s, 5H, C5H5), 4.53 (s, 2H, C5H4), 4.85 (s, 2H, C5H4), 6.74 (s, 1H, vinyl), 6.72-6.79 (m, 2H, Aromatic), 7.71 (d, J = 8.1 Hz, 1H, Aromatic). δC (100 MHz; CDCl3) 55.7 (OMe), 69.5 (C5H5), 70.9 (C5H4), 71.2 (C5H4), 74.8 (C5H4 ipso), 96.3 (Aromatic), 111.8 (Aromatic), 114.4 (Vinyl), 115.4 (Aromatic), 125.2 (Aromatic), 146.5 (Vinyl), 166.6 (Aromatic), 167.5 (Aromatic), 181.1 (C=O). HRMS (ESI) calcd. for C20H16FeO3+: 360.04489, found: 360.04434.

(Z)-5-methoxy-2-(ferrocenylidene)benzofuran-3-one 3h. mp 140°C, violet solid. δH (300 MHz; CDCl3) 3.91 (s, 3H, OMe), 4.17 (s, 5H, C5H5), 4.52 (t, 3J = 1.7 Hz, 2H, C5H4), 4.87 (t, 3J = 1.7 Hz, 2H, C5H4), 6.47 (s, 1H, H3), 7.26 (dd, 3J = 9.1 Hz, 4J = 3.0 Hz, 1H, H7), 7.44 (d, 3J = 9.1 Hz, 1H, H8), 7.59 (d, 4J = 3.0 Hz, 1H, H5). δC (75 MHz; CDCl3) 55.9 (OMe), 67.4 (C5H4), 70.2 (C5H4), 71.3 (C5H4), 75.0 (C5H4 ipso), 104.9 (C5), 105.1 (C3), 119.1 (C8), 123.1 (C7), 124.7 (C10), 151.0 (C9), 156.8 (C6), 167.9 (C2), 177.3 (C4), (Cl NH3) m/z 361.0 (MH+), HRMS (ESI) calcd. for C20H16FeO3+: 383.03466, found: 383.03411.
(Z)-4-methoxy-2-(ferrocenyldiene)benzofuran-3-one 3i: mp 174°C, violet solid. δH (300 MHz; Acetone d6) 4.00 (s, 3H, OMe), 4.24 (s, 5H, C5H5), 4.59 (t, J = 1.8 Hz, 2H, C5H4), 4.95 (t, J = 1.8 Hz, 2H, C5H4), 6.68 (s, 1H, Vinyl) 6.78 (d, J = 8.4 Hz, 1H, Aromatic) 6.98 (d, J = 8.4 Hz, 1H, Aromatic) 7.66 (t, J = 8.4 Hz, 1H, Aromatic). δC (100 MHz; CDCl3) 55.8 (OMe), 69.5 (C5H5), 70.9 (C5H4), 71.2 (C5H4), 74.8 (C5H4 ipso), 104.2 (Aromatic), 104.4 (Aromatic), 110.8 (Aromatic), 114.4 (Vinyl), 137.3 (Aromatic), 145.4 (Vinyl), 157.9 (Aromatic), 165.9 (Aromatic), 180.3 (C=O). HRMS (ESI) calcd. for C20H16FeO3Na+: 383,03411, found: 383,03411.

(Z)-4,6-dimethoxy-2-(ferrocenyldiene)benzofuran-3-one 3j: mp 166°C, violet solid. δH (300 MHz; CDCl3) 3.90 (s, 3H, OMe), 3.93 (s, 3H, OMe), 4.15 (s, 5H, C5H5), 4.47 (s, 2H, C5H4), 4.78 (s, 2H, C5H4), 6.11 (s, 1H, Aromatic), 6.35 (s, 1H, Aromatic), 6.72 (s, 1H, Vinyl). δC (75 MHz; CDCl3) 56.0 (OMe), 56.1 (OMe), 69.7 (C5H5), 70.9 (C5H4), 71.1 (C5H4), 75.3 (C5H4 ipso), 89.0 (Aromatic), 93.7 (Aromatic), 105.9 (Aromatic), 113.2 (Vinyl), 117.1 (Aromatic), 146.8 (Vinyl), 159.2 (Aromatic), 168.3 (Aromatic), 179.3 (C=O). HRMS (ESI) calcd. for C20H16FeO3Na+: 413,04467, found: 413,04467.

Synthesis and characterization of ferrocenyl yrones 4a, c and h. Ferrocene aurone 3 (100 mg) was dissolved in THF and cooled in an acetone/liquid nitrogen bath. Lithium diisopropylamide (1.1 eq, 2M in THF) was added and the solution color changed from deep violet to pale red. The solution was allowed to return to rt, poured into H2O and HCl 12 M, extracted with EtOAc and washed with water. The organic phase was dried over MgSO4, filtered and evaporated. The product was purified using a silica gel column, using petroleum ether/dichloromethane 1/1 as an eluent.
1-(2'-hydroxyphenyl)-3-ferrocenylprop-2-yn-1-one, 4a. Red solid, mp 130°C. δH (400 MHz; CDCl3) 4.30 (s, 5H, C5H5), 4.47 (t, 3J = 1.7 Hz, 2H, C5H4), 4.71 (t, 3J = 1.7 Hz, 2H, C5H4), 6.96-7.02 (m, 2H, H3, H5), 7.52 (td, 3J = 8.2 Hz, 4J = 1.3 Hz, 1H, H6), 8.05 (dd, 3J = 8.2 Hz, 4J = 1.3 Hz, 1H, H6). δC (100 MHz; CDCl3) 59.8 (C5H4-Cipso), 70.7 (C5H5), 71.3 (C5H4), 73.4 (C5H4), 84.5 (C2), 100.2 (C3), 118.2 (C3′), 119.4 (C3′), 121.0 (C1), 132.9 (C6′), 136.7 (C4′), 162.8 (C2), 181.9 (C1), (Cl NH3) m/z 330 (MHH), HRMS (ESI) calcd. for C19H14FeO2+: 330.03432, found: 330.03377.

![Diagram of 1-(2'-hydroxyphenyl)-3-ferrocenylprop-2-yn-1-one, 4a.]

1-(5'-bromo-2'-hydroxyphenyl)-3-ferrocenylprop-2-yn-1-one, 4c. Red solid, mp 132°C. δH (400 MHz; CDCl3) 4.32 (s, 5H, C5H5), 4.50 (t, 3J = 1.8 Hz, 2H, C5H4), 4.74 (t, 3J = 1.8 Hz, 2H, C5H4), 6.90 (d, 3J = 8.9 Hz, 1H, H5), 7.58 (dd, 3J = 8.9 Hz, 4J = 2.5 Hz, 1H, H4), 8.13 (d, 1H, 4J = 2.5 Hz, H6). δC (100 MHz; CDCl3) 59.3, (C5H4-Cipso), 70.7 (C5H5), 71.5 (C5H4), 73.5 (C5H4), 84.2 (C2), 101.8 (C3), 110.8 (C5′), 120.3 (C3′), 122.2 (C1), 134.9 (C6′), 139.3 (C4′), 161.7 (C2′), 180.6 (C1′), (Cl NH3) m/z 409.04 (MHH), HRMS (ESI) calcd. for C19H13BrFeO2+: 407.9448 and 409.9428, found: 407.9482 and 409.9530.

![Diagram of 1-(5'-bromo-2'-hydroxyphenyl)-3-ferrocenylprop-2-yn-1-one, 4c.]

1-(5'-methoxy-2'-hydroxyphenyl)-3-ferrocenylprop-2-yn-1-one, 4h. Red solid, mp 120°C. δH (400 MHz; Acetone-d6) 3.91 (s, 3H, OMe), 4.37 (s, 5H, C5H5), 4.59 (t, 3J = 1.9 Hz, 2H, C5H4), 4.84 (t, 3J = 1.9 Hz, 2H, C5H4), 6.94 (d, 3J = 9.1 Hz, 1H, H3), 7.26 (dd, 3J = 9.1 Hz, 4J = 3.1 Hz, 1H, H3), 7.58 (d, 4J = 3.1 Hz, 1H, H6). δC (100 MHz; acetone-d6) 56.0 (OMe), 60.1 (C5H4-Cipso), 71.3
(C₅H₃), 72.2 (C₅H₄), 74.0 (C₅H₄), 84.6 (C₂), 100.9 (C₃), 114.8 (C₆), 119.7 (C₃), 121.0 (C₁), 125.9 (C₄), 153.1 (C₅), 157.8 (C₂), 181.8 (C₁), (Cl NH₃) m/z 361.11 (MH⁺), HRMS (ESI) calcd. for C₂₀H₁₆FeO₃⁺: 360.04489, found: 360.04422.

