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2 CHAPTER 1. GENERAL INTRODUCTION

1.1 Virtual Microstructures

The mechanics of heterogeneous materials concentrated for a long time on the notion of
global behavior by estimating their properties in a macroscopic way. But, the in�uence of
microstructural heterogeneities on material processing is an issue of prime importance [1],
which explains the need to generate a digital material, statistically equivalent to the con-
sidered microstructure, and to connect this digital description to a speci�c computational
method such as the Finite Element Method (FEM) [2, 3]. Thanks to the considerable
progress accomplished in the techniques of multi-scale modelling, the increase of the means
of calculation, and the evolution of the experimental techniques, we can have access to the
local information, or microscopic, and model it. Despite this progress in the last decade
[4, 5], consistent analysis of real-world large-scale engineering structures by multi-scale
techniques are still far from being executed routinely. The �rst cause of such a situation
is simply the cost of analysis: even on large parallel networks, the size of the problem
remains to be limited to selected structural parts [6]. The second important restriction is
the intrinsic randomness of materials' microstructures, typically observed on all relevant
length scales. The high cost of a fully coupled micro-macro simulation can be signi�cantly
reduced when restricting the attention to a fully uncoupled analysis. In this context, the
response of a Representative Volume Element (RVE) when it is subject to a given loading
path is of the main interest.

The RVE represents the mesoscopic scale which is the intermediate scale between the
microscopic and macroscopic scales (see Figure 1.1). The RVE has to be big enough to
statistically represent the material, which means, to include a sample of all microstruc-
tural heterogeneities which appear in one heterogeneous material (grains, porosity, �bers,
inclusions, etc) and it has to be rather small so that variations of macroscopic �elds would
be negligible. Boundary conditions are also important to characterize an RVE subject to a
loading path. Periodic boundary conditions are used [7], when the RVE is constructed or
considered as periodic. In other cases, most precisely when the RVE's size is determined
by studying the variations of a certain physical property in function of the size of di�erent
volume elements, symmetrical boundary conditions [8] can be used.

1.2 Objectives and a brief literature review

Generally, the generation of microstructures or RVEs and the mechanical applications
performed on these microstructures are two independent topics. Usually, when the con-
struction or generation phase is advanced, it is concentrated on one type of microstructure
and no mechanical testings are performed. Inversly, when mechanical testings are per-
formed, the generation step is brie�y described or only cited.

A main objective of this thesis is to propose a formalism in order to generate sta-
tistical virtual microstructures and to connect easily this virtual description to Finite
Element (FE) computations. It will be impossible to give an exhaustive list of concerned
applications but recurrent types of microstructures in the literature are polyhedric and
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Figure 1.1: The di�erent length scales

spherical arrangements. For example, Voronoï cells are currently used to model foams
[7, 9, 10, 11, 12, 13], polycrystals [14, 15, 16], granular semi-solids [17, 18, 19], etc; whereas,
spherical packings are currently used to generate suspensions [8, 20, 21], powder RVEs
[22, 23], granular assemblies [24, 25], etc.

As it will be detailed later, two particular applications at the mesoscopic scale are
studied in the proposed formalism: the numerical modelling of foam deformation and the
permeability computation inside a unidirectional �ber material. However it is important
to underline that, in term of statistical generation of RVEs, the methodology proposed
and the builder developed in CimLib [26] during this Ph.D. thesis are used in CEMEF
for other microstructures such as polycrystal [27, 28], high density sphere packing [29, 30]
or granular semi-solid [17].

Two independent microstructure generators already exist in CimLib [26], the FE C++
library used and developed in this work. The �rst generates suspensions of solid particles
[31]. It was used for modelling composite materials (matrix + spherical particles and/or
�bers) with a simple size distribution for the spherical particles and �bers with a precise
length and diameter. Although the application performed on the microstructure of this
generator required only moderated particle densities, high densities where not achievable.
Moreover, complex size distribution laws for the solid particles were not implemented in
this generator. The second generator was used for modelling metallurgical grains using
Voronoï tessellations [14]. A �rst limitation of this builder, similar to one of the �rst,
is the impossibility of imposing a cell size distribution which is a global weakness of the
classical Voronoï Tessellation Method (VTM). A second weak point is its limitation to a
moderated number of cells especially in 3D.
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Numerous generation methods and algorithms exist in the literature. We begin by shed-
ding light on the ones using cell generating methods modelling polyhedral microstructures.

Zhu and coworkers used the VTM to model Voronoï honeycombs (or two-dimensional
foams) [7, 12] and open-cell foams [11, 13] with di�erent irregularity degrees and relative
densities (see section 2.4.2). They studied the e�ect of cell irregularity on the high strain
compression and on the elastic properties and found that, for both kinds of foams, a
more irregular foam has a higher tangential modulus at low strain but supports a lower
compressive stress at higher strain when compared with a more regular one (hexagonal in
2D and tetrakaidecahedral in 3D), and the more irregular the random foams, the larger
will be their e�ective Young's modulus and shear modulus, and the smaller will be their
bulk modulus. Also the VTM is used in the works of Li et al. to model two-dimensional
cellular solids [32] and open-cell foams [9] in order to study the e�ects of cell shape and
cell wall thickness variations on the elastic properties of foams. Distortions in regular
foams were used to model irregular cell shapes and random thicknesses were given to each
cell wall to model its thickness variation. Their simulations indicated that the Young's
and shear moduli increase as cell shapes become more irregular, but decrease as cell wall
thickness gets less uniform. Roberts and Garboczi [10, 33] used Voronoï tessellations of
seeds positioned in a body-centered cubic lattice to generate the tetrakaidecahedral model
for closed-cell foams and deleted cell faces to get open-cell foams.

Voronoï tessellations were also used to generate polycrystalline aggregates to model
primary recrystallization [15] and to simulate the plastic deformation of these aggregates
[16]. The same method coupled with a set of cell boundary shifts was used to generate an
equiaxed semi-solid granular structure in order to compute its permeability [17]. In these
works, level-set functions were used to de�ne the Voronoï cells and e�cient anisotropic
mesh adaptation was performed to properly describe the considered microstructures.

Benabbou et al. [25, 34] used the Laguerre tessellation method (LTM) which is similar
to the VTM but with an imposed cell size distribution to model granular structures. In
their work, spheres were used as a basis for approaching the cell size distribution and a
speci�c sphere packing method (detailed later in this manuscript) was used to respect
the size distributions. In this context, it is important to underline, that the principal
di�culty of LTM is common to the close packing of spheres: to respect a given statistical
size of spheres with the highest possible density.

Rollett et al. [35, 36] generated virtual 3D polycrystals. Their methodology is linked
to real microstructures through the collection of statistical distributions of grain size
and shape in 2D. These distributions are extrapolated to 3D, and then used to bound a
synthetic microstructure generation process. In there studies, a distribution of ellipsoids
is used to represent grains in the polycrystalline microstructure. The ellipsoids' centers
are then used as nucleation sites to �ll space through continuous nucleation and growth of
the grains on a regular grid of voxels. Here as well, object packing (i.e. ellipsoid packing)
was used for generating the grains.

Object packing methods were, and still are, an active research �eld. In the works of
Bagi [24, 37], two-dimensional sphere packing methods were developed in order to model
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granular structures. Benabbou et al. [25, 34, 38] modi�ed Bagi's advancing front method
[24] and extended it to a three-dimensional sphere packing method called the Inwards
Packing Method (IPM) in the goal of modelling granular structures as well. They have also
performed the transition between spheres and Laguerre cells as another way of modelling
polyhedric structures. Both of the above-cited authors' microstructures respected a given
size distribution law and obtained a high sphere packing density especially in 2D. The
densities obtained in 3D by the IPM can be considered as averaged ranging from 0.47 to
0.5. The computational cost, in 2D, of the IPM was compared to Bagi's dropping method
[37] and to a gravitational deposition method [39] and was found to be much faster.

A three-dimensional dropping and rolling technique was used in [22, 23, 40] in order
to model powder-based structures and rocks' pore space. The packing densities obtained
were high and well above the ones of Benabbou's method but this packing algorithm
lacked of speed. Although no computational times were reported, the recursive phases of
dropping and rolling, where tiny steps are considered in order to achieve the sphere's �nal
position, prove the slowness of this algorithm.

Disc packing coupled with a Monte Carlo procedure [1] is used by Chen and Pa-
pathanasiou [8, 20] to generate unidirectional disordered �ber arrays governed by the
choice of the porosity and the minimum allowable inter-�ber distance. They studied the
e�ect of the mean nearest inter-�ber spacing on both the transverse and longitudinal per-
meabilities. They found that the latter decreases on all porosity levels and the former
increases on porosity levels ranging from 0.45 to 0.7 and decreases above these levels when
mean nearest inter-�ber spacing increases.

Moving away from spherical particles, Donev et al. [41] achieved the highest density
in equal ellipsoidal packing which they referred to as crystal packing. They have reached
a density of 0.7707 where a unit cell consisting of several ellipsoids with at least two in-
equivalent orientations is periodically replicated on a lattice to �ll Euclidean space. Their
density is higher than the densest packing of spheres in the three-dimensional Euclidean
space which is approximately 0.74048, realized by the face-centered cubic (fcc) lattice
packing.

Non-intersecting elliptical and ellipsoidal particles are used in the works of Wang and
coworkers [42, 43] to model 2D and 3D granular assemblies. Each ellipsoidal particle
is approximated by the revolution of an ellipse, formed by four connected arcs and the
domain to be �lled with particles can be a polygon of any shape.

A packing algorithm for three-dimensional non-overlapping polyhedrons was developed
by Lee et al. [44]. Their method allowed them to e�ciently detect particle-particle and
particle-container wall overlappings and was validated by a system shaking process where
the particles sink to the bottom of the container. Most recently, Jin et al. [45] developed
a probability-based contact algorithm for polyhedral particles in order to model realistic
granular particles and their algorithm was validated by simulating the Hopper experiment
[46].

Another important objective of this work is to connect easily the microstructures ob-
tained by our generator to FE computations to perform speci�c mechanical applications.
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Calculations on the generated statistical RVEs, made of cells or particles, can be per-
formed by various methods. The Discrete Element Method (DEM), for example, is used
usually when spherical particles are in question because it requires only a local model of
the contact behavior between particles. It was used to simulate powder compaction [47]
and polymer foam compression [48] where cells are considered as a collection of spherical
particles. The Meshed Discrete Element Method (MDEM), where the particles in the
DEM are meshed, was used for simulating compaction of granular packings [49, 50].

Furthermore, the modelling of contact behavior is a simpli�cation to realistic cases and
it can be much more complicated when more complex microstructures are modelled such as
Laguerre/Voronoï cells, hence it is better to use the Finite Element Method (FEM) which
is more expensive in computational times but more precise and more realistic. In this case,
the transition between the generation of a statistical RVE and �nite element calculations
performed in this RVE is not straightforward as the interfaces of the microstructure should
be represented in the FE mesh. Classical approaches consist in describing the interfaces
of the di�erent parts of the RVE thanks to nodes of the FE mesh. The di�erent interfaces
are so given explicitly by a set of nodes of the mesh. Most precisely, surface meshes of
the interfaces are generally built and subsequent volume mesh conform to the interfaces'
surface meshes is generated. In [34, 38], and in a 2D context, the discretization of the
boundary and the generation of a mesh of the points of the discretized boundary are
�rstly performed. Then, a combined advancing front-Delaunay approach [51] is used to
generate the meshes. In the 3D context, the boundary is considered as a 2D surface and
a surface mesh is built at �rst then a volume mesh is constructed. In these cases, the
mesh generation is a long procedure combining steps of discretization, mesh construction
and quality improvement. This method can be very costly for structures having a large
number of grains especially in 3D. In [36, 52], a mesh was constructed for a 3D grain-based
microstructure. Firstly, a Voronoï tessellation is constructed by taking the centroids of the
grains and additional points as the only seed points. Then, an initial mesh is generated
by triangulating each face of each Voronoï cell. After triangulating each face, each corner
of a triangle is connected to the seed point that generated the Voronoï cell to which
the face belongs. This method necessitates the construction of a Voronoï tessellation
included inside the microstructure's grains and involves complex quality improvement
techniques. Another important discussion concerns meshing adaptation which can be
necessary to describe correctly the RVE considered and so for several reasons. First of all,
purely geometric consideration concerning the RVE's characteristics can lead to perform
meshing adaptation at the interfaces of the cells. Indeed, for example, in a monolithic
context, a foam made of less than 1% of solid or a granular semi-solid made of less than
1% of liquid described by spreading Voronoï cells undermines the necessity to work with
very �ne meshes at the cells' interfaces and with a coarsest mesh size in the cells' bulk to
avoid prohibitive calculation times. Second, mesh re�nement at cells' interfaces could be
also prescribed to take into account discontinuities of physical properties in monolithic
resolution contexts or to describe contact conditions in multi-domain resolution contexts.

Given these facts, the Level-Set Method (LSM) appears clearly as an interesting recent
alternative tool to describe RVEs in an FE mesh and to adapt the FE mesh to the RVE's
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constituents. The LSM was initially presented by Osher and Sethian [53] and later on
detailed by Sethian [54]. The principle of the method is to represent implicitly an interface
by the zero level of a distance function, called the level-set function which is de�ned
as a �eld on the FE mesh. Other than representing the microstructure, the level-set
functions are used for mixing laws [55], mesh adaptation [15, 16, 17] and simulating the
transport of an interface. The use of level-set functions to model equiaxial polycrystals
made of Voronoï cells was introduced by Bernacki [15, 56] and later on used to model
3D polycrystalline aggregates [16] and semi-solid granular structure [17]. This approach
was applied successfully for the generation of 2D or 3D polycrystals and for meshing
adaptation at the grains interfaces (see Figure 1.2). Further on it was, extended to the
generation of Laguerre cells [57] and foams [58]. Also, the level-set approach was used to
de�ne spherical particles modelling suspensions [21], unidirectional �ber arrays [59] and
powders [30, 57].

Figure 1.2: A 2D polycrystal generated using the LSM with anisotropic remeshing at the
cells' interfaces

1.2.1 Applications

Several applications have been already performed using the microstructure generated by
our statistical virtual RVE builder. The permeability of an equiaxed semi-solid granular
structure, generated using the VTM coupled with cell spreading, was computed [17]. The
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primary recrystallization of a polycrystal with a speci�c cell size distribution, obtained
using the Laguerre tessellation method [28], and the compaction of a powder with a
speci�c granulometry, obtained using our spherical particles packing algorithms [29, 30],
were performed.

To cover a wide range of the mechanical applications which can be performed on our
virtual microstructures, we were interested in foam compression as an application on a
cell-based microstructure and in permeability computation of 2D disordered �brous media
as an application on a particle-based microstructure.

1.2.1.1 Foam compression

Foams are present in our everyday life under diverse forms and functions. They serve,
for example, in the manufacturing of mattresses, car bumpers, in the heat or phonic
insulation, etc (an extensive review may be found in [60]). Two-dimensional foams, also
referred to as Voronoï honeycombs, can appear under regular (square or hexagonal) and
irregular shapes. Three-dimensional foams, which are either closed-cell or open-cell, also
appear under regular (cubic or tetradecahedrale) and irregular forms (see Figure 1.3).

Analytical or numerical calculations have been performed on idealized microstructures
constructed from a repeating unit cell. Structural mechanics have been applied to open
cell foams schematized either by a regular tetrahedral arrangement of beams [61, 62] or by
a regular arrangement of tetrakaidecahedral cells [63, 64]. In the case of closed cell struc-
tures, �nite element calculations on tetrakaidecahedral unit cell have also been derived
[65]. All these approaches lead to similar scaling laws for modulus or strength. They give
quite fair estimations of modulus and strength though discrepancies are observed with
experimental values. These discrepancies are attributed by the authors to the di�erence
between the ideal geometry assumed in the models and the actual perturbed architecture
observed in the materials. Thus, di�erent kinds of imperfections or defects have also been
introduced to try to explain the experimental discrepancies. The strut cross-sectional
area variations for example were accounted for in [9] and the cell wall thickness in [32].
Distortions in cell shapes have been introduced as well through more or less perturbed
Voronoï tessellations [7, 11, 12, 13]. In these cases the cell walls were considered as beam
elements and the presence of the air inside the foam's cells was never taken into account
though its presence may a�ect the foam's behavior.

In order to simulate biaxial compression of a foam modelled by Voronoï cells, a uniform
velocity is imposed on the upper and lower boundaries of the computational domain,
composed of triangles (tetrahedrons in 3D). By taking the presence of air inside the
foam's cells, which are bounded by the elastic solid skeleton, into consideration a Fluid
Structure Interaction (FSI) problem occurs between a compressible elastic solid and a
compressible �uid. Using this approach, we will be able to understand the e�ect of the
air on the compression of an elastic foam.

Most of the commercial software packages solve FSI problems using an Arbitrary
Lagrangian Eulerian (ALE) formulation [66, 67]. The solid domain is treated with a
Lagrangian formulation. The nodes belonging to the interface between the solid and
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Figure 1.3: (a) A Voronoï honeycomb, (b) a closed-cell foam and (c) an open-cell foam

the �uid are moved with the solid. The displacement of the nodes in the �uid domain
do not depend on the �uid's motion, but only ensures the continuity between the �uid
and the solid domain, and a good mesh quality. ALE methods are robust and accurate,
and do not need any extra degrees of freedom. However, important problems arise if the
deformations, displacements and rotations of the solid becomes very important [68, 69, 70].
Partitioned approaches, which allow the use of a speci�c solver for each domain, recently
gained popularity. The di�culty remains in transferring the information between the
codes. The coupling between the two phases can be enforced using di�erent schemes:
weakly or strongly coupled version [71, 72, 73]. This approach is accurate and quite
e�cient but present an inherent instability depending on the ratio of the densities and
the geometry of the domain [74]. As a result, the numerical cost increases drastically and
coupling algorithms may not converge. For 3D problems, such di�culties become even
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more severe. Monolithic approaches have been proposed to overcome these drawbacks.
The whole domain, composed by the �uid and solid phases, is considered as a single one
and meshed by a single grid. The continuity at the interface is then obtained naturally and
there is no need to enforce it, as it was the case in partitioned methods. If the multi-mesh
approaches permit the use of classical �uid and solid solvers, monolithic approaches impose
the use of an appropriated unique constitutive equation describing both the �uid and the
solid domain. Interface tracking, between the two di�erent domains, can be completed
by the Immersed Boundary Method (IBM) [75] where the interface is convected in a
Lagrangian framework or by the Immersed Volume Method (IVM) based on the level-set
approach, mixing laws and on mesh adaptation [55].

For solving our FSI problem, a monolithic formulation is used. Such strategy gives rise
to an extra stress tensor in the Navier-Stokes equations, which are solved by a mixed FEM
with a P1+/P1 interpolation, coming from the presence of the structure in the �uid [76].
We used a Lagrangian framework in order to simulate foam compression. In this case,
each node remains in coincidence with the same phase throughout the whole deformation
process. In particular, the nodes located at the interface of the solid skeleton remains on
its boundary during the whole simulation and hence, tracking a moving interface does not
present major di�culties.

1.2.1.2 Permeability computation

Injection processes are used for manufacturing complex materials with �ber reinforce-
ments. Numerical simulations at the macroscopic scale are based on the resolution of
Darcy's law [77, 78] to predict �ow front progression, �lling time and injection pressure
and to improve the design of tools and molds.

In the case of ordered �ber arrays, several analytical relations have been established
to predict the permeability of �brous media [79, 80, 81, 82, 83]. All of these studies
consider simple geometries, such as square or triangular packing of unidirectional arrays
of cylinders and the analytical relations are only a function of the porosity. By considering
some hypothesis, di�erent authors provide analytical solutions of the Stokes equations to
obtain the permeability. These di�erent laws give a valid solution for di�erent �ber volume
fractions. In what concerns numerical predictions, several studies had been done at the
microscopic and mesoscopic scales through the �nite element or �nite volume methods
[80, 81, 84, 85]. In these studies, �bers or yarns are considered as impermeable solids.
Then, only the �uid domain is meshed and no-slip boundary conditions are imposed on
solid boundaries. Velocity and pressure �elds are computed on the �uid domain and
permeability of the volume is then obtained by a homogenization method.

In the case of disordered �ber arrays which represent real �ber performs, the use of
porosity alone cannot de�ne their permeability. Other microstructural parameters should
be taken into account. Chen and Papathanasiou [8, 20] studied the e�ect of the mean
nearest inter-�ber spacing on both the transverse and longitudinal permeabilities. In
other words, they studied the e�ect of the degree of disorder on the permeability.

In order to compute the permeability of the �brous arrays, we used a mixed FEM with
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an immersed domain approach to represent the porous material at its microscopic scale.
Therefore the Stokes equations are solved in the whole domain (including solid part) using
a penalization method. Homogenization techniques, mainely volume averaging [86], are
used to obtain Darcy's equation and hence, the permeability could be computed.

The permeability is a tensor for anisotropic porous media, like �brous media for ex-
ample. In the case of unidirectional �ber packings, if the z axis of the coordinate system
is taken in the same direction that the axis of �bers, the permeability tensor can be then
written as follows:

K =

(
K⊥ 0
0 K∥

)
(1.1)

with K⊥ the transverse permeability tensor and K∥ the longitudinal permeability (i.e.
along the �ber axis).

1.3 The framework of this thesis

This thesis was conducted as part of the project µcim supported by Consortium Rem3Dr

which gathers the following partners:

• Arkema (www.arkema.com) : petro-chemical, polymer furnisher

• Dow Chemicals (www.dow.com) : polymer producer

• Rhodia (www.rhodia.com) : speciality chemicals producer

• Schneider Electric (www.schneider.fr) : electrical parts distribution, plastic equip-
ment

• SNECMA Propulsion Solide (www.snecma.fr) : aeronautic equipment

• Transvalor (www.transvalor.fr) : industrialization and commercialization of mate-
rial forming software

All the developments and calculations in this thesis were done in CimLib [26] an FE
C++ library developed in CEMEF (www.cemef.mines-paristech.fr) by group CIM (Cal-
culs Intensifs en mise en forme des Matériaux) under the direction of T.Coupez. CimLib is
the base for di�erent numerical applications developed at CEMEF, in collaboration with
other research teams and industrial partners. This scienti�c library represents an Object
Oriented Program and a fully parallel code, written in C++, and gathers the numeri-
cal developments of the group (Ph.D. students, researchers, associate professors, etc). It
aims at providing a set of components that can be organized to build numerical softwares,
such as REM3D, XIMEX, Forge3 and THOST. It also has the capability of perform-
ing mesh adaptation by calculating metrics which are in turn send to MTC, a topological
mesher-remesher interfaced in CimLib and developed by T.Coupez [87]. MTC is based on
local mesh topology optimizations and works for all meshing applications, from adaptive
remeshing to mesh generation, using a minimal volume principle.
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1.4 Layout of this thesis

After this �rst introductory chapter, the manuscript is organized as follows. The sec-
ond chapter constitutes the core of our statistical virtual microstructure builder where we
�rst detail the sphere packing method used in our developments, which is based on an
advancing-front method and called "Inwards Packing Method" (IPM), and a void opti-
mization algorithm adapted to powder modelling and based on the dropping and rolling
technique is introduced. This chapter deals as well with polyhedral microstructure gen-
eration where we explain the construction of Voronoï and Laguerre tessellations along
with the introduction of an optimization algorithm adapted to equiaxial polyhedric RVE
modelling. Furthermore, the extension of these methods for generating semi-solid granu-
lar structures, foams and unidirectional disordered �ber arrays is explained. In the third
chapter, statistical modelling applications are performed in order to prove the e�ciency
of our algorithms in 2D and 3D. The fourth chapter details the use of the LSM for im-
mersing the di�erent RVEs in a FE mesh and performing mesh adaptation. We begin
by explaining the use of level-set functions to de�ne Voronoï cells and the impact of the
introduction of the Delaunay triangulation to the method introduced in [15, 56] which
optimizes the computation times. Afterwards, the extension of this method to the gen-
eration of Laguerre tessellations and spread cells is explained and the construction of a
level-set function de�ning three-dimensional open-cell foams is detailed. Furthermore in
this chapter, we propose a strategy based on graph coloration in order to decrease the
number of requisite level-set functions used in meshing adaptation. The �fth chapter is
dedicated to the mechanical applications performed on the microstructures generated by
our virtual microstructure builder. We deal with the compression of elastic foams and
with permeability computations of unidirectional disordered �ber arrays. Finally, the
sixth chapter is the general conclusion of this work.

The work in this thesis has contributed to the following written communications:

• K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Fast generation of complex
statistical Representative Elementary Volumes (REVs) in a �nite element context,
submitted to Journal of Computational Physics.

• K. Hitti, L. Silva, M. Bernacki, and P. Laure, Permeability computation on a Repre-
sentative Volume Element (RVE) of unidirectional disordered �ber arrays, submitted
to Computational Materials Science.

and the following oral communications:

• K. Hitti, T. Coupez, L. Silva, and M. Bernacki, Generation of cellular Representative
Volume Elements (RVEs) in a �nite element (FE) context - application to foam
compression, In 20ème Congrès Français de Mécanique, 28 August - 2 September
2011, Besançon, France, 2011.
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• K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Generation of statistical
Representative Elementary Volumes (REVs) in a �nite element context - application
to powder metallurgy. In Powder Seminar, 2 February 2011, Sophia Antipolis,
France, 2011.

• K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Fast Generation of com-
plexes REV. In IV European Conference on Computational Mechanics, 16-21 May,
Paris, France, 2010.

1.5 Résumé français

Ce chapitre constitue l'introduction de cette thèse e�ectuée au Centre de Mise en Forme
des matériaux (CEMEF). Premièrement, la notion de volume élémentaire représentatif
(VER) a été introduite. Deuxièmement, une brève étude bibliographique sur les dif-
férentes méthodes de génération de VER et sur les applications traditionnellement liées
à la génération de ces microstructures virtuelles a été réalisée. Ensuite, le générateur de
microstructures virtuelles statistiques développé dans le cadre de travail de thèse, couplé
à une approche level-set et une technique d'adaptation de maillage, a été introduit. Ce
générateur, adapté à la fois aux cellules polyédriques et aux particules sphériques, peut
ainsi répondre à la création de nombreux types de microstructures. Le développement
de ce générateur et son implémentation dans la librairie C++ CimLib ont été les pre-
miers objectifs de ce travail. Si de nombreuses applications sur VERs réalisées au Cemef
s'appuient aujourd'hui sur le générateur développé, les applications sur VERs auxquelles
nous nous sommes intéressées dans le cadre de ce travail de thèse sont introduites dans
le cinquième chapitre. La première application concerne la compression de mousses élas-
tiques et la deuxième le calcul de perméabilité dans des milieux �breux. En ce qui concerne
la compression de mousses, l'air présent dans les cellules donne naissance à un problème
d'interaction �uide structure entre un �uide compressible et un solide élastique compress-
ible. Ce problème est gouverné par les équations de Navier-Stokes comportant un terme
d'extra-contrainte au second membre qui s'explique par la présence d'une structure solide
dans un �uide. Concernant le calcul de perméabilité, les équations de Stokes gouvernent
l'écoulement dans le milieu �breux et la loi de Darcy, obtenue en moyennant les équations
de Stokes, permet de calculer la perméabilité du milieu. Finalement, l'organisation de ce
manuscrit de thèse a été détaillée et les contributions liées à ces travaux de thèse ont été
énumérées.
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2.1 Introduction

As one of our goals is the creation of a multi-physical virtual microstructure builder
which can simultaneously generate spherical particles and cells, the Inwards Packing
Method and the Laguerre/Voronoï tessellation method are used for several reasons, that
we detail in this chapter.

On one hand, spherical particles can be used to model granular structures [25, 88],
particle suspensions [89], �brous media [8, 20, 90], porous media [91], powders [92], etc. In
our study, we are going to concentrate on generating spherical particles that are densely
packed and respect a speci�c size distribution law. By performing an additional step on
the sphere packing method, disordered �ber arrays can be modelled as well. Since the
distribution of spherical particles serves as a basis for constructing equiaxial cells thanks
to the Laguerre method, the geometrical modelling of a cellular RVE can be considered
as a classical sphere-packing problem. However, for the both kinds of microstructure
considered, powders and polyhedrals, the spherical particles should be densely packed to
be realistic in the case of powder RVEs and to optimize the size di�erence between them
and the resulting Laguerre cells for equiaxial cell RVEs. Hence, a sphere packing method
that generates high sphere densities and respects a size distribution law should be used.

