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Resune

Cette these est dedee a letude des necanismes d'instabilie non-modaux dans
les ecoulements cisailes, principalement des couches de nelang®n se concen-
tre sur les perturbations lireariees qui ont la plus grande croissice denergie
a un temps donre, les “perturbations optimales', dierentes du node propre le
plus instable pour les sysemes non-normaux. Une description ongle de la non-
normalie et ses consequences est donree dans le chapitre 2e thapitre 3 traite du
nmecanisme de 'lift-up’ dans le cas des perturbations longitudinalem-visqueuses
sur unecoulement de base paralkle et arbitraire. On trouve unaouvelle equation
1D qui cetermine I'ensemble des perturbations orthogonales, dolfoptimale, et per-
met de trouver des nouveaux esultats exacts et asymptotigse Dans le chapitre
4 on s'ineresse aux instabilies secondaires d'une couche de malge en utilisant
commeetat de base lecoulement 2D instationnaire et non-lireag pour calculer les
perturbations optimales 3D. Selon le nombre d'onde et les temps d'apisation
(initial et nal), on retrouve comme eponses optimales les pertusations de types
“elliptique’ et "hyperbolique'. Dans les chapitres 5 et 6 on consicere @rstrati ca-
tion en densie dans la direction orthogonale au plan de letat de bse, et on utilise
une decomposition de "Craya-Herring' pour analyser les perturbans en termes
de leur contenu en ondes internes et vorticie verticale. Leseations devolution
des perturbations lirearies autour d'unetat de base 2D gggral sont obtenues et
analyses au niveau de lenergie onde/tourbillon. Ces esultatsont appliqles dans
le chapitre 6 pour analyser la gereration et lemission d'ondes dasiles perturbations
optimales sur une couche de cisaillement horizontale.

Abstract

This thesis reports a study of nonmodal instability mechanisms in sae ows,

mainly mixing layers. We focus on the linearized perturbations that mamize the

energy ampli cation at nite time, the “optimal perturbations', which in non-normal

systems are di erent from the most unstable eigenmode. An origihdescription of
non-normality and its consequences is provided in chapter 2. Chapt3 deals with
the well known lift-up mechanism, for the case of longitudinal inviscigerturbations

to any parallel ow. A new one-dimensional equation determining th@rthogonal
set of optimal and sub-optimal perturbations is found in that caseallowing to

obtain new exact and asymptotic results. In chapter 4 we addre$lse secondary
instability of mixing layers, for which we use the naturally evolving 2D av as a
base state to compute the 3D optimal perturbations. Among theptimal responses
we recover the usual “elliptic' and "hyperbolic' types of perturbatio structure, the

largest growth depending on the spanwise wavenumber and optintioa times (ini-

tial and nal). In chapters 5 and 6 we consider density strati catian in the direction

orthogonal to the plane of the base ow, and we use a "Craya-Herg' decomposition
to analyse the ow in terms of its internal wave and vertical vorticiyy content. The

perturbation equations for a general 2D base ow are rst derive and interpreted

in terms of wave/vortex energetics in chapter 5. These resultsaused in chapter
6 to analise the strong generation and emission of internal wavesoduced by the
optimal perturbations to a horizontal shear layer.



Resumen

Esta tesis describe un estudio de los mecanismos de inestabilidad radal en ujos
de corte o con cizalle, especialmente capas de mezcla, que correspoa la inter-
faz de contacto entre dos masas de uido con velocidad relativa. Bhfoque esta
centrado en las perturbaciones lineales cuya evolucon maximiza eécimiento en-
ercetico (de la perturbacon) a tiempo nito, las “perturbacionesptimas’, distintas
del modo propio mas inestable cuando el sistema es no-normal. Ewragbtulo 2 se
entrega una descripcon original de la no-normalidad, sus orgesg/ consecuencias.
El captulo 3 est dedicado al ya bien conocido mecanismo de “lift-pmecanismo
no-modal que ampli ca fuertemente las perturbaciones elongadas la direccon
del ujo base, y que ha permitido explicar la aparicon de este tipo d@erturba-
ciones en varios contextos experimentales y aplicaciones. Paraadocde un ujo
sin viscosidad, hemos encontrado una nueva ecuacon que deteranel conjunto de
perturbaciones ortogonales, entre las cuales se encuentra laydaconoptima; las
soluciones de esta ecuacon se pueden entender en analoga canelstados propios
(ligados) de una partcula cwantica en un pozo o una caja, la pertlbaconoptima
correspondiendo al estado fundamental. Esta ecuacon permitdtener nuevos re-
sultados exactos y aproximaciones asinbticas. En el captulo 4oasideramos la
inestabilidad secundaria de una capa se mezcla. Para ello usamos cestado base
la solucon no lineal y no estacionaria correspondiente a la evolucio 2le una
capa de mezcla, y calculamos sobre ese ujo las perturbacionesio@as 3D por
medio de un algoritmo iterativo de resolucon alternada de los probless directo y
adjunto. De esa forma podemos integrar y describir el crecimientte las pertur-
baciones durante las distintas etapas sucesivas de la evolucon dareastabilidad.
Como estado nal o respuesta, entre las perturbaciones optimaleecuperamos los
tipos “elpticos' e “hipertolicos’, donde el mas ampli cado dependalel nunero de
onda de la perturbacon y los tiempos (inicial y nal) de optimizacon con respecto
a la evolucon del ujo base. En los captulos 5 y 6 consideramos efexto de una
estrati cacon en densidad en la direccon perpendicular al plano @l ujo base, y
usamos una descomposicon de "Craya-Herring' para analizar eljouen terminos
de su contenido de ondas internas y vorticidad vertical. Primero, esl captulo
5, derivamos la descomposicon en "Craya-Herring' de las ecuaciempara las per-
turbaciones linealizadas sobre un estado base horizontal arbiigresas ecuaciones
son luego analizadas e interpretadas en erminos de las transfec@as energeticas
estado base/perturbacon y onda/vorticidad. Esos resultadoson luego aplicados en
el captulo 6 para analizar la intensa generacon de ondas internague se observa
en las perturbacionesoptimas a una capa de mezcla horizontal cestrati cacon
vertical.
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Chapter 1

