Music-to-Score Temporal Alignment by Discriminative Graphical Models

Cyril Joder

TELECOM ParisTech

2011/09/29
Context: Automatic Indexing of Multimedia Document

- Huge databases of available multimedia documents
- Meta-data are needed for accessing and browsing these databases
 - tags (keywords), links, thumbnails, summaries, ...
- Have to be created automatically
Special Case of Musical Contents

- Possible useful meta-data for music:
 - Scale, chord progressions
 - Meter (rhythm)
 - Main melody, pitches...

- Many of these pieces of information can be easily derived from the score
- One can take advantage of score databases
Special Case of Musical Contents

- Possible useful meta-data for music:
 - Scale, chord progressions
 - Meter (rhythm)
 - Main melody, pitches...

- Many of these pieces of information can be easily derived from the score
- One can take advantage of score databases
Special Case of Musical Contents

- Possible useful meta-data for music:
 - Scale, chord progressions
 - Meter (rhythm)
 - Main melody, pitches...

- Many of these pieces of information can be easily derived from the score
- One can take advantage of score databases
- Needs music-to-score alignment.
Music-to-Score Alignment

Data: score and audio which match (same piece)
Music-to-Score Alignment

- **Data:** score and audio which match (same piece)
- **Goal:** find the correspondance between the positions in the score and the positions in the audio
Possible Applications

- Use of score for music indexing [Garbers, 2008]
- Score-based browsing of a recording [Fremerey, 2007]
- Music education (error spotting) [Montecchio, 2008]
- Score retrieval from audio query [Hu, 2003]
- Score-informed source separation [Hennequin, 2011]

With real-time constraint:

- Computer accompaniment [Dannenberg, 1984], [Raphael, 2001], [Cont, 2010]
- Automatic page turning [Arzt, 2008]
Overview of an Alignment System

Two stages:

- **Similarity matrix calculation:** local matching measure
- **Alignment:** incorporation of structural constraints (transitions, durations)
Overview of an Alignment System

Similarity matrix calculation

- Pitch extraction [Arifi, 2004] → error-prone
- Learning a generative model [Raphael, 1999] → intractable for polyphony
- Template-based [Orio, 2001]
Overview of an Alignment System

Similarity matrix calculation

- Pitch extraction [Arifi, 2004] → error-prone
- Learning a generative model [Raphael, 1999] → intractable for polyphony
- Template-based [Orio, 2001]
Overview of an Alignment System

Similarity matrix calculation

- Pitch extraction [Arifi, 2004] → error-prone
- Learning a generative model [Raphael, 1999] → intractable for polyphony
- Template-based [Orio, 2001]
Overview of an Alignment System

Similarity matrix calculation

- Pitch extraction [Arifi, 2004] → error-prone
- Learning a generative model [Raphael, 1999] → intractable for polyphony
- Template-based [Orio, 2001]
Overview of an Alignment System

Alignment

- Sequence alignment (DTW) [Dannenberg, 2003], [Dixon, 2005], [Müller, 2006]
 - simple and easy to implement
 - difficult to control (implicit model)
- Statistical model (HMM) [Orio, 2001], [Grubb, 1997], [Raphael, 2006]
 - intuitive and flexible modeling, allows for parameter learning
 - can be complex
Overview of an Alignment System

Alignment

- **Sequence alignment (DTW)**

 [Dannenberg,2003], [Dixon,2005],
 [Müller,2006]

 + simple and easy to implement

 - difficult to control (implicit model)

- **Statistical model (HMM)**

 [Orio,2001], [Grubb,1997],
 [Raphael,2006]

 + intuitive and flexible modeling, allows for parameter learning

 - can be complex
Guidelines for our Audio-to-Score Alignment System

Constraints

- Polyphonic music
- Any instrument
- No real-time constraint

Design choices

- Template-based matching measure
- Alignment by statistical model
Outline

1. Music-to-Score Alignment: Introduction
2. Alignment by Statistical Model
3. Conditional Random Fields for Alignment
4. Modeling of Time
5. Optimization of the Concurrency Templates
6. Conclusion and Perspectives
Outline

