M. Colombié, Pratique des matériaux industriels : propriété, choix, utilisation, 1990.

R. Connolly and C. Rubenstein, The mechanics of continuous chip formation in orthogonal cutting, International Journal of Machine Tool Design and Research, vol.8, issue.3, pp.159-187, 1968.
DOI : 10.1016/0020-7357(68)90003-6

A. Crolet, Contribution à l'étude de l'influence du comportement vibratoire du système « pièce-outil-machine » sur la qualité de surface obtenue en tournage de superfinition, 2008.

N. S. Das, B. S. Chawla, and C. K. Biswas, An analysis of strain in chip breaking using slip-line field theory with adhesion friction at chip/tool interface, Journal of Materials Processing Technology, vol.170, issue.3, pp.509-515, 2005.
DOI : 10.1016/j.jmatprotec.2005.05.032

B. Denkena, K. Tracht, and M. Clausen, Predictability of milling forces based on specific cutting forces, Proceedings of the 8th CIRP Workshop on Modeling of Machining Operations, pp.259-266, 2005.

P. Dewhurst, On the Non-Uniqueness of the Machining Process, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.360, issue.1703, pp.587-610, 1978.
DOI : 10.1098/rspa.1978.0087

E. D. Doyle, J. G. Horne, and D. Tabor, Frictional Interactions between Chip and Rake Face in Continuous Chip Formation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.366, issue.1725, pp.173-183, 1979.
DOI : 10.1098/rspa.1979.0046

D. Dudzinski and A. Molinari, A modelling of cutting for viscoplastic materials, International Journal of Mechanical Sciences, vol.39, issue.4, pp.369-389, 1997.
DOI : 10.1016/S0020-7403(96)00043-4

H. E. Enahoro and P. L. Oxley, Flow along tool???chip interface in orthogonal metal cutting, ARCHIVE: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23), vol.8, issue.1, pp.36-41, 1966.
DOI : 10.1243/JMES_JOUR_1966_008_007_02

W. J. Endres, R. E. Devor, and S. G. Kapoor, A Dual-Mechanism Approach to the Prediction of Machining Forces, Part 1: Model Development, Journal of Engineering for Industry, vol.117, issue.4, pp.526-533, 1995.
DOI : 10.1115/1.2803530

W. J. Endres, R. E. Devor, and S. G. Kapoor, A Dual-Mechanism Approach to the Prediction of Machining Forces, Part 2: Calibration and Validation, Journal of Engineering for Industry, vol.117, issue.4, pp.534-541, 1995.
DOI : 10.1115/1.2803531

N. Fang and I. S. Jawahir, A new methodology for determining the stress state of the plastic region in machining with restricted contact tools, International Journal of Mechanical Sciences, vol.43, issue.8, pp.1747-1770, 2001.
DOI : 10.1016/S0020-7403(01)00017-0

D. Germain, Développement de la Méthodologie Couple-Arête-Matière : Application au tournage de superfinition du cuivre Cu-c2, 2008.

N. Goubot and G. Naulin, Caractérisation mécanique du cuivre cuc2 du domaine quasistatique au domaine dynamique, Journal de Physique III, vol.4, pp.8-189, 1994.

J. Gravier, Impact de l'usinage de superfinition sur la zone affectée par le procédé, Thèse de doctorat, 2009.

J. Grunzweig, I. M. Longman, and N. J. Petch, Calculations and measurements on wedge-indentation, Journal of the Mechanics and Physics of Solids, vol.2, issue.2, pp.81-88, 1954.
DOI : 10.1016/0022-5096(54)90002-2

M. Günay, E. Aslan, I. Korkut, and U. Seker, Investigation of the effect of rake angle on main cutting force, International Journal of Machine Tools and Manufacture, vol.44, issue.9, pp.953-959, 2004.
DOI : 10.1016/j.ijmachtools.2004.01.015

W. C. Guo, G. Rauchs, W. H. Zhang, and J. P. Ponthot, Influence of friction in material characterization in microindentation measurement, Journal of Computational and Applied Mathematics, vol.234, issue.7, 2009.
DOI : 10.1016/j.cam.2009.08.072

A. J. Haglund, H. A. Kishawy, and R. J. Rogers, An exploration of friction models for the chip???tool interface using an Arbitrary Lagrangian???Eulerian finite element model, Wear, vol.265, issue.3-4, pp.452-460, 2008.
DOI : 10.1016/j.wear.2007.11.025

