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CHAPTER1
Preface

1.1 Introduction

Mean field theories such as the Hartree-Fock method [1, 2] or the density functional theory

(DFT) [3], the different flavors of the Quantum Monte Carlo approach [4, 5], coupled cluster [6],

configuration interaction (CI) [7, 8], dynamical mean field theory (DMFT) [9, 10], many-body

perturbation theory [11, 12, 13, 14]... this is just a very brief list of the favorite tools that the-

orists in physics, chemistry and material science, have been devising and employing along the

years to tackle with the many-body-problem. Not so surprisingly, without ever solving it exactly.

Already starting from the ’50s and the ’60s, much progress has been done towards the under-

standing of the way particles in a solid can interact and behave quite differently from how they

would if isolated from one another. The great majority of these insights have been gained thanks

to the interplay of theory and experiments, the latter being a precious tool to validate more or

less sophisticated theoretical approaches.

There are many circumstances under which a many-body system can be described, fairly well,

through its elementary excitations : specifically one wants to single out the different type of

excitations and analyze or model their mutual interaction. Two are the classes of well defined

(which means long-lived) elementary excitations which are interesting for the condensed mat-

ter physicist, the first are the so-called quasi-particle excitation, which are nothing else than

modified single-particle excitations, while the second kind are density fluctuation excitations,

typically collective modes of the system. The concept of quasi-particle is fairly intuitive. If we

think realistically about the propagation of a particle inside a solid, it is easy to imagine that its

motion has to be greatly affected by the interaction with all the other particles: either pulling

them apart or dragging them closer. This modified or dressed particle is what is labeled quasi-

particle. Regarding the second type of elementary excitations in a system, perhaps the simplest

1



2 Preface

example can be given by phonons : an elementary unit of lattice excitation, where each atom

vibrates around its equilibrium point. Another renowned type of collective mode are plasmons :

quanta of charge oscillation in the electron gas, which correspond to the oscillations observed in

classical plasma. Other examples are polarons, formed by the coupling of electrons and phonons

or excitons, electron-hole bound pairs.

As we have hinted above the pool of approaches dealing with the many-body problem is quite

large, since the problem is tremendously challenging. Later in this Preface we will detail a bit,

for historical reasons, the very first methodologies employed, which were mainly based on model

calculations. However in the last decades they yielded the way to computational approaches, in

particular in their ab-initio (meaning without employing externally given parameters or data)

implementation. Nowadays accurate calculations of quasi-particle band-gaps and spectral func-

tions from core and valence photoemission or from electron energy loss experiments or optical

absorption (just to mention a few type of experiments), can be carried out on a variety of solids

and molecules.

This work aims mainly at finding a better description of the coupling between quasi-particles

and plasmons in systems probed by means of photoemission experiments. The notion of quasi-

particle can be put on a more mathematical and rigorous theoretical ground by introducing the

so called one-particle propagator or one particle Green’s function. The state-of-the-art approach

for Green’s functions calculations, and through them, quasi-particles band-gaps [15] and (core

and valence) photoemission spectra [16, 17], is the so called GW approximation [14]. Lars Hedin

can be considered the progenitor of the approach: building on earlier works, in the middle of

the ’60s, he devised a theoretical and practical way to access the one-body Green’s function,

the main ingredients being a simple approximation to an effective potential -the self-energy- and

a closed set five integral equations, to be solved, in principle, self-consistently. Since then the

approach has been blooming and now it is implemented in the majority of ab-initio computer

codes. Its success has been exceeding expectations for band gaps of weak and moderately corre-

lated systems, but started to exhibit shortcomings or even failures on more correlated electron

solids. In addition to that its description of spectral functions is overall satisfactory, as far as

the quasi-particle peak and sometimes a first plasmon satellite are concerned, but in a few cases

turned out to unable to describe additional features, more or less well defined.

In order to remedy these shortcomings many paths have been beaten, particularly the one of

self-consistency and the one of vertex corrections beyond GW , however difficulties and open

questions remain. In this thesis an alternative route has been pursued: following earlier works

of Kadanoff, Baym and Schwinger, we reformulate the problem in terms of a set of non-linear,

differential, functional equations for the calculation of G and attempt to solve directly.

This thesis is structured as follows.

In Chapter (2) we provide an extended background on the one-body Green’s function: what is

its mathematical formulation, the physical significance and which quantity it can give access to.

We will then detail different approaches employed nowadays for Green’s function calculations:

starting with a straightforward Feynman-Dyson diagrammatic expansion, moving to self-energy

based methods, in particular we will analyze the different GW flavors to conclude with the so

called cumulant expansion approximation. We will also begin to detail more the approach we

will pursue throughout the rest of the work.
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In Chapter (3) we will introduce a linearization approximation to the set of functional differential

equations. We will show that it contains a great deal of physics, well beyond what is provided by

state-of-the-art approaches, and starting there, we will only focus on the linearized version of the

equations. We will then introduce a simple framework, so called 1-point model, where the set

of -linearized- equations reduces to a single algebraic differential equation, which we will solve

exactly. Plenty of room will is given to the discussion about solving the initial value problem

for the differential equation, in order to access a physical particular solution. Such discussion

is not a simple technicality: being this issue one of the drawbacks of our alternative approach,

we felt it was worth clarification and some extra elaboration. We finally elucidate the divergent

behaviour of the iterative solution for the DE and we discuss the mathematical nature of the DE

as a prototypical singular perturbation problem.

In Chapter (4) we compare the exact solution for the 1-point DE with established approxi-

mations, gaining greater insight into various GW flavors for a wide range of electron-electron

interactions strengths. We also devise some new approximations, namely an alternative vertex

correction, a continued fraction based approximation and a large electron-electron interaction

expansion. We test all of them against the exact result and generalize the most promising one

to their full function form (where possible).

In Chapter (5) we will go beyond the 1-point model results, by restoring the time dependence

(and consequently the frequency dependence) of the Green’s function in the differential equations.

The resulting N-times differential equation will be solved analytically by re-summing exactly its

iterative solution and the propagator thus obtained will have an exponential form which we show

to be analogous to the so-called cumulant expansion approximation for G. Later on we will dis-

cuss how the newly derived Green’s function has been employed by Matteo Guzzo et al. for the

calculation of a valence photoemission spectrum in Silicon, yielding an unprecedented agreement

with experimental data. We will finally provide an outlook on how to go beyond the cumulant

expansion approximation.

In the last chapter we will go back to the problem of solving the full functional set of (linearized)

differential equations for the one-body Green’s function. We will discuss all the hurdles encoun-

tered on the way to the solution, which we tried to devise with an ansatz, mainly based on insights

obtained from the 1-point framework. We will show how, within the chosen ansatz, composed

of three terms which are solutions to three simpler (than the original) differential equations, it

is still very challenging even to obtain the general solution for the full DE. We will focus on

the main difficulty encountered within our approach, namely the functional integration of one

piece of the ansatz. In this context we show how the integration can be performed upon the

introduction of a new functional quantity that has to be chosen so that i) it obeys a sum rule

and ii) some symmetry requirements. Once a proper choice for this new functional quantity is

made, one can access a formal (general) solution for the differential equation. Finally we present

our conclusions and perspective for future work.
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1.2 Review of model calculations for elementary excita-

tions

The first investigations of elementary excitations and their interactions were carried out mainly

by means of model calculations and/or straighforward application of perturbation expansions;

we will detail in the following two of them, which both provided a great deal of insights during

the ’60s.

The first model studied was the so-called high density electron gas. Its analysis revealed how a

series expansion in rs, reading:

E0 =
2.21

r2s
− 0.916

rs
+ 0.062ln(rs) + 0.096 + ǫrsln(rs) + φRs + · · · (1.1)

can provide the ground state total energy [11] in terms of the average inter-electron spacing rs
a;

and such expansion is valid for rs < 1 [12]. The elementary excitations in this system were

found to be quasi-particles and plasmons and the energy versus momentum curves were given

respectively, in the works of Gell-Mann [11], Quinn and Ferrell [18] (for quasi-particles) and

Bohm and Pines [19], Nozières and Pines [12] (for plasmons). In both cases one has expansions

in rs and p2/p2f , where pf is the momentum of the electron at the Fermi surface. One of

the main physical effects ongoing in the high density electron gas is the polarization of the

medium: it consists of the screening of the effective interactions between two electrons due

to the movements and readjustments of all the other particles in the medium. Pictorially the

screening can be seen as the ”cloud” following the propagation of a single-particle and can be

described by the longitudinal component of the dielectric function. A description of this system

can be obtained trough the so-called random phase approximation (RPA), where each momentum

transfer between couples of electron can be treated separately; it was shown by Hubbard [20]

that the RPA corresponds to summing only the lowest order polarization diagrams (so-called

bubble diagrams) of the perturbation expansion for the screened interaction W . In the figure

below we show the expansion in terms of diagrams. The results for the electron gas was employed

Figure 1.1: Here we show the diagrammatic expansion which was found by Hubbard [20] to be equiv-

alent to the RPA approximation. The screened interaction (wiggly line) is first recast in terms of a

Dyson-like equation containing the bare Coulomb potential (dashed lines) and then expanded in terms

of it, together with pairs of Green’s functions (so called bubbles in the diagrams language).

as a guideline for describing the behavior of the electrons in a simple metal (where instead of

aMeasured in units of the Bohr radius a0
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a uniform background of positive charge one has a lattice of positive ions), although keeping in

mind that, in this case, since 1.9 < rs < 5.5, the perturbation expansion associated with the RPA

approximation cannot be that accurate. However, with the use of interpolation schemes [20, 21],

it has been shown that the application of the theory presented above to metals may lead to an

accuracy of 10% in the calculation of the ground state total energy.

The other limit that has been treated from the downing of the many-body era is the low density

electron solid. In this limit it’s the Coloumb interaction dominating the behaviour of the electrons

in the solid: the resulting effect (due also to their very reduced kinetic energy with respect to the

potential one) will be their localization, up to forming a stable lattice (so called Wigner crystal).

An expansion [22, 23] going as
√
rs was found to describe the ground state energy:

E0 =
1.79

rs
+

2.66

rs
√
rs

+
α

r2s
+

β

r2s
√
rs

+ · · · (1.2)

where the first term is the potential energy of a localized electron, the second represents zero

point oscillations around each electronic site and higher terms in r−1/2
s describes the anharmonic

effects. When rs reaches the critical value of 20 [24], the solid will melt: this is clearly a limiting

case of the low density regime.

We will now examine a low density (dilute) electron gas, which one can obtain, for instance, from

the melting of a Wigner crystal. Once again the ground state total energy can be calculated

through perturbation theory (see e.g. Refs [25], [26]) and one finds two types of elementary

excitations: quasi-particles and zero sound vibrations. In both cases, in the energy versus mo-

mentum curve one finds that the expansion parameter is
a

r0
b, this shows how,the ruling physical

mechanism taking place in this regime, is the repeated scattering of pair of isolated particles.

They propagate independently, coming together several times and interacting only weakly with

the other particles.

One of the best approximations for the description of this multiple scattering landscape is ob-

tained through the summation of ladder diagrams [26, 27]: here the vertex term which should

account for the correlated motion of particle pairs is substituted by a scattering matrix (also

known as t-matrix), which describes precisely their repeated coming together and apart (see

figure below)

One may wonder if the main results of these model calculations are only valuable in the specific

Figure 1.2: Diagrams for the t-matrix: the expansion is in the bare coulomb interaction. In the last

diagram the t-matrix resums the multiple scattering processes.

limit for which they were conceived for. The answer is no: often they have been straightfor-

wardly extended and their range of accuracy and applicability has considerably increased. When

ba is a coefficient of the expansion appearing in all terms and r0 is the average interparticle spacing.
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extensions were either not possible or not so convenient, novel theories -some of which are now

applicable to real system calculations- were formulated and, as we will see all throughout this

thesis, many of them were (are) heavily relying on these early models: this is clearly a signature

that, despite some overall roughness, the early works I have just described contained already all

the important physics of many-body systems.

1.3 Probing excitations through spectroscopies

1.3.1 Photo-emission spectroscopy

The electronic structure of solids can be probed by different types of spectroscopies. In this

thesis preface, we will center our discussions around photoemission spectroscopy. This choice is

not accidental, rather it stems from the fact that the ingredient to calculate a photoemission

spectral function is the one-body Green’s function. Asphotoemission of this work is to improve

on the state-of-the-art approaches for Green’s function calculations, it’s worth providing some

details on which improvements a better method would yield and where.

Through photoemission one can investigate the bulk structure of atoms, molecules or solids by

analyzing how a beam of monochromatic light, with varying intensities (depending on the light

source employed), interacts with the sample. By simply analyzing the photoemitted electrons,

one can aim at reconstructing the occupied density of states of any material.

The physical mechanism behind photoemission is the photolectric effect, observed already by

Hertz [28] and Hallwachs [29] in 1887, but explained in terms of a quantum mechanical process

only later by Einstein [30]. Since then, the typical photoemission experience and experimen-

tal setup hasn’t changed much, schematically we can describe the process in three steps. i)

Monochromatic photons with energy ~ν and a given polarization impinge, with a given an-

gle α, on the sample, ii) photoelectrons are excited from either core or valence levels of the

sample and start traveling towards its surface, iii) the emitted photoelectrons (with energy

Ekin(α, β) > ~ν + Eφ, where Eφ is the work function and β is the emission angle) are analysed

by an electrostatic analyzer.

Different light sources can be employed, but in general one distinguishes mainly between ultravi-

olet photoemission (UPS), employed for angle resolved investigations of valence bands and x-ray

photoemission (XPS), where one rather probes core levels and hence higher binding energies.

Let’s now see more in detail how one can theoretically describe this physical process. The de-

scription we will employ is a single-particle one, which gives a first idea when interested in quasi-

particle energies (hence contains a moderate degree of many-body correlation). The observable

we are interested in is the so called photocurrent Jk (with k representing the momentum); by

using Fermi’s golden rule, within a first order perturbation theory it can be expressed as [31]:

Jk =
2π

~

∑

s

|〈Ψk,s|H1|Ψi〉|2 δ(ǫk − ǫs − ~ν) (1.3)

where |Ψi〉 and 〈Ψk,s| are respectively the initial (ground state) and the final state of the system

and s runs over all the possible excited (final) states, ǫk is the photoelectron energy and where
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Ĥ1
c is the perturbation added to the unperturbed Hamiltonian Ĥ0.

To proceed further one has to adopt the so-called sudden approximation, which is to say the

photoemitted electron is instantaneously removed from the solid, without undergoing any loss in

the trajectory to the vacuum: all the extrinsic effects are hence neglected. Such an approximation

is justified when high energy photons are employedd; assuming we are in such regime we can

write: 





|Ψk,s〉 = |k;N − 1, s〉 → c†k,s|N − 1, s〉
Jk =

2π

~

∑

sk

|〈Ψk|H1|Ψj〉|2 |〈N − 1, s|cj|N〉|2 =
∑

s

|∆kj |2Aj(ǫk − ~ν)
(1.4)

where ∆kj is the photoemission matrix element and Aj is the spectral functione, which can be

related to the one particle Green’s function as: Aj(ω) = − 1

π
|JmGj(ω)|.f

How can Aj(ω) look like?

For a non-interacting system it will have only a sharp quasi-particle peak: Aj(ω) = δ(ω− ǫj). In
the more realistic case of an interacting spectrum the peaks will broaden and additional structure

will appear. The following constraints will apply [35]:







∫ ∞

−∞
Aj(ω)dω = 1

∫ µ

−∞
Aj(ω)dω = 〈c†jcj〉 = nj

∫ ∞

−∞
ωAj(ω)dω = ǫFj

(1.5)

Using the sum rules, and knowing nj , ǫ
F
j and the quasi particle energy Ek one can guess that

i) some of the spectral weight has to be in the satellite region, ii) the sharpness of the QP will

be maximum at the Fermi surface, while away from it the peak will be broader, iii) electron-

hole pairs and plasmons are important excitations and the peak that they induce in Aj(ω) will

probably lie just a bit below (few plasmon energies) the QP peak.

All of the above observations are very valuable to give a qualitative idea of the shape of a typical

spectral function, however, in particular in the satellite region, little is know, in particular about

the number and shape of the possible peaks. We will come back to the calculation of satellites

in a photoemission spectra several times in this manuscript, in particular in Chap. (2) and more

in depth in Chap. (5).

cThe perturbing Hamiltonian employed here reads: H1 =
e

mec
A · p. This form is obtained neglecting the

second order term in the perturbation and neglecting surface photoemission.
dSuggestions to go beyond the sudden approximation came for example from Berglund and Spicer [32], with

their three-step-process or, later, from Schaich and Ashcroft [33] or Mahan [34], which opted for a one-step though

quantum mechanical process.
eNote the presence of one index only: it is due to considering only the diagonal of the transition matrix element.
fWe will see later on how this identity can be established.
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CHAPTER2
Description of one-particle excitations

In this chapter we will introduce the definition of Green’s function. We will first touch on

its origins, as it was devised in the context of mathematics, to later move to its utility and

significance in the field of many-body physics. After discussing some of its properties, a review

of the different methodologies to access it will be presented. More space will be devoted to the

self-energy based methods and in particular to the GW approximation: this choice is mainly due

to the blossoming interest in this methodology in the last twenty years. Finally we will introduce

the basic constituents of the alternative route which we want to pursue to calculate the one-body

Green’s function; while details about the methodology will occupy all the remaining chapters of

this thesis.

2.1 A brief introduction to second quantization

Before going into a detailed discussion of Green’s function in many-body physics, let’s very

briefly introduce the so-called second quantization formalism, which is particularly convenient

when treating systems with a variable number of particles due to the creation or destruction of

elementary excitations.

We will first introduce the three main quantum mechanical pictures found in second quantization

and later on field operators and Fock space.

2.1.1 Pictures

Let’s now discuss the three pictures, namely the Schrödinger, Heisenberg, and interaction one

(for a more detailed coverage see textbooks such as [36, 37]).

9
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Evolution operator

Let |Ψ(t)〉 be a solution of the time-dependent Schrödinger equation (TDSE). The time evolution

operator Û(t, t′) is defined by the relation

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉, (2.1)

i.e. it maps a wave function at time t0 into a wave function at time t. Inserting (2.1) in the

TDSE yields

i
∂Û(t, t0)

∂t
|Ψ(t0)〉 = Ĥ(t)Û (t, t0)|Ψ(t0)〉. (2.2)

Since |Ψ(t0)〉 is arbitrary we find that

i
∂Û(t, t0)

∂t
= Ĥ(t)Û (t, t0), (2.3)

with the initial condition U(t0, t0) = 0. Furthermore, one can show that the evolution operator

Û(t, t0) has the following properties

Û †(t, t′) = Û †(t, t1)Û
†(t1, t

′) (group property)

Û †(t, t′) = Û−1(t, t′) = Û(t′, t). (unitary operator)

The Schrödinger picture

In the Schrödinger picture operators and wave functions have their natural time-dependence.

Therefore if the Hamiltonian is explicitly time-independent in the Schrödinger picture, then one

can readily solve the operator differential equation (2.80), the solution being

ÛS(t, t0) = e−iĤS(t−t0), (2.4)

where the subscript ”S” indicates that the Schrödinger picture is used.

The Heisenberg picture

In the Heisenberg picture the wave functions are constant in time

|ΨH(t)〉 = |ΨS(t0)〉 = constant, (2.5)

and the operators are given by

ÔH(t) = Û †
S(t, t0)ÔS(t)ÛS(t, t0). (2.6)

If ĤS is explicitly time-independent then

ÔH(t) = eiĤStÔS(t)e
−iĤSt, (2.7)

where we used t0 = 0. One can show that operators in the Heisenberg picture evolve according

to the following equation of motion

i
dÔH(t)

dt
= i

[

∂Ô

∂t

]

H

+ [ÔH , ĤH ]. (2.8)
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The interaction picture

Let us consider the Hamiltonian

Ĥ(t) = H0 + Ĥ ′(t), (2.9)

where Ĥ0 is well understood and exactly solvable, and Ĥ ′(t) contains some perturbation to this

system. The wave function in the interaction picture is given by

|ΨI(t)〉 = eiĤ0,St|ΨS(t)〉, (2.10)

and the operators by

ÔI(t) = eiĤ0,StÔS(t)e
−iĤ0,St. (2.11)

In particular the operator Ĥ0 is the same in the Schrödinger and interaction picture. Therefore,

transforming the Schrödinger equation into the interaction picture gives

i
∂

∂t
|ΨI(t)〉 = Ĥ ′

I(t)|ΨI(t)〉, (2.12)

whereas the evolution of the operators follows the same equation of motion as in the Heisenberg

picture, with Ĥ = Ĥ0,

i
dÔI(t)

dt
= i

[

∂Ô

∂t

]

I

+ [ÔI , Ĥ0]. (2.13)

Since the Hamiltonian in the interaction picture is time-dependent, then the solution of the

differential equation (2.80) for the evolution operator is more complicated than in the Schrödinger

picture. Integrated between t and t0 (2.80) gives

ÛI(t, t0) = 1− i

∫ t

t0

(t
′
)ÛI(t

′
, t0)dt

′
, (2.14)

where we have used that Û(t0, t0)I = 1. One can attempt to solve the integral in Eq. (2.14) by

iteration, always keeping the proper ordering of the operators. The solution thus takes the form:

ÛI(t, t0)=T
∞∑

n=0

(−1)n

n!

(∫ t

t0

dt′H ′
I(t

′)

)n

. (2.15)

Note that since

|ΨI(t)〉 = eiĤ0,St|ΨS(t)〉 = eiĤ0,StÛS(t, t0)|ΨS(t0)〉 = eiĤ0,StÛS(t, t0)|e−iĤ0,St0ΨI(t0)〉 (2.16)

then

ÛI(t, t0) = eiĤ0,StÛS(t, t0)e
−iĤ0,St0 . (2.17)

Equation (2.77 ), together with (2.7) and (2.11), allows us to derive the following transformation

between the Heisenberg and interaction picture for an operator Ô,

ÔH(t) = eiĤStÔS(t)e
−iĤSt = eiĤSte−iĤ0,StÔI(t)e

iĤ0,Ste−iĤSt = ÛI(0, t)ÔI(t)ÛI(t, 0), (2.18)

where in the last step we use the fact that Û †
I (t, 0) = ÛI(0, t).



12 Description of one-particle excitations

2.1.2 Field operators

The occupation number vectors are basis vectors in an abstract linear vector space, the Fock

space F . This latter consists of the direct sum of all N -particle Hilbert spaces H(N)
a , with

N = 0, 1, 2, ....

F = H(0) ⊕H(1) ⊕H(2)
a ⊕ · · · (2.19)

The Fock space contains states for unlimited and variable number of particles. We can now

define the creation and annihilation operators in the Fock space. The operator of annihilation

ai and creation a†i change a N-particle state in a N − 1- and N + 1-particle state, respectively:

ai|n1, ..., ni, ...〉 = ni · (−1)
∑

j<i nj |n1, ..., ni − 1, ...〉 (2.20)

a†i |n1, ..., ni, ...〉 = (1 − ni) · (−1)
∑

j<i nj |n1, ..., ni + 1, ...〉. (2.21)

In a simplified and clearer way this means:

ai|n1, ..., 1i, ...〉 = ±|n1, ..., 0i, ...〉 a†i |n1, ..., 1i, ...〉 = 0 (2.22)

ai|n1, ..., 0i, ...〉 = 0 a†i |n1, ..., 0k, ...〉 = ±|n1, ..., 1i, ...〉. (2.23)

The operator ai destroys hence a particle in the state ϕi and the number of particle decreases by

one, if ϕi is occupied, otherwise the result is zero. The operator a
†
i creates a particle in the state

ϕi, provided that it is empty (otherwise the result is zero), and hence the number of particle

increases by 1.

Applying the creation operator to the vacuum |0, 0, ....〉, all possible N-particle states can be

created:

|n1, n2, ..., nN 〉 = a†1a
†
2...a

†
N |0, 0, ....〉. (2.24)

We now arrive at the most important property of the creation and annihilation operators for

fermions: their anti commutation relations,

{ai, aj} = 0 {a†i , a
†
j} = 0 {a†i , aj} = δij . (2.25)

If {φi(x)} is an orthonormal basis set (
∫
dxφ∗i (x)φj(x) = δij) then one can define new anni-

hilation and creation operators as:

ψ(x) =
∑

i

φi(x)ai (2.26)

ψ†(x) =
∑

i

φ∗i (x)a
†
i . (2.27)

The operators ψ(x) et ψ†(x) are traditionally called field operators. These operators satisfy

the same anti commutation relations as the operators ai and a
†
i , i.e.,

{ψ(x), ψ(x′)} = 0 {ψ†(x), ψ†(x′)} = 0 {ψ†(x), ψ(x′)} = δ(x− x′). (2.28)



2.2 The Green’s function 13

Using the field operators one can express each one-body and two-body operator Ô1 and Ô2,

respectively as

Ô1 =

∫

dxψ̂†(x)o(x)ψ̂(x) (2.29)

Ô2 =

∫

dxdx
′
o(x, x

′
)ψ̂†(x)ψ̂†(x

′
)ψ̂(x

′
)ψ̂(x). (2.30)

Therefore, a general Hamiltonian

Ĥ(t) =

N∑

i

h(xi, t) +
1

2

N∑

i6=j

1

|ri − rj |
(2.31)

can be written, in terms of the field operators, as

Ĥ =

∫

dxψ†(x)h(x, t)ψ(x) +
1

2

∫

dxdx′ψ†(x)ψ†(x′))
1

|r − r′|ψ(x
′)ψ(x). (2.32)

We will use this framework to define the Green’s function in many-body physics.

Let’s now spend a few words on the mathematical meaning of a Green’s function.

2.2 The Green’s function

Suppose we have a first order homogeneous or inhomogeneous partial differential equation read-

ing:
[
i

c

∂

∂t
− L(r)

]

φ(r, t) = 0, (2.33a)

[
i

c

∂

∂t
− L(r)

]

ψ̂(r, t) = f(r, t), (2.33b)

where L(r) is a time-independent, hermitian, linear differential operator and the same boundary

condition as for φ(r, t) and ψ̂(r, t) apply and c is just some positive constant.

The Green’s function G(r, r
′
, t, t

′
) is defined as solution of:

[
i

c

∂

∂t
− L(r)

]

G(r, r
′
, t, t

′
) = δ(r − r

′
)δ(t − t

′
), (2.34)

Since L(r) is time-independent one can express the Green’s function as a function of the time

difference t− t
′
= τ , so that its Fourier transform reads:

G(r, r
′
, τ) =

1

2π

∫ ∞

−∞
dω

′
g(r, r

′
, ω

′
)e−iω

′
τ . (2.35)

Substitution of the F -transform into (2.34) yields:
[ω

c
− L(r)

]

G(r, r
′
, ω) = δ(r − r

′
). (2.36)

The above expression somehow suggests to see G as the inverse of the operator L(r). If we

replace L with a well known operator: L(r) → −i ∂
∂t

+ Ĥ0(x) we can recast Eq. (2.36) as:

[

− i

c

∂

∂t
+ Ĥ0(r)

]

G(r, r
′
, ω) = −δ(r − r

′
). (2.37)
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We will see now, throughout the rest of the chapter, how physicists define, use and calculate the

one-body Green’s function.

2.3 The Green’s function in Many-body physics

The definition of the zero-temperature, equilibrium, time-ordered, one-body Green’s function for

a fermion reads:

G(1, 2) = −i
〈

ΨN
0 |T

[

ψ̂H(1)ψ̂†
H(2)

]

|ΨN
0

〉

, (2.38)

here and throughout the manuscript atomic units (~ = e2 = me = 1) are used. In (2.38) the index

(1), for the sake of compactness, includes the space, spin and time variables: (1) = (x1, t1) =

(r1, σ1, t1). Ψ
N
0 is the N-body ground state wave function of the system, ψ̂H(1), ψ̂†

H(2) are field

operators in the Heisenberg representation:

{

ψ̂H(1) = eiHt1 ψ̂S(r1, σ1)e
−iHt1

ψ̂†
H(2) = eiHt2 ψ̂†

S(r2, σ2)e
−iHt2

(2.39)

(ψ̂†
S is the corresponding Schrödinger representation) and T is the so called Wick operator, which

accounts for the time ordering of the field operators. Eq. (2.38) can be equivalently recast as:

G(1, 2) = −i
[

θ(t1 − t2)
〈

Ψ0|
[

ψ̂H(1)ψ̂†
H(2)

]

|Ψ0

〉

− θ(t2 − t1)
〈

Ψ0|
[

ψ̂†
H(2)ψ̂H(1)

]

|Ψ0

〉]

(2.40)

= G>(1, 2)θ(t1 − t2) +G<(1, 2)θ(t2 − t1) (2.41)

where G>(1, 2) and G<(1, 2) are the so-called greater and lesser Green’s functions and are defined

as follows: 





G>(1, 2) = −i
〈

Ψ0|
[

ψ̂H(1)ψ̂†
H(2)

]

|Ψ0

〉

G<(1, 2) = i
〈

Ψ0|
[

ψ̂†
H(2)ψ̂H(1)

]

|Ψ0

〉 (2.42)

This latter notation turns out to be practical when dealing extensively and analytically with the

different time-orderings.

The one-particle Green’s function expresses the probability amplitude for an electron (a hole)

which at time t1 (t2) is added to the system (in its ground-state) in r1 (r2) with spin σ1 (σ2) to

be found at r2 (r1) with spin σ2 (σ1) at a time t2 > t1 (t1 > t2). For this reason sometimes in

literature the greater Green’s function is called electron Green’s function and the lesser Green’s

function hole Green’s function. Which kind of information the one-body Green’s function can

provide us with? There are mainly three types [36], all of them very useful for condensed matter

physicists, namely: i) the expectation value of any single-particle operator in the ground state

of the system, ii) the total ground state energy, iii) the excitation spectrum.

Let’s proceed with order. We have seen that with a time-independent Hamiltonian any one-body

operator Ô can be expressed in the second quantization formalism as in Eq. (2.29); a comparison

with the definition of the GF , Eq. (2.40), shows that the expectation value 〈Ψ0|Ô|Ψ0〉 can be

expressed in terms of the one-particle Green’s function as:

〈Ô〉 = −i lim
x2→x1

lim
t2→t+1

∫

dx1o(x1)G(x1, t1;x2, t2) (2.43)
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where the limit t+1 = t1+ δ, with δ a small positive quantity. For example, the expectation value

of the electronic density is the diagonal in space, spin, and time of the GF:

〈n̂(x1)〉 = −iG(x1, t1, x1, t+1 ). (2.44)

The Green’s function can, maybe surprisingly at first sight, be employed also for calculating a

quantity which in principle contains two-body operators (for the evaluation of which the two-

body Green’s function is needed, rather than the one body-one), namely the ground state total

energy. Galitskii and Migdal [26, 36] first, realized that this was possible starting from the

equation of motion for the field operator (see Eq. (2.8)). Some algebra leads to:

E = 〈T̂ 〉+ 〈V̂ 〉 = − i

2

∫

dx1 lim
x2→x1

lim
t2→t1+

[

i
∂

∂t1
− 1

2
∇2

x1

]

G(x1, x2; t1 − t2). (2.45)

We will now deal with the third type of observable obtainable from the one-body Green’s function,

that is the spectral function.

However, before proceeding further with the discussion, we will move to the representation of

the one-body GF in the frequency domain: this is an undoubtedly useful transformation in the

case of an Hamiltonian which does not depend explicitly on time a. We report below the main

algebraic steps needed to switch from the time to the frequency domain. We will treat only the

so-called greater Green’s function, since the lesser can be treated in an analogous way. Writing

down the field operators in the Heisenberg picture explicitly yields:

G>(x1, t1, x2t2) = −iθ(t1 − t2)〈ΨN
0 |eiĤt1ψ̂S(x1)e

−iĤt1eiĤt2 ψ̂†
S(x2)e

−iĤt2 |ΨN
0 〉. (2.46)

Inserting the completeness relation in Fock space bewteen couples of field operators combined

with the action of the exponential operators on the ground state and the (N +1) particle states

yields:

G>(x1, t1, x2, t2) = −i
∑

s

θ(t1 − t2) e
−i(EN+1

s −EN
0 )(t1−t2)〈N |ψ̂(x1)|ΨN+1

s 〉〈ΨN+1
s |ψ̂†(x2)|N〉.(2.47)

We want now to exploit the fact that the GF only depends on the difference between t1 and t2.