Cytotoxicity. Murine B16 melanoma was grown in Dulbecco’s modified essential medium (DMEM) containing 2 mM l-glutamine, 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin 37°C, 5% CO₂). Exponentially growing cancer cells were plated onto 96-well plates at 5,000 cells per well in 200 μL DMEM; and 24 h later, the cells were exposed for 48 h to the solvent alone or to the test compound at the indicated concentrations. Viability was assessed using the MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium) test, and absorbance was read at 562 nm in a microplate reader (BioKinetics Reader, EL340, Fisher Bioblock Scientific, Illkirch, France). Control cells were exposed to 1% DMSO. Experiments were run in triplicate and repeated 3 times. Results are presented as the inhibitory concentrations for 50% (IC₅₀) of cells for a 48 h exposure time.

Morphologic Effects on EA-hy 926 Endothelial Cells. To assess the effect of 3a-j on the morphology of endothelial cells EA-hy 926 endothelial cells were used. Cells were grown in DMEM containing 2 mM l-glutamine, 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin (37°C, 5% CO₂). Exponentially growing cells were plated onto 96-well plates at 5,000 cells/200 μL/well. Twenty-four h after plating, the medium was aspirated, and 100 μL of medium containing the test compound was added to the well (triplicate) at the indicated final concentrations (37°C, 5% CO₂), and 2 h later digital photographs were recorded of representative center areas of each well at a magnification of ×320. Results are presented as the efficacious concentration for the change in cell shape for 50% of cells for a 2 h exposure time (EC₅₀) relative to controls.
Antibacterial activity

The inhibitory potential of the flavonoid derivatives was tested on four bacteria strains:

- *E. coli* ATCC 25922 (Gram negative strain)
- *Staphylococcus aureus* (ATCC 25923, sensitive Gram positive strain),

The compounds were firstly solubilized in DMSO at 10 mg/mL and screened for their antibacterial activity in 96 wells at 100 and 20 mg/L. However, the high absorbance of some of the tested compounds interfered with the measurement of bacterial growth that was assayed at 620 nm.

Flavonoid derivatives were dispensed in a 96-wells microplate by dilutions in Muller-Hinton medium (MH, Bio Rad) using a Biomek 2000 (Beckman) handling robot. 100 µL of the bacterial inoculum (an overnight culture at 37 °C in 5 mL MH diluted 100-fold) was then added in each well. The total volume was 200 µL in each well and the final bacteria concentration 10^6 CFU/mL (CFU: colony forming unit). Growth was assayed with a microplate reader by monitoring absorption at 620 nm after 1, 2, 5, 7 and 24 h incubation at 37°C. In addition, the plates were read visually after 24 hours incubation. The activity of the compounds was determined after 24 h incubation at 37°C. Control wells were MH broth containing 5µL of DMSO. In addition, two controls containing a sub-inhibitory or a inhibitory antibiotic concentration for the tested strain were performed. The antibiotics used were ampicillin (0.5 and 32 µg/mL) for *E. coli*, kanamycin (0.5 and 16 µg/mL) for *S. aureus* ATCC 25923, ciprofloxacin (4 and 64 mg/L) for *S. aureus* 1199B and erythromycin (16 and 256 mg/L) for *S. aureus* RN4220/pUL5054.

MIC values were determined in the same conditions, with highest final flavonoid derivative concentration was 128 mg/L decreasing by two fold serial dilutions. The MIC was defined as...
the minimal concentration of the flavonoid compound that completely inhibited cell growth during 24 h incubation at 37°C.

The accepted variance on MIC value can be estimated to a 2-fold difference due to the microdilution method used. All experiments were performed in duplicate.
References

2: Pare, P. W.; Dmitrieva, N.; Mabry, T. J. “Phytoalexin aurone induced in Cephalocereus senilis liquid suspension culture” *Phytochemistry* **1991** 30(4), 1133-1135

16: Donnelly, D. J.; Donnelly, J. A.; Keegan, J.R. “The modes of cyclization of 4-nitrochalcone dibromides and \(\alpha \)-bromo-4-nitrochalcones” \textit{Tetrahedron} \textbf{1977} 33, 3285-3294

22: Agrawal, N. N.; Soni, P. A. “A new process for the synthesis of aurones by using mercury (II) acetate in pyridine and cupric bromide in dimethyl sulfoxide” Indian journal of chemistry 2006 45B, 1301-1303

26: Akcok, I.; Cagir, A. “Synthesis of stilbene-fused 2'-hydroxychalones and flavanones” Bioorg. Chem. 2010 38(4), 139-143

Chapter 4

Ferrocenyl Flavones and Flavonols
Synthesis and biological properties

Flavones and flavonols are the most well-represented flavonoids in the literature, both from a biological and a chemical point of view. Chapter 1 reviewed some of the biological properties of flavonoids, and most of the cited molecules are flavones or flavonols. The present chapter presents the chemical pathways to these molecules.

A. Synthesis of flavones in the literature

1. From chalcones

Although there are many different pathways to obtain the flavones, the major strategy remains the 1,6-oxidative cyclization of chalcones, similar to the 1,5-oxidative cyclization resulting in the aurones. The central reagent used to realize such reactions is the oxidant; and those that are most commonly used are reviewed in this section.
1.1. Selenium

Selenium oxide was, to our knowledge, the first oxidant used to cyclize a chalcone into a flavone in 1935.\(^1\) The reaction was achieved at the reflux temperature of pentan-1-ol, \textit{i.e.} around 140 °C for 12 h, resulting in yields below 50%. The synthesis is presented in Figure 4.1.

$$\begin{align*}
\text{OH} & \quad \text{SeO}_2 \\
\text{R}_1 \quad \text{R}_2 & \quad \text{R}_1 \quad \text{R}_2 \\
\text{Ketone} & \quad \text{Flavone} \\
\text{Pentan-1-ol reflux} &
\end{align*}$$

\(R_1 = \text{OH, OMe, OBz}\)
\(R_2 = \text{OH, OMe, OBz}\)

\textbf{Figure 4.1.} Cyclization of chalcone using selenium oxide in pentan-1-ol

Other solvent systems were later used, such as DMSO,\(^2\) 3-methyl butan-1-ol\(^3\) and dioxane.\(^4\) The latter method allows yields up to 80%, and decreases the number of side reactions. However, due to the toxicity of SeO\(_2\), and its use in stoichiometric amounts, other methods are nowadays preferred.

1.2. DDQ

The use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), shown in Figure 4.2, as an oxidant to convert chalcones into flavones was first mentioned by Tanaka and coworkers in 1984.\(^5\) DDQ was also extensively used by linuma and coworkers for the synthesis of diversely substituted flavones.\(^6,7\) The studied substituents were either hydroxy, methoxy or benzoate, and are present in various positions.
Ferrocenyl Flavones and Flavonols

![Figure 4.2] Structure of DDQ

The general procedure is presented in Figure 4.3. The yields vary from 30% to more than 70%. Aurone formation is often observed for this protocol, up to 26% of the flavonoid product. This protocol is still used nowadays. For example, Shen, Lu and coworkers synthesized luteolin analogues via this protocol in 2008, in order to investigate their biological properties.\(^8\)

![Figure 4.3] Synthesis of flavones from chalcones using DDQ

R\(_1\) = OH, OMe, OBz
R\(_2\) = OH, OMe, OBz

1.3. Bromine

The most common synthesis of flavones from chalcones involves a prior dihalogenation of the chalcone double bond, followed by a cyclization. The dihalogenation can be achieved with bromine,\(^9\) and the treatment of the resulting dibromide derivative with KOH provides the flavone, as a result of an Emilewicz-von Kostanecki cyclization.\(^10, 11\) The synthetic pathway is shown in Figure 4.4.
This procedure gives yields between 45 and 85 %. Bromine-mediated synthesis of flavones is still used, for example, in a patent published in 2005.12 Generally, however, the use of bromine is avoided, since it is a toxic liquid that evaporates easily. The use of iodine on the other hand has been extensively studied.