R. Hill, On the limits set by plastic yielding to the intensity of singularities of stress, Journal of the Mechanics and Physics of Solids, vol.2, issue.4, pp.278-285, 1954.
DOI : 10.1016/0022-5096(54)90018-6

N. Ikawa, S. Shimada, H. Tanaka, and G. Ohmori, An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning, CIRP Annals - Manufacturing Technology, vol.40, issue.1, pp.551-554, 1991.
DOI : 10.1016/S0007-8506(07)62051-4

K. Jacobus, R. E. Devor, and S. G. Kapoor, Machining-Induced Residual Stress: Experimentation and Modeling, Journal of Manufacturing Science and Engineering, vol.122, issue.1, pp.20-31, 2000.
DOI : 10.1115/1.538906

B. H. Jared and T. A. Dow, Investigation and prediction of chip geometry in diamond turning, Precision Engineering, vol.24, issue.1, pp.88-96, 2000.
DOI : 10.1016/S0141-6359(99)00042-2

S. S. Joshi and S. N. Melkote, An Explanation for the Size-Effect in Machining Using Strain Gradient Plasticity, Journal of Manufacturing Science and Engineering, vol.126, issue.4, pp.679-684, 2004.
DOI : 10.1115/1.1688375

S. G. Kapoor, R. E. Devor, R. Zhu, R. Gajjela, G. Parakkal et al., DEVELOPMENT OF MECHANISTIC MODELS FOR THE PREDICTION OF MACHINING PERFORMANCE: MODEL BUILDING METHODOLOGY, Machining Science and Technology, vol.2, issue.2, pp.213-238, 1998.
DOI : 10.1080/10940349808945669

Y. Karpat and T. Özel, Mechanics of high speed cutting with curvilinear edge tools, International Journal of Machine Tools and Manufacture, vol.48, issue.2, pp.195-208, 2008.
DOI : 10.1016/j.ijmachtools.2007.08.015

M. W. Knüfermann, Machining Surfaces of Optical Quality by Hard Turning, Thèse de doctorat. Cranfield University. Cité, p.32, 2003.

J. H. Ko and D. W. Cho, 3d ball-end milling force model using instantaneous cutting force coefficients, Journal of Manufacturing Science and Engineering, vol.127, pp.1-12, 2005.

R. K. Kountanya and W. J. Endres, Flank Wear of Edge-Radiused Cutting Tools Under Ideal Straight-Edged Orthogonal Conditions, Journal of Manufacturing Science and Engineering, vol.126, issue.3, pp.496-505, 2004.
DOI : 10.1115/1.1765148

I. Kragelskii, Friction and wear, Butterworths. Cité, p.32, 1965.

H. Kudo, Some new slip-line solutions for two-dimensional steady-state machining, International Journal of Mechanical Sciences, vol.7, issue.1, pp.43-55, 1965.
DOI : 10.1016/0020-7403(65)90084-6

R. Laheurte, Application de la théorie du second gradient à la coupe des matériaux, Thèse de doctorat, p.39, 2004.

X. Lai, H. Li, C. Li, Z. Lin, and J. Ni, Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness, International Journal of Machine Tools and Manufacture, vol.48, issue.1, pp.1-14, 2008.
DOI : 10.1016/j.ijmachtools.2007.08.011

F. Lapujoulade, G. Coffignal, and J. Pimont, Evaluation des forces de coupe en fraisage à grande vitesse, 1998.

L. Calvez and C. , Etude des aspects thermiques et métallurgiques de la coupe orthogonale d'un acier au carbone, 1995.

E. H. Lee and B. W. Shaffer, The theory of plasticity applied to a problem of machining, Trans. ASME, Journal of Applied Mechanics, vol.18, pp.405-413, 1951.

H. U. Lee, D. W. Cho, and K. F. Ehmann, A Mechanistic Model of Cutting Forces in Micro-End-Milling With Cutting-Condition-Independent Cutting Force Coefficients, Journal of Manufacturing Science and Engineering, vol.130, issue.3, pp.311021-0311029, 2008.
DOI : 10.1115/1.2917300

K. M. Li and S. Y. Liang, Modeling of cutting forces in near dry machining under tool wear effect, International Journal of Machine Tools and Manufacture, vol.47, issue.7-8, pp.1292-1301, 2007.
DOI : 10.1016/j.ijmachtools.2006.08.017

G. List, Etude des mécanismes d'endommagement des outils carbure WC-Co par la caractérisation de l'interface Outil-Copeau : application à l'usinage à sec de l'alliage d'aluminium aéronautique AA2024 T351, 2004.