To this purpose we define the so-called Feynman-Dyson amplitudes:

fs(x1) = 〈ΨN
0 |ψ̂S(x1)|ΨN+1

s 〉 (2.48a)

f∗
s (x2) = 〈ΨN+1

s |ψ̂†
S(x2)|ΨN

0 〉. (2.48b)

Eq. (2.47) becomes:

G>(x1, x2, τ) = −i
∑

s

θ(τ) e−i(EN+1
s −EN

0 )τfs(x1)f
∗
s (x2) (2.49)

where τ = t1 − t2. Manipulating G< in an analogous way and upon introducing a second set of

amplitudes which reads:

gp(x1) = 〈ΨN−1
p |ψ̂S(x1)|ΨN

0 〉 (2.50a)

aThis has the important implication that the one-body G depends only on the difference of the times τ12 =

t1 − t2
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g∗p(x2) = 〈ΨN
0 |ψ̂†

S(x2)|ΨN−1
p 〉. (2.50b)

one ends up with full time-ordered Green’s function reading:

G(x1, x2; τ) = − i
[

θ(τ)
∑

s

e−i(EN+1
s −EN

0 )τfs(x1)f
∗
s (x2)

− θ(−τ)
∑

p

ei(E
N−1
p −EN

0 )τgp(x1)g
∗
p(x2)

]

. (2.51)

We can now Fourier-transform (F -T) the above expressionb Using the following expression for

the Heaviside step function θ(τ),

θ(τ) = − 1

2iπ
lim

η→ 0+

∫ ∞

−∞
dω

1

ω + iη
e−iωτ . (2.54)

Eq. (2.51) becomes:

G(x1, x2;ω) = lim
η→+0

[
∑

s

fs(x1)f
∗
s (x2)

ω −
(
EN+1

s − EN
0

)
+ iη

+
∑

p

gp(x1)g
∗
p(x2)

ω −
(
EN

0 − EN−1
p

)
− iη

]

(2.55)

In Eq. (2.55) the quantities of interest are sitting in the denominator: the energy differences
(
EN+1

s − EN
0

)
and

(
EN

0 − EN−1
p

)
are the true electron addition and removal energies of the

system. The first set of energies represents the energies gained when an electron is added to the

system (addition energies); the largest electron addition energy is the electronic affinity A of the

system. The second set represents the energies for the removal of an electron from the system

(removal energies); the smallest electron removal energy is the ionization potential I. If the

system under consideration is a metal, the energy I = A is the chemical potential µ; instead, if

the system is insulating, the band gap Eg is defined as the energy difference between ionization

potential and electron affinity, i.e. Eg = I − A, and the Fermi level lies somewhere inside the

gap. Note how the greater Green’s function is analytic in the upper half of the complex plane,

whereas the lesser Green’s function is analytic in the lower half of the complex plane, since their

poles lie in the corresponding opposite half of the complex plane, as shown in in Fig. 2.3

Figure 2.1: Figure from [38]. Poles of the time ordered Green’s function in the complex ω-plane. The

poles (crosses) are located above the real axis for frequencies lower than the chemical potential µ (lesser

GF), and below for frequencies greater than µ (greater GF).

bWe use the following definition of Fourier transform of a general function f :

f̃(ω) =

∫

dtf(t)eiωt ; (2.52)

and for the reverse Fourier transform

f(t) =
1

2π

∫

dωf̃(ω)e−iωt; (2.53)
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2.3.1 The spectral representation for the Green’s function

The Lehmann representation for the Green’s function will be the starting point to discuss its

spectral representation. One can recast the GF as:

G(x1, x2;ω) =

∫ µ

−∞
dω

′ Ah(x1, x2;ω
′
)

ω − ω′ − iη
+

∫ ∞

µ

dω
′Ae(x1, x2;ω

′
)

ω − ω′ + iη
(2.56)

where Ae (Ah) is called electron (hole) spectral function and is a real valued function for an

Hamiltonian independent of magnetic fields. Using the relation

lim
η→0+

g(x)

x± iη
= P g(x)

x
∓ iπg(x)δ(x) (2.57)

where P is the Cauchy principal value, one can reformulate Eq. (2.56) as:

G(x1, x2;ω) = iπ

∫ µ

−∞
dω

′
Ah(x1, x2;ω

′
)δ(ω − ω

′
) +

∫ µ

−∞
dω

′Ah(x1, x2;ω
′
)

ω − ω′

− iπ

∫ ∞

µ

dω
′
Ae(x1, x2;ω

′
)δ(ω − ω

′
) +

∫ ∞

µ

dω
′Ae(x1, x2;ω

′
)

ω − ω′ (2.58)

Since both Ah and Ae are real valued, by comparing the above expressions, one can write the

identity:

Ah(x1, x2;ω) =
1

π
ImG(x1, x2;ω) ω < µ

Ae(x1, x2;ω) = − 1

π
ImG(x1, x2;ω) ω > µ (2.59)

The prototypical spectral function may resemble the one in Fig. 2.5. The advantage of working

with spectral functions over Green’s function is at least twofold. Firstly, as we have just demon-

strated the two quantities are related in a very straightforward manner and if we have access to

one, obtaining the other is relatively simple, however, while spectral functions are real, Green’s

function are not. Secondly spectral functions are directly related to quantities measurable in

direct and inverse photo emission experiments: this fact makes them very attractive since they

are some observable that both theorists and experimentalists can access at the same time.
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Figure 2.2: From in [39] (Fig. 3). Typical spectral functions of an extended system resolved in k-

space. In Figure a) we can observe the spectral function of a system of non-interacting electrons: it

is simply a delta-peak function, which indicates that the life-time of the excitations in such system is

infinite. In Figure b) the spectral function of a fully interacting system is shown. The main peak,

so-called quasi-particle (QP) peak appears together with additional structures. Close to the Fermi level

the QP peak is very sharp and well defined, the renormalization effects on the single-particle peak is

fairly small. The secondary structure (broader peak), is called satellite and it accounts for some other

type of many-particle excitation. Often it’s a plasmonic one (collective charge density oscillations), but

not only: it could be also a mixing of different excitations, making almost impossible to associate each

peak to a particular excitation. An accurate description of QP peaks is, nowadays, achieved routinely,

while the description of satellite peaks is already more challenging, in particular when satellite replicas

are to be reproduced. Ideally, however, one wishes to have such an accurate Green’s function to be able

to obtain a spectral function accounting for all many-body effects in a given material.

2.4 From the definition of the one-body Green’s function

to its calculation

Suppose we are dealing with a many-body system, described using the following Hamiltonian [36]

(in the second quantization formalism):

Ĥ =

∫

dx1ψ̂
†(x1)h(r1)ψ̂(x1) +

1

2

∫

dx1dx2ψ̂
†(x1)ψ̂

†(x2)v(r1, r2)ψ̂(x2)ψ̂(x1) (2.60)

being h(r1) = −1

2
∇2 + Vext(r1) and v(r1, r2) respectively the kinetic energy operator and the

instantaneous Coulomb potential. Obviously the definition in Eq. (2.38) cannot provide the value

of the Green’s function because it assumes the ground state wave function of the system to be

known, and in general this is not the case. So in practice one propagates in time the one-body

G, that is:

i
∂

∂t1
G(x1, t1, x2, t2) or equivalently i

∂

∂t2
G(x1, t1, x2, t2). (2.61)
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From now on we will work only with the first of the two expressions (the derivative with respect

to t2 can be treated in the same way). Furthermore we work in the Heisenberg picture; for

simplicity we will drop the subscript ”H” indicating this picture in the following. Differentiating

Eq. (2.40) with respect to t1 we obtain:

∂

∂t1
G(x1, t1, x2, t2) = −i

[

〈ΨN
0 | ∂
∂t1

θ(t1 − t2)ψ̂(x1, t1)ψ̂
†(x2, t2)

+ θ(t1 − t2)
∂

∂t1
ψ̂(x1, t1)ψ̂

†(x2, t2)

− ∂

∂t1
θ(t2 − t1)ψ̂

†(x2, t2)ψ̂(x1, t1)

− θ(t2 − t1)ψ̂
†(x2, t2)

∂

∂t1
ψ̂(x1, t1)|ΨN

0 〉
]

, (2.62)

Using
∂

∂t1
ψ̂(x1, t1) = −i

[

ψ̂(x1, t1), Ĥ
]

, with some algebra Eq. (2.62) becomes:

∂

∂t1
G(x1, t1, x2, t2) = −iδ(x1, x2)δ(t1, t2)− ih0(x1)〈ΨN

0 |T
[

ψ̂(x1, t1)ψ̂
†(x2, t2)

]

|ΨN
0 〉

−
∫

dx3dt3v(x1, t1, x3, t3)
[
θ(t1, t2)〈ΨN

0 |ψ̂†(x3, t3)ψ̂(x3, t3)ψ̂(x1, t1)ψ̂
†(x2, t2)|ΨN

0 〉

−θ(t2 − t1)〈ΨN
0 |ψ̂†(x2, t2)ψ̂

†(x3, t3)ψ̂(x3, t3)ψ̂(x1, t1)|ΨN
0 〉

]
. (2.63)

In the last two lines of Eq. (2.63) the pair of operators ψ̂†
H(3)ψ̂H(3) is actually evaluated at

t3 = t1, due to the δ(t1, t3) coming from the Coulomb potential v(1, 3).

We have finally obtained an expression containing two different combination of field opera-

tors, namely the well known one for the one-body Green’s function (G(1, 2)) and a new, more

complicated one, which we recognize being a two-body Green’s function:

G(1, 3; 4, 2) = −i2
〈

ΨN
0 |T

[

ψ̂H(1)ψ̂H(3)ψ̂†
H(2)ψ̂†

H(4)
]

|ΨN
0

〉

. (2.64)

Eq. (2.63) can then be recast as:

[

i
∂

∂t1
− h(r1)

]

G(1, 2) + i

∫

d3 v(1+, 3)G2(1, 3; 2, 3
+) = δ(1, 2), (2.65)

where we have replaced v(1, 3) with v(1+, 3) to take into account the correct ordering of field

operators. Eq. (Eqn:eom4) is the so-called equation of motion (EOM) for the one-body G. The

differential form
[

i
∂

∂t1
− h(r1)

]

is not an easy one to deal with. We can employ the following

definition:

[

i
∂

∂t1
− h(r1)

]

G0(1, 2) = δ(1, 2), (2.66)

to recast Eq. (2.65) in a more handy form:

G(1, 2) = G0(1, 2)− i

∫

d3d4G0(1, 3)v(3
+, 4)G2(3, 4; 2, 4

+). (2.67)
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Here G0, the non-interacting Green’s function, determines the appropriate initial condition in

time c, note in fact that the solutions to (2.65) and (2.66) are not unique.

If we turn to the expression in (2.67) is it obvious that no advantage has been gained over the

initial EOM for G: to calculate the one-body Green’s function the knowledge of the two-body one

is now required. The EOM for the G2 would in turn depend on the knowledge of the three-body

Green’s function, which, if propagated in time too would depend on a four-body one and so

on and so forth. Definitely we do not want to express the one-body G through a complicated

hierarchy of higher order Green’s functions [41].

One way to obtain a closed expression for G was first devised by Schwinger [42] in the ’50s.

Roughly speaking, the physical intuition behind Schwinger functional machinery is that if a

system is probed at a given time, through an external, time dependent, fictitious potential and

which is then let vanish at some other time, one can observe the polarization of the system and

the propagation of G. Let’s now present the actual mathematical framework.

The one-body Green’s function is first generalized, which is to say it is defined for a -now time

dependent- many-body Hamiltonian, to which a term containing an external, time-dependent

potential ϕ(t) has been added, namely Ĥ ′(t) =
∫
dxψ†

S(x)ϕ(x, t)ψS (x). The GF now reads:

G(1, 2; [ϕ]) = −i
〈Ψ0|T

[

Ŝψ̂H(1)ψ̂†
H(2)

]

|Ψ0〉

〈Ψ0|T [Ŝ]|Ψ0〉
(2.68)

where the operator Ŝ is formally defined as

Ŝ = e
−i

∫ ∞

−∞
dtĤ ′

I(t)
. (2.69)

with Ĥ ′
I(t) = eiĤtĤ ′(t)e−iĤt in the interaction picture. Eq. (2.68) can be differentiated within

a very similar procedure to the one illustrated for the equilibrium (ϕ = 0) Green’s function

yielding an expression equivalent to that of Eq. (2.67), where all the Green’s function appearing

are generalized to non-equilibriumd. Within this generalized writing for the GF one can show

that the two-body Green’s function can be recast in an exact way ase

G2(3, 4; 2, 4
+; [ϕ]) = G(3, 2; [ϕ])G(4, 4+; [ϕ])− δG(3, 2; [ϕ])

δϕ(4)
. (2.70)

Finally inserting (2.70) into the generalized version of (2.67) yields a set of functional differential

cFor an extensive discussion on this issue see i.e. [40], Chap.1, pagg. 4-8. Briefly: it is convenient to discuss this

issue for finite temperatures and imaginary times (t = iβ, where β = 1
kbT

) and one first finds an important condi-

tions on the times for the lesser and the greater Green’s function, namely G<(1, 1
′
)|t1=0 = ±eβµG>(1, 1

′
)|t1=−iβ .

Further considerations on the boundaries for t1 yield an analogous conditions for the full Green’s function:

G(1, 1
′
)|t1=0 = ±eβµG(1, 1

′
)|t1=−iβ . Hence introducing a given G0 implicitly means to take care of the bound-

ary condition implied by the time- derivative
dTo do so it is sufficient to recast the one-body term of the Hamiltonian as h(r1, t1) = − 1

2
∇2 + Vext(r1) +

ϕ(r1, t1) embedding also the external potential ϕ.
eNote that Eq. (2.70) refers to the three-point G2, which is needed in Eq. (2.67). A relation similar to (2.70)

exists for the more general four-point G2, where a non local external potential ϕ(1, 2) appears.
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equations [40] for the unknown G:

G(1, 2; [ϕ]) = G0(1, 2) +

∫

d3G0(1, 3)VH(3; [ϕ])G(3, 2; [ϕ])

+

∫

d3G0(1, 3)ϕ(3)G(3, 2; [ϕ])

+ i

∫

d4d3G0(1, 3)v(3
+, 4)

δG(3, 2; [ϕ])

δϕ(4)
, (2.71)

where VH(3) = −i
∫

d4v(3, 4)G(4, 4+; [ϕ]) is the Hartree potential. Notice that since the Hartree

potential contains the Green’s function, the above equations are non-linear. Once (2.71) is solved,

the equilibrium G can be obtained by taking the limit of vanishing potential ϕ = 0. The calcu-

lation of G starting from (2.71) requires the solution of a set of coupled, non-linear, first-order

differential equations (DEs), which is clearly a non trivial task.

Furthermore one would need an initial condition concerning G as a function of the potential

ϕ, to completely define the desired solution of this DE, since the derivative
δG([ϕ])

δϕ
has been

introduced. This second initial value problemf is a really complicated one: to be solved the

knowledge of the Green’s function for a given external potential ϕ is required and unfortunately,

there is no value of ϕ for which a full Green’s function is already known a-priori.

The above arguments elucidate how the calculation of the one-body Green’s function is a very

challenging task. This is the reason why, along the years, many different routes were pursued.

Among them the most ancient approach is the so-called straightforward diagrammatic expan-

sion, which looks for an expression for the Green’s function in terms of an infinite series, which is

truncated at some order and has to be resummed. A second type is constituted by the so-called

self-energy based methods: it presupposes the reformulation of Eq. (2.71) into an integral form,

in which an effective potential, called most often self-energy (Σ), is introduced. Approximations

for Σ are sought and inserted in the integral equation for G, which is then solved within iter-

ative schemes. The third class encompasses approaches which aim at calculating the GF in a

direct way and are neither relying on approximations for Σ nor on finite order diagrammatic

expansions. An eminent approach belonging to this group is the so called cumulant expansion

approximation, which originally was derived as an exact solution to a model problem.

Another direct way to calculate the one-body Green’s function could be to solve, at least ap-

proximatively, the set of differential equations in (2.71): it is the approach that will be explored

in this work.

2.4.1 Straightforward diagrammatic expansion

We will sketch here an approach to calculate the one-body Green’s function which is, perhaps,

the oldest ever conceived, and it is deeply rooted in quantum field theory. More detailed presen-

tation of the approach can be found in a number of textbooks, e.g. [36], [43], [37] and others.

The main idea is to express the full Green’s function within a perturbation expansion in terms of

fThe first initial value problem, or better boundary problem, was instead set by the differentiation with respect

to the time of the GF
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the non-interacting GF (G0) and the bare Coulomb potential v. The main ingredients needed for

the expansion will be the so called interaction or mixed picture for the representation of the field

operators and the evolution operator defined accordingly to this new framework. We will then

employ the Gell-Mann and Low theorem [44] and finally the Wick’s theorem first and Feynman

diagrams afterwards will be precious to write down the various terms of the expansion.

Let’s begin with the many-body Hamiltonian Ĥ which we will now split into two parts: Ĥ0,

which represents a soluble problem and Ĥ ′, which instead contains all those effects which can be

difficult to describe (i.e. the two-body Coulomb potential):

Ĥ = Ĥ0 + e−ǫ|t|Ĥ ′, (2.72)

where ǫ is a small positive quantity which allows for an adiabatic switching on (and off) [45] of

the perturbation; this is an essential requisite for all the considerations we are about to make. At

very large times (t = ±∞) the Hamiltonian (2.72) reduces to Ĥ0, which we can solve, whereas

at t = 0 it becomes the dull Hamiltonian of the interacting system.

The interaction picture is a very handy representation of state vectors and operators when one

has an Hamiltonian in the form (2.72). In this framework Ĥ ′ fully determines the evolution of

the state vectors, while Ĥ0 governs the evolution of the operatorsg, specifically:

i
∂

∂t
|Ψ̂ǫ(t)〉I = e−ǫ|t|Ĥ ′

I(t)|Ψ̂ǫ(t)〉I = e−ǫ|t|eiĤ0tĤ ′e−iĤ0t|Ψ̂ǫ(t)〉I (2.73)

and

i
∂

∂t
ÔI(t) =

[

ÔI(t), Ĥ0

]

. (2.74)

Any state vector in the interaction picture evolves from the time instant t0 to the instant t

according to:

|Ψǫ(t)〉I = Ûǫ(t, t0)I |Ψǫ(t0)〉I (2.75)

where Uǫ(t, t0) is the so called evolution operator. Note that since

|Ψǫ(t)〉I = eiĤ0t|Ψǫ(t)〉S = eiĤ0tÛǫ(t, t
′)|SΨǫ(t

′)〉S = eiĤ0tÛǫ(t, t
′)|Se−iĤ0t

′
Ψǫ(t

′)〉I (2.76)

then

Ûǫ(t, t
′)I = eiĤ0tÛǫ(t, t

′)Se
−iĤ0t

′
. (2.77)

Furthermore,

Û †
ǫ (t, t

′) = U−1
ǫ (t, t′) (2.78a)

Û †
ǫ (t, t1)Û

†
ǫ (t1, t

′) = Û †
ǫ (t, t

′) (2.78b)

Û †
ǫ (t, t1)Û

†
ǫ (t1, t) = 1 =⇒ Û †

ǫ (t, t1) = Û †
ǫ (t1, t). (2.78c)

Using (2.73) (2.75) it is easy to see that Ûǫ satisfies the following differential equation:

i
∂

∂t
Uǫ(t, t0)I = e−iǫ|t|Ĥ ′

I(t)Uǫ(t, t0)I , (2.79)

gIt may be clear after this explanation why the name ”mixed”, because it is the analogous of the Schrödinger

picture on one hand and of the Heisenberg one on the other
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which integrated between t and t0 gives

Ûǫ(t, t0)I = 1− i

∫ t

t0

e−iǫ|t|Ĥ ′
I(t

′
)Ûǫ(t

′
, t0)Idt

′
, (2.80)

where we have used that Ûǫ(t0, t0)I = 1. One can attempt to solve the integral in Eq. (2.80) by

iteration, always keeping the proper ordering of the operators. The solution thus takes the form:

Ûǫ(t, t0)I = T
∞∑

n=0

(−1)n

n!

∫ t

t0

dt′e−iǫ|t′|H ′
I(t

′). (2.81)

Let’s now go back to the definition of the one-particle GF and express the field operators in

the newly defined interaction picture (rather than in the Heisenberg one). We simply need the

following identities for the operators:

ψ̂H(t1) = eiĤt1e−iĤ0t1ψ̂I(t1)e
iĤ0t1e−iĤt1 = Ûǫ(0, t1)ψ̂I(t1)Ûǫ(t1, 0) (2.82)

where in the last step we have used Eq. (2.77), and the state vectors

|Ψǫ(t = 0)〉H = |Ψǫ(0)〉I = Uǫ(0,±∞)|Φ0〉. (2.83)

In this last equation we relate a fully interacting many-body state of Ĥ to the non-interacting

ground state of Ĥ0
h. Clearly |Ψǫ(t = 0)〉 depends on the magnitude of ǫ, i.e. on how fast the

perturbation Ĥ ′ is turned on. If this is done adiabatically we can hope that at each time the

ground state adjusts to the potential strength at that time; in this case |Ψ0〉 = limǫ→0 |Ψǫ(t = 0)〉.
The validity of this relation is guaranteed, for any non-degenerate |Φ0〉 i by the Gell-Mann and

Low theorem which states thatj:

|Ψ̂0〉 = lim
ǫ→0

Uǫ(0,±∞)|φN0 〉
〈φN0 |Uǫ(0,±∞)|φN0 〉 . (2.84)

Hence the one-body Green’s function can be written as:

G(x1, x2; t1, t2) = −i lim
ǫ→0

〈Φ0|Uǫ(∞, t1)ψ̂I(x1, t1)Uǫ(t1, t2)ψ̂
†
I(x2, t2)Uǫ(t2,−∞)|Φ0〉

〈Φ0|Uǫ(∞,−∞)|Φ0〉
(2.85)

Using (2.81) one can rewrite (2.85) as

G(x, x
′
; t, t

′
) = −i lim

ǫ→0

[ 1

〈Φ0|Uǫ(∞,−∞)|Φ0〉

∞∑

n=0

−in
n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

× e−iǫ(|t1|+···+|tn|)〈Φ0|v(t1)I · · · v(tn)I ψ̂(x, t)I ψ̂†(x
′
, t

′
)I |Φ0〉 (2.86)

hNote that do to so we have used the fact that all kets are the same at t = 0 in all pictures and where |Φ0〉 is

the ground state for H0, or the non-interacting part of our system
iOtherwise care has to be takes in choosing the initial states between the degenerate ones, for a complete

discussion of this issue see e.g. [46]
jA proof of the theorem can be found in the original paper by Gell-Mann and Low [44] and also in textbooks,

e.g. in [36]. Just a gloss about a few technicalities of the GL theorem. i Note the denominator appearing

in the theorem: it is indispensable to cancel out divergences coming out from an expansion of the numerator -a

pedagogical example of this issue can be found in [46]-. ii) The theorem holds both for t = ±∞: it means that the

initial and final state of the system must be the same. This may be not so obvious, however it is mathematically

sound. Also note that switching on and off a particle particle interaction may look trickier than doing the same

operation on an external potential. iii) The state |ψ̂N
0 〉 is not guaranteed to be the ground state of the interacting

system, but just a state, however in general it really is.
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(a) (b)

Figure 2.3: Fig 4.5a shows a diagram which appears both in the numerator and the denominator of

Eq. (2.86). It is the product of a non-interacting Green’s function (depicted with a fermion straight line)

and two pairs of hole-electron Green’s function interacting with each other. In Fig 4.5b another type of

disconnected diagram is depicted: it is the product of a non interacting Green’s function with a particle

interacting with itself.

Considering Ĥ ′ as the Coulomb potential in the second quantization, one ends up with a Green’s

function with the following schematic structure:

(−i)n
n!2n

∫

dx1dx1′ · · ·
∫

dnt · e−ǫ(|t1|··· )
∑

(±) 〈v〉〈v〉
︸ ︷︷ ︸

n factors

(iG(0)) · · · (iG(0))
︸ ︷︷ ︸

2n+1 factors for G

(2.87)

Note how, within this approach, the full Green’s function is just a series expansion in terms of

the non-interacting Green’s function and the bare Coulomb interaction. For more details about

its formulation and application, we suggest to refer to [36, 37].

The above expansion is a highly non trivial result: we can expect some pattern in the type

of terms arising from higher orders and indeed it leaves hope for the possibility of partially

resumming the series, keeping from time to time only the ”most important” integrals.

In particular, for the above expression, a number of terms in the numerator cancel out exactly

all the terms in the denominator. In the language of Feynman diagrams, one would say that the

denominator cancels all of the disconnectedk diagrams in the numerator. The Green’s function

is hence composed by connected diagrams only, such as those shown in Figs.2.4a and 2.4b. The

caveat of the diagrammatic expansion is that summing up a finite number of terms may, in some

cases, yield poor results. Ideally one would like to resum an infinite number of terms and this

can be done recasting the differential equation into an integral one, so called Dyson-equation

and then solve it (within a given approximation). We will discuss the importance of the Dyson

equation in many-body perturbation theory in the next section.

kDisconnected diagrams contain subunits that are not connected to the rest of the diagram by any line (see

Figs. 4.5a and 4.5b)
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(a) (b)

Figure 2.4: Fig 2.4a contains a connected diagram. It means it cannot be factorized, since the fermionic

line is interacting with the remaining part of the diagram and not simply multiplying it (as we have

instead observed in the disconnected diagrams). The first order of the perturbation expansions provides

us with two of such diagrams. Higher order will yield more complicated diagrams of this type. Fig 2.4b

show a different connected diagram. As the diagram in Fig. 2.4a it does not get canceled out from the

expansion for the denominator.

2.4.2 Self-energy based methods

In the following we will briefly present methodologies to calculate the one-body Green’s function

based on approximations to the self-energy kernel. We will mainly focus on the so called GW

approximation, which Hedin [14], derived building on earlier works [47]. It was then probably

starting from the late ’80s, with the works of Hanke [48], Hybertsen and Louie [49],[50] and

Godby, Schlüter and Sham [51], [? ] that the approach gained more and more popularity, to the

point that it is nowadays the tool of choice for ab-initio band-structure [15] and photo emission

spectra calculations [16, 17].

Hedins’ equations and the GW approximation

As previously discussed solving Eq. (2.71) is a fairly complicated task. In particular the one-

body Green’s function is still expressed in terms of an unknown quantity, the functional derivative
δG(3, 2; [ϕ])

δϕ(4)
. It was found, that including such quantity (and hence all the many-body effect in

the system beyond the Hartree term) in the definition of a self-energy kernel Σ, namely:

Σ(1, 3) = i

∫

d4d2 v(1+, 4)
δG(1, 2; [ϕ])

δϕ(4)

∣
∣
∣
ϕ=0

G−1(2, 3), (2.88)

might be a promising route to calculate G. Reinserting (2.88) into the DE (for ϕ = 0) one

obtains:

G(1, 2) = G0(1, 2) +

∫

d3G0(1, 3)VH(3)G(3, 2)

+

∫

d4d3G0(1, 3)Σ(3, 4)G(4, 2), (2.89)
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which is the so-called integral form of the Dyson equation for G. In Chapter 4 we will see in a

simplified framework how powerful this resummation is.

To obtain the one-body Green’s function from the above expression the self-energy needs to

be somewhat approximated. In many cases, approximating Σ -even in a simple way- and then

solving Eq. (2.89) yields overall a better result than approximations performed directly on the

GF itself. Starting here I will partially follow the discussion by Strinati [52] on how to obtain a

closed set of equations (Hedin’s equations), which coupled to Eq. (2.89) allow for the calculation

of the GF.

Let’s first introduce a useful quantity, the total classical potential:

V (1) := ϕ(1)− i

∫

d3v(1, 3)G(3, 3+) (2.90)

which is the sum of the external potential ϕ and the Hartree potential. Using a chain rule (and

a basic identity derived in App. (A)), let’s recast Σ in such a way that the total potential enters

its definition:

Σ(1, 3) = −i
∫

d4d v(1+, 4)G(1, 2; [ϕ])
δG−1(2, 3; [ϕ])

δV (5)

δV (5)

δϕ(4)

∣
∣
∣
ϕ=0

, (2.91)

a new quantity, accounting for the variation of the inverse of the Green’s function with respect

to the total potential, can now be definedl:

Γ̃(23; 5) := −δG
−1(2, 3; [ϕ])

δV (5)
. (2.92)

Such complicated 3-point quantity takes the name of irreducible vertex, in the following we will

label as irreducible all the quantities defined with respect to the total potential, and reducible

when defined with respect with the external potential ϕ. Γ̃ can be related to the self-energy in

the following way:

Γ̃(23; 5) = δ(2, 5)δ(3, 5) +
δΣ(2, 3)

δV (5)
, (2.93)

employing a chain rule in Eq. (2.93) and inserting the resulting expression in Eq. (2.92) one

obtains an integral equation for the vertex, namely:

Γ̃(23; 5) = δ(2, 5)δ(3, 5) +

∫

d4d6
δΣ(2, 3)

δG(4, 6)

δG(4, 6)

δV (5)

= δ(2, 5)δ(3, 5) +

∫

d4d6d7d8
δΣ(2, 3)

δG(4, 6)
G(4, 7)G(8, 6)Γ̃(7, 8; 5), (2.94)

where we have used
δG

δV
= −δG

−1

δV
G. Eq. (2.94) is also the so-called Bethe-Salpeter equation for

Γ̃.

We can further introduce the inverse of the (longitudinal) dielectric matrix :

ǫ−1(5, 4) :=
δV (5)

δϕ(4)
= δ(5, 4) +

∫

d1v(5, 3)
δ〈ρ̂(1)〉
δϕ(4)

(2.95)

lNote that the self-energy has here been taken at vanishing potential. Even the other observables which will

be defined in the next are understood to be taken, in their final expression, at ϕ = 0.
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where the reducible polarizability of the system can be defined as:

χ(1, 4) :=
δ〈

density
︷︸︸︷

ρ̂(1) 〉
δϕ(4)

(2.96)

and can be related to the irreducible one m through the following Dyson-like equation:

χ(1, 4) = χ̃(1, 4) +

∫

d2d3χ̃(1, 2)v(2, 3)χ(3, 4) (2.97)

where χ̃, because of the relation between rho and G can also be expressed as:

χ̃(1, 4) = −
∫

d2d3G(4, 2)G(3, 4)Γ̃(2, 3; 1). (2.98)

On these cornerstones, Hedin grafted a theory which at first sight may look like a slight modifi-

cation of what was already existing but is instead truly new and contains a great deal of physical

insight.

He opted for a description of an extended solid as a collection of dressed particles, rather than

bare electrons, interacting through a screened Coulomb potential, calledW , rather than through

the long-range bare Coulomb potential v. W can be defined equivalently through ǫ−1 or through

the polarizability χ:

W (1, 2) :=

∫

d3ǫ−1(1, 3)v(3, 2)

= v(1, 2) +

∫

d3d4v(1, 3)χ(3, 4)v(4, 2) (2.99)

and using the above expression and the integral one for Γ̃, Hedin recast the self-energy in one of

its most well-known forms, namely:

Σ(1, 2) = i

∫

d3d4W (1+, 3)G(1, 4)Γ̃(4, 2; 3) (2.100)

Eqs. (2.98), (2.100), (2.99), (2.94) and (2.89) constitute a set of closed, exact, equations (Hedin’s

equations) which has to be solved -in principle self-consistently- to obtain an expression for the

one-body Green’s function.

Some approximation for the unknown self-energy is however needed. The most well known one is

again due to Hedin (although already suggested, under the name of shielded interaction approach,

in [47]) and consists in completely neglecting the correlated motion of pairs of dressed particles.

From a purely mathematical point of view this means that the vertex function takes the simple

form:

Γ̃(2, 3; 5) = δ(2, 5)δ(3, 5). (2.101)

Let’s see if what is the effect of the above approximation for instance on a two-body Green’s

function. Taking the expression for the G2 as a function of Γ and inserting this definition into

mDefined as χ̄(1, 4) :=
δ〈ρ̂(1)〉
δV (4)
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(2.101) we have:

G2(3, 4; 2, 4
+; [ϕ]) = G(3, 2; [ϕ])G(4, 4+; [ϕ]) +

∫

d1d5G(3, 1; [ϕ])Γ̃(1, 5; 4)G(5, 2[ϕ])(2.102)

= G(3, 2; [ϕ])G(4, 4+; [ϕ]) +G(3, 4; [ϕ])G(4, 2; [ϕ]) (2.103)

the two body Green’s function is now simply the sum of products of single-particle GF s. Turning

back to the self-energy, setting the vertex function equal to unity yields:

Σ(1, 2) = iW (1+, 2)G(1, 2) (2.104)

from where the name GW approximation becomes obvious. Note that substituting in Eq. (2.104)

the bare Coulomb potential v(1+, 2) in place of W (1+2) yields the Fock exchange operator. In

the GWA the polarizability becomes:

χ̃(1, 2) = χ0(1, 2) = −iG(1, 2)G(2, 1) (2.105)

which has now the form of the random-phase approximation(RPA) [21], [20]. A pictorial idea of

Hedin’s GW is given in Fig 2.5. GW -based calculations of quasi-particles band structures [53, 54]

of many materials and direct and inverse photo emission spectra (see e.g. Refs. [16, 17, 55, 56])

Figure 2.5: Hedin’s pentagon. The result of the

GW approximation yields, instead, a trapezium:

in fact the equation for the vertex would be solved

once, leaving only four other equations to solve

once or more, if a self-consistency procedure is

needed. The five equations are all expressed in

the irreducible form (even if they don’t display a

tilde symbol on top of them. The polarizability is

here indicated with the letter P rather than the

Greek letter χ.)

are abundant in the literature and they show to im-

prove substantially over the results provided by static

mean-field electronic structure methods; for example

the screening reduces the large bandgap of Hartree-

Fock.