Introduction

The great problem of contemporary science is the explanation ofss#yved phenom-
ena which can not be directly explained from basic principles. This is agilem of
the most fundamental, even philosophical importance [18]. It conees all scienti ¢
disciplines and spans a huge variety of scales and phenomena, frowiaoular or-
ganization to the formation of galaxies, passing through climate aritie origin and
dynamics of the living. While there can be similarities, each discipline ccemmed
with the study of these and other phenomena has its own intrinsic ietest. In par-
ticular Fluid Mechanics, having well established basic principles and @enting an
enormous variety of non trivial phenomena, is a eld that gives the mportunity to
apply and develop techniques and concepts for understanding iars types of com-
plex phenomena. During the last few decades, there have been impaot advances
concerning instability in Fluid Mechanics For example, during the last f& decades,
there have been important advances in Fluid Mechanics concerningstability, that
is, the During the last few decades, for example, there have beerpiontant advances
in the theory of instabilities in Fluid Mechanics, theory that deals with he study
of the propensity or likeliness of a given ow, typically in an idealised siw@tion, to
remain or change in a way that should be determined.

The main focus of this dissertation is on instability mechanisms on she@aws.
Mostly linear mechanisms, and more speci callypon-modalinstability mechanisms.
The relevance of non-modal instability mechanisms went for long timennoticed,
linear instability mechanisms being searched for withinlassical stability theory[42].
But very large transient growth (produced by non-modal instabiliy mechanisms)
in systems that were stable according to classical stability theorgiemonstrated the
shortcomings of the classical stability theory. This brought aboumajor develop-
ments in the study of linear stability [46, 47, 90]. More generally, theevelopments
concern linear dynamics.

| consider it important to remark that methodological developmerg can have a
further reach than that concerning the theories in which they areeveloped. Prob-
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ably the most robust backbone for parallels between subjects sargly completely
di erent, is provided by similarities of the mathematical models pertient on each
case. Itis a personal conviction that there is much to learn from tablishing connec-
tions between di erent subjects; it is a personal choice to remairpen in the search
of those connections. | consider thus of primary importance theopsibility that the

developments used and performed in this work be applicable for ottdgomains. To
achieve that, it is useful to understand as deeply as possible.

An essential mathematical ingredient related to the occurrencef mon-modal
instability mechanisms isnon-normality. In chapter 2 we de ne what non-normality
IS, explore what produces it and what are its consequences. (Theader interested
in the rigorous mathematical theory concerning non-self-adjoifinear operators is
referred to [36].) Also explained in chapter 2 is the methodology andpets of linear
dynamics that are relevant in this manuscript. It also provides soméeemingly)
original results that are un nished, and introduces the basic nomodal instability
mechanisms of shear ow.

In chapter 3 we show a simple new result concerning the lift-up mectiam,
one of the key pieces of shear ow stability that was missing for dedas. The lift
up mechanism is arguably the most important non-modal instability mghanism
in plane shear ow. An important limitation in classical stability theory concerns
dealing with time dependent systems. In chapter 4, using the tool§ the non-modal
stability theory, we study the stability of an unstationary ow. That ow is a full
solution of the two-dimensional Navier-Stokes equations correspling to a mixing
layer. We include the e ect of density strati cation on chapter 5. There we derive
the expression of the perturbative Navier-Stokes equations uadthe Boussinesq
approximation in the Craya-Herring frame. The results from chapter 5 are used
in chapter 6, where we study the stability of a horizontal shear layawvith vertical
strati cation. The Craya-Herring decomposition there allows traing the generation
and emission of internal waves. We nish in chapter 7 with the conclimns and
perspectives.