\section*{1.4. Iodine}

Iodine-mediated cyclization of chalcone is the most common pathway to the flavones. The original protocol was proposed in 1986 by Doshi and coworkers,13 using iodine in hot DMSO. Although harsh, these conditions allow different substitutions on both rings. The reaction, presented in Figure 4.5, was conducted with alkyl, halogens and methoxy substituents.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{ iodine.png}
\caption{Conversion of chalcones into flavone using iodine in hot DMSO}
\end{figure}

Very similar protocols are still used nowadays, especially in medicinal chemistry.14, 15 Other solvents have been used instead of DMSO, mainly because of toxicity issues. For example,
triethylene glycol is used to replace DMSO, but it is less efficient and requires a higher temperature.16

Iodine can also be adsorbed on alumina, producing a heterogeneous reagent, and used with the assistance of microwave radiation. In these conditions, all kinds of substituted flavones are obtained in excellent yields, sometimes superior to 90 \%, for a reaction time between 1 and 5 min. Not only does this represent a real improvement in the protocol, but, more importantly, no side products have been identified using this method.17

1.5. Indium

Other supported catalysts have been used for the conversion of chalcones into flavones. For example, indium salts are adsorbed on SiO\textsubscript{2}, following a similar procedure to the one used for I\textsubscript{2} on alumina.18 The synthetic procedure using this reagent is presented in Figure 4.6. The main advantage of this protocol is the fast and clean conversion of chalcones into flavones. In 30 min to 2 hours, most of the substitution patterns allow a quantitative conversion, and the absence of solvent renders this procedure environmentally friendly. Because of its short reaction time avoiding decomposition, this protocol is compatible with a variety of substituents, such as hydroxy, methoxy, halogens and amines.

![Chemical structure of indium catalyst for flavone synthesis](image)

\textbf{Figure 4.6.} Synthesis of flavones from chalcones using supported indium catalysts
2. From ynones

The particularity of the synthesis of flavones from chalcones is the dual character of this reaction, involving an oxidation step coupled with a cyclization. Starting with an ynone instead of a chalcone greatly simplifies the problem, by limiting the chemical transformation to the cyclization. A study of the cyclization of ynones into flavones was performed by Miranda and coworkers in 1986.\(^\text{19}\) The synthetic sequence is presented in Figure 4.7. The major disadvantage of this method is the systematic production of a mixture of aurone and flavone. Different conditions (A, B, C) have been studied. The use of a protic solvent (conditions B and C) favors the 1,5-exo dig addition, resulting in the majority formation of aurone, while the use of an aprotic solvent (condition A) favors a 1,6-endo dig cyclization, resulting a majority formation of flavone.

![Reagents and Products](image.png)

Figure 4.7. Cyclisation of ynones into flavones and aurones

Although this method has been used with only a very limited variety of substituents, the mildness of the conditions suggests a compatibility with a wide range of chemical functions. A gold catalyzed version of this reaction has been developed, giving only the aurone derivative in good yields.\(^\text{20}\)
3. From aurones

Another approach to the flavones consists in the isomerization of an aurone. Indeed, these molecules are structural isomers, and a method of direct isomerization of aurone into flavone, that is a ring expansion method, exists.21 The principle of this reaction, presented in Figure 4.8, is to use a nucleophile catalyst, in this case a cyanide ion. The cyanide performs a nucleophilic attack on the most electrophilic site of the aurone.

![Chemical structure of aurone and flavone](image)

Figure 4.8. Cyanide-catalyzed aurone-chalcone isomerization

The enolate thus generated can deprotonate the carbon bound to the cyano group, which strongly stabilizes the negative charge by delocalization. By rearranging, the carbanion opens the 5-membered ring, leaving a chalcone possessing a cyano leaving group. A 1,6 nucleophilic addition regenerating the cyanide ion then occurs, and results in the creation of the flavone.
Another study has been conducted using this reaction to form flavones. The desired compounds are usually obtained in yields ranging from 50 to 70%.

B. Synthesis of flavonols in the literature

1. From chalcones

Flavonols can directly be prepared from chalcones, in one step, via the Algar-Flynn-Oyamada (AFO) reaction, which was described in 1934 by two independent teams. The AFO reaction, for which the general pattern is presented in Figure 4.9, is an oxidative cyclization assisted by hydrogen peroxide in basic media.

![Figure 4.9. General procedure of AFO reaction](image)

The mechanism of this reaction still remains elusive; the different propositions of pathways are presented in Figure 4.10. In any case, all of the proposed mechanisms agree on a flavanonol intermediate being further oxidized into a flavonol. Originally, the formation of an epoxide derivative from the chalcone was postulated, followed by an intramolecular addition, in blue in Figure 4.10, resulting in a flavanonol derivative. This approach has been challenged, through two arguments. The first one proposes a direct addition of the chalcone phenolate over the double bond, resulting in a flavanone enolate, which further reacts with hydrogen peroxide, thus resulting in the flavanonol derivative. This approach corresponds to the red pathway. The other one proposes a concerted reaction between the deprotonated chalcone and the hydrogen peroxide to create the flavanonol derivative. This approach is presented in green.
All the schools of thought agree on the mechanism of formation of the side product aurone from the epoxyde derivative, symbolized in purple on the Figure 4.10, even if they offer different explanations for the formation of flavone.

Figure 4.10. Propositions of mechanism for the Algar-Flynn-Oyamada reaction

The AFO reaction has some drawbacks, such as a high variability of yields, (30-90%), a long reaction time (16 h) and harsh oxidative conditions. The difference in the yields is generally due to the substituents on the B ring. However, although variable, average yields are around 60-70%.

2. From flavones

The simple grafting of a hydroxy group on a flavone skeleton is without any doubt the easiest way to make flavonols. Several hydroxylating techniques are presented below.
2.1. PIDA

Phenyliodine diacetate (PIDA), together with hypervalent iodine compounds, are known to perform all kind of oxidations and hydroxylations.27,28

PIDA is used to generate flavonol from flavone, as shown in Figure 4.11. This process is achieved in two steps. The first consists in the treatment of flavone A with PIDA in alkaline methanol, which results in the creation of compound B in 67% yield. Acidic treatment of B in acetone induces the elimination of the methoxy group, leading to the flavonol C in 85% yield.

![Figure 4.11. Pathway from flavone to flavonol using PIDA](image)

The mechanism of PIDA-mediated hydroxylation is presented in Figure 4.12. The first step consists in the addition of a methoxylate to the flavone A skeleton, generating the enolate B, which coordinates the iodine atom of PIDA, regenerating the ketone function in C. A second methoxylate then undergoes a nucleophilic addition on this ketone function, creating a hemi-acetal D, whose free oxygen eliminates the PIDA molecule by forming the epoxide E. The epoxide function is then opened by a third methoxylate addition, generating a stable acetate F, bearing the hydroxy function of the flavonol.
2.2. LDA / Hydrogen peroxide

Another technique, developed in 1985,29 consists in the synthesis of a 3-lithio flavone derivative by deprotonation of a flavone as a key intermediate. The synthesis is presented in Figure 4.13.
The 3-lithio flavone derivative then reacts with trimethyl borate, and is finally treated with hydrogen peroxide, which allows the creation of the flavonol derivative in quantitative yield, exploiting the known properties of borane derivatives. The synthetic sequence is presented in Figure 4.14.

![Figure 4.14. Hydroxylation of a 3-lithio flavone using trimethyl borate](image)

Developments of this protocol have recently been published, showing a compatibility with hydroxy, methoxy and benzyldene substitutions, with excellent yields.\(^{30,31}\)

2.3. DMDO

An approach of the synthesis of flavonol from flavone by direct oxidation of the double bond can also be achieved. Indeed, as presented in Figure 4.15, the use of dimethylidioxirane (DMDO) on a flavone A in dichloromethane at an initial low temperature, followed by slowly returning to room temperature, results in the creation of the epoxide B in quantitative yields. B is thermally labile, and stirring at room temperature for some hours in chloroform results in the flavonol derivative C. The use of a catalytic amount of p-toluenesulfonic acid (PTSA) creates the same flavonol derivative only in a few minutes. The yields are quantitative.\(^{32}\)

Although this protocol was first studied with a limited variety of substituents, later studies showed the general character of these mild conditions, allowing for example benzoate and acetate substituents.\(^{33}\)
2.4. Oxone

DMDO is known to be generated from acetone using potassium peroxymonosulfate salt, the active component of the reagent commonly known as Oxone*. Recently, a protocol in biphasic conditions generating DMDO in situ has shown to be more efficient than the use of isolated DMDO, with 53% yield. This protocol is presented in Figure 4.16.31

* Oxone is in fact a commercial combination of three salts with the formula 2KHSO₅·KHSO₄·K₂SO₄.
C. Synthesis, analytical and biological properties of ferrocenyl flavones

As part of our strategy of synthesizing ferrocenyl flavonoids, we designed ferrocenyl flavone derivatives, whose general pattern is presented in Figure 4.17, in order to investigate their chemical and biological properties.