Having said this, let’s point out some shortcomings

of the approximation, certain of which quite funda-

mental. First of all the GW approximation is not size

consistent [57, 58], this problem often appears when

a system is studied in the atomic limit (i.e. its atoms

are pulled apart up to the point there is little or no

overlap between their wave functions). An illustra-

tion of this issue can be observed by calculating the

total energy of a system in this limit: it would turn

out to be different from the sum of the total ener-

gies of the atoms. Therefore GW is not reliable in

describing dissociation processes.

A second shortcoming is given by the so-called self-

screening error and has been studied, for instance

in [59, 60, 61, 62] and more recently in [63]. Its effect

is to make the GW approach non-symmetric for the

removal and addition of particle from a system and

stems from the fact that exchange interactions are not properly dealt with. Ways to overcome

this type of shortcomings range from using non-local vertex functions [64] to spin dependent

Coulomb potential [65, 66], hence treating the Hartree and the exchange term on the same foot-
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ing.

Moreover, also strongly correlated materials constitute a challenge for the approximation: some-

times with some degree of self-consistency, e.g. performing a pertubative GW calculation, start-

ing from a self consistent one based on a static (COHSEX [67]) GW self-energy, can yield good

agreement with experiments, but this is not always the case. A profound reason for this failure is

illustrated by the fact that GW cannot treat correctly the atomic limit: calculations performed

on model systems, such as the Hubbard molecule,at 1
4 filling, yield a single QP-peak in the elec-

tron addition spectral function: the exact one should exhibit two peaks, perfectly symmetric [63].

In this case the very poor result is due to the interpretation of the density in a classical way,

rather than accounting for its quantum nature. In fact GW only includes correlation effects

through the induced Hartree potential leading to a too delocalized description of the electrons.

As a consequence the additional electron sees both atoms occupied with half an electron even

in the atomic limit. This poor description of the atomic limit might be observed also in real

systems that have localized electrons such as transition metal-oxides with very localized and

partially filled d-bands. Other less dramatic shortcomings are encountered when G0W0 provides

a good (in terms of position and intensity) quasi-particle peak and a single plasmon satellite,

but is unable to reproduce correctly additional features of the spectrum [68, 69, 70, 71]. For

example, in core and valence photoemission spectroscopy of a number of materials, one should

not observe only a broad satellite peak, rather a series of plasmon satellites; however to calculate

these more complicated and realistic spectral features, one has to go beyond GW .

One could for example add higher orders in W by iterating the equations, but first of all it is

a technically difficult route and furthermore there is no guarantee that results would quickly

improve. Another possibility would be to formulate vertex corrections to be added to the self-

energy. Examples are exchange-correlation kernels borrowed from (TD)DFT, such as in [64, 72].

Or also are the T-matrix [40, 73], which, unlike GW, correctly describes the atomic limit in

simple models, or the cumulant expansion [74], from which spectral function containing multiple

plasmon satellites -absent in GW- are ordained.

Knowing the approximations needed to obtain the T-matrix or the cumulant expansion from

exact equations should allow one to reformulate their physical content into a vertex correction.

In the following we will discuss more in detail the cumulant expansion approach, since it is a

direct approximation to the GF and hence closer to the methodology we will be exploring through

this thesis.

2.4.3 Cumulant expansion approximation

As briefly discussed in the previous section the G0W0 has been quite successful as long as band-

gaps and quasi-particles energy calculations are concerned, whereas in terms of spectral function

calculations more shortcomings have appeared.

One may then build hopes that a fully self-consistent scheme might remedy those shortcomings.

In calculations performed by Holm and Von Barth [75] and Schöne and Eguiluz [76], the satellite

region had little agreement with experiments, even worse than the already poor G0W0 result. In

this particular case the failure of the self-consistent approach was attributed to the expression for

W , which turned out to be very different from the correct one, resulting in a complete smoothing
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of the spectral function satellites. Partially self-consistent calculations [77, 78], where only G

was calculated in a self-consistent fashion, gave reasonable results and a slight improvement over

G0W0 was also obtained. However neither self-consistency nor vertex corrections have, so far,

proved to be systematically better than the ”one-shot” GW on top of a reasonable (for a given

system) starting point.

In this section we will discuss the performances of an alternative approximation for Green’s func-

tion calculation, which is not based on approximations to Σ, rather to the Green’s function itself

and has the aim of improving, above all, on the shortcomings of G0W0 for spectral function cal-

culations, particularly on the satellite part of the spectrum. The approximation, called cumulant

expansion (we will see later why), has a fairly long story. We will first detail its origins, tied to

model Hamiltonian’s for X-ray emission and absorption spectroscopies and then we will discuss

more recent implementations for the calculation of spectral function of valence levels in simple

metals and semiconductors.

In Chap. (5) of this thesis we will come back to the approximation and show i) how it can be

derived in a completely general and rigorous way, ii) briefly describe an application to valence

photo emission spectroscopy in silicon.

Origins and developments of the approximation

Langreth building up on earlier works of Lundqvist [79, 80], where in the context of X-ray

absorption the coupling between the deep hole and plasmon excitations in the electron gas was

discussed, showed how Lundqvist’s model Hamiltonian could be solved exactly and used as a

benchmark both for the GW approximation and for straightforward perturbation expansions.

The expression for such Hamiltonian reads:

H = ǫc†c+ cc†
∑

q

gq(aq + a†q) +
∑

q

ωqa
†
qaq (2.106)

where c† (c) creates (annihilates) core electrons with energy ǫ and a†q (a) creates (annihilates)

a plasmon with energies ǫc and ωq respectively and gq is the coupling coefficient. In [81] an

exact expression for the core (hole) one-body Green’s function (and hence for the spectral func-

tion) is derived: such expression has an exponential form and yields a spectrum containing a

quasi-particle δ-peak and a series of satellites, representing the different plasmon peaks, each

of them with a different weight factor, constituting the probability that a final state with n

plasmons is contained in the initial state with no plasmons at all. This spectrum is depicted

in Fig. 2.6a. Note that plasmon dispersion has been neglected (by setting ωq = ωp = const.)

at the end of Langreth’s derivation. In the very same work the absorption spectral function

was also calculated starting from a core hole G evaluated approximately through the first order

of perturbation theory in W for the self-energy, which is to say in the G0W0 approximation.

The results, in particular compared to the exact solution for the model Hamiltonian, exhibit an

important shortcoming in the description of the incoherent part of the spectrum: instead of a

series of plasmon peaks one finds only one broad peak, which was a sort of average of the true

satellite spectrum and was labeled plasmaron peak following the nomenclature of earlier works.
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We report these latter findings in In Fig. 2.6b.

Following the ideas explored in the above works, Hedin decided to employ a more sophisticated

and general plasmaron Hamiltonian [67] to investigate deeper the capabilities of this electron-

boson model for core and also valence spectroscopies. Hedin’s Hamiltonian reads:

H =
∑

k

ǫkc
†
kck +

∑

s

ωsa
†
sas +

∑

skk′

V s
kk′

(
as + a†s

)
c†kck′ (2.107)

where rather than having a single fermion level labeled by c, as in Lundqvist work, we have the

two indices k and k
′
, where the boson of the system is labeled by s (previously the plasmon

momenta q) and where the coupling constants are fluctuation potentialsn. Within this model,

after calculating Σc (where c refers to core) with a simple plasmon dispersion relation ωq = ωp+
q2

2
the GW spectral function for the system, the QP-energy and the strength of the QP-peak we

obtained.

Hedin [67] also obtained the core spectral function for its model system in an exact way. Gc

turns out to be, in frequency space:

Gc(ω) = i

∫ 0

−∞
dt e(ω−ǫc−∆E)te

∑

q

g2q
ω2
q

(eiωqt − 1)

(2.108)

where one can define Z = e
−

∑

q

g2q

ω2
q and Ec = ǫc + ∆E. A Taylor expansion of the exponent

in 2.108 yieldso:

Gc(ω) = Z

{

1

ω − Ec
+
∑

q

g2q
ω2
q

1

ω − Ec − ωq
+
∑

q

g4q
ω4
q

1

ω − Ec − 2ωq
. . .

}

(2.109)

from which the spectral function can be calculated (remember the general relation A(ω) =
1

π
Im |G(ω)|) and compared with the GWA results. Eq. (2.108) show that G can be written

as an exponential, the exponent is identified with the so-called cumulant. Once the latter is

approximatively determined, Taylor expansion of the exponential (like in Eq. (2.109)) yields the

cumulant expansion.

Looking at the poles of the above Gc one can already see how the core spectral function will

exhibit one peak with strength equal to Z at ω = Ec and then a whole series of peaks with

decreasing intensity and centered at Ec −ωq, Ec − 2ωq and so on. These values are all multiples

of the plasmon frequency ωp: this means that the series above is actually the regularly spaced

series of plasmon peaks observed already by Langreth.

On this basis Hedin drew similar conclusions to Langreth regarding the failures of the G0W0

approximation, specifically: i) the G0W0 scheme is designed to deliver a spectrum with one

single plasmon peakp, ii) the QP position is the same in both calculations and its strength is

nLundqvist Hamiltonian can be obtained from Hedin’s one simplifying the fluctuation potential as follows

V s
kk

′ = gqδk,cδk′
,c
δs,q

oWe report here only the zeroth, first and second order terms
pWe will come back to this issue in Chap. 5 where, thanks to Feynman diagrams we will get to this very same

conclusion without even writing down explicitly a GW spectral function.
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(a) (b)

Figure 2.6: From Ref. [81]. Fig. 2.6a: spectral function obtained with an exact expression for the core

hole Green’s function as calculated from Langreth, using Lundqvist’s polaron Hamiltonian. Note that

in the original figure the absorption spectral function is labeled with N+(ω), rather than with A(ω).

All the satellite peaks are equispaced from the QP peak by a value equal to multiples of ωp. Fig. 2.6b:

spectral function obtained within a G0W0 approximation for Σ. Besides the QP peak only one very

broad plasmon peak appears. It is a sort of broad average of the true spectrum.

very reasonable in the GWA, iii) the GW plasmon peak is a sort of average of the true multi-

satellite spectrum.

In the final part of the same work, an even more general model Hamiltonian, where also the

coupling of the deep core to particle-hole excitations is included (as in earlier work by Mahan

Nozières and De Dominicis), is solved exactly q. Once more the exact core Green’s function has

the shape of a cumulant and the spectral function exhibits the quasi-particle peak followed by a

series of plasmon satellites, where, however, the line-shape of the QP peak becomes asymmetric

due to the shake-up r of electron hole pairs.

Therefore the picture seems fairly complete as far as core levels are examined; however when

considering, for example, real materials (rather than model systems) also probing valence energy

levels (or conduction bands for metals) becomes interesting.

The questions I will now address, following Hedin’s work on the effect of recoil in the shake up

spectra of metals [35] are: what are the signatures of a photoemitted conduction electron in the

qExactly in the sense that a decoupling approximation of the two types of excitations -core and hole-electron

and core and plasmons- is made.
rShake up refers to any type of excitation in a spectrum which is produced by a sudden change in a quantum

mechanical system
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spectral function? How do they relate to the signatures of a core electron?

Rather than coming up with an entirely new treatment of the phenomena, Hedin decided to

follow as close as possible the description of the core electron photoemission. We will mainly

conduct our reasoning with diagrams. The set of diagrams involved in the exact expansion for Gc

includes only non-interacting G0 and the electron-electron interaction (screened), see Fig. 4.5a,

where contribution up to the second order is Σ are shown. There is not reason to think that

a different set of diagrams should describe photo emission from conduction states, however, in

that case, each diagram will contain extra physics, given by the recoil (change in momentum)

of the photoemitted electron at each collision (see diagram in Fig. 4.5b). Hence by completely

Figure 2.7: Set of diagrams describing the full core Green’s function (Gc). It’s just a series in the non-

interacting core propagator G0
c and the screened interaction W . We will analyze this expansion in greater

detail in Chapter (5), comparing this set of diagrams to the one obtained for the G0W0 approximation

to the self-energy.

Figure 2.8: Second order (in W) diagram (the last from the above series). In case of recoil at each

process there is the probability of the change in momentum (k) of the photoemitted electron.

neglecting recoil the set of diagrams describing both core and conduction photoelectrons will be

identical. Instead, in order to account for recoil processes, some algebra is needed. Details of the

assumptions needed to take the change in momentum into account, without however changing

the set of diagrams describing the admission process can be found in [35]. These assumptions

had been tested against two limiting cases, namely the high density limit and the vicinity of

the QP to the Fermi surface: in both circumstances the obtained results were satisfactory and

justified, a-posteriori all the assumptions. Some numerical calculations were also performed and

indicated that the QP-peak shape and strength from photoemitted electrons extracted from the

core or from the conduction levels and the shape of the plasmon satellite peaks was very similar.

However their width is quite different, in particular it turns out to be reduced in presence of

recoil effects.

Thanks to this pioneering work, the cumulant expansion approximation made its way into the

pool of approximations used for the one-particle propagator for real materials. Examples of

successful use of the cumulant expansions are, for instance, the work by Aryasetiawan et al. [74]

who calculated the valence admission spectra of alkali metals, specifically Al and Na: despite
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the strong recoil effects, due to the wide dispersion of the conduction bands in both compounds,

they recover the sequence of the plasmon satellites observed in experiments, missing out a better

agreement only because of the width and intensity of the peaks. Also Vos et al.[82] carried

out calculation of spectral functions for Al and Li and compared with high energy electron

momentum spectroscopy (EMS) data, obtaining a good agreement.

A further example of the accuracy of this approximation will be given in Chap. (5) with the work

of Guzzo et al. [83].

2.5 Green’s function from the solution of a functional dif-

ferential equation

In the present work we will pursue an alternative route for the calculation of the one-body Green’s

function, which, as the cumulant expansion, is in principle non perturbative s. In the present

work we will turn back to Eq. (2.71) and first obtain new insights about standard approximations

(e.g. different GW flavors) by relating them directly to the aforementioned set of differential

equations. Secondly we will employ Eq. (2.71) to explore and devise alternative approximations.

Both issues will be described and dealt with in Chap. 3 and 4 of the present work. Finally, we

will focus directly on the set of coupled, non linear, first order functional differential equations

for G, Eq (2.71), although it has been acknowledged that no ”practical technique for solving such

functional differential equation exactly” [40] is available. To reach the aforementioned goals we

will resort to two approximations. The first one consists in linearizing the set of equations by

expanding VH in terms of ϕ and we will provide a number of arguments to show that a great

deal of many-body physics is still contained in the approximated equations.

Later we will discretize Eqs. (2.71) and consider in a first instance only one point for each space,

spin, and time variable: we will call this approximation the ”1-point model”, as opposed to the

full functional problem. Within the 1-point model one deals with a single algebraic ordinary

differential equation (DE), thus we will derive its exact explicit solution. An attentive study of

the family of solution will provide insights on the mathematical nature of the problem and a

simple physical argument will lead us to solve the initial value problem for the DE, which yields

the particular solution (so to say the physical one) to the problem. The full particular solution

will be then employed as a precious tool: approximations for it will be explored, yielding valuable

insights in the performance of current approaches, such as the G0W0 approximation, the effects

of self-consistency in G and even vertex corrections to Σ. In a second instance we will also

devise alternative approximations reverse-engineering them, which is to say approximating the

exact solution and then relating the results to direct manipulations of the initial DE, pretending

nothing is known about its solution (which is in fact be the case in the full functional case).

The most promising 1-point approximations for the DE will of course also be translated to the

full functional framework and their actual feasibility (in some case in terms on computational

implementation) will be discussed.

sTo be more specific this alternative approach is completely non pertubative as long as the electron-electron in-

teraction in concerned. In our development one particular approximation will lead to a perturbative (linearization)

treatment of the Hartree potential with respect to the external potential.
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We finally devote the last chapter of this thesis to the generalization of the approach. After

discussing how to restore the time-dependence in the equations (see Chap. 5) we will formulate

an ansatz for G in this more general framework, checking that it does solve the N-times DE.

We will wrap up discussing strategies to solve the -now much more complicated- initial value

problem, so as to also pick the particular solution from the family of solutions obtained through

the ansatz and to transpose most of these latest findings to the truly full functional case.

Our strategy is depicted as in the Fig. 2.5. We will work separately in the 1-point framework

Figure 2.9: This diagram illustrates our strategy to tackle the set of functional differential equations

for G. The problem is so complicated that we begun by solving it in the simplest possible formulation.

(left), in the N-times one (center) and finally on the full functional one (right, labeled as N-

points). On the left hand side we are showing that, starting from the algebraic DE we obtained

its exact solution. This provided us with insights on how to solve the initial value problem

(i.v.p.), on how the family of solution for the propagator looks like and last but not least which

approximation to the exact solution are more or less accurate. If one knew these insight a-

priori, there would no need to solve the equation exactly: an ansatz, formulated with all those

information, would be enough to obtain G. A similar procedure can be adopted for the N-times

framework (central part of the figure). The equations are more complicated, but a decoupling
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approximation and an ansatz with an exponential form, will again lead us to the exact solution

of the DE. Many more insights will also be obtained from this case. Finally on the right hand

side we have the full functional (N-points) framework, where solving the equations directly is

prohibitive. Using the knowledge acquired from the two previous simpler frameworks, we will

formulate an ansatz and verify that is satisfies the initial DE.



CHAPTER3
Exact Green’s function in a simplified framework

In the very end of the previous chapter (see Section 2.5) a fairly unexplored route to calculate

the one-body Green’s function has been introduced. In this chapter we hence wish to attempt a

direct solution of the functional differential problem presented in Eq. (2.71) ). As it has been

anticipated it is a tremendously complicated task and tackling the problem step by step, starting

with a certain degree of simplification, to move only later on to the full problem, is advisable.

Our strategy consists in dealing with the simplest possible set of equations, which can be obtained

under certain approximations (detailed in the following), so that their manipulation becomes more

straightforward. The first approximation we employ is a linearization of Eq. (2.71) with respect

to the external perturbing potential: we will however show how most of the important physics

is retained. Then a discretization of all spin, space and time variables is performed and only

one-point for each type of variable is retained. In this one-point framework the set of functional

differential equations reduces to a single first order differential algebraic equation (DE) which can

be solved exactly, giving access to its family of solutions and, by solving the initial value problem,

to the particular solution of our physical problem. Some considerations on the nature of the DE

and other possible approximate ways to solve it will be also presented.

3.1 Tackling the functional equation I: linearization

The non-linearity of Eq. (2.71) is due to the Hartree potential VH , which contains itself a one-

body Green’s function, more precisely a diagonal of a diagonal Green’s function. Note, in fact,

that the diagonal of G is nothing else than the density operator ρ. This can be readily seen from

the definition of the GF: if we assume locality in space and quasi-locality in time, we have that

−iG(1, 1+) = −i〈Ψ0|T
[

ψ̂†(1)ψ̂(1+)
]

|Ψ0〉 = 〈n̂(1)〉.
A Taylor expansion of the Hartree potential, where only the terms up to the 1st order in the

37
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external potential are kept, reduces the problem to a linear one. Here we only assume linear

the response of the system to the external perturbation, while the electron-electron interaction

is fully accounted for and not treated pertubatively. VH is hence expanded and truncated as

follows:

VH(3; [ϕ]) ≈ −i
∫

d4v(3+, 4)G(4, 4+; [ϕ])
∣
∣
∣
ϕ=0

−i
∫

d4 d5 v(3+, 4)
δG(4, 4+; [ϕ])

δϕ(5)

∣
∣
∣
ϕ=0

ϕ(5) + o(ϕ2). (3.1)

and upon the introduction of an auxiliary Dyson equation for G0
H :

G0
H(1, 2) = G0(1, 2) +

∫

d3G0(1, 3)V
0
H(3)GH(3, 2), (3.2)

where V 0
H(3) := −i

∫

d4v(3+, 4)G(4, 4+; [ϕ])
∣
∣
∣
ϕ=0

, Eq. (2.71) can be recast as:

G(1, 2; [ϕ]) = G0
H(1, 2)

− i

∫

d3d5G0
H(1, 3)

[∫

d4d5v(3+, 4)
δG(4, 4+; [ϕ])

δϕ(5)

∣
∣
∣
ϕ=0

+ δ(3, 5)

]

ϕ(5)G(3, 2; [ϕ])

+ i

∫

d3d4G0
H(1, 3)v(3+, 4)

δG(3, 2; [ϕ])

δϕ(4)
(3.3)

Since
δG

δϕ
(in the second term on the right-hand side of Eq. (3.3)) is a contraction of the two-

particle correlation function, it yields the inverse dielectric function:

− i

∫

d4v(3+, 4)
δG(4, 4+; [ϕ])

δϕ(5)

∣
∣
∣
ϕ=0

+ δ(3, 5) = ǫ−1(3, 5), (3.4)

and one can reformulate Eq. (3.3) as:

G(1, 2; [ϕ]) = G0
H(1, 2) +

∫

d3d5G0
H(1, 3)ǫ−1(3, 5)ϕ(5)G(3, 2; [ϕ])

+ i

∫

d3d4G0
H(1, 3)v(3+, 4)

δG(3, 2; [ϕ])

δϕ(4)
. (3.5)

A rescaled perturbing potential can be now introduced:

ϕ̄(3) :=

∫

d5ǫ−1(3, 5)ϕ(5), (3.6)

and, using the chain rule
δG

δϕ
=
δG

δϕ̄

δϕ̄

δϕ
in the last term of the right-hand side of Eq. (3.5), we

get:

G(1, 2; [ϕ̄]) = G0
H(1, 2) +

∫

d3d5G0
H(1, 3)ϕ̄(3)G(3, 2; [ϕ̄])

+ i

∫

d3d5G0
H(1, 3)W (3+, 5)

δG(3, 2; [ϕ̄])

δϕ̄(5)
, (3.7)
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Here W = ǫ−1v is the screened Coulomb potential at vanishing ϕ. Hence, for this linearized

differential equantion we have that: G0
H is a Hartree Green’s function containing the Hartree

potential at vanishing ϕ, ϕ̄ = ǫ−1ϕ is the renormalized external potential, and W = ǫ−1v is the

screened Coulomb potential with ǫ the dielectric function at ϕ = 0 a.

Three remarks can be made on Eq. (3.7).

First of all, through the linearization, the screened interaction W becomes the central quantity

of the equation: this can be justified by the physics of extended systems, where screening and

plasmons are dominant mechanisms.

Second, W can in principle be the exact screened interaction, which of course is not known. One

could however adopt two strategies: either consider W as an externally given quantity, obtained

within a good approximation, e.g. from a time-dependent density functional theory calculation;

or one could recalculate W from G[ϕ̄] (see the next Chapter for more details on this). Here we

chose for the former approach. The procedure is schematically described in Fig. 3.1.

Such a philosophy is rigorously justified: for instance, in the framework of functional the-

ory, one can move from a Luttinger-Ward functional (which is a functional of G, but in-

deed also of the bare Coulomb interaction v) to the so-called Ψ-functional, where v is re-

Figure 3.1: Hedin’s pentagon where P and W have

been ”cut out” from the full loop. This means that when

performing self consistent calculations, only G, Σ and Γ

are updated, while P andW are evaluated once for all at

the beginning. We will hence talk about W0 rather than

W to indicate that the screened interaction has been kept

fix to some ”accurate enough” value.

placed by W [84]. In this type of functional,

when an appropriate model W is chosen, con-

serving properties of the GW approach are

not lost. Finally a weaker but more ”tradi-

tional” argument supporting our choice: the

route described above is by far the most ”well-

trodden path” of the many-body perturbation

theory community. It exemplifies a GW cal-

culation to the ”best G, best W” approach(see

e.g. in Ref. [50] but not only): where the non-

interacting G is taken e.g. to be the Kohn-

Sham Green’s function, and W is calculated

as well as possible, e.g. in time-dependent

local density approximation (TDLDA). The

last remark on the linearization procedure con-

cerns the degree of approximation present in

Eq (3.7).

How does it compare to well-known approxima-

tions for the Green’s function?

Recasting the functional derivative
δG(3, 2; [ϕ̄])

δϕ̄(5)

according to Eq. (A.6), yields an expression for

the inverse of G with respect to the potential.

aFor simplicity we use the same symbol for G[ϕ̄] and G[ϕ]; of course it is understood that the corresponding

functional is taken
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Substituting in Eq. (3.7) the G−1 obtained from inverting a Dyson-like equation, one obtains:

G(1, 2; [ϕ̄]) = G0
H(1, 2) + i

∫

d3G0
H(1, 3)ϕ̄(3)G(3, 2; [ϕ̄])

− i

∫

d3546G0
H(1, 3)W (3+, 5)G(3, 4; [ϕ̄])

× δ

ϕ̄(5)

[

G0
H

−1
(4, 6)− Σ(4, 6)− ϕ̄(4)δ(4, 6)

]

G(6, 2; [ϕ̄]) (3.8)

And assuming the self-energy independent of ϕ̄, one gets:

G(1, 2; [ϕ̄]) = G0
H(1, 2) +

∫

d3G0
H(1, 3)ϕ̄(3)G(3, 2; [ϕ̄])

+ i

∫

d35G0
H(1, 3)W (3+, 5)G(3, 5; [ϕ̄])G(5, 2; [ϕ̄]) (3.9)

where we can define ΣGW (3, 5) = iW (3+, 5)G(3, 5; [ϕ̄]): this effective potential is nothing else

than the GW approximation to the self-energy.

Note that this alternative derivation of the GW approximation suggests that the screened inter-

action W should be the full measurable test-charge test-charge one (Eq. (3.6) is hinting at this)

and G should be calculated in a self-consistent way. Finally, the above result shows that, even

though the linearization procedure is an approximation, Eq. (3.7) is still a promising starting

point to analyze the different flavors of the GW approximations and to go beyond, since GW

appears to be the simplest approximation to this equation.

3.2 Tackling the functional equation II: 1-point model

The second step is to perform a basis transformation of Eq. (3.7), which gives:

Gnm(t1, t2; [ϕ̄]) = G0
Hnm

(t1, t2)

+
∑

s,k

∫

dt3G
0
Hns

(t1, t3)ϕ̄sk(t3)Gkm(t3, t2; [ϕ̄])

+ i
∑

skil

∫

dt3dt5G
0
Hns

(t1, t3)Wsilk(t3+ , t5)

× δGkm(t3, t2; [ϕ̄])

δϕ̄il(t5)
, (3.10)

where

Gij(t1, t2) =

∫

dx1dx2φ
∗i(x1)G(1, 2)φj(x2), ϕ̄i(t1) =

∫

dx1φ
∗
i (x1)ϕ̄(1)φj(x1) (3.11)

and

Wijkl(t1, t2) =

∫

dx1dx2φ
∗
i (x1)φ

∗
j (x2)W (1, 2)φk(x2)φl(x1). (3.12)

In this way the space variables (from now on the spin variables will be consolidated with them)

are discretized. Furthermore, assuming that the basis we have employed diagonalizes both the



3.2 Tackling the functional equation II: 1-point model 41

Hartree Green’s function at zero perturbing potential G0
H and the full Green’s function G, that

is Gmn(t1, t2; [ϕ̄]) = Gmm(t1, t2; [ϕ̄]) · δmn), we can recast the above expression as:

G(t1, t2; [ϕ̄]) = G0
H(t1, t2) +

∫

dt3G
0
H(t1, t3)ϕ̄(t3)G(t3, t2; [ϕ̄])

+ i

∫

dt3dt5G
0
H(t1, t3)W (t3+ , t5)

δG(t3, t2; [ϕ̄])

δϕ̄(t5)
. (3.13)

This is a separate differential equation for each element of G. The projection of the equation over

this diagonal basis simplifies the problem significantly, however a number of difficulties remains.

Hence, on a first instance, we will also introduce the discretization of the time variable obtaining

the so called 1-point model.

Within this approximation (which implications we will discuss later in the chapter) we will obtain

an exact solution for the -now algebraic- linearized differential equation. We will come back to

Eq. (3.13) in Chapter (6).

3.2.1 Limits and validity of the model

We will here briefly discuss the limits of our model and to what extent the findings presented in

this framework are applicable to more complicated (and eventually realistic) physical systems.

Considering only 1-point in spin (or no spin dependence in our case) is currently being done in a

number of approaches: for example calculations of the paramagnetic phase of certain solids are

currently carried out without spin, rather than with random spin configurations. The 1-point in

space is obtained projecting the DE onto single-orbital basis set, which is then assumed to diag-

onalize both the fully interacting Green’s function and the zero-potential Hartree G; it basically

acts as a decoupling approximation. This simplification, which at first sight may look a bit rough,

still retains a lot of physics in the system’s description. We will provide greater details about

it in Chap. (5). The really crude approximation employed throughout this and the following

chapter, is to retain only 1-point in time: the model cannot exhibit any frequency dependence,

and regrettably many of the interesting information contained in the GF are provided by its

poles. Therefore we will always stress out when particular care has to be taken in extending our

result to realistic systems.

On the other hand we will show that, especially when certain features of the calculated GF

mainly depend on the mathematical structure of Eq. (3.7), the obtained results are capable of

providing at least qualitative insights in established approximations and are definitely a good

benchmark tool to devise alternative ones.

Further support to the argument above comes from the literature on the 1-point model: a number

of authors have employed it different contexts. In Refs. [85, 86] Hedin’s equations are combined

into one single algebraic differential equation which is solved as a series expansion: this allows the

authors to enumerate the diagrams for a certain expansion order. Several expansion parameters

are analyzed, such as vg2, with v the bare Coulomb potential and g the Hartree Green’s function,

vG2, with G the exact Green’s function, WG2, with W the screened Coulomb potential, etc.,

which shows how at various orders of expansion the number of diagrams decreases by increasing

the degree of renormalization. This is also the spirit behind the linearized equation (3.7), in

which the natural expansion parameter would be Wg2, where W is treated as an externally
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given interaction. The advantage of using the 1-point framework is that the equations become

algebraic and thus the enumeration of diagrams is facilitated. In Ref. [87] a similar strategy

as in Refs. [85, 86] is used to enumerate diagrams, focusing in particular on the asymptotic

behavior of the counting numbers. Moreover Hedin’s equations are transformed into a single first

order differential equation for the GF as a function of an interaction parameter, and an implicit

solution is obtained. In order to fix the particular solution of this differential equation the initial

condition G(v=0) = G0 is used.

Instead here we concentrate on (2.71), or better its linearized form (3.7), which is another dif-

ferential equation for G, as a functional of an external potential. This choice allows us to (i)

emphasize the essential physics contained in the screened Coulomb interaction W , (ii) discuss

various aspects of the many-body problem in a clear and simple way, (iii) obtain an exact explicit

solution of the approximate equation that can be used as a benchmark. Moreover we believe

that the 1-point version of Eq. (3.7) can be a natural starting point for a generalization to the

full functional problem.

After having justified our choice for a simple framework, which is however capable of providing

us with a great deal of insights, let’s examine the form for the the 1-point differential equation

and its general and particular solutions.

3.2.2 Exact general solution

In the 1-point model Eq. (2.71) reduces to an algebraic, non-linear, first order differential equation

yu(x) = y0 + vy0y
2
u(x) + y0xyu(x) − vy0

d yu(x)

dx
(3.14)

where ϕ̄ → x, G(1, 2; [ϕ̄]) → yu(x), and G0(1, 2) → y0. Moreover iv(3+, 4) → −v: this change

of prefactor compensates for the time- or frequency integrations that have been dropped in the

1-point model and corresponds to a standard procedure [85, 87] in this contextb. We can now

linearize Eq. (3.14) in the same way as we did starting with Eq. (2.71) and obtaining Eq. (3.7).