1. Music-to-Score Alignment: Introduction

2. Alignment by Statistical Model
 - Definitions
 - A First Simple System

3. Conditional Random Fields for Alignment

4. Modeling of Time

5. Optimization of the Concurrency Templates

6. Conclusion and Perspectives
Problem Definition

Score Segmentation into concurrencies [Raphael, 2006]

Statistical Model

- At each time n, random variable X_n representing the concurrency
- **Goal:** finding the most probable concurrency sequence
Audio Parameterization: Pitch Content

Representations used for alignment

- Spectrogram: power spectrum in linear frequency scale (STFT) [Orio, 2001]
- Semigram: power spectrum in logarithmic scale (semitones) [Montecchio, 2009]
- Chromagram: “strength” of the 12 chromatic classes (wrapping of semigram on one octave) [Müller, 2005]
Audio Parameterization: Pitch Content

Representations used for alignment

- **Spectrogram**: power spectrum in linear frequency scale (STFT) [Orio, 2001]
- **Semigram**: power spectrum in logarithmic scale (semitones) [Montecchio, 2009]
- **Chromagram**: “strength” of the 12 chromatic classes (wrapping of semigram on one octave) [Müller, 2005]
Audio Parameterization: Pitch Content

Representations used for alignment

- **Spectrogram**: power spectrum in linear frequency scale (STFT) [Orio, 2001]
- **Semigram**: power spectrum in logarithmic scale (semitones) [Montecchio, 2009]
- **Chromagram**: “strength” of the 12 chromatic classes (wrapping of semigram on one octave) [Müller, 2005]
Audio Parameterization: Pitch Content

Representations used for alignment

- **Spectrogram**: power spectrum in linear frequency scale (STFT) [Orio, 2001]
- **Semigram**: power spectrum in logarithmic scale (semitones) [Montecchio, 2009]
- **Chromagram**: “strength” of the 12 chromatic classes (wrapping of semigram on one octave) [Müller, 2005]
Similarity Matrix Calculation

Concurrency:
symbolic representation

\[x \]

Audio Observation:
time-frequency representation

\[y \]

Matching Measure?

Definitions

- **Concurrency:**
 - Symbolic representation

- **Audio Observation:**
 - Time-frequency representation

![Energy vs. Frequency](image)
Definitions

Similarity Matrix Calculation

Concurrency: symbolic representation

Template: audio domain

Audio Observation: time-frequency representation

\[x \quad U_x \quad y \]
Definitions

Similarity Matrix Calculation

- **Concurrency**: symbolic representation
- **Template**: audio domain
- **Audio Observation**: time-frequency representation

\[
D(y, u_x)
\]
Definitions

Template Construction

- Mapping from symbolic to audio domain
- Generally set by *ad hoc* rules
- Depends on the audio representation

![Energy spectrum graph](image-url)
Template Construction: a Unified Framework
Template Construction: a Unified Framework

- Templates for isolated notes
Template Construction: a Unified Framework

- Templates for isolated notes
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
Template Construction: a Unified Framework

- Templates for isolated notes
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates

Definitions
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Definitions

Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
Template Construction: a Unified Framework

- Templates for isolated notes
- Superposition of one-note templates
- Advantage: only a few templates to set
A First Simple System

First Alignment System

Similarity matrix calculation (chosen after [1])
- Chromagram representation
- Kullback-Leibler divergence

Alignment strategy
- Structural constraint: no concurrency skipping
- Hidden Markov Model:

A First Simple System

Database

Two corpora

- MAPS [Emiya, 2010]: 49 classical piano pieces (≈4h15)
 - Ground-truth: aligned MIDI files
 - Scores: tempo modified to be constant
- RWC-pop [Goto, 2002]: 90 pop songs (≈6h)
 - Ground-truth: aligned MIDI files
 - Scores: random tempo changes (piecewise constant)

Learning and Test Databases

- Learning: 50 pieces (20 from MAPS & 30 from RWC)
- Test: remaining 99 pieces
Results

Evaluation Measure

- **Alignment rate**: proportion of onsets recognized inside a tolerance window of θ around ground truth.
Results

Evaluation Measure

- Alignment rate: proportion of onsets recognized inside a tolerance window of θ around ground truth.