Figure 4.17. General pattern of ferrocenyl flavones

1. Synthesis

1.1. From ynones

The standard protocols described in section A.1. of this chapter were applied on the previously-synthesized ferrocenyl chalcones, without success. Indeed, each of these methods that we tried resulted in either decomposition of the starting material or no reaction. Therefore, with the ferrocenyl ynones (series 4) in hand, we investigated their base-catalyzed cyclization. As previously seen, such reactions of organic ynones usually give a mixture of flavones and aurones. The proportion of aurones to flavones was reported to increase when using a protic solvent. In our hands, treatment of 4a, c and h with NaOEt in EtOH at room temperature gave a single orange product that was identified as having the flavone structure with 65-70% purified yield, as shown in Figure 4.18. Although the reaction is slow, taking 24 h, it is very clean. Ferrocenyl flavones constitute series 5.
In this case, the presence of the ferrocene group completely changes the selectivity of this addition, allowing the addition of the phenolate only in one position. Although this result is remarkable, this synthesis of ferrocenyl flavones is not very practical, involving three steps from the ferrocenyl chalcones. Synthesis of ferrocenyl flavones directly from aurones could save one step, and was therefore studied as well.

1.2. From aurones

As presented in section A.3 of this chapter, organic flavones can readily be obtained from aurones by base-assisted or cyanide-assisted isomerization. Isomerization of 3 to 5 was not observed during the formation of 3 in the presence of NaH or pyridine. However, treatment of isolated 3a with KOtBu in EtOH slowly yielded the flavone 5a along with decomposition products. Treatment of aurones 3a-j with KCN in refluxing EtOH allowed a more effective isomerization to flavones 5a-j, complete after 2h with yields of 55-80%. These procedures are presented in Figure 4.19.

This procedure being more efficient both in terms of yield and having fewer steps than the use of the ynone intermediate, we synthesized the complete series 5 using cyanide-mediated isomerization of aurones.
2. Characterization

All compounds were unambiguously characterized using routine techniques, that is to say NMR spectroscopy, mass spectrometry, elemental analysis and so on.

2.1. Crystal structure of 5c

A crystal structure by X-ray diffraction was obtained for compound 5c. This structure and associated data are presented in Figure 4.20 and table 4.1. Whereas the structures of the ferrocenyl aurone and ferrocenyl ynone show a planar arrangement of the Cp ring of the ferrocene with the organic pi system, here the Cp ring is twisted out of plane by 18.71°.
Figure 4.20. Structure of compound 5c created by Hg software. Cif data has been deposited with the Cambridge database number 823196

| Table 4.1. Crystal data for molecule 5c |
|-----------------|-----------------|--------|
| **5c** | **Z** | **8** |
| C_{19}H_{13}BrFeO_{2} | T | 200 |
| **M** | 409.06 | No. reflections |
| **Crystal system** | monoclinic | 36796 |
| **Space group** | P21/c | No. independent reflections |
| **a (Å)** | 7.3599(2) | R_{int} |
| **b (Å)** | 15.1457(5) | 2\(\theta\) |
| **c (Å)** | 27.5266(8) | 0.037 |
| **β (°)** | 90.2090(10) | 61.1° |
| **V (Å³)** | 3068.39(16) | 0.0624 |

2.2. UV/visible spectroscopy of 5a-j

Similarly to the other classes of ferrocenyl flavonoids, the spectral properties of ferrocenyl flavones are quite different from those of their organic analogs. Their color, usually orange-red, is more saturated than their organic counterparts, which are pale yellow to colorless. Ferrocenyl flavones also present a supplementary absorption band, whose wavelength is between 450 and 500 nm, induced by the presence of ferrocene. However, compared to
ferrocenyl chalcones and aurones, their color is much less saturated, and the molar extinction coefficients are smaller. This is likely due to the deviation from planarity observed in the X-ray crystal structure.

UV-visible absorption spectra of 5a-j were recorded, and the molar extinction coefficients (ε) at λ_max in the visible region were calculated for each molecule. The results are summarized in Table 4.2. In the case of series 5, the usual tendency of the transitions to be less energetic with electron-withdrawing substituents is still valid, although less clear than for series 3. The methoxy substituents seem to have no effect when compared to the unsubstituted molecule, while halogens decrease the energy of the least energetic transition, and the effect is stronger when 2 halogens are grafted to the molecule.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_max (nm)</th>
<th>ε</th>
<th>Compound</th>
<th>λ_max (nm)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>362</td>
<td>1330</td>
<td>5f</td>
<td>376</td>
<td>2953</td>
</tr>
<tr>
<td></td>
<td>466</td>
<td>622</td>
<td></td>
<td>477</td>
<td>1900</td>
</tr>
<tr>
<td>5b</td>
<td>371</td>
<td>3016</td>
<td>5g</td>
<td>361</td>
<td>3384</td>
</tr>
<tr>
<td></td>
<td>473</td>
<td>1738</td>
<td></td>
<td>467</td>
<td>1448</td>
</tr>
<tr>
<td>5c</td>
<td>369</td>
<td>1804</td>
<td>5h</td>
<td>364</td>
<td>3362</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>935</td>
<td></td>
<td>463</td>
<td>979</td>
</tr>
<tr>
<td>5d</td>
<td>367</td>
<td>2947</td>
<td>5i</td>
<td>366</td>
<td>3397</td>
</tr>
<tr>
<td></td>
<td>487</td>
<td>1592</td>
<td></td>
<td>463</td>
<td>1397</td>
</tr>
<tr>
<td>5e</td>
<td>368</td>
<td>3194</td>
<td>5j</td>
<td>366</td>
<td>2891</td>
</tr>
<tr>
<td></td>
<td>492</td>
<td>1754</td>
<td></td>
<td>464</td>
<td>1128</td>
</tr>
</tbody>
</table>

2.3. IR spectroscopy

IR spectra of 5a-j were recorded and the values of the characteristic peaks are listed in Table 4.3. Similarly to series 3, the electronic effects of the substituents are not characteristic in the stretching frequencies of the C=C and C=O bonds. However, comparisons between series
3 and series 5 are interesting and illustrative, particularly because characteristic absorption frequencies in the IR allow the differentiation between the aurone and flavone isomers. Contributions of mesomeric canonical structures in the flavone result in C=O and C=C bond orders of less than two. Therefore, in the flavone geometry, the C=O and C=C stretching frequencies are expected at lower energy than those found in the aurones, which is exactly what is observed.

Table 4.3. IR characteristic values (in cm$^{-1}$) for 5a-j

<table>
<thead>
<tr>
<th></th>
<th>C=O</th>
<th>C=C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>1631</td>
<td>1605</td>
</tr>
<tr>
<td>5b</td>
<td>1639</td>
<td>1608</td>
</tr>
<tr>
<td>5c</td>
<td>1643</td>
<td>1612</td>
</tr>
<tr>
<td>5d</td>
<td>1646</td>
<td>1612</td>
</tr>
<tr>
<td>5e</td>
<td>1643</td>
<td>1612</td>
</tr>
<tr>
<td>5f</td>
<td>1639</td>
<td>n.d.</td>
</tr>
<tr>
<td>5g</td>
<td>1631</td>
<td>1604</td>
</tr>
<tr>
<td>5h</td>
<td>1627</td>
<td>1612</td>
</tr>
<tr>
<td>5i</td>
<td>1635</td>
<td>1608</td>
</tr>
<tr>
<td>5j</td>
<td>1643</td>
<td>1608</td>
</tr>
</tbody>
</table>

2.4. Electrochemistry

The oxidation chemistry of 5a-j was analyzed by cyclic voltammetry. The results are presented in Table 4.4. Like for ferrocenyl chalcones, electron-withdrawing groups increase the oxidation potential of the ferrocene moiety, while electron-donating groups decrease it. The only exceptions to this rule are the case of 5e, where R$_1$ = R$_3$ = Br: the second bromine
atom does not seem to have any effect when compared to the mono-bromo derivative 5c, and the case of 5h, where R3 = OMe, for which the substituent seems to have a weak reverse effect: the potential is increased when compared to the unsubstituted derivative 5a. However, this effect is very weak, 5a and 5h have nearly the same oxidation potential.