This yields

yu(x) = y0H + y0Hxyu(x) − uy0H
d yu(x)

dx
. (3.15)

and with respect to Eq. (3.7), G0
H(1, 2) → yH0 , and iW (3+, 5) → −u. In the following, for

simplicity of notation, we denote y0H by y0 unless stated differently. In Appendix B we sketch

the main steps to solve Eq. (3.15), based on the general ansatz yu(x) = A(x) · I(x). With the

choice

A(x) = e

[

x2

2u− x
uy0

]

(3.16)

one obtains the equation

dI(x)
dx

=
1

u
e
−
[

x2

2u− x
uy0

]

(3.17)

bMoreover very simple examples, e.g. VH (1) =

∫

d2ρ(2)v(1, 2) = −i
∫

d2G(2, 2+)v(1, 2) show that it is a

reasonable procedure.
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and the general solution yu(x) reads

yu(x) =

√
π

2u
e

[

x2

2u− x
uy0

+ 1

2uy2
0

]

×
{

erf

[

(x− 1

y0
)

√

1

2u

]

− C(y0, u)

}

, (3.18)

where C(y0, u) is to be set by an initial condition. In the limit x → 0, which is the equilibrium

solution we are looking for, Eq. (3.18) becomes

yu = −
√

π

2u
e

1

2uy2
0

×
{

erf
[
√

1

2uy20

]

+ C(y0, u)

}

. (3.19)

Note the choice of employing the ansatz in (3.15) to solve the algebraic differential equation:

one could have easily used a wrapped solution from classical textbooks such as [88]. However,

with the ultimate goal of generalizing our result, such strategy would not be effective, while

employing a method which better capture the mathematical structure of the DE (3.15) will

prove (in Chapter 6) to better suite the scope.

We are now left with the non trivial issue of solving the initial value problem for the general

solution in order to set C(u, y0).

3.2.3 Exact particular solution: alternative solution of the initial value

problem

In general in order to set C(y0, u), yu(x) has to be known for a given potential xβ (i.e. yu(xβ) =

yβu). However it is far from obvious to formulate such a condition in the realistic full functional

case; this would indeed require the knowledge of the full interacting G for some given potential

ϕ. Therefore the question is whether one can reformulate the condition in a simpler way in order

to set C: in particular one hopes to be able to use the same strategy to set the initial condition

for the 1-point problem and the full general one.

To answer this question we expand the exact solution for small values of u (in analogy to what

is done in standard perturbation theory), obtaining:

yu ≈ −
√

π

2u
e

1

2uy2
0

(

1 + C(u, y0)
)

+
{

y0 − uy30 + 3u2y50 − 15u3y70 + o(u4)
}

. (3.20)

Knowing that for u → 0 the one-body Green’s function G has to reduce to the non interacting

G0, in our framework this translates into: yu

∣
∣
∣
u→0

≡ y0.

Imposing this condition in Eq. (3.20) gives

√
π

2u
e

[

1

2y20u

]
(

1 + C(u, y0)
)

= 0, u→ 0, (3.21)
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which is satisfied if

C(u, y0) = −1, u→ 0. (3.22)

Hence the DE’s particular solution reads:

yu = −
√

π

2u
e

1

2uy20

{

erf
[
√

1

2uy20

]

− 1

}

. (3.23)

This result for C holds also for u 6= 0: it guarantees a non-divergent result for any non-vanishing

potential x in (3.18) and it also reproduces the perturbative result which is obtained by iterating

Eq. (3.15). For instance the sixth iterative step (starting with y(0) = y0) reads:

y(6)u = y0 − uy30 + 3u2y50 − 15u3y70 . (3.24)

This is precisely the same series as the one appearing in Eq. (3.20) when C(u, y0) is set to −1.

This very same result, can also be obtained, as we will see later on, in an alternative way: also

in that case, however, one will have to require the Green’s function to be non-divergent.

3.2.4 Exact particular solution: traditional solution of the initial value

problem

The initial value problem for Eq. (3.15) could be also solved within the more ”classical” approach,

that is, knowing yu(x) for a given potential xβ (i.e. yu(xβ) = yβu). However, to be realistic we

have to suppose that we can only guess solutions that do not depend on u: this holds for a quite

pathological case, namely xβ → −∞. We will now show how with this choice C can be set and

we will also show, a-posteriori the validity of the above statement, that is C(u, y0) = −1, ∀u
(since the constant does not depend on u, its value at u = 0 can be employed also for any value

of the interaction).

For an infinitely large potential x, one may calculate yu(x → −∞) by means of its expansion

and the linearized DE. yu(x) can be expressed as:

yu(x) = ∆0 +∆1
1

x
+∆2

1

x2
+O(

1

x3
) (3.25)

inserting Eq. (3.25) into Eq. (3.15) yields:

∆0 +∆1
1

x
+∆2

1

x2
+O(

1

x3
) = y0 + y0

[

∆0 +∆1
1

x
+∆2

1

x2
+O(

1

x3
)

]

x

− uy0
d

dx

[

∆0 +∆1
1

x
+∆2

1

x2
+O(

1

x3
)

]

︸ ︷︷ ︸

−∆1

x2
− ∆2

x3
+ O(

1

x4
)

(3.26)
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and for the different orders in x one has:

O(x) ∆0 = 0 (3.27)

O(0) ∆0 = y0 + y0∆1 → ∆1 = −1 (3.28)

O(
1

x
) ∆1 = y0∆2 → ∆2 = − 1

y0
(3.29)

substituting the coefficients in (3.25) gives:

yu(x) = − 1

x
− 1

y0x2
+O(

1

x3
) (3.30)

where the leading term (the first on the right hand side) simply shows that y(x→ −∞) = 0, no

matter the value taken by u c.

Now, using our ansatz y(x) = A(x) · I(x) we can extrapolate the large x behavior for I(x), in
fact:

lim
x→−∞

I(x) = lim
x→−∞

(

yu(x) ·
1

A(x)

)

= 0. (3.31)

Also in this case the result does not depend in any way from u. Hence any other finding relying

on (3.31) will be valid for any range of screened interaction considered.

To find I(x) one has to integrate (3.17) and for a given lower limit of integration, a particular

constant for the solution of the initial value problem will be obtained since I(x) =
∫ x

a

dt
dI(t)
dt

+

I(a). Assuming a = −∞ we have:

I(x) = 1

u

∫ x

−∞
dt

1

A(t)
+ I(−∞) (3.32)

we have just shown that I(−∞) = 0, hence the above expression reduces to:

I(x) =
1

u

∫ x

−∞
dt

1

A(t)

see Eq. B.7
︷︸︸︷
=

√

2

u
e

1

2uy2
0

∫ x̃

−∞
dt̃ e−t̃2

=

√

2

u
e

1

2uy2
0

∫ 0

−∞
dt̃ e−t̃2 +

√

2

u
e

1

2uy2
0

∫ x̃

0

dt̃ e−t̃2 . (3.33)

where x → x̃ = x√
2u

− 1√
2uy2

0

as in Eq. (B.7) The second term has been already treated before.

Regarding the first term we have:

∫ 0

−∞
dt̃ e−t̃2 =

∫ ∞

0

e−t̃2dt̃ =

√
π

2
(3.34)

which gives the prefactor obtained in (B.8). I(x) can finally be expressed as:

I(x) =
√

π

2u
e

1

2uy20 · erf
[(

x− 1

y0

)
1√
2u

]

+

√
π

2u
e

1

2uy20

︸ ︷︷ ︸

C̄(u, y0)

(3.35)

cThis point will be also proved afterwards, starting from the exact solution for the 1-point Green’s function
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and the 1-point Green’s function reads:

yu(x) = A(x)·I(x) =
√

π

2u
e

[

x2

2u− x
uy0

+ 1

2uy20

]

·erf
[(

x− 1

y0

)
1√
2u

]

+

√
π

2u
e

[

x2

2u− x
uy0

+ 1

2uy20

]

(3.36)

which in the limit of x = 0 becomes:

yu =

√
π

2u
e

1

2uy20 · erf
[

−
√

1

2uy20

]

+

√
π

2u
e

1

2uy20 = −
√

π

2u
e

1

2uy20

{

erf

[√

1

2uy20

]

− 1

}

(3.37)

where −1 = C(u, y0), a result which we have already obtained in (3.22) by means of a different

reasoning.

Therefore the main results of this subsection can be summarized as follows: i) the ini-

tial value problem for the 1-point DE can be solved in different ways, namely one can i-

a) either employ the limit u = 0, expand the exact solution and require that y(u =
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Figure 3.2: DE’s exact solution depicted for different values of C. Specifically

for C = −1 (red plain curve) we obtain the ”physical” particular solution for the

Green’s function. For the blue dotted curves various values for C are shown. In the

small u limit, only the red curve is non-divergent, while for the large u limit, the

choice of C does not influence the behavior of the curves at all: they all approach

the exact physical solution of Eq. (3.19)

0) = y0, i-b) or use

a more traditional ar-

gument, that is yu(x)

is known for a given

potential x, specifically

x = −∞. ii) Both

strategies yields the same

result: C(u, y0) = −1

and that such constant

does not depend on u.

However, while this last

statement has been shown

rigorously to be true within

the latter approach (i-

b)), it was not in the

former (we concluded so

only by induction). How-

ever, within both strate-

gies, one requires the

Green’s function to be

non-divergent.

Finally, notice how, considering the (infinitely) large u limit, provides us with a family of general

solutions which all collapse into the particular one obtained by setting C(u, y0) = −1, while in

the infinitely small u limit, all particular solutions have a different behavior. We will shortly

come back to this with an analysis of the mathematical nature of the algebraic DE.
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3.2.5 DE’s solution by iteration

Let us analyze more carefully the iterative procedure that lead to the result of Eq. (3.24). We

will begin employing a very conventional starting point, namely: y(0)u (x) = y0 (later on we will

propose some other initial guesses and examine their effects on the final result).

The nth iteration produces

y(n+1)
u (x) = y0 + y(n)u xy0 − uy0

dy
(n)
u (x)

dx
. (3.38)

For x = 0 the first two orders in u read

y(2)u = y0 − uy30, (3.39)

y(4)u = y0 − uy30 + 3u2y50 , (3.40)

and Eq. (3.24) for the third order. Results as a function of u are depicted in Fig. 3.3 together

with the exact solution.

Two observations can be made: i) very few terms are needed to obtain a good approxi-

mation to the exact solution in the small u regime; ii) for a given u = un, the expan-

sion diverges starting from an order n. The larger is un, the smaller is n, which limits
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Figure 3.3: Comparison between the exact solution (red plain line, Eq. (3.19))

and the iterative solution for x = 0 of (Eq. (3.38)). The blue stars show the 1st order

expansion (Eq. (3.39)), while the green triangles and the black circles are respectively

the 2nd (Eq. (3.40)) and 3rd order (Eq. (3.24)). All the three orders are close to the

exact solution for small u values, whereas when a given order of the series starts to

diverge, the lower orders of the expansion reproduce the exact results better. For

each curve C(u, y0) = −1, and we set y0 = 1

the precision that can

be obtained. As pre-

viously mentioned, the

iteration coincides with

the expansion for small

u of the exact solution.

Since the small u ex-

pansion is de facto the

asymptotic expansion of

the error function times

an exponential (as can

be seen in (3.20)) the

divergent behavior of the

iteration in (3.38) is not

surprising. Divergences

of higher orders have

also been found in per-

turbation expansions for

realistic systems, e.g. for

orders higher than 3 in

the Møeller-Plesset scheme

[89, 90], more on this is-

sue will be discussed at the next section of this chapter.
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3.3 A singular perturbation problem

Some mathematical considerations will now be provided regarding the nature of Eq. (3.15). The

problem we have just solved belongs to the class of the so-called singular perturbation problems.

It may be convenient to distinguish between the -more common- regular perturbation problems

(RPP) and the singular perturbation problems (SPP). In the former, the solution that can be

obtained for a small value of the perturbing parameter -let ǫ be such parameter-, is at least

qualitatively, the same as that of the unperturbed problem, for which ǫ = 0. In the latter,

this is not true anymore: the unperturbed solution is qualitatively different from the solution

for non-null values of ǫ (very often its approximate form will consist in one, or more than one,

asymptotic expansion with respect to ǫ). Intuitively this means that the problem we deal with

behaves differently depending on the scale (i.e. time or length, but not only) we are looking at.

Furthermore SPPs can then be divided up in two broad classes: boundary layer problems and

multi-scale problems, which are commonly solved by matched asymptotic expansions (MMAE)

and method of multiple scales (MMS) respectively. We will now shed some more light on the

divergent nature of the result in Eq. (3.24).

3.3.1 An approximate solution from asymptotic expansions

As we have shown in the previous section, a physicist would probably solve (approximately) the

DE by iterating it; a mathematician, knowing they are facing a singular perturbation problem,

would probably try out an approximate solution obtained through an asymptotic expansion. For

a regular perturbation problem, a single approximate solution, in terms of an expansion of the

unknown in powers of the perturbing parameter, could describe well our problem on a very large

scale (for all the parameters appearing in the equations).

Instead, for a singular perturbation problem, we would notice that such methodology does not

really lead to a full solution of the problem, but rather to a partial one: e.g. in the case of a

nth order differential equation one employs only n − 1 initial conditions (and is hence left with

an unused one) or in case of an algebraic equation of degree n one would obtain less than the

expected n solutions.

However, through a rescaling of the variables, it is possible to restore the nature of the equation

and find two asymptotic expansions (or more, depending on the so called layers, which are nothing

else than the areas where one approximate solution and not the others describe accurately the

problem), one valid for ǫ = 0 (the so-called inner solution, which is often the solution we would

obtain treating the problem as a regular perturbation one) and the second valid for some other

small ǫ (outer solution). The two expansions can be then appropriately matched to obtain a very

good approximation to the exact solution of the equation ∀ǫ.
Here we will first show how, treating the DE as if it were a regular perturbation problem, just

provides us with an approximation which is excellent for ǫ → 0, but quickly diverges for larger

(although still very small) values of the perturbing parameter.
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First of all let’s recast Eq. (3.15) in a slightly different form, dividing both sides by y0:

yu(x)

y0
= 1 + xyu(x)− u

d yu(x)

dx

yu(x)

[
1

y0
− x

]

= 1− u
d yu(x)

dx
(3.41)

and then defining a rescaled potential x̃ =
1

y0
− x and employing a chain rule for the derivative,

(3.41) reads:

yu(x̃)x̃ = 1− u
d yu(x̃)

dx̃

d( 1
y0

− x)

dx
= 1 + u

d yu(x̃)

dx̃

yu(x̃)x̃− 1− u
d yu(x̃)

dx̃
= 0 (3.42)

If we tried the solution of the equation as if it was a RPP, we would assume that the following

asymptotic expansion:

yu(x̃) ≈ y1(x̃) + uy2(x̃) + u2y3(x̃) +O(u3) (3.43)

might possibly be a good approximation for the DE. The goal is to calculate all the coefficients

y1, y2, y3, · · · of the expansion. We simply subsitute (3.43) into (3.42):

[
y1(x̃) + uy2(x̃) + u2y3(x̃)

]
x̃− 1− u

d

dx̃

[
y1(x̃) + uy2(x̃) + u2y3(x̃)

]
= 0 (3.44)

and solve an equation for each order of u separately:

y1x̃− 1 = 0 O(0) (3.45)

y2x̃− dy1(x̃)

dx̃
= 0 O(u) (3.46)

y3x̃− dy2(x̃)

dx̃
= 0 O(u2) (3.47)

One obtains:

y1 =
1

x̃
(3.48)

y2 =
d

dx̃

(
1

x̃

)
1

x̃
= − 1

x̃3
(3.49)

y3 =
d

dx̃

(

− 1

x̃3

)
1

x̃
=

3

x̃5
(3.50)

Inserted in (3.43) they yield:

yu(x̃) ≈
1

x̃
− u

1

x̃3
+ u2

3

x̃5
(3.51)

going back to the original variables {y0, x}

yu(x) ≈
1

[
1
y0

− x
] − u

1
[

1
y0

− x
]3 + u2

3
[

1
y0

− x
]5 (3.52)
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which in the usual limit of x→ 0 becomes:

yu(x) ≈ y0 − uy30 + 3u2y50 (3.53)

This is precisely the same result as the one obtained with the iterative solution for the DE (see

Eq. (3.39)).

Such a result fully rationalizes the divergence encountered by iterating Eq. (3.15): they corre-

spond to solving the DE trough an asymptotic expansion which is meant to be a good approxi-

mation for the exact solution only in the proximity of u = 0: elsewhere the expansion performs

quite poorly, but this has to be expected since the DE constitutes a SPP.

Note that, for the full functional differential equation, a solution by iteration would be equiva-

lent to the generalized version of the above asymptotic expansion. Unfortunately the time didn’t

allow for obtaining a second expansion (corresponding to the outer layer), which could have been

joined to the inner solution, so as to reproduce accurately the exact solution of Eq. (3.23). We

will only briefly sketch how this should be done.

As we have mentioned before the asymptotic expansion (3.43) is not capable to describe the

DE’s solution over the whole interval for x̃. This means that we have to expect, at a given value

for x a so called boundary layer, for which another approximate solution for the DE has to be

found. Once this critical value for x has been identified, one constructs a so-called boundary

layer coordinate, which in our case is xl =
x

uα
, where α > 0. This procedure has the effect of

stretching the area near the boundary layer point, in fact if xl is kept fixed while expanding again

our solution in terms of u, x will become larger. A new equation in the rescaled variables will

have to be solved through asymptotic expansions, with the only difference that the presence of

the power α in the perturbing parameter u will make the problem slightly more complicated than

before. This second solution has now to be matched to the inner one. The matching is performed

in two steps: first both inner and outer solutions are rescaled in terms of an intermediate vari-

able, which satisfies certain constraints, then, assuming that the domains of validity of both the

inner and outer solutions overlap, one requires that terms of the same order for both expansions

are equal.d One has thus obtained a so-called composite expansion, which, in principle, should

reproduce accurately the exact DE’s solution.

In conclusion it will be certainly worthwhile to explore this route further as an alternative to

traditional perturbation theory.

3.3.2 Other famous examples of divergences

Divergences are not unique to the iteration of the differential equation (3.15), but are also found

within other perturbation techniques applied to both real and model systems, an example of this

is the Møeller-Plesset (MPn) scheme [91].

It has in fact been observed that, for certain atoms and molecular systems, expansions beyond

the 2nd order exhibit, seldom, either an oscillatory, or erratic or even a completely divergent

behavior [89]. A particularly critical system is constituted by the hydrogen fluoride (HF), where

the calculation of several molecular constants within MP4 has been found to be systematically

dIn general it is enough to match the solution for the first order of the expansions: being asymptotic expansions

we know that very few terms -in the limit of a single one- are needed to reach a good accuracy.
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worse than MP2 [90].

Another example is the homogeneous electron gas which exhibits a divergent series expansion

in terms of the bare Coulomb potential v and resummation of the largest divergent integrals of

such expansion have been discussed, for instance, in [? ].

Together with the two examples above we should number the (in)famous case of the quartic an-

harmonic oscillator when treated within the ordinary Rayleigh-Schrödinger perturbation theory

(RS-PT).

One deals with an eigenvalue problem defined by:
(
d2

dx2
+

1

4
x2 +

1

4
λx4

)

Φ(x) = E(λ)Φ(x) (3.54)

where λ is the perturbing parameter. The boundary conditions for the above differential equation

are lim
x±∞

Φ(x) = 0.

This particular anharmonic oscillator has been extensively studied since it represents a very

simple model field theorye in one dimensional space-time.

The perturbation theory for such model was studied, among the others by Bender and Wu [92],

first by mean of Feynman diagrams and later on with a mixed analytical and computational

approach. A greater deal of insights was obtained mainly within the latter approach and it

was found that the theory provides coefficients cn of the energy eigenvalues E0(λ) =
∑

n

cnλ
n

constituting the asymptotic series:

cn ≈ (−1)n+1
(3

2

)n

Γ(n+
1

2
), n→ ∞ (3.55)

yielding an energy of the type:

E0(λ) =
∑

n

(

− 3λ

2

)n

Γ(n+
1

2
) (3.56)

The expression in Eq. (3.56) is proportional to a particular hyper geometric series f of the form:

2F0

(1

2
, 1;−3

2
λ
)

=

∞∑

n=0

(1

2

)

n

(

− 3λ

2

)n

=

∞∑

n=0

Γ(n+ 1
2 )

Γ(12 )

(

− 3λ

2

)n

=
√
π

∞∑

n=0

Γ(n+
1

2
)
(

− 3λ

2

)n

=

∞∑

n=0

(−1)n
(2n− 1)!!

2n

(3λ

2

)n

(3.57)

eWhere the theory is defined by H =
1

2
ϕ̇2 +

1

2
m2ϕ2 + λϕ4 and [ϕ, ϕ̇] = i

fIt is a divergent generalized hyper geometric series. Once the series is expressed as

nFm







a1 · · · ap

;T

b1 · · · bq






, the following convergence rules apply: if p ≤ q we have absolute convergence

for all T, if p = q + 1 then it converges absolutely for ‖ T ‖< 1 and diverges for ‖ T ‖> 1 and finally if p > q

-which is our case- it diverges. These properties can be found, e.g. in Ref [93]
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where the Pochhammer notation for

(
1

2

)

n

has been transformed in an equivalent expression

made up of Γ functions and the Γ functions have, in turn, been expressed through multiple

factorials. g Let’s now define a new variable z as a function of the perturbing parameter λ as:

z =
3

2
λ, this definition will be handy later. Now let’s turn for a second to another special function,

the error function and its conjugate, the erfc. The asymptotic expansion for an erfc(z), with

z large, reads:

erfc(z) =
ez

2

z
√
π

∞∑

n=0

(2n− 1)!!

(2z2)n
(3.58)

The above expression is remarkably similar to the one in Eq. (3.57), except for an exponential

factor. What if we plug Eq. (3.58) into the exact solution for the DE (substituting
√

1
2uy2

0
= z

and setting y0 = 1 h)? One obtains:

yu =

∞∑

n=0

(2n− 1)!!

(2z2)n
(3.59)

which is identical to the result in (3.57)! Note that in both cases z, which we assume to be large,

is the inverse of the perturbing parameters u (for the DE) and λ (for the anharmonic oscillator),

which are supposedly small.

Thus both the divergence observed in the perturbation expansion of the differential equation and

the one observed for the perturbation expansion of this specific model system can be formally

ascribed, at least partlyi, to the divergent nature of the asymptotic expansion of the error

function.

gMore specifically we used the relation (a)n =
Γ(a + n)

n
(being a =

1

2
and m = n) and Γ(n +

1

2
) =

(2n− 1)!!

2n
1√
π

hMore detailed algebraic steps are given in App. C
iPartly here refers to the quartic anharmonic oscillator, where in [92] the divergence of the series was attributed

mainly to an infinite number of branch point -with a singular point at λ = 0- in the energy levels obtained with

the analytical continuation



CHAPTER4
Insights from the 1-point model

In this chapter we will discuss a number of insights obtained through the solution of the differen-

tial equation for the Green’s function in the 1-point framework, which has been presented in the

previous chapter. Firstly the DE’s exact solution is compared to established approximations, such

as G0W0, self-consistent GW0, and to both a self-consistent and a non-self consistent scheme

which includes a first order vertex correction (respectively G0W0Γ
(1) and GW0Γ

(1)). The validity

and the possibility of extending our insights to real calculations is also discussed. In the second

part of the chapter we will instead devise alternative approximations to the GW-based ones. We

will discuss their advantages and caveats and, where possible, we will present their extension to

the full N-points framework.

4.1 Established approximations

In this section the introduction of a self-energy Σ in order to calculate the GF, will be discussed,

along with its most common approximations.

The Dyson-like form for Eq. (3.15), which is the equivalent of Eq. (2.89), reads:

yu(x) = y0 + y0xyu(x) + y0Σu [yu(x)] yu(x) (4.1)

where a self-energy kernel

Σu [yu(x)] = −udyu(x)
dx

1

yu(x)
, (4.2)

has been introduced. Using
dyu(x)

dx
= −yu(x)2

dy−1
u (x)

dx
and the definition Γu [yu(x)] = −dy

−1
u (x)

dx
for the vertex function, the self-energy reads

Σu [yu(x)] = −uyu(x)Γu [yu(x)] , (4.3)

53
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which is the equivalent of Eq. (2.100). Note that in Eq. (4.3) the reducible vertex is used.

However since here the Hartree potential is independent of the external potential, then Γ =

−dy
−1

dx
= −dy

−1

dV

dV

dx
= −dy

−1

dV
= Γ̃ and Eq. (4.3) is equivalent to (2.100). Here V = V 0

H + x.

Starting from from (4.1) one can then derive the Bethe-Salpeter equation for the vertex function

Γ

dy−1
u (x)

dx
= −1− dΣu [yu(x)]

dx

= −1− dΣu [yu(x)]

dyu(x)

dyu(x)

dx
, (4.4)

from which for x→ 0

Γu(yu) = 1 +
dΣu(yu)

dyu
Γu(yu)y

2
u (4.5)

where yu = yu(x→ 0). For x = 0 Eqs. (4.1), (4.3), and (4.5) are equivalent to Hedin’s equations

[14] for a fixed W (see also Fig. 3.1). In the following we will compare various type of approxi-

mations for these equations to the DE’s exact solution, in order to obtain greater insight in these

self-energy based techniques. From now on all the quantities we deal with are understood to be

taken at vanishing external potential (x = 0).

4.1.1 G0W0 and fully self-consistent GW

Let us first analyze the different flavors of the GW approximation [14]. Setting Γu(yu) to unity,

it follows that Σu(yu) = −uyu. Within the initial guess y
(0)
u = y0, one gets the G0W0 self-energy:

Σu = −uy0. This is then inserted in the Dyson equation (4.1) in order to get an improved y
(1)
u .

To go beyond this first approximation one can iterate further within the GW approximation, i.e.

keeping Γu(yu) = 1. This procedure corresponds to an iteration towards a so-called GW0 result,

since G is iterated towards self-consistency while u, which represents the screened interaction, is

kept fixed.

We report here the expressions obtained for G0W0, i.e. the first solution of the Dyson equation,

and for three successive loops

y(1)u = yG0W0
u =

y0
1 + uy20

, (4.6)

y(2)u = y0
1 + uy20
1 + 2uy20

, (4.7)

y(3)u = y0
1 + 2uy20

1 + 3uy20 + u2y40
, (4.8)

y(4)u = y0
1 + 3uy20 + u2y40
1 + 4uy20 + 3u2y40

. (4.9)

We call this procedure iterative self-consistent scheme, opposite to the direct self-consistent

scheme, where one solves directly the Dyson equation (4.1), for x = 0, with Σu = −uyu. In this

latter case one gets a second-order equation with two solutions

yu =
±
√

1 + 4uy20 − 1

2uy0
. (4.10)
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One may wonder if both these solutions are physical, i.e. meaningful. Fortunately there are certain

constraints a physical Green’s function must obey to, hence one could use them as checkpoints.

A necessary condition is that for vanishing electron-electron interaction the full Green’s function

has to reduce to the non-interacting one, that is u = 0 7→ yu = y0. Taylor expanding the square

root around u = 0

yu ≈ ±
(

y0 +
1

2uy0

)

− 1

2uy0
. (4.11)

It is immediate to verify that only one of the two solutions fullfills the above condition. The

physical solution hence reads

yu =

√

1 + 4uy20 − 1

2uy0
. (4.12)

In the next paragraph we will analyze more in depth certain aspects of the above two schemes,

mainly the influence of the starting point on the final result.

Starting point in iterative schemes

A further question concerning the sc-GW0 iterative scheme may be: does the result of the proce-

dure depend on the starting point of the iteration?

In the previous sections we have naturally chosen y(0)u = y0, but of course other choices are pos-

sible. Let us therefore analyze from a more general point of view the iterative scheme obtained

by solving the Dyson equation (4.1) for x = 0

y(n+1)
u =

1

1 + y0uy
(n)
u

. (4.13)

Starting with y
(0)
u = ys, substituting, at each step, on the right hand side of Eq. (4.13), an

improved yn, one obtains (e.g. after three iterations)

y(3)u =
y0

1 +
uy20

1 +
uy2

0

1+y0uys

. (4.14)

This contains nothing else but the continued fraction representation [93] for the square root

√
1 + z = 1 +

z/2

1 +
z/4

1 +
z/4

1 +
z/4

1 +
z/4

1...

, (4.15)

corresponding to the physical solution yu =

√
1 + z − 1

2uy0
where z = 4uy20. It converges no matter

the value of the terminator ys. Therefore this iterative scheme will always converge to the

physical solution. One might now wonder if also the negative root of Eq. (4.10) can be obtained
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through some iterative scheme. The answer is yes. Recasting the Dyson equation (4.1) as:

−uyu = +
1

y0
− 1

yu
(in other words, Σ = G−1

0 − G−1) and iterating it by starting again with a

generical y
(0)
u = ys, we get

y(n+1)
u = − y0

uy0
+

1

uy
(n)
u

, (4.16)

hence

2uy0y = −2−
2uy20

1 +
uy2

0

1+
uy2

0

1+
uy2

0

1+
uy20
...

. (4.17)

which together with Eq. (4.15) is the continued fraction representation for the unphysical solution

yu = −
√

1 + 4uy20 + 1

2uy0
. We hence conclude that it is the type of iterative scheme employed, rather

than the choice of the starting point to determine the good quality of the final result. This is, at

the same time, a comforting and worrisome statement. Comforting because usually the iterative

scheme adopted in the context of GW calculations is rather the first, safe one. Worrisome

because when going beyond GW , higher order equations appear and more and more solutions

are available. If we imagine that each solution can be obtained through a different iterative

scheme, then there will be surely an increased danger to run into a non-physical solution. This

should be kept in mind when trying to add vertex corrections beyond GW .

After this parenthesis, we can go back to the results of the iterative and the direct sc-G0W0

schemes and get a pictorial representation of the expressions discussed so far.

When a small range of interaction is considered, both even and odd iteration seem to con-

verge, fairly quickly, to the direct sc-G0W0 result. When a larger u range is considered (see

the inset of Fig. 4.1), odd iterations quickly converge to the physical solution, while even it-
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Figure 4.1: Comparison between the exact solution (red plain line, Eq.

(3.19)) and different flavors of the GW approximation. In general the self-

energy based approximations perform better than the iteration of the DE

shown in Fig. 3.3. In the main panel the self-consistent GW0 (black stars,

Eq. (4.10)) is the best approximation to the exact result and its iterations

converge towards the self-consistent result (the 2nd iteration blue triangles,

the 3rd green squares and the 4th grey triangles). However, analyzing a

larger u range (inset), one can clearly observe that odd iterations tend to

the exact u = ∞ limit, while the even ones don’t.

erations do also converge but

at a much slower pace. It can

be shown that for u → ∞
their u → ∞ limit forms the

sequence of rational numbers{
1

2
;
1

3
;
1

4
;
1

5
;
1

6
· · ·

}

which ul-

timately approaches 0. This

result would suggests, for in-

stance, routes to speed up the

convergence calculations by sep-

arating odd and even orders

of the iteration (by using sim-

ple procedures to separate odd

and even orders of the contin-

ued fraction).



4.1 Established approximations 57

4.1.2 Vertex corrections

We will analyze in this section the effects of a first order vertex correction [14] which is obtained

by employing the self-energy Σu = −uyu in Eq. (4.5). The first order vertex will hence read

Γ(1)
u (yu) =

1

1 + uy2u
. (4.18)

Using this Γ the self-energy in Eq. (4.3) becomes

Σ(1)
u (yu) = −uyu

[ 1

1 + uy2u

]

, (4.19)

Two routes can now be taken and either a G0W0Γ
(1)(y0) or a self-consistent GW0Γ

(1)(yu) cal-

culation can be carried out.

Nowadays there is still much debate about how to properly insert a vertex correction in a

self-energy based scheme: cancellation effects are frequent [94, 95] and it is not so obvious

to improve on the simpler self-consistent results. Therefore we will test both approaches and

compare their performances. Let us start with employing a vertex correction in a one-shot

calculation: the canonical initial guess for the Green’s function is y(0) = y0 and consequently

the vertex and the self-energy in (4.18), (4.19) read respectively Γ(G0W0Γ)
u (y0) =

1

1 + uy20
and

Σ(G0W0Γ)
u (y0) = −uy0

[ 1

1 + uy20

]

.

Solving the Dyson equation with the above ingredients yields:

yG0W0Γ
u =

y0
(
1 + uy20

)

1 + 2uy20
. (4.20)

Instead, solving the Dyson equation in a self-consistent fashion, with the expressions ( 4.18-4.19)

yields:

yGW0Γ
u =

3

√

y0
2u

+

√

1

27u3
+

1

4u2

− 3

√

y0
2u

−
√

1

27u3
+

1

4u2
. (4.21)

As it can be noticed from the result a cubic equation for the unknown yu had to be solved within

this more sophisticated approach. Again the limit of vanishing interaction has been used to pick

the physical solution.