Results

Alignment Rates for $\theta = 300$ ms:

<table>
<thead>
<tr>
<th></th>
<th>MAPS corpus</th>
<th>RWC corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>87.8%</td>
<td>72.4%</td>
</tr>
</tbody>
</table>

- Globally follows the important changes
- Poor fine-level alignment when numerous notes overlap
 - Noisy observations (drums, reverberation…)
A First Simple System

Limitation of the Current Approach

- **Need:** more robust similarity matrix
- **Idea:** use neighboring observations
- **However:** conditional independance of the observations in HMM

![Diagram of HMM](image)

- Requires a **more flexible statistical framework**
Outline

1. Music-to-Score Alignment: Introduction

2. Alignment by Statistical Model

3. Conditional Random Fields for Alignment
 - Definition
 - Exploiting Neighboring Observations
 - Fusion of Several Descriptors
 - Experiments

4. Modeling of Time

5. Optimization of the Concurrency Templates
Conditional Random Fields

Discriminative undirected graphical model

- Conditioned on the observations:
 - no independance hypothesis
 - “local match” can depend on any observations
- No need for proper conditional probabilities
 - flexible penalty functions
 - weights of different features can be adjusted
- Allows for discriminative learning
- Same decoding complexity as HMM (Viterbi algorithm)
Definition

Conditional Random Fields

\[\begin{align*}
X_{n-1} & \quad X_n & \quad X_{n+1} \\
Y_{n-1} & \quad Y_n & \quad Y_{n+1}
\end{align*} \]

Probability of a *label* sequence \(X_{1:N} \), given the observation sequence \(Y_{1:N} \):

\[
P(X_{1:N} | Y_{1:N}) = \frac{1}{Z} \phi(X_1, Y_{1:N}) \prod_{n=2}^{N} \psi(X_n, X_{n-1}) \phi(X_n, Y_{1:N})
\]

\(\phi \): observation function \(\rightarrow \) local match

\(\psi \): transition function \(\rightarrow \) structural constraints

\(Z \): normalization factor
Conditional Random Fields

Probability of a label sequence $X_{1:N}$, given the observation sequence $Y_{1:N}$:

$$P(X_{1:N}|Y_{1:N}) = \frac{1}{Z} \phi(X_1, Y_{1:N}) \prod_{n=2}^{N} \psi(X_n, X_{n-1}) \phi(X_n, Y_{1:N})$$

ϕ: observation function \rightarrow local match

$$\phi(X_n, Y_{1:N}) = \exp \sum_{i} \mu_i f_i(X_n, Y_{1:N})$$
Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

\[\phi(X, Y_n) \]

Score Templates (time in beat)
Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)
Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Hypothesis: locally constant tempo T_n (in the label variable X_n) → template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$
Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Hypothesis: locally constant tempo T_n (in the label variable X_n) → template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

$$\phi (X_n, y) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D(y_{n+k} \| u_{n+k})$$
Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Hypothesis: locally constant tempo T_n (in the label variable X_n) → template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

$$\phi(X_n, y) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D\left(y_{n+k} \parallel u_{n+k} \right)$$
Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Hypothesis: locally constant tempo T_n (in the label variable X_n)

\rightarrow template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

$$\phi (X_n, y) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D(y_{n+k} \parallel u_{n+k})$$
Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Hypothesis: locally constant tempo T_n (in the label variable X_n) → template sequence u_{n-n}, \ldots, u_{n+n}

$$\phi(X_n, y) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D(y_{n+k} \parallel u_{n+k})$$
Exploiting Neighboring Observations