Table 4.4. Shift of the ferrocene oxidation potential for compounds 5a-j

<table>
<thead>
<tr>
<th>Compound</th>
<th>E1/2 (Fc+/Fc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>0.240</td>
</tr>
<tr>
<td>5b</td>
<td>0.251</td>
</tr>
<tr>
<td>5c</td>
<td>0.257</td>
</tr>
<tr>
<td>5d</td>
<td>0.275</td>
</tr>
<tr>
<td>5e</td>
<td>0.260</td>
</tr>
<tr>
<td>5f</td>
<td>0.277</td>
</tr>
<tr>
<td>5g</td>
<td>0.222</td>
</tr>
<tr>
<td>5h</td>
<td>0.247</td>
</tr>
<tr>
<td>5i</td>
<td>0.228</td>
</tr>
<tr>
<td>5j</td>
<td>0.211</td>
</tr>
</tbody>
</table>

As for ferrocenyl chalcones and aurones, we plotted the wavenumber corresponding to the visible electronic transition as a function of the ferrocene moiety potential for each molecule. The graph is presented in Figure 4.21. In case of series 5, the correlation is very approximate, but shows a tendency for the visible transition to increase in energy with electron-donating groups, due to a predominant destabilization of the π* acceptor orbital.
Figure 4.21. Plot of the wavenumber in function of the ferrocene moiety oxidation potential for each compound of series 5

2.5. Structural comparisons between flavones and aurones

The bulk solids of representative aurones and flavones were structurally characterized by 2D HMQC and HMBC, as presented in Figure 4.22. To facilitate the discussion, the numbering of the atoms of 3c and 5c is also presented in Figure 4.22. For 3c, the HMBC experiment showed vinylic proton (H_10) correlations with the ketone carbon (C_3) and C_α of C_5H_4, indicating an aurone structure. For 5c, we observed correlations involving the vinylic H_3 with C_5H_4-C_ippso and aromatic C_10 and weaker correlations with the aromatic C_5, consistent with a flavone structure.
Figure 4.22. 2D HMBC spectra for 3c and 5c and numbering of the atoms of 3c and 5c.

The 2D NMR experiments furthermore allowed us to fully attribute the 1H and 13C spectra of 3a, c and h and 5a, c and h. Characteristic peaks, presented in Table 4.5, are the vinyl proton and carbon as well as the tertiary carbon adjacent to the oxo group. In the aurone, the vinyl proton and carbon are in the 4-position of the ketone, and thus are deshielded compared to the flavone structure, where these atoms are in the 3-position of the ketone. Similarly, the quaternary carbon is in the shielded 3-position in the aurone and the deshielded 4-position in the flavone. While substitution on the phenyl ring of the benzofurone or benzopyrone
groups only slightly influence the chemical shifts of characteristic peaks, a given structural isomer can be easily identified by the large difference chemical shifts.

Table 4.5. Selected 1H and 13C NMR for 3a, c, h and 5a, c, h

<table>
<thead>
<tr>
<th></th>
<th>δ (H$_{\text{vinyl}}$)/ppm</th>
<th>δ (CH$_{\text{vinyl}}$)/ppm</th>
<th>δ (C$_q$)/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>6.90 (H$_{10}$)</td>
<td>116.6 (C$_{10}$)</td>
<td>146.1 (C$_2$)</td>
</tr>
<tr>
<td>3c</td>
<td>6.91 (H$_{10}$)</td>
<td>117.6 (C$_{10}$)</td>
<td>146.5 (C$_2$)</td>
</tr>
<tr>
<td>3h</td>
<td>6.88 (H$_{10}$)</td>
<td>116.4 (C$_{10}$)</td>
<td>146.6 (C$_2$)</td>
</tr>
<tr>
<td>5a</td>
<td>6.45 (H$_3$)</td>
<td>105.7 (C$_3$)</td>
<td>168.3 (C$_2$)</td>
</tr>
<tr>
<td>5c</td>
<td>6.47 (H$_3$)</td>
<td>105.8 (C$_3$)</td>
<td>168.8 (C$_2$)</td>
</tr>
<tr>
<td>5h</td>
<td>6.43 (H$_3$)</td>
<td>105.1 (C$_3$)</td>
<td>167.9 (C$_2$)</td>
</tr>
</tbody>
</table>

3. Biological properties

3.1. Antiproliferative effects on B16 melanoma cells

Similarly to series 1, 2 and 3, the antiproliferative effects of compounds 5a-j were evaluated by the MTT test on murine B-16 melanoma cells in collaboration with Guy G. Chabot. The results are presented in Figure 4.23, together with the corresponding organic flavone, series 6. From the figure, we can easily see that although more active than their organic analogues, ferrocenyl flavones have generally low antiproliferative effects, with IC$_{50}$ values superior to 35 μM. The least active compound is the dibromo-substituted 5e, with an IC$_{50}$ value of 91 μM.
Figure 4.23. Structure of series 6 and IC\textsubscript{50} values (\textmu M) of compounds 5a-j and 6a-j on B16 murine melanoma cells

3.2. Antiangiogenic effects EA-hy 926 endothelial cells

Antiangiogenic properties were also measured for series 5 and 6. The minimal rounding up concentrations against EA-hy 926 endothelial cells are presented in Figure 4.24.

From this figure, we can see that both series 5 and 6 present excellent activity, with minimal concentration values of 1 \textmu M, rendering them good candidates as antiangiogenic agents. We can also observe that although possessing the same substitution pattern, no parallel can be made between the members of series 5 and 6.
Figure 4.24. Minimal concentration (μM) of 5a-j and 6a-j for rounding up of EA-hy 926 cells

The ferrocenyl flavone 5e is of particular interest, with a minimal concentration for rounding up of EA-hy 926 cells of 1 μM, and an IC$_{50}$ value of 91 μM on B16 murine melanoma cells, as a pure antivascular agent.

3.3. Antibacterial properties

Similarly to series 1 and 3, compounds of series 5 have been evaluated as anti-bacterial agents, in collaboration with Claude Jolivalt from Chimie ParisTech. The results of the test at 100 mg/mL are presented in Table 4.6.

From this table, it is clear that the series 5 is less active than series 3, although generally more active than series 1. The methoxy-substituted derivatives seem once again to be more potent than the halogen-substituted derivatives.
Table 4.6. Screening of series 5 at 100 µg/mL

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus MsrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>5d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5f</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5g</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>5h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.d.</td>
</tr>
<tr>
<td>5i</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>5j</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

A second screening was performed for 5a-j, at a concentration of 20mg/mL. The results are presented in Table 4.7. At this concentration, all activity has disappeared. Thus we can conclude that series 5 is not very interesting for its antibacterial properties.
Table 4.7. Screening of series 5 at 20 μg/mL

<table>
<thead>
<tr>
<th></th>
<th>E. coli ATCC25922</th>
<th>S. aureus ATCC25923</th>
<th>S. aureus 1199B</th>
<th>S. aureus Msra</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5f</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5i</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5j</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

D. Synthesis and analytical properties of ferrocenyl flavonols

1. Synthesis

For the synthesis of ferrocenyl flavonols, the AFO reaction was attempted from the chalcones, but without success; treatment of ferrocenyl chalcones with hydrogen peroxide only resulted in decomposition products. The result was the same in case of ferrocenyl flavones as starting materials. Other procedures such as the reaction of ferrocenyl flavones with PIDA or DMDO only decomposed the starting material as well. We subsequently tried the less often used Oxone protocol described in section B.2.4 of this chapter, that is in a carbonate buffer-acetone/DMC biphasic solvent system.
This protocol was a success for several substitutions, and the synthesis of the first examples of ferrocenyl flavonols, series 7, is presented in Figure 4.25.

![Synthesis diagram]

7a: $R_1=R_2=R_3=H$ (80%)
7c: $R_3=Br$ (76%)
7g: $R_2=OMe$ (78%)

Figure 4.25. Synthesis of ferrocenyl flavonols using oxone

2. Characterization

2.1. UV/visible spectroscopy of 7a, c and g

UV/visible spectra of the three ferrocenyl flavonols were recorded, and the characteristic peaks are presented in Table 4.6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max} (nm)</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>348</td>
<td>12410</td>
</tr>
<tr>
<td></td>
<td>483</td>
<td>2150</td>
</tr>
<tr>
<td>7c</td>
<td>352</td>
<td>14190</td>
</tr>
<tr>
<td></td>
<td>494</td>
<td>3190</td>
</tr>
<tr>
<td>7g</td>
<td>342</td>
<td>10598</td>
</tr>
<tr>
<td></td>
<td>461</td>
<td>2021</td>
</tr>
</tbody>
</table>
2.2. IR spectroscopy

IR spectra of the three ferrocenyl flavonols were also recorded, and the characteristic stretching bands are presented in Table 4.7. From the results, we can observe that the C=O stretching is stronger than in the case of flavone, and resembles that observed in the aurone series. This effect can be attributed to the hydroxy group in position 3, which depolarizes the C=O bond by its electron withdrawing effects. The characteristics of the C=C bond however, remains unchanged when compared with flavones.