In Fig. 4.2 we can directly compare the two types of vertex corrections. For small u values their

performance is similar, however, in a wider u range (see inset), the G0W0Γ
(1) scheme diverges

from the exact solution and has the wrong asymptotic limit u→ ∞: it hence behaves as the first

iteration of the sc-GW0 approach, which also exhibits the wrong large u limit. The same figure

also also shows how the GW0Γ
(1) scheme, for small u values, slightly improves over the sc-GW0.

However, given the augmented complexity already at this first order of the correction (one
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could very well iterate further the equations for Γ and Σ and get higher order correc-

tions), the benefits of employing vertex corrections are not obvious. Also note that inter-
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Figure 4.2: In the main panel a comparison between the DE’s exact solution

(red plain line, Eq. (3.19)), G0W0Γ(1) (blue squares, Eq. (4.20)), GW0Γ(1)

(green dots, Eq. (4.21)) and sc-GW0 (black stars, Eq. (4.10)) is shown. In this

range of u, adding a vertex correction, no matter if within a self-consistent

scheme or not, improves over the simpler self-consistent GW0. However, ana-

lyzing a wide u range (inset, semi-logarithmic plot), gives a different perspec-

tive: the iterative G0W0Γ(1) clearly exhibits a wrong u → ∞ limit. Moreover

the sc-GW0 scheme is, in this case, the closest curve to the exact result.

estingly, on the scale from

u = 0 to u → ∞, the clos-

est curve to the exact one is

the sc-GW0 one. In conclu-

sion the Dyson equation is

really powerful: when solved

even within a simple approx-

imation for the self-energy,

it yields very good results as

compared to the straightfor-

ward finite iteration. There

are issues of self-consistency,

but the solution seems to be

determined by the kind of it-

erative scheme that is used,

not by the starting point. It

should however be reminded

that here W0 is kept fixed:

nothing can hence be said re-

garding the benefits of cal-

culating W with an internal

vertex.

4.2 Alternative approximations

4.2.1 An alternative vertex correction

An underlying working recipe in Green’s function theory, is to often resort to the non-interacting

Green’s function, which one can easily calculate, in order to access the properties of the full GF .

One may hence wonder if relying so much on the G0 can be a good strategy also in the scheme

of vertex corrections: what about for instance having Σ as an explicit functional of y0 rather

than of the full yu? This is the idea, which already had appeared in the literature with the work

by Schindlmayr and Godby [96], that led us to the derivation and test of an alternative vertex

correction in the 1-point framework.

The alternative formulation of Hedin’s vertex devised in [96]a is based on a sequence of functional

manipulations performed on the original irreducible Γ̃ (see Eq. (2.94)), and yielding a vertex with

a similar structure as that of Hedin:

Γ̄(n+1)(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫

d4d5d6d7
δΣ(n)(1, 2)

δG(0)(4, 5)
G(0)(4, 6)G(0)(7, 5)Γ̄(1)(6, 7; 3) (4.22)

aWe indicate this alternative vertex as Γ̄, to distinguish it from an approximate Hedin’s one.
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but it contains on the right hand side operators of a lower order than the ones appearing in

(2.94). In particular, having the non-interacting Green’s function rather than full propagator

reduced the computational cost of such vertex considerably.

Mapping Schindlmayr and Godby’s vertex in the 1-point framework yields:

Γ̄(n+1)
u (yu) = 1 +

dΣ(n)(yu)

dy0
y20 (4.23)

(Γ̄(1) on the right hand side is fixed to unity) and a first order correction reads:

Γ̄(1)
u (yu) = 1 +

dΣ(1)(yu)

dy0
y20 . (4.24)

We have now to evaluate the term
dΣ

(1)
u (yu)

dy0
. Starting from the GW approximation to Σ (the

prescription in [96] employs G0 for the self-energy evaluation) one obtains:

dΣ
(1)
u (y0)

dy0

From Eq.11 in ([96])
︷︸︸︷
= −u+ y0

(
−2u2

)
y20 (4.25)

which inserted in Eq. (4.24) yields:

Γ̄(1)
u (y0) = 1 + y0

(
−u− 2u2y30

)
y0

fixed u
︷︸︸︷
≈ 1− uy20 (4.26)

where the approximation in the last term stems from the fact that we are employing a constant

u value (consistently with our linearization) whereas the neglected term −2u2y30 stems from the

derivative of W (u in the model).

Interestingly this vertex correction is a O(1) approximation to Hedin’s original vertex (see

Eq. (4.18)). The first order correction to the self-energy (evaluated from Σ(2) = −uy0Γ(1))

can be now evaluated:

Σ(2)
u (yu) = −uy0

(
1− uy20

)
(4.27)

and employing the Dyson equation for yu, one obtains:

yu =
y0

1 + uy20 (1− uy20)
. (4.28)

The performance of this alternative first order vertex correction is depicted in Fig. 4.3a. We can

see that is not particularly good: more of the quality of a G0W0 calculation rather than of a first

order vertex correction like the one in (4.19).

We will now test again the first order of the vertex in Eq. (4.23) but starting from a self-consistent

GW calculation for Σ (rather than a G0W one) namely using Σ(1)
u = −uyu.

Schematically: i) one calculates the self consistentGW Green’s function, as obtained in Eq. (4.12)

and ii) recalculates Σ as:

ΣGW =
1−

√

1 + 4uy20
2y0

. (4.29)
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iii) Performing the derivative
dΣGW

dy0
yields:

dΣGW

dy0
=

1

2y20

[
√

1 + 4uy20 − 1− 8uy20

2
√

1 + 4uy20

]

= −1

2
+

1

2
√

1 + 4uy20
(4.30)

and the first order vertex correction reads:

Γ̄(1)
u (y0) =

1

2
+

1

2
√

1 + 4uy20
. (4.31)

The above result is inserted in the self-consistent ΣGW , giving:

Σ̄(2)
u (y0) =

1

2y0

[

1 +

√

1 + 2uy20 −
2uy20

√

1 + 4uy20

]

. (4.32)

and finally, inserting Σ̄
(2)
u into the Dyson equation and solving for yu yields

yu =
2y0

1 +

√

1 + 2uy20 +
2uy2

0√
1+4uy2

0

(4.33)

In Fig. 4.3b we benchmark the performances of Γ̄
(1)
u when employed within a self-consistent

scheme, against Hedin’s Γ and the exact DE’s solution. On a small u range it is slightly poorer

than the traditional (first order) Γ, whereas on a larger u scale (see inset) it improves on it.

There is quite a bit of discrepancy between the performance of Γ̄ when used in a non self-

consistent scheme rather than in a self-consistent one and in our model the latter is better than

the former. Schindlmayr and Godby, on the other side, employed the non self-consistent scheme

obtaining satisfactory results on a Hubbard cluster for the calculation of W .

Why do we seem to disagree from their conclusions? Firstly we haven’t used the correction

as it was originally meant to be: in fact, in Eq. (4.26) we had to neglect the quantity
du

dy0
since our screened interaction has been kept fixed. This is one of the cases where it would be

interesting to recalculate both y0H and u in a self-consistent wayb although we are comparing to

the ”exact” solution when u and y0H are also fixed. Secondly, conclusions concerning the effect

of vertex corrections on G (in our case) and on W (in [96]) might be different. In any case the

generalization of the self-consistent Schindlmayr-Godby Γ̄ would definitely be interesting. It is,

of course, highly non trivial because there is no way, in the full functional framework of obtaining

directly the self-consistent Green’s function. One could, however, use different Green’s functions

from the different orders of an iterative self-consistent scheme (see Eqs. 4.6-4.9) and see how the

correction performs in each case.

bSelf-consistent calculations of u and y0H will be discussed in greater detail at the end of this chapter.
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Figure 4.3: Fig. 4.3a: in the main panel a comparison between the DE’s exact solution (red plain line,

Eq. (3.19)), a G0W0Γ̄ (4.23) (black triangles) and a G0W0 (blue dots) calculations is shown. Both in

the small u range and in the larger one (see inset) Γ̄(1) is an unsatisfactory approximation to the exact

curve. Note that, due to Schindlmayr and Godby’s prescription, the vertex has been used in a non-

self consistent way. The large u limit for the alternative Γ̄
(1)
u is however the correct one. Fig. 4.3b: we

compare here the exact solution (red plain line, Eq. (3.19)) to the GW0Γ̄
(1)
u (black stars) result -calculated

within a self-consistent scheme- and Hedin’s vertex (green dots). Thanks to the self-consistent scheme

the performance of Γ̄
(1)
u has considerably improved. On a large u range it is even slightly better than

Hedin’s first order Γ. For a very small u value the traditional vertex is instead slightly more accurate.
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4.2.2 Continued fraction approximations

One well-known approximation for the error function is its continued fraction representation [97].

Within this approximation, the exact expression for yu (Eq. (3.19)) can be transformed into

yu =
1

√
2u

1

1
√

2uy20
+

1/2

1
√

2uy20
+

1

1
√

2uy20
+

3/2

1
√

2uy20
+ . . .

(4.34)

=
y0

1 +
uy20

1 +
2uy20

1 +
3uy20

1 + . . .

. (4.35)

We will now show how it is possible to obtain the expression in Eq. (4.35) starting simply from

the initial DE in Eq. (3.15), without any information about its exact solution: this is actually

the idea behind any of the alternative approximations we will devise in this chapter. Beginning

with Eq. (3.15) and taking successively higher order derivatives of the equation one obtains :

dyu(x)

dx
=y0yu(x) + y0x

dyu(x)

dx
− uy0

d2yu(x)

dx2
(4.36)

d2yu(x)

dx2
=2y0

dyu(x)

dx
+ y0x

d2yu(x)

dx2
− uy0

d3yu(x)

dx3
(4.37)

d3yu(x)

dx3
=3y0

d2yu(x)

dx2
+y0x

d3yu(x)

dx3
− uy0

d4yu(x)

dx4
(4.38)

and so on. If we neglect derivatives e.g. from the 4th order on and then set x = 0, this truncation

allows us to solve all the above equations, beginning with Eq. (4.38) (now an algebraic equation

in the unknown
d3yu(x)

dx3
by keeping

d2yu(x)

dx2
as parameter); subsequently we insert the result in

(4.37) and solve for
d2yu(x)

dx2
, (4.36) for

dyu(x)

dx
and ultimately Eq. (3.15) obtaining

yu =
y0

1 +
uy20

1 +
2uy20

1 + 3uy20

, (4.39)

which is precisely the result yielded from the approximation of the exact solution with a continued

fraction formula for the error function ( Eq. (4.35) ). We will name this manipulation limited

order differential equation (LODE).

In Fig. 4.4 we compare the different orders of this approximation to the exact expres-
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sion for yu: we can see that it gets rapidly closer to the exact solution by including higher

derivatives. Specifically, at the very first order (G0W0 level), the two schemes give an
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Figure 4.4: Comparison between the exact solution (red plain line, Eq.

(3.19)) of the DE and the results obtained through the first three orders of the

limited order differential equation (refer to Eq. (4.39)). The notation O(dnx )

indicates that derivatives of order ≥ n have been neglected. As expected the

result improves when more terms are included: the curve O(d2x) (light blue

line, Eq. (4.36)) is superimposed to the G0W0 one (dark blue dots, Eq. (4.6))

and the curve O(d4x) (black circles, Eq. (4.38)) is close to the exact result in a

small u range.

identical result, while later

on, order by order, display a

self-energy with an identical

structure, which differs only

by the coefficients. Also in

this continued fraction odd

and even orders converge to-

wards the exact result with

a different speed. In anal-

ogy with the continued frac-

tion of Eq. (4.15) even iter-

ations have the correct large

u limit, while the odd ones

don’t, although they do even-

tually tend to it for a very

large number of steps. Fur-

thermore we notice that the

above continued fraction con-

verges slower than the one

arising from the sc-GW0; how-

ever, the former will eventu-

ally converge towards the ex-

act solution, whereas the latter only to the self-consistent GW0 solution.

A direct analytical comparison between the two types of continued fraction (iterative sc-

GW and limited order continued fraction) is presented in Tables (4.2.2-4.2.2). Analyzing the

u→ ∞ limit for the limited order continued fraction it is straighforward to observe the different

behavior of even and odd orders. One may now wonder at which order of the iteration the

Order Iterative sc-scheme u→ ∞
y
(1)
u = yG0W0

u yu = y0

1uy2
0

Σu = −uy0 yu = 0

y
(2)
u yu = y0

1+uy2
0

1+2uy2
0

Σu = − uy0

1+uy2
0

yu = 1
2

y
(3)
u yu = y0

1+2uy2
0

1+3uy2
0+u2y4

0
Σu = −uy0(1+uy2

0)
1+2uy2

0
yu = 0

Table 4.1: We report here different the expressions for yu, for Σu and the Green’s function in the large

u limit when an iterative self-consistent scheme (Eqs. 4.6- 4.9) is employed.

limited order DE will outdo the iterative sc-GW scheme. In can be observed in Fig. 4.5a that
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Order Limited order DE u→ ∞
O(d1x) yu = y0

1uy2
0

Σu = −uy0 yu = 0

O(d2x) yu =
y0

1 +
uy2

0

1+2uy2
0

Σu = − uy0

1+2uy2
0

yu = 1
2

O(d3x) yu =
y0

1 +
uy2

0

1+
2uy20

1+3uy2
0

Σu = −uy0(1+3uy2
0)

1+5uy2
0

yu = 0

Table 4.2: We show again different expressions for yu, for Σu and the Green’s function in the large u

limit when the limited order differential equation (LODE) scheme (Eqs. 4.36- 4.38) is used. These values

should be compared with the ones from Tab. 4.2.2.

this happens around the O(d5x) of the novel scheme. The LODE approach is hence definitely

worth being analysed further, in particular it would be interesting to explore the possibility of

a generalization to the full functional framework. Below we will sketch the generalization of the

approach (while all the details can be found in Appendix (D)).

Differentiating Eq. (3.7) with respect to the external potential ϕ̄ one gets

δG(1, 2; [ϕ̄])

δϕ̄(6)
=

∫

d3G0
H(1, 3)

δϕ̄(3)

δϕ̄(6)
G(3, 2; [ϕ̄])

+

∫

d3G0
H(1, 3)ϕ̄(3)

δG(3, 2; [ϕ̄])

δϕ̄(6)

+ i

∫

d3d5W (3+, 5)G0
H(1, 3)

δ2G(3, 2; [ϕ])

δϕ̄(6)δϕ̄(5)
. (4.40)

Truncating the highest order derivative
δ2G

δϕ̄2
and solving for ϕ = 0 (which means also ϕ̄ = 0)

one obtains:

δG(1, 2; [ϕ̄])

δ ¯ϕ(5)
= G0

H (1, 5)G(5, 2; [ϕ̄]) (4.41)

which reinserted in Eq. (3.7) yields:

G(1, 2; [ϕ̄]) = G0
H(1, 2) + i

∫

d3d5G0
H(1, 3)W (3+, 5)

× G0
H(3, 5)G(5, 2; [ϕ̄]). (4.42)

Note that the above expression provides the one-particle GF within the G0W0 approximation to

the self-energy: we have hence perfectly reproduced a result known from the 1-point framework.

However our goal is to go beyond the G0W0 accuracy. Differentiating Eq. (4.40) with respect to

ϕ̄ and neglecting the third order derivative
δ3G

δϕ̄3
yields

G(1, 2) = G0
H(1, 2)− i

∫

d5389G0
H(1, 3)W (3+, 5)

× m̄−1(3, 5; 9, 8)G0
H(9, 8)G(8, 2) (4.43)
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Figure 4.5: Fig. 4.5a:comparison between the exact solution (red plain line, Eq. (3.19)) of the DE

and some specific orders of the iterative sc-GW scheme and the limited order DE. Both schemes give

an identical result at the first order (see the overlap bewteen the green stars O(d1x) of the LODE and

the blue dotted line, representing the G0
HW0 result). However it is only at the iteration of order O(d5x)

that the novel scheme performs once for all better than the conventinal self-energy based one (which can

provide, at its best, only the direct sc-GW curve -blue starred curve in the plot-). Fig. 4.5b: the same

curves of Fig. 4.5a are depicted here, however we examine a much larger u range. It is interesting to

remark that in this scale the O(d5x) is not constantly performing better than the sc-GW result.

with

m̄(16; 57) : = −δ(15)δ(76) + i

∫

d3W (3+, 5)G0
H(1, 3)δ(7, 6)

×
[
G0

H(3, 6) +G0
H(3, 5)

]
, (4.44)

which is a four-point quantity of a similar complexity as a Bethe-Salpeter kernel. Starting from

the above equation one can write a Dyson equation reading:

G(1.2) = G0
H(1, 2) +

∫

d3d8G0
H(1, 3)Σ(3, 8)G(8, 2) (4.45)

where the self-energy has been defined as:

Σ(3, 8) = −i
∫

d5d9W (3+, 5)m−1(3, 5; 8, 9)G0
H(9, 8). (4.46)

The above self-energy resembles the GW one, with the difference of being a modified three point

interaction, i.e.

∫

d5W (3+, 5)m−1(3, 5; 8, 9) := O(3; 9, 8).

The complexity of the above result could have been expected: complicated manipulations do not

guarantee anymore to smoothly and exactly move from solving O(dnx) (with n ≥ 4) equations

to O(d1x) equations. On the other hand, the LODE approach does not require at any step an

iterative procedure: this might turn out to be a significant advantage, compared, e.g. to adding

vertex corrections to Σ. All considered the LODE approach is worth being explored further. Since
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its main caveat, when going to higher orders, is the appearance of larger matrices, one could, for

example, use some local approximation or decoupling in order to keep all the quantities involved

in the equations below the 4-points.

4.2.3 Large electron-electron interaction expansions

Perturbation theory usually deals with weak interactions, hence the small u limit. It is however

very interesting to examine the large u limit for several reasons. First of all it is the regime

of strong correlation, where the current approximations exhibit failures. Secondly, the large u

expansion for the exact solution gives a convergent series (being a product of two convergent

Taylor expansions, one for the exponential and the other one for the error function) and one

could think of obtaining a better approximation to the exact solution by adding higher order

terms, contrary to what has been observed for the small u (asymptotic) expansion of the solution.

Last but not least, excellent approximations for the exact solution are Padé approximants [98],

which have to be constructed using both the small and large u limit. In this subsection we will

present two possible routes to approach this limit: the first is a straightforward large u expansion

of the exact solution for yu, while the second combines the latter with the large u expansion for

the Dyson equation.

Straightforward expansion for the solution

By expanding both the exponential prefactor and the error function appearing in Eq. (3.19):

e
1

2uy20 ≈ 1 +
1

2uy20
+

1

8u2y40
+ · · · , (4.47)

erf
[
√

1

2uy20

]

≈ 2√
π

[
√

1

2uy20
− 1

6uy20

√

1

2uy20
+

1

40u2y50

√

1

2uy20
+ · · ·

]

, (4.48)

one obtains for the different orders of the full solution

y(1/2)u =

√
π

2u
(4.49)

y(1)u = − 1

uy0
+

√
π

2u
(4.50)

y(3/2)u = − 1

uy0
+

1

2uy20

√
π

2u
+

√
π

2u
(4.51)

y(2)u = − 1

uy0
+

1

2uy20

√
π

2u
− 1

6u2y30
+

√
π

2u
(4.52)

y(5/2)u = − 1

uy0
+

1

2uy20

√
π

2u
− 1

6u2y30
+

1

8u2y40

√
π

2u
+

√
π

2u
(4.53)

y(3)u = − 1

uy0
+

1

2uy20

√
π

2u
− 1

6u2y30
+

1

8u2y40

√
π

2u
+

1

10u3y50
+

√
π

2u
. (4.54)

Fig. 4.6 shows how these different expansions perform versus the exact result. Overall their be-

haviour is very good for large u and few orders are sufficient to get a good approximation over a
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wide u range (which is our ultimate goal), although for u = 0 all these approximations are diver-
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Figure 4.6: Comparison between the exact solution (red plain line, Eq.

(3.19)) and the large u expansion for the DE. The green dots and stars are

respectively O(u3/2) and O(u) of the large u expansion (Eqs. (4.50-4.51)). We

also report the G0W0 results (blue dots, Eq. (4.6)) as an example of a small u

expansion. Over a wide u range the large u expansions are very satisfactory.

gent. This means that one

could solve the set of differ-

ential equations in the large

u limit and get a good ap-

proximation to the exact so-

lution over a wide range of

u. However, this approxi-

mate solution would diverge

for small u.

Expansion combined with the Dyson equation

When u gets larger, also Σu increases. This implies that, using the Dyson equation for the

one-particle Green’s function yu =
(
y−1
0 − Σu

)−1
one could expand yu as

yu ≈ −Σ−1
u

[

1 + y−1
0 Σ−1

u + y−1
0 Σ−1

u y−1
0 Σ−1

u

]

. (4.55)

Hence to lowest order yu ≈ −Σ−1
u or

Σu ≈ −1/yu. (4.56)

This simple relation allows us to use the large u expansion of the exact solution for yu to

approximate Σu for large u; we can then use this approximate Σu in the Dyson equation to

recalculate yu. For example, using the lowest order of the large u expansion of the exact yu one

gets the following self-energy:

Σu ≈ −
(√

π

2u

)−1

, (4.57)

which, inserted in the Dyson equation yu = (y−1
0 − Σu)

−1 gives:

yu ≈
y0

1 + y0

√
2u
π

. (4.58)
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In Fig. 4.7 the performance of this approximation for yu is shown against two orders of the

straightforward large u expansion for the Green’s function, the exact solution and G0W0. The

”large Σ” approach is exact for u = 0, mending the divergence of all the orders of straight-
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Figure 4.7: Comparison between the exact solution (plain red line, Eq.

(3.19)), order O(u) of the large u expansion for the DE (green line, Eq. (4.50)

), and the order O(u1/2) of the DE’s large u expansion combined with the

large Σ expansion (black dots, Eq. (4.58)); we also report the G0W0 results

as a prototype of a widely used approximation. We observe that the large

u expansion of the DE combined with the large Σ expansion is performing

extremely well over the range of u examined, being even exact both in the

large and small u limits.

forward expansion for yu in

that limit. We obtained here

an approximation with the

desirable property of being

exact in the small and large

u limits, and, moreover, it

shows an overall good agree-

ment (generally better than

G0W0, and similar to the 1st

order of the straightforward

large u expansion) with the

exact solution. At higher

orders undesired poles ap-

pear and the approach does

not systematically improve

on the straighforward large

u expansion or theG0W0 ap-

proach. Moreover, we have

used the C(u, y0) = −1 re-

sult to solve the initial value

problem, but in general, in

the framework of a large u

expansion, without knowing the exact solution, one would not know how to do that. Pros and

cons of the methodology should definitely be explored further.

4.3 Self-consistent calculations of the Hartree Green’s func-

tion

We elaborate here on two choices that we have made in our analysis of existing approaches,

namely treating the Hartree Green’s function and the screened interaction as externally given

quantities. This is justified by the fact that realistic calculations are most often following such

a pragmatic ansatz. In principle these quantities should be part of Hedin’s self-consistent cycle.

A fully self-consistent treatment, in the full functional framework, is today out of reach. In

the 1-point model, however, it is possible to go beyond this limitation and indeed, the implicit

solution of Hedin’s equation that has been achieved in the work of [87] contains all quantities

calculated on the same footing. Also in the linearized version, that is employed in the present

work, one can obtain the Hartree Green’s function and the screened potential consistently from
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the equations, as we will discuss in the following.

Let us first turn to the Hartree Green’s function y0H . In terms of the truly non-interacting Green’s

function y0 it reads

y0H =
y0

1− y0uyu
, (4.59)

in other words, it depends (through the density) on the solution yu at vanishing external potential.

In a self-consistent scheme this y0H should then replace y0 in the solution Eq. (3.19), which leads

to an implicit equation for yu. For a self-consistent treatment of the screened interaction we can

use the fact that the 1-point differential equation can be solved for
dyu
dx

, and insert the result into

the expression for the screened interaction u in terms of the bare v, which reads u = v+ v
dyu
dx

v.

Two routes can be taken. The first one is based on the linearized equation (3.15) where the

interaction is already screened from the very beginning. This leads to a quadratic equation for

u, with two solutions

u =
v

2
±
√

v2

4
+ v2

{

1− yu
y0

+ vy2u

}

. (4.60)

The physical solution is the one of the positive square root, since it approaches the bare v in the

limit of vanishing interaction, hence vanishing screening. The second route consists in calculating
dyu
dx

from the initial equation (3.14), where the bare y0 and the interaction v appear. This yields

u = v

(

2− yu
y0

+ vy2u

)

. (4.61)

In both cases, the solution for u should be used in Eq. (3.19), which again makes the expression

for the GF implicit. One may argue about which of the two ways to calculate u self-consistently

is more adequate.

In a realistic calculation one would probably use the former approach, in an iterative way:

after calculating the GF as a functional of the external potential for a given initial interaction in

the linearized DE, one would recalculate the W from the functional derivative, and so on. What-

ever choice, however, does not influence the main conclusions that can be drawn from the above

considerations. Specifically: i) a self-consistent calculation leads to an implicit solution (like in

the work of [87]) which however would not be identical to theirs because of our linearization

procedure; ii) the behaviour for the small interaction limit is unchanged by the self-consistent

treatment, as one can verify from equations (4.59),(4.60) and (4.61); this means in particular

that the constant C is chosen in the same way as before. iii) Finally also the discussion about

the limit of large interaction is unchanged: by making the ansatz that to lowest order yu ∝ 1√
u

one finds consistency.

Altogether, this shows that the linearization of the equations does not imply necessarily that one

has to treat the Hartree Green’s function and the screened interaction as externally given quan-

tities. It also shows that a more refined, self-consistent treatment does not change the overall

behaviour of the solution.
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In this Chapter we have presented a number of insights both on established and alternative

many-body approximations for the calculation of the one-particle Green’s function in a model

framework, so called 1-point. In the next two Chapters we will release some of the approximations

so as to move to more complicated frameworks, namely a N-times one and the full functional

one, where we will attempt to generalize our approach.



CHAPTER5
Beyond the 1-point model

In this chapter we will go beyond the 1-point model results. As already discussed in the first

part of the work, the main limitation of our model is the 1-point approximation for the time

variable, which causes the loss of all information about the pole structure of the one-body Green’s

functions. In a first instance we will restore the time dependence (and consequently the frequency

dependence) in the differential equation. The decoupling approximation for the space variables will

however be kept. The resulting DE will be solved by resumming exactly its iterative solution. The

Green’s function thus obtained will have an exponential form which we will show to be analogous

to the well known cumulant expansion form for G, presented extensively in Sec. (2.4.3). We

will review in detail the improvements of such method over the G0W0 approximation to Σ, in

particular in relation to photoemission spectral functions calculations. We will briefly conclude

reporting the main results obtained in the work by Guzzo [83], employing this approximation -to

out knowledge rigorously derived here for the first time from fundamental equations- to valence

electron spectroscopy in Silicon.

5.1 Restoring the time dependence of the Green’s function

In Sec. (3.2.1) we have introduced the 1-point model, discussing the approximations made on

Eq. (3.7) in order to obtain it, namely i) projecting the equation onto a single-particle basis which

is then assumed diagonal for all quantities, ii) retaining 1-point only for all the time variables.

In this Chapter we will release one the second of the two approximations and propose and hint

on how the first could also be partially released.

The decoupling approximation for the space variables may look a bit rough, because it is not

possible, in general, to write both the full Green’s function and the non-interacting one on a basis

which both diagonalizes them. However if G and G0
H are fairly similar, the above assumption can

71
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be reasonably accurate for this purpose. In particular, since one can always choose which effective

non-interacting Green’s function to use, a good strategy could be to calculate the one that is

closer to the full G (hence maximizing their overlap): we will see a practical implementation of

this in the last section of the chapter.

The second approximation, that is retaining only 1-point for the time variables, which results in

the absence of a pole structure for the 1-point Green’s function, is the more dramatic limitation in

our approach. In this chapter we will fully restore the time-dependence (and hence the frequency

dependence), of the DE and of its solution.

Let’s recall the expression for the time-dependent linearized DE, written on the same diagonal

basis for G and G0
H :

Gm(t1, t2; [ϕ̄]) = G0
Hm

(t1, t2) +

∫

dt3G
0
Hm

(t1, t3)ϕ̄m(t3)Gm(t3, t2; [ϕ̄])

+ i

∫

dt3dt4G
0
Hm

(t1, t3)Wmm(t3+ , t4)
δGm(t3, t2; [ϕ̄])

δϕ̄m(t4)
. (5.1)

What kind of Green’s function solving Eq. (5.1) may yield?

In this Chapter we will address precisely this question: our goal is, among the other things, to

get greater insight on the capabilities of the linearization approximation. In the 1-point model

we could not get many indications about that, while here we feel that a solution of Eq. (5.1)

might address a number of questions about the ”best” Green’s function obtainable trough the

linearization procedure (we already know the ”worst”, non divergent, one to be the G0W0 Green’s

function, obtained by assuming Σ independent of ϕ̄).

5.1.1 Iterative solution for the N-times DE

Eq. (5.1) is still quite complicated to be solved analytically and ideally one would like to reduce

the number of terms to be treated. By employing an auxiliary Dyson equation reading (for more

details refer to App. (A.5)):a

Gϕ̄(t1, t2) = G0
H(t1, t2) +

∫

dt3G
0
H(t1, t3)ϕ̄(t3)Gϕ̄(t3, t2) (5.2)

one can recast Eq. (5.1) as:

G(t1, t2; [ϕ̄]) = Gϕ̄(t1, t2) + i

∫

dt3dt4Gϕ̄(t1, t3)W (t+3 , t4)
δG(t3, t2; [ϕ̄])

δϕ̄(t4)
. (5.3)

Hence we will first solve Eq. (5.2) and only afterwards tackle Eq. (5.3).

Note that the decoupling approximation is equivalent to a one level approximation: one deals

only with a single occupied (or unoccupied) level at a time which cannot couple to any other level.

Such an assumption has been, for instance, a very common one in core-electron spectroscopy.

Hence all the Green’s function appearing from now on will be defined either through their hole

part or the electron part only. In particular we choose them to be defined by the hole part

(since we are also interested in photoemission spectroscopy we will use strategies employed in

aWe have dropped all the state indices m, being simply dumb indices
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earlier works). Hence, considering only the hole GF the Hartree zero-potential Green’s function

becomes:

G0
H(t1, t2) = iθ(t2 − t1)e

−iǫ(t1−t2) (5.4)

and also Gϕ̄(t1, t2) has the same time structure:

Gϕ̄(t1, t2) = iθ(t2 − t1)yϕ̄(t1, t2) (5.5)

and of course the same will apply to the full G. Inserting both (5.4) and (5.5) into (5.2) one

obtains:

iθ(t2 − t1)yϕ̄(t1, t2) = iθ(t2 − t1)e
−iǫ(t1−t2)

+ i2
∫

dt3θ(t3 − t1)e
−iǫ(t1−t3)ϕ̄(t3)θ(t2 − t3)yϕ̄(t3, t2) (5.6)

dividing on both sides by eiǫ(t1−t2):

iθ(t2 − t1)yϕ̄(t1, t2)e
iǫ(t1−t2) = iθ(t2 − t1) + i2

∫

dt3θ(t3 − t1)e
−iǫ(t2−t3)

× ϕ̄(t3)θ(t2 − t3)yϕ̄(t3, t2). (5.7)

Considering only the time interval t2 > t1 and including the θ(t3 − t2) and θ(t3 − t1) (both

compatible with the initial assumption on t1 > t2) in the extreme of integration on the right

hand side we get:

ỹϕ̄(t1, t2) = 1 + i

∫ t2

t1

dt3ϕ̄(t3)ỹϕ̄(t3, t2) (5.8)

where we have defined:

yϕ̄(t1, t2)e
iǫ(t1−t2) := ỹϕ̄(t1, t2) (5.9a)

yϕ̄(t3, t2)e
iǫ(t3−t2) := ỹϕ̄(t3, t2) (5.9b)

Eq. (5.8) can be transformed from an integral equation to a differential equation and solved

exactly (see App. (F) ). One can verify that the solution of Eq. (5.8) reads:

ỹϕ̄(t1, t2) = e
i

∫ t2

t1

dt ϕ̄(t)
(5.10)

and Gϕ̄:

Gϕ̄(t1, t2) = iθ(t2 − t1)yϕ̄(t1, t2) = iθ(t2 − t1)e
−iǫ(t1−t2)ỹϕ̄(t1, t2)

= iθ(t2 − t1)e
−iǫ(t1−t2)+i

∫ t2
t1

dt ϕ̄(t). (5.11)

The Green’s function thus obtained displays, through its second exponential term, the effects of

the external potential ϕ̄ on the propagation integrated over time.