Effect on the Similarity Matrix

“Instantaneous” match:

Neighborhood integration:

- “Smoothing” of the similarity matrix
- Enhances paths conforming to score
Fusion of Several Descriptors

Using Diverse Sources of Information

- **Reminder**: observation function can be decomposed into several features
 \[\phi(X_n, Y_{1:N}) = \exp \sum_i \mu_i f_i(X_n, Y_{1:N}) \]

- Neighborhood integration; exploiting pitch information from different time positions

- Also possible to exploit **different descriptors**, characterizing different aspect of the signal
 - Onset detection
 - Tempo
Onset Feature

- Based on spectral flux [Alonso, 2005]: $s_{1:N}$

\[
\begin{align*}
 f_a (X_n, Y_{1:N}) &= \begin{cases}
 s_n & \text{if attack} \\
 0 & \text{if sustain}
 \end{cases}
\end{align*}
\]
Fusion of Several Descriptors

Tempo Feature

- Cyclic tempogram [Grosche, 2010]: \(g_{1:N}(t) \)

- Characterize the tempo \(T_n \)

\[
f_t(X_n, Y_{1:N}) = g_n(T_n)
\]
Experiments

Markovian CRF (MCRF): Alignment Results

- Three types of features:
 - pitch (integrated)
 - onset
 - tempo

- Alignment Rates ($\theta = 300$ ms):

<table>
<thead>
<tr>
<th></th>
<th>MAPS corpus</th>
<th>RWC corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>87.8%</td>
<td>72.4%</td>
</tr>
<tr>
<td>MCRF</td>
<td>94.9%</td>
<td>87.9%</td>
</tr>
</tbody>
</table>

- Significant improvement
- Still far from perfect
- Need to exploit other kinds of information on the music
Experiments

Markovian CRF (MCRF): Alignment Results

- Three types of features:
 - pitch (integrated)
 - onset
 - tempo

- Alignment Rates ($\theta = 300$ ms):

<table>
<thead>
<tr>
<th></th>
<th>MAPS corpus</th>
<th>RWC corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>87.8%</td>
<td>72.4%</td>
</tr>
<tr>
<td>MCRF</td>
<td>94.9%</td>
<td>87.9%</td>
</tr>
</tbody>
</table>

- Significant improvement
- Still far from perfect
- Need to exploit other kinds of information on the music
- Temporal structure
Outline

1. Music-to-Score Alignment: Introduction
2. Alignment by Statistical Model
3. Conditional Random Fields for Alignment
4. Modeling of Time
 - Introducing Duration Constraints
 - Modeling Tempo Variations
5. Optimization of the Concurrency Templates
6. Conclusion and Perspectives
Introducing Duration Constraints

Exploiting the Temporal Structure

- Music is highly structured
- Strong priors/dependencies for concurrency durations
Introducing Duration Constraints

Exploiting the Temporal Structure

- Music is highly structured
- Strong priors/dependencies for concurrency durations
- Incorporate temporal constraints into the model
- State of the art in alignment:
 - Hidden Tempo Models [Raphael, 2006]
Introducing Duration Constraints

Exploiting the Temporal Structure

- Music is highly structured
- Strong priors/dependencies for concurrency durations
- Incorporate temporal constraints into the model
- State of the art in alignment:
 - Hidden Tempo Models [Raphael,2006]
- Can be done with CRFs
- Dealt with by the transition function
Introducing Duration Constraints

Transition Function

- **Reminder**: probability of a label sequence $X_{1:N}$, given the observation sequence $Y_{1:N}$:

 $$P(X_{1:N} | Y_{1:N}) = \frac{1}{Z} \phi(X_1, Y_{1:N}) \prod_{n=2}^{N} \psi(X_n, X_{n-1}) \phi(X_n, Y_{1:N})$$