12



Chapter 2

Some ideas on non-normality

2.1 Mathematical framework

2.1.1 Eigenmode decomposition of linear dynamics

Consider a linear dynamical system of the form

— = Lu; 2.1

at (2.1)
wherelL is an autonomous (no time dependence) linear operator acting oretstate
vector u and determining its evolution. The solution of (2.1) at timet can be written
as

u(t) = etug; (2.2)

whereug is the initial condition. For generality, we will not specify the vector pace
U to which the state vectoru belongs. We will assume, however, that the operator
L has a complete set of eigenvectors and a discrete spectrum, implyithat any
initial condition ug can be written as a linear combination of the eigenvectors bf
that is X
Upg = Uili ; (23)
i
wherel; are the eigenvectors of satisfying
|—|i = ili; (24)
and the sub indexi 2 N runs from 1 to the dimension of the vector space: The
complex numbers ; are the eigenvalues and the spectrum is the set of eigenvalues

f ig: The spectrumf ;g and the set of eigenvector§l;g are a property of the linear

13



Figure 2.1: Consider the evolution of an initial conditiorf composed of the di erence
between two decaying eigenmodes; and ,: The eigenmodes ; and , decay in

time from left to right, at di erent rates. As a result, f increases during a transient
before eventually decaying while becoming parallel to the mode with glest decay.

Image from Schmid, 2007 [90].

operator L acting on U: Under these assumptions, the solution of equation (2.1)
given in (2.2) becomes X
u(t) = uilie it: (2.5)

2.1.2 Normality

Equation (2.5) is key for discussing the evolution of most linear sysis. The real
part of the eigenvalue ; determines whether the contribution tou(t) of the eigen-
mode |; grows or decays in time. Classical stability theory concentrates dahe
spectrum ;; following the intuition that if every term of the sum in (2.5) decays,
then u(t) should also decay. As graphically described on gure 2.1, this intuitio
can be misleading if the eigenmodes can partially cancel each otherhe right hand
side of (2.5). In the left of gure 2.1 taken from [90], two eigenmodes; and
similar to each other yield an initial condition f in which much of their contribu-
tions cancel. As time increases (moving to the right in gure 2.1), onean see how
f evolves and the cancellation between the two eigenmodes is partiallgstroyed;
this produces agrowth of f despite the decrease in the contribution from each of the
eigenmodes. If ; and ,in gure 2.1 wereorthogonal(normal) to each other, the
decay of the ; and , contributions to f would necessarily lead to a decay @t
The geometric notion of whether two eigenmodes belonging to a vectspace
U are orthogonal or “similar to each othet needs to be made precise. This can be
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done by introducing an inner product,h ; i say, which associates a scaldw; wi
to any pair of vectorsv and w in U: Any pair of vectorsv and w are said to be
orthogonal (normal) if hv;wi = 0: It is after the de nition of an inner product that
one can assess normality (orthogonality) between eigenmodesattthe eigenmodes
are normal to each other means that

Wi lil (2.6)

where j is the Kronecker's delta function. Normality between eigenmodes ibus
not a property of the linear operatorL only, it also depends on the inner product.
Similarly, making precise thegrowth of u (or f in gure 2.1) requires a measure of
u (or f): Aninner product h ; i generates a nornk k directly as*

kuk := hu;ui ; (2.7)

providing a measure for assessing the growth or decay wf As it is natural, the
growth in time of u(t) = €'up (2.2) does not depend orug and L only, it also
depends on the way of measuring(t):

In a way similar as an inner product is required to determine orthogaifhty
between eigenmodesjormality of the linear operatorL is not a property of the
linear operatorL alone, it also depends on the inner product. The linear operator
L acting on U with inner product h ; i is de ned to be normal if and only if L and
its adjoint L* satisfy

L*L=1LL"; (2.8)
where the de ning property of the adjointL™ under the inner producth ; i is that
hv;Lwi = L v;w (2.9)

for all v and w in U: The eigenmodes; are normal to each other under the inner
product h; i if and only if L is normal under that inner product. According to this
de nition, non-normality of L occurs when it does not commute with its adjoint.

We can also remark that normality of the operatoi. implies that it has a com-
plete set of eigenvector$l;g: As a consequence, non completenessfafg implies
that L is non-normal. Moreover, ad ;g does not depend on the choice of inner
product, an incomplete sef |;g implies that L is non-normal for any inner product.

As the eigenvalues and eigenmodes do not depend on a choice of ipmeduct,
they are more fundamental properties of: One could thus be tempted to disregard
(non-)normality as super uous and focus only on the \more essgal" eigenvalues
and their eigenmodes. We will see why this is simplistic in the following, whe
describing an aspect that plays a very important role in this thesis.

