. Abbott, Synaptic plasticity: taming the beast, Nature Neuroscience, vol.3, issue.Supp, pp.1178-1183, 2000.
DOI : 10.1038/81453

. Ackley, A Learning Algorithm for Boltzmann Machines*, Cognitive Science, vol.85, issue.1, pp.147-169, 1985.
DOI : 10.1207/s15516709cog0901_7

. Amari, A Mathematical Foundation for Statistical Neurodynamics, SIAM Journal on Applied Mathematics, vol.33, issue.1, pp.95-126, 1977.
DOI : 10.1137/0133008

. Amari, Information geometry of Boltzmann machines, IEEE Transactions on Neural Networks, vol.3, issue.2, pp.260-271, 2002.
DOI : 10.1109/72.125867

]. S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1007/BF00337259

]. D. Amit and N. Brunel, Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex, Cerebral Cortex, vol.7, issue.3, pp.237-274, 1997.
DOI : 10.1093/cercor/7.3.237

]. D. Amit and M. Tsodyks, Quantitative study of attractor neural network retrieving at low spike rates: I. substrate???spikes, rates and neuronal gain, Network: Computation in Neural Systems, vol.2, issue.3, pp.259-273, 1991.
DOI : 10.1088/0954-898X_2_3_003

L. I. Arnold, M. Arnold, and . Levi, Geometrical methods in the theory of ordinary differential equations, 1988.

G. Arous, ]. G. Arous, and A. Guionnet, Large deviations for Langevin spin glass dynamics. Probability Theory and Related Fields, pp.455-509, 1995.
DOI : 10.1007/bf01195482

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Atick, ]. J. Atick, and A. N. Redlich, Towards a Theory of Early Visual Processing, Neural Computation, vol.2, issue.3, pp.308-320, 1990.
DOI : 10.1098/rspb.1982.0085

. Azari, Neural correlates of religious experience, European Journal of Neuroscience, vol.54, issue.8, pp.1649-1652, 2001.
DOI : 10.1016/s0926-6410(96)00047-x

. Baladron, Mean Field description of and propagation of chaos in recurrent multipopulation networks of Hodgkin-Huxley and Fitzhugh-Nagumo neurons Arxiv preprint arXiv:1110.4294v1, pp.41-173, 2011.

]. H. Barlow, Unsupervised Learning, Neural Computation, vol.4, issue.3, pp.295-311, 1989.
DOI : 10.1007/BF00288907

]. H. Barlow, Redundancy reduction revisited, Network: Computation in Neural Systems, vol.25, issue.3, pp.241-253, 2001.
DOI : 10.1147/rd.42.0208

V. Bartsch, A. Hemmen, J. Bartsch, and . Van-hemmen, Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex, Biological Cybernetics, vol.84, issue.1, pp.41-55, 2001.
DOI : 10.1007/s004220170003

. Berkes, Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment, Science, vol.331, issue.6013, pp.83-119, 2011.
DOI : 10.1126/science.1195870

]. D. Bernstein, Matrix mathematics: theory, facts, and formulas, p.234, 2009.
DOI : 10.1515/9781400833344

]. G. Bi and M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type, The Journal of Neuroscience, vol.18, issue.30, pp.10464-10493, 1998.

DOI : 10.1142/9789812795885_0006

G. Borg, P. J. Borg, and . Groenen, Modern Multidimensional Scaling: Theory and Applications, Journal of Educational Measurement, vol.40, issue.3, pp.164-165, 2005.
DOI : 10.1007/BF02289341

. Bosking, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, Journal of neuroscience, vol.17, issue.134, pp.2112-156, 1997.

]. P. Bressloff and J. D. Cowan, A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.358, issue.1438, 2003.
DOI : 10.1098/rstb.2002.1109

. Bressloff, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1407, pp.299-330, 2001.
DOI : 10.1098/rstb.2000.0769

]. P. Bressloff, Spontaneous symmetry breaking in self???organizing neural fields, Biological Cybernetics, vol.6, issue.4, pp.256-274, 2005.
DOI : 10.1007/s00422-005-0002-3

]. P. Bressloff, Stochastic neural field theory and the systemsize expansion, p.71, 2009.