- $\psi(X_n, X_{n-1})$: potential given to transition between labels

- **MCRF**: no duration constraint \rightarrow uniform transition potentials between concurrencies
Introducing Duration Constraints

Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the “current duration” of the concurrency

![Diagram with nodes and arrows representing concurrency structure]
Introducing Duration Constraints

Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the “current duration” of the concurrency

- Transition potentials:
 - Inside concurrency: no penalty
Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the “current duration” of the concurrency

- Transition potentials:
 - Inside concurrency: no penalty
 - Exiting concurrency: ρ_d
Introducing Duration Constraints

Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the “current duration” of the concurrency

- Transition potentials:
 - Inside concurrency: no penalty
 - Exiting concurrency: ρ_d

- Explicit duration penalty
Introducing Duration Constraints

Semi-Markov CRF (SMCRF)

Concurrency Duration Constraint

- Gaussian penalty
- Mean: length ℓ indicated in the score

$$\rho_d = e^{-\gamma_1|d-\ell|^2}$$
Semi-Markov CRF (SMCRF)

Concurrency Duration Constraint

- Gaussian penalty
- Mean: length \(\ell \) indicated in the score

\[
\rho_d = e^{-\gamma_1 |d - \ell|^2}
\]

Model Limitation

- Duration constraint is absolute
- Does not consider tempo variations
Introducing Duration Constraints

Semi-Markov CRF (SMCRF)

Concurrency Duration Constraint

- Gaussian penalty
- Mean: length ℓ indicated in the score

$$\rho_d = e^{-\gamma_1 |d-\ell|^2}$$

Model Limitation

- Duration constraint is absolute
- Does not consider tempo variations
Modeling Tempo Variations

Modeling Tempo

- Several tempo possibilities
- Duration penalty depends on tempo hypothesis:

\[\rho_{d,t} = e^{-\gamma^2 \left| \frac{d - \ell(t)}{\ell(t)} \right|^2} \]
Modeling Tempo Variations

Modeling Tempo

- Several tempo possibilities
- Duration penalty depends on tempo hypothesis:

\[\rho_{d,t} = e^{-\gamma_2 \left| \frac{d - \ell(t)}{\ell(t)} \right|^2} \]

- Tempo variation penalty at concurrency:

\[\tau_{t_1,t_2} = e^{-\gamma_3 \left| \log \frac{t_1}{t_2} \right|^2} \]

- Hidden Tempo CRF (HTCRF) system
Experimental Results

- Alignment Rates ($\theta = 300$ ms):

<table>
<thead>
<tr>
<th></th>
<th>MAPS corpus</th>
<th>RWC corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>87.8%</td>
<td>72.4%</td>
</tr>
<tr>
<td>MCRF</td>
<td>94.9%</td>
<td>87.9%</td>
</tr>
<tr>
<td>SMCRF</td>
<td>97.8%</td>
<td>93.9%</td>
</tr>
<tr>
<td>HTCRF</td>
<td>99.3%</td>
<td>99.2%</td>
</tr>
</tbody>
</table>

- More complex systems lead to better results
- HTCRF: accurate temporal model \rightarrow very high precision, even with noisy observation (RWC)
What we have done so far

- Enhancement of the similarity matrix
- Exploitation of the temporal structure
Modeling Tempo Variations

What we have done so far

- Enhancement of the similarity matrix
- Exploitation of the temporal structure
What we have done so far

- Enhancement of the similarity matrix
- Exploitation of the temporal structure
What we have done so far

- Enhancement of the similarity matrix
- Exploitation of the temporal structure
- Template construction?
Outline

1. Music-to-Score Alignment: Introduction
2. Alignment by Statistical Model
3. Conditional Random Fields for Alignment
4. Modeling of Time
5. Optimization of the Concurrency Templates
 - Formalization of the Symbolic to Audio Mapping
 - Learning the Mapping Matrix
 - Alignment Experiments
6. Conclusion and Perspectives
Template Construction: Reminder