. . p—
1A norm from an inner product is usually de ned as kuk := = hu;ui: We de ne (2.7) because
we will concentrate more on quadratic measures such as energyt does not make an important
di erence.
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2.1.3 Optimal perturbations

The computation of optimal perturbations constitutes a centralpart of the results
of this dissertation. The need for characterizing the linear dynanscof non-normal
systems has led to major developments on linear stability theory @€90] for a
review). In classical stability theory, much importance is ascribedot the most
unstable (or least stable) eigenmode. Implicit in this stance is the idghat the

characteristics of the most unstable eigenmode are what one egiseto observe
What one observes, however, necessarily implies a selection of dipalar feature

of the system under study. This \selection of a particular featureimplies a measure,
and a measure which is sensitive to all possible features is a norm. Gtep in the
way to precise the notion of \what one expects to observe" can lgven by the
computation of the optimal perturbations

The optimal perturbation for optimization time T is given by the solution to

(1) KT
whereu(T) corresponds to the vector states at time T that evolved from the initial
condition ug: The optimization problem (2.10) can be solved with a variational
formulation [90], which has the exibility that it allows including extra costs and
constraints. We shall take here a di erent approach that puts favard the solution
procedure while highlighting a very important aspect of the dynamicdn (2.10) we
have

(2.10)

ku(T)k = hu(T): u(T)i: (2.11a)
= he'T ug; €7 upi; (2.11b)
= he"" Te"T ug; Uoi; (2.11c)

where in (2.11c) we have used thatet™ )* = € T: On the other hand, the adjoint
equation to (2.1) i .

V + .

=LV (2.12)
so that €T corresponds to the evolution of (2.12) up to timd& after the change
t!  t Thus, the operatore-" Te-T corresponds to the successive evolution of the
direct system (2.1) followed by the evolution of (2.12) witht ! t: This can be
e ciently performed in large systems by numerically simulating the eviution of the
direct and adjoint systems.

Equation (2.11) indicates that maximizingku(T)k amounts to nding the uyg

which grows the most under the e ect ofe-" Te-": When applying the opera-
tor e Te-T on ug; the outcomee-"Te-T u, approaches the leading eigenvector of

2The adjoint equation comes from writing (2.1) asAu = 0 with A = (f—t L:
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e-"TeT: say I, corresponding to the largest eigenvaluer; (up approacheslt,
unless they are perfectly orthogonal). When applying the operat@-" Te-" succes-
sively, sayn times onuy; the outcome € Te'")"uy approachedr, asn!1 : This
procedure for nding the leading eigenvector of an operator is kam as the power
iteration method (or just ‘power method'). Applied to the direct-adoint evolution
operatore-" Te'T | it constitutes a simple algorithm for computing the optimal per-
turbations. The rst time it was reported in relation to uid dynamica | systems was
probably by Farrell & Moore in 1992 [51], altough it did not receive muchttention
until Luchini & Bottaro in 1998 [73].

It is important to remark that the operator €-" Te-T is normal. As we have seen,
that normality implies that it has an orthogonal set of eigenvector$|+;g; of which
the leading ond+; is the optimal initial perturbation. Note that computing the opti-
mal perturbation corresponds to computing the leading “input modef the singular
value decomposition ofe*" ; the linear operator propagating the initial conditions
to time T. The singular value decomposition (SVD) de nes an orthogonal basof
inputs (initial conditions) and the corresponding orthogonal basef responses, out-
comes at timeT of the initial conditions. The rest of the inputs of the SVD are
given by the set of eigenvectorsl+;g: In a way completely symmetric between direct
and the adjoint (the adjoint of the adjoint is the direct), the corresponding set of
responses is given by the eigenvectors of the operathf € T: The ampli cation
factors or singular values are correspondingly given by the set 1;g:

Consistently with the exponential time dependence of the eigenmes] the op-
timal response approaches the most unstable eigenmodeTas 1 . The optimal
initial condition in the T !' 1  limit is given by the most unstable eigenmode of
the adjoint L*: For a normal system, the optimal initial condition and the optimal
response for any timer; are given by the most unstable eigenmode.

A full precise answer to the notion of \what one expects to obsesVV would re-
quire the knowledge of the full singular value decomposition. While theis no reason
to expect that the initial condition of the optimal perturbation will b e preferentially
excited by a random initial condition, the outcome at timeT of the optimal per-
turbation, the optimal responsewill be the one with the largest energy if all initial
conditions are equally excited. Concerning stability, the optimal péurbation pro-
vides a rigorous bound (within linear dynamics) on the growth of the grturbations
while providing the particular case that best exploits the instability mehanisms
available.