X. Liu, R. E. Devor, and S. G. Kapoor, An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining, Journal of Manufacturing Science and Engineering, vol.128, issue.2, pp.474-481, 2006.
DOI : 10.1115/1.2162905

X. Liu, R. E. Devor, S. G. Kapoor, and K. F. Ehmann, The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science, Journal of Manufacturing Science and Engineering, vol.126, issue.4, pp.666-678, 2004.
DOI : 10.1115/1.1813469

L. Vov and N. P. , Determining the minimum possible chip thickness, Machines & Tooling (USSR), vol.40, pp.45-46, 1969.

A. Mallock, The action of cutting tools, Proceedings of the Royal Society of London, vol.33, issue.127, 1881.

J. Manjunathaiah and W. J. Endres, A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool, Journal of Manufacturing Science and Engineering, vol.122, issue.3, pp.384-390, 2000.
DOI : 10.1115/1.1285886

T. Marusich and M. Ortiz, Modelling and simulation of high-speed machining, International Journal for Numerical Methods in Engineering, vol.36, issue.18, pp.3675-3694, 1995.
DOI : 10.1002/nme.1620382108

P. L. Menezes and S. V. Kailas, Influence of roughness parameters on coefficient of friction under lubricated conditions, Sadhana, vol.252, issue.9???10, pp.181-190, 2008.
DOI : 10.1007/s12046-008-0011-8

M. E. Merchant, Basic mechanics of the metal cutting process, Journal of Applied Mechanics, pp.168-175, 1944.

A. Molinari and A. Moufki, The Merchant's model of orthogonal cutting revisited: A new insight into the modeling of chip formation, International Journal of Mechanical Sciences, vol.50, issue.2, pp.124-131, 2008.
DOI : 10.1016/j.ijmecsci.2007.07.015

M. Morehead, Y. Huang, T. Hartwig, and K. , Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools, International Journal of Machine Tools and Manufacture, vol.47, issue.2, pp.286-293, 2007.
DOI : 10.1016/j.ijmachtools.2006.03.014

A. Moufki, D. Dudzinski, A. Molinari, and M. Rausch, Thermoviscoplastic modelling of oblique cutting: forces and chip flow predictions, International Journal of Mechanical Sciences, vol.42, issue.6, pp.1205-1232, 2000.
DOI : 10.1016/S0020-7403(99)00036-3

A. Moufki, A. Molinari, and D. Dudzinski, Modelling of orthogonal cutting with a temperature dependent friction law, Journal of the Mechanics and Physics of Solids, vol.46, issue.10, pp.2103-2138, 1998.
DOI : 10.1016/S0022-5096(98)00032-5

J. C. Outeiro and V. P. Astakhov, The role of the relative tool sharpness in modelling of the cutting process, Proc. 8th CIRP International Workshop on Modeling of Machining Operations, pp.517-523, 2005.

P. L. Oxley, Shear angle solutions in orthogonal machining, International Journal of Machine Tool Design and Research, vol.2, issue.3, pp.219-229, 1962.
DOI : 10.1016/0020-7357(62)90012-4

P. L. Oxley, Mechanics of Machining: An Analytical Approach to Assessing Machinability, Journal of Applied Mechanics, vol.57, issue.1, 1989.
DOI : 10.1115/1.2888318

P. L. Oxley, DEVELOPMENT AND APPLICATION OF A PREDICTIVE MACHINING THEORY, Machining Science and Technology, vol.2, issue.2, pp.165-189, 1998.
DOI : 10.1080/10940349808945667

P. L. Oxley and W. F. Hastings, Predicting the Strain Rate in the Zone of Intense Shear in which the Chip is Formed in Machining from the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.356, issue.1686, pp.395-410, 1977.
DOI : 10.1098/rspa.1977.0141

G. Parakkal, R. Zhu, S. G. Kapoor, and R. E. Devor, Modeling of turning process cutting forces for grooved tools, International Journal of Machine Tools and Manufacture, vol.42, issue.2, pp.179-191, 2002.
DOI : 10.1016/S0890-6955(01)00121-3

S. Park, S. G. Kapoor, and R. E. Devor, Mechanistic Cutting Process Calibration via Microstructure-Level Finite Element Simulation Model, Journal of Manufacturing Science and Engineering, vol.126, issue.4, pp.706-709, 2004.
DOI : 10.1115/1.1813480