On the other hand, the Voronoï tessellation method (VTM) is a geometric method
that partitions a space of dimension d into space-�lling, convex polyhedra or cells. Owing
to its resemblance, in geometric and statistical appearance, to many cellular structures
and stochastic patterns appearing in nature, Voronoï tessellations have found many ap-
plications over the past years in a wide range of �elds, including biology [93], zoology
[94], metallurgy [3, 15] and foam modelling [7, 13]. But the VTM presents some limi-
tations towards cell size distributions since the location of the nuclei is the only way to
de�ne the Voronoï tessellations without control on the cells characteristics. To overcome
this di�culty, Laguerre tessellations [95, 96] were developed. A Laguerre diagram cor-
responds to a Voronoï diagram where the location of the cells faces is constrained by a
given non-intersecting spherical packing.

Furthermore, an optimization method used to eliminate any local decorrelation be-
tween the size of the spherical particles and the size of the corresponding Laguerre cells is
introduced. This method, which is a variant of the so-called "Laplacian Smoothing" (LS)
algorithm [38] and detailed in section 2.3.2, is dedicated to equiaxial cellular modelling
and referred to as "Grain Optimization Algorithm" (GOA).

This chapter is divided into three major parts. The �rst part considers sphere packing.
We will begin by presenting a general overview of existing methods to �ll a domain with
particles detailing the dynamic and constructive techniques. Afterwards, the Inwards
Packing Method, used in this work, is analyzed by detailing all the steps of its algorithm
and some results are shown. Finally, since this method has the disadvantage of generating
local voids, an optimization technique based on dropping and rolling is introduced. The
second part considers polyhedral microstructure generation where we detail the VTM and
the LTM. Also the GOA, which is the method used to eliminate any local decorrelation
between the size of the spherical particles and the size of the corresponding Laguerre cells,
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is introduced. The third part explains the extension of our methods to generate semi-solid
granular structures, foams and disordered �ber arrays.

2.2 Sphere packing

As mentioned in the introduction of this chapter, the geometrical modelling of powders
or equiaxial grains is similar to the sphere (disc) packing problem. This topic generally
concerns the mathematical study of disjoint spheres (discs) which �ll a given domain. A
typical sphere (disc) packing problem is to determine the repartition of the particles which
maximizes the density in the domain. This density depends mainly on the particle size
distribution and on their repartition in the domain to �ll. Theoretically, it is not possible
to prede�ne the maximal density if the distribution is heterogeneous.

On the other hand, in the two dimensional Euclidean space Carl Friedrich Gauss proved
that the regular arrangement of discs with the highest density is the hexagonal packing
arrangement, in which the centers of the discs are arranged in a hexagonal lattice, and
each disc is surrounded by 6 other discs (see Figure 2.1.a). The density of this arrangement
is π

2
√
3
≃ 0.9069. In 1940 Hungarian mathematician László Fejes Tóth proved that the

hexagonal lattice is the densest of all possible disc packing, both regular and irregular.
In the three dimensional Euclidean space Johannes Kepler had conjectured, in 1611, that
the maximum possible density for both regular and irregular arrangements corresponds
to the cubic close packing arrangement (see Figure 2.1.b) with a maximal density of
π√
18

≃ 0.74048. This was demonstrated by Hales and Ferguson in 1998 [97, 98] following
the approach suggested by László Fejes Tóth.

(a) (b)

Figure 2.1: (a) A hexagonal lattice and (b) the cubic close packing arrangement

Note that the maximal density value in 3D, given above, concerns regular arrange-
ments only (especially when the number of particles tends to in�nity). For irregular
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arrangements of equal spheres in 3D, the highest density traditionally reported is about
0.64, which corresponds to the random close packing con�guration [99]. In practice, the
e�ciency of a �lling algorithm to generate structures with high densities, in the general
case where the particles have di�erent sizes, is measured by considering it in the partic-
ular case of monosized particles, such that the density of the generated structure can be
compared with the values 0.64 in 3D and 0.9069 in 2D.

The following two sections present a brief overview of some existing approaches to �ll
a domain with particles in two and three dimensions. These methods can generally be
classi�ed into two major families: dynamic techniques and constructive techniques.

2.2.1 Dynamic techniques

The dynamic methods are based on the motion and/or the resizing of the particles.
The movements of these particles can be calculated either by purely geometric models
or by dynamic models, where each particle has one or more physical properties allowing
it to �nd an equilibrium position depending on its interactions with the other particles.
Usually, the dynamic methods are very expensive in terms of computing times, because
the position and/or the size of each particle are modi�ed during the whole �lling process.

A �rst technique, called �isotropic compression�, consists in iteratively moving the
particles, by compressing the domain in an isotropic manner [100]. Most precisely, it
consists in creating a virtual domain (much bigger than the real one) where the particles
are put. At �rst, these particles have a large space between them. Then, the borders of this
domain converge in an isotropic way to the real domain while controlling the intersections
between the particles. This method is time consuming because the particles are moved
continuously and the domain's size changes at each step. And also high densities can
not be obtained because particles are put randomly in the domain without �nding their
optimal position. Figure 2.2 illustrates the steps of this method in a two dimensional
case.

Figure 2.2: A 2D illustration of the �isotropic compression� method

A second technique could be considered as the opposite of the �rst. It is called �particle
expansion� [101]. In fact, instead of changing the size of the domain, the size of the
particles is modi�ed. First a wanted number of particles is put in the domain with radii
smaller than the ones wanted. Then, the size of these particles are increased progressively
till the wanted density is obtained (see Figure 2.3). This method does not reach high
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densities because of the un-optimal initial positioning of the particles. Furthermore,
following a speci�c size distribution is not straightforward.

Figure 2.3: The �particle expansion� method in 2D

A third technique, called �collective rearrangement� [92] consists on randomly generat-
ing the wanted particles inside the domain. To this point, intersections between particles is
permitted. Then these particles are moved and/or shrinked to eliminate the intersections.
This method was used to create suspensions of particles (spherical and/or �brous) in 2D
and 3D [31]. Figure 2.4 illustrates this method in a two dimensional case. This method
needs a considerable calculation time because the size of the particles is modi�ed through
out the process and intersections between particles may persist if a size distribution is
imposed.

Figure 2.4: The steps of the �collective rearrangement� method in 2D

2.2.2 Constructive techniques

In the constructive techniques, the calculations are purely geometric, and the position
and often the size of each particle are kept throughout the �lling process. Hence, these
methods are relatively fast and tend to respect size distribution laws. In many contexts,
the constructive techniques may be considered as an advantageous alternative solution
compared with the dynamic ones.

A �rst constructive technique is the �sequential inhibition� [102]. The radii of the
particles are chosen according to a size distribution law, then the positions are proposed
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randomly. When a new particle intersects an existing one, its position is rejected and
another position is proposed maintaining the same radius (see Figure 2.5). This method
was used in this manuscript to generate the spherical particles shown in �gure 4.11 of
section 4.2.5.1. It is very easy to implement, but its �trial and error� character makes it
unusable for achieving moderate and high packing densities.

Figure 2.5: Illustration of the �sequential inhibition� method

A second technique [103] is a triangulation based approach. First, a triangulation
based on the elements' quality is built. Second, the incircles (inspheres) of the triangles
(tetrahedra) of this triangulation are deduced. Third, spherical particles are added on the
vertices of the triangulation to increase the density (see Figure 2.6). This method needs
pre-constructions, generates low densities and does not respect complex size distributions.

Figure 2.6: Illustration of the triangulation method

A third technique is the one proposed in [104, 105] where the �lling process starts by
randomly generating the desired number of particles (initially the size of each particle is 0)
and then calculating the size of each particle (see Figure 2.7) either as half of the distance
from its center to the center of its closest particle [105] or progressively enlarging each
particle until it comes in contact with another particle [104]. These methods are easy to
implement but they are not capable of following distribution laws nor in obtaining high
packing densities.

A forth technique, uses the concept of �dropping and rolling� [22, 23, 40] where each
particle is dropped till it reaches another particle or the bottom of the domain. Then it is
rolled till it is in contact with a third particle. The �rolling� is a recursive process until an
equilibrium state is obtained (see Figure 2.8). This method is time consuming since small
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Figure 2.7: Illustration of the method proposed in [105]

dropping and rolling steps are used to reach the stable position but has the capability of
respecting complex distribution laws and can reach high densities in 2D and 3D. A new
variant of the classical �dropping and rolling� method will be detailed in section 2.2.5 as
it is going to be used in our developments.

Figure 2.8: Illustration of the classical �dropping and rolling� method [23]



22 CHAPTER 2. MICROSTRUCTURE GENERATION

2.2.3 The method used

A detailed analysis of the classical methods cited above reveals that they present cer-
tain limitations. Some of them are fast and very easy to implement like the �sequential
inhibition� [102] or the methods used in [104, 105] but they generate low packing densi-
ties and/or do not to respect a size distribution law. Others need pre-conditioning [101],
pre-constructions [103] or require a considerable calculation time [31, 92].

As one of our goals is the creation of a multi-physical microstructure builder which
generates spherical particles and polyhedra with high sphere packing densities and with
respect of size distribution laws, we were interested by more complex constructive tech-
niques such as one advancing-front method (AFM) (see Figure 2.9), the so-called �Inwards
Packing Method� (IPM). This method consists in constructing a �rst initial front tangent
to the domain boundary then progressively moving this front towards the center of the
domain while �lling it. It was introduced by Bagi [24] in 2D, modi�ed and extended to
3D, by Benabbou [25, 34] and used as the sphere packing method of this work.

Figure 2.9: Illustration of the �Advancing-front Method�

This method is relatively fast, easy to implement and generates high densities especially in
2D. But, in 3D, it is limited to moderated densities (about 0.5) when it comes to generating
poly-disperse spheres. And, based on an advancing-front approach, traditionally used in
mesh generation, the spherical particles generated by this method present heterogeneities
for the local density (voids can be seen, especially when mono-sized discs are generated,
see Figure 2.10). This weakness is a general trend of advancing front methods and can lead
to local sphere density heterogeneities and unrealistic particle positioning when modelling
powder RVEs for example. Furthermore, it can a�ect the modelling of equiaxial polyhedric
structures since the size of a polyhedral is approached by the size of spherical particle
included within and these local voids would enhance the di�erence between the sizes of
these geometries.

In the following sections, we present a detailed algorithm of this method in 2D and
3D and we introduce a technique to optimize the local voids encountered using the IPM.
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Figure 2.10: Mono-sized generated discs in a unit square by the IPM. 2789 discs of
radius 0.01 are generated. The density is equal to 0.876

2.2.3.1 Scheme of the algorithm

We remind here that our aim is not to construct a triangulation of a certain domain
using an advancing-front approach, but to generate spherical particles in a rectangular
domain that follow a speci�c size distribution law. So, the advancing-front approach
is only used to propose the positions of the new particles (discs or spheres). For this
reason, we are not going to deal with the advancing-front approach in the context of mesh
generation and we send the reader to [51] for more details.

In an analogy between the meshing advancing-front approach and the sphere packing
algorithm of Benabbou [34], a node of the mesh becomes the center of a particle in the
geometrical modelling. The size of these particles are de�ned using the speci�ed size
distribution law.

There are front elements and mesh elements. The front elements (segments in 2D and
triangles in 3D) are entities of dimension d−1, where d is the dimension of the considered
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space (2 or 3). The mesh elements (triangles in 2D and tetrahedra in 3D) are entities of
dimension d. Since the goal is not to generate a mesh, we are not concerned with the
mesh elements themselves. In this method, the idea is to use the advancing-front approach,
which allows us to propose the positions of the new particles using the front elements.
Note that intersections between front elements are not controlled and they may occur
in this case. Only intersections between particles are controlled and not allowed. In the
algorithm written and detailed in [38, 25, 34], a localization grid made of squares (cubes in
3D) is used to control the validity of a new particle. Actually, when the position of a new
particle is proposed, the square (cube) containing its center is localized and intersection
tests are carried out with the particles whose centers are contained in the same square
(cube) and in its 8 nearest neighboring squares (26 neighboring cubes). As the validity
of a new particle is not obtained by a global comparison with all the existing particles,
this method reduces the computing time. But since a smaller number of microstructural
heterogeneities (particles or cells) then the ones generated in [25, 34, 38] can be immersed
in the FE mesh and used for the mechanical applications (which is the main objective
of this work), this technique was not implemented in CimLib. More precisely, in the
context of this work, the sphere packing itself is sequential and the volume immersion is
parallel hence a study of the computational time for the whole process will be performed
in chapter 4 for a reasonable number of particles/cells.

In the case of the IPM, a front element is a segment (triangle) connecting the centers
of two discs (three spheres). A disc (sphere) is the association of a center position and
a radius de�ned according to a size distribution law. The position of each disc (sphere)
is determined using an element of the front in such a way as to maximize the local
density with the discs (spheres) of this front element. The position of a new particle
(sphere or disc) is valid if this particle does not overlap the existing particles and if it
is completely contained in the domain (see Figure 2.11a). To make this advancing-front
method convergent, the front level concept was introduced [34]. Indeed, the level of a
front is de�ned by the level of its �rst active element. The level of an element is de�ned
by the sum of the levels of its particles (spheres or discs). The particles level ranges from
0 (the level of the initial front particles) to a level n corresponding to the level of the
last front particles (see Figure 2.11b). The level of a new particle (detailed in section
2.2.3.2) is a function of the levels of the particles of the front element used to insert this
new particle. For the convergence of the method, the following two conditions must be
satis�ed: (a) a new particle's level is at least equal to the minimum of the levels of the
particles of the front element used to insert this new particle, and (b) the �lling using the
elements of a front with a level l is initiated only when the fronts with levels less than l
are completely saturated.
The algorithm of the IPM [34] can be described by the following items:

IPM.1 Create an initial front de�ned by a chain of tangent discs.

IPM.2 While the front still contains active elements, do:

(a) Generate a random radius according to the size distribution law.
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(a) (b)

Figure 2.11: (a) The validity control in the IPM and (b) the �rst three levels in the
�lling process

(b) Determine the level l of the front which is equal to the level of its �rst active
element.

(c) For the front of level l, do:

i. Select an active element e if its level le ≤ l

ii. De�ne the position of Pnew: tangent to the particles of e.

iii. Control the validity of Pnew: no intersections with the existing particles.

iv. If Pnew is valid:

• Delete e.

• Connect Pnew to the particles of e. This connection will create new
front elements (two in 2D and three in 3D) with a level at least equal to le.

• Go to (a).

v. If Pnew is not valid:

• If there are active elements not yet tested to generate Pnew, with a level
less than or equal to l then select the �rst of these elements and go to ii.

• If all the active elements with a level less than or equal to l have been
tested to place Pnew without success, then:

- Deactivate the �rst active element ef in the front (with level l).

- Determine the existing particle which maximizes the local density with
the particles of ef .

- For each set s containing d − 1 particles of ef , where d is the space
dimension, do: connect the determined particle to the particles of s if they
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are not already connected and if the level of the resulting new front element is
greater than l in the 3D case (in the 2D case it can be less than or equal to l).
Go to (b).

(d) End do.

End while.

In the �rst step, an initial front is created by connecting the particles, which are placed
on the interior side of the domain boundary. Then, the �lling is made by an inwards
spreading of the front. Figures 2.12 and 2.13 show illustrations of the IPM in a polydis-
perse 2D and a polydisperse 3D case respectively.

2.2.3.2 Detailed analysis of the algorithm

Creation of the initial front: The �rst step is the creation of an initial front made
up of a set of particles tangent to each other and to the domain's boundary. In the 2D
case, each disc of the initial front is in contact with the domain boundary as well as with
two other discs of this front. These discs are placed anticlockwise so that the segments
of the initial front, where each segment connects the centers of two consecutive discs, are
oriented with a normal vector directed toward the interior of the domain. We begin by
placing the �rst disc at the bottom left corner of the domain with coordinates equal to
the chosen radius. Then, depending on our position in the domain, the coordinates of a
new disc are calculated in function of the previous one. For example, we want to place a
new disc with radius Rnew at the bottom of the domain. Its coordinates will be de�ned
as: {

xnew = xprevious + 2
√

Rprevious.Rnew

ynew = Rnew

(2.1)

This new position will be accepted if and only if xnew+Rnew ≤ xmax with xmax the x-upper
boundary of the (x,y)-rectangular domain (see upper-left image of Figure 2.12).

In the 3D case, the initial front is a set of triangles, where the vertices of each triangle
are the centers of three spheres tangent to the planes of the domain's boundary. To
generate these triangles, and then the initial front in the 3D case, two steps are needed.
Firstly, an initial front of each plane of the domain's boundary is constructed similarly
to the 2D case. The initial front is then a set of oriented segments, where each segment
connects the centers of two consecutive spheres tangent to 2 or 3 planes of the domain's
boundary and to each other (see upper-left image of Figure 2.13).

Secondly, to construct the global initial front which is a set of triangles, the 2D �lling
process is applied to each plane of the domain's boundary. Indeed, the �lling of a plane in
3D is similar to the �lling of a rectangular domain in 2D, with the particularity that the
center of each particle is not in the plane, but to a distance equal to its radius. So, the
local initial front of each plane which is a set of segments is used to apply the 2D �lling
process and hence constructing the global initial front (see Figure 2.14).
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Figure 2.12: A 2D illustration of the IPM: creation of the initial front (upper left), the
beginning of the �lling process (upper right) and the convergence towards the center of

the domain (lower �gures)

Radii generation: Each new generated particle must have a radius randomly chosen
according to the speci�ed size distribution law.
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Figure 2.13: A 3D illustration of the IPM: the �rst step of the creation of the initial
front (upper left), the face �lling process which is the 2D IPM (upper right and lower

left) and the domain �lling (lower right)

Selection of a front element: An element (triangle in 3D and segment in 2D) can be
selected only if it is active and its level is less than or equal to the level of the current
front. An element is said to be active if it has not been deleted from the front, either
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Figure 2.14: Example of a global initial front in 3D [38]

because it has been used to insert a new particle or because it has been the �rst active
element of a front in the case where no element of this front could insert the new particle.
The level of an element is the sum of the levels of its particles and the level of the front
is determined by its �rst active element. For e�ciency, a third constraint is taken into
account to select an active element in the current front. Indeed, let R be the chosen
radius. An active element whose level is less than or equal to the level of the current front
is selected only if it has not been tested, with failure, to place a particle with a radius
less than or equal to R (otherwise, this element obviously cannot place this new particle).
Thus, each element in the front is then associated with a radius Re initiated by the value
Rmax (the greatest radius in the size distribution) and decreased as this element is tested
to place particles with di�erent radii.

Calculation of a new particle's position: For the calculation of a new particle's
position, we used the same methods in [25] where the calculations in 2D and 3D were
distinguished. In both cases, the new particle will be tangent to the particles of the
selected front element, two discs in 2D and three spheres in 3D. In the 2D case, let
e = (Pi, Pj) be the selected front element, a segment formed by the two discs with centers
Pi and Pj with radii Ri and Rj, respectively. Let R be the radius of the new particle
to be generated and let −→en = (0, 0, 1) be the normal vector of the domain. A local basis
B = (Pi,

−→u ,−→v ) centered in Pi, is constructed with:

−→u =

−−→
PiPj

∥
−−→
PiPj∥

and −→v = −→en ∧ −→u , (2.2)

with ∥
−−→
PiPj∥ the Euclidian norm of

−−→
PiPj and ∧ the cross product. In the new basis B, the
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coordinates (u, v) of the new particle are:

u =
∥
−−→
PiPj∥
2

+
(Ri−Rj)(Ri+Rj+2R)

2∥
−−→
PiPj∥

, v =
√

(Ri +R)2 − u2 if ∥
−−→
PiPj∥ ≤ Ri +Rj + 2R

u = Ri +
∥−−→PiPj∥−Ri−Rj

2
, v = 0 if ∥

−−→
PiPj∥ > Ri +Rj + 2R

(2.3)
In the 3D case, let T = (Pi, Pj, Pk) be the selected front element, a triangle formed by

the three spheres with centers Pi, Pj and Pk and radii Ri, Rj and Rk respectively and let R
be the radius of the new particle to be generated. First, a local basis B = (Pi,

−→u ,−→v ,−→w ),
centered in Pi is constructed, where:

−→w =

−−→
PiPj ×

−−→
PiPk

∥
−−→
PiPj ×

−−→
PiPk∥

, −→u =

−−→
PiPj

∥
−−→
PiPj∥

and −→v = −→w ∧ −→u , (2.4)

The coordinates (u, v) of the new particle, in the plane of the triangle T , are calculated
using the system:{

2uuj = (Ri −Rj)(Ri +Rj + 2R) + u2
j

2uuk + 2v.vk = (Ri −Rk)(Ri +Rk + 2R) + u2
k + v2k

(2.5)

where uj =
−−→
PiPj.

−→u , uk =
−−→
PiPk.

−→u and vk =
−−→
PiPk.

−→v . Hence, the coordinate w of the
new particle is given by:

w =
√
(Ri +R)2 − u2 − v2 if (Ri +R)2 ≥ u2 + v2 . (2.6)

In the case where (Ri + R)2 < u2 + v2, the new particle is not placed using the selected
front element and there are two possible con�gurations:

• If there are still some active elements, which have not been tested yet to place the
new particle, then the �rst of these elements is selected and the algorithm resumes.

• If all the elements of the current front have been tested to place the new particle,
without succeeding, then the selected front element is necessarily the �rst active
element in the current front. In this case, among the three segments (Pi, Pj), (Pi, Pk)

and (Pk, Pj), the segment (P1, P2) maximizing the quantity ∥
−−→
P1P2∥ − R1 − R2,

where R1 and R2 are the radii of P1 and P2 respectively, is selected. Then the new
particle is placed using the selected segment (P1, P2). Indeed, a new local basis
B = (P1,

−→u ,−→v ,−→en) is built, where:

−→u =

−−→
P1P2

∥
−−→
P1P2∥

, −→en = −→v and −→v = −→en ∧ −→u . (2.7)

Then the coordinates (u, v, w) of the new particle, in the new local basis, are:
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
u = ∥−−−→P1P2∥

2
+ (R1−R2)(R1+R2+2R)

2∥
−−−→
P1P2∥

, v =
√

(R1 +R)2 − u2,

w = 0 if ∥
−−→
P1P2∥ ≤ R1 +R2 + 2R

u = R1 +R, v = 0, w = 0 if ∥
−−→
P1P2∥ > R1 +R2 + 2R

(2.8)

The validity control: To be accepted, the new particle must not overlap any of the
existing particles. Thus, the control of the validity of the new particle is realized by
checking its possible intersections with the existing particles. Two cases exist.

First case: the new particle is valid. This case corresponds to the situation where
the new particle does not intersect any of the existing particles. In this case, a level is
assigned to the new particle, the front element used to place it is deleted and new front
elements are created. The level lp of the new particle P is calculated by

lp = min
i
(li) + max(1,max

i
(li)−min

i
(li)) , (2.9)

where li are the levels of the particles of the front element used to place the new particle P .
The elements of the initial front are made up of particles with level 0 and are oriented so
that the �lling remains directed inwards to the domain. To maintain this orientation, the
front elements are written using a certain convention. Indeed, if the used front element is
written (P1, P2) (respectively (P1, P2, P3) in 3D) then the two (three) new front elements
are written (P1, P ) and (P , P2) (respectively (P , P1, P2), (P , P2, P3) and (P , P3, P1)).

Second case: the new particle is rejected. In this case, there are two situations. The
�rst situation is when there are active elements in the front with levels less than or equal
to the level of the current front, associated with radii greater than the new particle radius.
In this situation, the �rst of these elements is selected and the algorithm resumes. The
second situation is when the active elements of the front are either with levels greater
than the level of the current front or/and associated with radii less than or equal to the
new particle radius. In this situation, all the existing particles which are in con�ict with
the new particle, when the �rst active element in the current front is used to place this
new particle, are detected. Among these con�icting particles Pk, the particle Pe, which
maximizes the local density with the particles of the �rst active element in the current
front is selected. To maximize the local density with the �rst active element particles,
the selected particle must minimize the function

∑
i[d(Pi, Pk)− Rk − Ri], where d is the

Euclidean distance between Pi and Pk , Pi are the centers of the particles (with radii Ri)
of the �rst active element in the current front and Pk is the center of a con�icting particle
with radius Rk. Then, the �rst active element ef with level lf is deleted from the front
and new elements are possibly created. Indeed, let s be a subset of ef containing n − 1
particles of ef , where n is the number of ef particles (three in 3D and two in 2D). For
each subset s, we check if the particle Pe is already connected with its particles. If the
particle Pe is not connected with the particles of s then a new front element is created by
connecting Pe to the particle of s with a condition that its level is greater than lf in the
3D case. The level l of this new front element is calculated by l = le +

∑
i li , where le is
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the level of Pe and li are the levels of the particles of s. The condition l > lf , in the 3D
case, is crucial for the convergence of the algorithm [34].

2.2.4 Some results

Figure 2.15 shows discs and spheres generated by the IPM in a unit square and a unit
cube respectively with radii chosen according to the uniform distribution law U [0.02; 0.06].

(a) (b)

Figure 2.15: (a) 150 discs with a density of 0.76 and radii chosen by U [0.02; 0.06] and
(b) 1951 spheres with a density of 0.475 and radii chosen by U [0.02; 0.06]

Furthermore, the Box-Muller algorithm [106] is used to generate random numbers
following a normal (the lognormal is implied) distribution law. Figure 2.16a shows discs
generated by the IPM in a 4 × 4 square with radii chosen using a Gaussian distribution
law with mean µ = 0.04 and standard deviation σ = 0.01 and Figure 2.16b illustrates a
comparison between the density function obtained and the density function of N(µ, σ2).
To avoid unphysical results or large disc surface dispersal, a cut-o� of 0.075 for disc radius
was chosen.

Figure 2.17 illustrates discs generated by the IPM in a unit square with radii chosen
by a histogram distribution law and a comparison between the probabilities wanted and
obtained.

It is noticed from �gures 2.16b and 2.17b that we are close to the exact solution but
we do not coincide with it. This is due to the fact that the advancing front method
privileges the generation of small particles when bigger ones are not generated. A study
of convergence will be performed in the next chapter. Furthermore, Figures 2.15a, 2.16a
and 2.17a show the obvious existence of local voids in the packings generating by the
IPM. A solution for this weakness is proposed in the following section.



2.2. SPHERE PACKING 33

(a)

(b)

Figure 2.16: (a) 9703 discs with a density of 0.79 and (b) comparison between the
density function obtained and the one of N(µ, σ2)
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(a) (b)

Figure 2.17: (a) 1034 discs with a density of 0.8 and (b) comparison between the wanted
and obtained probabilities

2.2.5 The Powder Optimization Algorithm (POA)

As we have seen earlier in this chapter, the sphere packing generated by the IPM
respects a given statistical size distribution and also reaches high densities. However, the
resulting sphere packing can present heterogeneities for the local density (voids can be seen
(see Figures 2.15a, 2.16a and 2.17a), especially when mono-sized discs are generated, as in
Figure 2.10). Hence, the use of this method without any void optimization technique can
not model realistic sphere packings in the sense that no stability conditions are imposed
on the spheres. To overcome this weakness, a void optimization technique was developed.
It is adapted to powder RVEs and based on the idea of enriching the IPM by a variant
of the classical dropping and rolling method [22, 23, 40]. Further on, this technique
is referred to as "Powder Optimization Algorithm" (POA). The POA has for goals the
elimination of the voids created by the IPM and also the displacement of the un-physically
positioned particles that are in suspension while conserving the advantages of the IPM
(high global density and respect of the imposed size distribution). The advantage of our
POA is that, unlike other dropping and rolling algorithms [22, 23, 40], we do not use
tiny dropping or rolling steps in order to reach the desired positions but these positions
are calculated analytically by mathematical and geometrical equations. Furthermore,
our POA does not generate spherical particles, it displaces the un-physically positioned
particles generated by the IPM. The procedure is detailed for 3D con�gurations and brie�y
described afterwards in a 2D context.
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2.2.5.1 The three-dimensional POA

Figure 2.18 illustrates the �ow chart of the classical dropping and rolling algorithms
[22, 23, 40]. The basic idea is that each newly generated sphere would be �rstly dropped till
hitting another preexisting sphere or the �oor. Afterwards, it is rolled till it is in contact
with another sphere or the �oor. Then, it is rolled on the two touched spheres till achieving
a third hit with another sphere or the �oor. Finally, the stability of the sphere is checked
to see weather the rolling must continue or a new sphere can be generated. We notice
from Figure 2.18 that tiny steps are used to displace the sphere. This way of performing
the dropping and rolling can be very time consuming especially when small particles are
used because the step size must less than the radius of the smallest particles. In the
following, we explain our dropping and rolling techniques where the desired positions are
calculated analytically.