2.2 A simple case study

The relevance of non-normality for linear dynamics has gone unnagit for long and
is still fairly unknown in some elds. In order to have an idea about thesituations
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in which non-normality can be relevant, it is key to understand the r@sons that
make a physical system non-normal. For that we shall study a protypical case.
Consider the partial di erential equation (PDE)

@u_ ,@u _ @u
@ @x ot
Equation (2.13) is a damped wave equation fau(x;t) 2 R. The sign of deter-
mines the stability of the u = 0 solution; negative corresponds to damping and
exponential decay, positive implies exponential instability and = 0 gives purely
oscillatory motion. We will consider a space dependent wave spedgd) and a 1-
dimensional domain fromx, to xp; we shall not yet specify boundary conditions.

For writing equation (2.13) in the form (2.1) we de ne

(2.13)

— U
u:= u (2.14)

whereu; = @u and u, = @u. Now we can write (2.13) in the form (2.1) which is

up  _ 0 @ u .
@ un @ U (2.15)
| —iz—}
L
We will denote, in this formulation, the set of boundary conditions othe direct
wave equation (2.15) aBBCl (u; xa; Xp) = 0.
To assess the normality (or non-normality) oL lets consider the inner product
Xp Xp
hv;ui, := v Mudx = (rviug + vouy) dx; (2.16)
Xa Xa
in which M = diag(r; 1) is a diagonal matrix with a positive relative weight param-
eterr. Note that r > 0 is required to satisfy the positive de niteness df ; i, which
is one of the standard de ning properties of an inner product, andeeded for the
inner product to generate a norm. We use (2.16) as a simple but seahs choice for
addressing some simple aspects of the choice of norm when asggssin-normality.
It is almost always possibléto nd a suitable inner product or change of coordinates
that will make an operator normal; we will consider here that there ian intrinsic
interest on the coordinatesu; and u, of u:
Having de ned the inner product (2.16) we can computé.*, the adjoint of L.
Integrating by parts and rewriting inside the integral the matrix product on the
form (L*v)"Mu, we obtain the Lagrange identity

X
hv; Lui, L*v:u .= BT(v;u) b; (2.17a)
X

a

3it is possible when the set of eigenmodes is complete (almost always ttease in physically
motivated problems).
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wherein the adjoint operatorL™ is given by

0 r 1(2cd+ @)

LY = ‘@ : (2.17b)
and the sum of boundary terms by
Xp h I Xp
BT(v:u) = rvil,+ voU; (2.17¢)

We remark that, in general, (2.17a) is valid for anyu and v; whether or not they
are solutions of the direct and adjoint equations (2.1) and (2.12). he adjoint equa-
tion must imply, however, that the sum of boundary terms is zero wén u and
v are solutions of the direct and adjoint equations (2.1) and (2.12)espectively.
The requirementBT (v;u) i: = 0 is thus what de nes the adjoint boundary con-

ditions BC-" (v; Xa:Xp) = 0: We will assume that the direct boundary conditions
BC!(u; Xa; Xp) = 0 are such that BT (v; u) ib = 0 holds if the adjoint boundary con-

ditions BC" (v; Xa; Xp) = O are the same. That is, we will assume that the adjoint
boundary conditions are the same as the direct @C-" ( ; Xa;Xp) = BC( ;Xa; Xp).
This assumption holds for combinations of Dirichlet {; = @u = 0), Neumann
(u; = @Qu = 0) and periodic boundary conditions. If the assumption is not veried,
adjoint boundary conditionsBC" ( ;Xa;Xs) 6 BCL" ( ; Xa;Xp) Will have to apply
onv such that BT (v;u) ;* =0:

We assess the normality of by computing the commutator L*;L] := L*L
LL*; we get

0 1

ri1 % @ 2 < 1+¢ @

r 1+¢ @ Z[(cd+2cd@] r 1 & @ A (218)

r r r2
which being in general di erent from zero implies thatL is in general non-normal
under the inner product (2.16). It is apparent from the di erent terms in (2.18)
that there are multiple sources of non-normality. This is indeed thease and in the
following we will start from (2.18) to comment on non-normality and sme related
aspects.

2.2.1 Some possible origins of non-normality
Space dependent coe cients

An important source of non-normality is the space dependence of This e ect is
well known. The presence of non constant coe cients implies thathe linear PDE
can not be separated in independent Fourier modes. In (2.18) wencdistinguish
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the e ect of the non-homogeneity ot on the terms of the right column of L*;L]; in
which ’is present. The e ects of spatial dependence can be eliminated ims®cases
by choosing an appropiate weight function in the integral. In this cas choosing
M = diag(l;c ?) in the inner product de nition (2.16) would result in a matrix
product ML with constant coe cients; thus, the integration by parts would not
produce the terms withc®in (2.18).