Q. X. Pei, C. Lu, F. Z. Fang, and H. Wu, Nanometric cutting of copper: A molecular dynamics study, Computational Materials Science, vol.37, issue.4, pp.434-441, 2006.
DOI : 10.1016/j.commatsci.2005.10.006

J. Pujana, P. J. Arrazola, R. Saoubi, and H. Chandrasekaran, Analysis of the inverse identification of constitutive equations applied in orthogonal cutting process, International Journal of Machine Tools and Manufacture, vol.47, issue.14, pp.2153-2161, 2007.
DOI : 10.1016/j.ijmachtools.2007.04.012

S. Ranganath, A. B. Campbell, and D. W. Gorkiewicz, A model to calibrate and predict forces in machining with honed cutting tools or inserts, International Journal of Machine Tools and Manufacture, vol.47, issue.5, pp.820-840, 2007.
DOI : 10.1016/j.ijmachtools.2006.06.019

R. G. Reddy, R. E. Devor, and S. G. Kapoor, A mechanistic force model for combined axial???radial contour turning, International Journal of Machine Tools and Manufacture, vol.41, issue.11, pp.1551-1572, 2001.
DOI : 10.1016/S0890-6955(01)00030-X

R. G. Reddy, S. G. Kapoor, and R. E. Devor, A Mechanistic Force Model for Contour Turning, Journal of Manufacturing Science and Engineering, vol.122, issue.3, pp.398-405, 2000.
DOI : 10.1115/1.1285900

C. Rubenstein, The mechanics of continuous chip formation in oblique cutting in the absence of chip distortion. Part 1???Theory, International Journal of Machine Tool Design and Research, vol.23, issue.1, pp.11-20, 1983.
DOI : 10.1016/0020-7357(83)90003-3

C. Rubenstein, The edge force components in oblique cutting, International Journal of Machine Tools and Manufacture, vol.30, issue.1, pp.141-149, 1990.
DOI : 10.1016/0890-6955(90)90048-N

H. Saglam, S. Yaldiz, and F. Unsacar, The effect of tool geometry and cutting speed on main cutting force and tool tip temperature, Materials & Design, vol.28, issue.1, pp.101-111, 2007.
DOI : 10.1016/j.matdes.2005.05.015

T. Sata, Recent developments concerning cutting mechanics, Proceedings of the International Production Engineering Research Conference, pp.18-25, 1963.

M. C. Shaw, A new approach to deformation zone analysis, International Journal of Machine Tool Design and Research, vol.22, issue.3, pp.215-226, 1982.
DOI : 10.1016/0020-7357(82)90027-0

M. C. Shaw, Precision Finishing*, CIRP Annals - Manufacturing Technology, vol.44, issue.1, pp.343-348, 1995.
DOI : 10.1016/S0007-8506(07)62339-7

M. C. Shaw, Metal cutting principles, Tribology International, vol.18, issue.1, 2005.
DOI : 10.1016/0301-679X(85)90013-1

J. Shinozuka, T. Obikawa, and T. Shirakashi, Chip breaking analysis from the viewpoint of the optimum cutting tool geometry design, Journal of Materials Processing Technology, vol.62, issue.4, pp.345-351, 1996.
DOI : 10.1016/S0924-0136(96)02433-8

S. M. Son, H. S. Lim, and J. H. Ahn, Effects of the friction coefficient on the minimum cutting thickness in micro cutting, International Journal of Machine Tools and Manufacture, vol.45, issue.4-5, pp.529-535, 2005.
DOI : 10.1016/j.ijmachtools.2004.09.001

G. V. Stabler, The fundamental geometry of cutting tools, ARCHIVE: Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196), vol.165, issue.1951, pp.14-21, 1951.
DOI : 10.1243/PIME_PROC_1951_165_008_02

D. A. Stephenson and P. Bandyopadhyay, Process-Independent Force Characterization for Metal-Cutting Simulation, Journal of Engineering Materials and Technology, vol.119, issue.1, pp.86-94, 1997.
DOI : 10.1115/1.2805980

M. G. Stevenson and P. L. Oxley, An experimental investigation of the influence of speed and scale on the strain-rate in a zone of intense plastic deformation, Proc. Inst. Mech. Eng, vol.184, pp.561-576, 1970.