Figure 2.18: The �ow chart of the classical dropping and rolling algorithms [22,23,40]

At �rst, the IPM is performed according to the imposed radius distribution and the
sphere packing obtained, called SP, is sorted according to the dropping and rolling direc-



36 CHAPTER 2. MICROSTRUCTURE GENERATION

tion, from minimum to maximum. This direction will be denoted z. Then for all spheres
Si, of center ci and radius ri, the following algorithm is performed:

1. Dropping: In what follows, the superscripts 0, 1, 2 and 3 designate the initial, �rst,
second and third position of ci respectively. The sphere in question in its initial position
is denoted S0

1 = S(c01, r1) of center c
0
1(x

0
1, y

0
1, z

0
1) and radius r1. If z01 − r1 = 0, the sphere

is already at the bottom of the domain and its position is �nal. If not, let

E0 = {S(c(x, y, z), r) ∈ SP\{S0
1}/z < z01 and (x0

1−x)2+(y01−y)2 < (r1+r)2}. (2.10)

Then we search for a S2 ∈ E0 minimizing the function (see Figure 2.19a)

f0(S) =

(
z01 − z −

√
(r1 + r)2 − ((x0

1 − x)2 + (y01 − y)2)

)
. (2.11)

If S2 does not exist, it means that there is no spheres underneath the sphere S0
1 and its

�nal position will be Sfinal
1 = S(c11(x

0
1, y

0
1, r1), r1). Else, the position of c01 is updated by

writing (see Figure 2.19b):

z11 = z2 +
√
(r1 + r2)2 − ((x0

1 − x2)2 + (y01 − y2)2)

y11 = y01

x1
1 = x0

1

S1
1 = S(c11(x

1
1, y

1
1, z

1
1), r1)

(2.12)

Then, SP is updated.

2. Determining θ and φ: The position of c11 can be written with the conventions of
Figure 2.19b: 

x1
1 = x2 + (r1 + r2)cosφcosθ

y11 = y2 + (r1 + r2)cosφsinθ

z11 = z2 + (r1 + r2)sinφ

(2.13)

With θ ∈ [0,Π[ and ϕ ∈]0,Π/2[
Hence, by using the positive sign of cosφ and system (2.13), we have:
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(a) (b)

Figure 2.19: The dropping phase in the 3D POA: (a) the search for c2 and (b) the
dropping of c1



cosφ =

√
(x1

1−x2)2+(y11−y2)2

r1+r2

sinφ =
z11−z2
r1+r2

cosθ =
x1
1−x2√

(x1
1−x2)2+(y11−y2)2

sinθ =
y11−y2√

(x1
1−x2)2+(y11−y2)2

(2.14)

In the particular case where the sphere of center c11 is directly over the sphere of center c2
which leads to having

√
(x1

1 − x2)2 + (y11 − y2)2 = 0, and undermines the non-uniqueness,
the following strategy is adopted: if the sphere of center c11 is not tangent to any of the
domain's faces, θ is taken as null. In the other case, θ is given particular values such that
the rotation will be towards the interior of the domain to avoid intersecting the faces.
Furthermore, we denote B0 = (−→u0,

−→v0 ,−→w0) (see Figure 2.20a) the new working basis ob-

tained by the rotation of angle θ and axis z of the canonic basis (
−→
i ,

−→
j ,

−→
k ). We denote

M0 the transformation matrix:

M0 =

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 (2.15)

The �rst rolling step is performed by updating the position of c11 by modifying the value
of φ in the new basis.



38 CHAPTER 2. MICROSTRUCTURE GENERATION

3. Rolling Phase 1.1: First of all, we search for the spheres intersecting the �ctitious
sphere of center c2 and radius r2 + 2r1. So let E1 = {S(c, r) ∈ SP\{S1

1 , S2}/c2c <
r2 + 2r1 + r}. If E1 ̸= ∅, for all the spheres S ∈ E1, we search for the ones intersecting

the �ctitious torus of axis
−−→
c2c

1
1, small radius r1 and big radius r1 + r2 (see Figure 2.20a).

The coordinates of c in the new basis B0, (x̃, ỹ, z̃), are given by:

−→
c̃2c = M−1

0
−→c2c (2.16)

and its signed distance to the torus (with the convention of positive inside and negative
outside), dist, is given by: 

d1 =
√
x̃2 + z̃2 − (r1 + r2)

d2 =
√
d21 + ỹ2

dist = r1 − d2

(2.17)

Let E2 = {S ∈ E1/dist+ r > 0}. If E1 = ∅ or E2 = ∅, S1
1 is displaced until reaching the

plane of equation z = z2 as described in Figure 2.20a. Most precisely, the new coordinates
of c11 are obtained by taking φ = 0 in Eqs.(2.13):

x2
1 = x2 + (r1 + r2)cosθ

y21 = y2 + (r1 + r2)sinθ

z21 = z2

S2
1 = S(c21(x

2
1, y

2
1, z

2
1), r1)

(2.18)

Under the condition that this new position does not intersect one the domain's faces (see
step 5), we go back to step 1 of our algorithm (see Figure 2.20b) with S0

1 = S2
1 and SP is

updated. If E2 ̸= ∅, we go to the next rolling phase.

4. Rolling Phase 1.2: In this phase, we search for a sphere S3(c(x, y, z), r) ∈ E2

having the maximal φ′ verifying:

φ′ ∈ [0, φ]

x2
1 = x2 + (r1 + r2)cosφ

′cosθ

y21 = y2 + (r1 + r2)cosφ
′sinθ

z21 = z2 + (r1 + r2)sinφ
′

c21c = r1 + r

(2.19)
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(a) (b)

Figure 2.20: The rolling phase 1.1 in the 3D POA: (a) the search for spheres
intersecting the torus and (b) the case where φ = 0

By letting T = cosφ′, the solutions in T of this system are the roots of the second order
polynomial:  (K2

1 +K2
2)T

2 − 2K1K3T +K2
3 −K2

2

K2(K3 −K1Ti) ≥ 0
(2.20)

where: 
K1 = 2(Wxcosθ +Wysinθ)

K2 = 2Wz

K3 = W 2
x +W 2

y +W 2
z + 1−W 2

(2.21)

and 

Wx = x−x2

r1+r2

Wy =
y−y2
r1+r2

Wz =
z−z2
r1+r2

W = r1+r
r1+r2

(2.22)

We will denote solS the intersecting solution of the Eqs.(2.20) to (2.22). These equations
can admit 0,1 or 2 solutions. Figure 2.21a illustrates the �rst case where E2 ̸= ∅ but where
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the position of c3 is incompatible with the condition φ′ ∈ [0, φ] and so solS = ∅. Figure
2.21b illustrates the second case where only one solution T1 is possible in agreement with
the condition φ′ ∈ [0, φ] and hence, solS = {T1}. Finally, Figure 2.21c illustrates the third
case where two solutions T1 and T2 are possible. In this case, only the upper position is
conserved and so solS = min{T1, T2}.

(a) (b)

(c)

Figure 2.21: Searching for possible solutions of the Eqs.(2.20) to (2.22) with regards to
the condition φ′ ∈ [0, φ] in the rolling phase 1.2 in the 3D POA: (a) no solutions exist,

(b) only one solution exists and (c) two solution exist

Moreover, let E3 = {S ∈ E2/solS ̸= ∅}. If E3 = ∅, the coordinates of c11 are updated
by system (2.18) and we go back to step 1. Else, we search for S3 ∈ E3 such that
solS3 = minS∈E3(solS) and the coordinates of c11 are updated by (see Figure 2.22):



2.2. SPHERE PACKING 41

Figure 2.22: The rolling phase 1.2 in the 3D POA: the new position of c1 tangent to c2
and c3



φ′ = arccos(solS3)

x2
1 = x2 + (r1 + r2)solS3cosθ

y21 = y2 + (r1 + r2)solS3sinθ

z21 = z2 + (r1 + r2)
√
1− sol2S3

S2
1 = S(c21(x

2
1, y

2
1, z

2
1), r1)

(2.23)

And SP is updated.

5. Checking for face intersection 1: After steps 3 and 4 of the algorithm, we need to
check if the sphere in its new position intersects one of the domain's faces. We �rst check
if the sphere intersects the face Z = Zmin then we check for intersections with the other
faces. If the sphere intersects only Z = Zmin, it is put in a face-touching position and
this position becomes �nal and SP is updated. In the other cases, the rolling continues
after putting the sphere in a face-touching position. In the case illustrated by Figure 2.23,
the sphere intersects the face X = Xmax.
Hence, it should be put in a face-touching position only. This is done by modifying φ′ as
follows:

x2
1 = x2 + (r1 + r2)cosφ

′cosθ = Xmax− r1, (2.24)
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Figure 2.23: After the rolling steps 3 or 4, a case where the sphere of center c1
intersecting the face X = Xmax

which gives that

φ′ = arccos

(
Xmax− x2 − r1
(r1 + r2)cosθ

)
. (2.25)

Afterwards, the coordinates of c21 are modi�ed by writing (see Figure 2.24a):
x2
1 = Xmax− r1

y21 = y2 + (r1 + r2)cosφ
′sinθ

z21 = z2 + (r1 + r2)sinφ
′

(2.26)

In order to continue the rolling process, a �ctitious sphere S3(c
f
3 , r

f
3 ), symmetric of S2 with

regard to the plane X = x2
1, is created (see Figure 2.24b). Furthermore, the intersections

with the other faces should be checked as well except for Z = Zmax because all the
spheres are dropped and intersecting this plane is not possible. For a better understanding
in what follows, a possible �ctitious sphere Sf

3 (c
f
3 , r

f
3 ) will be also denoted as a regular

sphere S3(c3, r3). Finally, and once again, if this treatment is realized, S2
1 and SP are

updated.

6. Constructing the new local coordinate system: Knowing the centers c21, c2
and c3 (which can be the one of a �ctitious sphere), a new coordinate system (Ω, B1 =
(−→u1,

−→v1 ,−→w1)) is considered with Ω the orthogonal projection of c21 on [c2, c3] (see Figure
2.25). (−→u1,

−→v1 ,−→w1) are given by:
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(a) (b)

Figure 2.24: (a) The sphere of center c1 is returned to a face-touching position and (b)
the construction of the �ctitious sphere of center cf3



−→u1 =
−−→c2c3

∥−−→c2c3∥

−→v1 = (0, 0, 1) + α−→u1

−→v1 .−→u1 = 0

−→w1 =
−→u1 ×−→v1

(2.27)

The position of Ω is given by the equation:

−→
c2Ω = −−→c2c3

−−→
c2c

2
1.
−−→c2c3

∥−−→c2c3∥2
, (2.28)

The coordinates of c21 in the new coordinate system are:
0

Ωc21.cosβ

Ωc21.sinβ

(2.29)

And the transformation matrix between the canonic system and the new system is written:

M1 =

 x−→u1
x−→v1 x−→w1

y−→u1
y−→v1 y−→w1

z−→u1
z−→v1 z−→w1

 . (2.30)
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Figure 2.25: The rolling phase 1.2 in the 3D POA: the new position of c1 tangent to c2
and c3

7. Rolling Phase 2.1: The procedure here is similar to step 3, we �rst search for
the spheres intersecting the �ctitious sphere of center Ω and radius r1 + Ωc21. So let
E4 = {S(c, r) ∈ SP\{S1

1 , S2, S3}/Ωc < r1 + Ωc21 + r}. If E4 ̸= ∅, for all the spheres
S(c(x, y, z), r) ∈ E4, we search for the ones intersecting the �ctitious torus of axis −−→c2c3,
center Ω, small radius r1 and big radius Ωc21 (see Figure 2.25). The coordinates of c in
the new basis, (x̃, ỹ, z̃), are given by:

−→
Ω̃c = M−1

1

−→
Ωc (2.31)

and its signed distance to the torus (with the convention of positive inside and negative
outside), dist, is given by:


d1 =

√
ỹ2 + z̃2 − Ωc21

d2 =
√
d21 + x̃2

dist = r1 − d2

(2.32)

Let E5 = {S ∈ E4/dist+ r > 0}. If E4 = ∅ or E5 = ∅, the coordinates of c21 are updated
as follows (see Figure 2.26a):
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

x3
1 = xΩ − Ωc21.x−→v1

y31 = yΩ − Ωc21.y−→v1

z31 = zΩ − Ωc21.z−→v1

S3
1 = S(c31(x

3
1, y

3
1, z

3
1), r1)

(2.33)

And SP is updated. If z31 ≤ min(z2, z3), we go back to step 1 with S0
1 = S3

1 . Else if
z3 < z31 , we go back to step 2 by replacing S2 by S3. If E5 ̸= ∅, we go to the next rolling
phase.

(a) (b)

Figure 2.26: The rolling phase 2.1 in the 3D POA: (a) going back to step 1 and (b) the
sphere of center c4 is found

8. Rolling Phase 2.2: First, β needs to be calculated. The coordinates of c21 in the
coordinate system of center Ω, denoted (a, b, c), are given by:

−→
Ω̃c21 = M−1

1

−→
Ωc21 =

 a
b
c

 . (2.34)

Hence, by combining this equation with Eq.(2.29), β = arccos( b
Ωc1

).sign(c). Then, we
need to search for a sphere of E5 having a maximal β′ verifying:
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

β′ ∈

 [β, π] if β ≥ 0

[−π, β] if β < 0

x3
1 = 0

y31 = Ωc21.cosβ
′

z31 = Ωc21.sinβ
′

c21c = r1 + r

(2.35)

By letting T = cosβ′, the solutions in T of this system are the roots of the second order
polynomial:  (K2

1 +K2
2)T

2 − 2K1K3T +K2
3 −K2

2

K2(K3 −K1Ti) ≥ 0
(2.36)

where: 

K1 = ỹ

K2 =

 z̃ if β ≥ 0

−z̃ if β < 0

K3 =
x̃2+ỹ2+z̃2+(Ωc21)

2−(r1+r)2

2Ωc21

(2.37)

We will denote solS the intersecting solution of the Eqs.(2.36) to (2.37). These equations
can admit 0,1 or 2 solutions, denoted T1 and T2, similarly to step 4. In the case where two
solutions are possible, the upper positions is conserved and so solS = max(T1, T2). Let
E6 = {S ∈ E5/solS ̸= ∅}. Then, we search for S4 ∈ E6 such that solS4 = maxS∈E6(solS)

and the coordinates of c̃21 are updated by:

β′ =

 arccos(solS4) if β ≥ 0

−arccos(solS4) if β < 0

x̃1
3 = 0

ỹ1
3 = Ωc21.cosβ

′

z̃1
3 = Ωc21.sinβ

′

(2.38)

Finally, the coordinates of c31 in the standard basis are given by (see Figure 2.26b):
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−→
Ωc31 = M1

−→
Ω̃c31 , (2.39)

and, S3
1 = S(c31(x

3
1, y

3
1, z

3
1), r1) and SP is updated.

9. Checking for face intersection 2: After the steps 7 or 8, we need to check again
for intersections with the domain's faces. This step of the algorithm is similar to step 5 but
without the creation of a �ctitious sphere and by considering the face-touching position of
the sphere as �nal. In case of intersection, the sphere S3

1 is put in a face-touching position
by modifying β′. First we should write the coordinates of c31 in the standard basis. Since
its coordinates in the new basis of center Ω are (0,Ωc31.cosβ

′,Ωc31.sinβ
′), they are written

in the standard basis as:
x3
1 = xΩ + Ωc31(x−→v1cosβ

′ + x−→w1
sinβ′)

y31 = yΩ + Ωc31(y−→v1cosβ
′ + y−→w1

sinβ′)

z31 = zΩ + Ωc31(z−→v1cosβ
′ + z−→w1

sinβ′)

(2.40)

By taking the same example as in step 5 where the sphere intersects the face X = Xmax,
we obtain:

x3
1 = xΩ + Ωc31(x−→v1cosβ

′ + x−→w1
sinβ′) = Xmax− r1. (2.41)

As in step 8, the values of β′ are obtained by solving the system given by Eq.(2.36)
but with: 

K1 = x−→v1

K2 =

 x−→w1
if β ≥ 0

−x−→w1
if β < 0

K3 =
Xmax−r1−xΩ

Ωc31

(2.42)

Afterwards, the coordinates of c31 given in system (2.40) are modi�ed using Eq.(2.41)
and the new value of β′ and the sphere is then in its �nal face-touching position, Sfinal

1 =
S(c31, r1) and SP is updated. Also, the intersections with the other faces should be checked
as well except for Z = Zmax because all the sphere are dropped and intersecting this
plane is not possible.

10. Testing the stability: In order to check the stability of the sphere S1, we perform
the classical test [23] used with the classical dropping and rolling algorithm. Figure 2.27
shows the orthogonal projections, Pc31

, Pc2 , Pc3 and Pc4 , of c
3
1, c2, c3 and c4 respectively

on the plane z = z0 (z0 can be chosen randomly).
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Figure 2.27: Checking the stability of the sphere of center c1

The stability of the sphere S3
1 is given by the position of Pc31

. If it is contained inside
the triangle Pc2Pc3Pc4 , the sphere is stable. In this con�guration, S3

1 becomes the �nal
position of the sphere and SP is updated. If Pc31

∈ Ωij, we go back to step 6 with
{S2, S3} = {Si, Sj}. If Pc31

∈ Ωi, we go back to step 2 with S2 = Si.
In order to determine if Pc31

is positioned at the same the side of the line (Pc2Pc3) as
Pc4 for example, we calculate the following variables:

−→u23 = M.
−−−→
Pc2Pc3

a23 =
−→u23.

−−−→
Pc2Pc4

b23 =
−→u23.

−−−→
Pc2Pc31

(2.43)

where M is a matrix given by:

M =

 0 1 0
−1 0 0
0 0 1

 (2.44)

If a23.b23 ≥ 0, Pc31
and Pc4 are on the same side. If not, they are on opposite sides. This

calculation is performed to �nd the position of Pc31
with regard to (Pc2Pc4) and (Pc3Pc4)

as well. It is interesting to underline that this e�cient and classical stability test for all
the dropping and rolling algorithms can lead to particular cases where the convergence is
not certain and that this di�culty was never discussed in the literature. Indeed, let us
consider the case where Pc31

∈ Ω2 or Pc31
∈ Ω23. In these con�gurations, realizing again

the dropping and rolling procedure can lead to an unchange in the determination of S2,
S3 and S4 and so be synonymous to an in�nite loop. In the context of the proposed
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Figure 2.28: A case where Pc31
∈ Ω23

algorithm, thanks to the choice of the φ′-interval in (2.19) and of the β′-interval in (2.35),
the situation Pc31

∈ Ω2 can never occur. However, in rare particular con�gurations, our
algorithm can lead to Pc31

∈ Ω23 and to an in�nite loop when the dropping and rolling
procedure is performed again. Figure 2.28 illustrates one of these cases.

A simple solution to overcome this di�culty is then to modify the β′-interval in (2.35) by:

β′ ∈

 [−π, β] if β ≥ 0

[β, π] if β < 0
(2.45)

In the two-dimensional case, the POA consists at �rst in sorting the discs, according
to the dropping and rolling direction denoted y, from minimum to maximum. Then,
each disc of center ci is dropped using the dropping step of the algorithm (see Figure
2.29a). Afterwards, it is rolled till reaching a third disc of center ck. The rolling step
is performed using a similar version of steps 3 and 4 but only with the use of one angle
which is φ (see Figure 2.29b). If the disc is not stable, which is equivalent to verifying
Py⊥(

−→cicj).Py⊥(
−→cick) > 0, where Py⊥ corresponds to the projection operator on the y⊥

space, it continues its rolling phase until reaching a stable position (see Figure 2.29c).
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(a) (b)

(c)

Figure 2.29: Illustration of the two-dimensional POA for a disc of center ci: (a)
dropping, (b) rolling and (c) unstable position

The interest of the coupled IPM-POA approach is to cumulate the advantages of the
two methods: to respect a given radius statistical distribution and to achieve a high
density thanks to the IPM and to correct the local un-physical disposition of the particles
while improving the local density and without modifying the radius distribution thanks to
the variant of the dropping and rolling method. Due to the action of "dropping", an empty
space appears in the highest region of the computational domain. Two simple solutions to
eliminate this empty space are either to truncate the domain in the y-direction (z-direction
in 3D) by considering the max1≤i≤Nc(yci + ri) as the new y-upper (max1≤i≤Nc(zci + ri)
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as the new z-upper in 3D) bound of the domain or to generate the sphere packing in a
larger domain in the y-direction (z-direction) than the considered computational domain
(leading to obtain uncompleted spheres at the y-upper (z-upper) bound of the FE domain).
Figures 2.30 and 2.31 illustrate the e�ect of the POA on mono-disperse and poly-disperse
discs. It is noticed that the local voids vanish and are distributed in all the domain and
also the particles are displaced to stable positions unlike the previous un-physical ones.

(a) (b)

Figure 2.30: E�ects of the POA on mono-disperse discs: (a) before applying the POA
and (b) after applying the POA.

Figure 2.32 illustrates the e�ect of the POA on poly-disperse spheres. It is noticed
that the local voids inside the domain vanish and also the particles are displaced to stable
positions unlike the previous un-physical ones.

We note also that the proposed dropping and rolling algorithms can surely be used to
generate the spherical particles directly without the use of the IPM. This technique will
be compared to the coupled IPM-POA approach in the next chapter. Furthermore, the
e�ects of the IPM-POA coupled algorithms on powder RVE generation and comparisons
with other methods are also discussed in the next chapter.

2.3 Polyhedral microstructures

As we have already mentioned, the VTM is the most widely used method to model
polyhedral microstructures. The Voronoï tessellation or diagram is fully described by a
set of N seeds or Voronoï nuclei (Si)i=1,...,N . Each nucleus Si de�nes a Voronoï cell Vi,
which consists of all points closer to Si than to any other nucleus (see Figure 2.33):
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(a) (b)

Figure 2.31: E�ects of the POA on poly-disperse discs: (a) before applying the POA and
(b) after applying the POA

Vi = {x ∈ Rd/d(x, Si) = min
j ̸=i

d(x, Sj)}, (2.46)

where d is the space dimension and d(., .) is the Euclidean distance.
Two techniques exist to generate a Voronoï diagram. A �rst direct method consists in

constructing the perpendicular bisectors of the adjacent sites and their intersections will
form the diagram. The second method consists in constructing the Delaunay triangulation
(detailed in chapter 4, section 4.2.2), Voronoï's dual, and then drawing the perpendicular
bisectors of its edges. Many commercial softwares, such as Qhull, MATLAB, Mathemat-
ica, etc, generate Voronoï tessellations and Delaunay triangulations. Figure 2.34 illus-
trates a Voronoï diagram constructed in Mathematica and a 3D Voronoï diagram with
200 cells.

A polyhedral structure with a mean cell size can be constructed using the VTM when
a su�ciently large number of Voronoï nuclei is imposed. However, modelling equiaxed
polyhedral structures which follow speci�c cell size distributions is not possible in the
classical VTM.

2.3.1 Laguerre tessellations

Thus, polyhedral microstructures with a speci�c cell size distribution law are very dif-
�cult to generate. To obtain such microstructures, Xu and Li [107] developed what they
called the Constrained Voronoï Tessellation (CVT) where the Voronoï nuclei are contin-



2.3. POLYHEDRAL MICROSTRUCTURES 53

(a) (b)

(c) (d)

Figure 2.32: E�ects of the POA on poly-disperse spheres: (a) before applying the POA,
(b) a cut in the domain showing the inner �lling before applying the POA, (c) after

applying the POA and (d) a cut in the domain showing the inner �lling after applying
the POA

uously displaced in order to obtain the wanted cell size. The CVT proved its e�ciency in
respecting complex cell size distribution laws. Another e�cient method is the Laguerre
Tessellation Method (LTM) [95, 96]. It consists in using a distribution of non-intersecting
spherical particles that serves as a basis for constructing the microstructure. This method
was successfully used to model polycrystalline structures [108] and nanostructured mate-
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Figure 2.33: A Voronoï diagram in the two-dimensional space R2

(a) (b)

Figure 2.34: (a) A Voronoï diagram obtained in Mathematica and (b) a 3D Voronoï
diagram with 200 Voronoï sites

rials [34] where, in addition, the corresponding weighted Delaunay triangulation (detailed
in chapter 4, section 4.2.5.1), Laguerre's dual, was built. The Laguerre tessellation is de-
scribed by a set of N seeds and weights (Si, Ri)i=1,...,N . Each nucleus and weight (Si, Ri)
de�nes a Laguerre cell Li, which consists of all points closer to Si, via the power distance
de�ned below, than to any other nucleus:

Li = {x ∈ Rd/Π(x, Si) = min
j ̸=i

Π(x, Sj)}, (2.47)
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where Π(x, Si) = d(x, Si)
2 − R2

i is the power of Si to x. Figure 2.35 illustrates spherical
particles generated by the IPM and the corresponding Laguerre cells in 3D.

(a) (b)

Figure 2.35: Generated spherical particles and the corresponding Laguerre tessellations:
(a) the 2D case and (b) the 3D case

2.3.2 The Grain Optimization Algorithm (GOA)

As it was mentioned in the introduction, the GOA is a variant of the so-called "Laplacian
Smoothing" (LS) algorithm and it is dedicated to equiaxial polyhedral RVEs. It consists,
after the generation of the initial sphere packing by the IPM, in moving each sphere as
close as possible to the barycenter of the spheres forming its graph (see section 4.2.2) while
avoiding overlapping. The global idea of this procedure is to obtain, for all Laguerre cells, a
ratio "volume of the corresponding sphere/volume of the cell" more uniformly distributed
and so, nearer to the sphere packing density ρ. The �nal step corresponds then, to
applying a scale factor equal to ρ1/d at the obtained microstructure. The procedure,
illustrated in Figure 2.36, is described below independently of the space dimension:

GOA.1 The IPM is performed according to the imposed cell size distribution.

GOA.2 The weighted Delaunay triangulation (see section 4.2.5.1) of the obtained sphere
packing is constructed.

GOA.3 For each sphere Si(ci, ri) of center ci and radius ri, do:
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(a) The barycenter bi of its graph is calculated by writing:

−→
Obi =

∑
j∈Graph(Si)

−−→
Ocj

♯Graph(Si)
, (2.48)

where O is the center of the standard basis and ♯Graph(Si) is the number of
spheres belonging to Graph(Si). If the displacement of Si on the position bi is
not responsible of overlapping with the spheres of its graph, this new position
of Si is validated. Otherwise, a linear displacement of a �ctitious sphere of
center bi and radius ri toward Si is realized step by step until obtaining a non-
overlapping con�guration and Si is updated by the position obtained. The
displacement of the center cT of the �ctitious sphere is performed by writing−−→
OcT = α

−→
Oci + (1− α)

−→
Obi, where α is the step size.

(b) If necessary, a new weighted Delaunay triangulation of ci and its graph is
performed. In this case, the graph of the centers belonging to Graph(Si) is
updated.

GOA.4 End do.

GOA.5 The scale factor ρ1/d is applied to the obtained microstructure.

Figure 2.37 illustrates the e�ect of the GOA by a zoom on an equiaxial polyhedral struc-
ture.

The e�ects of the GOA on equiaxial polycrystal RVE generation are discussed in
chapter 3.

2.4 Extension to other microstructures

Other, more complex microstructures, can be generated using the pre-explained meth-
ods by performing some additional steps. In this section we detail the generation of
semi-solid granular structures, foams and disordered �ber arrays.