Homogeneous conservative case

We consider now the conservative, time reversible wave equation itonstant wave
velocity such that = c®=0. In that case we have

L*:L = A 2.19
[ ]Co;:O 0 - f—;‘ @ (2.19)

which is zero only ifr? = ¢*. This shows the possibility of non-normality simply
because of the relative weight of the components in the inner prociu If one chooses
r = ¢2, then the norm ofu becomes

Z,,
kuke = hu;uiy = (U3 + u3) dx; (2.20)

X1

which is the (conserved) energy of the system. We then see that, the energy
conservative casel. is normal in the inner product that generates the energy norm
or, as it is commonly phrased for short,. is normal in the energy norm. Ifr 6 ¢, the
norm kuk; will not be constant during the evolution ofu but will oscillate according
to the mismatch between potential and kinetic energy as measurég kuk; .

That eigenmodes are orthogonal in the inner product generating guadratic
conserved quantity of a linear system has been established by Held][6Held showed
it explicitly for the pseudomomentumand pseudoenergyof perturbations to some
atmospheric shear ow models As we shall see, there are some subtleties regarding
the orthogonality of eigenmodes when associated to conservediatities.

4Pseudomomentum and pseudoenergy are conserved quantities igh, analogous to momentum
and energy, are related to space and time continuous symmetries 3§98, 7][21, 4.5]. They
are related to symmetries of the basic ow and they are, in generaldi erent from the actual
perturbation energy and momentum [75].
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Damped oscillatory case

If we include dissipation by making 6 0, the system is no longer conservative and
we have for the commutator
0 C4 - 1
L + &
[L*;L] e rzz@ ! ’ @A: (2.21)
c%=0 r 1+ Cr_ @ rl f_Z @

We see that takingr = ¢ does no longer make [" ;L] = 0, or L normal, because the
o diagonal terms are non-zero. The only way (with the inner prodat 2.16) to make
[L*;L] =0 so as to have mutually orthogonal eigenmodes is to choase  ¢: This
orthogonality yields, as in the previous case, thakuk . is a constant of motion.
However, choosing = ¢ implies that h ; i, is no longer positive de nite so it
does not generate a norm. In this case, it can be veri ed thauk .. =0 for any u
solution of (2.13). It is then obvious thatk k . can not be a useful measure af
in this particular case.

What is generic of this particular case is what was shown by Held [60], maly
that if there is a quadratic form yielding a conserved quantity (psedomomentum,
pseudoenergy, okuk . = 0 in this case), the amount of conserved quantity asso-
ciated to any growing or decaying eigenmode is zero. This implies thattifere is
an unstable eigenmodey, say, on a conservative system, then the quadratic form
yielding the conserved quantity does not generate a nofnibecause the would-be-
norm of u, is zero. Conversely, if the quadratic conserved quantity is positi@r
negative) de nite, then (minus) the conserved quantity genera&s a norm in which
the operator is normal and instability is forbidden [60][98,7.6; 7.7]. The positive
(or negative) de niteness of a conserved quantity (and indirectlghe normality of
the operator in the corresponding inner product) is in this way usef for nding
necessary conditions for instability. Fj rtoft's condition [42], for xample, can be
derived in this way [98, 7.7.1].

Boundary conditions

Consider once again; ¢ °= 0 but now boundary conditions on (2.15) given by

Uz(Xa) = 0; (2.22a)
U1(Xp) + U 2(Xp) =0; (2.22b)

SRecalling that the eigenvectors are complex, we remark that the pesent discussion remains
valid if we changev' by its complex conjugatev™ in the de nition of h; i, (2.16).

5Considering the spread use of the wordhorm, | consider that this has not been properly
acknowledged, in particular in [60] and [98, 7.2.3; 7.6].
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where > 0: The boundary condition (2.22b) corresponds to an absorbing bodary

such that @u(xp) =  @u(Xp) on the wave equation (2.13). Imposing the adjoint
boundary conditions such thatBT (u;v) =0 in (2.17) yields

Vo(Xa) =0; (2.23a)
Vi(Xp)  Va(Xp) =0; (2.23b)

which is di erent from the direct boundary conditions; boundary caditions (2.22)

thus fall o the initial assumption becauseBCL" ( ;Xa;Xp) 6 BCL( ;Xa;Xp). The

boundary condition (2.23b) implies that there is energy injection attte boundary
Xp, as opposed to the energy absortion of the direct boundary conidih (2.22b).

The wave equation with the absorbing boundary conditions (2.22) kabeen studied
by Driscoll and Trefethen [43]. Among other things, they quantify lte degree of
non-normality and nd that it is maximum for = 1; perfectly absorbing case in
which the spectrum is empty and all initial conditions go to zero in a nie time.