N. P. Suh and H. C. Sin, The genesis of friction, Wear, vol.69, issue.1, pp.91-114, 1981.
DOI : 10.1016/0043-1648(81)90315-X

A. O. Tay, M. G. Stevenson, G. De-vahl-davis, and P. L. Oxley, A numerical method for calculating temperature distributions in machining, from force and shear angle measurements, International Journal of Machine Tool Design and Research, vol.16, issue.4, pp.335-349, 1976.
DOI : 10.1016/0020-7357(76)90043-3

F. W. Taylor, On the art of cutting metals, The American Society of Mechanical Engineers, vol.28, pp.31-350, 1907.

E. G. Thomsen, C. T. Yang, and S. Kobayashi, Mechanics of plastic deformation in metal processing, 1965.

A. Toropov and S. L. Ko, Prediction of tool-chip contact length using a new slip-line solution for orthogonal cutting, International Journal of Machine Tools and Manufacture, vol.43, issue.12, pp.1209-1215, 2003.
DOI : 10.1016/S0890-6955(03)00155-X

N. Tounsi, J. Vincenti, A. Otho, and M. A. Elbestawi, From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation, International Journal of Machine Tools and Manufacture, vol.42, issue.12, pp.1373-1383, 2002.
DOI : 10.1016/S0890-6955(02)00046-9

E. M. Trent, Metal cutting and the tribology of seizure: I seizure in metal cutting, Wear, vol.128, issue.1, pp.29-45, 1988.
DOI : 10.1016/0043-1648(88)90251-7

E. M. Trent, Metal cutting and the tribology of seizure: III temperatures in metal cutting, Wear, vol.128, issue.1, pp.65-81, 1988.
DOI : 10.1016/0043-1648(88)90253-0

M. H. Tresca, On further applications of the flow of solids. ARCHIVE : Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196, pp.301-345, 1878.

S. Venkatachalam and S. Y. Liang, Effects of Ploughing Forces and Friction Coefficient in Microscale Machining, Journal of Manufacturing Science and Engineering, vol.129, issue.2, pp.274-280, 2007.
DOI : 10.1115/1.2673449

M. P. Vogler, R. E. Devor, and S. G. Kapoor, Microstructure-Level Force Prediction Model for Micro-milling of Multi-Phase Materials, Journal of Manufacturing Science and Engineering, vol.125, issue.2, pp.202-209, 2003.
DOI : 10.1115/1.1556402

M. P. Vogler, S. G. Kapoor, and R. E. Devor, On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part II: Cutting Force Prediction, Journal of Manufacturing Science and Engineering, vol.126, issue.4, pp.695-705, 2004.
DOI : 10.1115/1.1813471

D. J. Waldorf, R. E. Devor, and S. G. Kapoor, A Slip-Line Field for Ploughing During Orthogonal Cutting, Journal of Manufacturing Science and Engineering, vol.120, issue.4, pp.693-699, 1998.
DOI : 10.1115/1.2830208

D. J. Waldorf, R. E. Devor, and S. G. Kapoor, An Evaluation of Ploughing Models for Orthogonal Machining, Journal of Manufacturing Science and Engineering, vol.121, issue.4, pp.550-558, 1999.
DOI : 10.1115/1.2833050

J. Wang and P. Mathew, Development of a general tool model for turning operations based on a variable flow stress theory, International Journal of Machine Tools and Manufacture, vol.35, issue.1, pp.71-90, 1995.
DOI : 10.1016/0890-6955(94)E0004-3

K. S. Woon, M. Rahman, K. S. Neo, and K. Liu, The effect of tool edge radius on the contact phenomenon of tool-based micromachining, International Journal of Machine Tools and Manufacture, vol.48, issue.12-13, pp.1395-1407, 2008.
DOI : 10.1016/j.ijmachtools.2008.05.001

D. W. Wu, Application of a comprehensive dynamic cutting force model to orthogonal wave-generating processes, International Journal of Mechanical Sciences, vol.30, issue.8, pp.581-600, 1988.
DOI : 10.1016/0020-7403(88)90101-4

Z. J. Yuan, M. Zhou, and S. Dong, Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining, Journal of Materials Processing Technology, vol.62, issue.4, pp.327-330, 1996.
DOI : 10.1016/S0924-0136(96)02429-6

N. N. Zorev, Metal Cutting Mechanics, p.27, 1966.

K. A. Zvorykin, Work and stress necessary for separation of metal chips, Proceedings of the Kharkov Technological Institute, 1893.