G. Brette, W. Brette, and . Gerstner, Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity, Journal of Neurophysiology, vol.94, issue.5, pp.3637-3652, 2005.
DOI : 10.1152/jn.00686.2005

]. J. Brewer, Kronecker products and matrix calculus in system theory, IEEE Transactions on Circuits and Systems, vol.25, issue.9, pp.772-781, 1978.
DOI : 10.1109/TCS.1978.1084534

]. K. Brodmann, Vergleichende lokalisationslehre der grobhirnrinde, Bibliography, issue.2, 1909.

V. Brunel, P. Hakim, J. P. Isope, B. Nadal, and . Barbour, Optimal Information Storage and the Distribution of Synaptic Weights, Neuron, vol.43, issue.5, pp.745-757, 2004.
DOI : 10.1016/j.neuron.2004.08.023

URL : https://hal.archives-ouvertes.fr/hal-00143779

M. A. Buice, J. D. Cowan, and C. C. Chow, Systematic Fluctuation Expansion for Neural Network Activity Equations, Neural Computation, vol.13, issue.1, pp.377-426, 2010.
DOI : 10.1093/acprof:oso/9780198509233.001.0001

]. A. Butler and W. Hodos, Comparative vertebrate neuroanatomy: evolution and adaptation, 1996.
DOI : 10.1002/0471733849

. Camera, ???Like Input Currents, Neural Computation, vol.79, issue.10, pp.2101-2124, 2004.
DOI : 10.1016/S0022-5193(83)80013-7

]. N. Caporale and Y. Dan, Spike Timing???Dependent Plasticity: A Hebbian Learning Rule, Annual Review of Neuroscience, vol.31, issue.1, pp.25-46, 2008.
DOI : 10.1146/annurev.neuro.31.060407.125639

. Castellani, Solutions of the BCM learning rule in a network of lateral interacting nonlinear neurons, Network: Computation in Neural Systems, vol.10, issue.2, pp.111-121, 1999.
DOI : 10.1088/0954-898X_10_2_001

. Chklovskii, Wiring Optimization in Cortical Circuits, Neuron, vol.34, issue.3, pp.341-347, 2002.
DOI : 10.1016/S0896-6273(02)00679-7

O. Faugeras, Hyperbolic planforms in relation to visual edges and textures perception, PLoS Computational Biology, vol.5, issue.12, pp.367-375, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00807344

S. Cohen and . Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, In IEEE Transactions on Systems, Man, and Cybernetics, pp.13-815, 1983.

. Coifman, Geometric diffusions for the analysis of data from sensor networks, Current Opinion in Neurobiology, vol.15, issue.5, pp.576-584, 2005.
DOI : 10.1016/j.conb.2005.08.012

]. S. Coombes, Phase locking in networks of synaptically coupled McKean relaxation oscillators, Physica D: Nonlinear Phenomena, vol.160, issue.3-4, pp.173-188, 2001.
DOI : 10.1016/S0167-2789(01)00352-9

]. G. Cottet, NEURAL NETWORKS: CONTINUOUS APPROACH AND APPLICATIONS TO IMAGE PROCESSING, Journal of Biological Systems, vol.03, issue.04, pp.1131-1139, 1995.
DOI : 10.1142/S0218339095001027

P. Da, Z. , ]. G. Da-prato, and J. Zabczyk, Stochastic equations in infinite dimensions, p.245, 1992.

. Bibliography, . Dawson, ]. D. Gartner, J. Dawson, and . Gartner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, vol.20, issue.4, pp.247-308, 1987.

A. Dayan, ]. P. Dayan, and L. F. Abbott, Theoretical neuroscience: Computational and mathematical modeling of neural systems, pp.68-123, 2001.