- Templates for isolated notes
- Superposition of one-note templates
- Only few templates must be set
Symbolic to Audio Mapping

Template Construction: Reminder

- Templates for isolated notes
 → Set by heuristic

- Superposition of one-note templates

- Only few templates must be set
Template Construction: Reminder

- Templates for isolated notes
- Superposition of one-note templates
- Only few templates must be set

Learn them from data!
Symbolic to Audio Mapping

Pitch Vector Representation

- Vectorial representation of concurrency
- One component per pitch
Symbolic to Audio Mapping

Pitch Vector Representation

- Vectorial representation of concurrency
- One component per pitch
- Values: number of notes
Symbolic to Audio Mapping

Symbolic-to-Audio Mapping as a Linear Transformation

- Concurrency c
- Pitch Vector h_c

\[c \quad h_c \]
Symbolic-to-Audio Mapping as a Linear Transformation

- Concurrency c
- Pitch Vector h_c
- Mapping Matrix W
- Template u_c

\[
 h_c \cdot W = u_c
\]
Symbolic to Audio Mapping

Mapping Matrix W

- Contains the one-note templates (in columns)
- Matrix of dimension $I \times J$
 - I: audio representation
 - J: number of pitches
- Example: heuristic matrix for spectrogram
Learning the Mapping Matrix

- Supervised Learning:

Audio

Anotated Learning Database

Aligned Score

Descriptor extraction

Objective function

Optimization

W

Mapping

Chromatic class

Time (s)

Audio

Aligned Score

Descriptor extraction

Objective function

Optimization

W

Mapping

Chromatic class

Time (s)
Learning the Mapping Matrix

Two Learning Strategies

<table>
<thead>
<tr>
<th>Method</th>
<th>Minimum Divergence</th>
<th>Maximum Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy type</td>
<td>best-fit</td>
<td>discriminative</td>
</tr>
<tr>
<td>Objective function</td>
<td>matching measure</td>
<td>CRF probability</td>
</tr>
<tr>
<td>Use of structural constrains</td>
<td>no</td>
<td>MCRF (no integration)</td>
</tr>
<tr>
<td>Optimization problem</td>
<td>convex</td>
<td>non convex</td>
</tr>
</tbody>
</table>
Learning the Mapping Matrix

Learned Matrices

Example: Semigram Representation

- **Minimum Divergence**: capture the energy distribution of each pitch
- **Maximum Likelihood**: only learns discriminant information
Experiments

- Application to our alignment models
- No neighborhood integration
- Comparison of learning methods and audio representations
Results

Alignment Rates with $\theta = 100$ ms

- Improved precision
- Influence decrease with accurate temporal model
- Behaviors of learning methods depend on representation
- Winner: semigram with ML learning
Contributions

- Introduction of the CRF framework for audio-to-score alignment
 - allows for flexible features
 - exploits structural constraints

- Optimization of the observation function
 - unified formalization (linear mapping)
 - automatic learning of the mapping matrix

- Miscellaneous adjustments for real-world applications
 - complexity reduction algorithm (hierarchical pruning)
 - musical structure change
Perspectives

- Comprehensive study of the symbolic-to-audio mapping
 - consider neighborhood integration
 - instrument-specific mappings
 - mapping adaptation
 - non-linear mapping

- Considering other observation/transition features
 - superposition of several representations/divergences
 - self-similarity features (change points)
 - multi-modal features (video, motion capture)
Thank you!

Publications

Other Perspectives

- Refined model structures
 - allow several concurrencies for each score position (reverberation)
 - continuous tempo set

- Other learning or decoding criteria
 - maximum margin learning
 - minimum segmentation error decoding

- Further complexity reduction
 - particle filtering

- Application to other problems
 - rhythm analysis (beat detection) with HTCRF
 - gesture alignment from motion capture...