2.4.1 Semi-solid granular structures

Semi-solid granular structures are biphasic structures composed of a liquid and solid
phases. Voronoï tessellations are used extensively to model this type of structures in
order to compute their permeability [17] and to simulate their solidi�cation [18, 19].
Furthermore, in order to create the liquid channels of a semi-solid granular structure,
boundaries between adjacent cells are spread by shifting them in the direction of each
center with random values. These values, referred to as ϵi, can either be chosen between
ϵmin and ϵmax, follow a size distribution law or be de�ned by a set of boundary shifts
{1, ..., N}. In this case the modi�ed cells Ṽi are de�ned by:

Ṽi = {x ∈ Vi/d(x, Vi) ≥ ϵi}, (2.49)
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(a)

(b)

Figure 2.36: Illustration of GOA.3: (a) a case where the displacement on the position of
the barycenter is not responsible of overlapping so, this position is validated and (b) this

displacement caused overlapping with another particle of the graph, hence, a linear
displacement from the barycenter toward the initial position is realized step by step until

a non-overlapping con�guration is obtained.

where Vi are the Voronooï cells given by Eq.(2.46). This procedure was used to create
liquid channels between the solid grains modelling a semi-solid granular structure (see
Figure 2.38). Most precisely, for two initially neighboring cells Vi and Vj, this procedure
has for e�ect of creating a channel of thickness ϵi + ϵj between the two cells.

2.4.2 Foams

Traditionally, RVEs of foams are de�ned thanks to two important parameters, their
relative density and their regularity. In this section we will explain the capability of our
methods to generate Voronoï honeycombs and three-dimensional closed-cell with di�erent
relative densities and regularities. The open-cell foams will be discussed further on in this
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(a) (b)

Figure 2.37: A zoom on an equiaxial polyhedric RVE illustrating the e�ects of the GOA:
(a) before applying the GOA and (b) after applying the GOA.

manuscript.
The relative density of a foam is de�ned as the solid fraction's surface (volume in

3D) on the computing domain's surface (volume in 3D). In the case of honeycombs, this
density is calculated in function of the solid skeleton's thickness which is manipulated
using the cell-spreading technique used to create the liquid channels of the semi-solid
granular structures. In three-dimensional foams, we add the surface of the cells' faces
(if it's a closed-cell). In our method, the relative density is controlled using the cells
spreading technique. Assuming that a density ρd is desired in the particular case of a
constant solid skeleton (or liquid channels of a semi-solid granular structure) thickness
that we denote 2b. A simple procedure to determine the adequate b consists in using the
approximation:

ρd ≃
∑Nc

i=1 Fib

|Ω|
, (2.50)

with, Fi the �uid/solid interfacial area of cell (or grain) Ci and |Ω| the domain's volume.
And so, b is �xed using the equation:

b =
ρd|Ω|∑Nc

i=1 Fi

. (2.51)

Now, supposing that the desired density is always ρd but with a heterogeneous thick-
ness of the solid skeleton (or the liquid channels). An astute approach consists in �rstly
generating the microstructure with {ϵ1, ..., ϵN} as the heterogeneous shifting parameters.
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Figure 2.38: Spread Voronoï cells modelling a biphasic granular structure in a unit cube
with ϵmin = 0.02 and ϵmax = 0.05 [23]

The initial density is then given by ρ0 ≃
∑Nc

i=1 Fiϵi
|Ω| , with a channel size equal to ϵi + ϵj for

two neighboring cells (or grains) Ci and Cj (see Figure 2.39).
Afterwards, it is enough to modify each ϵi by a constant value b̃ which allows reaching
the desired density while conserving the heterogeneous thicknesses, by using:

ρd =

∑Nc

i=1 Fi(ϵi + b̃)

|Ω|
,

ρd = ρ0 +

∑Nc

i=1 Fib̃

|Ω|
,

b̃ =
(ρd − ρ0)|Ω|∑Nc

i=1 Fi

.

(2.52)

Finally, Eq.(2.49) is modi�ed as:

Ṽi = {x ∈ Vi/d(x, Vi) ≥ ϵi + b̃}. (2.53)

Furthermore, the choices of the distribution {ϵ1, ..., ϵN} and of the desired density can
play an important role on interesting characteristics for a semi-solid such as the creation
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Figure 2.39: Two spread cell with a channel size equal to ϵi + ϵj

of solid bridges. Indeed, assuming that ρd is smaller than ρ0 leading to a reduction of
the initial channels (b̃ < 0). The minimum of the ϵi can be chosen such as ϵi + b̃ < 0
favoring the closure of certain channels and the creation of solid bridges while respecting
the desired density.

Concerning foam regularity, a regular honeycomb (foam in 3D) is composed of identical
hexagonal (tetrakaidecahedral in 3D) cells. In order to �t n hexagonal (tetrakaidecahe-
dral) cells into an area (volume) a0, the distance d0 between any two adjacent nuclei

must be equal to
√

2a0
n
√
3

(
√
6
2

(
a0√
2n

) 1
3
in 3D

)
. This is performed by placing the spheri-

cal particles, used as a basis for constructing the Laguerre cells, in an hexagonal lattice
(body-centered cubic in 3D). To construct a random Voronoï honeycomb (foam) with n
cells in the area a0, and hence to randomly place n discs (spheres) in the area a0, then
the minimum exclusion distance, δ, between the nuclei must be less than d0. The value
of d0 is therefore an upper limit on the diameter of the n discs (spheres) which may be
accommodated. In order to quantify the regularity of the Voronoï honeycomb (foam), a
parameter γ is de�ned as δ

d0
[7, 13]. Then, γ = 1 (i.e. d = d0) for a regular hexagonal

honeycomb (tetrakaidecahedral foam). For a fully-random structure, γ = 0 (d = 0). By
imposing a maximal and a minimal radius equal to d0/2 and δ/2 respectively, our La-
guerre method can be used to generate honeycombs and foams with di�erent degrees of
regularity (see �gures 2.40 and 2.41).
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(a) (b)

Figure 2.40: (a) A regular Voronoï honeycomb with relative density 0.075 and (b) a
Voronoï honeycomb with a regularity degree of 0.5 and a relative density of 0.125

Figure 2.41: A three-dimensional closed-cell foam with a regularity degree of 0.5 and a
relative density of 0.2

2.4.3 Disordered �ber arrays

In the two-dimensional space and at the microscopic scale, unidirectional �bers are
represented by discs of the same size and de�ned by their porosity ϕ and minimal inter-
�ber distance δmin (see Figure 2.42). In the case of ordered �ber arrays, simple geometries,
such as square or triangular packing of unidirectional arrays of cylinders are considered
[80, 83]. In the case of disordered �ber arrays, disc packing coupled with a Monte Carlo
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procedure [1] and sequential perturbation of the �bers' locations is used by Chen and
Papathanasiou [8, 20] to generate these arrays governed by the choice of the porosity and
the minimum allowable inter-�ber distance.

Figure 2.42: The unidirectional disordered �bers at their microscopic scale

In order to generate the disc packing modelling unidirectional disordered arrays of
�bers with pre-chosen porosity, radius and inter-�ber spacing, we propose the use of the
IPM coupled with the POA and a disc shrinking technique. At �rst, the tangent discs
are generated with radii bigger than the wanted radius and equal to R+ δi/2 where R is
the wanted radius and δi is the ith inter-�ber spacing. And then, the radii are decreased
by removing the δi/2 leaving for two �bers fi and fj, in contact after the IPM-POA
algorithm, to obtain a δi+δj

2
inter-�ber spacing. Furthermore, the choice of δi has a great

in�uence on the porosity and on the degree of disorder of the �ber arrays. Hence, we
propose the use of a Gaussian distribution law for the choice of the inter-�ber spacings.
The reason for choosing a Gaussian distribution law comes from the fact that, contrary to
other classical probability distributions, the sum of independent Gaussian distributions
N(µi, σ

2
i ) is the Gaussian distribution N (

∑
i µi,

∑
i σ

2
i ). So when the inter-�ber distance

is wanted according to N(δ, σ2), it is actually generated following N( δ
2
, σ

2

2
) and added to

the wanted radius then when subtracted, the inter-�ber distance between two �bers will
follow a N(δ, σ2) distribution. Furthermore, a simple yet e�cient choice of δmean, which is
the mean of the Gaussian distribution law, leads to obtaining the wanted porosity. This
choice is in�uenced by the fact that the optimal density, ρopt, of equally spaced discs (i.e.
the hexagonally packed) is given by (see Figure 2.43):

ρopt =
2πR2

√
3(2R + δ)2

. (2.54)

But since the IPM does not reach the optimal density, this equation should by multiplied
by ρ(R) which is the disc density obtained by the IPM using the radius R.
Finally, the wanted porosity, equal to 1− ρopt.ρ(R), yields that:

δmean = R

(√
2πρ(R)

(1− ϕ)
√
3
− 2

)
. (2.55)
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Figure 2.43: Three equally spaced discs of radius R and their equilateral disposition

The standard deviation of the Gaussian distribution is written σ = δmean−δmin

3
, where

δmin is the minimal allowable inter-�ber spacing. Typical �ber distributions are shown
in Figure 2.44 for di�erent values of ϕ and σ. Larger values of σ give �ber arrays with a
higher degree of disorder.

It is noticed that σ has a greater e�ect on the �ber distribution when the porosity is
large. Moreover, by varying σ a spectrum of �ber distributions can be generated at the
same ϕ. Moreover, Figure 2.45 illustrates a comparison between the wanted and obtained
distributions of the inter-�ber distances δi of the �ber array represented in Figure 2.44b.
We notice that the di�erence between the distributions is negligible which means that the
imposed inter-�ber spacing distribution is well respected.

2.5 Conclusion

This chapter represented the core of our virtual multi-physical microstructure builder
where we detailed the IPM which is the sphere packing method used in this work, the
Voronoï and Laguerre tessellation methods and the extension to other types of microstruc-
tures.

After a general overview of the existing sphere packing methods detailing their advan-
tages and weaknesses, the IPM [25, 34], was chosen as the sphere packing method of this
work. The algorithm of this method was detailed in 2D and 3D and some results were
shown. This method is fast, generates high packing densities and respects size distribu-
tion laws but generates local voids coming from the fact that it is based on the frontal
mesh generation method. Hence, an algorithm based on dropping and rolling techniques,
that we called the POA, was developed to optimize these voids. The POA was detailed in
2D and 3D. Contrary to other classical dropping and rolling algorithms where small steps
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(a) (b)

(c) (d)

Figure 2.44: Fiber distributions generated by our method in a 10× 10 square: (a) 6130
�bers with ϕ = 0.51 and σ = 0.06R,(b) 6111 �bers with ϕ = 0.51 and σ = 0.12R, (c)
3678 �bers with ϕ = 0.7 and σ = 0.03R and (d) 3634 �bers with ϕ = 0.7 and σ = 0.4R

are used to reach the stable positions, our POA uses analytical equations to perform the
dropping and rolling phases.

In what concerns equiaxed polyhedral generation, the VTM, which is the most widely
used method for generating this type of structures, was detailed. Since this method
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Figure 2.45: A comparison between the wanted and obtained distributions of the
inter-�ber distances δi of the �ber array represented in Figure 2.44b

presents some limitations towards cell size distributions, the LTM, where the location
of the cells faces is constrained by a given non-intersecting spherical packing, was used.
Nevertheless, local decorrelation between the size of the spherical particles and the size
of the corresponding Laguerre cells may persist. For this reason, another optimization
algorithm, called GOA, was developed. The GOA is based on the displacement of each
sphere towards the barycenter of the spheres forming its graph while avoiding overlapping.
The global idea of this procedure is to obtain, for all Laguerre cells, a ratio "volume of
the corresponding sphere/volume of the cell" more uniformly distributed.

Afterwards, the Voronoï and Laguerre tessellation methods were extended to generate
semi-solid granular structures and foams by using a cell-spreading technique. Also, the
IPM coupled with the POA and a disc shrinking technique was used to generate disordered
�ber arrays with a given porosity and inter-�ber spacing.

2.6 Résumé français

Ce chapitre s'est focalisé sur le générateur de microstructures virtuelles. La méthode
frontale de remplissage qui est la méthode d'empilement de particules sphériques utilisée
dans cette thèse, les méthodes de Voronoï et Laguerre pour la génération de cellules
polyédriques et l'extension à d'autres types de microstructures ont été détaillées.

Dans la première section on s'est concentré sur les méthodes d'empilement de partic-
ules sphériques. Nous avons commencé par une étude bibliographique des méthodes de
remplissage des domaines parallélépipédiques par des particules sphériques. Deux grandes
familles existent, les techniques dynamiques et les techniques constructives. Après l'étude
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des avantages et des inconvénients de ces deux grandes approches, une méthode frontale
a été adoptée et utilisée dans le reste de cette thèse. Cette méthode présente les avan-
tages d'être rapide, de donner la possibilité de respecter des statistiques de tailles et de
générer des empilements de grande densité surtout en 2D. La méthode frontale consiste à
construire initialement un front constitué de disques (sphères en 3D) tangents entre eux
et à la frontière du domaine. Puis, des nouvelles particules sont générées en contrôlant
les intersections avec les particules existantes et le front se propage vers l'intérieur du do-
maine tout en le remplissant. Des résultats sont détaillés pour des rayons qui respectent
di�érentes lois de probabilité. Finalement, une méthode qui permet d'optimiser les vides
locaux créés par la méthode frontale a été proposée. Cette méthode, adaptée aux VERs
de poudres, est basée sur l'idée d'enrichir la méthode frontale par une variante de la
technique de "Dropping and Rolling". Les résultats de ce couplage sont détaillés dans le
chapitre suivant.

La deuxième section a été consacrée à la génération de microstructures polyédriques
equiaxes. La méthode du diagramme de Voronoï, qui est souvent utilisée pour modéliser
ce type de microstructures a été détaillée en premier lieu. Mais puisque cette méthode
présente des limitations pour le respect de lois statistiques concernant la taille des cellules,
la méthode de Laguerre qui consiste a utilisée des particules sphériques comme une base
pour la génération des cellules polyédriques a été utilisée. Finalement, une méthode, qui
limite la décorrélation entre la taille de la cellule polyédrique et la taille de la sphère qui
la génère dans le formalisme de Laguerre, a été proposée. Cette méthode, adaptée aux
polyèdres equiaxes est une variante d'une méthode appelée "Laplacien Smoothing" qui
consiste à placer chaque particule génératrice au barycentre de son graphe. Les résultats
de ce deuxième couplage sont détaillés dans le chapitre suivant.

Dans la troisième section, nous nous sommes intéressés à l'extension des outils dévelop-
pés pour la génération d'autres types de microstructures. Les méthodes de Voronoï et
Laguerre couplée à une méthode d'écartement de cellules, nous a permis de générer des
structures granulaires semi-solide respectant des fractions liquide précises ainsi que des
mousses où la densité relative peut être contrôlée précisément. En�n, il a été démontré
que la méthode frontale développée, couplée avec la méthode de "Dropping and Rolling"
et une méthode de rétrécissement de disques, permet également de générer des �bres
monodirectionnelles hétérogènes tout en respectant une porosité et une distance inter-
�bre imposées.
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Chapter 3

Statistical microstructure modelling
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3.1 Introduction

This chapter is dedicated to the validation of the proposed generation algorithms by
using experimental data and by comparing their e�ciency with other suitable methods.
Our focus is on powder and equiaxial grain RVEs. In both cases we compute the error
between the given and obtained size distributions and in the case of powders we focus on
the spherical particles' density and on the particles' dispositions as well. In the powder
modelling applications, we �rst compare our POA to Bagi's densi�cation method [24]
where the voids of an advancing front method are �lled with particles non-intersecting
preexisting ones. Comparisons are also realized, with Cui and O'Sullivan's triangulation
based and vertex �lling method [103] where the initial discs are the incircles of the elements
of a triangulation of the domain and where more discs are added on the vertices of the
elements without intersecting preexisting ones. Then, a more complex granulometry given
by a Gaussian distribution law is considered. And �anlly, experimental data given by
laser granulometry performed on a stainless steel 316L are used [29]. In the equiaxial
grain modelling applications, we �rst compare our GOA to the Laplacian Smoothing (LS)
algorithm [38] where the grain size distribution is given by a Gaussian distribution law.
And then experimental data of a stainless steel 304L, obtained by EBSD, are used [28].
Three-dimensional RVE modelling are also performed for both kinds of microstructure
using the statistics of a pure iron [109]. We note that, when dealing with equiaxial
grains, the size of the grains (surface or volume) is actually calculated and compared with
the wanted size distribution and not the size of the generating particles. This kind of
comparison is far more complex than the one where the size of the generating particles is
only considered as in [25, 38]. It is important to mention and that all the size functions
and domains are nondimensional but can be used also with precise measurements.

3.2 Modelling applications: Comparison with existing

methods

In this section, six test cases are considered and discussed. The �rst test case corre-
sponds to the generation of a 2D powder RVE with a granulometry given by a uniform
distribution on the interval [6× 10−2, 4.2× 10−1]. In this case, the POA is compared with
the densi�cation method introduced in [24] where the same granulometry is considered.
Bagi's densi�cation method [24] consists in adding new particles to the assembly by test-
ing their possible positions at both sides of every contact of the initial assembly. In other
words, this methods tries to �ll the voids of the initial disc packing by generating new
particles. The second test case corresponds also to the generation of a 2D powder RVE
with a granulometry given by a histogram distribution law. In this case, our POA is com-
pared to the method introduced in [103] where this distribution law was obtained. The
method of Cui and O'Sullivan [103] consists in constructing a triangulation of the domain
with an imposed minimum angle and the initial discs are the incircles of the elements of
this triangulation. Then, more discs are added on the vertices of the elements without
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intersecting preexisting ones. It is important to mention that the size distribution used in
this test case was not imposed in [103], only obtained. Most precisely, discussions around
the respect of a given distribution are not described in [103]. The third one corresponds
to the generation of a 2D powder RVE de�ned by a Gaussian distribution law for its
granulometry, with mean µp = 4 × 10−2 and standard deviation σp = 10−2. The fourth
test case corresponds to a study of the GOA in a 2D equiaxial polycrystal context for a
Gaussian distribution of the grain size with mean µG = 2.5×10−3 and standard deviation
σG = 5 × 10−4. Results obtained by the GOA are compared with the results obtained
without optimization (Laguerre tessellation of the sphere packing obtained without op-
timization) and the results obtained with the LS optimization [38]. In order to study
the evolution of the L2 error (between the given distribution law and the ones obtained
thanks to the POA or the GOA) as a function of the number of particles, the RVEs were
generated for di�erent domain sizes. Finally, the �fth and sixth test cases illustrate the
capability of our methods to generate 3D powder and equiaxial grain RVEs. The size
distribution corresponds to that of a pure iron structure [109]. To be more statistically
representative, 20 random con�gurations were generated for each RVE and the data were
collected for analysis.

3.2.1 Powder RVE modelling

For the �rst test case, as in [24], a uniform distribution law U [6 × 10−2, 4.2 × 10−1] is
considered as the powder granulometry. Five di�erent domains, denoted {Ui, 0 ≤ i ≤ 4},
which correspond, respectively, to a 10× 10, 50× 50, 100× 100, 110× 110 and 120× 120
square domain, are used. For the second test case, as in [103], a histogram distribution
law is considered as the powder granulometry and a unit square denoted H0 is used. For
the third test case, a Gaussian distribution law, with mean µp = 4 × 10−2 and standard
deviation σp = 10−2 is considered for the radius distribution. Four di�erent domains,
denoted {Gi, 0 ≤ i ≤ 3}, are used. The initial domain G0 corresponds to a unit square
and the three others correspond, respectively, to a 4×4, 8×8 and 12×12 square domain.
In this third case, a cut-o� of 7.5× 10−2 for the disc radius is realized to avoid large disc
surface. The mean (in the sense of the mean of the 20 calculations realized for each case)
numbers of discs, the mean densities without optimization, the mean densities using the
POA after the domain truncation (as explained in section 2.2.5), the mean average radius
and the mean L2 errors between the obtained and the desired distribution for the three
test cases and for the di�erent domains considered are summarized in Table 3.1. Figures
3.1 and 3.2 illustrate the results obtained in term of distribution law for the di�erent
con�gurations.
The di�erent results allow putting forward the following conclusions:

• As illustrated by Figure 3.1a (in the U-cases), Figure 3.2 (the G-cases) and table
3.1, the used IPM-POA coupled algorithm allows converging towards the desired
distribution when the number of particles increases. Moreover, the error decreasing
is quite homogeneous on the considered distribution ranges.
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Domain number of
discs

density
without op-
timization

density with
optimiza-
tion

average ra-
dius

L2 error in
%

U0 403 0.785 0.817 0.226 10.48
U1 9300 0.788 0.817 0.23 6.15
U2 37400 0.796 0.833 0.231 3.5
U3 44735 0.795 0.831 0.232 3
U4 53687 0.796 0.83 0.232 2.72

H0 2762 0.767 0.816 0.0089 4.94

G0 150 0.759 0.796 0.0392 9.02
G1 2405 0.788 0.813 0.0396 3.54
G2 9708 0.796 0.816 0.0396 3.15
G3 21904 0.8 0.821 0.0397 2.79

Table 3.1: Statistics (mean for 20 calculations) of the 2D powder modelling cases

• The density values when the POA is not used illustrate also that the used advancing
front method, in addition to provide unrealistic powder, does not enable to achieve
a very high density and to improve it signi�cantly when the number of particles
increases. This fact is noticeable in the U-cases and the G-cases.

• The improvement of the density combined to the convergence toward the desired
distribution law when the POA is used proves the ability of the proposed approach to
answer to the three primordial criteria to model very precisely a powder: to achieve
very high densities, to respect precisely a given granulometry and to be realistic for
the particles arrangement. This result is not trivial. Indeed, in the most sphere
packing methods, one of these objectives can be performed in the determent of the
others. Typically, the optimization results described in [24], concerning the uniform
law used in our �rst test case (the U-cases), describe an increase of the density
when the number of the particles considered increases (achieving 0.858 for 56213
particles) but with a regular increasing of the error concerning the average radius
of the packing obtained (achieving 7.91% for 56213 particles). In our case, the
improvement of the density (achieving 0.83 on the U4 domain for 53687 particles) is
correlated to the decreasing of the error concerning the mean radius (achieving 3.33%
on the U4 domain). This di�erence can be explained by the fact that when Bagi's
densi�cation method [24] is used, small particles have a much higher probability to
be accepted than large ones; whereas, when the POA is used, all the particles in
suspension, which are un-physically positioned, are displaced eliminating the voids
created by the IPM, which makes the microstructure locally denser (but less then
Bagi's method) without modifying the radius distribution obtained thanks to the
IPM.

As for the method described in [103], the void ratio, equal to 1 − density, was
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(a)

(b)

Figure 3.1: (a) The probability density functions obtained in each domain of the �rst test
case compared with the density function of U [6× 10−2, 4.2× 10−1] and (b) the obtained

frequencies compared with the wanted ones for the second test case in H0

calculated. Their minimal void ratio obtained was 0.2968 which corresponds to
the maximal density of 0.7032. Also, the number of generated discs in [103] was
approximately 2283 and, as it was mentioned earlier, the size distributions in their
case were not imposed only obtained. Our POA generated an average number of
discs of 2762 with an average density of 0.816 which is much higher than the one in
[103] and also it respected the wanted statistical law obtained in [103].

Concerning the third test case (the G-cases), our POA proved its ability to answer
to the three primordial criteria of powder modelling even for a complex powder
granulometry (a Gaussian distribution law).

Figure 3.3 illustrates one of the calculations performed in U4 (made of 53805 discs)
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Figure 3.2: The probability density functions obtained in each domain of the third test
case compared with the density function of N(µp, σ

2
p)

when the POA is applied and a zoom at the center of the microstructure, Figure 3.4
illustrates one of the calculations realized in G2 (made of 9703 discs) before and after
applying the POA. In these Figures, the used coloration describes the size of the particles.

3.2.2 Equiaxial polycrystal RVE modelling

As mentioned earlier, the size of an equiaxial grain is approximated by the size of the
spherical particle included within. In fact, we start from a given statistical law for an
equiaxial polycrystal. This law is then applied to the spherical particles included inside
the grains and serving as a basis for the size of the cells. Moreover, the mean ratio of
particle volume and grain volume is equal to ρ, the density of the sphere packing. Hence, a
scale factor equal to ρ1/d is then applied (see section 2.3.2). In 2D, a Gaussian distribution
law, with mean µG = 2.5× 10−3 and standard deviation σG = 5× 10−4 is considered for
the cell surface distribution. The three domains G0, G1 and G2 are used (see section
3.2.1). To avoid unphysical results or large cell surface dispersal, we chose a cut-o� of
5× 10−3 for the cell surface. Furthermore, the GOA is compared to the LS optimization
technique [38] which attempts to position each particles at the barycenter of its weighted
graph by performing small step by step displacements. The mean numbers of grains and
the mean L2 errors between the obtained and the desired distribution for the three cases
are illustrated in Table 3.2.

As for the three previous test cases, by considering the results described in Figure 3.5
(comparison between the density functions obtained in each domain and for each method
with the desired N(µG, σ

2
G) distribution) and the L2 errors given in table 3.2, we can

conclude that the results were improved when the number of grains increases and also
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(a)

(b)

Figure 3.3: (a) The powder RVE obtained using the POA in U4 made of 53805 discs and
(b) a zoom at the center of the microstructure
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(a)

(b)

Figure 3.4: (a) The powder RVE obtained without using the POA in G2 and (b) the
same powder RVE when the POA is applied
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Domain number of grains method used L2 error in %

without optimization 14.7
G0 300 GOA 10.74

LS 12.97

without optimization 9.56
G1 4849 GOA 8.63

LS 8.73

without optimization 9.24
G2 19468 GOA 7.85

LS 8.16

Table 3.2: Statistics (mean for 20 calculations) of the 2D polycrystal modelling cases

when an optimization method is used. Moreover, the GOA and the LS optimization
technique [38] act in the same manner by attempting to place the grain center, or the
spherical particle used as a basis for the grain, at the barycenter of its weighted graph
which has for e�ect of homogenizing the surface di�erence between each Laguerre cell
and its corresponding disc in the sphere packing and �nally to improve the respect of the
distribution law when the scale factor ρ1/d is applied. The slight improvement between
the GOA and the LS method when the number of grains increases can be explained by
the fact that the closest position to the barycenter of the weighted graph is systematically
chosen in the GOA contrary to the LS method. The errors obtained remain acceptable
since we are comparing the cell surface distributions, but the fact that the L2 error, when
GOA is used, only decreases to 7.85% implies that this method may be improved.
Figure 3.6 illustrates one of the calculations realized in G1 (made of 4810 equiaxial grains)
generated using the GOA.

3.2.3 3D RVEs modelling

This section contains the test cases dedicated to 3D RVEs modelling. The size distri-
bution in both cases corresponds to that of a pure iron structure [109]. This distribution
corresponded originally to size of the grains but was used also as a radius distribution
for modelling a nanostructured material in [34]. These cases illustrate the ability of our
methodology to deal with 2D or 3D con�gurations for both powder and equiaxial grain
RVEs. 20 calculations were performed as well for each method and in each domain.

In the 3D powder modelling case, the size distribution is considered as the powder's
granulometry. The calculations, performed in a unit cube denoted C0, lead to obtain an
error of 1.24% between the wanted and obtained granulometries hence calculations in a
bigger domain were not necessary. Figure 3.7 illustrates the comparison between the size
distributions.
Furthermore, the mean number of spheres obtained was 1969 with a mean density of
0.472 before applying the POA, 0.588 after applying the POA. Figure 3.8 illustrates one
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Figure 3.5: The probability density functions obtained without optimization, using the
GOA and using the LS method in each domain compared with the density function of

N(µG, σ
2
G)

of the runs, containing 2031 spheres before and after applying the POA along with cuts
at the middle of the domain to show the inner �lling. In this run, when the POA was not
applied the sphere density was 0.484 and local voids where encountered at the inner part
of the domain. After applying the POA and truncating the domain, the density increased
to 0.602 and the local voids vanished.
The sphere density values for the IPM were reported in [25, 34, 38]. These densities
are moderate when it comes to sphere packing which will enhance the void space in 3D,
especially at the middle of the domain. Furthermore, since the size of a Laguerre cell is
approximated by the one of a spherical particle, the 3D void will result in having cells much
bigger then the corresponding sphere making the respect of a cell volume distribution in
the 3D cases more complicated as illustrated in the next test case.

