. Dans-ce-cas, La plupart de ces travaux ontétudiéontétudié la découpe dans des conditionséloignéesconditionséloignées des conditions industrielles. En outre, les mesures ont concerné quasiment exclusivement l'´ energie cinétique du poinçon. Peu de travaux présentent la mesure des efforts et notamment l'´ evolution de ces efforts en cours de découpe. Or

. La-connaissance-détaillée-de-l, ´ evolution des efforts de découpe permetégalementpermetégalement d'améliorer la validation de modèles par une corrélation essais/simulation plus riche. Il appara??tappara??t alors utile de continueràcontinuerà réaliser de campagnes d'essais de découpè a grande vitesse dans le

. Dans-cette-optique, Celui-ci permet la mesure de la vitesse du nez du poinçon, l'observation de la zone de cisaillement lors de la découpe ainsi que la mesure de déformations sur un tube de Hopkinson solidaire de la matrice supportant lapì ece cisaillée. Cettedernì ere mesure permet, par un traitement adapté, de remonter aux efforts de découpe. De part leur conception, les outillages présents sur la banc respectent les jeux relatifs poinçon/ matrice généralement utilisés en découpe classique (entre 3 et 10% selon le matériau) Le fait d'utiliser une matrice comportant des variations de section engendre des réflexions des ondes mécaniquesmécaniquesà chaque changement de section. Ceci rend plus délicat le passage de la mesure de déformation sur le tube de HopkinsonàHopkinsonà l'effort de cisaillage appliqué sur cette matrice et implique une calibration du dispositif, Pour cela, nous avons alors eu recoursàrecoursà un deuxì eme dispositif expérimentaí egalement basé sur un dispositif de Hopkinson. Celui-ci permet de ma??triserma??triser l'effort (en durée et en amplitude) imposéimposéà la matrice et ainsi de créer un couple de courbes (effort-déformation) auquel on comparera les déformations mesurées lors d'une découpe

. Cette-comparaison, permet de construire un effortàeffortà partir de ces derniers et de la courbe d'effort issue de l'´ etalonnage. La validité de cette méthode a ´ eté vérifiéè a l'aide d'une simulation numérique unidimensionnelle. Celle-ci a permis d'´ evaluer l'erreur générée par la méthode de calcul des efforts de découpe

A. , J. Harding, A. R. Dowling, and J. D. Campbell, Plusieurs campagnes d'essais ontétéontété réalisées avec des paramètres différents permettant de balayer un large spectre de vitesse (entre 7 et 18 m/s) pour desépaisseursdesépaisseurs de 2, 3 et 4 mm et The dynamic punching of metals, Bai and B. Dodd. Adiabatic shear localization : Occurence, theories and applications, pp.215-224, 1970.

T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, International Journal for Numerical Methods in Engineering, vol.95, issue.2, pp.229-256, 1994.
DOI : 10.1002/nme.1620370205

J. Braun, M. Sambridge, [. Balendra, and F. W. Travis, A numerical method for solving partial differential equations on highly irregular evolving grids Static and dynamic blanking of steel of varying hardness, Nature International Journal of Machine Tool Design and Research, vol.376, issue.102, pp.655-660249, 1969.

F. Chinesta, E. Cueto, S. Cescotto, and P. Lorong, Natural element method for the simulation of structures and processes, ISTE Ltd, 2011.
DOI : 10.1002/9781118616901

URL : https://hal.archives-ouvertes.fr/hal-01002856

Z. H. Chen, L. C. Chan, T. C. Lee, and C. Y. Tang, An investigation on the formation and propagation of shear band in fine-blanking process, Journal of Materials Processing Technology, vol.138, issue.1-3, pp.1-3610, 2003.
DOI : 10.1016/S0924-0136(03)00141-9

H. Chanal, E. Duc, P. G. Raycoc61-]-m, . Cockcroftdb87-]-r, T. Z. Dormeval et al., A study of the impact of machine tool structure on machining processes Materials at high strain rate A preliminary investigation of high-speed blanking and piercing of metals, Proceedings of the Institute of Mechanical EngineersDN05] W. Dabboussi and J. A. Nemes. Modeling of ductile fracture using the dynamic punch test 2005. [eRM78] Alain Chabenat et René Martin, pp.98-106182, 1961.