We can now move on to solving Eq. (5.1) thanks to our latest findings. We define

G(t1, t2; [ϕ̄]) = iθ(t2 − t1)y(t1, t2; [ϕ̄]) (5.12)
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which inserted into (5.1) together with (5.9a) leads to:

iθ(t2 − t1)y(t1, t2; [ϕ̄]) = iθ(t2 − t1)yϕ̄(t1, t2) + i3
∫

dt3t4 θ(t3 − t1)yϕ̄(t1, t3)

× W (t+3 , t4)
δ

δϕ̄(t4)

[

θ(t2 − t3)y(t3, t2; [ϕ̄])
]

(5.13)

considering once again t2 > t1 and multiplying both sides by eiǫ(t1−t3) yields:

ỹ(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2) + i3
∫ t2

t1

dt3

∫

dt4 ỹϕ̄(t1, t3)W (t+3 , t4)
δỹ(t3, t2; [ϕ̄])

δϕ̄(t4)
. (5.14)

The above equation will be now solved through an iterative procedure. This choice is dictated by

our finding in the 1-point framework, where a direct DE solution required also the solution of an

initial value problem in order to select the physical Green’s function, while the iterative scheme

was providing the GF in a more straightforward way, and without the need of solving any i.v.p.

for the equation. Starting with the zeroth-order guess ỹ(0)(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2), the following

order reads:

ỹ(1)(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2) + i2
∫

dt4

∫ t2

t1

dt3 ỹϕ̄(t1, t3)W (t+3 , t4)

× δỹϕ̄(t3, t2)

δϕ̃(t4)
(5.15)

and using two properties of ỹϕ̄:

δỹϕ̄(t3, t2)

δϕ̄(t4)
=

δ

δϕ̄(t4)

[

ei
∫ t2
t3

dtϕ̄(t)
]

= iθ(t4 − t3)θ(t2 − t4)ỹϕ̄(t3, t2) (5.16a)

ỹϕ̄(t3, t2)ỹϕ̄(t2, t4) = ei
∫ t3
t2

dtϕ̄(t)+i
∫ t2
t4

dtϕ̄(t) = ei
∫ t3
t4

dtϕ̄(t) = ỹϕ̄(t3, t4) (5.16b)

one finally obtains:

ỹ(1)(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2) + i3 yϕ̄(t1, t2)

∫ t2

t1

dt3

∫ t2

t3

dt4W (t3+ , t4)

= ỹϕ̄(t1, t2)

{

1 + i3
∫ t2

t1

dt3

∫ t2

t3

dt4W (t3+ , t4)

}

. (5.17)

As in the zeroth order iteration, also for this first order one, it turns out that y(t1, t2; [ϕ̄]) ∝

yϕ̄(t1, t2). One can then assume (eventually it can be demonstrated) this to be true for all

orders of the iterative procedure.

We can hence make an ansatz for the full form of y(t1, t2; [ϕ̄]) reading:

ỹ(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2) · FW (t1, t2) (5.18)

where FW (t1, t2) is the unknown functional we want to find and the pedix W just reminds us it

has to depend on the screened interaction (see also Eq. (5.15)) and independent of ϕ̄ (this last

assumption is then validated a-posteriori).

Inserting such ansatz into Eq. (5.14) one obtains an integral equation for FW (t1, t2):

FW (t1, t2) = 1 + i3
∫ t2

t3

dt4

∫ t2

t1

dt3FW (t3, t2)W (t3+ , t4). (5.19)
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If we define

∫ t2

t3

dt4W (t3+ , t4) := f(t3+ , t2), Eq. (5.19) becomes:

FW (t1, t2) = 1− i

∫ t2

t1

dt3f(t3+ , t2) · FW (t3, t2). (5.20)

This equation has the same structure of (5.11) hence the solution reads

FW (t1, t2) = e−i
∫ t2
t1

dtf(t,t2) = e−i
∫ t2
t1

dt
∫ t2
t dt4W (t,t4) (5.21)

it follows that:

ỹ(t1, t2; [ϕ̄]) = ei
∫ t2
t1

dtϕ̄(t)− i
∫ t2
t1

dt
∫ t2
t dt4W (t,t4) (5.22)

and finally:

G(t1, t2; [ϕ̄]) = iθ(t2 − t1)e
−iǫ(t1−t2)+i

∫ t2
t1

dt ϕ̄(t)−i
∫ t2
t1

dt
∫ t2
t dt4W (t,t4) (5.23)

= G0
H(t1, t2)e

i
∫ t2
t1

dt ϕ̄(t)−i
∫ t2
t1

dt
∫ t2
t dt4W (t,t4) (5.24)

and its equilibrium version -for zero external potential- reads:

G(t1, t2)|ϕ̄ = 0 = G0
H(t1, t2)e

−i
∫ t2
t1

dt
∫ t2
t dt4W (t,t4) (5.25)

Note that the above Green’s function is the exact analytical solution for Eq. (5.1).

What is the physical content of the such expression?

Eq. (5.23) contains a first term iθ(t2− t1)e−iǫ(t1−t2) describing the free propagation of a particle,

a second one e+i
∫ t2
t1

dt ϕ̄(t) which accounts for the ”story” of the perturbation and the way the

system responds to it is contained in the third term e−i
∫ t2
t1

dt
∫ t2
t dt4W (t,t4).

Is Eq. (5.38) a completely new result? The answer is no. While the derivation is, the expression

of the Green’s function thus obtained can be shown to be equivalent to the one obtained in [81]

and [67] for the photoemission core Gc. In the next section we will show how the exponential

in W in Eq. (5.38) can be approximated within a simple model and then expanded, yielding

the same results for the core Green’s function obtained in earlier works [81, 99] (where such

expression for G would take the name of cumulant expansion).

5.1.2 Connection with the cumulant expansion formula for the Green’s

function

We now examine in depth the W contained in (5.38): so far no assumption has been made on

its structure, in principle it can even be an ”exact W” obtained as an external ingredient for the

calculation of G (see the discussion in Sec. (3.1).

However, we prefer to begin with a much simpler (and well-known) structure, that is anyway

plausible when the electronic loss function of a material clearly exhibits only a single peak: the

plasmon pole model. W can hence be recast as [100]:

W (t1, t2) = −iW
{

θ(t1 − t2)e
−iωp(t1−t2) + θ(t2 − t1)e

iωp(t1−t2)
}

(5.26)
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where ωp is the plasmon frequency for a given material and W the amplitude. The function f

becomes:

f(t3+ , t2) =

∫ t2

t3

dt4W (t3+ , t4) = −iW
∫ t2

t3

dt4θ(t3 − t4)e
−iωp(t3−t4)

− iW

∫ t2

t3

dt4θ(t4 − t3)e
iωp(t3−t4) (5.27)

= −iW
∫ t3

t2

dt4

{

θ(t4 − t3)e
iωp(t3−t4)

}

(5.28)

= −iW
{

− 1

iωp
eiωp(t3−t4)

}t2

t3

(5.29)

=
W

ωp

{

eiωp(t3−t2) − 1
}

. (5.30)

Now one can calculate FW as:

Fw(t1, t2) = e−i
∫ t2
t1

dtf(t,t2) = exp

[

−i
∫ t2

t1

dt
W

ωp

{

eiωp(t1−t2) − 1
}]

(5.31)

= exp

[

−i W
iωp

[[
1

ωp
e−iωp(t2−t)

]t2

t1

− (t2 − t1)

]]

(5.32)

= exp

[

−W
ω2
p

[

1− e−iωp(t2−t1)
]

+ i
W

ωp
(t2 − t1)

]

(5.33)

and finally the full interacting G becomes:

G(t1, t2; [ϕ]) = iθ(t2 − t1)e
−iǫ(t1−t2)+i

∫ t2
t1

dt ϕ̄(t)− W

ω2
p
[1−e−iωp(t2−t)]+i W

ωp
(t2−t1)

(5.34)

from which the equilibrium G|ϕ̄=0 is readily obtained:

G(t1, t2)|ϕ̄=0 = iθ(t2 − t1)e
−iǫ(t1−t2)−i

∫ t2
t1

dt W

ω2
p
[1−e−iωp(t2−t)]+i W

ωp
(t2−t1)

(5.35)

= G0
H(t1, t2)e

−i
∫ t2
t1

dt W

ω2
p
[1−e−iωp(t2−t)]+i W

ωp
(t2−t1)

(5.36)

Now the above expression for G, if Fourier transformed, would closely resemble the expression

for the core Green’s function Gc in Eq. (2.109), by setting our
W

ω2
p

= Z.

This shows explicitly that we have retrieved the same expression for G as found in the works of

Langreth and Hedin, without starting with a model Hamiltonian, but rather with a more general

set of equations. Moreover, a second difference between the work presented here and the one by

Almbladh and Hedin in [99] or by Aryasetiawan in [74], is that at no stage a of the derivation

a self-energy appears. On the contrary, in previous works, a Σ would systematically appear and

would be approximated within the GW method.

As discussed in Sec. 2.4.3, one can straightforwardly obtain from the cumulant G, the core

spectral function and then Taylor-expand it. Doing this for (5.35) also yields a sequence of W s

(corresponding to the bosons of the model Hamiltonian of Refs.[67, 81]), with different weights

(again given by the coefficient of the expansion), sitting at energies multiple of ωp. In the end of
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the Chapter we will briefly discuss the main results obtained in the work by Guzzo et. al [83],

where it is shown and analysed how the exponential form for the Green’s function improves over

the spectral function of semiconductors where a G0W0 approximation for Σ had been used.

Now let’s elaborate a bit more on the physics contained in the cumulant expansion Green’s

function. We will do so following a good rule of thumb in many-body perturbation theory which

suggests to employ Feynman diagrams for this purpose.

5.1.3 The cumulant expansion W explained through Feynman dia-

grams

In this section we will compare the series of Feynman diagrams obtained iterating the linearized

DE for Gb with the well-known diagrams one would obtain by iterating the Dyson equation for

G within a G0W0 approximation for the self-energy.

Let’s recapitulate below the results obtained so far trough an iterative scheme for Eq. (5.14).

The zeroth and first order respectively read:

ỹ(0)(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2) (5.37)

ỹ(1)(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2)

{

1 + i3
∫ t2

t1

dt3

∫ t2

t3

dt4W (t3+ , t4)

}

(5.38)

inserting (5.38) into the DE, one obtains for the second order iteration:

ỹ(2)(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2) + i2
∫ t2

t1

dt3

∫

dt4 ỹϕ̄(t1, t3)W (t+3 , t4)

× δ

δϕ̄(t4)

{

ỹϕ̄(t3, t2)

[

1 + i3
∫ t2

t5

dt6

∫ t2

t3

dt5W (t5+ , t6)

]}

(5.39)

= ỹϕ̄(t1, t2) + i3
∫ t2

t1

dt3

∫

dt4 yϕ̄(t1, t3)W (t+3 , t4)ỹϕ̄(t3, t2)

× θ(t4 − t3)θ(t2 − t4)

[

1 + i3
∫ t2

t5

dt6

∫ t2

t3

dt5W (t5+ , t6)

]

(5.40)

And finally, writing out all terms:

ỹ(2)(t1, t2; [ϕ̄]) = ỹϕ̄(t1, t2) + i3
∫ t2

t1

dt3

∫ t2

t3

dt4 ỹϕ̄(t1, t3)W (t+3 , t4)yϕ̄(t3, t2)

+ i6
∫ t2

t1

dt3

∫ t2

t3

dt4 ỹϕ̄(t1, t3)W (t+3 , t4)ỹϕ̄(t3, t2)

×
∫ t2

t5

dt6

∫ t2

t3

dt5W (t+5 , t6) (5.41)

Let’s now express the above second order terms with Feynman diagrams. Depending on the time

ordering one can get different scenarios. If t1 < t3 < t4 < t5 < t6 < t2 one obtains the diagram

of Fig. (5.1). Here, the excitation of the plasmons can occur only in a sequential way and not

bWe pretend, for the moment, to ignore the exact result in Eq. (5.37), where the series for G has been already

completely resummed.
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Figure 5.1: This diagrams appear in the second order expansion for G, however it can be considered

a simple repetition of a first order one, namely a GW one.

simultaneously. Diagrams of this type occurs all the time when iterating the Dyson equation for

G within the G0W0 approximation. This means that no matter to which order one iterates, no

multiple plasmons can be ever observed.

The second scenario can exhibit two types of ordering, be t1 < t3 < t5 < t6 < t4 < t2 the

occurrence b1) and t1 < t3 < t5 < t4 < t6 < t2 the occurrence b2). Their representation in

term of Feynman diagrams reads: We observe that in b1) nested diagrams appear: it means

(a) (b)

Figure 5.2: Fig. 5.2a: nested self-energy diagram (scenario b1)). Also this diagrams belongs to the

second order terms of the expansion for G, however, contrary to the term in Fig. 5.1 it does not appear

in the lower order expansion. Fig. 5.2b: intersecting self-energy diagram (scenario b2)). As the term

b1) it belongs only to the second order set of diagrams of the expansion. A G0W0 expansion for the

self-energy would not be able to generate this contribution, no matter the order of the expansion.

that two plasmons are being excited at the same time. Note that these diagrams would also

appear in an iterative solution of the DE within a GW0 approximation to Σ: this clearly shows

how the impossibility of describing multiple satellite excitation is inherent only to the G0W0

approximation to the self-energy, rather than the GW method in itself.c

The third scenario, labeled b2) offers a new perspective: the wigglyW diagrams are intersecting:

when t5 > t > t4 one observes a simultaneous excitation of two plasmons: this is the type of

physics that the cumulant expansion approximation for the GF can provide beyond GW .

cHowever, the spectral function would exhibit a too small amplitude for the satellites peaks according, for

example, to the calculations by Holm and Aryasetiawan in [101]
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5.2 The decoupling approximation for real materials cal-

culations

In [83] we try to give a theoretical description of the valence photoemission spectra of bulk

Silicon beyond the state-of-the-artd ab-initio calculations carried out so far. In this work several

questions are addressed, namely if in the case of valence photoelectrons a series of plasmon

satellites can be observed due to intrinsic effects or not, if the series is observed within the

exponential framework and not employing the G0W0 scheme, which are the failures of the latter

and finally how can they be cured in a GWΓ framework (i.e. is it possible to devise a promising

vertex correction from our approximation?). To begin with, new photoemission data are used

as a comparison. Angular resolved (ARPES) photoemission experiments were carried out at the

TEMPO beamline of the Soleil Synchrotron radiation facility. The spectrum thus obtained (at

around 800eV for the impinging beam) is then compared with the one obtained from a Green’s

function calculated in the form (5.35) where a plasmon-pole approximation is used to calculate

the screened interactionW and a self-energy corrected G∆ is employed in place of the truly non-

interacting G0
H appearing in (5.35). The agreement found with experiments is unprecedented

and is shown in Fig. 5.3. Moreover, analyzing carefully both the real and imaginary part of a

self-energy calculated in the G0W0 approximation, the failure of it are attributed, in particular

regarding the poor results for the bottom valence band satellite, to a zero in the denominator

of A(ω), rather than a peak in the imaginary part of Σ (as instead should be). This satellite is

hence an artifact of the G0W0 method rather than a true feature of the spectrum. One can then

conclude that the exponential result agrees very well with experimental data and it suggest that

a direct treatment of the differential equation for G can be very promising.

Besides the spectral function, one may wish to employ the decoupling approximation in order to

calculate other quantities by means of the Green’s function, for example the total energy from

the Galitskii and Migdal formula [26]. On the other hand, the simple form for the decoupled

G, does not allow us to access
δG([ϕ̄])

δϕ̄
(which could yield, for example, the response of the

system). As it is often observed, it is very challenging to find an approximation capable of

yielding improvement over all the possible observables and one should always be ready to pay a

price somewhere in order to gain somewhere else. Certainly, there is still room for improvements

over this first decoupling approximation. One could for instance restore part of the coupling

between levels or investigate the effect of a second order term in the expansion for the Hartree

potentiale.

The most tempting possibility of calculating a Green’s function which is beyond the one obtained

by solving exactly Eq. (5.1), is to release all of the approximations made to obtain the N-times

dIs is understood that the start-of-the-art calculation are in the G0W0 approximation to the self-energy
eHowever these developments and the formulation of new vertex corrections are not a core part of this thesis

work, rather M. Guzzo’s one. My contribution to [83] was limited to the initial derivation of the iterative solution

for Eq. 5.3. By illustrating here these results, I intended to show how useful our linearization procedure can be

in the derivation of new approximations -namely for a different derivation of the GW approximation in Chap. 3

and for an exponential G in this Chapter. Moreover we show that searching for a direct solution of Eq. 2.71 in a

framework beyond the 1-point one can be successful and can be a precious as a guideline for the full functional

problem.
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Figure 5.3: We show here a comparison of the experimental XPS spectrum of Si (blue crosses), at

800 eV photon energy and the calculated intrinsic spectral function A(ω) (containing however cross

sections and the secondary electron background) from the G0W0 approximation (red dashed line) and

from Eq. (5.39) (green dotted-dashed line). The black line is the spectrum as calculated from Eq. (5.39)

when extrinsic and interference effects are also included. This latter spectrum is in excellent agreement

with experiments.

DE: this means to go back to the full functional linearized differential equation (3.7) and attempt

its direct solution, using what we have learned so far. This will be the object of the next (and

last) chapter of this thesis.



CHAPTER6
The full functional differential equation

In this chapter we go back to the problem of solving the set of (linearized) functional differential

equations for the one-body Green’s function (see Eq. (3.7)).

We begin presenting in detail several hurdles that we encountered on the way to the solution,

which we tried to devise through an ansatz, mostly based on insights that we obtained from the

solution of the equation in the 1-point framework. In particular we will discuss how, towards the

final stages of the derivation within the chosen ansatz, made up of three terms, multiple options

for choosing one of them show up, making very challenging even to obtain the general solution

for the full DE (note instead how within our model, this step had been a considerably easy one).

To obtain greater insight on this issue we will move from the full functional framework back to

the N-times (aka decoupling approximation) one, presented in the previous chapter. We will

encounter also here the problem of the multiplicity of the solutions, however we will get precious

indications on, at least, one way to overcome it. We will finally discuss how the insights obtained

from the N-times framework might be employed for formulating an explicit general solution for

the full functional differential equations. The work is however still ongoing.

6.1 An ansatz for the one-body Green’s function

As we have shown in Chap. (3)a a way to solve the 1-point version of the linearized differential

equation (3.15) is through a general ansatz, namely yu(x) = A(x) · I(x). Within such strategy

we had to solve two simpler DE for A(x) and I(x) separately and then inserting the results into

the initial ansatz, yu(x) was obtained.

In that very same spirit we will formulate a general ansatz to solve the full functional linearized

DE (3.7). Upon obtaining an explicit solution one would check only a-posteriori if it actually

aAnd more in detail in App. (B)

81
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satisfies the equation: if yes, it could be considered a valid Green’s function obtained directly

solving the set of linearized differential equations.

While the previous ansatz was made up of two terms, in this more complicated framework we

find that a better choice is composed of three piecesb, namely:

G(1, 2; [ϕ̄]) =

∫

d5f([ϕ̄])a(1, 5; [ϕ̄])J (5, 2; [ϕ̄]) (6.1)

where f([ϕ̄]) is a function of the external (screened) potential ϕ̄ only and a([ϕ̄]) and J ([ϕ̄])

matrices (however they still depend on ϕ̄)c; furthermore a([ϕ]) has to be invertible and f([ϕ])

non-zero. Inserting the ansatz into the linearized DE (3.7) yields:
∫

d5f([ϕ])a(1, 5; [ϕ])J (5, 2; [ϕ]) = G0(1, 2) (6.2)

+

∫

d3d5G0(1, 3)ϕ(3)f([ϕ])a(3, 5; [ϕ])J (5, 2; [ϕ])

+ i

∫

d3d4d5G0(1, 3)W (3, 4)
δf([ϕ])

δϕ(4)
a(3, 5; [ϕ])J (5, 2; [ϕ])

+ i

∫

d3d4d5G0(1, 3)W (3, 4)f([ϕ])
δa(3, 5; [ϕ])

δϕ(4)
J (5, 2; [ϕ])

+ i

∫

d3d4d5G0(1, 3)W (3, 4)f([ϕ])a(3, 5; [ϕ])
δJ (5, 2; [ϕ])

δϕ(4)

We now choose three simpler differential equations -with respect to the original one- that need

to be solved for f([ϕ]), a([ϕ]) and J ([ϕ]) respectively. The equation for f reads:
∫

d3d5G0(1, 3)ϕ(3)f([ϕ])a(3, 5; [ϕ])J (5, 2; [ϕ]) (6.3)

+i

∫

d3d5G0(1, 3)W (3, 4)
δf([ϕ])

δϕ(4)
a(3, 5; [ϕ])J (5, 2; [ϕ]) = 0

which after some algebra (see App. (G.1)) can be reduced to:

ϕ(6)f([ϕ]) = −i
∫

d4W (6, 4)
δf([ϕ])

δϕ(4)
. (6.4)

A f([ϕ]) which satisfies it reads:

f([ϕ]) = e
i
2

∫

d5d6W−1(6,5)ϕ(5)ϕ(6). (6.5)

Note that we have assumed in first place, the dependence of f only on ϕ and no other index. It

can be shown, a-posteriori that this assumption holds well in our particular case.

Let’s turn to the equation for a:
∫

d5f([ϕ])a(1, 5; [ϕ])J (5, 2; [ϕ]) = i

∫

d3d4d5G0(1, 3)W (3, 4)f([ϕ])
δa(3, 5; [ϕ])

δϕ(4)
J (5, 2; [ϕ])(6.6)

a(1, 5; [ϕ]) = i

∫

d3d4G0(1, 3)W (3, 4)
δa(3, 5; [ϕ])

δϕ(4)
(6.7)

bThis strategy is divide et impera like. A box will appear around the different pieces of the ansatz, so that it

will be easier for the reader to reconstruct the Green’s function from our guesses.
cDisclaimer: to simplify the heavy notation of this chapter, from now on, we will indicate ϕ̄, related to the

initial external potential as ϕ̄ = ǫ−1ϕ as ϕ.
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where a good ansatz for a([ϕ]) is:

a(3, 5; [ϕ]) = j(3, 5)e−i
∫

d6d7d8 j(8,5)
j(7,5)

W−1(6,7)G−1
0 (7,8)ϕ(6) = j(3, 5)ǫ(5, [ϕ]) (6.8)

j is arbitrary (and for the moment it won’t be specified) and does not depend on the potential,

while ǫ([ϕ]) constitutes the ϕ-dependent part. We are now left only with a differential equation

for J , or better an equation for
δJ ([ϕ])

δϕ
:

G0(1, 2) + i

∫

d3d4d5G0(1, 3)W (3, 4)f([ϕ])a(3, 5; [ϕ])
δJ (5, 2; [ϕ])

δϕ(4)
= 0 (6.9)

multiplying from the left by the inverse of G0:

δ(6, 2) = −i
∫

d4d5W (6, 4)f [ϕ]a(6, 5; [ϕ])
δJ (5, 2; [ϕ])

δϕ(4)
. (6.10)

This can be written in an even more compact way; defining A(6, 5; [ϕ]) := f([ϕ])a(5, 6; [ϕ]) and

inserting it in the previous equation one gets:

δ(6, 2) = −i
∫

d4d5W (6, 4)A(6, 5; [ϕ])
δJ (5, 2; [ϕ])

δϕ(4)
. (6.11)

It would be tempting to invert Eq. (6.11) in order to obtain
δJ (5, 2; [ϕ])

δϕ(4)
and then integrate

the result to get J (5, 2; [ϕ]) (this would be the analogous procedure to the one followed in the

1-point case to find I(x)), but unfortunately this is not possible d The impossibility of inverting

Eq. (6.11) is due to the fact that such equation has too many solutions. This is an additional

difficulty of the N-points framework: finding the functional equivalent of the simple inversion

performed in Eq. (3.17) is now a non-trivial task.

We will now show which alternative path can be taken to formally obtain the family of all possible

J ([ϕ]) and which bypasses the impossibility of inverting Eq. (6.11) directly.

Let’s now define a new quantity, in general dependent on ϕ, reading:

q(6, 5, 2; [ϕ]) =

∫

d4W (6, 4)A(6, 5; [ϕ])
δJ (5, 2; [ϕ])

δϕ(4)
(6.12)

which inserted in (6.11) yields:

δ(6, 2) = −i
∫

d5 q(6, 5, 2; [ϕ]) (6.13)

By introducing q one can cleanly obtain
δJ (5, 2; [ϕ])

δϕ(4)
. Beginning with Eq. (6.12) one can divide

both the right and the left and side by A:

q(6, 5, 2; [ϕ])

A(6, 5; [ϕ])
=

∫

d4W (6, 4)
δJ (5, 2; [ϕ])

δϕ(4)
(6.14)

dNote that even beginning with a slightly different DE, where the external potential is transformed into a

non-local one, so that the term
δJ (5, 2; [ϕ])

δϕ(4)
becomes a 4-point quantity like

δJ (5, 2; [ϕ])

δϕ(4, 5)
there is no way to

invert this last DE for J .

We have tried out several different versions of the ansatz for a and f : they all yielded equations for J ([ϕ]) which

were not invertible.
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and integrating from the right by

∫

d6W−1(7, 6) one obtains:

δJ (5, 2; [ϕ])

δϕ(7)
=

∫

d6W−1(7, 6)
q(6, 5, 2; [ϕ])

A(6, 5; [ϕ])
(6.15)

where A 6= 0.

For each q satisfying Eq. (6.13),
δJ ([ϕ])

δϕ
from Eq. (6.15) will satisfy Eq. (6.11), and upon its

integratione, we will obtain the long yearned J ([ϕ]). Finally, inserting J ([ϕ]) into (6.1) will

then yield a formal full functional expression for the one-body Green’s function (within the

linearization approximation), equivalent to solving directly the generalized differential equation

in (3.7).

This is the formal scheme that we will follow throughout the chapter.

The quest for
δJ ([ϕ])

δϕ
has now become a quest for q([ϕ]). Which kind of q([ϕ]) can satisfy

(6.11)? A prototypical one would be:

qex(6, 5, 2; [ϕ]) = i δ(6, 2)F(5, [ϕ]) (6.16)

where F(5, [ϕ]) can be almost any functional provided that is satisfies:

∫

d5F(5, [ϕ]) = 1 (6.17)

in other words F(5, [ϕ]) has to be normalized to unity. As one can imagine this is not a particular

stringent condition: many functionals can satisfy this requirement. Of course if q is not unique,

also
δJ ([ϕ])

δϕ
isn’t. Hence, contrary to the 1-point case, where a unique, well defined

dI(x)
dx

f was

satisfying the DE, here we have multiple choices for the final part of our ansatz.

Eq. (6.15), together with Eq. (6.13) are a central result of this work: it gives an exact constraint

on the form of the full functional (linearized) Green’s function.

This kind of constrains are few and very helpful. We can mention two, which we will shortly

employ: i) G = G0 when both ϕ and W approach zero (we have already used this one to solve

the initial problem for the 1-point DE) and ii) G = Gϕ when W → 0.

Let’s now begin the quest for q([ϕ]).

eWhich as we will see later in the Chapter is also very challenging · · ·
fThe 1-point equivalent of Eq. (6.10) reads: y0 = −uy0

dI(x)
dx

and the inversion to calculate
dI(x)
dx

is straight-

forward since no integration is involved.
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6.2 The quest for q([ϕ]) and J (5, 2; [ϕ])

6.2.1 q([ϕ]) from limiting cases

First of all let’s recast Eq. (6.12) as a function of the exact G, rather than
δJ ([ϕ])

δϕ
and for

simplicity we choose j = G0
g

q(6, 5, 2; [ϕ,W ]) =

∫

d1

[

−iϕ(6) + i
δ(6, 5)

G0(5, 5)

]

G(1, 2; [ϕ])G−1
0 (5, 1)G0(6, 5)

+

∫

d4
δG(1, 2; [ϕ])

δϕ(4)
W (6, 4)G−1

0 (5, 1)G0(6, 5) (6.18)

The above expression h for q([ϕ]) is formally exact, but of scarce practical use to obtain q([ϕ])

directly, since the fully interacting Green’s function is our unknown.

At this stage of the problem, looking at limiting cases may turn out to be helpful. Let’s examine

first the case where {W = 0, ϕ 6= 0}: we know that the fully interacting G reduces to the non-

interacting one in presence of an external potential (e.g. G→ Gϕ). Eq. (6.18) becomes:

q(6, 5, 2; [ϕ])
∣
∣
∣
W=0

=

∫

d1

[

−iϕ(6) + i
δ(6, 5)

G0(5, 5)

]

Gϕ(1, 2)G
−1
0 (5, 1)G0(6, 5). (6.19)

From the above result we can readily obtain also a second limit, namely {W = 0, ϕ = 0}, namely:

q(6, 5, 2)
∣
∣
∣
ϕ=0,W=0

= i δ(5, 2)δ(6, 5). (6.20)

Indeed, performing the integration

∫

d5 in both the above expressions correctly yields Eq. (6.13).

Suppose now that one (or both) of the above coefficients are a good estimate for q([ϕ]). The

next step would be to immediately calculate
δJ ([ϕ])

δϕ
using Eq. (6.15). Employing first (6.19)

we get:

δJ (5, 2; [ϕ])

δϕ(7)
=

∫

d6W−1(7, 6)
iδ(5, 2)δ(6, 5)

A(6, 5; [ϕ])

= i
W−1(7, 5)δ(5, 2)

G0(5, 5)
e

{

− i
2

∫

d8d9W−1(8,9)ϕ(8)ϕ(9)+i
∫

d9W−1(9,5)ϕ(9)
G0(5,5)

}

(6.21)

and substituting the more complicated q([ϕ]) from (6.20) yields:

δJ (5, 2; [ϕ])

δϕ(7)
=

∫

d6
W−1(7, 6)

A(6, 5; [ϕ])

{∫

d1

[

−iϕ(6) + i
δ(6, 5)

G0(5, 5)

]

Gϕ(1, 2)G
−1
0 (5, 1)G0(6, 5)

}

= −i
∫

d6d1W−1(7, 6)e

{

− i
2

∫

d8d9W−1(8,9)ϕ(8)ϕ(9)+i
∫

d8W−1(6,8)ϕ(8)
G0(6,6)

}

ϕ(6)Gϕ(1, 2)G
−1
0 (5, 1)

+ i

∫

d1
W−1(7, 5)

G0(5, 5)
e

{

− i
2

∫

d8d9W−1(8,9)ϕ(8)ϕ(9)+i
∫

d6W−1(9,5)ϕ(9)
G0(5,5)

}

Gϕ(1, 2)G
−1
0 (5, 1) (6.22)

gj is still ”free”, so we are not making any approximation.
hG0(5, 5) may look quite pathological, but since we are now interested in a formal solution, we will not be too

concerned about this.
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6.2.2 Finding J (5, 2; [ϕ])

Once q([ϕ]) and hence
δJ ([ϕ])

δϕ
is (at least approximatively set) we have to proceed with the

integration of
δJ (5, 2; [ϕ])

δϕ(4)
(exactly as we have done in the algebraic DE), however in this more

complicated framework the straightforward integration is not feasible: some extra manipulations

are needed.

In a first instance we have tried to employ the following formula (its derivation is detailed in

App. (G.2) and can also be found in [102]):

∂J (5, 2[ϕ̄])

∂λ
=

∫

d7
δJ (5, 2; [ϕ̄])

δϕ̄(7)

∂ϕ̄(7)

∂λ
=

∫

d7
δJ (5, 2; [ϕ̄])

δϕ̄(7)
ϕ(7) (6.23)

where ϕ̄ = λϕ. Integrating both sides:

∫ 1

0

dλ
∂J (5, 2; [ϕ̄])

∂λ
=

∫ 1

0

dλ

∫

d7
δJ (5, 2; [ϕ̄])

δϕ̄(7)
ϕ(7)

and finally:

J (5, 2; [ϕ]) = J (5, 2; [ϕ = 0]) +

∫ 1

0

dλ

∫

d7
δJ (5, 2; [ϕ̄])

δϕ̄(7)
ϕ(7). (6.24)

With Eq. (6.24) we have an explicit expression for J (5, 2; [ϕ]) as a function of its derivative with

respect to ϕ and the initial condition J (5, 2; [ϕ = 0]) i. This procedure seems very reasonable

and we have tried it out to calculate approximate solutions for J ([ϕ]), starting from the simplest

possible choice for q([ϕ]) (see Eq. (6.22)). However, the differentiation of the obtained J ([ϕ])

didn’t return the initial (and correct)
δJ ([ϕ])

δϕ
.

We hence concluded that the expression in (6.24) is not universally valid for all possible inte-

grands.

To better address this question one should enter into the details of the proof of the formula: the

whole derivation is standing on the hypothesis that the functional has to be Taylor-expandable.