In the 3D grain modelling case, the size distribution is considered as the cell volume
distribution. The calculations were performed in C0 and in a 2 × 2 × 2 cube denoted
C1 in order to study the evolution of the L2 error. Also, they were performed without
optimization and using the GOA. The mean numbers of grains and the mean L2 errors
between the obtained and the desired frequencies for all cases are illustrated in Table 3.3.
Figure 3.9 shows the comparison between the size distributions obtained for each method
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Figure 3.6: 4810 equiaxial grains generated in G1 using the GOA

Figure 3.7: The obtained size distributions in the 3D powder modelling case

used and in each domain and Figure 3.10 shows one of the calculations in C0 performed
using GOA and containing 1748 grains.

We can notice from Table 3.3 and Figure 3.9 that, similarly to the 2D case, the error is
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(a) (b)

(c) (d)

Figure 3.8: 2031 spheres in a unit cube modelling a 3D powder RVE: (a) the whole
domain before applying the POA, (b) a cut in the domain showing the inner �lling before
applying the POA, (c) the whole domain after applying the POA and (d) a cut in the

domain showing the inner �lling after applying the POA

inversely proportional to the number of grains and decreases when the GOA is used. But,
this error remains bigger than the 2D polycrystal modelling case even when the GOA is
used. This is due to the voids encountered when the IPM is used (which are ampli�ed
from 2D to 3D con�gurations) and result in generating grains larger then the basis spheres
especially in the middle of the domain. This weakness is illustrated in Figure 3.9. Indeed,
we can notice that we obtain quite good results for the small cells. But, in the last four
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Domain number of grains method used L2 error in %

without optimization 25.26
C0 1730 GOA 20.35

without optimization 18.18
C1 11926 GOA 13.7

Table 3.3: Statistics (mean for 20 calculations) of the 3D polycrystal modelling cases

Figure 3.9: The obtained size distributions in the 3D equiaxial grain modelling case

intervals of the histogram distribution, we notice that the cell sizes are bigger than the
wanted ones. This is due to the fact that when a sphere is generated at the middle of the
domain, the corresponding Laguerre cell would be much larger.

3.3 Modelling applications: Experimental examples

In the previous section, some academic test cases were performed in order to validate
and compare our methods to other preexisting methods. In this section, the statistics
of powders and grains are issued from experimental data. In these cases, seven di�erent
domains, denoted {Si, 0 ≤ i ≤ 6}, which correspond, respectively, to a 1× 1, 2× 2, 3× 3,
8×8, 12×12, 16×16, and 20×20, square domain, are used in 2D. In 3D, a 0.5×0.5×0.5
cube denoted E0 and a 0.5× 0.5× 0.3 parallelepiped denoted E1 are used.
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Figure 3.10: A 3D equiaxial grain RVE containing 1748 grains and generated using the
GOA

3.3.1 Powder RVE modelling

A laser granulometry was performed on a stainless steel 316L in order to get the statis-
tics of its powder [30]. The radius distribution was found to follow a discrete probability
law where each radius has a speci�c frequency of appearance. In 3D, this statistic was
used in E0 and E1. For the 2D calculations, performed in S0, S1 and S2, the 3D statistics
was converted thanks to the Saltykov technique [110]. It is important to underline that
the considered granulometry, issued of experimental data, is clearly more complex than
the classical granulometry reported in the literature. Indeed, as illustrated in Figure 3.11,
the main di�culty comes from the important size ratio between the smaller and bigger
spheres which must be considered. A comparison is performed between three di�erent
generation methods, the IPM, the POA and the dropping and rolling technique. The
results obtained, in the two-dimensional case, are summarized in Table 3.4 and in Figure
3.11.
Figures 3.12a and 3.12b represent one of the calculations performed, using the IPM, in
S0 containing 3595 discs before and after using the POA and Figure 3.12c represents one
of the calculations performed, using the dropping and rolling algorithm, in S0 containing
3760 discs.

From these results, we can draw the following conclusions. When the POA or the
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Domain method used mean number of discs density L2 error in %

IPM 3427 0.776 2.54
S0 POA 3427 0.84 2.54

Dropping Rolling 4085 0.8154 5.08

IPM 13939 0.779 1.25
S1 POA 13939 0.839 1.25

Dropping Rolling 14978 0.818 1.5

IPM 29869 0.778 1.12
S2 POA 29869 0.84 1.12

Dropping Rolling 33650 0.8197 1.31

Table 3.4: Statistics (mean for 20 calculations) of the 2D experimental powder modelling
case

Figure 3.11: The frequencies obtained in S0, S1 and S2 for each generation method
compared with the experimental frequencies

dropping and rolling algorithm are used, high densities representative of a powder RVE
are obtained but higher values are achieved with the POA. And also, we converge towards
the exact experimental statistics, using both methods, as the number of discs increases but
with a slight improvement when the POA is used. This is due to the fact that the smaller
particles have a higher probability than bigger ones to be generated at the highest region
of the domain when the dropping and rolling technique is used. This fact is illustrated in
the �rst four obtained frequencies in Figure 3.11 and in Figure 3.12c.

In 3D, 7750 was the mean number of spheres obtained in E0 with a mean L2 error
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(a) (b)

(c)

Figure 3.12: (a) The powder RVE obtained using the IPM without the POA in S0, (b)
the same powder RVE when the POA is applied and (c) the powder RVE obtained using

the dropping and rolling technique

of 3.1% between the wanted and obtained distributions when the IPM was used. In this
case, the mean sphere packing density obtained without using the POA was 0.358 which
increased to 0.62 when the POA was used which resulted also in having a void region in
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the domain bounded by the plane z = 0.3 and z = 0.5 (where z is the dropping and rolling
direction). Hence, the dropping and rolling algorithm was performed in E1 in order to
compare it to the POA using the same dimensions. It resulted in having a mean number
of spheres of 9602 with a mean density of 0.578 and a mean L2 error of 4.26%. As for the
two-dimensional cases, the POA generated powder RVEs with higher densities and lower
L2 errors then the dropping and rolling technique. Once again, our IPM-POA coupled
approach proved its e�ciency in modelling 2D and 3D powder RVEs.

Figure 3.13 illustrates one of the runs, containing 7777 spheres generated using the
IPM before and after applying the POA along with cuts at the middle of the domain to
show the inner �lling. In this run, when the POA was not applied, the sphere density was
0.365 and local voids where encountered at the inner part of the domain. After applying
the POA and truncating the domain, the density increased to 0.64 and the local voids
vanished. Figure 3.14 illustrates one of the runs, containing 9495 spheres generated using
the dropping and rolling technique with a sphere density of 0.578 along with a cut at the
middle of the domain to show the inner �lling.

It is important to mention that in all the �gures of this section, the ratio of the
maximal and minimal radius is 15.85 while the maximal ratio used in previous works
using an AFM was 7 [24, 25, 34, 38]. Our illustrations (see Figures 3.12a and 3.13b) show
that the voids created using an AFM, or most precisely the IPM, are enhanced when this
ratio is large. But it also shows that our optimization method (i.e. the POA) reduced
greatly this void making the microstructure representative of a powder RVE (see Figures
3.12b and 3.13d).

3.3.2 Equiaxial polycrystal RVE modelling

A 2D pixelated image of a stainless steel 304L, containing 1387 grains, was obtained by
EBSD [28]. A part of this image is illustrated in Figure 3.15 where the grain joints were
identi�ed and drawn in white lines. In this �gure the twin boundaries, which occur when
two or more crystals intergrow and have elongated or deformed shapes, were not taken
into account.
Afterwards, the surface of each grain is calculated using the software Visilog 6.3. This
surface is considered as the one of the equivalent generating spherical particle and hence,
a statistic of the equivalent radius is obtained and used for generating the virtual, sta-
tistically equivalent, microstructure. The statistic of the equivalent radii was approached
by a histogram distribution law. We performed our 2D calculations in S3, S4, S5 and S6

using the GOA. The results obtained are summarized in Table 3.5 and in Figure 3.16.
In this test case, we added the mean number of neighboring grains to Table 3.5. This
number is usually very close to 6 in an equiaxial polycrystalline material.

The results show that the L2 error decreases when the number of grains increases. Al-
though, this error remains higher than 11%, the results remain acceptable considering the
complexity of the size distribution. In what concerns the mean number of neighbors, the
results show that we are close to 6 in all the considered domains. One of the calculations
performed in S3 containing 3680 equiaxed grains is illustrated in Figure 3.17.
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(a) (b)

(c) (d)

Figure 3.13: 7777 spheres in E0, generated using the IPM, modelling a 3D powder RVE:
(a) the whole domain before applying the POA, (b) a cut at middle of the domain

showing the inner �lling before applying the POA, (c) the whole domain after applying
the POA and (d) a cut at middle of the domain showing the inner �lling after applying

the POA
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(a) (b)

Figure 3.14: 9495 spheres in E1, generated using the dropping and rolling technique,
modelling a 3D powder RVE: (a) the whole domain and (b) a cut at middle of the

domain showing the inner �lling

Figure 3.15: A microscopic illustration of a stainless steel 304L with grain joints drawn
in white lines

3.4 Conclusion

In this chapter, the ability of the POA, dedicated to powder modelling, to respect
statistical data while achieving high density and the ability of the GOA, dedicated to
equiaxial polycrystal modelling, to improve classical Laguerre tessellation technique were
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Domain mean number of grains mean number of neighbors L2 error in %

S3 3647 5.996 14.24
S4 8296 6.024 13.27
S5 15198 6.048 12.2
S6 23628 6.06 11.67

Table 3.5: Statistics (mean for 20 calculations) of the 2D experimental grain modelling
case

Figure 3.16: The frequencies obtained in all the domains compared with the experimental
frequencies in the 2D case

illustrated.
Firstly, we compared our methods to other preexisting techniques. In the 2D powder

modelling cases, the POA was compared to Bagi's densi�cation method [24] and to Cui
and O'Sullivan's triangulation method [103]. Our POA proved that it is more e�cient
than the two pre-cited methods in the sense that it answered to the three primordial
criteria to model very precisely a powder: to achieve very high density, to respect pre-
cisely a given granulometry and to be realistic for the particles arrangement. In the
2D equiaxial polycrystal RVE modelling case, our GOA was compared to the Laplacian
smoothing algorithm [38]. The results showed that the L2 error, between the wanted and
obtained cell size distribution, was smaller when our algorithm was used. Furthermore,
three-dimensional modelling cases were performed for both kinds of RVEs. A histogram
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Figure 3.17: An equiaxial polycrystal RVE containing 3680 grains obtained using the
GOA in S3

distribution law was used in both cases. As for the 2D cases, the POA proved its e�ciency
in modelling 3D powder RVEs and the GOA resulted in having acceptable L2 errors in
the 3D equiaxial polycrystal RVE modelling.

Secondly, statistics issued from experimental data, more complex than the previous
distributions, were used. In the 2D and 3D powder modelling cases, the POA was com-
pared to the dropping and rolling technique. The results illustrated that the POA is
slightly better than the dropping and rolling technique in terms of L2 errors and sphere
packing densities. In the equiaxial polycrystal modelling case, the GOA resulted in having
acceptable L2 errors considering the complex size distribution used.

3.5 Résumé français

Dans ce chapitre, la capacité du POA (consacrée à la modélisation de VERs de poudre),
à respecter des données statistiques en obtenant des hautes densités et la capacité du
GOA (consacrée à la modélisation de VERs de polycristaux equiaxes), à améliorer la
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méthode classique du diagramme de Laguerre ont été illustrées. Les deux techniques ont
été comparées avec d'autres méthodes d'optimisation a�n de prouver leur e�cacité.
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Chapter 4

Level-Set Approach and Meshing Adap-
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4.1 Introduction

Explicit methods are often used to represent the microstructure's interface in a FE mesh.
In [34, 38], this type of methods was used to represent the interfaces of granular structures
de�ned by cells or by spherical particles. Most precisely, in a 2D context, a discretization
of the boundary (microstructure's interface and domain boundary) according to a metric
�eld, speci�ed basing on the geometry and the proximity of grains, and the generation of
a mesh of the points of the discretized boundary are �rstly performed. Then, an adaptive
scheme is proposed in order to generate quality meshes. These meshes are generated using
a combined advancing front-Delaunay approach [51]. In the 3D context, the boundary
is considered as a 2D surface and a surface mesh is built at �rst then a volume mesh
is constructed. In these cases, the mesh generation is a long procedure combining steps
of discretization, mesh construction and quality improvement. This method can be very
costly for structures having a large number of grains especially in 3D. In [36, 52] a mesh
was constructed for a 3D grain-based microstructure. First, a Voronoï tessellation is
constructed by taking the centroids of the grains and additional points as the only seed
points. Then, an initial mesh is generated by triangulating each face of each Voronoï cell.
After triangulating each face, each corner of a triangle is connected to the seed point that
generated the Voronoï cell to which the face belongs. This process produces a number
of tetrahedral elements and ensures a conformal mesh because every face belongs to two
Voronoï cells and thus the nodes on a face are the same for the two cells. After generating
the initial mesh, the quality of the mesh is improved by performing additional steps.
This method necessitates the construction of a Voronoï tessellation included inside the
microstructure's grains and involves complex quality improvement techniques. Moreover,
a regular rectangular FE mesh was used to perform mechanical loading on a 3D granular
microstructure [111]. This technique uses the initial voxel-based image to construct the
mesh but leads to some loss of �delity of grain boundary morphology and to lower-
resolution model.

In this work, we are going to use and detail an implicit method to capture the inter-
faces, the Immersed Volume Method (IVM) [55]. This method is based on the level-set
approach to de�ne the di�erent interfaces, on mixing laws for physical properties and on
meshing adaptation. The use of level-set functions to model equiaxed polycrystals made
of Voronoï cells was introduced by Bernacki [15]. This approach was applied successfully
for the generation of 2D or 3D polycrystals but for a moderate number of grains (less than
2000 in 3D). Indeed, one di�culty of this method is the numerical cost, which depends
on the number of grains, as well as on the FE mesh used to describe the polycrystal. In
this chapter, we describe the methodology to build Voronoï tessellations in a FE mesh
using a level-set approach. An improvement in the computational time of the method
described in [15] is also proposed. Also, the use of level-set functions to de�ne Laguerre
tessellations is introduced and the de�nition of spread cells to immerse foams or granular
semi-solids is explained.

Furthermore, description of statistical RVEs in a monolithic context using a level-set
framework undermines the necessity to work with a �ne mesh at the interfaces of the
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RVE not only to describe properly the considered microstructure but also to take into
account possible discontinuities of physical properties when mechanical testing must be
performed on this microstructure. Hence, section 4.3 is dedicated to a general overview
of the existing mesh adaptation methods in CimLib. These methods are usually based on
the level-set functions which are used to de�ne the metric �eld used in remeshing [112].
We propose a new method for constructing this metric �eld. In our context, this method
is based on a graph coloration algorithm [113] that limits the number of level-set functions
used in remeshing.

4.2 The Level-Set approach

The location of the microstructures' interfaces are de�ned implicitly using a level-set
framework. A level-set function ϕ, de�ned over a domain Ω, is called distance function of
an interface Γ if, at any point x of Ω, it corresponds to the distance from Γ. In turn, the
interface Γ is then given by the iso-zero of the function ϕ :{

ϕ(x) = ±d(x,Γ), x ∈ Ω

Γ = {x ∈ Ω, ϕ(x) = 0}
(4.1)

In this document, a sign convention is used: ϕ ≥ 0 inside the domain de�ned by the
interface Γ and ϕ ≤ 0 outside this domain. Figure 4.1 illustrates a level-set function of
a square domain. The values of this function are positive inside the domain, negative
outside and null at the interface.
In the following sections of this chapter we will explain how the level-set functions de�ning
each type of microstructure are calculated.

4.2.1 Voronoï tessellations

For a node X of coordinates x of the FE mesh and two Voronoï nuclei Si and Sj, the
function [15]:

αij(x) =
1

2
∥
−−→
SiSj ∥ −

−−→
SiSj.

−−→
SiX

∥
−−→
SiSj ∥

for 1 ≤ i, j ≤ N, j ̸= i, (4.2)

with N the number of Voronoï nuclei, corresponds to the signed distance of X to the
perpendicular bisector of [SiSj]. The level-set function ϕi(x), de�ning the Voronoï cell of
the nucleus Si, is then given by:

ϕi(x) = min
1≤j≤N
j ̸=i

(αij(x)). (4.3)

Figure 4.2 illustrates, in a 2D context, four level-set functions de�ning the cells of four
di�erent Voronoï nuclei.
A global unsigned distance function can also be de�ned as:
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Figure 4.1: The level-set function of a square domain. The interface of the square is in
black

ϕglob(x) = max{ϕi(x), 1 ≤ i ≤ N}. (4.4)

This function is positive everywhere and tends to zero on the cell boundary network. This
function is shown in Figure 4.3 de�ning the Voronoï tessellation of the 4 nuclei in Figure
4.2. Also, Figure 4.4 illustrates the global distance function of 300 Voronoï cells in a
three-dimensional case.

4.2.2 The Delaunay triangulation

The Voronoï tessellation can also be de�ned by constructing its dual, the Delaunay
triangulation [51]. The Delaunay triangulation gives us the graph of each nucleus Si,
which is the set of the nuclei {Sj, j ̸= i} that share the same edge of the Delaunay
triangulation with Si. In this section, we will explain the method used to construct
the Delaunay triangulation and its importance on the calculation, in a FE mesh, of the
level-set functions de�ning the Voronoï cells.

Let us begin by reminding about the 2D Delaunay's criteria (see Figure 4.5):

A triangle net is a Delaunay triangulation if all the circumcircles of all the triangles
in the net are empty, that is, if no vertices lie in the circles' interiors (Vertices may lie
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Figure 4.2: Four level-set functions de�ning four Voronoï cells. The Voronoï nuclei are
the white dots and the cells' interfaces are in black

Figure 4.3: The ϕglob(x) function corresponding to 4 Voronoï cells
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Figure 4.4: The ϕglob(x) function corresponding to 300 Voronoï cells [17]. FE mesh in
white

on the perimeter of any circumcircle.)

This is the original de�nition for two-dimensional spaces. It is possible to use it in three-
dimensional spaces by using a circumscribed spheres in place of the circumscribed circles.

Figure 4.5: The Delaunay triangulation (full lines) and the corresponding Voronoï
tessellation (dashed lines) [51]

For the construction of the Delaunay triangulation, the classical incremental method is
used [51]. The �rst step consists in building an initial triangulation T0. This triangulation
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is given by what is called the "supertriangle" (or "supertetrahedron" in 3D) [114], which
is one big triangle (tetrahedron) that would contain the union of the circles (spheres) of
the �nal triangulation (see Figure 4.6).

Figure 4.6: The supertriangle containing all the nuclei

Then, we suppose that Ti, the Delaunay triangulation of the �rst i nuclei, exists.
Afterwards, we let the point P be the (i + 1)th nucleus. The purpose is to build Ti+1

such as it corresponds also to a Delaunay triangulation of the �rst (i+ 1) nuclei. To this
end, the Delaunay's kernel procedure is used. Since Ti contains the supertriangle, P is
included in the triangulated domain Ti, then we de�ne:

• CP
i , the cavity of P, which corresponds to the union of the elements of Ti which

their circumscribed circle (circumscribed sphere) contains the point P (see Figure
4.7a)

• BP
i , the ball of P, which is the group of elements formed by joining P to the external

edges of the cavity CP
i (see Figure 4.7b)

And Ti+1 is constructed as Ti+1 = Ti−CP
i +BP

i . Since all the elements of Ti which their
circumscribed circle (circumscribed sphere) contains the point P were removed and since
the circumscribed circles (circumscribed spheres) of the new elements will not contain the
point P because P is a vertex of all these new elements, Ti+1 is a Delaunay triangulation.

At the end of the procedure, all the elements having a common vertex with the super-
triangle (supertetrahedron) are removed.

Having constructed the Delaunay triangulation, the graph of each nucleus is at hand.
The graph's information is important to calculate the level-set functions that de�ne the
Voronoï cells since the nucleus Sj giving the minimal value of αij(x) (see Eq.(4.2)) is
surely contained in Graph(Si). Indeed, the calculation of the level-set function ϕi(x) can
be simpli�ed as follows:
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(a) (b)

Figure 4.7: P is the red point: (a) The cavity of P and (b) the ball of P

ϕi(x) = min
Sj∈Graph(Si)

(αij(x)). (4.5)

Figure 4.8 illustrates how useful the Delaunay triangulation is for calculating level-set
functions. Without it, to calculate the level-set de�ning the Voronoï cell of a nucleus Si,
all the nuclei Sj (j ̸= i) must be taken into consideration in the algorithm. Thanks to the
Delaunay triangulation, only the points Sj belonging to Graph(Si) are considered.

4.2.2.1 Comparison of numerical costs

Concerning the numerical cost, the new proposed algorithm undermines a supplemen-
tary step which is the Delaunay triangulation. The methodology used, which is the
classical incremental technique [51], is an N2 algorithm; however this calculation is real-
ized only once whereas the N2 algorithm realized for each node of the �nite element mesh
in Eq.(4.3) is replaced by an N.logN algorithm thanks to Eq.(4.5). The gain realized is
illustrated by the following examples where we have compared the computing times of
both algorithms described in a 2D and a 3D case. In 2D, the calculations were done in a
unit square with two di�erent �nite element meshes. The �rst mesh, referred to as "Mesh
1" is made of 9901 nodes and 19456 elements and the second mesh, referred to as "Mesh
2" is made of 49457 nodes and 98161 elements. In 3D, the calculations were done in a
unit cube with two di�erent �nite element meshes also. The �rst mesh in 3D, "Mesh 3",
is made of 16192 nodes and 86518 elements and the second mesh in 3D, "Mesh 4" is made
of 77669 nodes and 448586 elements. In "Mesh 1" and "Mesh 3" 300 and 1500 cells were
generated whereas in the �nest meshes "Mesh2" and "Mesh 4", 300, 1500 and 4500 cells
were considered. All the calculations were performed using one processor. The results
are given in Table 4.1. The algorithm made without using the Delaunay triangulation is
referred to as "Algorithm 1" and the new one as "Algorithm 2".
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Figure 4.8: FE mesh (red), Delaunay triangulation (white), the nucleus Si (black), its
graph (white points) and the global level-set function de�ning the Voronoï tessellation

2D 3D

Number of
sites

Algorithm Mesh 1 Mesh 2 Mesh 3 Mesh 4

300 Algorithm 1 5min 28s 27min 8s 10min 9s 50min 40s
Algorithm 2 4s 20s 19s 1min 38s

1500
Algorithm 1 2h 23min

40s
11h 22min
30s

4h 13min
43s

20h 12min
14s

Algorithm 2 19s 1min 26s 1min 40s 6min 54s

4500
Algorithm 1 More than 2

days
More than 2
days

Algorithm 2 4min 25s 21min 25s

Table 4.1: Comparison of the two algorithms

The calculations for 4500 cells in "Mesh1" and "Mesh3" were not performed because
both meshes are very coarse in the sense that each level-set function de�ning a Voronoï cell
will be calculated on approximately 2 nodes in "Mesh1" and 4 nodes in "Mesh3" which
can not be representative of a Voronoï cell. These results show clearly the importance
of the Delaunay triangulation on the computing times for the calculation of the level-
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set functions de�ning the Voronoï tessellations. And they illustrate as well that the
calculation times of both algorithms are a linear function of the number of nodes of
the FE mesh considered, and also the N2 complexity of Algorithm 1 and the N.logN
complexity of Algorithm 2 [57].

4.2.3 Cell spreading

The geometrical procedure to perform cell spreading was described in section 2.4.1.
We are going to describe how this procedure is easily realized in our level-set context.
Boundaries between adjacent cells can be spread by shifting them in the direction of each
center with random values. These values, referred to as ϵi can either follow a speci�c
probability law or be de�ned by a set of boundary shifts {ϵ1, ..., ϵN} (see Figure 2.38).
The new level-set functions are then written:

ϕi(x) = min
Sj∈Graph(Si)

(αij(x))− ϵi, (4.6)

In this case the global level-set function, given by Eq.(4.4), reaches zero at the interface
of the spread-cell structure and has also negative values outside the cells (i.e. in the new
formed area). Figure 4.9a shows the function ϕglob(x) de�ning a 3D semi-solid granular
structure with a solid fraction of 0.9 and Figure 4.9b illustrates the iso-zero of the global
level-set function de�ning a 3D closed-cell foam made of 105 cells with a cell irregularity
of 0.5 and a relative density of 0.215.

4.2.4 Spherical particles

In the same way, level-set functions de�ning the spherical particles, of center Si and
radius ri, can be calculated by writing:

ϕi(x) = ri − ||
−−→
SiX||. (4.7)

Figure 4.10 illustrate the global distance function of 243 discs generated by the POA and
the iso-zero of this function.

4.2.5 Laguerre tessellations and Open-cell foams

In the case of Laguerre tessellations, the graph's information is given by the weighted
Delaunay triangulation [115], dual of the Laguerre tessellation. In this section, we begin
by explaining the construction of a weighted Delaunay triangulation then we detail the
calculation of the level-set functions de�ning Laguerre cells and �nally we explain the
method used to generate three-dimensional open-cell foams.
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(a) (b)

Figure 4.9: (a) The global level-set function ϕglob(x) de�ning a 3D semi-solid granular
structure with a solid fraction of 0.9 generated using the LTM and the cell spreading
technique and (b) the global interface of a 3D closed-cell foam given by the iso-zero of

ϕglob(x)

4.2.5.1 The weighted Delaunay triangulation

The construction of the weighted Delaunay triangulation di�ers from that of the De-
launay triangulation only in the calculations of the circumscribed spheres (circumscribed
circles in 2D). Here, we recall this calculation in 3D (the 2D case is similar). Let S be a
set of Voronoï nuclei and W a set of positive scalars associated to S . By de�nition, the
circumscribed sphere of the tetrahedron whose vertices are the weighted points P1, P2,
P3 and P4, associated with the weights w1, w2, w3 and w4 is the sphere of center C and
radius R satisfying:

R2 =∥
−−→
P1C ∥2 −w2

1 =∥
−−→
P2C ∥2 −w2

2 =∥
−−→
P3C ∥2 −w2

3 =∥
−−→
P4C ∥2 −w2

4, (4.8)

where ∥ −−→
PiC ∥2 is the Euclidean distance between the point Pi and the center C. The

square of the radius R of the circumscribed sphere is called the power of the center C
to the points P1, P2, P3 and P4. The expression above means that the point C has the
same power to the vertices of the tetrahedron, and the circumscribed sphere is said empty
if the power of C to all the other weighted points of S is greater than or equal to R2.
Thus, among all the points of the space, the center C is the nearest point, in a weighted
measure, to the vertices Pi of the tetrahedron.



104 CHAPTER 4. LEVEL-SET APPROACH AND MESHING ADAPTATION

(a) (b)

Figure 4.10: (a) The global level-set function ϕglob(x) de�ning 243 discs and (b) the
global interface of the discs given by the iso-zero of ϕglob(x)

(a) (b)

Figure 4.11: (a) The global level-set function ϕglob(x) de�ning 306 Laguerre cells and (b)
the global interface of the cells given by the iso-zero of ϕglob(x) (in blue) and the weighted

Delaunay triangulation (in red)
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4.2.5.2 Laguerre tessellations

The level-set functions de�ning Laguerre cells are also given by Eq.(4.5) (withGraph(Si)
given by the weighted Delaunay triangulation) but the functions αij (see Eq.(4.2)) are
modi�ed as follows:

αij(x) =
1

2

(
∥
−−→
SiSj∥+

r2i − r2j

∥
−−→
SiSj∥

)
−

−−→
SiSj.

−−→
SiX

∥
−−→
SiSj∥

, 1 ≤ i, j ≤ N, j ̸= i, (4.9)

where ri and rj are respectively the radii of Si and Sj (see Figure 4.11).