The case considered here is an example of non-normality producgdoloundary
conditions. As in the previous case, normality in the energy norm ohé conser-
vative system is broken as energy conservation is violated. This ggvan example
in which violating the equality BCY" ( :Xa;Xy) = BCY( ;Xa; Xp) between boundary
conditions of the direct and adjoint equations produces non-noatty.

Structural non-normality

We have restricted so far to a linear dynamical system which was dexd from
a di erential equation (2.13) on a single functionu. This is a strong restriction
concerning the type of non-normality that can be present. In a sgem with more
independent components, non-normality will greatly depend on thearticular way
in which the di erent components a ect each other. Those mutuak ects between
di erent components of a system are re ected in the non-zero etents of the matrix
representation of the operatoi.: The non-normality brought about by these inter-
component interactions is of a di erent type than the previously dscribed non-
normalities; it might be calledstructural non-normality, where the structure referred
to is the way in which di erent components couple to each other. Asraexample
we can consider the addition of a coupled variable into system (2.1% a

Gu_p0u, Ou .

% @% @t (2.24a)
9 .

ot 7
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which in the form (2.1) becomes

0 1 O 10 1
Uy 0 @ O Us
@@ u, A = @ 2@ AQ@u, A; (2.24b)
Us 0 0 us
| {z }
Ls

whereus = g: The role ofg in (2.24a) (orus in 2.24b) is clear, it excites the equation
for u while evolving independently. It can be easily veri ed that system (24 is
indeed non-normal.

2.2.2 Non-normality is normal

It might seem surprising that the simple addition of dissipation brakethe normality
of L in the energy norm. The surprise may arise because the dissipatieerh appears
in the diagonal ofL and in the same position in the adjoint_*, so one could say that
the termis self-adjoint (compare in (2.15) and in (2.17b)). In this particular case
the destroyed non-normality makes sense if one thinks that damgheigenmodes on
a nite domain are not purely sinusoidal, so they do not satisfy simplerthogonality
relations. More in general, the destroyed non-normality makes senif we consider
that the addition of two normal operatorsL; and L, (as can be conceptualized the
addition of dissipation to the pure wave operator) is not necessarityormal since

[L] + L3;Ly+ Lo]=[Ly;Lo]+[Ls;Ly]: (2.25)

That is, for L, + L, to be normal is also needed that ; and L, commute with each
other's adjoints. If we think on the damped wave equation, howereit does not
seem that the non-normality ofL plays an important dynamical role, nor is it clear
how non-normality could help understanding the dynamics. This indi¢as that non-
normality is ubiquituous and that it should be explained and charactézed when it
manifests itself relevant for the dynamics, as it could be in the caséstructural non-
normality. But non-normality does not need explanation in the genat case. On
the contrary, the particular situation needing a good reason to Imgpen isnormality
rather than non-normality.

We have seen that for conservative systems, normality occurs tbe norm yield-
ing the conserved quantities. But the relation between normality ah conserved
guantities can not be kept when there are exponentially growing oedaying modes.
Farrell & loannou [50] have shown that the general norm in which aystem is nor-
mal corresponds to a weighted sum of the amplitude of each mode heteigenmode
expansion. That is, the evolution ofkuk in the (quadratic) general normal norm
(existing for an L with a complete set of eigenvectors) is given by

kuk = mijuij?j exp 2 itj? (2.26)
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wherem; > 0 and theu; are as in (2.5). This means that, for a normal system,
all change inku(t)k is due to exponentially damping or unstable eigenmodes. In
a subspace of purely oscillatory eigenmodes, the energy norm daes explicitly
correspond to the sum of amplitudes (2.26), but it attributes the ame weight to
each pair of conjugate modes.

To conclude, non-normality in the energy norm is given by the possibyitof
u to change its energy during its evolution in the absence of unstable decaying
eigenmodes. This extends directly to other norms.

2.3 Probing non-normality without eigenmodes
Some new ideas

In this section | sketch some open re ections developed during tleurse of my
thesis.

2.3.1 A conserved quantity for normal systems

Consideru 2 R" evolving according to the autonomous linear dynamical system

— = Lu: (2.27a)

Consider alsov 2 R" evolving back in time on the same dynamical system, that is,
following

i = Lv; (2.27b)

corresponding to (2.27a) under the transformation! t: As before, we will assume
that L has a complete set of eigenvectofsand a discrete spectrunf ;g satisfying

Lli = ili: (228)

Now let's consider an inner producte; bi for a;b 2 R": The inner producth ; i,
being de ned overR"; is also a bilinear form, meaning that it satis es

h ia;+ laz;bi = jhag;bi+ ohay;bi; (2.29a)
m, 1b1+ 2b2i 1m,b1| + zm;bzi: (229b)

If we use the inner producth ; i to characterize the combined evolution of the
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linear systems (2.27a) and (2.27b), we have that

dh;’t\“ = C;—l:;v + u;i—\: ; (2.30a)
= hu;vi h u;Lvi (2.30b)
= huiLli; vyl houglis vy L (2.30c)
= uwy hili;ii wvyHi; i (2.30d)
= UV R i i); (2.30e)

where sum over repeated indices is implied. In (2.30a@),and v have been expanded
in the basis of eigenvectors df as in (2.3). Then, in (2.30d,e) we have used (2.29)
and the eigenmode de ning property (2.28) in (2.30d).