M. Degond, S. Degond, and . Mas-gallic, The Weighted Particle Method for Convection-Diffusion Equations. Part 1: The Case of an Isotropic Viscosity, Mathematics of Computation, vol.53, issue.188, pp.485-507, 1989.
DOI : 10.2307/2008716

. Destexhe, Kinetic models of synaptic transmission, Methods in neuronal modeling, pp.1-25, 1998.

]. D. Dong and J. J. Hopfield, Dynamic properties of neural networks with adapting synapses, Network: Computation in Neural Systems, vol.3, issue.3, pp.267-283, 1992.
DOI : 10.1088/0954-898X_3_3_002

]. R. Durbin and G. Mitchison, A dimension reduction framework for understanding cortical maps, Nature, vol.343, issue.6259, pp.644-647, 1990.
DOI : 10.1038/343644a0

J. Ermentrout and . Cowan, Large Scale Spatially Organized Activity in Neural Nets, SIAM Journal on Applied Mathematics, vol.38, issue.1, pp.1-21, 1980.
DOI : 10.1137/0138001

]. G. Ermentrout and D. Terman, Mathematical foundations of neuroscience, pp.22-38, 2010.
DOI : 10.1007/978-0-387-87708-2

. Erwin, Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison, Neural Computation, vol.8, issue.5, pp.425-468, 1995.
DOI : 10.1007/BF00198765

. Faugeras, Abolute stability and complete synchronization in a class of neural fields models, SIAM J. Appl. Math, vol.61, issue.90, pp.205-250, 2008.

. Faugeras, A constructive mean-field analysis of multi population neural networks with random synaptic weights and stochastic inputs, Frontiers in Computational Neuroscience, vol.3, p.42, 2009.
DOI : 10.3389/neuro.10.001.2009

URL : https://hal.archives-ouvertes.fr/inria-00258345

. Faugeras, -Dimensional Neural Networks, Neural Computation, vol.13, issue.2, pp.147-187, 2009.
DOI : 10.1007/s004220000237

URL : https://hal.archives-ouvertes.fr/inria-00192952

V. Felleman, . J. Essen-1991-]-d, D. C. Felleman, and . Van-essen, Distributed Hierarchical Processing in the Primate Cerebral Cortex, Cerebral Cortex, vol.1, issue.1, p.122, 1991.
DOI : 10.1093/cercor/1.1.1

]. J. Feng, Computational neuroscience: A comprehensive approach, p.38, 2004.
DOI : 10.1201/9780203494462

]. R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

. Bibliography, K. Florence, ]. S. Florence, and J. H. Kaas, Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: complete reconstructions and quantitative analyses, Visual neuroscience, vol.8, issue.05, pp.449-462, 1992.

]. P. Földiák, Learning Invariance from Transformation Sequences, Neural Computation, vol.88, issue.2, pp.194-200, 1991.
DOI : 10.1088/0954-898X/2/1/003

S. E. Folias and P. C. Bressloff, Breathing Pulses in an Excitatory Neural Network, SIAM Journal on Applied Dynamical Systems, vol.3, issue.3, pp.378-407, 2004.
DOI : 10.1137/030602629

D. Fourcaud-trocmé, C. Hansel, N. Van-vreeswijk, and . Brunel, How spike generation mechanisms determine the neuronal response to fluctuating inputs, The Journal of neuroscience, vol.23, issue.37, pp.11628-11665, 2003.

R. G. Frey and . Morris, Synaptic tagging and long-term potentiation, Nature, vol.385, issue.6616, pp.533-536, 1997.
DOI : 10.1038/385533a0

. Funahashi, ]. K. Nakamura-1993, Y. Funahashi, and . Nakamura, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Networks, vol.6, issue.6, pp.801-806, 1993.
DOI : 10.1016/S0893-6080(05)80125-X

D. Gardner, B. Gardner, and . Derrida, Optimal storage properties of neural network models, Journal of Physics A: Mathematical and General, vol.21, issue.1, pp.271-123, 1988.
DOI : 10.1088/0305-4470/21/1/031

. Gerstner, ]. W. Kistler-2002a, W. M. Gerstner, and . Kistler, Mathematical formulations of Hebbian learning, Biological Cybernetics, vol.87, issue.5-6, pp.404-415, 2002.
DOI : 10.1007/s00422-002-0353-y