4.2.5.3 Three-dimensional open-cell foams

The three-dimensional closed-cell foams are generated using the Laguerre method cou-
pled with cell spreading. The di�culty lies in removing the faces of the cells (or some
cells) to model open-cell foams. To this end, a level-set function that de�nes an open-cell
foam was developed. The idea is to force intersections between the spheres included in
the Laguerre cells and then computing the level-set function of these cells without the
intersection zone. Figure 4.12 represents a 2D case (for sake of clarity) where we forced
intersections between �ve discs.

The goal is to compute the level-set function of the blue domain Ωb. This domain
corresponds to the intersection between the complement of the union of the cells and the
complement of the union of the discs:

OC =
∪

i=1,...,5

Ci

∩ ∪
i=1,...,5

Si. (4.10)

Furthermore, if ϕclosed−cell and ϕspheres are the level-set functions of the Laguerre cells
and the spheres respectively, then −ϕclosed−cell and −ϕspheres are the level-set functions of∪

Ci and
∪

Si respectively. Finally, the level-set function of the open-cell foam can be
written as:

ϕopen−cell = min{−ϕclosed−cell,−ϕspheres} = −max{ϕclosed−cell, ϕspheres}. (4.11)

Figure 4.13 shows the same foam with closed-cells and open-cells where intersections
between the spheres included in the cells were generated. The technique of creating open-
cell foams is a step forward in modelling this type of microstructure but in the framework
of this thesis, we did not deal with the FE modelling concerning three-dimensional open-
cell foams.

4.3 Meshing adaptation

Until now, we have only discussed the immersing procedure of the considered mi-
crostructures in a FE mesh without dealing with the problem of mesh precision necessary
for obtaining microstructures such as the ones illustrated in Figures 4.9, 4.10 and 4.13.
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Figure 4.12: Representation of an open-cell foam in 2D where intersections between the
Laguerre cell generating discs were forced

Isotropic re�nement of the mesh can be used to reach a desired accuracy in the in-
terface description. However, this strategy leads to a signi�cant increase of computation
resources. Therefore, an adaptive anisotropic remeshing technique is preferred. Di�erent
ways exist to generate adapted anisotropic meshes. A common approach consists in using
an a posteriori error analysis in order to obtain an optimal mesh for a given physical
�eld and number of elements [116, 117]. However this approach could be inappropriate
in our case when an important number of level-set functions must be considered. Most
precisely, when some strictly disjoint objects are described by level-set functions, a simple
solution consists to adapt the mesh thanks to an a posteriori error estimator to the cor-
responding ϕglob function [117]. However, such an approach is not straightforward when
the di�erent objects considered are not strictly disjoint as for some microstructure con-
sidered in this work (polycrystal, powder). These remarks explain why we preferred to
deal with an automatic geometrical method for the generation of anisotropic mesh. The
following method was initially developed for the multiscale modelling of microstructure
evolutions in polycrystalline materials [15, 16, 56] and most recently adapted to the gen-
eration of granular semi-solid RVEs [17]. A brief recall of this method is described and
an optimization procedure is proposed.
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(a) Closed-cell foam (b) Open-cell foam

Figure 4.13: A three-dimensional foam

The idea of this method consists in �xing mesh re�nement in a narrow zone sur-
rounding the di�erent interfaces. Besides, the re�nement operates only in the direction
perpendicular to the interface, which leads to anisotropic meshes. This anisotropic (re-
)meshing method leads to a very high accuracy near the interfaces without increasing
dramatically the computation resources [118].

The generation of such meshes requires the de�nition of a metric �eld and the use
of a topological mesher. Anisotropic meshes are built using the MTC mesher-remesher
developed by Coupez [118]. It is based on local mesh topology optimizations and works for
all meshing applications from adaptive remeshing to mesh generation by using a minimal
volume principle. MTC improves the mesh topology by considering the quality of the
elements. The quality of an element is de�ned through a shape factor which takes into
account the considered metric [112]. A metric is a symmetric positive de�nite tensor
which represents a local base modifying the way to compute a distance, such that:

||u⃗||M =
√

tu⃗Mu⃗, < u⃗, v⃗ >M=
t u⃗Mv⃗. (4.12)

If M is the identity tensor, the distance corresponds to the usual one in the Euclidean
space. AsM is a symmetric positive de�nite tensor, it is diagonalizable in an orthonormal
basis of eigenvectors, and all the eigenvalues are strictly positive. The metric M can be
interpreted as a tensor whose eigenvalues are linked to the mesh sizes, and eigenvectors
de�ning the directions in which these mesh sizes are applied. Let us consider the simple
case of only one interface. The iso-zero of the level set function represents the boundary,
Γ, and the gradient of the level set function de�nes the normal to the boundary which
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corresponds to the direction of mesh re�nement. To de�ne the mesh size in that direction,
and its distribution in space, a characteristic thickness E is introduced:{

|ϕ(x)| ≤ E
2

near the interface

|ϕ(x)| > E
2

far from the interface
(4.13)

The mesh size takes a default value far from the interface, and is reduced in the
perpendicular direction to the interface when |ϕ(x)| is reduced. Let h2 be the desired
re�ned mesh size in the direction of ∇ϕ, and h1 the desired mesh size in the perpendicular
directions to ∇ϕ. Let us �nally require an isotropic mesh size equal to h0 outside the
anisotropic boundary layer. The corresponding metric M is then expressed as follows:

M = C(∇ϕ⊗∇ϕ) +BI, (4.14)

with I the identity matrix, B and C scalars given by:

B =

{
1
h2
0

if |ϕ(x)| > E
2

1
h2
1

if |ϕ(x)| ≤ E
2

, C =

{
0 if |ϕ(x)| > E

2
1
h2
2
− 1

h2
1

if |ϕ(x)| ≤ E
2

(4.15)

The eigenvalues of the metric near the boundary (|ϕ(x)| ≤ E
2
) are λ2 = (1/h2

2 −
1/h2

1)||∇ϕ|| + 1/h2
1 = 1/h2

2 , and λ1 = λ3 = 1/h2
1. The former is associated to the

eigenvector v2 = ∇ϕ, and the latter to the basis vectors (v1,v3) of the plane tangent to the
boundary. Moreover, this metric is well equal to 1

h2
0
I far from the boundary (|ϕ(x)| > E

2
)

which corresponds to imposing an isotropic mesh size equal to h0 in this zone. Clearly, if
h2 is chosen much smaller than h1, which is chosen equal to h0, ∇ϕ corresponds to the
re�nement direction and the elements are only stretched in the tangent plane near the
interface.

It could be also underlined that working with less (resp. more) anisotropic mesh
near the interface corresponds to taking a value of h2 less close (resp. closer) to h1.
Furthermore, de�ning h2 as a function of ϕ and not as a constant enables to obtain
a progressive anisotropic re�nement rather than a rough anisotropic re�nement. When
dealing with strictly separated cells (for example solid grains in a semi-solid granular
structure in [17]), the above technique can be used by considering the global following
distance function ϕglob(x). However, when contacts exist between the di�erent cells (as
for a polycrystal RVE or a powder RVE), this technique can no longer be used. Indeed,
the gradient of the function ϕglob(x) then becomes locally discontinuous and the normal to
the interfaces is not properly de�ned. To solve this di�culty, multiple level set functions
are used (one for each cell) to characterize the appropriate re�nement directions and the
corresponding metric. Two cases can be considered:

(A) |ϕi(x)| > E
2

for 1 ≤ i ≤ Nc, where Nc is the number of cells, which means that
x lies far from any cell interface. These points correspond to the isotropic regions with
mesh size h0.

(B) |ϕi(x)| ≤ E
2

for n cells, n ≤ Nc. The n vectors ∇ϕi along which re�nement is
required de�ne a vector space V of dimension 1, 2, or 3.
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In case (B), ifV is one-dimensional, there is only one direction of mesh re�nement and
the metric takes the form given by Eqs. (4.14) and (4.15). When V is three-dimensional,
an isotropic metric is chosen, this time with the reduced mesh size h2. When V is
two-dimensional, the required re�nement is obtained with the following metric:

M = C(∇ϕ1 ⊗∇ϕ1) + C(−→w ⊗−→w ) +BI, (4.16)

with −→w such as (∇ϕ1,
−→w ) corresponds to an orthonormal basis of V. The metric (4.16)

prescribes, in the anisotropic zone, a mesh size h2 in the plane V, and a mesh size h1

in the direction normal to V (which implies an isotropic mesh of mesh size equal to h2

near the interface in 2D context). Figure 4.14 illustrates a result obtained for a 2D case
in a unit square made of 64 Laguerre cells. The anisotropic mesh adaptation was realized
at the cells interfaces with the following parameters: h1 = h0 = 0.01, h2 = 2.10−4 and
E = 3.10−3. The anisotropic mesh, made of 30687 elements, was obtained in 92 seconds
in a four processors parallel calculation. The zoom in Figure 4.14b illustrates the good
meshing adaptation obtained at a triple junction with �ne isotropic elements as required
by the number of independent re�nement directions in this zone.

(a) (b)

Figure 4.14: (a) Anisotropic meshing adaptation for an equiaxial polycrystal and (b)
zoom at a triple junction

If this approach is e�cient and allows obtaining easily appropriate meshing adaptation
for complex RVEs, its principal weakness remains its numerical cost particularly in 3D. A
�rst waste of computational resources can be identi�ed in the fact to work with one level-
set per cell. Indeed, on the majority of the RVEs considered, the microstructure is built to
represent only two phases as for granular semi-solids, foams obtained by spreading Voronoï
tessellation but also for powders. Even for the recrystallization modelling in polycrystal
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RVEs, a global velocity depending of local characteristics can be de�ned without the
knowledge of individual grains [15, 56]. Finally, in all these cases, knowing the individual
level-set function of each cell is not a necessity to perform numerical modelling. Moreover,
the important point for the meshing strategy proposed is not inevitably to know all the
level-set functions but to deal with a set of level-set functions representing sets of strictly
disjoints cells and which the gathering corresponds to the whole microstructure considered.
The simple method proposed here, to limit the number of requisite level-set functions for
meshing adaptation, is to use the classical technique of graph coloration [113]. The idea is
to colour the vertices of a graph such that no two adjacent vertices share the same colour
with a minimal number of colours. Graph colouring is a very active �eld of research and
some results of this domain are famous such as the four colour theorem [119]. The idea
developed in this work is to use a simple graph coloration algorithm of the Delaunay
(or weighted Delaunay) triangulation calculated in our algorithm of generation of RVEs
to gather all the level-set functions of the cells involved in few new level-set functions
presenting the properties to correspond to a set of strictly disjointed cells and so, usable
for the meshing strategy described previously.

Although quite old, the DSATUR coloration algorithm [120] remains an interesting
choice of coloration method in term of ratio "computational cost/number of colours ob-
tained". This algorithm, described below along with some examples, was added to our
RVE builder:

DSAT.1 Construct the graph of each site (Voronoï nucleus or spherical particle's center)
using the Delaunay triangulation (or weighted Delaunay triangulation).

DSAT.2 Initiate all the vertices of the triangulation as uncolored and their degree of
saturation as the number of neighbors. The degree of saturation of a vertex v,
Dsat(v), is the number of colored neighbors.

DSAT.3 While uncolored vertices still exist, do:

(a) Find the vertex v with the maximal Dsat(v).

(b) If none of the neighbors of v have been colored with a color c that already
exists, assign c as the color of v. Else, de�ne a new color and assign it to v.

(c) Calculate the degree of saturation of the neighbors of v.

DSAT.4 End while.

The DSATUR algorithm enabled us to decrease the number of level-set functions from
Nc, the number of cells, to Nco, the number of colors, by computing the global level-set
functions (i.e. the maximum) of all the cells associated to the same color instead of having
one level-set per cell. A comparison of computational costs was done on a 2D equiaxial
polycristal made of 356 grains. When the DSATUR algorithm was used, �ve level-set
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functions were used to construct an anisotropic mesh made of 302110 nodes and 602505
elements in 16 minutes and 43 seconds using 8 processors. When the DSATUR algorithm
was not used, 356 level-set functions were used (one level-set for each grain) to construct
an anisotropic mesh made of 306501 nodes and 611298 elements in 1 hour 3 minutes and
40 seconds using the same number of processors. Four �gures illustrate the e�ciency of
our algorithm. The case of Figure 4.15a corresponds to a 2D equiaxial polycristal made
of 2000 grains, and represented using �ve level-set functions obtained with the DSATUR
algorithm (one colour per level-set function). The zoom in Figure 4.15b, illustrates the
anisotropic meshing adaptation obtained thanks to the metric de�ned by Eqs.(4.15) and
(4.16) and calculated with the �ve level-set functions. The mesh is made of 919955 nodes
and 1836561 elements and was generated in 26 minutes using eight processors. Figure 4.16
represents a powder RVE containing 554 discs generated using the POA represented by
�ve colors (i.e. �ve level-set functions) and a zoom at the anisotropic mesh made of 905895
nodes and 1809190 elements and constructed in 55 minutes using 4 processors. Figure 4.17
illustrates the same strategy applied to a 3D powder RVE made of 585 spheres, described
thanks to eight level-set functions. The mesh is made of 2594907 nodes and 15223519
elements and was generated in 4 hours and 26 minutes using 16 processors. And the
�nal one, Figure 4.18, illustrates a three-dimensional tetrakaidecahedral closed-cell foam
made of 250 cells, generated using the Laguerre tessellations method and represented by
eight level-set functions. The anisotropic mesh in this case is made of 768326 nodes and
4331151 elements and generated in 2 hours and 37 minutes using 16 processors.

Another important discussion concerns the computation times required to generate,
immerse and remesh the considered microstructures. In this section, the computation
times, mentioned above, were reported for a number of cells or spherical particles which
can be used when performing a speci�c mechanical application in 2D or 3D. Given the
fact that the particle generation phases (IPM and POA or GOA) and the construction
of the (weighted) Delaunay triangulation were not parallelized unlike the immersion and
remeshing, the computation times are quite acceptable in 2D and 3D. Furthermore, the
parallelization of the generation methods and also of the construction of the Delaunay
triangulation are two important perspectives of this work.

4.4 Conclusion

All the microstructures generated in this work were de�ned using level-set functions.
This chapter detailed the de�nition of these functions and the mesh adaptation methods.

We began by detailing the level-set approach used in [15] for de�ning Voronoï tes-
sellations. Then, the computing time to calculate the level-set functions used to de�ne
Voronoï cells was reduced by introducing the Delaunay triangulation to the algorithm de-
veloped in [15]. Afterwards, this method was extended to generate Laguerre tessellations.
The use of level-set functions for de�ning spread cells and spherical particles was also ex-
plained. Furthermore, level-set functions de�ning three-dimensional open-cell foams were
developed.
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(a) (b)

Figure 4.15: (a) A 2000 equixial polycristal RVE made of Laguerre cells, described using
�ve level-set functions (one color per level-set function) and (b) a zoom illustrating

anisotropic meshing at the interfaces of the Laguerre cells

Concerning mesh adaptation and after a general overview of the existing methods
in CimLib, the DSATUR, a graph coloring algorithm, was used to limit the number of
requisite level-set functions used in remeshing. This algorithm reduced the remeshing
computational times.

This chapter concluded the part of microstructure generation in this manuscript. All
the algorithms and methods detailed to this point were added to CimLib but certain
limitations still exist. The use of IPM should be parallelized in order to improve the
spherical particles generation times. Also, �ber and ellipsoid packings should be added
to this builder in order to pave the way for modelling elongated cells.

4.5 Résumé français

Ce chapitre a été consacré à la description de la méthode d'immersion des microstruc-
tures virtuelles, construites dans les chapitres précédents, dans un maillage éléments �nis.
Cette approche est basée sur un formalisme level-set, l'application de lois de mélanges et
une technique d'adaptation de maillage.

Dans la première partie de ce chapitre, nous avons détaillé le calcul des fonctions
level-set permettant de dé�nir des cellules de Voronoï, méthode introduit par Bernacki
[15]. Les temps de calcul de cette méthode ont été améliorés par l'introduction de la
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(a) (b)

Figure 4.16: (a) A powder RVE made of 554 discs obtained by the POA described by �ve
level-set functions thanks to the graph coloration algorithm (one color per level-set

function) and (b) the �nite element mesh in a zoom of the microstructure

triangulation de Delaunay, dual du diagramme de Voronoï. Cette triangulation fournit le
graphe de chaque site de Voronoï Si qui est l'ensemble des sites {Sj, j ̸= i} qui partage
une même arête de la triangulation de Delaunay avec Si. L'information du graphe permet
de simpli�er la façon de calculer les fonctions level-set en réduisant donc les temps de
calculs nécessaires. Ensuite, cette méthode a été étendue pour dé�nir des cellules de
Laguerre. Le calcul des fonctions level-set permettant également d'immerger des cellules
polyédriques avec présence d'une seconde phase et des particules sphériques a été détaillé.
En�n une technique level-set permettant de dé�nir des mousses à cellules ouvertes est
également décrite.

Dans la deuxième partie, les di�érentes méthodes de remaillage existantes dans CimLib
ont été détaillées. Toutes ces méthodes sont basées sur la notion de construction de
métriques qui modi�ent la façon de calculer les longueurs dans l'espace. A leur tour ces
métriques sont utilisées dans MTC, un mailleur topologique interfacée à CimLib. Ensuite,
une nouvelle méthode de calcul de métriques, adaptée aux microstructures considérées
dans ce travail de thèse, est détaillée, illustrée et vaildée.



(a)

(b)

Figure 4.17: (a) A poly-dispersed powder RVE made of 585 spheres, described using
eight level-set functions and (b) a zoom on 2 cutting planes illustrating meshing at the

interfaces of the spherical particles
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(a)

(b)

Figure 4.18: (a) A 3D tetrakaidecahedral foam microstructure made of 250 cells,
generated using the LTM and described by eight levet-set functions and (b) the mesh on

three orthogonal cross sections
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5.1 Introduction

As it was mentioned, the mechanical applications or �nite element calculations in this
thesis are elastic foam compression and permeability computation of unidirectional disor-
dered �ber arrays.

In what concerns foam properties and compression, analytical or numerical calcu-
lations have been performed on idealized microstructures constructed from a repeating
unit cell. Structural mechanics have been applied to open-cell foams schematized either
by a regular tetrahedral arrangement of beams [61, 62] or by a regular arrangement of
tetrakaidecahedral cells [63, 64] or by the Kelvin cell model [121, 122]. In the case of
closed-cell structures, �nite element calculations on tetrakaidecahedral unit cell have also
been derived [65, 123]. All these approaches lead to similar scaling laws for modulus or
strength. They give quite fair estimations of modulus and strength though discrepancies
are observed with experimental values. These discrepancies can be attributed to the fact
that the perfectly ordered and symmetric microstructures are clearly an oversimpli�ca-
tion to the actual perturbed architecture observed in the materials [121]. Modelling foams
using X-ray computed tomography can be an answer to reproduce the real microstruc-
ture and use it in FE simulations as in [124, 125] where it was used to model polymeric
open-cell foams. In these works, the reconstructed data was segmented and automatically
converted into a tetrahedron based FE model and also 2D FE models were constructed
by taking random slices of the 3D models. Uniaxial compression was performed on the
constructed FE models and the typical deformation mechanisms such as bending and
buckling were present in both experiments and FE results. Another possible solution,
when real images are not used, is the introduction of di�erent kinds of imperfections or
defects to the constructed microstructure to try to explain the experimental discrepancies.
In this context, Zhu and coworkers studied the e�ect of cell irregularity on the high strain
compression and elastic properties of 2D Voronoï honeycombs [7, 12] and open-cell foams
[11, 13]. They concluded that, for both kinds of foams, a more irregular foam has a higher
tangential modulus at low strain but supports a lower compressive stress at higher strain
when compared with a more regular one, and the more irregular the random foams, the
larger will be their e�ective Young's modulus and shear modulus, and the smaller will
be their bulk modulus. Li et al. studied the e�ects of cell shape and cell wall thickness
variations on the elastic properties of two-dimensional cellular solids [32] and open-cell
foams [9]. Their simulations indicate that the Young's and shear moduli increase as cell
shapes become more irregular (as also described in [11, 12]), but decrease as cell wall
thickness gets less uniform. The e�ects of cell irregularity, relative density and the shape
of the strut cross section on the high strain compression of open-cell foams were studied
in [126]. The cell irregularity was found to have a similar e�ect that the one described in
[13] and the strut cross-section and relative density were found to have great e�ects on
the compressive strength of open-cell foam.

In the above-cited cases the presence of the air inside the foam's cells was never taken
into account though its presence may a�ect the foam's behavior. We intend to study
the e�ect of cell irregularity on the strain compression of Voronoï honeycombs while
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considering the existence of air inside the cells. By taking the air's presence into account,
the foam compression becomes a Fluid Structure Interaction (FSI) problem between the
air and the foam's solid skeleton. During the FSI, the pressure and the viscous stress
of the �uid act on the solid boundary and lead to structural deformations, which in
turn a�ect the �uid's behavior and consequently the velocity, pressure and viscous stress
of the �uid. Thus the response of the system can only be determined if the coupled
problem is solved. In the standard approach for simulating FSI problems, the solid's
equations are solved for the displacement while the �uid's equations provide the velocity
and pressure. We begin by writing the momentum and continuity equations and then,
by using the behavior laws of both the �uid and solid and using speci�c mixture laws
the �nal FSI system is obtained. This system is governed by the Stokes equations (when
the gravity and inertia e�ects are neglected) with an extra stress tensor coming from the
presence of the structure in the �uid. These equations are solved by a mixed �nite element
method with a P1+/P1 interpolation, and a Lagrangian framework is used in order to
simulate foam compression. In this case, each node remains in coincidence with the same
phase throughout the whole deformation process. In particular, the nodes located at the
interface of the solid skeleton remains on its boundary during the whole simulation and
hence, tracking a moving interface does not present major di�culties. Since the air's
pressure increases rapidly during compression, reaching high compressive strains presents
major di�culties because the cells tend to explode and their solid skeleton tends to fracture
at high strain rates, especially for irregular foams, and we did not deal with such cases in
this work.

In the case of ordered �ber arrays, several analytical relations have been established to
predict the permeability of �brous media [80, 82, 83]. All of these studies consider simple
geometries, such as square or triangular packing of unidirectional arrays of cylinders and
the analytical relations are only a function of the porosity, ϕ which is the �uid's volume
in the domain. However, in the case of disordered �ber arrays, the use of porosity alone
cannot de�ne their permeability. Other microstructural parameters should be taken into
account. Chen and Papathanasiou [8, 20] studied the e�ect of the mean nearest inter-�ber
spacing, denoted δ1, on both the transverse and longitudinal permeabilities. They found
that the latter decreases on all porosity levels and the former increases on porosity levels
ranging from 0.45 to 0.7 and decreases above these levels when δ1 increases. Moreover,
δ1 is related to the degree of disorder of the �ber arrays. This degree increases when δ1
decreases. In our case, when the inter-�ber spacing is chosen according to a Gaussian
distribution law, the standard deviation of this law, σ, (see section 2.4.3) is proportional
to the degree of disorder of the �ber array. We intend to study the e�ect of σ on the
transverse and longitudinal permeabilities.

In our permeability computation application, the �bers are considered as rigid discs
and the Stokes equations are solved on the RVE by an immersed domain method [55, 59].
This approach can rather be seen as an extension of the Stokes problem with two �uids,
for which the solid behavior of one phase is imposed by using the viscosity as a penalty
factor. The rigidity of the solid part is taken in account with a high viscosity value, which
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acts as a penalty coe�cient. Using this approach, a zero velocity boundary condition
imposed on the solid's interface is propagated into the entire solid domain. Also, a mixed
�nite element method with a P1+/P1 interpolation is used to solve the Stokes equations.
Afterwards, homogenization techniques, mainely volume averaging [86], are used to get
Darcy's law.

After this introduction, this chapter contains two major sections. Section 5.2 details
the foam compression application where we begin by writing the governing equations and
�nite element formulation. Afterwards, the e�ects of the air and the cell irregularity on
the stress are studied and the compression of an irregular three-dimensional closed-cell
foam is simulated. Section 5.3 details the permeability computation of disordered �ber
arrays. Also, we begin by the governing equations and the �nite element formulation
till reaching Darcy's law. Furthermore, the capability of our microstructure generator to
generate completely random �ber arrays is shown using Ripley's Kr function. Then, a
study of the e�ect of disorder on the permeability is performed. Moreover, a search for
the RVE's size is done for both applications before performing the pre-mentioned studies.

5.2 Elastic foam compression

Before detailing the simulations performed, we will explain the governing equations and
the FE formulation of our FSI problem.

5.2.1 Governing equations

The mechanical problem is governed by the momentum equation, in which gravity and
inertia e�ects are neglected, and by the continuity equation:

∇.σ = 0, (5.1)

∂ρ

∂t
+∇.(ρv) = 0, (5.2)

where σ is the stress tensor, ρ is the density and v is the velocity.
The aforementioned partial di�erential equations are valid for both solids and �uids.

The di�erence lies in the constitutive relation for the stress tensor. In �uids, it is expressed
in terms of the strain rate tensor (i.e. velocities) and pressure, while in solids it is a
function of the strain tensor (i.e. displacements). More speci�cally, for a linear, viscous
(or Newtonian) �uid, the stress tensor σf is given by:

σf = 2ηfϵ(v)−
(
2

3
ηf∇.v + p

)
I, (5.3)

where ηf is the laminar viscosity of the �uid, p is the pressure, I is the identity matrix
and ϵ(v) is the strain rate tensor de�ned by:
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ϵ(v) =
1

2

(
∇v +∇vT

)
, (5.4)

where ∇vT is the transpose of the velocity's gradient ∇v. For an incompressible �ow,
which is not the case in this application because the air is a weakly compressible �uid,
∇.v = 0 and the second term on the right hand side of Eq.(5.3) will contain only the
pressure. By writing Eq.(5.3) with a modi�ed pressure p′ = p+ 2

3
ηf∇.v and replacing σf

in Eq.(5.1), we get:

2ηf∇. (ϵ(v))−∇p′ = 0. (5.5)

For a linear, elastic solid, the stress tensor σs is given by the generalized Hooke's law:

σs = 2µϵ(u) + λtr(ϵ(u))I, (5.6)

where µ and λ are the two Lamé coe�cients, u is the displacement, ϵ(u) is the strain
tensor and tr(.) is the trace operator where tr(ϵ(u)) = ∇.u. The Lamé coe�cients are
related to the Young's modulus (E) and the Poisson ratio (ν) by the following expressions:

λ = νE
(1+ν)(1−2ν)

,

µ = E
2(1+ν)

.
(5.7)

Eq.(5.6) is not general as it cannot be used for incompressible solids for which ν = 0.5.
The reason is that the Lamé coe�cient λ tends to in�nity and tr(ϵ(u)) is null so their
product is indeterminable. Although, the foam's solid skeleton is compressible, writing
a general form of this equation is preferred. Hence, the pressure is treated as a separate
unknown variable. In solid mechanics, pressure is de�ned as

p = −tr(σs)

3
, (5.8)

where the sign convention corresponds to the positive stress in compression. The bulk
modulus K is related to the Lamé coe�cients by:

K =
2

3
µ+ λ. (5.9)

Using the two previous relations, we can easily show that the pressure can be written as:

p = −Ktr(ϵ(u)). (5.10)

Moreover, the bulk modulus is de�ned by [76],

K = −V
dp

dV
= ρ

dp

dρ
, (5.11)

where V is the �uid's volume. Using Eqs.(5.9) and (5.10) the following relation can be
written:
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λ.tr(ϵ(u)) = −
(
p+

2

3
µtr(ϵ(u))

)
. (5.12)

This relation is used in Eq.(5.6) which introduces the pressure to the solid's constitutive
equation:

σs = 2µϵ(u)−
(
2

3
µtr(ϵ(u)) + p

)
I. (5.13)

By writing Eq.(5.13) with a modi�ed pressure p′ = p+ 2
3
µ∇.u and replacing σs in Eq.(5.1),

we get:

2µ∇. (ϵ(u))−∇p′ = 0. (5.14)

The additional unknown (pressure) is obtained by rearranging Eq.(5.10):

∇.u+
1

K
p = 0. (5.15)

Eq.(5.14) is supplemented by Eq.(5.15) as well as the relationship between displacements
and solid velocities and hence, a system of equations is obtained for the solid:

2µ∇. (ϵ(u))−∇p′ = 0 (a)

du
dt

= v (b)

∇.u+ 1
K

(
p′ − 2

3
µ∇.u

)
= 0 (c)

(5.16)

The corresponding system for a weakly compressible �uid is:
2ηf∇. (ϵ(v))−∇p′ = 0 (a)

∇.v + 1
K

dp′

dt
= 0 (b)

(5.17)

where the de�nition of the bulk modulus of the �uid K (i.e. Eq.(5.11)) was used in
Eq.(5.2) in order to write the second equation of the �uid's system.