J. Boyer, E. Vidal-sallé, M. Dubar, L. [. Dubar, G. Molinari et al., Fem numerical simulation of the warm and hot upsetting sliding test Analysis of the cutting force components and friction in high speed machining An experimental study of high speed orthogonal cutting, Int. J. Mater. Form. Journal of Manufacturing Science and Engineering Journal Manuf. Sci. Eng, vol.3, issue.1201, pp.315-318245, 1998.

C. [. Hollomon and . Zener, Problems in Fracture of Metals, Journal of Applied Physics, vol.17, issue.2, pp.82-90, 1946.
DOI : 10.1063/1.1707697

P. [. Illoul and . Lorong, On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing, Computers & Structures, vol.89, issue.11-12, pp.11-12940, 2011.
DOI : 10.1016/j.compstruc.2011.01.018

URL : https://hal.archives-ouvertes.fr/hal-01188918

]. A. Ill08, Mise en oeuvre de la méthode desélémentsdeséléments naturels contrainte en 3D : Application au cisaillage adiabatique, 2008.

W. [. Johnson and . Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures The Hague, Proc.7th International Symposium on Ballistics, pp.541-547, 1983.

[. Jana and N. S. Ong, Effect of punch clearance in the high-speed blanking of thick metals using an accelerator designed for a mechanical press, Journal of Mechanical Working Technology, vol.19, issue.1, pp.55-72, 1989.
DOI : 10.1016/0378-3804(89)90066-1

F. [. Johnson and . Travis, High-speed blanking of copper, Proceedings of the Institute of Mechanical Engineers Conference Proceedings, pp.197-204, 1964.

R. [. Khan and . Liang, Behaviors of three BCC metals during non-proportional multi-axial loadings: experiments and modeling, International Journal of Plasticity, vol.16, issue.12, pp.1443-1458, 1996.
DOI : 10.1016/S0749-6419(00)00016-4

]. H. Kol64 and . Kolsky, Stress waves in solids, Journal of Sound and Vibration, vol.1, issue.1, pp.88-110, 1964.

. K. Ljl-+-95-]-w, S. Liu, S. Jun, J. Li, T. Adee et al., Reproducing kernel particle methods, International Journal for Numerical Methods in Engineering, vol.38, pp.1655-1679, 1995.

G. [. Liu and . Liu, Smoothed Particle Hydrodynamics (SPH): an Overview and??Recent Developments, Archives of Computational Methods in Engineering, vol.43, issue.3, pp.25-76, 2010.
DOI : 10.1007/s11831-010-9040-7

A. [. Lemonds and . Needleman, An analysis of shear band development incorporating heat conduction, Mechanics of Materials, vol.5, issue.4, pp.363-373, 1986.
DOI : 10.1016/0167-6636(86)90040-2

J. [. Liszka and . Orkisz, The finite difference method at arbitrary irregular grids and its application in applied mechanics, Computers & Structures, vol.11, issue.1-2, pp.83-95, 1980.
DOI : 10.1016/0045-7949(80)90149-2

]. L. Luc77 and . Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, vol.82, issue.12, pp.1013-1024, 1977.

]. O. Lur08 and . Lurdos, Lois de comportement et recristallisation dynamique : approches empirique et physique, 2008.

]. A. Mai09 and . Maillard, Découpage des tôlestôlesà la presse, BM, vol.7500, pp.1-19, 2009.

J. [. Marchand and . Duffy, An experimental study of the formation process of adiabatic shear bands in a structural steel, Journal of the Mechanics and Physics of Solids, vol.36, issue.3, pp.251-283, 1988.
DOI : 10.1016/0022-5096(88)90012-9

I. Mañé, V. Gagnol, B. C. Bouzgarrou, and P. Ray, Stability-based spindle speed control during flexible workpiece high-speed milling, International Journal of Machine Tools and Manufacture, vol.48, issue.2, pp.184-194, 2008.
DOI : 10.1016/j.ijmachtools.2007.08.018

]. A. Mol97 and . Molinari, Collective behavior and spacing of adiabatic shear bands, J. Mech. Phys. Solids, vol.45, issue.9, pp.1551-1575, 1997.

A. J. Rosakis, . Zhou, and G. Ravichandran, Dynamically propagating shear bands in impact-loaded prenotched plates i. experimental investigations of temperature signatures and propagation speed, J. Mech. Phys. Solids, vol.44, p.981, 1996.