K. Gerstner, ]. W. Gerstner, and W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity, pp.67-141, 2002.
DOI : 10.1017/CBO9780511815706

]. W. Gerstner, Time structure of the activity in neural network models, Physical Review E, vol.51, issue.1, pp.738-754, 1995.
DOI : 10.1103/PhysRevE.51.738

D. Willshaw, Application of the elastic net algorithm to the formation of ocular dominance stripes, Network: Computation in Neural Systems, vol.1, issue.1, pp.41-59, 1990.

. Gütig, Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity, The Journal of neuroscience, vol.23, issue.9, pp.3697-79, 2003.

L. Hale, ]. J. Hale, and S. M. , Introduction to functional differential equations, pp.72-242, 1993.
DOI : 10.1007/978-1-4612-4342-7

. Han, Reverberation of Recent Visual Experience in Spontaneous Cortical Waves, Neuron, vol.60, issue.2, pp.321-327, 2008.
DOI : 10.1016/j.neuron.2008.08.026

. Hansel, Synchrony in Excitatory Neural Networks, Neural Computation, vol.63, issue.2, pp.307-337, 1995.
DOI : 10.1103/PhysRevLett.70.2391

]. D. Hebb, The organization of behavior: a neuropsychological theory, p.74, 1949.

. Hertz, Introduction to the theory of neural computation, p.66, 1991.

]. B. Hille, Ionic channels of excitable membranes, p.13, 1992.

H. Hodgkin, ]. A. Hodgkin, and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-516, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

]. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national academy of sciences, pp.2554-66, 1982.

]. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons., Proceedings of the National Academy of Sciences, vol.81, issue.10, p.3088, 1984.
DOI : 10.1073/pnas.81.10.3088

]. J. Hopfield-2007 and . Hopfield, Hopfield network, Scholarpedia, vol.2, issue.5, pp.1977-67, 2007.
DOI : 10.4249/scholarpedia.1977

T. N. Hubel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, The Journal of Physiology, vol.160, issue.1, pp.106-121, 1962.
DOI : 10.1113/jphysiol.1962.sp006837

]. D. Hubel and T. N. , Ferrier Lecture: Functional Architecture of Macaque Monkey Visual Cortex, Proceedings of the Royal Society B: Biological Sciences, vol.198, issue.1130, pp.1-59, 1977.
DOI : 10.1098/rspb.1977.0085

L. N. Intrator and . Cooper, Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions, Neural Networks, vol.5, issue.1, pp.3-17, 1992.
DOI : 10.1016/S0893-6080(05)80003-6

]. E. Izhikevich and N. S. Desai, Relating STDP to BCM, Neural Computation, vol.20, issue.7, pp.1511-1523, 2003.
DOI : 10.1016/S0896-6273(01)00542-6

]. E. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks, vol.14, issue.6, pp.1569-1572, 2003.
DOI : 10.1109/TNN.2003.820440

]. E. Izhikevich, Dynamical systems in neuroscience: The geometry of excitability and bursting, p.17, 2007.

T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli, Spontaneously emerging cortical representations of visual attributes, Nature, vol.425, issue.6961, pp.954-956, 2003.
DOI : 10.1038/nature02078

]. H. Khalil and J. Grizzle, Nonlinear systems, Prentice hall Upper Saddle River NJ, vol.90, p.207, 1996.

]. T. Kohonen, The Self-Organizing Map, Proceedings of the IEEE, p.158, 1990.

. Laing, Multiple Bumps in a Neuronal Model of Working Memory, SIAM Journal on Applied Mathematics, vol.63, issue.1, pp.62-97, 2002.
DOI : 10.1137/S0036139901389495

]. S. Lee and M. H. Wolpoff, The pattern of evolution in Pleistocene human brain size, Paleobiology, vol.8, issue.2, p.186, 2003.
DOI : 10.1666/0094-8373(2003)029<0186:TPOEIP>2.0.CO;2

]. E. Linkser, Self-organization in a perceptual network, Computer, pp.105-117, 1988.