<table>
<thead>
<tr>
<th></th>
<th>OH</th>
<th>C=O</th>
<th>C=C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>3247</td>
<td>1731</td>
<td>1608</td>
</tr>
<tr>
<td>7c</td>
<td>3309</td>
<td>1739</td>
<td>1604</td>
</tr>
<tr>
<td>7g</td>
<td>3251</td>
<td>1716</td>
<td>1608</td>
</tr>
</tbody>
</table>

3. Biological properties

Compounds 7a, 7c and 7g have so far only been evaluated on B16 and EA-hy 926 cells. These three compounds seem completely inoffensive to both cell lines. Their IC$_{50}$ values for B16 cells are greater than 100 μM, and their minimum concentration for rounding-up of EA-hy 926 cells is also superior to 100 μM.

Compounds 7a, 7c and 7g do not seem suitable for anti-angiogenic applications. They are currently being tested against other biological targets, such as bacteria.
E. Experimental

Synthesis and characterization of ferrocenyl flavones 5a-j.

From ynone: Ferrocene ynone 4 (40 mg) was dissolved in EtOH. NaOEt (excess) was added and the solution was stirred at rt for 24 h, changing from red to orange. The reaction mixture was poured into H₂O and HCl 12 M, extracted with CH₂Cl₂ and washed with water. The organic phase was dried over MgSO₄, filtered and evaporated. The product was purified using a silica gel column, using petroleum ether/dichloromethane 1/1 as an eluent and was isolated as an orange solid. Yields after purification: 68% (5a), 65% (5b) and 63% (5c).

From aurone: Alternatively, ferrocenyl aurone 3 (30 mg) and potassium cyanide (1.5 equiv.) were dissolved in ethanol (25 mL), and stirred at reflux for 2 h; the solution went from deep violet to deep red. The solution was then allowed to return to rt before being poured into an aqueous solution of NaOH 1M (100 mL). The mixture was extracted with EtOAc (3x50 mL), and washed with water. The organic phase was dried over MgSO₄, filtered and evaporated, and the crude product was purified using a silica gel column, using petroleum ether/ethyl acetate 60:40 as an eluent and was isolated as an orange solid.

2-ferrocenyl-chromen-4-one, 5a. Orange solid, mp 110°C. δH (400 MHz; CDCl₃) 4.18 (s, 5H, C₅H₅), 4.54 (t, ³J = 1.8 Hz, 2H, C₅H₄), 4.88 (t, ³J = 1.8 Hz, 2H, C₅H₄), 6.48 (s, 1H, H₃), 7.39 (td, ³J = 7.9 Hz, ⁴J = 1.1 Hz, 1H, H₆), 7.51 (dd, ³J = 7.2 Hz, ⁴J = 1.1 Hz, 1H, H₈), 8.63-7.69 (m, 1H, H₇), 8.21 (d, ³J = 7.9 Hz, ⁴J = 1.6 Hz, 1H, H₅). δC (100 MHz; CDCl₃) 67.6 (C₅H₄), 70.3 (C₅H₅), 71.5 (C₅H₄), 75.1 (C₅H₄-Cipso), 105.9 (C₃), 117.8 (C₈), 124.3 (C₁₀), 125.1(C₆), 125.8 (C₅), 133.4 (C₇), 156.3 (C₉), 168.3 (C₂), 177.6 (C₄), HRMS (ESI) calcd. for C₁₉H₁₄FeO₂Na⁺: 353.02409, found: 353.02354.
6-chloro-2-ferroceny1-chromen-4-one, 5b. Orange solid, mp 202°C. δ_H (300 MHz; CDCl₃) 4.17 (s, 5H, C₅H₅), 4.54 (s, 2H, C₅H₅), 4.85 (s, 2H, C₅H₅), 6.45 (s, 1H, Vinyl), 7.45 (d, J = 8.5 Hz, 1H, Aromatic), 7.59 (d, J = 8.5 Hz, 1H, Aromatic), 8.16 (s, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 67.5 (C₅H₅), 70.3 (C₅H₅), 71.6 (C₅H₅), 74.5 (C₅H₅ ipso), 105.6 (Vinyl), 111.6 (Aromatic), 119.4 (Aromatic), 125.1 (Aromatic), 130.9 (Aromatic), 133.4 (Aromatic), 154.5 (Aromatic), 168.7 (vinyl), 176.2 (C=O). HRMS (ESI) calcd. for C₁₉H₁₄ClFeO₂⁺: 365.0032, found: 365.0027.

6-bromo-2-ferroceny1-chromen-4-one, 5c. Orange solid, mp 177°C. δ_H (400 MHz; CDCl₃) 4.18 (s, 5H, C₅H₅), 4.56 (t, J = 1.9 Hz, 2H, C₅H₅), 4.87 (t, J = 1.9 Hz, 2H, C₅H₅), 6.47 (s, 1H, H₃), 7.40 (d, J = 8.8 Hz, 1H, H₅), 7.75 (dd, J = 8.8 Hz, 4J = 2.4 Hz, 1H, H₇), 8.34 (d, J = 2.4 Hz, 1H, H₅). δ_C (100 MHz; CDCl₃), 67.6 (C₅H₅), 70.4 (C₅H₅), 71.8 (C₅H₅), 74.6 (C₅H₅-C₈pso), 105.8 (C₃), 118.5 (C₉), 119.8 (C₉), 125.7 (C₁₀), 128.5 (C₅), 136.3 (C₇), 155.1 (C₉), 168.8 (C₈), 176.0 (C₄), HRMS (ESI) calcd. for C₁₉H₁₃BrFeO₂⁺: 430.93460 and 432.93256 found: 430.93406 and 432.93201.

6,8-dichloro-2-ferroceny1-chromen-4-one, 5d. Orange solid, mp 193°C. δ_H (300 MHz; CDCl₃) 4.18 (s, 5H, C₅H₅), 4.58 (t, J = 1.9 Hz, 2H, C₅H₅), 4.88 (t, J = 1.9 Hz, 2H, C₅H₅), 6.44 (s, 1H, Vinyl), 7.71 (d, J = 1.8 Hz, 1H, Aromatic), 8.07 (d, J = 1.8, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 67.7 (C₅H₅), 70.4 (C₅H₅), 71.9 (C₅H₅), 74.1 (C₅H₅ ipso), 105.3 (Vinyl), 123.5 (Aromatic), 123.9 (Aromatic), 125.9 (Aromatic), 130.5 (Aromatic), 133.3 (Aromatic), 150.4 (Aromatic), 168.9 (Vinyl), 175.4 (C=O), HRMS (ESI) calcd. for C₁₉H₁₃Cl₂FeO₂⁺: 398.9642, found: 398.9642. (Cl NH₃) m/z 408.9-410.9 (MH⁺).

6,8-dibromo-2-ferroceny1-chromen-4-one, 5e. Orange solid, mp 194°C. δ_H (300 MHz; CDCl₃) 4.22 (s, 5H, C₅H₅), 4.59 (t, J = 1.9 Hz, 2H, C₅H₅), 4.93 (t, J = 1.9 Hz, 2H, C₅H₅), 6.44 (s, 1H, Vinyl), 8.01 (d, J = 2.4 Hz, 1H, Aromatic), 8.27 (d, J = 2.4 Hz, 1H, Aromatic). δ_C (75 MHz;
CDCl₃, 67.8 (C₅H₄), 70.4 (C₅H₅), 71.8 (C₅H₆), 74.1 (C₅H₄ ipso), 105.2 (Vinyl), 112.5 (Aromatic), 118.1 (Aromatic), 127.8 (Aromatic), 136.6 (Aromatic), 138.8 (Aromatic), 151.7 (Aromatic), 169.0 (Vinyl), 175.3 (C=O), HRMS (ESI) calcd. for C₁₉H₁₃⁷⁹Br₂FeO₂⁺: 486.8632, found: 486.8629.

6,8-difluoro-2-ferrocenyl-chromen-4-one, 5f. Orange solid, mp 155°C. δₙ (400 MHz; CDCl₃) 4.15 (s, 5H, C₅H₅), 4.52 (s, 2H, C₅H₄), 4.85 (s, 2H, C₅H₄), 6.40 (s, 1H, Vinyl), 7.16 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H, Aromatic), 7.59 (d, J = 8.8 Hz, 1H, Aromatic), δₙ (100 MHz; CDCl₃), 67.7 (C₅H₆), 70.5 (C₅H₅), 71.9 (C₅H₄), 74.2 (C₅H₄ ipso), 105.4 (Vinyl), 106.0 (dd, ²J = 23.7 Hz ⁴J = 4.0 Hz Aromatic), 108.7 (dd, ³J = 20.1 Hz, ²J = 28.5 Hz, Aromatic), 126.8 (bs, Aromatic), 141.9 (d, ³J = 9.4 Hz, Aromatic), 151.3 (dd, ³J = 256 Hz, ²J = 11.6 Hz, Aromatic), 158.3 (dd, ³J = 249 Hz, ²J = 9.7 Hz, Aromatic), 168.7 (Vinyl), 175.5 (C=O), HRMS (ESI) calcd. for C₁₉H₁₃F₂FeO₂⁺: 367.0233, found: 367.0244.