B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements, Computational Mechanics, vol.313, issue.5, pp.307-318, 1992.
DOI : 10.1007/BF00364252

L. [. Ong and . Chan, Blanking of thick-gauge metals using a variable-speed pneumatic accelerator designed for a mechanical press, Journal of Mechanical Working Technology, vol.18, issue.1, pp.17-31, 1989.
DOI : 10.1016/0378-3804(89)90107-1

[. Otua, Données physqiues sur quelques acier d'utilisation courantes, 2010.

P. [. Mariage, K. Lestriez, A. Saanouni, and . Cherouat, Numerical prediction of damage in metal forming process including thermal effects, Int. J. Damage Mech, vol.13, pp.59-80, 2004.

X. Zhang, R. C. Batra, and T. W. Wright, Critical strain ranking of 12 materials in deformations involving adiabatic shear bands, Trans. ASME J. Appl. Mech, vol.62, p.252, 1995.

K. M. Roessig and J. J. Mason, Adiabatic shear localization in the dynamic punch test, part I: experimental investigation, International Journal of Plasticity, vol.15, issue.3, pp.241-262, 1999.
DOI : 10.1016/S0749-6419(98)00069-2

K. M. Roessig and J. J. Mason, Adiabatic shear localization in the dynamic punch test, part II: numerical simulations, International Journal of Plasticity, vol.15, issue.3, pp.263-283
DOI : 10.1016/S0749-6419(98)00070-9

]. H. Rog79 and . Rogers, Adiabatic plastic deformation, Ann. Rev. Mater. Sci, vol.9, pp.283-311, 1979.

A. Rusinek, R. Zaera, and J. R. Klepaczko, Constitutive relations in 3-D for a wide range of strain rates and temperatures ??? Application to mild steels, International Journal of Solids and Structures, vol.44, issue.17, pp.5611-5634, 2007.
DOI : 10.1016/j.ijsolstr.2007.01.015

]. K. Saa06 and . Saanouni, Virtual metal forming including the ductile damage occurence actual state of the art and main perspectives, Journal of Materials Processing Technology, vol.177, pp.19-25, 2006.

]. K. Saa08 and . Saanouni, On the numerical prediction of the ductile fracture in metal forming, Engineering fracture mechanics, vol.75, pp.3545-3559, 2008.

]. R. Sib80 and . Sibson, A vector identity for the dirichlet tessellation, Scandinavian Journal of Statistics, vol.87, pp.151-155, 1980.

W. [. Slater and . Johnson, The effects of temperature, speed and strain-rate on the force and energy required in blanking, International Journal of Mechanical Sciences, vol.9, issue.5, pp.271-276, 1967.
DOI : 10.1016/0020-7403(67)90022-7

A. [. Stock and . Wingrove, The energy required for high???speed shearing of steel, ARCHIVE: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23), vol.13, issue.2, pp.110-115, 1971.
DOI : 10.1243/JMES_JOUR_1971_013_018_02

M. Tilby, Découpage fin, pp.1-16, 1983.

H. [. Taylor and . Quiney, The Latent Energy Remaining in a Metal after Cold Working, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.143, issue.849, pp.307-326, 1934.
DOI : 10.1098/rspa.1934.0004

]. H. Tre78 and . Tresca, On further application of the flow of solids, Proc. Int. Mech. Engng, vol.30, pp.301-345, 1878.

W. [. Baraya, R. A. Johnson, and . Slater, On heat lines or lines of thermal discontinuity, International Journal of Mechanical Sciences, vol.6, issue.6, pp.409-414, 1964.

J. Yvonnet, Nouvelles approches sans maillage basées sur la méthode desélémentsdeséléments naturels pour la simulation numérique des procédés de mise en forme, 2004.

G. [. Zhao and . Gary, A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, pp.1335-1348, 1995.
DOI : 10.1016/0022-5096(95)00030-M

J. [. Zener and . Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, Journal of Applied Physics, vol.15, issue.1, pp.22-32, 1944.
DOI : 10.1063/1.1707363

]. H. Zha03 and . Zhao, Material behaviour characterisation using shpb techniques, tests and simulations, Computers and Structures, vol.81, issue.12, pp.1301-1310, 1996.