]. R. Linkser, Local synaptic rule suffice to maximize mutual information in a linear network, Neural Computation, vol.4, pp.691-702, 1992.

]. R. Linsker, Self-organization in a perceptual network, Computer, vol.21, issue.3, pp.105-117, 1988.
DOI : 10.1109/2.36

. Lorenzi, Asymptotic behavior in time periodic parabolic problems with unbounded coefficients, Journal of Differential Equations, vol.249, issue.12, 2010.
DOI : 10.1016/j.jde.2010.08.019

C. Malsburg, ]. C. Malsburg, and J. D. Cowan, Outline of a theory for the ontogenesis of iso-orientation domains in visual cortex, Biological Cybernetics, vol.92, issue.1, pp.49-56, 1982.
DOI : 10.1007/BF00387213

]. X. Mao, Stochastic differential equations and their applications. Horwood publishing, pp.72-245, 1997.

. Masquelier, Competitive STDP-Based Spike Pattern Learning, Neural Computation, vol.65, issue.1, pp.1259-1276, 2009.
DOI : 10.1038/25665

URL : https://hal.archives-ouvertes.fr/hal-00383703

]. W. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biology, vol.5, issue.4, pp.115-133, 1943.

]. H. Mckean, Nagumo's equation, Advances in Mathematics, vol.4, issue.3, pp.209-223, 1970.
DOI : 10.1016/0001-8708(70)90023-X

. Miikkulainen, Computational maps in the visual cortex, pp.141-152, 2005.

]. K. Miller and D. J. Mackay, The Role of Constraints in Hebbian Learning, Neural Computation, vol.1, issue.1, pp.100-126, 1994.
DOI : 10.1007/BF00198765

. Miller, Ocular dominance column development: analysis and simulation, Science, vol.245, issue.4918, pp.605-615, 1989.
DOI : 10.1126/science.2762813

]. K. Miller, Synaptic Economics: Competition and Cooperation in Synaptic Plasticity, Neuron, vol.17, issue.3, pp.371-374, 1996.
DOI : 10.1016/S0896-6273(00)80169-5

H. Morris and . Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, vol.35, issue.1, pp.193-213, 1981.
DOI : 10.1016/S0006-3495(81)84782-0

. Muratov, Self-induced stochastic resonance in excitable systems, Physica D: Nonlinear Phenomena, vol.210, issue.3-4, pp.227-240, 2005.
DOI : 10.1016/j.physd.2005.07.014

. Nagumo, An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, pp.2061-2070, 1962.
DOI : 10.1109/JRPROC.1962.288235

]. E. Oja, Simplified neuron model as a principal component analyzer, Journal of Mathematical Biology, vol.35, issue.3, pp.267-273, 1982.
DOI : 10.1007/BF00275687

]. B. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol.381, issue.6583, pp.607-609, 1996.
DOI : 10.1038/381607a0

]. R. Malley, Singular perturbation methods for ordinary differential equations, p.189, 1991.

S. Ostojic, N. Brunel, and V. Hakim, How Connectivity, Background Activity, and Synaptic Properties Shape the Cross-Correlation between Spike Trains, Journal of Neuroscience, vol.29, issue.33, pp.10234-60, 2009.
DOI : 10.1523/JNEUROSCI.1275-09.2009

]. J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure, Journal of Physiology-Paris, vol.97, issue.2-3, pp.265-309, 2003.
DOI : 10.1016/j.jphysparis.2003.10.010

. Pfister, ]. J. Gerstner-2006, W. Pfister, and . Gerstner, Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity, Journal of Neuroscience, vol.26, issue.38, pp.9673-9682, 2006.
DOI : 10.1523/JNEUROSCI.1425-06.2006

. Pfister, Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials, Nature Neuroscience, vol.21, issue.10, pp.1271-1275, 2010.
DOI : 10.1038/nn.2640