Supposing that
δJ (5, 2; [ϕ̄])

δϕ̄(7)
fulfilled the above condition, then its expansion would look like:

J ([ϕ]) =

J0
︷ ︸︸ ︷

J ([ϕ = 0])+

∫

dx

J1
︷ ︸︸ ︷

δJ ([ϕ])

δϕ(x)

∣
∣
∣
ϕ=0

·ϕ(x) + 1

2

∫

dxdy

J2
︷ ︸︸ ︷

δ2F([ϕ])

δϕ(x)δϕ(y)

∣
∣
∣
ϕ=0

·ϕ(x)ϕ(y) + · · ·
(6.25)

Differentiating with respect to the external potential would yield:

δJ ([ϕ])

δϕ(z)
=

δJ
δϕ

︷ ︸︸ ︷

J1(z)+

∫

dx

δ2J
δϕ2

︷ ︸︸ ︷

J2(x, z)ϕ(z) +

∫

dy

δ2J
δϕ2

︷ ︸︸ ︷

J2(y, z)ϕ(y) + · · · . (6.26)

iThis is the equivalent of C(y0, u) in the 1-point model, of course with all the added complexity of the full

functional problem. Therefore, also in this case, obtain the specific solution for G from the family of general

solution for the DE will have to go through solving this more complicated initial condition problem. In particular

we will have to see weather λ = 0 is the most convenient limit of the integration.
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More schematically the above equation can be recast as:

δJ ([ϕ])

ϕ(z)
=

= C(z) +
1

2

∫

dx a(x, z)ϕ(x) +
1

2

∫

dx a(z, x)ϕ(x)

= C(z) +
1

2

∫

dxb(x, z)ϕ(x) + · · · (6.27)

If we could recast our
δJ (5, 2; [ϕ̄])

δϕ̄(7)
into an expression like the one in (6.27), we would have the

guarantee that J (5, 2; [ϕ̄]) is Taylor expandable and hence the integration formula Eq.(6.24)

could be correctly applied to our specific problem. As we can see from Eq. (6.27) this requires

the coefficients of the expansion of δJ ([ϕ])
δϕ to be symmetric, e.g. b(x, z) = b(z, x) for the linear

coefficient.

Unfortunately this is not the case.

In fact, considering the expression for
δJ (5, 2; [ϕ̄])

δϕ̄(7)
in (6.21) one realizes that (upon rescaling

to obtain a single quadratic ϕ and leaving aside the dumb indices 5 and 2) our integrand is

composed of terms with the following structure:

δJ ([ϕ])

δϕ(z)
= a(z)e

−
∫

dt ϕ2(t)
(6.28)

and if Taylor-expanded yields:

δJ ([ϕ])

δϕ(z)
= a(z)

{

1−
∫

dt ϕ2(t) +
1

2

[ ∫

dt ϕ2(t)
]2

− · · ·
}

(6.29)

Eq. (6.29) neither has the same structure of Eq. (6.27) nor can be brought to it.

However, through these last equations, we have defined a further constraint for our ansatz,

namely that the q[ϕ] we are looking for has to yield a
δJ ([ϕ])

δϕ
”compatible” with a Taylor ex-

pansion, which requires certain symmetries.

This last requirement, together with Eq. (6.13) and the conditions that GW=0 = Gϕ form a set

of three constraints for our ansatz. Note that this further constraint is very precious: it reduces

considerably the number of possible solutions for the DE within the proposed approach.

Let’s now go back to our approximate expression for
δJ (5, 2; [ϕ̄])

δϕ̄(7)
in order to understand if it

is particularly pathological and if, for a better choice of q([ϕ]), one could, in practice, find an

integrand which respects all of the three constraints above, particularly the one about symme-

tries. Accessing the structure of the full exact
δJ (5, 2; [ϕ̄])

δϕ̄(7)
would for example shed light on this

issue. Unfortunately in the full functional framework it cannot be obtained as it is depends on

the fully interacting Green’s function, which is our unknown.

One can think of going back to a simpler framework, namely the N-times one, to get greater

insights about this problem. In App. (G.3) one can find manipulations for the N-times DE,

which are completely analogous to the one we performed in Eqs. 6.1-6.17.



88 The full functional differential equation

In particular let’s draw our attention to Eq. (G.35) which is the expression for the exact N-times
δJ ([ϕ])

δϕ
, obtained thanks to the knowledge of the exact equilibrium N-times Green’s function. j

By expanding it with respect to ϕ one can show that the terms thus obtained are symmetric or-

der by order, hence this exact
δJ ([ϕ])

δϕ
satisfies the symmetry constraint needed to be integrated

with the formula in Eq. (6.24).

This insight is very important, as it shows that this last piece of our ansatz is not pathological

in itself, rather it can become so upon a bad choice of q([ϕ]).

In this Chapter, we have paved the way to the design of new approximations to the full one-body

Green’s function: we have devised an ansatz (Eq. (6.1) together with Eq. (6.5) and Eq. (6.8))

that leads to the much simpler differential equation (6.11). We have shown that one can integrate

this equation, provided that a functional q([ϕ]) is chosen so that obeys a sum rule (6.13) and

certain symmetry requirements (see the discussion following Eq. (6.27)). A further constraint

(the correct W → 0 limit) will be needed to set integration (functional) constant. Both the

1-point model and the N-times solution have been crucial to obtain these results. They will be

further used, in ongoing and future work, to demonstrate the potential of this approach within

specific approximations.

jIts expression was obtained in the previous chapter as solution of Eq. (5.2) and reads: G(t1, t2)|ϕ̄=0 =

G0
H (t1, t2)e

−i
∫ t2
t1

dt
∫ t2
t dt4W (t,t4)



CHAPTER7
Conclusions and Outlook

An improved description of the Green’s function is very desirable as it may yield improved quasi-

particles band-structure calculations, more accurate ground state total energy calculations and

last but not least, better spectral functions, which are capable of providing information about

all the elementary and more complex many-body excitations ongoing in a solid.

The scope of this work has hence been twofold: on one hand to get greater insights into the-

state-of-the-art methods for one-body Green’s function calculations, and on the other hand to

develop alternative approaches in order to calculate directly and more accurately the one-body

propagator.

After a brief review of the different routes for calculating the one-body propagator, we focused

on a particular one, mentioned in [40] but not explored further, perhaps due to the complexity

of tackling the problem numerically.a Such approach is strikingly simple at first sight, whereas

very challenging in practice.

The main idea behind it is to manipulate and recast the equation of motion for the propagator

into a set of nonlinear, coupled, first order functional differential equations (Eq. (2.71)) -pivotal

to many-body perturbation theory- and attempt to solve them directly. As solving such set

of equations exactly means also solving the many-body problem exactly, which we know to be

unfeasible, some type of approximation is required to tackle the differential equations. We will

explore different levels of approximations, starting from the simplest possible up to more elabo-

rated ones.

The first approximation we perform (and that has been employed throughout the thesis) is a

linearization procedure, where the Hartree potential is linearized with respect to the external one,

while the electron-electron interaction is always accounted for to any order. This linearization,

besides allowing us to proceed further with the DE’s solution, turns out to be very transpar-

aComputer resources in the late ’60s could not compare with nowadays supercomputer facilities.
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ent in its physical content: one can for instance observe that the GW0 approximation to Σ is

contained there as the simplest approximation to the equation. This proof indeed suggests that

the linearized DE is a very good starting point to go beyond the state-of-the-art approaches.

Furthermore it has been the starting point to re-derive, in a rigorous way, the so-called cumu-

lant expansion for G: such derivation, besides having being already employed, very successfully,

in valence photo-emission calculation for semiconductors, emphasizes the limits of the current

approaches and opens up the way to improvements.

The most challenging part of this work is the attempt to get as far as possible towards the

direct solution of the linearized set of functional differential equations. To this end, a second

approximation is performed (and is then released in Chap. (5) and Chap. (6)): it consists of

projecting the equations on a basis which diagonalizes all the Green’s functions (both full and

non interacting) and yields a decoupling (from here the name decoupling approximation) of the

DEs set. Then only one point in space, spin and time is taken. In this way one obtains the so

called 1-point model, where the set of equations reduces to a single algebraic DE.

Within this simplified model, the equation is solved exactly through an ansatz. This choice,

rather than a more scholarly solution, has the aim of better exploring the structure of the so-

lution, in view of a generalization of the approach. The mathematical nature of the algebraic

DE is also explored in depth, as it is the issue of solving the initial value problem to pick the

physical solution from the family of general solutions. Once again this accurate analysis has to

be seen as an indispensable preliminary work aimed at the generalization of the method.

The exact DE solution becomes a benchmark for established many-body approaches over the

whole range of interaction strength. Amongst our find we can list the following: i) iterations

towards self-consistency in the GW scheme sensibly improve on the one-shot (G0W0) calculation;

ii) including first order vertex corrections improves the self-consistent GW0 results only slightly

and only for small u. iii) In the case of self-consistent GW0 two solutions are possible, of which

only one is physical and has to be picked through the vanishing electron-electron interaction

limit. Moreover we show that the standard iterative GW0 scheme will always converge to the

physical solution, while other iterative schemes may yield different -wrong- results. This finding

serves as an additional warning regarding corrections beyond GW : since the number of possible

solutions for the Green’s function and the number of possible ways to iterate the equations is

increased, also danger to worsen results augments.

Alternative approximations, with their advantages and caveats, are also explored. We find that

Taylor-expanding the algebraic DE to an order O(n), and solving them backwards leads to a

Green’s function which is equivalent to that of a continued fraction approximation for the exact

solution. This example illustrates very well our strategy in looking for alternative approxima-

tions: the idea is to devise them only through the knowledge of the initial DE and to establish a

link between the manipulations needed to obtain them and some specific approximation for the

exact solution. This strategy is designed to be employed also in the functional framework where

only the full differential equation is known.

In this spirit we also explore the large interaction regime and find that coupling a straightforward

large u expansion to a Dyson equation yields, at the first order, very good results. However this

approach, for now, cannot be transposed to the full functional problem, since we had employed

the knowledge of the initial condition in the expansions: this couldn’t be done in a simple way
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in the more complicated framework.

In the last two chapters of the work we overcome the main limitation of our model, which is

to say the 1-point approximation in time, by fully restoring the time dependence (and hence

frequency dependence) of the Green’s function, while still keeping the decoupling approximation

for the spin and time variables.

The resulting differential equation has been solved analytically by resumming exactly its iterative

solution. The Green’s function thus obtained has an exponential form which is analogous to that

of the well known cumulant expansion form for G, discussed in Sec. (2.4.3). For illustration I have

reported the main results obtained so far in M. Guzzo thesis workb where this approximation

-rigorously derived here for the first time- yielded a theoretical valence electron photo-emission

spectrum in Silicon in unprecedented agreement with experimental data.

The so-called N-times framework still has room for improvements. Examples of further investi-

gations may consist in restore part of the coupling between the levels or investigating the effect

of a second order term in the expansion for the Hartree potential. A better understanding of

non-linear effects may shed lights on some shortcomings of the exponential form for G, namely

its failure in describing the spectral function where the number of excitations is finite (e.g. in

finite systems) and the approximation instead yields an unphysical number of them.

Finally we attempted the generalization of our approach to the full functional case. The main idea

was to employ an ansatz, in the same spirit of the 1-point model, and solve a simpler differential

equation for each piece of it. It turned out that a guess made up of three pieces was enough to

solve two equations, while it lead to more hurdles for the third, and last, equation. Specifically

the problem encountered regarded the multiplicity of solutions for such equation; the issue was

anyway overcame and an explicit formal solution for the last piece of the ansatz (
δJ ([ϕ])

δϕ
), in

terms of another formal quantity labeled q([ϕ]), was obtained. This was only a partial success

towards the calculation of the family of solution for the generalized G: the conditions for q([ϕ])

to satisfy the auxiliary differential equation for
δJ ([ϕ])

δϕ
is not particularly stringent and hence

one needs to choose a wise expression for it. To start with, through limiting cases, we obtained

two possible expressions. The integration of
δJ ([ϕ])

δϕ
, calculated starting with the simplest q([ϕ])

turned out to be very challenging and our first attempt to solve it was unsuccessful.

However, a deeper analysis of the problem led to the identification of the pathology of this

(too simple) integrand and, most importantly, thanks to a number of insights from the N-times

framework, we devised a further constraint that q([ϕ]) has to satisfy to yield a
δJ ([ϕ])

δϕ
on

which the integration can be correctly performed. This result, together with another constraint

for q([ϕ]) and one constraints for the full one-body G, allowed us to reduce considerably the

space of possible solutions for the differential equation, suggesting that our approach is indeed

a promising one. The road to the results outlined above has been winding, with deviations and

trials, amongst the most significant ones we chose to report in App. G.4 an alternative ansatz,

bAnd relative publication [83], of which I am a co-author
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inspired by the expression for the N-times exponential Green’s function (rather than the 1-point

one). The results so far obtained towards a direct general solution of the linearized full functional

differential equation seem very encouraging. In the near future we hope to progress also towards

the particular solution for the set of equations. Last but not least, we hope that this thesis will

foster a number of other works beating alternative paths for the calculation of the one-body

propagator beyond the state-of-the-art methods.



APPENDIXA
Useful manipulations for G

Here we report some useful manipulations for the Green’s function, its inverse, its functional

derivative with respect to the external potential ϕ and many more.

A.1 Defintion of G0

[

i
∂

∂t1
− h(r1)

]

G0(1, 2) = δ(1, 2) (A.1)

where the partial derivative is taken with respect to the time t1 (it could be equally taken with

respect to the time t2), h(r1) is the one-body, time-independent part (namely the kinetic term)

of any many-body Hamiltonian H and G0(1, 2) is the Green’s function for a system of non-

interacting particles (note that in this case the Hamiltonian of the system is only made up by

its kinetic part, i.e. H(r1) = h(r1)).

Occasionally it may be useful to define a non-interacting Green’s function in the presence of an

external perturbing time dependent potential ϕ(t1). In this case we have that h(r1) → h̃(r1, t1) =

h(r1) + ϕ(t1, t1) and the equivalent of Eq. (A.1) is:

[

i
∂

∂t1
− h̃(r1, t1)

]

Gϕ(1, 2) = δ(1, 2) (A.2)

A.2 Defintion of the inverse of G

The inverse of the one-body Green’s function can be defined as:

∫

d2G(1, 2; [ϕ])G−1(2, 4; [ϕ]) = δ(1, 4) (A.3)
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A.3 Expressing
δG([ϕ])

δϕ
through

δG−1([ϕ])

δϕ

Differentiating

∫

d2G(1, 2; [ϕ])G−1(2, 4; [ϕ]) = δ(1, 4) with respect to ϕ one obtains:

∫

d2
[δG(5, 6; [ϕ])

δϕ(7)
G−1(1, 2; [ϕ]) +G(1, 2; [ϕ])

δG−1(2, 4; [ϕ])

δϕ(7)

]

= 0 (A.4)

∫

d2
δG(1, 2; [ϕ])

δϕ(7)
G−1(2, 4; [ϕ]) = −

∫

d2G(1, 2; [ϕ])
δG−1(2, 4; [ϕ])

δϕ(7)
. (A.5)

Integrating from the right by G(4, 8; [ϕ]) and using Eq. (A.3) one gets:

∫

d2d4
δG(1, 2; [ϕ])

δϕ(7)
G−1(2, 4; [ϕ])G(4, 8; [ϕ]) = −

∫

d2d4G(1, 2; [ϕ])
δG−1(2, 4; [ϕ])

δϕ(7)
G(4, 8; [ϕ])

∫

d2
δG(1, 2; [ϕ])

δϕ(7)
δ(2, 8) = −

∫

d2d4G(1, 2; [ϕ])
δG−1(2, 4; [ϕ])

δϕ(7)
G(4, 8; [ϕ])

δG(1, 8; [ϕ])

δϕ(7)
= −

∫

d2d4G(1, 2; [ϕ])
δG−1(2, 4; [ϕ])

δϕ(7)
G(4, 8; [ϕ]) (A.6)

A.4 Inverting the Dyson equation

We will invert here the Dyson-like equation for G, where the zero-potential Hartree Green’s

function G0
H has been chosen instead of the usual non-interacting G0 and where we assume G0

H

somewhat known, to be able to actually calculate G. The equation reads:

G(1, 2; [ϕ̄]) = G0
H(1, 2) +

∫

d34G0
H(1, 3)Σ(3, 4; [ϕ])G(4, 2; [ϕ̄]) (A.7)

Integrating fron the right by
∫
d2G−1(2, 5; [ϕ̄]) and from the left by

∫
d1G0−1

H (6, 1) yields:

∫

d12G0−1
H (6, 1)G(1, 2; [ϕ̄])G−1(2, 5; [ϕ̄]) =

∫

d12G0−1
H (6, 1)G0

H(1, 2)G−1(2, 5; [ϕ̄])

+

∫

d3412G0−1
H (6, 1)G0

H(1, 3)Σ(3, 4; [ϕ])

× G(4, 2; [ϕ̄])G−1(2, 5; [ϕ̄]) (A.8)

Integrating where possible the δ functions leads to:

G0
H

−1
(6, 5) = G−1(6, 5; [ϕ̄]) + Σ(6, 5; [ϕ]) (A.9)

and ultimately to:

G−1(6, 5; [ϕ̄]) = G0
H

−1
(6, 5)− Σ(6, 5; [ϕ]) (A.10)
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A.5 Splitting a Dyson-like equation in two parts

This procedure is often convenient when a kernel with a very complicated form appears: solving

two equations with simpler kernel turns out to be an easier path to take. We will here illustrate

the main steps to follow, for a typical Dyson equation with a challenging kernel, employing a

symbolic notation. In the (realistic) case that functionals appeared, all the manipulations needed

are already described in the previous bits of this appendix.

Say we start with:

G([ϕ]) = G0 +G0v
0
HG([ϕ]) +G0ϕG([ϕ]) + vG0

δG([ϕ])

δϕ
. (A.11)

We can multiply from the left and the right respectively by G−1 and G−1
0 , and rearranging the

different terms one obtains:

1
︷ ︸︸ ︷

G−1([ϕ]) =

2
︷︸︸︷

G−1
0 −

κ3 + κ4
︷ ︸︸ ︷
[
v0H + ϕ

]
−vG−1([ϕ]) (A.12)

We will now split the kernel in two pieces and formulate a Dyson equations only for the term 3

(using also the terms 1 and 2), namely:

G̃−1
H = G−1

0 − v0H (A.13)

From the above expression one can obtain the first Dyson-like equation for G̃−1
H , upon multipli-

cation by G̃H and G0:

G̃H = G0 +G0

κ3
︷︸︸︷

v0H G̃H (A.14)

To obtain the second Dyson equation we will rely on the result above: inserting it into (A.12)

yields:

G−1([ϕ]) = G̃−1
H − ϕ− vG−1([ϕ]). (A.15)

Multiplying by G̃H first and by G([ϕ]) afterwards, rearranging all the terms, one gets:

G([ϕ]) = G̃H + G̃H

κ4
︷︸︸︷
ϕ G([ϕ]) + G̃Hv

δG([ϕ])

δϕ
(A.16)

To solve the above equation one should first have access to G̃H . Note that this procedure is

completely general.
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APPENDIXB
Solving the DE

Eq. (3.15) can be solved using standard textbook methods [88, 103]. Here we choose a route

that yields precious information for our final aim of generalizing to the full functional problem.

A general ansatz for the structure of yu(x) is:

yu(x) = A(x) · I(x), (B.1)

where the only restriction is that A and I are not zero. Substituting the ansatz in the DE (3.15)

gives:

A(x)I(x) = y0 + y0xA(x)I(x) − uy0
dA(x)

dx
I(x)

− uy0A(x)
dI(x)
dx

. (B.2)

The idea is now to solve two separate, simpler with respect to the initial one, DEs for A(x) and

I(x). Putting together the left-hand side and the second and third terms of the right-hand side

of Eq. (B.2) one obtains:

A(x)I(x) = y0xA(x)I(x) − uy0
dA(x)

dx
I(x). (B.3)

We can choose the solution

A(x) = e

[

x2

2u− x
uy0

]

. (B.4)

One is now left with the equation for I(x) reading:

y0 − uy0A(x)
dI(x)
dx

= 0. (B.5)
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Plugging in the expression for A(x) previously obtained and integrating on both sides one obtains:

I(x) =
1

u

∫ x

0

dt e

[

−t2

2u + t
uy0

]

+ C̄(u, y0). (B.6)

The integral on the right-hand side is:

∫ x

dt e

[

−t2

2u + t
uy0

]

=
√
2u e

1

2uy20

∫ x√
2u

− 1√
2uy2

0 dt̃e−t̃2

=

√
2uπ

2
e

1

2uy20

× erf

[(

x− 1

y0

)
1√
2u

]

(B.7)

where the change of variables t̃ =

(

t√
2u

− 1√
2uy2

0

)

has been made, and the lower limit of the

last integral has been chosen to be zero, which requires to set a constant C̄(u, y0). Hence

I(x) =

√
π

2u
e

1

2uy20 erf

[(

x− 1

y0

)
1√
2u

]

+ C̄(u, y0). (B.8)

The exact solution yu(x) = A(x)·I(x) is given in Eq. (3.18), where C(u, y0) = −
√

2u

π
C̄(u, y0)e

−1

2uy20 .



APPENDIXC
Some relations between special functions

We will show how the divergent hypergeometric function 2F0

(1

2
, 1;−3

2
λ
)

can be intimately re-

lated to the error function.

Firstly let’s list all the equalities between special functions which have been used in the manip-

ulation:
(
1

2

)

n

=
Γ
(
n+ 1

2

)

Γ
(
1
2

) (C.1)

Γ

(
1

2

)

=

(

−1

2

)

! = Π

(

−1

2

)

=
√
π (C.2)

Γ

(

n+
1

2

)

=

(

n− 1

2

)

! = Π

(

n− 1

2

)

=
√
π
(2n)!

4nn!
=

√
π
(2n− 1)!!

(2z2)n
(C.3)

(C.4)

We also employ the asymptotic expansion for the erfc(z), reading:

erfc(z) =
ez

2

z
√
π

∞∑

n=0

(−1)n
(2n− 1)!!

(2z2)n
(C.5)

and for the erf(z) one simply has:

erf(z) = 1− erfc(z) = 1− ez
2

z
√
π

∞∑

n=0

(−1)n
(2n− 1)!!

(2z2)n
(C.6)

The exact DE’s solution, where
√

1
2uy2

0
= z, reads

yu ≈ −
√
πze

z2 1
y0

{

erf

[

z ·
√

1

y0

]

− 1

}

(C.7)
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plugging (C.6) into (C.7) yields:

yu ≈ −
√
πze[z

2]

{

1− ez
2

z
√
π

∞∑

n=0

(−1)n
(2n− 1)!!

(2z2)n
− 1

}

=

∞∑

n=0

(−1)n
(2n− 1)!!

(2z2)n
≅ 2F0

(1

2
, 1; z

)

(C.8)

where, let’s remind, z =

√

1

2uy20
and z = − 2

3λ



APPENDIXD
N-points limited order differential equation

We detail here the algebra employed to obtain the results shown in Eq. (4.42) and Eq. (4.43).

The starting point is the following expression

G(1, 2; [ϕ̄]) = G0
H(1, 2) + i

∫

d3G0
H(1, 3)ϕ̄(3)G(3, 2; [ϕ̄])

+ i

∫

d3d5G0
H(1, 3)W (3+, 5)

δG(3, 2; [ϕ̄])

.
δϕ̄(5), (D.1)

Differentiating it with respect to the potential ϕ̄(6), yields

δG(1, 2; [ϕ̄])

δϕ̄(6)
=

∫

d3G0
H(1, 3)

δϕ̄(3)

δϕ̄(6)
G(3, 2; [ϕ̄]) +

∫

d3G0
H(1, 3)ϕ̄(3)

δG(3, 2; [ϕ̄])

δϕ̄(6)

+ i

∫

d3d5W (3+, 5)G0
H(1, 3)

δ2G(3, 2; [ϕ])

δϕ̄(6)δϕ̄(5)
. (D.2)

We now truncate the highest order derivative and set the condition of zero ϕ for the solution:� δ2G(3, 2; [ϕ̄])

δϕ̄(6)δϕ̄(5)
= 0 (approx.)� ϕ(3) = 0 → ϕ̄ = 0

We get:

δG(1, 2; [ϕ̄])

δ ¯ϕ(5)
= G0

H(1, 5)G(5, 2; [ϕ̄]) (D.3)

plugging this result into Eq. (D.1):

G(1, 2; [ϕ̄]) = G0
H(1, 2) + i

∫

d3d5G0
H(1, 3)W (3+, 5)G0

H(3, 5)G(5, 2; [ϕ̄]). (D.4)
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102 N-points limited order differential equation

If one is interested in an explicit form for the the one-body G, it is convenient to work with its

inverse, obtained integrated from the right by an appropriate G−1:
∫

d2G(1, 2; [ϕ̄])G−1(2, 5; [ϕ̄]) =

∫

d2G0
H(1, 2)G−1(2, 5; [ϕ̄])

+ i

∫

d3d5d2W (3+, 5)G0
H(1, 3)G0

H(3, 5)G(5, 2; [ϕ̄])

G−1(2, 5; [ϕ̄]) (D.5)

δ(1, 5) =

∫

d2G0
H(1, 2)G−1(2, 5; [ϕ̄]) + i

∫

d3W (3+, 5)

G0
H(1, 3)G0

H(3, 5) (D.6)

and integrating once more from the left by G0
H

−1
we get:

∫

d1G0
H

−1
(6, 1)δ(1, 5) =

∫

d2d1G0
H

−1
(6, 1)G0

H(1, 2)G−1(2, 5; [ϕ̄])

+ i

∫

d3d1W (3+, 5)G0
H

−1
(6, 1)G0

H(1, 3)G0
H(3, 5) (D.7)

(D.8)

finally we get

G−1(6, 5; [ϕ̄]) = G0
H

−1
(6, 5)− iW (5, 6+)G0

H(6, 5). (D.9)

Now we move one order further (O(d3x)), retaining the second derivative of G with respect to ϕ̄,

while neglecting the third order one.

Differentiating Eq. (D.2) with respect to a second external potential ϕ̄(7):

δ2G(1, 2; [ϕ̄])

δϕ(6)δϕ(7)
= G0

H(1, 6)
δG(6, 2; [ϕ̄])

δϕ̄(7)
+

∫

d3G0
H(1, 3)δ(3, 7)

δG(3, 2; [ϕ̄])

δϕ̄(6)

+

∫

d3G0
H(1, 3)ϕ̄(3)

δ2G(3, 2; [ϕ̄])

δϕ̄(6)δϕ̄(7)

+ i

∫

d3d5W (3+, 5)G0
H(1, 3)

δ3G(3, 2; [ϕ̄])

δϕ̄(7)δϕ̄(6)δϕ̄(5)
(D.10)

employing the usual truncation and taking the limit ϕ = 0 for the solution:� δ3G(3, 2; [ϕ̄])

δϕ̄(7)δϕ̄(6)δϕ̄(5)
= 0� ϕ̄(3) = 0

Eq. (D.10) becomes:

δ2G(1, 2)

δϕ(7)δϕ(6)
= G0

H(1, 6)
δG(6, 2; [ϕ̄])

δϕ̄(7)

∣
∣
∣
ϕ=0

+G0
H(1, 7)

δG(7, 2; [ϕ̄])

δϕ(6)

∣
∣
∣
ϕ=0

(D.11)

substituting back Eq. (D.11) in Eq. (D.2) we get:

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣
∣
∣
ϕ=0

= G0
H(1, 6)G(6, 2) + i

∫

d3d5G0
H(1, 3)W (3+, 5)

×
{

G0
H(3, 6)

δG(6, 2; [ϕ̄])

δϕ̄(5)

∣
∣
∣
ϕ=0

+G0
H(3, 5)

δG(5, 2; [ϕ̄])

δϕ̄(6)

∣
∣
∣
ϕ=0

}

. (D.12)
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We can now try to obtain, with some manipulations a convenient matrix equation to solve, such

as:

Bxy = B0
xy +

∑

qp

γ(xy)(qp)Bqp (D.13)

Note that the index 2, appearing in all the terms of the equation, is dummy, hence we proceed

with the following steps:

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣
∣
∣
ϕ=0

= G0
H(1, 6)G(6, 2)

+ i

∫

d3d5W (3+, 5)G0
H(1, 3)G0

H(3, 6)
δG(6, 2; [ϕ̄])

δϕ̄(5)

∣
∣
∣
ϕ=0

+

∫

d3d5G0
H(1, 3)W (3+, 5)G0

H(3, 5)
δG(5, 2; [ϕ̄])

δϕ̄(6)

∣
∣
∣
ϕ=0

(D.14)

= G0
H(1, 6)G(6, 2)

+ i

∫

d3d5d7G0
H(1, 3)W (3+, 5)G0

H(3, 6)δ(7, 6)
δG(7, 2; [ϕ̄])

δϕ̄(5)

∣
∣
∣
ϕ=0

+

∫

d3d5d7G0
H(1, 3)W (3+, 5)G0

H(3, 5)δ(7, 6)
δG(5, 2; [ϕ̄])

δϕ̄(7)

∣
∣
∣
ϕ=0

. (D.15)

In the 2nd term on the r.h.s. one can exchange under the integral symbol the indices 5 ↔ 7 and

obtain:

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣
∣
∣
ϕ=0

= G0
H(1, 6)G(6, 2)

+ i

∫

d3d5G0
H(1, 3)W (3+, 5)G0

H(3, 6)δ(7, 6)
δG(5, 2; [ϕ̄])

δϕ̄(7)

∣
∣
∣
ϕ=0

+

∫

d3d5G0
H(1, 3)W (3+, 5)G0

H(3, 5)δ(7, 6)
δG(5, 2; [ϕ̄])

δϕ̄(7)

∣
∣
∣
ϕ=0

(D.16)

(D.17)

Let’s define the following quantities:� δG(1, 2; [ϕ̄])

δϕ̄(6)

∣
∣
∣
ϕ=0

:= g(1, 6)� δG(5, 2; [ϕ̄])

δϕ̄(7)

∣
∣
∣
ϕ=0

:= g(5, 7)� G0
H(1, 6)G(6, 2) := g0(1, 6)� m(16; 57) = i

∫

d3W (3+, 5)G0
H(1, 3)δ(7, 6)

[
G0

H(3, 6) +G0
H (3, 5)

]

we can now recast Eq. D.1 using the new variables as:

g(1, 6) = g0(1, 6) +

∫

d5d7m(1, 6; 5, 7)g(5, 7). (D.18)
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Solving for g:

[∫

d5d7m(1, 6; 5, 7)− δ(1, 5)δ(7, 6)

]

g(5, 7) + g0(1, 6) = 0. (D.19)

We define

[m(1, 6; 5, 7)− δ(1, 5)δ(7, 6)] = m̄(1, 6; 5, 7) (D.20)

inserting this into Eq. (D.19):

∫

d5d7m̄(1, 6; 5, 7)g(5, 7) + g0(1, 6) = 0 (D.21)

and introducing the inverse of m̄ one gets:

∫

d1657m̄−1(8, 9; 1, 6)m̄(1, 6; 5, 7)g(5, 7) = −
∫

d16m̄−1(8, 9; 1, 6)g0(1, 6)

g(9, 8) = −
∫

d16m̄−1(8, 9; 1, 6)g0(1, 6). (D.22)

Transforming back to the original variables:

g(9, 8) :=
δG(9, 2; [ϕ̄])

δϕ̄(8)

∣
∣
∣
ϕ=0

→ δG(1, 2; [ϕ̄])

δϕ̄(6)

∣
∣
∣
ϕ=0

= −
∫

d98m̄−1(1, 6; 9, 8)G0
H(9, 8)G(8, 2) (D.23)

we obtain a Green’s function reading:

G(1, 2) = G0
H(1, 2)−

∫

d53G0
H(1, 3)W (3+, 5)

∫

d98m̄−1(3, 5; 9, 8)G0
H(9, 8)G(8, 2). (D.24)

The above expression can be written in form of a Dyson equation too: this allows for an identi-

fication of some Σ, so as to try to identify the result with some other well-known approximation

for G, (as it was done for the O(d1x) of the LODE)

G(1, 2) = G0
H(1, 2)−

∫

d3d8G0
H(1, 3)Σ(3, 8)G(8, 2) (D.25)

where the self-energy has the form:

Σ(3, 8) =

∫

d5d9W (3+, 5)m̄−1(3, 5; 9, 8)G0
H(9, 8). (D.26)



APPENDIXE
Self-consistent calculations of y0H and u

We will detail here how the result in Eq. (4.60) has been obtained. Three equations are needed,

namely Eq. (3.15), the Dyson equation for y0H as a function of the truly non-interacting y0,

reading:

y0H = y0 + y0vyuy
0
H (E.1)

it follows that:

y0H =
y0

1− y0vyu
(E.2)

and an equation for the screened Coulomb potential u as a function of the bare one v, namely:

u = v + v2
dyu(x)

dx
. (E.3)

The linearized 1-point differential equation can be recast in order to isolate the derivative of the

Green’s function with respect to the external potential:

dyu(x)

dx
=
y0H − yu(x)

uy0H
. (E.4)

Inserting this expression into Eq. (E.3) yields:

u = v + v2
{
y0H − yu(x)

uy0H

}

(E.5)

which is the equation we want to solve self-consistently to obtain the screened potential u. Of

course, if one aims at a fully-self consistent approach, also the zero-potential Hartree G has to be

evaluated at each step starting from y0. To account for this we also subsitute (E.2) into (E.5),

obtaining:

u = v + v2







y0

1−vy0yu
− yu(x)

u
y0

1− y0vyu







(E.6)
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106 Self-consistent calculations of y0H and u

and after some algebraa one can write down a second order equation for u:

u2 − uv − v2
{

1− yu(x)

y0
+ vy2u(x)

}

= 0 (E.7)

which yields precisely the two solutions of (4.60).