7-methoxy-2-ferrocenyl-chromen-4-one, 5g. Orange solid, mp 174°C. δₙ (300 MHz; CDCl₃) 3.93 (s, 3H, OMe) 4.17 (s, 5H, C₅H₅), 4.50 (t, J = 1.8 Hz, 2H, C₅H₄), 4.83 (t, J = 1.8 Hz, 2H, C₅H₄), 6.40 (s, 1H, Vinyl), 6.89 (d, J = 2.3 Hz, 1H, Aromatic), 6.95 (dd, J = 2.3 Hz, J = 8.9 Hz, 1H, Aromatic), 8.10 (d, J = 8.9 Hz, 1H, Aromatic). δₙ (75 MHz; CDCl₃) 55.6 (OMe), 67.1 (C₅H₄), 70.0 (C₅H₅), 71.0 (C₅H₄), 75.1 (C₅H₄ ipso), 100.1 (Vinyl), 113.7 (Aromatic), 117.7 (Aromatic), 126.7 (Aromatic), 157.7 (Aromatic), 163.6 (Aromatic), 167.4 (Vinyl), 176.8 (C=O), HRMS (ESI) calcd. for C₂₀H₁₇FeO₃⁺: 361.0520, found: 361.0527.

6-methoxy-2-ferrocenyl-chromen-4-one, 5h. Orange solid, mp 140°C. δₙ (300 MHz; CDCl₃) 3.91 (s, 3H, OMe), 4.17 (s, 5H, C₅H₅), 4.52 (t, ³J = 1.7 Hz, 2H, C₅H₄), 4.87 (t, ³J = 1.7 Hz, 2H, C₅H₄), 6.47 (s, 1H, H₃), 7.26 (dd, ³J = 9.1 Hz, ⁴J = 3.0 Hz, 1H, H₃), 7.44 (d, ³J = 9.1 Hz, 1H, H₆), 7.59 (d, ⁴J = 3.0 Hz, 1H, H₆). δₙ (75 MHz; CDCl₃), 55.9 (OMe), 67.4 (C₅H₄), 70.2 (C₅H₅), 71.3 (C₅H₄), 75.0 (C₅H₄-Cₐipso), 104.9 (C₅), 105.1 (C₃), 119.1 (C₈), 123.1 (C₇), 124.7 (C₁₀), 151.0 (C₉), 156.8 (C₆), 167.9 (C₂), 177.3 (C₄), HRMS (ESI) calcd. for C₂₀H₁₆FeO₃Na⁺: 383.03466, found: 383.03411.
5-methoxy-2-ferrocenyl-chromen-4-one, 5i. Orange solid, mp 165°C. δ_H (300 MHz; CDCl₃) 3.99 (s, 3H, OMe), 4.16 (s, 5H, C₅H₅), 4.49 (t, J = 1.8 Hz, 2H, C₅H₄), 4.82 (t, J = 1.8 Hz, 2H, C₅H₄), 6.38 (s, 1H, Vinyl), 6.80 (d, J = 8.2 Hz, 1H, Aromatic), 7.06 (d, J = 8.4 Hz, 1H, Aromatic), 7.54 (t, J = 8.4 Hz, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 55.3 (OMe), 67.0 (C₄H₄), 69.9 (C₅H₅), 70.9 (C₅H₅), 74.8 (C₅H₄ ipso), 106.1 (Aromatic), 107.7 (Aromatic), 109.7 (Aromatic), 114.4 (Vinyl), 133.0 (Aromatic), 158.1 (Aromatic), 159.5 (Aromatic), 165.4 (Vinyl), 177.4 (C=O), HRMS (ESI) calcd. for C₂₀H₁₇FeO₃⁺: 361.0527, found: 361.0527.

5,7-dimethoxy-2-ferrocenyl-chromen-4-one, 5j. Orange solid, mp 179°C. δ_H (300 MHz; CDCl₃) 3.90 (s, 3H, OMe), 3.93 (s, 3H, OMe), 4.14 (s, 5H, C₅H₅), 4.45 (t, J = 1.8 Hz, 2H, C₅H₄), 4.77 (t, J = 1.8 Hz, 2H, C₅H₄), 6.30 (s, 1H, Vinyl), 6.34 (d, J = 2.3 Hz, 1H, Aromatic), 6.48 (d, J = 2.3 Hz, 1H, Aromatic). δ_C (75 MHz; CDCl₃) 55.4 (OMe), 56.1 (OMe), 66.8 (C₄H₄), 69.8 (C₅H₅), 70.6 (C₅H₅), 74.6 (C₅H₄ ipso), 92.4 (Aromatic), 95.6 (Aromatic), 106.9 (Aromatic), 109.0 (Vinyl), 159.5 (Aromatic), 160.5 (Aromatic), 163.4 (Aromatic), 164.5 (Vinyl), 176.6 (C=O). HRMS (ESI) calcd. for C₂₁H₁₉FeO₄⁺: 391.0622, found: 391.0633.

Synthesis and characterization of ferrocenyl flavonols 7a-7b. Carbonate buffer (15 mL) was added to a solution of ferrocenyl flavone 5 (40 mg) in DCM/acetone (2:1, 10 mL) and stirred vigorously at rt. A 5 mL aqueous solution of oxone (0.6 g) was added in four portions every 10 min. and the pH of the solution was checked to ensure that it remained alkaline (pH 9). The consumption of starting material was followed by TLC. After the reaction was complete, the two phases were separated and the aqueous phase was extracted with DCM (3x50 mL). The combined organic layer was washed with sodium thiosulphate solution, dried with MgSO₄, filtered and evaporated; The crude product was purified using a silica gel column with petroleum ether/ethyl acetate 80:20 as eluent.

3-hydroxy-2-ferrocenyl-chromen-4-one, 7a. Orange solid, mp 160°C. δ_H (400 MHz; CDCl₃) 4.17 (s, 5H, C₅H₅), 4.54 (t, ḳJ = 1.8 Hz, 2H, C₅H₄), 5.19 (t, ḳJ = 1.8 Hz, 2H, C₅H₄), 7.40 (td, ḳJ = 8.0 Hz, ᶫJ = 1.1 Hz, 1H, H₆), 7.54 (d, ḳJ = 7.2 Hz, 1H, H₈), 7.65-7.70 (m, 1H, H₇), 8.24 (dd, ḳJ = 7.9 Hz, ᶫJ = 1.6 Hz, 1H, H₅). δ_C (100 MHz; CDCl₃) 68.7 (C₄H₄), 70.0 (C₅H₅), 71.0 (C₅H₅), 74.2 (C₅H₄-
C_{ipsos}, 118.1 (C_8), 121.3 (C_{10}), 124.5 (C_5 or C_6), 125.4 (C_6 or C_7), 132.9 (C_7), 136.9 (C_3), 150.5 (C_2), 155.4 (C_9), 171.5 (C_4), HRMS (ESI) calcd. for C_{19}H_{14}FeO_3^+: 346.0292, found: 346.0286.

![Diagram](image1)

6-bromo-3-hydroxy-2-ferrocenyl-chromen-4-one 7c. Orange solid, mp 178°C. δ_H (400 MHz; CDCl_3) 4.16 (s, 5H, C_3H_5), 4.55 (t, 3_J = 1.8 Hz, 2H, C_5H_4), 5.17 (t, 3_J = 1.8 Hz, 2H, C_5H_4), 7.43 (d, 3_J = 8.8 Hz, 1H, H_8), 7.74 (dd, 3_J = 8.8 Hz, 4_J = 2.3 Hz, 1H, H_7), 8.36 (d, 4_J = 2.3 Hz, 1H, H_5). δ_C (100 MHz; CDCl_3), 68.8 (C_3H_4), 70.1 (C_5H_5), 71.2 (C_5H_4), 73.7 (C_5H_4-C_{ipsos}), 117.8 (C_6), 120.0 (C_8), 122.7 (C_{10}), 127.9 (C_3), 135.8 (C_7), 137.0 (C_5), 151.2 (C_2), 154.1 (C_9), 170.2 (C_4), (HRMS (ESI) calcd. for C_{19}H_{13}BrFeO_3^+: 423.9397 and 425.9377, found: 423.9392 and 425.9371.