Also by using the de�nition of the bulk modulus K, and the fact that the air is an
ideal gas, which means that PV is a constant is isothermal conditions, Eq.(5.17(b)) can
be written as:

∇.v +
1

p′
dp′

dt
= 0. (5.18)

A velocity-pressure formulation should be written for the solid in order to solve a
coupled FSI problem. The displacement is linked to the velocity by Eq.(5.16(b)) and
since a Lagrangian framework is used, this equation could be written as:

ut = ut−∆t + vt∆t. (5.19)
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Using this expression for the displacement in the solid's system of equations (5.16), this
system could be written as:

2µ∆t∇. (ϵ(vt))−∇p′t = −2µ∇.
(
ϵ(ut−∆t)

)
(a)

∇.vt + 1
K− 2

3
µ

dp′t

dt
= 0 (b)

(5.20)

The expression−2µϵ(ut−∆t) of the right-hand side of Eq.(5.20(a)) is the extra-stress tensor
in the governing Stokes equations. Eq.(5.20(b)) is obtained by rearranging Eq.(5.16(c))
to the form:

∇.u = − 1

K − 2
3
µ
p′ (5.21)

Then replacing ∇.ut and ∇.ut−∆t by − 1
K− 2

3
µ
p′t and − 1

K− 2
3
µ
p′t−∆t respectively in:

∇.ut = ∇.ut−∆t +∇.vt∆t. (5.22)

Moreover, using the expression of the bulk modulus K in Eq.(5.9), Eq.(5.20(b)) could be
written as:

∇.vt +
1

λ

dp′t

dt
= 0 (5.23)

Finally, the governing equations for the FSI problem are:
for the �uid 

2ηf∇. (ϵ(vt))−∇p′t = 0

∇.vt + 1
p′t

dp′t

dt
= 0

(5.24)

for the solid 
2µ∆t∇. (ϵ(vt))−∇p′t = −2µ∇.

(
ϵ(ut−∆t)

)
∇.vt + 1

λ
dp′t

dt
= 0

(5.25)

5.2.2 Numerical approach

Since we have two phases, solid and �uid, the computational domain Ω is decomposed
into two subdomains, Ωf and Ωs, designating respectively the �uid domain and the solid
domain which is described by a level-set function α. The location of the air is given
by the positive values of α whereas Ωs corresponds to the negative values of α. Once
calculated, the level-set allows us to de�ne a presence function of the subdomain Ωi. A
smoothed Heaviside function H(α) is used in this work, where a thickness e is �xed near
the interface in order to prevent a discontinuous transition in this region. The value of e
is chosen accordingly to the mesh size. The function H(α) is de�ned as:
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H(α) =


0 if α < −e

1
2

(
1 + α

2

)
if |α| ≤ e

1 if α > e

(5.26)

Furthermore, the objective being to calculate the physical properties on the entire
geometry Ω, mixing laws [55] are introduced and anisotropic adaptive meshing is used.
These laws are de�ned as functions of the level-set. For variables Θ, such as the viscosity
and the compressibility coe�cient, a linear mixing rule is applied at the neighborhood of
the interface between the two subdomains Ωs and Ωf :

Θ = H(α)Θf + (1−H(α))Θs. (5.27)

We used the mixing rules to mix the physical properties of the solid and �uid (see Figure
5.1) by writing:

Ψ = H(α)ηf + (1−H(α))µ∆t, (5.28)

τ = H(α)0 + (1−H(α))µ, (5.29)

and

χ = H(α)
1

p′
+ (1−H(α))

1

λ
, (5.30)

which gives us the �nal system of our FSI problem where, for sake of clarity, p′t is denoted
p and vt is denoted v: 

2Ψ∇. (ϵ(v))−∇p = −2τ∇.
(
ϵ(ut−∆t)

)
∇.v + χdp

dt
= 0

(5.31)

This system of equations is solved using a mixed FEM that we are going to detail in the
next section.

5.2.3 The �nite element formulation

First, let us de�ne the function spaces used in the remainder of this chapter. The
scalar function space for the pressure Q = L2(Ω), the function space for the velocity
V = (H1(Ω))d and the weighting function space V0 = (H1

0(Ω))
d, where d is the space

dimension, L2(Ω) is the Lebesgue space of square assumable functions on Ω and H1(Ω)
is the Sobolev space included in L2(Ω), are respectively de�ned by:
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Figure 5.1: Mixing the air's viscosity ηf with µ∆t


L2(Ω) =

{
q/
∫
Ω
q2dΩ < ∞

}
H1(Ω) = {u ∈ L2(Ω)/ ∇u ∈ L2(Ω)}

H1
0(Ω) = {u ∈ H1(Ω)/ u = 0 on ∂Ω)}

Moreover, let (., .)Ω denote the dot product in L2(Ω) de�ned as:

(u, v)Ω =

∫
Ω

u(x)v(x)dΩ. (5.32)

5.2.3.1 Classical mixed formulation

The �nite element formulation begins by writing the weak form of the compressible
Stokes equations (5.31). The problem consists in �nding (v, p) ∈ V×Q such that ∀(w, q) ∈
V0 ×Q: 

2Ψ (ϵ(v) : ϵ(w))Ω − (p,∇.w)Ω = −2τ
(
ϵ(ut−∆t) : ϵ(w)

)
Ω

− (∇.v, q)Ω −
(

χ
∆t
pt, q

)
Ω
= −

(
χ
∆t
pt−∆t, q

)
Ω

(5.33)

The Galerkin approximation consists in decomposing our domain Ω into Nel simplices
T such that they cover the domain and they are either disjoint or share a complete edge.
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The triangulation will be denoted Th. Using this partition, the above-de�ned functional
spaces are approached by �nite dimensional spaces, used in the remainder of this chapter,
spanned by continuous piecewise polynomials such that:

Qh = {qh ∈ C0(Ω)/ qh|T ∈ P 1(T ), ∀T ∈ Th}

Vh = {vh ∈ (C0(Ω))d/ vh|T ∈ (P 1(T ))d, ∀T ∈ Th}

Vh,0 = {vh ∈ Vh/ vh|Γ = 0}

where P 1(T ) is the vector space of �rst degree polynomials de�ned on the simplex T .
The Galerkin discrete problem consists now in solving the mixed problem by �nding

the pair (vh, ph) ∈ Vh ×Qh such that ∀(wh, qh) ∈ Vh,0 ×Qh:


2Ψ (ϵ(vh) : ϵ(wh))Ω − (ph,∇.wh)Ω = −2τ

(
ϵ(uh

t−∆t) : ϵ(wh)
)
Ω

− (∇.vh, qh)Ω −
(

χ
∆t
pth, qh

)
Ω
= −

(
χ
∆t
pt−∆t
h , qh

)
Ω

(5.34)

It is known that the �nite element approximation (5.34) may fail because of the inf-sup
condition (Brezzi-Babuska) which requires an appropriate pair of function spaces for the
velocity and the pressure [127]. In the present work, we aim to retain the advantages of
using linear approximations (P1 �nite elements) regarding the accuracy and the compu-
tational cost. But it is well know that the combination of P1/P1 approximation for the
velocity and the pressure does not lead to a stable discretization of system (5.34) since it
fails to satisfy the inf-sup condition:

inf
qh∈Qh

sup
vh∈Vh

(∇.vh, qh)Ω
∥qh∥0∥vh∥1

≥ β ≥ 0, (5.35)

where β is a constant independent of h, ∥.∥0 and ∥.∥1 are the norms of L2(Ω) and H1(Ω)
respectively.

5.2.3.2 Stable mixed formulation

A very popular method was proposed by Arnold, Brezzi and Fortin [128] for the Stokes
problem to respect the velocity-pressure compatibility condition. It was suggested to
enrich Vh with the space of bubble functions known as Mini-element or P1 + /P1 (see
Figure 5.2) denoted V b:

V b = {vb/vb|Ti
∈ P 1(Ti) ∩H1

0(Ti), ∀T ∈ Th, i = 1, ..., D}, (5.36)

where D is the topological dimension and Ti is a decomposition of T in D sub-simplices,
that have as a common vertex the barycenter, GT , of T . In other words, the choice of this
bubble function is continuous inside the element, considered as linear on each sub-simplex
and vanishes at the boundary of T .
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Figure 5.2: The MINI-element P1 + /P1

The velocity �eld is now an element of the function space generated by the following direct
sum:

Vh = Vh ⊕ V b. (5.37)

Hence, on each element T , the solution takes the form:

vh|T =
D∑
i

viTNi + vbT bT , (5.38)

where Ni is the interpolation function associated with node i. The bubble function bT
is de�ned on each element T as follows: bT = 0 on ∂T ; bT (GT ) = 1, Furthermore, bT
satis�es the orthogonality condition:∫

T

∂xk
Ni ∂xl

bTdΩ = 0 ∀(k, l, Ni) ∈ [0, d− 1]2 × P 1(T ). (5.39)

The mixed-�nite element approximation of problem (5.34) consists now in �nding the pair
(v, ph) ∈ Vh ×Qh such that ∀(w, qh) ∈ Vh,0 ×Qh:

2Ψ (ϵ(v) : ϵ(w))Ω − (ph,∇.w)Ω = −2τ
(
ϵ(ut−∆t) : ϵ(w)

)
Ω

− (∇.v, qh)Ω −
(

χ
∆t
pth, qh

)
Ω
= −

(
χ
∆t
pt−∆t
h , qh

)
Ω

(5.40)
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Since the �ne-scale problem is independent and uncoupled at the element level and van-
ishes on the element boundaries, the system (5.40) can be decomposed into:


2Ψ (ϵ(vh) : ϵ(wh))Ω − (ph,∇.wh)Ω = −2τ

(
ϵ(uh

t−∆t) : ϵ(wh)
)
Ω

2Ψ
(
ϵ(vb) : ϵ(wb)

)
Ω
−
(
ph,∇.wb

)
Ω
= −2τ

(
ϵ(ubt−∆t

) : ϵ(wb)
)
Ω

− (∇.vh, qh)Ω −
(
∇.vb, qh

)
Ω
−
(

χ
∆t
pth, qh

)
Ω
= −

(
χ
∆t
pt−∆t
h , qh

)
Ω

(5.41)

As the �ne-scale space is assumed to be orthogonal to the �nite element space, the crossed
viscous terms in the equations of (5.41) vanished [129].

5.2.3.3 Matrix formulation

The equations of system (5.41) give rise to the following global system to solve: Aww 0 At
wq

0 Abb At
bq

Awq Abq Aqq

 vh

vb

ph

 =

 Bw

Bwb

Bq

 , (5.42)

where,

Aww(vh) = 2Ψ (ϵ(vh) : ϵ(wh))Ω , Abb(v
b) = 2Ψ

(
ϵ(vb) : ϵ(wb)

)
Ω

,

Awq(vh) = − (∇.vh, qh)Ω , Abq(v
b) = −

(
∇.vb, qh

)
Ω

,

At
wq(ph) = − (ph,∇.wh)Ω , At

bq(ph) = −
(
ph,∇.wb

)
Ω

,

Aqq(ph) = −
(

χ
∆t
ph, qh

)
Ω

, Bw = −2τ
(
ϵ(uh

t−∆t) : ϵ(wb)
)
Ω

,

Bwb = −2τ
(
ϵ(ubt−∆t

) : ϵ(wh)
)
Ω

, Bq = −
(

χ
∆t
pt−∆t
h , qh

)
Ω

.

(5.43)

The static condensation process consists in solving the second line for the bubble function
vb and inserting the result into the third line of (5.42) which yields the condensed matrix
scheme for large-scale unknowns vh and ph:(

Aww At
wq

Awq Ãqq

)(
vh

ph

)
=

(
Bw

B̃q

)
, (5.44)

where,

Ãqq = Aqq − Abq.A
−1
bb .A

t
bq ,

B̃q = Bq − Abq.A
−1
bb .Bwb .

(5.45)
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It is clear that taking into account locally the in�uence of �ne scales (bubble functions)
upon the resolved large scales has introduced new stabilizing terms and has modi�ed the
components of the global matrix. The new operator Ãqq provides a so-called pressure
stabilization while the new right hand side B̃q ensures consistency [55].

It is important to underline that the formalism and the simulations presented in this
thesis correspond to a �rst prospective work and that some simpli�cations have been taken
into account mainly concerning the foam behaviour. Indeed, in the considered Lagrangian
framework, the elastic behaviour assumption concerning the foam remains acceptable only
when a very little time step is used. Current work, to overcome this di�culty, consists to
extend our approach in an Eulerian framework.

5.2.4 Simulations and discussions

The solid skeleton was prescribed to be of equal and uniform thickness. This thickness,
manipulated using the cell spreading technique (see section 2.4.1), controls the foam's
relative density, ρ, which was maintained at approximately 0.1 in this work. The Young's
modulus of the solid, E, was set to 100 MPa and its Poisson's ratio was set to 0.3.

In order to be symmetric, biaxial compression was simulated for all cases by imposing
displacements on the domain's upper and lower boundaries. Symmetrical boundary con-
ditions were imposed on the domain's left and right boundaries by writing v.n = 0, where
n is the outwards normal vector of each boundary. Depending on the foam's irregularity
γ (see section 2.4.2), strains ranging from 0.15 to 0.3 were achieved using our approach.
Furthermore, the following reduced stress [7, 13] was used:

σ =
σ

Eρ3
. (5.46)

The stress, in the compression direction, is calculated as the mean of the values on the
simplices of an elementary volume. Because the solid material is assumed to be elastic
throughout the deformation, the adoption of Eq.(5.46) can eliminate the e�ect of the
foam's relative density and the solid's Young's modulus and make the results more useful.

5.2.4.1 The RVE's size

The sensitivity of the results to the RVE's size or also the number of cells, n, was exam-
ined by comparing the predicted reduced stress/strain results. In order to be statistically
representative 20 random Voronoï honeycombs with the same relative density of 0.1 and
with γ = 0.5 were generated and elementary volumes with a mean number of cells n =
19, 28, 46, 65 and 100 were used to compute the reduced stress. Initially, the generated
honeycombs contained, on average, 200 cells and elementary volumes were extracted (see
Figure 5.3).
The results for the reduced stress are plotted against the strain for each value of n in
Figure 5.4. The deviations between the results are reasonably small and hence, the size
of the RVE was �xed to a minimum of 19 cells.
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Figure 5.3: Elementary volumes extracted from an irregular Voronoï honeycomb
containing 198 cells in order to determine the size of the RVE

Furthermore, we simulated the biaxial compression of a regular Voronoï honeycomb
made of 135 cells generated in a unit square (see Figure 5.5a) and representing a periodic
RVE. The compression was simulated up to 25% deformation (see Figure 5.5b).
Figure 5.6 illustrates the reduced stress/strain curve and the honeycomb's mass variation
in function of the deformation.
It is noticed by Figure 5.6a that the foam presents a linearly elastic behavior before
reaching a plateau region at about 17% of deformation, this is due to the beginning of
the elastic buckling of the cells. Furthermore, the mass variation, shown in Figure 5.6b,
does not exceed 0.15% which is a negligible variation. This yields that the foam's mass
was conserved during the whole process.

5.2.4.2 The e�ect of the air

In the simulations illustrated above, the honeycombs' cells contained air. In order to
eliminate the presence of the air inside the cells and leave only the foam's solid skeleton,
all the elements of the FE mesh (i.e. triangles) containing only air were killed (removed).
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Figure 5.4: The in�uence of the number of cells in the honeycomb elementary volumes
on the reduced stress/strain predictions

(a) (b)

Figure 5.5: (a) The initial regular Voronoï honeycomb made of 135 cells and (b) the
same honeycomb after 25% deformation
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(a) (b)

Figure 5.6: (a) The reduced stress/strain curve of the regular Voronoï honeycomb and
(b) the mass variation of the whole structure (solid and air)

The killing process is simply performed by the means of the air's presence function; the
element in which this function is equal to one is removed (see Figures 5.7a and b).

Considering only the elastic solid skeleton, our problem is now governed by equations
(5.25). A simulation up to 20% deformation of a regular Voronoï honeycomb was carried
out and illustrated in Figure 5.7c.

Figure 5.8 shows the norm of the velocity and the pressure of the Voronoï honeycomb
at a strain of 0.2. We notice that the velocity is linear and symmetric in regards to the
honeycomb's median plane which is normal since the honeycomb is periodic and since we
considered frictionless contacts. The results show as well that the pressure is the highest
on the solid edges that are parallel to the loading directions.

Moreover, we compared the reduced stress/strain curves of this Voronoï honeycomb
(i.e. solid skeleton without air) and of the elastic solid skeleton of a Voronoï honeycomb
with the same relative density but with air inside its cells (see Figure 5.9). We notice
that the two skeletons have approximately the same reduced stress values at strains lower
than 0.12. Then, the one with air reaches its plateau region and the one without air
continues its linearly elastic behavior. This yields that the air, or most precisely the
air's pressure, encourages the elastic buckling of the solid skeleton and hence, the plateau
region is reached earlier during the compression.

5.2.4.3 The e�ect of varying cell irregularity

First of all, we send the reader to section 2.4.2 in chapter 2 where the cell irregularity
γ is de�ned. Zhu et al. [7, 13] studied the e�ect of γ on the high strain compression of
2D Voronoï honeycombs and of open-cell foams. In their studies, where the air was not
taken into consideration, they found that the compressive strength of a foam, de�ned as
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(a) (b)

(c)

Figure 5.7: (a) The elastic solid skeleton of a regular Voronoï honeycomb in its stable
position, (b) a zoom at a triple junction showing the nonexistence of mesh elements

inside the cells and (c) the same honeycomb after 20% deformation

the maximum value of stress achieved during the simulated compression, decreases as the
irregularity increases. We intend to use our FSI approach to also study the e�ect of the cell
irregularity on the compression of Voronoï honeycombs. For this purpose, three Voronoï
honeycombs with γ values of 0.3, 0.5 and 0.7 were generated and biaxial compressions
were carried out up to 25% deformation. In Figure 5.10 the results are compared along
with the corresponding result for a regular hexagonal honeycomb (γ = 1).

Though the air is present inside the cells, our results also show that the foam's stress is
reduced as the irregularity increases. This can be explained by the fact that the air's frac-
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(a)

(b)

Figure 5.8: (a) The velocity of the solid skeleton at 20% deformation and (b) the
pressure of the solid skeleton at 20% deformation

tion is the same for all the considered honeycombs, hence, the e�ect of the cell irregularity
on the reduced stress remains the same.
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Figure 5.9: Comparison between the response of a solid skeleton with air inside the
honeycomb's cells and without air

Figure 5.10: The in�uence of cell irregularity on the reduced stress/strain predictions
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Figure 5.11 illustrates an irregular Voronoï honeycomb with γ = 0.7 at its initial state
and after 25% deformation. The velocity at 25% deformation in shown in Figure 5.12.
In this case, the velocity is not symmetric which is logical since the honeycomb is not
hexagonal.

(a) (b)

Figure 5.11: (a) The Voronoï honeycomb with γ = 0.7 in its undeformed state and the
anisotropic meshing at the interfaces (b) after 25% of biaxial compression

5.2.4.4 Compression of a three-dimensional closed-cell foam

A three-dimensional closed-cell foam, made of 107 cells, with a cell irregularity of 0.5
and a relative density of 0.1 was generated in a unit cube. Anisotropic mesh adaptation
was performed in order to properly describe the foam. The resulting FE mesh is made of
349659 nodes and 1957422 elements. Figure 5.13a illustrates the foam at its initial state
de�ned by the iso-zero of its level-set function where the anisotropic mesh is shown. A
biaxial compression up to 30% was performed by imposing velocities on the upper and
lower boundaries of the domain (see Figure 5.13b).

The simulation was performed on 96 processors in 1 hour and 12 minutes after the
construction of the initial mesh. Figure 5.14 illustrates the velocity's norm and pressure
on the interface of the foam (i.e. the iso-zero of the level-set function) at 30% deformation.

Figure 5.15 shows the reduced stress/strain curve of the closed-cell foam and its mass
variation. The foam presents a linearly elastic behavior before reaching a plateau region
at about 23% of deformation, this is due to the beginning of the elastic buckling of the
cells. This type of behavior for elastic closed-cell foams was already observed in [123, 130].
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Figure 5.12: The velocity's norm of the Voronoï honeycomb with γ = 0.7 after 25% of
biaxial compression

Furthermore, the mass variation, does not exceed 0.6% which is a very reasonable loss
and proves that the foam's mass is conserved during the whole process.

5.3 Permeability computation of disordered �ber ar-

rays

Before illustrating the simulations performed, we begin by detailing the governing equa-
tions and FE formulation of our problem.

5.3.1 Governing equations

A resin is injected in the disordered �brous media in order to compute its permeability.
The injected resin is considered as a Newtonian incompressible �uid. Because of the low
pressure imposed for the injection and its high viscosity, inertia and gravity terms can be
neglected. Consequently, Stokes equations describe the �uid �ow:{

ηf ∆v −∇p = 0

∇ · v = 0
(5.47)

with v the �uid velocity, p the pressure and ηf the dynamic viscosity.
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(a)

(b)

Figure 5.13: (a) The iso-zero of the level-set function de�ning a three-dimensional
closed-cell foam made of 107 cells with a cell irregularity of 0.5 and a relative density of
0.1 at its initial state with the anisotropic remeshing and (b) the same foam after 30%

deformation

Darcy's law is traditionally used to model �ow motion in porous media at the macro-
scopic scale. These macroscopic equations are obtained from a volume average of the
Navier-Stokes ones [86, 131, 132], describing the �ow motion at the microscopic scale.
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(a)

(b)

Figure 5.14: (a) The velocity's norm at 30% deformation of the closed-cell foam shown
at the foam's interface and (b) the pressure at 30% deformation also shown at the foam's

interface

We will use the de�nitions of the averages given in [86], where the spatial average of
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(a) (b)

Figure 5.15: (a) The reduced stress/strain curve of the irregular closed-cell foam and (b)
the variation of its mass

a quantity B is de�ned in the whole volume:

⟨B⟩ = 1

V

∫
Ω

B dΩ. (5.48)

The intrinsic phase average of a quantity Bf is de�ned in the �uid phase:

⟨Bf⟩f =
1

Vf

∫
Ωf

Bf dΩ, (5.49)

with Ωf the �uid domain. The porosity ϕ:

ϕ =
Vf

V
, (5.50)

is de�ned as the ratio of the volume occupied by the �uid Vf and the total volume V .
We suppose that the solid skeleton is static and non-deformable, and that the porous

media is saturated. Neglecting e�ects of viscosity on the �ow with respect to the resistance
of the skeleton, Darcy's equation is obtained:

⟨v⟩ = − 1

ηf
K · ⟨∇p⟩f , (5.51)

where the permeability K is a tensor for anisotropic porous media, like �brous media for
example. In the case of unidirectional �ber packings, if the z axis of the coordinate system
is taken in the same direction as the axis of the �bers, the permeability tensor can be
then written as follows:

K =

(
K⊥ 0
0 K∥

)
, (5.52)
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with K⊥ a transverse permeability tensor and K∥ the permeability along the �ber axis.
For regular packings (rectangular, triangular or hexagonal) the matrix K⊥ is proportional
to the unit matrix and then only a scalar K⊥ has to be computed. However for disordered
arrays, we need to look for a more suitable form:

K⊥ =

(
Kxx Kxy

Kxy Kyy

)
or K⊥ =

(
Kxx 0
0 Kyy

)
(5.53)

5.3.2 Numerical approach

All the phases of the multidomain problem are implicitly represented by a level-set
function, α. To obtain an accurate description of the interface and small errors concern-
ing the computed �ow, e�cient anisotropic adaptive meshing is used. The viscosity η(α)
is de�ned on the whole computational domain using a mixture law as for the foam com-
pression problem (see Figure 5.16). The rigidity of the solid part is taken into account
with a high value of the viscosity (namely ηs = 103ηf [21])

(a) (b)

Figure 5.16: (a) η(α) de�ned on the whole computational domain using a mixture law
and (b) anisotropic remeshing at the solid-�uid interface

5.3.3 The FE formulation

The FE formulation begins by writing the weak form of the Stokes equations (5.47).
The problem consists in �nding (v, p) ∈ V ×Q such that:{

2η(α) (ε(v) : ε(w))Ω − (p,∇.w)Ω = 0

(q,∇.v)Ω = 0
(5.54)
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where the trial function q for the pressure is de�ned in Q and the trial function w for the
velocity is de�ned in V0.

As for the FE formulation of the foam compression, the Mini-element was used, hence
the discrete Stokes formulation is then written: �nd (v, ph) ∈ Vh ×Qh such that

2η(α) (ε(vh) : ε(wh))Ω − (ph,∇.wh)Ω = 0

2η(α)
(
ε(vb) : ε(wb)

)
Ω
−
(
ph,∇.wb

)
Ω
= 0(

qh,∇.(vh + vb)
)
Ω
= 0

(5.55)

This system can be put naturally under the following matrix form: Avv 0 At
vp

0 Abb At
bp

Avp Abp 0

 vh

vb

ph

 =

 0
0
0

 , (5.56)

where:

Avv = 2η(α) (ε(vh) : ε(wh))Ω ,

Abb = 2η(α)
(
ε(vb) : ε(wb)

)
Ω
,

Avp = (ph,∇.wh)Ω ,

Abp =
(
ph,∇.vb

)
Ω
.

(5.57)

Finally, the static condensation process consisting in solving the second line for the bubble
function vb, which by inserting into the third line of (5.56), results the condensed matrix
scheme for large-scale unknowns vh and ph reading:

(
Avv At

vp

Avp C

)(
vh

ph

)
=

(
0
0

)
, (5.58)

with C = −AbpA
−1
bb A

t
bp.

5.3.4 The RVE

In order to get suitable averaged quantities describing the macroscopic behavior of the
material, it is necessary to perform computations on an RVE. The RVE is a two dimen-
sional rectangle of width, L and height H on which three di�erent boundary conditions
are applied:

1. the pressure gradient is in the horizontal direction x, vy is null on the external
boundary and

∂yvx(x, 0) = ∂yvx(x,H) = 0 ; vz(x, y) = 0, ∂zp(x, y) = 0 ; p(0, y) = P, p(L, y) = 0.
(5.59)
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2. the pressure gradient is in the vertical direction y, vx is null on the external boundary
and

∂yvx(0, y) = ∂yvx(L, y) = 0 ; vz(x, y) = 0, ∂zp(x, y) = 0 ; p(x, 0) = P, p(x,H) = 0.
(5.60)

3. the pressure gradient is in the longitudinal direction z, vx and vy are null,

∂xvz(0, y) = ∂xvz(L, y) = 0 ; ∂yvz(x, 0) = ∂yvz(x,H) = 0 ; ∂zp(x, y) = P/L (5.61)

In what concerns disordered �ber RVE generation, we send the reader to section 2.4.3
in the chapter 2 where we detailed the method used to generate this type of RVEs.

5.3.4.1 Ripley's Kr

As we want to compute the permeability of di�erent random �ber arrangements as a
function of other parameters beyond porosity, the microstructure needs to be properly
quanti�ed. The Ripley's Kr function [133, 134] can be used to di�erentiate between
regular arrangements, Completely Spatially Random (CSR) arrangements, and clustered
point patterns. This function is de�ned as:

Kr(r) =
A

N2

N∑
k=1

Ik(r)

wk(r)
, (5.62)

where Ik(r) is the number of points found within a distance r of the point k, N is the
total number of points in the area of interest A, and wk(r) is a correction factor taking
into account the fact that it is possible that only a part of the observation area πr2 falls
within the area of interest A. This correction factor is computed as the proportion of
the perimeter of the circle centered in k with radius r which is inside the area of interest
[135]. Kr(r) describes characteristics of point patterns at many length scales. The Kr-
function of a Poisson distribution is πr2 and draws a dividing line between a regular and
a clustered pattern. Estimates of Kr(r) are expected to be smaller than πr2 if the points
form a regular pattern, and to be larger than πr2 in the presence of clustering [136].
Furthermore, the extent of the deviation of Kr(r) from πr2 and the length scale at which
such deviations occur give some additional insight into a microstructure. The L-plot, a
linearized plot of Kr(r) de�ned as: L(r) =

√
Kr(r)/π, is frequently used to show these

deviations and the length scales at which they occur. The L-plot of a Poisson distribution
is simply a straight line of 45-degree slope through the origin. Figure 5.17 shows the
resulting L(r)-function applied to the �ber distributions in Figure 2.44. It is evident that
at large distances all �ber distributions approach the CSR pattern. This concludes that
our method can generate random distributions usable in this type of studies.