URL : https://hal.archives-ouvertes.fr/hal-00578282

E. Pinto, ]. D. Pinto, and G. B. Ermentrout, Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses, SIAM Journal on Applied Mathematics, vol.62, issue.1, pp.206-225, 2001.
DOI : 10.1137/S0036139900346453

]. R. Redondo and R. G. Morris, Making memories last: the synaptic tagging and capture hypothesis, Nature Reviews Neuroscience, vol.23, issue.1, pp.17-30, 2010.
DOI : 10.1038/nrn2963

]. L. Ricciardi and C. E. Smith, Diffusion processes and related topics in biology, p.37, 1977.
DOI : 10.1007/978-3-642-93059-1

]. J. Rinzel and P. Frankel, Activity Patterns of a Slow Synapse Network Predicted by Explicitly Averaging Spike Dynamics, Neural Computation, vol.37, issue.14, pp.534-545, 1992.
DOI : 10.1016/S0006-3495(72)86068-5

]. H. Risken, The Fokker-Planck Equation: Methods of Solution and Application, 2nd ed., Journal of Applied Mechanics, vol.58, issue.3, 0198.
DOI : 10.1115/1.2897281

]. E. Rolls and G. Deco, Computational neuroscience of vision, pp.77-121, 2002.
DOI : 10.1093/acprof:oso/9780198524885.001.0001

. Romani, Tonotopic organization of the human auditory cortex, Science, vol.216, issue.4552, pp.1339-112, 1982.
DOI : 10.1126/science.7079770

. Rubner, ]. J. Tavan-1989, P. Rubner, and . Tavan, A Self-Organizing Network for Principal-Component Analysis, Europhysics Letters (EPL), vol.10, issue.7, pp.693-130, 1989.
DOI : 10.1209/0295-5075/10/7/015

. Sanders, Averaging methods in nonlinear dynamical systems, p.86, 2007.
DOI : 10.1007/978-1-4757-4575-7

]. T. Sejnowski and G. Tesauro, The Hebb rule for synaptic plasticity: algorithms and implementations. Neural models of plasticity, pp.94-103, 1989.

. Sejnowski, Statistical constraints on synaptic plasticity, Journal of Theoretical Biology, vol.69, issue.2, p.385, 1977.
DOI : 10.1016/0022-5193(77)90146-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. T. Serre-2005 and . Serre, A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex, p.130, 2005.

. Shriki, Rate Models for Conductance-Based Cortical Neuronal Networks, Neural Computation, vol.16, issue.8, pp.1809-1841, 2003.
DOI : 10.1016/S0006-3495(72)86068-5

URL : https://hal.archives-ouvertes.fr/hal-00173803

. Sjöström, ]. J. Gerstner-2010, W. Sjöström, and . Gerstner, Spike-timing dependent plasticity, pp.1362-1392, 2010.

. Sompolinsky, Chaos in Random Neural Networks, Physical Review Letters, vol.61, issue.3, pp.259-262, 1988.
DOI : 10.1103/PhysRevLett.61.259

. Song, Competitive Hebbian learning through spike-timing-dependent synaptic plasticity, nature neuroscience, vol.3, pp.919-926, 2000.

]. S. Stringer and E. T. Rolls, Invariant Object Recognition in the Visual System with Novel Views of 3D Objects, Neural Computation, vol.66, issue.11, pp.2585-2596, 2002.
DOI : 10.1016/S0301-0082(96)00054-8

. Sur, Rewiring cortex: The role of patterned activity in development and plasticity of neocortical circuits, Journal of Neurobiology, vol.257, issue.1, pp.33-43, 1999.
DOI : 10.1002/(SICI)1097-4695(199910)41:1<33::AID-NEU6>3.0.CO;2-1

. Nv-swindale, The development of topography in the visual cortex: a review of models, Network: Computation in Neural Systems, vol.7, issue.2, pp.161-247, 1996.
DOI : 10.1088/0954-898X_7_2_002

]. N. Swindale, How Many Maps are there in Visual Cortex?, Cerebral Cortex, vol.10, issue.7, pp.633-135, 2000.
DOI : 10.1093/cercor/10.7.633

]. A. Sznitman, Topics in propagation of chaos. Ecole d'Eté de Probabilités de Saint-Flour XIX?, pp.165-251, 1989.