![Diagram](image2)

7-methoxy-3-hydroxy-2-ferrocenyl-chromen-4-one 7g. Orange solid, δ_H (400 MHz; CDCl_3) 3.90 (s, 3H, OMe), 4.11 (s, 5H, C_3H_5), 4.46 (t, 3_J = 1.9 Hz, 2H, C_5H_4), 5.10 (t, 3_J = 1.9 Hz, 2H, C_5H_4), 6.85 (d, 4_J = 2.3 Hz, 1H, H_8), 6.95 (dd, 3_J = 8.9 Hz, 1H, H_6), 8.08 (d, 3_J = 8.9 Hz, 1H, H_5). δ_C (100 MHz; CDCl_3), 55.9 (OMe) 68.4 (C_3H_4), 70.0 (C_5H_5), 70.7 (C_5H_4), 74.5 (C_5H_4-C_{ipsos}), 100.0 (C_8), 114.5 (C_9), 115.2 (C_{10}), 126.7 (C_3), 136.5 (C_5), 149.4 (C_2), 157.3 (C_9), 163.8 (C_7), 171.2 (C_4), (HRMS (ESI) calcd. for C_{20}H_{16}FeO_4^+: 376.03980, found: 376.03939.

![Diagram](image3)
Cytotoxicity. Murine B16 melanoma was grown in Dulbecco’s modified essential medium (DME) containing 2 mM l-glutamine, 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin 37°C, 5% CO₂). Exponentially growing cancer cells were plated onto 96-well plates at 5,000 cells per well in 200 μL DME; and 24 h later, the cells were exposed for 48 h to the solvent alone or to the test compound at the indicated concentrations. Viability was assessed using the MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium) test, and absorbance was read at 562 nm in a microplate reader (BioKinetics Reader, EL340, Fisher Bioblock Scientific, Illkirch, France). Control cells were exposed to 1% DMSO. Experiments were run in triplicate and repeated 3 times. Results are presented as the inhibitory concentrations for 50% (IC₅₀) of cells for a 48 h exposure time.

Morphologic Effects on E. hy 926 Endothelial Cells. To assess the effect of 3a-j on the morphology of endothelial cells EA-hy 926 endothelial cells were used. Cells were grown in DME containing 2 mM l-glutamine, 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin (37°C, 5% CO₂). Exponentially growing cells were plated onto 96-well plates at 5,000 cells/200 μL/well. Twenty-four h after plating, the medium was aspirated, and 100 μL of medium containing the test compound was added to the well (triplicate) at the indicated final concentrations (37°C, 5% CO₂), and 2 h later digital photographs were recorded of representative center areas of each well at a magnification of ×320. Results are presented as the efficacious concentration for the change in cell shape for 50% of cells for a 2 h exposure time (EC₅₀) relative to controls.

Antibacterial activity

The inhibitory potential of the flavonoid derivatives was tested on four bacteria strains:

- *E. coli* ATCC 25922 (Gram negative strain)
- *Staphylococcus aureus* (ATCC 25923, sensitive Gram positive strain),
• *Staphylococcus aureus* 1199B: resistant to fluoroquinolones due notably to the overexpression of the NorA efflux pump (G. W. Kaatz, S. M. Seo, *Antimicrob. Agents Chemother.* 1995, 39, 2650-2655)

• *Staphylococcus aureus* RN4220/pUL5054: resistant to erythrocycin by overexpressing the efflux pump MsrA from the high-copy pUL5054 plasmid (JL Ross, EA Eady, JH Cove, S Baumberg, Gene 1996, 183, 143-148).

The compounds were firstly solubilized in DMSO at 10 mg/mL and screened for their antibacterial activity in 96 wells at 100 and 20 mg/L. However, the high absorbance of some of the tested compounds interfered with the measurement of bacterial growth that was assayed at 620 nm.

Flavonoid derivatives were dispensed in a 96-wells microplate by dilutions in Muller-Hinton medium (MH, Bio Rad) using a Biomek 2000 (Beckman) handling robot. 100 μL of the bacterial inoculum (an overnight culture at 37 °C in 5 mL MH diluted 100-fold) was then added in each well. The total volume was 200 μL in each well and the final bacteria concentration 10^6 CFU/mL (CFU: colony forming unit). Growth was assayed with a microplate reader by monitoring absorption at 620 nm after 1, 2, 5, 7 and 24 h incubation at 37°C. In addition, the plates were read visually after 24 hours incubation. The activity of the compounds was determined after 24 h incubation at 37°C. Control wells were MH broth containing 5μL of DMSO. In addition, two controls containing a sub-inhibitory or a inhibitory antibiotic concentration for the tested strain were performed. The antibiotics used were ampicillin (0.5 and 32 μg/mL) for *E. coli*, kanamycin (0.5 and 16 μg/mL) for *S. aureus* ATCC 25923, ciprofloxacin (4 and 64 mg/L) for *S. aureus* 1199B and erythromycin (16 and 256 mg/L) for *S. aureus* RN4220/pUL5054.
References

5: Tanaka, T.; Iwashima, K.; Matsuura, S. “Synthetic Studies of the Flavone Derivatives. X. The Use of 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone in the Dehydrogenation of 2’-Hydroxychalcones” Yakugaku Zasshi 1984 104, 1306-1308

18: Ahmed, N.; Ali, H.; van Lier, J. E. “Silica gel supported InBr₃ and InCl₃: new catalysts for the facile and rapid oxidation of 2’-hydroxychalcones and flavanones to their corresponding flavones under solvent free conditions” Tet. Lett. 2005 46, 253–256

Conclusions and perspectives

Flavonoids constitute one of the largest classes of antioxidants from natural sources, specifically, plants. Due to their presence from the first stages of life on earth, animal and plants have evolved in the presence of flavonoids. They exhibit an incredible broadness of biological effects in plants, as well as in animals, where they can interact with all kinds of biological targets. Thanks to their most famous characteristic, that is their antioxidant behavior, they protect mammals against all manners of aggressions, and can help prevent diseases such as cancer.

The combination of a bioactive molecule with a ferrocene moiety is known in medicinal chemistry to increase the activity and therapeutic spectrum of the parent compound. In our case, this combination results in the discovery of the first ferrocenyl flavones, aurones, and flavonols from their precursor chalcones. This work, undertaken with a medicinal chemistry perspective, concerns the design, synthesis, chemical characterization and preliminary biological evaluation of such molecules, hopefully with the result of identifying promising hits.

A series of ferrocenyl chalcones has been synthesized via an aldolic condensation between the ferrocene carboxaldehyde and diversely substituted acetophenones. The main role of ferrocenyl chalcones was synthetic. From these chalcones, boron adducts have been made using boron trifluoride. Ferrocenyl aurones have also been made from chalcones, via a mercury-mediated oxidative cyclisation. An original silver-mediated protocol has also been developed. These ferrocenyl aurones were then isomerized using cyanide to result in the ferrocenyl flavone series. Finally, the grafting of a hydroxy group on ferrocenyl flavones gave the ferrocenyl flavonone series.

Similarly to their organic analogues, the biological impact of ferrocenyl flavonoids is very broad, and hits have been identified for each tested disease. A chalcone derivative, presented as molecule 2d, shows potent IN inhibition. Series 2 in general presents attractive properties as IN inhibitors, although possessing a weakness concerning stability. Further
developments will therefore be focused on the investigation of a substitution pattern increasing this stability, in order to obtain compounds suitable for tests on the virus itself.

Methoxy-substituted compounds of the series 3 in general are promising antibacterial agents. They exhibit the very interesting property of being more active on bacteria lines that are known to present resistance to other drugs. Because the aurones were most active on the strain that overexpresses an efflux pump (MsrA), these compounds will also be tested in combination with standard anti-bacterial agents. Among them, molecule 3j, is the most promising candidate. Further developments include a full structure-activity relationship study, where the effects of substitutions in all positions of the ring A by methoxy groups can be investigated.

![Chemical structures 2d, 3j, 5e]

Finally, series 5 presents interesting antivascular properties, the hit of this series being 5e; molecules possessing pure antivascular properties on tumors are of great interest. Antiangiogenic properties are difficult to quantify in vitro, so the next step concerning the biological evaluation of this series is in vivo testing on mice, alone or in combination with cytotoxins.

From this work, it is clear that combining ferrocene with a flavonoid core results in interesting biological agents. Moreover, the chemistry giving access to ferrocenyl flavonoids implicates new types of reactivity, and especially new selectivities. Original methods giving access to the first ferrocenyl derivatives of three subclasses of flavonoids are presented.