5.3.5 Permeability computation
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(a) (b)

(c) (d)

Figure 5.17: The L(r) functions of the �ber distributions described in Figure 2.44

5.3.5.1 Computation of the transverse permeability tensor

The transverse permeability is computed with a least square method. The computations
are performed with the �rst two sets of boundary conditions for 2D Stokes equations
(5.47).

First assuming that the permeability tensor K⊥ has the form

K⊥ =

(
Kxx Kxy

Kxy Kyy

)
. (5.63)

And second, that k computations were performed which gives ⟨vi⟩ and ⟨∇pi⟩f with i =
1, ..., k.
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The least square method consists in minimizing the function J

J(Kxx, Kyy, Kxy) =
k∑

i=1

(
Kxx ⟨∂xpi⟩f +Kxy ⟨∂ypi⟩f + ηf ⟨vx,i⟩

)2
+
(
Kxy ⟨∂xpi⟩f +Kyy ⟨∂ypi⟩f + ηf ⟨vy,i⟩

)2
. (5.64)

The minimum of Eq.(5.64) is reached when the partial derivatives of the function J
with respect to the permeability components are zero i.e.

∂J

∂Kxx

= 0 ,

∂J

∂Kyy

= 0 ,

∂J

∂Kxy

= 0 .

(5.65)

This leads to the following system of equations:

AKxx + CKxy = E ,

BKyy + CKxy = F ,

CKxx + CKyy + (A+B)Kxy = G ,

(5.66)

with

A =
k∑

i=1

(
⟨∂xpi⟩f

)2
,

B =
k∑

i=1

(
⟨∂ypi⟩f

)2
,

C =
k∑

i=1

⟨∂xpi⟩f ⟨∂ypi⟩f ,

E = −ηf

k∑
i=1

⟨∂xpi⟩f ⟨vx,i⟩ ,

F = −ηf

k∑
i=1

⟨∂ypi⟩f ⟨vy,i⟩ ,

G = −ηf

k∑
i=1

(
⟨∂ypi⟩f ⟨vx,i⟩+ ⟨∂xpi⟩f ⟨vy,i⟩

)
,
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and so,

Kxx =
−BCG+ C2F − C2E + EAB + EB2

d
,

Kyy =
A2F − CAG+ C2E − C2F + ABF

d
,

Kxy =
BAG−BCE − FAC

d
,

with d = (A+B)(AB − C2).
If Kxy is assumed to be zero, then,

Kxx =
E

A
,

Kyy =
F

B
.

If Kxy = 0 and Kxx = Kyy, a scalar transverse permeability K can be computed as

K =
E + F

A+B
= −ηf

∑k
i=1 ⟨∂xpi⟩

f ⟨vx,i⟩+ ⟨∂ypi⟩f ⟨vy,i⟩∑k
i=1

(
⟨∂xpi⟩f

)2
+
(
⟨∂ypi⟩f

)2
= −ηf

∑k
i=1 ⟨vi⟩ · ⟨∇pi⟩f∑k

i=1 ⟨∇pi⟩f · ⟨∇pi⟩f
. (5.67)

5.3.5.2 Computation of longitudinal permeability

The longitudinal permeability is obtained by computing the scalar vz solution of the
reduced Stokes equation

ηf

(
∂2vz
∂y2

+
∂2vz
∂x2

)
=

∂p

∂z
on Ωf , (5.68)

and

K∥ = −ηf
⟨vz,i⟩
∂zp

. (5.69)

5.3.6 Numerical Results

5.3.6.1 The RVE's size

The randomness of the generated �ber distributions leads to a scatter in the computed
permeability. Hence, an average permeability should be calculated along with a data vari-
ation in order to be statistically representative. In this work, 20 random microstructures
were generated for each class of �ber distributions characterized by the same ϕ and σ (see
section 2.4.3). The average permeability and its standard deviation, σp, are given by:
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⟨K⟩ = 1

20

20∑
i=1

Ki, (5.70)

σp =
1

19

√√√√ 20∑
i=1

(Ki − ⟨K⟩)2. (5.71)

Moreover, the permeability of �ber distributions is not only a function of microstruc-
tural parameters but also a function of the RVE's size or also the number of �bers Nf

in the domain. An extremely large computational domain is surely representative of the
�ber array but this will cause a drastic increase in the computational cost which makes
this type of studies quasi-impossible. A similar approach for determining the RVE's size
of the Voronoï honeycombs is performed for �nding the size of the �ber arrays' RVE. In
this case a study of the size e�ect on ⟨K⟩, ⟨K∥⟩ and ϕ was performed and computations
were carried out on elementary volumes of di�erent size extracted from microstructures
generated with σ = 0.06R and ϕ = 0.5 as illustrated in Figure 5.18.
The results for the permeability values are shown in Figure 5.19 where they are adimen-
sionalised and in Figure 5.20 for the porosity.
Fluctuations are observed in the values of ⟨K⟩/R2, ⟨K∥⟩/R2 and ⟨ϕ⟩ when a relatively
small number of �bers is considered then the values reach a plateau after Nf > 385. Also,
after Nf > 555 the associated standard deviations are reduced. As a conclusion, an RVE's
size of Nf > 555 is used in the remainder of this chapter.

5.3.6.2 Isotropic properties

We computed the values of the components of the transverse permeability tensor K⊥,
Kxx, Kyy andKxy, in order to see if the scalar transverse permeabilityK can be computed.
In Figure 5.21 the averaged components are computed at di�erent porosity levels and
plotted against σ/R. The values at di�erent porosities are illustrated in di�erent �gures
for the sake of clarity.
Figure 5.21 shows that Kxx is equal to Kyy and Kxy is negligible on all porosity levels
and at all values of σ. This means that the transverse permeability is independent of
the �ow direction and that the �ber arrays are isotropic. In this case, a scalar transverse
permeability is computed by Eq.(5.67).

5.3.6.3 The e�ect of σ on K

Figure 5.22 shows two representative �ow paths computed on RVEs at ϕ = 0.7 and Fig-
ure 5.23 illustrates the velocity computed for the boundary conditions of type 3 (Eq.(5.61))
on the same previous RVEs. The di�erence between the two microstructures lies in the
choice of σ (σ = 0.03R in Figures 5.22(a) and 5.23(a) and σ = 0.4R in Figures 5.22(b)
and 5.23(b)).

We notice from these two �gures that the microstructure has a great e�ect on the
�ow distribution in the interstitial space. In what concerns transverse �ows (boundary
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Figure 5.18: Elementary volumes extracted from a 10× 10 microstructure in order to
determine the size of the RVE

conditions 2 and Figure 5.22), a larger degree of local heterogeneity caused by an increase
of σ results in a wider range of �ow paths. In this case, a few major �ow paths exist
while in the case of σ = 0.03R a large number of small paths exist giving a uniform �ow
through the �ber array. In what concerns longitudinal �ows (boundary conditions 3 and
Figure 5.23), a larger degree of local heterogeneity results in the formation of pockets of
high-speed �uid against a more uniform speed for small values of σ. From these �gures, it
is evident that �bers at the same porosity can exhibit drastically di�erent patterns of �uid
�ows. It follows that the use of porosity alone cannot de�ne properly their permeability.

In Figure 5.24, the numerically computed ⟨K⟩ and ⟨K∥⟩ at each porosity level are plotted
against σ/R.

In Figures 5.24(a) and 5.24(b), the ending point is the permeability of the hexagonal array
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(a)

(b)

Figure 5.19: The size e�ect on ⟨K⟩/R2. The �ber distributions were generated with
σ = 0.06R and ϕ = 0.51. The error bars represent the standard deviations ±σp

(�lled star), for which the inter-�ber spacing is only linked to the porosity [80]. From the
plot in these �gures, the e�ect of σ/R on ⟨K⟩/R2 and ⟨K∥⟩/R2 is evident. An increasing
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Figure 5.20: The size e�ect on the porosity

σ or also moving from a uniform array to an array showing higher degrees of disorder
results in an increase of both permeability values, the transverse and the longitudinal.
The results of ⟨K∥⟩ are in agreement with those of Chen and Papathanasiou [20] who
found also that an increase of the microstructure heterogeneity or a decrease in the mean
nearest inter-�ber spacing, δ1, enhances ⟨K∥⟩. This is due to the formation of large �ow
paths. On the other hand, our results concerning ⟨K⟩ are opposite to those of Chen and
Papathanasiou [8] except for ϕ > 0.7. They explain that the decrease in ⟨K⟩ in the range
0.45 < ϕ < 0.7 comes from the presence of narrow gaps which reduce the permeability
and that the increase of ⟨K⟩ in the range ϕ > 0.7 comes from the formation of �ow paths
whose size is comparable to the size of �ber aggregates. In our case, we explain this
increase by the simple fact that large gaps enhance ⟨K⟩ as they enhance ⟨K∥⟩.

5.4 Conclusion

This chapter presented the mechanical applications performed in this work.
First, a �nite element analysis has been presented to simulate the biaxial compression

of elastic foams. By taking the presence of air inside the foams' cells into account, the
simulations were considered as an FSI problem, between a compressible elastic solid (i.e.
the foam's skeleton) and a compressible �uid (i.e. the air), that was solved by a monolithic
formulation in a Lagrangian framework. This kind of approach enabled us to study the
air's e�ect on the foam's behavior. Also, the e�ect of cell irregularity was studied and a
compression of a three-dimensional closed-cell foam was performed. The results yielded
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(a) (b)

(c)

Figure 5.21: The averaged permeability components at di�erent values of σ: (a)
ϕ = 0.51, (b) ϕ = 0.7 and (c) ϕ = 0.9

that the honeycomb's stress reaches a plateau region earlier when the air is present inside
the foam's cells and that it is reduced as the irregularity increases. Furthermore the
closed-cell foam presented a typical behavior of elastic foams during compression and the
mass of the whole structure was conserved.

Second, permeability computations of disordered unidirectional �ber arrays were per-
formed. The �ow through the �bers, which were considered as rigid discs, is governed by
the Stokes equations that, when averaged, lead to Darcy's law. Hence, the permeability
of a �ber array can be computed. The RVE's size or number of �bers was determined
by studying its in�uence on the transverse and longitudinal permeabilities. Afterwards,
we have shown that the �ber arrays are isotropic and that the transverse permeability is
independent of the �ow direction. Furthermore, the in�uence of the degree of disorder of
�ber arrays on transverse and longitudinal permeabilities was studied and the results have
shown that both permeabilities increase on all porosity levels as the disorder increases.
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(a)

(b)

Figure 5.22: Flow paths for boundary conditions 2 across unidirectional �ber array: (a)
ϕ = 0.7 , σ = 0.03R and (b) ϕ = 0.7 , σ = 0.4R

5.5 Résumé français

Ce chapitre a permis de présenter les applications mécaniques étudiées dans cette thèse.
Premièrement, une analyse éléments �nis a été présentée pour simuler la compression



154 CHAPTER 5. FINITE ELEMENT CALCULATIONS

(a)

(b)

Figure 5.23: Contours of �uid velocity for longitudinal �ows across unidirectional �ber
array: (a) ϕ = 0.7 , σ = 0.03R and (b) ϕ = 0.7 , σ = 0.4R

biaxiale de mousses élastiques. En prenant en compte la présence de l'air à l'intérieur des
cellules des mousses, le problème physique doit être considéré sous l'angle d'un problème
d'interaction �uide structure, entre un solide élastique compressible (le squelette de la
mousse) et un �uide compressible (l'air). Ce problème a été résolu par une approche
monolithique dans un contexte Lagrangien. Ce type d'approche nous a permis d'étudier
l'e�et de l'air sur le comportement de la mousse. De plus, l'e�et de l'irrégularité de
la forme des cellules a été étudié et une compression d'une mousse tridimensionnelle à
cellules fermées a été réalisée. Les résultats ont montré que la contrainte pour une mousse
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(a)

(b)

Figure 5.24: The e�ect of averaged standard deviation of the inter-�ber spacing on the
normalized averaged transverse (a) and longitudinal (b) permeability. Also shown are

permeability values for hexagonal arrays [80]

régulière atteint un plateau plus tôt lorsque l'air à l'intérieur des cellules de la mousse est
pris en compte et que la valeur de ce plateau est réduite lorsque l'irrégularité augmente.

Deuxièmement, des calculs de perméabilité sur des milieux �breux monodirectionnels
désordonnés ont été e�ectués. L'écoulement entre les �bres est gouverné par les équations
de Stokes. Ces équations mènent à la loi de Darcy lorsqu'elles sont moyennées. De
là, le tenseur de perméabilité du milieu �breux peut être calculé. La taille idéale du
VER a été déterminée en étudiant son in�uence sur les perméabilités transversale et
longitudinale. Ensuite, nous avons montré que l'écoulement à travers les �bres est isotrope
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et que la perméabilité transversale est indépendante de la direction de l'écoulement. De
plus, l'in�uence du degré de désordre des milieux �breux considérés sur les perméabilités
transversales et longitudinales a été étudiée et les résultats obtenus ont montré que les
deux perméabilités augmentent, quelque soit le niveau de porosité, lorsque le désordre
s'accroît.



157



158 CHAPTER 5. FINITE ELEMENT CALCULATIONS



Chapter 6

General conclusion and perspectives
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"The in�uence of microstructural heterogeneities on material processing is of great
importance" and "the response of a Representative Volume Element (RVE) when it is
subject to a given macroscopic loading path is of the main interest". These two phrases
are behind the motivations of this Ph.D. thesis which is dedicated to two main objectives:
(i) the creation of a multi-physical virtual microstructure builder for generating various
types of RVEs (chapters 2, 3 and 4); (ii) the calculations performed on RVEs of elastic
foams and disordered �brous media generated by this microstructure builder (chapter 5).

In chapter 2, the core of our microstructure generator, which is the simultaneous gener-
ation of polyhedra and spherical particles, is detailed. The Voronoï Tessellation Method
(VTM) and the Laguerre Tessellation Method (LTM) are used for the polyhedral genera-
tion part. The polyhedra can model random metallurgical grains when the VTM is used
and the same microstructures with speci�c cell size distributions when the LTM is used.
Boundaries between adjacent cells can also be spread by shifting them in the direction
of each center with random values. This cell spreading technique enables our generator
to model semi-solid granular structures and foams as well while respecting a given solid
fraction. Furthermore, the LTM is based on the generation of spherical particles which are
used as a basis for approximating the cells' sizes. These particles are also used to model
powder RVEs most importantly. However, for the both kinds of microstructure consid-
ered, powders and polycrystals, the spherical particles should be densely packed to be
realistic in the case of powder RVEs and to optimize the size di�erence between them and
the resulting Laguerre cells for polycrystal RVEs. This fact explains the use of the Inwards
Packing Method (IPM) as our sphere packing method. The IPM has the advantages of
being fast, relatively easy to implement, has the capability of respecting size distributions
and generates high packing densities. On the other hand, the resulting sphere packing can
present heterogeneities for the local density (local voids can be seen especially when mono-
sized discs are generated). Hence, the use of this method without any void optimization
technique can not model realistic powders and can lead to local decorrelation between
the size of the spherical particles and the size of the corresponding Laguerre cells. Two
optimization techniques were developed. The �rst, adapted to equiaxed cell RVEs and re-
ferred to as the Grain Optimization Algorithm (GOA), consists in moving each sphere as
close as possible to the barycenter of the spheres forming its graph while avoiding overlap-
ping. The global idea of this procedure is to obtain, for all Laguerre cells, a ratio "volume
of the corresponding sphere/volume of the cell" more uniformly distributed and so, nearer
to the sphere packing density. The second, adapted to powder RVEs and referred to as
the Powder Optimization Algorithm (POA), is based on the techniques of dropping and
rolling. Each particles is dropped then rolled till reaching its stable position eliminating
the voids of the IPM as well as any un-physical positioning of the particles. This method,
unlike other classical dropping and rolling techniques where small dropping and rolling
steps are used, uses analytical equations in order to displace the particles. Also, the IPM
coupled with the POA and a radius reduction technique generates disordered �ber arrays
with speci�c porosities and inter-�ber spacing. The abilities of the GOA and the POA to
model equiaxial grain and powder RVEs are presented in chapter 3. We �rst compare our
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POA to a densi�cation method, used in the generation of granular structures, where the
voids of an advancing front method are �lled with particles non-intersecting preexisting
ones. Then, experimental data given by laser granulometry, performed on a stainless steel
316L, are used. In the equiaxial grain modelling applications, we �rst compare our GOA
to the Laplacian Smoothing (LS) algorithm where the grain size distribution is given by
a Gaussian distribution law. And then, experimental data of a stainless steel 304L, ob-
tained by EBSD, are used. Three dimensional powder and equiaxial grain RVE modelling
are also performed using the statistics of a pure iron. In all the above-mentioned cases,
our algorithms proved their e�ciency, ability to respect complex and experimental size
distribution laws and most importantly their capability to model equiaxial grain, powder,
foam and 2D disordered �ber RVEs. Chapter 4 was dedicated to the level-set approach
and meshing adaptation. In our case, the mesh is not conform to the microstructure's
boundaries and level-set functions are used to implicitly locate these boundaries. This
type of de�nition is an innovative approach in microstructure generation and is combined
with an unstructured monolithic meshing strategy. Anisotropic (re-)meshing is essential
for guaranteeing geometric accuracy, avoiding prohibitive calculation times and taking
into account discontinuities of physical properties. The meshing adaptation is based on
the level-set functions and can be performed if the appropriate metric �eld is constructed.
To this end we developed a new strategy, based on the DSATUR graph coloring algorithm,
which decreases the number of requisite level-set functions for remeshing by limiting them
to a small number of functions representing sets of strictly disjoints cells and which the
gathering corresponds to the whole microstructure considered.

The mechanical applications performed in this thesis were detailed in chapter 5. The
�rst application was the compression of elastic foams. The foam RVEs, with di�erent
cell irregularities and relative densities, were generated using the LTM coupled with cell
spreading and anisotropic remeshing was performed to capture properly the cells' inter-
faces. The compression itself is a Fluid Structure Interaction (FSI) problem between a
compressible �uid (i.e. the air inside the foam's cells) and an elastic compressible solid
(i.e. the foam's solid skeleton). In order to solve this problem, a monolithic formulation
is used. Such strategy gives rise to an extra stress tensor in the Stokes equations, which
are solved by a mixed Finite Element Method (FEM) with a P1+/P1 interpolation, com-
ing from the presence of the structure in the �uid. A Lagrangian framework was used
to simulate foam compression. After �nding the appropriate RVE size by studying the
deviations of the reduced stress on di�erent elementary volumes, several simulations were
performed. A �rst simulation was dedicated for understanding the e�ect of the air in-
side the cells. For this reason two regular Voronoï honeycombs with the same relative
density were generated, one where we have air inside the cells and another where all the
elements containing air were removed. By comparing the reduced stress/strain curves,
we observed that the one with air reaches a plateau region while the other continues its
linearly elastic behavior. A second simulation studied the e�ect of cell irregularity on
the honeycomb's stress. The compressions of three Voronoï honeycombs with di�erent
irregularity degrees were performed. The comparison between the respective stress/strain
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curves revealed that the foam's stress is reduced as the irregularity increases. A third
simulation was dedicated to the compression of an irregular three-dimensional closed-cell
foam. Its stress/strain curve had the same behavior as the one of a Voronoï honeycomb;
a linearly elastic phase then a plateau region is reached.

The second application was the permeability computation of unidirectional disordered
�ber arrays. The �bers are considered as rigid discs and the RVEs, with di�erent porosi-
ties and degrees of disorder, were generated using the POA coupled with radius reduction.
The randomness of the generated �ber arrangements was proven using the Ripley's Kr

function. The �ow of the Newtonian �uid is governed by the Stokes equations which
are solved on the RVE by an immersed domain method. This approach can rather be
seen as an extension of the Stokes problem with two �uids, for which the solid behavior
of one phase is imposed by using the viscosity as a penalty factor. The rigidity of the
solid part is taken into account with a high viscosity value, which acts as a penalty co-
e�cient. Using this approach, a zero velocity boundary condition imposed in a part of
the solid domain is propagated into the entire solid domain. Also, a mixed FEM with a
P1+/P1 interpolation is used to solve the Stokes equations. Afterwards, homogenization
techniques are used to get Darcy's law and so, the permeability is computed. The RVE's
size was found by studying the deviations of the permeability tensor and the porosity on
di�erent elementary volumes. Furthermore, we computed the values of the components of
the transverse permeability tensor on various porosity levels and for di�erent degrees of
disorder. The results showed that the transverse permeability is independent of the �ow
direction and that the �ber arrays are isotropic. In this case, a scalar transverse perme-
ability was computed. The e�ect of the disorder on both the transverse and longitudinal
permeabilities was studied and it was found that both permeability values increase when
moving from a uniform array to an array showing higher degrees of disorder.

Given the fact that our virtual microstructure generator can only model equiaxed cell
based or spherical particle based microstructures, generating other types of microstruc-
tural heterogeneities like �bers or elongated cells can pave the way for modelling more
various types of microstructures. Hence, the permeability computations can be extended
to 3D multidirectional �ber arrays. Although, the errors in the equiaxial grain RVE
modelling cases were acceptable, they remain large. In this context, the GOA should be
perfected in order to respect more precisely the given size distribution laws. Moreover,
checking the intersections between di�erent particles when using the IPM is time consum-
ing especially when a large number of particles is generated. A solution of this drawback
could be the parallelization of the IPM. Also, it is important to compare the computation
times of our dropping and rolling algorithm with other algorithms of the same type using
small dropping and rolling steps in order to prove the rapidity of our new proposed tech-
nique. Furthermore, developing the strategy for generating three-dimensional open-cell
foams is crucial for performing simulations on this type of foams. One other important
perspective is comparing the FE results of foam compression with experimental results
and reaching higher strain values which may be achieved by performing adaptive mesh
re�nement and automatic remeshing.
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Simulation numérique de Volumes Élémentaires Représentatifs (VERs) 
complexes : Génération, Résolution et Homogénéisation 

RESUME : L'influence des hétérogénéités microstructurales sur le comportement d'un matériau est 

devenue une problématique industrielle de première importance, cet état de fait explique 

l'engouement actuel pour la prise en compte de ces hétérogénéités dans le cadre de la modélisation 

numérique. Ainsi, de nombreuses méthodes pour représenter de manière digitale un matériau virtuel 

statistiquement équivalent à la microstructure réelle et pour connecter cette représentation à des 

calculs éléments finis se sont développés ces dernières années. Les travaux réalisés durant cette 

thèse s'inscrivent en grande partie dans cette thématique. En effet, un générateur de microstructures 

virtuelles permettant de générer à la fois des microstructures polyédriques ou sphériques a été 

développé. Ce générateur est basé sur les diagrammes de Laguerre et une méthode frontale de 

remplissage, une approche level-set pour l'immersion de ces microstructures dans un maillage 

éléments finis et une technique d'adaptation anisotrope de maillage pour assurer une grande précision 

lors de cette immersion mais également lors de la réalisation de simulations éléments finis sur ces 

microstructures. La capacité de ces outils à respecter des données statistiques concernant les 

microstructures considérées est assurée par le couplage d'une méthode frontale à une méthode 

d'optimisation des défauts locaux selon la nature de la microstructure considérée. Une technique de 

coloration de graphe est également appliquée afin de limiter le nombre de fonctions level-set 

nécessaires à l'adaptation de maillage.  

  En outre, le coût élevé d'une simulation micro-macro entièrement couplée peut-être significativement 

réduite en limitant les calculs à une analyse entièrement découplée. Dans ce contexte, la réponse 

d'un Volume Elémentaire Représentatif (VER) soumis à des conditions aux limites représentatives de 

ce que subit la matière en un point précis d'un calcul macroscopique reste l'approche la plus complète 

à l'heure actuelle. Dans le cadre de ce travail, nous nous sommes intéressés à deux types de VER 

pour deux applications différentes : la déformation de VERs de mousses polyédriques élastiques et le 

calcul du tenseur de perméabilité pour des VERs composés de fibres cylindriques hétérogènes mais 

monodirectionnelles. 

  Plus précisément, pour la première de ces applications, des cas de compression biaxiale de 

mousses élastiques à cellules fermées en nids d'abeille ou irrégulières sont modélisés comme un 

problème d'interaction fluide structure (IFS) entre un fluide compressible (l'air à l'intérieur des cellules) 

et un solide élastique compressible (le squelette de la mousse). Une formulation monolithique est 

utilisée pour résoudre ce problème en regroupant les équations d'états régissant le solide et le fluide 

en un seul jeu d'équations résolu sur un maillage unique discrétisant les deux phases. Une telle 

stratégie donne lieu, pour la partie solide, à l'apparition d'un tenseur d'extra-contrainte dans les 

équations de Navier-Stokes. Ces équations sont ensuite résolues par une méthode éléments finis 

mixte avec une interpolation de type P1+/P1. 

  Concernant la deuxième application, des écoulements dans des milieux fibreux sont simulés en 

considérant les fibres comme rigides. Ici encore, une formulation monolithique est adoptée. Ainsi, les 

équations de Stokes sont résolues sur l'ensemble du domaine de calcul en utilisant une méthode de 

pénalisation. Par homogénéisation, la loi de Darcy est utilisée pour obtenir le tenseur de perméabilité.�

Mots clés : VER, Diagramme de Voronoï, Particules sphériques, Compression de mousses, 

Perméabilité, méthodes des éléments finis 

�
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Direct numerical simulation of complex RepresentativeVolume Elements 
(RVEs): Generation, Resolution and Homogenization 

ABSTRACT : The influence of microstructural heterogeneities on material processing is an issue of 

prime importance, which explains the need to generate a digital material, statistically equivalent to the 

considered microstructure, and to connect this digital description to finite element (FE) calculations. 

For this reason, a multi-physical virtual microstructure generator which can simultaneously generate 

cells and spherical particles is created. This generator is based on Laguerre tessellations and 

advancing front method, level-set description of interfaces and anisotropic meshing adaptation. The 

capability of its tools to respect statistical data could be insured by the advancing front method coupled 

with an optimization procedure depending on the nature of the considered microstructure. Moreover, a 

graph coloration technique is applied in order to reduce the number of level-set functions used in 

anisotropic mesh adaptation. 

  Furthermore, the high cost of a fully coupled micro-macro simulation can be significantly reduced 

when restricting the attention to a fully uncoupled analysis. In this context, the response of the 

Representative Volume Element (RVE) when subject to a given macroscopic loading path is of the 

main interest. RVEs of elastic Voronoï honeycombs and fiber arrays are considered in the manuscript. 

  The first is used to simulate the compression of an elastic foam subject to a biaxial load. In this case, 

a fluid structure interaction (FSI) problem occurs between a compressible fluid, the air inside the 

foam's cells, and an elastic compressible solid, the foam's skeleton. A monolithic formulation is used 

for solving this problem where a single grid is considered and one set of equations with different 

material properties is solved. Such strategy gives rise to an extra stress tensor in the Navier-Stokes

equations, which are solved by a mixed finite element method with a P1+/P1 interpolation, coming 

from the presence of the structure in the fluid. 

  The second RVE is used to compute the permeability of disordered fiber arrays. In this case, flows 

through unidirectional fibrous media are simulated and the fibers are considered as rigid discs. Also, a 

monolithic formulation is used for solving this problem. Therefore the Stokes equations are solved in 

the whole domain using a penalization method. After using volume average techniques, Darcy's law is 

obtained giving the possibility to compute the permeability tensor. 

Keywords : RVE, Voronoï tessellations, Spherical particles, foam compression, permeability 

computation, finite element method 
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