A. Takeuchi, ]. A. Takeuchi, and S. Amari, Formation of topographic maps and columnar microstructures in nerve fields, Biological Cybernetics, vol.37, issue.2, pp.63-72, 1979.
DOI : 10.1007/BF00337432

]. K. Tanaka, Inferotemporal Cortex and Object Vision, Annual Review of Neuroscience, vol.19, issue.1, pp.109-139, 1996.
DOI : 10.1146/annurev.ne.19.030196.000545

]. J. Touboul, Importance of the Cutoff Value in the Quadratic Adaptive Integrate-and-Fire Model, Neural Computation, vol.83, issue.37, pp.2114-2122, 2009.
DOI : 10.1007/s00422-008-0267-4

]. J. Touboul, Mean-field equations for stochastic neural fields with spatio-temporal delays. Arxiv preprint arXiv:1108, p.173, 2011.

S. Tsodyks, T. Tsodyks, and . Sejnowski, Rapid state switching in balanced cortical network models, Network: Computation in Neural Systems, vol.6, issue.2, pp.111-124, 1995.
DOI : 10.1088/0954-898X_6_2_001

. Tsodyks, Neural Networks with Dynamic Synapses, Neural Computation, vol.17, issue.4, pp.821-835, 1998.
DOI : 10.1085/jgp.80.4.583

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. G. Turrigiano and S. B. Nelson, Homeostatic plasticity in the developing nervous system, Nature Reviews Neuroscience, vol.5, issue.2, pp.97-107, 2004.
DOI : 10.1038/nrn1327

. Van-essen, ]. D. Gallant, J. L. Van-essen, and . Gallant, Neural mechanisms of form and motion processing in the primate visual system, Neuron, vol.13, issue.1, p.122, 1994.
DOI : 10.1016/0896-6273(94)90455-3

. Van-rossum, Stable Hebbian learning from spike timing-dependent plasticity, The Journal of Neuroscience, vol.20, issue.23, pp.8812-8842, 2000.

. Varela, A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex, The Journal of neuroscience, vol.17, issue.20, pp.7926-7953, 1997.

]. R. Veltz and O. Faugeras, Stability of the stationary solutions of neural field equations with propagation delays, The Journal of Mathematical Neuroscience, vol.1, issue.1, pp.1-25, 2011.
DOI : 10.1186/2190-8567-1-1

URL : https://hal.archives-ouvertes.fr/hal-00784425

]. F. Verhulst, Singular perturbation methods for slow???fast dynamics, Nonlinear Dynamics, vol.85, issue.33, pp.747-753, 2007.
DOI : 10.1007/s11071-007-9236-z

]. G. Wainrib, Double averaging principle for periodically forced slow-fast stochastic systems. submitted, pp.174-195, 2011.

]. G. Wallis and R. Baddeley, Optimal, Unsupervised Learning in Invariant Object Recognition, Neural Computation, vol.66, issue.4, pp.883-894, 1997.
DOI : 10.1016/S0301-0082(96)00054-8

. Wang, Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging, Neuroscience Research, vol.32, issue.1, pp.33-46, 1998.
DOI : 10.1016/S0168-0102(98)00062-5

. Wilson, H. R. Cowan, J. D. Wilson, and . Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.
DOI : 10.1016/S0006-3495(72)86068-5

. Wilson, H. R. Cowan, J. D. Wilson, and . Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, vol.12, issue.2, pp.55-80, 1973.
DOI : 10.1007/BF00288786

]. R. Wong, RETINAL WAVES AND VISUAL SYSTEM DEVELOPMENT, Annual Review of Neuroscience, vol.22, issue.1, pp.29-47, 1999.
DOI : 10.1146/annurev.neuro.22.1.29

H. S. Xie and . Seung, Spike-based learning rules and stabilization of persistent neural activity Advances in neural information processing systems, pp.199-205, 2000.