To obtaining the result of Eq. (4.61) one has to follow an identical procedure, however the

linearized 1-point DE has to be substituted by its non-linearized version, namely Eq. (3.14).

aNote that now that all the expressions following from now are taken at vanishing x



APPENDIXF
Solving the integral equation for the auxiliary Gϕ̄

We have to solve the following integral equation:a

y(t1, t2; [ϕ]) = θ(t1 − t2)− i

∫ t1

−∞
dt3 ϕ(t3)y(t3, t2; [ϕ]). (F.1)

The first step is to transform it into a differential equation, reading:

∂

∂t1
y(t1, t2; [ϕ]) = δ(t1 − t2)− iϕ(t1)y(t1, t2; [ϕ]) (F.2)

A possible ansatz for the solution reads:

y(t1, t2; [ϕ]) = A(t1, t2)B(t1, t2). (F.3)

where A and B can be any non-zero function of both t1 and t2. Inserting the ansatz into Eq. (F.2)

yields:

[
∂

∂t1
A(t1, t2)

]

B(t1, t2) +

[
∂

∂t1
B(t1, t2)

]

A(t1, t2) = δ(t1 − t2)− iϕ(t1)A(t1, t2)B(t1, t2) (F.4)

aWe substitute ỹ with a simpler y to simplify the notation

107



108 Solving the integral equation for the auxiliary Gϕ̄

which can be split into two simple differential equations. We begin by solving:
[
∂

∂t1
A(t1, t2)

]

B(t1, t2) = −iϕ(t1)A(t1, t2)B(t1, t2), (F.5)

∂

∂t1
A(t1, t2) ·

1

A(t1, t2)
= −iϕ(t1) (F.6)

∫ b

a

dt1
∂

∂t1
ln {A(t1, t2)} = −i

∫ b

a

dt1′ϕ(t1′ ) (F.7)

A(t1, t2) = e
ln {A(a, t2)} − i

∫ t1

a

dt1′ϕ(t1′ )
(F.8)

A(t1, t2) = C(a, t2)e
−i

∫ t1

a

dt1′ϕ(t1′ )
(F.9)

where C(a, t2) is to be set to solve the initial value problem and the value of b has been arbitrarily

set equal to t1 along the calculation.

One can now solve the second equation, made up of the second and the third terms of (F.4),

namely:
∂

∂t1
B(t1, t2)A(t1, t2) = δ(t1, t2). (F.10)

The equation can immediately be recast inserting the general solution for A(t1, t2)“

∂

∂t1
B(t1, t2) = δ(t1, t2)

1

C(a, t2)
ei

∫

t1
a

dt
1
′ϕ(t

1
′ ) (F.11)

integrating on both sides with respect to

∫ b̃

ã

dt1 one obtains:

∫ b̃

ã

dt1
∂

∂t1
B(t1, t2) =

1

C(a, t2)

∫ b̃

ã

dt1 δ(t1, t2) e
i
∫

t1
a

dt
1
′ ϕ(t

1
′ ) (F.12)

B(t1, t2) = B(ã, t2) +
1

C(a, t2)
ei

∫

t2
a

dt
1
′ ϕ(t

1
′ ) for b̃ = t1 and ã < t2 < t1 (F.13)

and finally the full y(t1, t2; [ϕ]) can be written as:

y(t1, t2; [ϕ]) = C(a, t2)e
−i

∫

t1
a

dt
1
′ ϕ(t

1
′ )

[

B(ã, t2) +
1

C(a, t2)
ei

∫

t2
a

dt
1
′ ϕ(t

1
′ )

]

(F.14)

= C(a, t2)B(ã, t2) e
−i

∫

t1
a

dttϕ(t) + e
+i

∫

a
t1

dttϕ(t)+i
∫

t2
a

dttϕ(t)
(F.15)

(F.16)

defining a unique constant D(a, ã, t2) := C(a, t2)B(ã, t2) one can recast (F.15) as:

y(t1, t2; [ϕ]) = D(a, ã, t2)e
−i

∫

t1
a

dttϕ(t) + ei
∫ t2
t1

dttϕ(t) (F.17)

choosing D(a, ã, t2) = 0 yields:

y(t1, t2; [ϕ]) = ei
∫ t2
t1

dttϕ(t) for ã < t2 < t1 (F.18)

which is precisely the solution shown in Eq. (5.11).



APPENDIXG
Algebra for solving the full functional DE

G.1 Verifying the ansatz for f and a

First we want to solve a simpler version of Eq. (6.3), namely:

ϕ(6)f([ϕ]) = −i
∫

d4W (6, 4)
δf([ϕ])

δϕ(4)
(G.1)

First we integrate from the left with the inverse of G0:
∫

d3d5d1G−1(6, 1)G0(1, 3)ϕ(3)f([ϕ])a(3, 5; [ϕ])J (5, 2; [ϕ]) =

− i

∫

d3d4d5d1G−1(6, 1)G0(1, 3)v(3, 4)
δf([ϕ])

δϕ(4)
a(3, 5; [ϕ])J (5, 2; [ϕ]) (G.2)

∫

d5ϕ(6)f([ϕ])a(6, 5; [ϕ])J (5, 2; [ϕ]) = −i
∫

d4d5v(6, 4)
δf([ϕ])

δϕ(4)
a(6, 5; [ϕ])J (5, 2; [ϕ]) (G.3)

To simplify even more we integrate from the right with the inverse of J , and obtain:
∫

d5d2ϕ(6)f([ϕ])a(6, 5; [ϕ])J (5, 2; [ϕ])J−1(2, 7; [ϕ]) = −i
∫

d4d5d2v(6, 4)
δf([ϕ])

δϕ(4)

× a(6, 5; [ϕ])J (5, 2; [ϕ])J−1(2, 7; [ϕ])

(G.4)

ϕ(6)f([ϕ])a(6, 7; [ϕ]) = −i
∫

d4v(6, 4)
δf([ϕ])

δϕ(4)
a(6, 7; [ϕ]) (G.5)

(G.6)

Dropping a(6, 7; [ϕ]) on both sides:

ϕ(6)f([ϕ]) = −i
∫

d4v(6, 4)
δf([ϕ])

δϕ(4)
. (G.7)
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110 Algebra for solving the full functional DE

This will be the equation for f([ϕ]) for which we formulate an exponential ansatz (see Eq. (6.5)).

In the following we verify that the ansatz really satisfy the differential equation.

Differentiating with respect to ϕ gives:

δf([ϕ])

δϕ(4)
=
i

2

{∫

d5̃d6̃W−1(6̃, 5̃)δ(5̃, 4)ϕ(6̃) +

∫

d5̃d6̃W−1(6̃, 5̃)ϕ(5̃)δ(6̃, 4)
}

e
i
2

∫

d5d6W−1(6,5)ϕ(5)ϕ(6)

= i
2

{∫

d6̃W−1(6̃, 4)ϕ(6̃) +

∫

d5̃W−1(4, 5̃)ϕ(5̃)
}

e
i
2

∫

d5d6W−1(6,5)ϕ(5)ϕ(6) (G.8)

inserting this result into (G.1) yields:

ϕ(6)f([ϕ]) = −i
[ i

2

∫

d4d5̃W (4, 6)W−1(4, 5̃)ϕ(5̃)

+
i

2

∫

d4d6̃W (4, 6)W−1(4, 6̃)ϕ(6̃)
]

e
i
2

∫

d5d6W−1(6,5)ϕ(5)ϕ(6) (G.9)

which can be written as:

ϕ(6)f([ϕ]) =
[1

2
ϕ(6) +

1

2
ϕ(6)

]

f([ϕ]) (G.10)

where we have assumed W symmetric in order to obtain the expression in Eq. (G.10). We can

readily see that the identity in Eq. (G.10) is satisfied.

We now show how also the ansatz for a (Eq. (6.8)) satisfies the respective DE:

δa(3, 5; [ϕ]

δϕ(4)
= j(3, 5)

{

− i

∫

d6̃d7̃d8̃
j(8̃, 5)

j(7̃, 5)
W−1(6̃, 7̃)G−1

0 (7̃, 8̃)δ(6̃, 4)
}

e−i
∫

d6d7d8
j(8,5)
j(7,5)W

−1(6,7)G−1
0 (7,8)ϕ(6)

= j(3, 5)
{

− i

∫

d7̃d8̃
j(8̃, 5)

j(7̃, 5)
W−1(4, 7̃)G−1

0 (7̃, 8̃)
}

e−i
∫

d6d7d8 j(8,5)
j(7,5)

W−1(6,7)G−1
0 (7,8)ϕ(6)

(G.11)

and inserting into (6.7):

a(1, 5; [ϕ]) =
[ ∫

d3d4d7̃d8̃j(3, 5)
j(8̃, 5)

j(7̃, 5)
G0(1, 3)W (3, 4)W−1(4, 7̃)G−1

0 (7̃, 8̃)
]

× e−i
∫

d7d8 j(8,5)
j(7,5)

W−1(6,7)G−1
0 (7,8)ϕ(6)

=

∫

d6̃d7̃d8̃j(7̃, 5)
j(8̃, 5)

j(7̃, 5)
G0(1, 7̃)G

−1
0 (7̃, 8̃)e−i

∫

d6d7d8 j(8,5)
j(7,5)

W−1(6,7)G−1
0 (7,8)ϕ(6)

= j(1, 5)e−i
∫

d6d7d8
j(8,5)
j(7,5)W

−1(6,7)G−1
0 (7,8)ϕ(6)

= a(1, 5; [ϕ]) (G.12)
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Here we show in a more rigorous way how the functional integration formula in Eq. (6.23) can

be derived.

Suppose we have a functional F([ϕ]) which is Taylor expandable, let’s then perform the expansion

with respect to ϕ and let’s center it around zero (only for simplicity, any other point belonging

to the domain of ϕ would also be fine). We get:

F([ϕ]) = F([ϕ = 0]) +

∫

dx
δF([ϕ])

δϕ(x)

∣
∣
∣
ϕ=0

· ϕ(x) + 1

2

∫

dxdy
δ2F([ϕ])

δϕ(x)δϕ(y)

∣
∣
∣
ϕ=0

· ϕ(x)ϕ(y) +O(3)

(G.13)

which can be expressed in a more compact way as:

F([ϕ]) = F([ϕ = 0]) +

∞∑

n=2

1

(n− 1)!

∫

dx1 · · ·xn−1
δn−1F([ϕ])

δϕ(x1) · · · δϕ(xn−1)

∣
∣
∣
ϕ=0

· ϕ(x1) · · ·ϕ(xn−1)

(G.14)

Let’s now differentiate F([ϕ̄]) with respect to ϕ̄, where ϕ̄ = λ · ϕ and λ is simply a parameter.

We obtain:

δF([ϕ̄])

δϕ̄(z)
= 0 +

∞∑

n=2

1

(n− 1)!

∫

dx1 · · ·xn−1
δn−1F([ϕ̄])

δϕ̄(x1) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

× {δ(x1 − z)ϕ̄(x2) · · · ϕ̄(xn−1) + ϕ̄(x1)δ(x2 − z) · · · ϕ̄(xn−1) + · · · } (G.15)

=

∞∑

n=2

1

(n− 1)!

[ ∫

dx2 · · · dxn−1
δn−1F([ϕ̄])

δϕ̄(z) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ̄(x2) · · · ϕ̄(xn−1)

+

∫

dx1dx3 · · · dxn−1
δn−1F([ϕ̄])

δϕ̄(x1)δϕ̄(z) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ̄(x1)ϕ̄(x3) · · · ϕ̄(xn−1)

+ · · ·
]

(G.16)

conveniently exchanging some indices under the integral symbol (e.g. in the second term above

x3 → x2) yields:

δF([ϕ̄])

δϕ̄(z)
= 0 +

∞∑

n=2

1

(n− 1)!

[ ∫

dx2 · · · dxn−1
δn−1F([ϕ̄])

δϕ̄(z) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ̄(x2) · · · ϕ̄(xn−1)

+

∫

dx2 · · · dxn−1
δn−1F([ϕ̄])

δϕ̄(x2)δϕ̄(z) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ̄(x2) · · · ϕ̄(xn−1)

+ · · ·
]

(G.17)

summing up all the -now equal- integrals give a prefactor which combined with the factorial in

the above equations yields
n− 1

(n− 1)!
=

1

(n− 2)!
, hence Eq. (G.17) can be recast asa:

δF([ϕ̄])

δϕ̄(z)
=

∞∑

n=2

1

(n− 2)!

{∫

dx2 · · · dxn−1
δn−1F([ϕ̄])

δϕ̄(z) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ̄(x2) · · · ϕ̄(xn−1)

}

. (G.18)

aThe term n = 2 has to be understood as
δF([ϕ])

δδϕ̄(z)
|ϕ̄=0
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Inserting both Eq. (G.14) and Eq. (G.18) into the functional integration formula we want to

verify (Eq. (6.23)) we obtain:

F([ϕ = 0) +

∞∑

n=2

1

(n− 1)!

∫

dx1 · · ·xn−1
δn−1F([ϕ])

δϕ(x1) · · · δϕ(xn−1)

∣
∣
∣
ϕ=0

· ϕ(x1) · · ·ϕ(xn−1)

= F([ϕ = 0]) +

∫ 1

0

dλ

∫

dz

∞∑

n=2

1

(n− 2)!

∫

dx2 · · · dxn−1
δn−1F([ϕ̄])

δϕ̄(z) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

· λϕ(x2) · · ·λϕ(xn−1) · ϕ(z) (G.19)

and finally:

∞∑

n=2

1

(n− 1)!

∫

dx1 · · ·xn−1
δn−1F([ϕ])

δϕ(x1) · · · δϕ(xn−1)

∣
∣
∣
ϕ=0

· ϕ(x1) · · ·ϕ(xn−1) = (G.20)

=

∫ 1

0

dλ

∫

dz

∞∑

n=2

λn−2

(n− 2)!
dx2 · · · dxn−1

δn−1F([ϕ̄])

δϕ̄(z) · · · δϕ̄(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ(x2) · · ·ϕ(xn−1) · ϕ(z)

=

∞∑

n=2

∫

dz
λn−1

(n− 1)(n− 2)!

{

dx2 · · · dxn−1
δn−1F([ϕ̄])

δϕ(z) · · · δϕ(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ(x2) · · ·ϕ(xn−1)

}

ϕ(z)
∣
∣
∣

λ=1

λ=0

=

∞∑

n=2

1

(n− 1)!

∫

dzdx2 · · · dxn−1
δn−1F([ϕ̄])

δϕ(z) · · · δϕ(xn−1)

∣
∣
∣
ϕ̄=0

· ϕ(x2) · · ·ϕ(xn−1)ϕ(z) (G.21)

Setting z = x1 in the second term of Eq. (G.21) satisfies the identity. The only caveat of the

functional integration formula (6.23) is, as we have already mentioned in the end of Chapter (6),

that the functional derivative of F has to be compatible with its Taylor expansion with respect

to ϕ. Unfortunately this was not the case for J ([ϕ]).

G.2.1 A simple functional to which the integration formula applies

To better elucidate the caveats of the above integration formula, let’s examine a simple function

for which the formula yields a correct result. First let’s recall the formula:

1
︷ ︸︸ ︷

F([ϕ]) =

2
︷ ︸︸ ︷

F([ϕ = 0])+

3
︷ ︸︸ ︷
∫ 1

0

dλ

∫

dx
δF([ϕ̄])

δϕ̄(x)
ϕ(x) . (G.22)

Suppose we have:

F(ϕ) =

∫

dz ϕ(z) (G.23)

inserting it in Eq. (G.22) we have:
∫

dz ϕ(z) = 0 +

∫ 1

0

dλ

∫

dx
d

dλ · ϕ(x)
[ ∫

dzλ · ϕ(z)
]

ϕ(x) (G.24)

∫

dz ϕ(z) =

∫ 1

0

dλ

∫

dxdz δ(z − x)ϕ(x) (G.25)

∫

dz ϕ(z) =

∫

dz ϕ(z) · λ
∣
∣
∣

λ=1

λ=0
=

∫

dzϕ(z) (G.26)

the last identity proves the formula to be correct for this specific case.
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G.2.2 A simple functional to which the integration formula does not

apply

We will here provide a counter example. Let’s suppose to have an F reading:

δF([ϕ])

δϕ(x)
= a(x) ·

∫

dyϕ(y) (G.27)

inserting it into Eq. (G.22) yields:

a(x) ·
∫

dyϕ(y) = 0 +

∫ 1

0

dλ

∫

dx a(x)ϕ(x)

∫

dy ϕ(y)λ

=
1

2

∫

dx a(x)ϕ(x)

∫

dy ϕ(y). (G.28)

Differentiating Eq. (G.28) with respect to ϕ should give back the original function F , but we

will show here it doesn’t, in fact:

δF([ϕ])

δϕ(z)
=

1

2

∫

dx a(x)δ(x − z)

∫

dy ϕ(y) +
1

2

∫

dx a(x)ϕ(x)

∫

dy δ(y − z)

=
1

2
a(z)

∫

dy ϕ(y) +
1

2

∫

dx a(x)ϕ(x). (G.29)

The latter expression is obviously different from the initial given functional.

G.3 Insights from the N-times framework

We will now write down all the N-times equations -completely equivalent to the full functional

ones of Chap. 6. The idea is to get some insights on the possible ”pathologies” of the integrand.

The N-times differential equation reads:

g(t1, t2; [ϕ]) = iθ(t2 − t1) + i

∫ ∞

t1

dt3ϕ(t3)g(t3, t2; [ϕ]) + i2
∫ ∞

t1

dt3

∫

dt4W (t3, t4)
δg(t3, t2; [ϕ])

δϕ(t4)
(G.30)

where iθ(t2 − t1) = g0(t1, t2) = G0(t1, t2)e
iǫ(t1−t2), g(t1, t2; [ϕ]) = G(t1, t2; [ϕ])e

iǫ(t1−t2) and G0

is a hole-only non-interacting Green’s function. The ansatz for g reads:b

g(t1, t2; [ϕ]) =

∫

dt6f([ϕ])a(t1, t6; [ϕ])J (t6, t2; [ϕ]) (G.31)

which inserted into (G.30) suggests again to write down separately three differential equations

for f([ϕ]), a([ϕ]) and
δJ ([ϕ])

δϕ
, for which the following ansatz can be formulated:

f([ϕ]) = e
i
2

∫

dt7dt8W
−1(t7,t8)ϕ(t7)ϕ(t8) (G.32a)

a(t3, t6; [ϕ]) = j(t3, t6)ǫ(t6, [ϕ]) = j(t3, t6)e
−

∫

dt9t7t8
j(t8 ,t6)

j(t7 ,t6)
W−1(t9,t7)θ

−1(t8−t7)ϕ(t9) (G.32b)

bNote the perfect analogy with the ansatz for the full G.
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this leads to an equation for
J (t6, t2; [ϕ])

δϕ(t4)
reading:

iθ(t2 − t1) + i2
∫ ∞

t1

dt3

∫

dt6t4W (t3, t4)f([ϕ])a(t3, t6; [ϕ])
J (t6, t2; [ϕ])

δϕ(t4)
= 0 (G.33)

which, again in analogy with the full functional case, cannot be inverted, since it has several

possible solutions.

It seems that so far nothing has been gained going back to the N-times playground. However,

we should not forget that we do know the form of the exact one-body G in this case. Hence we

simply express J ([ϕ]) as a function of a, f and g and try to get insights on the form it should

have (in other words we are do some reverse engineering process on J ([ϕ])). The first step is to

recast Eq. (G.31) as:

J (t2, t6; [ϕ]) = f−1([ϕ])

∫

dt1a
−1(t6, t1; [ϕ])g(t1, t2; [ϕ]) (G.34)

then we have to perform the derivative with respect to the exernal potential (since we are

ultimately interested in
J (t2, t6; [ϕ])

δϕ(t4)
):

J (t2, t6; [ϕ])

δϕ(t4)
=

δ

δϕ(t4)

(

f−1([ϕ])

∫

dt1a
−1(t6, t1; [ϕ])g(t1, t2; [ϕ])

)

= f−1([ϕ])

∫

dt1a
−1(t6, t1; [ϕ])g(t1, t2; [ϕ])

[

− i

∫

dt7W
−1(t4, t7)ϕ(t7)

+
W−1(t4, t6)

j(t6, t6)
+ iθ(t2 − t4)θ(t4 − t1)

]

. (G.35)

The complicated form of Eq. (G.35) is a further proof that finding an ansatz (from scratch) for
δJ (t2, t6; [ϕ])

δϕ(t4)
is really a difficult task.

This is why, as anticipated in the previous section, we will reformulate our quest for
δJ ([ϕ])

δϕ
in

a different way, introducing also here a new quantity:

q(t1, t2, t6; [ϕ,W ]) =

∫ ∞

t1

dt3

∫

dt4W (t3, t4)f([ϕ])a(t3, t6)
δJ (t6, t2; [ϕ])

δϕ(t4)
(G.36)

where q has to satisfy:

iθ(t2 − t1) = g0(t1, t2) =

∫

dt6 q(t1, t2, t6; [ϕ,W ]). (G.37)

We can now express
δJ (t2, t6; [ϕ])

δϕ(t4)
as a function of q(t1, t2, t6; [ϕ,W ]) (see Eq. (6.15)):

δJ (t2, t6; [ϕ])

δϕ(t7)
=

∫

dt1dt5
θ−1(t1 − t5)q(t1, t2, t6; [ϕ,W ])W−1(t7, t5)

f([ϕ])a(t5, t6; [ϕ])
(G.38)
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Once again, many possible q([ϕ])s can satisfy Eq. (G.37). Substituting (G.35) into (G.36) one

can obtain an exact expression for q, namely:

q(t1, t2, t6; [ϕ,W ]) =

∫ ∞

t1

dt3

∫

dt1̃j(t3, t6)g(t1̃, t2; [ϕ])j
−1(t6, t1̃)

[

− iϕ(t3))

+
δ(t3, t6)

j(t3, t3)
+ i

∫

W (t3, t8)θ(t2 − t8)θ(t8 − t1̃)
]

(G.39)

where g(t1̃, t2; [ϕ]) is the exact expression for the core G and j(t3, t6) hasn’t been chosen yet.

The above result, together with Eq. (G.35) are very precious insight delivered directly by the

N-times framework: in the full functional framework we could not access the exact q([ϕ]) and

the exact
δJ ([ϕ])

δϕ
(if not formally), while here, thanks to the knowledge of the exact N-times G

we actually calculated them.

G.4 An alternative ansatz

One can also think of modifying the ansatz for G (Eq. (6.1)). Our first ansatz was mainly based

on the insights that we had obtained by solving the algebraic DE in the 1-point framework.

This alternative ansatz is instead based on results obtained in the context of the decoupling ap-

proximation for the N-times Green’s function. Its expression is very similar to that of Eq. (5.18),

where embedding the external potential ϕ in a non-interacting Green’s function, had considerably

simplified the problem to solve. In the full functional framework the guess would read:

G(1, 2; [ϕ]) =

∫

d3Gϕ(1, 3) · F[ϕ,W ](3, 2). (G.40)

The above equation is slightly more complicated than the N-times one, namely Gϕ and F[W,ϕ]

are integrated, rather than simply multiplied and we have assumed F[W,ϕ] to be dependent also

on the external potential ϕ.c From now on a symbolic notationd will be employed. Inserting the

-symbolic- ansatz (G.40) into the N-points equivalente of Eq. (5.3) one gets:

Gϕ · F[ϕ,W ] = Gϕ +GϕW

{
δGϕ

δϕ
· F[ϕ,W ] +Gϕ

δF[ϕ,W ]

δϕ

}

. (G.41)

Both
δGϕ

δϕ
· F[ϕ,W ] and Gϕ

δF[ϕ,W ]

δϕ
can be further evaluated. The first of the two terms can be

recast asf:

δGϕ

δϕ
· F[ϕ,W ] = −Gϕ

δG−1
ϕ

δϕ
︸ ︷︷ ︸

-1

GϕF[ϕ,W ] = GϕGϕF[ϕ,W ] (G.42)

cFW in the decoupling approximation was a function of W only.
dSince this is only a preliminary discussion it will be enough to give the idea behind this route.

eThe ”compact” symbolic N-point DE reads: G([ϕ]) = Gϕ +GϕW
δG([ϕ])

δϕ
.

fThis manipulation is analogous to the one shown in App. A.3 for the full G.
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having used
δG−1

ϕ

δϕ
= −1.g

For the second term we have:

Gϕ

δF[ϕ,W ]

δϕ
= Gϕ

δF[ϕ,W ]

δGϕ
· δGϕ

δϕ
︸ ︷︷ ︸

Eq. (G.42)

= Gϕ

δF[ϕ,W ]

δGϕ
GϕGϕ (G.43)

hence Eq. (G.41) can be rewritten as:

Gϕ · F[ϕ,W ] = Gϕ +GϕW

{

GϕGϕF[ϕ,W ] +Gϕ

δF[ϕ,W ]

δGϕ
GϕGϕ

}

(G.44)

multiplying from the left by G−1
ϕ we can readily obtain:

F[ϕ,W ] = 1 +W

{

GϕGϕF[ϕ,W ] +Gϕ

δF[ϕ,W ]

δGϕ
GϕGϕ

}

. (G.45)

We have hence obtained an equation for F[ϕ,W ] as a functional of the screened interaction W

and the non-interacting Green’s function in presence of the external potential ϕ.

What about the evaluation of F[ϕ,W ]? One would have to solve Eq. (G.45), which is again very

difficult. However, to have a feeling about the potential of such ansatz, we could begin with

exploring an approximate solution for G. By neglecting the last term in Eq. (G.45)h:

F[ϕ,W ] = 1 +WGϕGϕF[ϕ,W ]. (G.46)

Inversion of the above expression gives:

F[ϕ,W ] = [1−WGϕGϕ]
−1
. (G.47)

The above result can be inserted in the initial ansatz, providing us with a Green’s function of

the type:

G = Gϕ [1−WGϕGϕ]
−1 . (G.48)

which is equivalent to a GW approximation for the one-body propagator.i

In conclusion on the basis of the results obtained with a similar strategy in the N-times framework

and on the few symbolic equations of this last section (Eqs. G.40-G.48), this alternative ansatz

looks like a promising route towards the solution of the full functional linearized equation. We

will definitely explore it further.

gThis manipulation is equivalent to the one employed, e.g., to derive the vertex function in Hedin’s equations.
hTo be precise one assumes F independent of Gϕ.
iThe Dyson equation has been expressed here in terms of the non-interacting Gϕ, rather than the non-

interacting G0 at vanishing potential.



BIBLIOGRAPHY

[1] Hartree D. Proc. Cambridge Philos. Soc., 24, 1928.

[2] Fock V. Z. Phys., 61, 1930.

[3] Kohn W. and Sham J. L. Phys. Rev., 140, 1965.

[4] Foulkes W. M. C., Mitas L., Needs R. J., and Rajagopal G. Rev. Mod. Phys., 73, 2001.

[5] Ceperley D. M. Rev. Mod. Phys., 67, 1965.

[6] Coester F. and Kummel H. Nuclear Physics, 17, 1960.

[7] Helgaker T., Jørgensen P., and Olsen J. Molecular Electronic-Structure Theory. Wiley,

Chichester, 2000.

[8] Szabo A. and Ostlund N. S. Modern Quantum Chemistry: Introduction to Advanced Elec-

tronic Structure Theory. Dover Publications, Mineola, NY, 1996.

[9] Georges A. and Kotliar G. Phys. Rev. B, 45, 1992.

[10] Kotliar G., Savrasov S. Y., Haule K., Oudovenko V. S., Parcollet O., and Marianetti C. A.

Rev. Mod. Phys., 78, 2006.

[11] Gell-Mann M. and Brueckner K. A. Phys. Rev., 106:364–368, 1957.

[12] Nozierès P. and Pines D. Nuovo Cimento, 9:470–490, 1958.

[13] Martin P. C. and Schwinger J. Phys. Rev., 115, 1959.

[14] Hedin L. Phys. Rev., 139, 1965.

[15] van Schilfgaarde M., Kotani T., and Faleev S. Phys. Rev. Lett., 96, 2006.

[16] Papalazarou E., Gatti M., Marsi M., Brouet V., Iori F., and Reining L. et al. Phys. Rev.

B, 80, 2009.

117



118 BIBLIOGRAPHY

[17] Chantis A. N., van Schilfgaarde M., and Kotani T. Phys. Rev. B, 76, 2007.

[18] Quinn J. J. and Ferrell R. A. Phys. Rev., 112:812–827, 1958.

[19] Bohm D. and Pines D. Phys. Rev., 92:609–625, 1953.

[20] Hubbard J. Proc. Roy. Soc., A342:336–352, 1957.

[21] Nozierès P. and Pines D. Phys. Rev., 111:442–545, 1958.

[22] Wigner E. P. Phys. Rev., 46, 1934.

[23] Carr W. J. Phys. Rev., 122, 1961.

[24] Nozières P. and Pines D. Nuclear Physics, 111:442–454, 1958.

[25] Huang K. and Yang C. N. Phys. Rev., 105:767, 1957.

[26] Galitskii V. M. Zh. Eksper. Teor. Fiz., 34:251, 1958.

[27] Brueckner K. A. The Many-Body Problem. Dunod-Wiley, New York, 1598.

[28] Hertz H. R. Annalen der Physik und Chemie, 31:983–1000, 1987.

[29] Hallwachs W. Annalen der Physik und Chemie, 33:301–12, 1888.

[30] Einstein A. Ann. Phys., 17:132–48, 1905.

[31] Reinert F. and Hüfner S. New Journal of Physics, 7:97, 2005.

[32] Berglund C. N. and Spicer W. E. Phys. Rev, 136, 1964.

[33] Schaich W. L. and Ashcroft N. W. Phys. Rev. B, 3, 1970.

[34] Mahan G. D. Phys. Rev. B, 2:4334, 1970.

[35] Hedin L. Phys. Scripta, 21:477–480, 1980.

[36] Fetter A. L. and Walecka J. D. Quantum Theory of Many-Particle Systems. Dover publi-

cations, 2003.

[37] Gross Eberhard K. U., Runge E., and Heinonen O. Many-particle Theory. A. Hilger, 1991.

[38] Stankovski M. Local and Non Local Vertex Corrections Beyond the GW Approximation.

PhD thesis, University of York, UK, 2008.

[39] Damascelli A., Hussain Z., and Shen Z. X. Rev. Mod. Phys., 75:473, 2003.

[40] Kadanoff L. P. and Baym G. Quantum Statistical Mechanics. W.A. Benjamin Inc., New

York, 1964.

[41] Csanak G., Taylor H. S., and Yaris R. Adv. At. Mol. Phys., 7:289, 1971.

[42] Schwinger J. Proc. Nat. Accad. Sci., 37:452, 1951.



BIBLIOGRAPHY 119

[43] Abrikosov A.A., Gorkov L. P., and Dzyaloshinski I. E. Methods of Quantum Field Theory

in Statistical Physics. Dover publications, 1975.

[44] Gell-Mann M. and Low F. Phys. Rev., 84:350, 1951.

[45] Messiah A. Quantum Mechanics II. Dover Publications, 1970.

[46] Brouder C., Stoltz G., and Panati G. Phys. Rev. Lett., 10:1285–1309, 2007.

[47] Baym G. and Kadanoff L. P. Phys. Rev., 124:287, 1951.

[48] Strinati G., Mattausch H. J., and Hanke W. Phys. Rev. B, 25, 1982.

[49] Hybertsen M. S. and Louie S. G. Phys. Rev. Lett., 55:1418, 1985.

[50] Hybertsen M. S. and Louie S. G. Phys. Rev. B, 55:5390, 1986.
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