In (2.30e), it is straightforward to see thathu;vi is a conserved quantity of
the composed system ifi;;l;i = j, independently of the initial conditions for
u and v: That is, if L is normal (the |; mutually orthogonal) under the scalar
product h; i, then the value of the quantity hu; vi is conserved under the evolution
of systems (2.27a) and (2.27b). The converse, namely; ¢) being conserved for a
non-normal system, may be valid only for properly chosen initial calitions (setting
appropriately the set ofu; and v; coe cients). Thus, hu;vi is conserved under
the evolution of (2.27) for any pair of initial conditions (g;Vvo); if and only if L is
normal.

It should be noted that the computation %m;vi does not require knowledge of
the eigenmoded |;g; which in some applications can be very expensive to obtain.
Note also that the variation rate ofhu;vi is given by the sum of the eigenmodes
superposition (given by the value ofi;;l;i) weighted by the coe cients u; and v
of the expansion in eigenmodes, and the di erence between eigdnes. Taking a
look at gure 2.1 showing the graphic description of transient grovit, one can see
that these are the aspects involved in transient growth, namely ghsuperposition of
the eigenmodes composing the evolving solution and the di erence grbwth rate
between eigenvalues. This suggests that the conservation prdgeshown in (2.30)
could be helpful to assess non-modal transient growth.

2.3.2 Manifestation of the conservation on trajectories

We would like to assess the possible e ects of the conservation sihow (2.30) for
the evolution of the time forward system (2.27a) alone. Lets theroosideru(t) for
t 2 [0; ] given by the evolution of (2.27a). We can de ne then a functioM (ty;t,)
of two time variables as

M (t1;t2) = hu(ty); u(ta)i; (2.31)

such that M =t=t = ku(t)k is the norm ofu(t): Figure 2.2 shows thet(; t,)-plane.

t2
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Figure 2.2: The grey area corresponds tQ;t, < : When going fromA to C we
have constantt; + t, = 2t and M varying asM (t + t;t  t) with t going from
t to t : The curvature of M when passing throughB (along the dashed
path) vanishes for normal systems.

Knowledge ofu(t) in [0; T] implies knowledge oM (t;;t,) over the grey area in gure
2.2. Along the diagonalt; = t, we haveM =t=t ku(t)k; corresponding to the
evolution of the norm ofu(t): The dashed lines inside the shaded area correspond
to lines of constantt; + t,: When moving down and to the right along the constant
t;+ t, lines, M (ty; tp) varies according to (2.30). Thus, it is normal,M will remain
constant along constantt; + t, lines, for any trajectory u(t). Equivalently, M can
vary along constantt; + t, lines only if L is nhon-normal.

It would be interesting to assess the e ects of non-normality in theariation of
ku(t)k; instantaneously at any given timet = t say, by computing the variation of
M along constantt; + t, lines. However, the rst derivative of M along constant
t; + t, is zero when evaluated at; = t,; by symmetry. A possibility is given by the
second derivative, or the curvature oM along constantt, + t, lines, which can be
easily computed as

d? . d?u . du  du .
@m(t +t);u(t t)i —2>< W,u adr L (2.32a)
= u)u)RGLIC; D5 (2.32b)
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where (2.32b) is obtained from the eigenmode decomposition and gosimple ma-
nipulations. While the right hand side of (2.32a) shows that there is noeed of the
modal decomposition to compute (2.32), the expression (2.32b)osvs that there
is indeed no contribution from each eigenmode alone; only superpmsis between
di erent eigenmodes contribute. The idea is to relate 2.32 to the nenormal e ects
in ku(t)k and understand its meaning and signi cance. For example, on dimeasal
grounds and because 2.32 is a second derivative in time, the quanti/32) can be
compared to the acceleration oku(t)k due to non normality, which is given by

d? . X , X . )
@m(t);u(t)l = (2u )+ wy gl g+ )T (2.33)
| fz—} [ {z
modal non modal

Clearly, for normal systems only the rst term in the right hand sideof (2.33) will
be present. It could be interesting to explore the possibility that 223 (or, perhaps,
some comparison/combination between 2.33, (2.32) and each of #tems in the
right hand sides of (2.32a)) could give some information about the nanodal terms
in (2.33). However, the quantitative relevance of this connection fer the moment
speculative.

As already mentioned, computing (2.32) does not require knowledgkthe eigen-
modes. It should be noted that an explicit expression of the linear epator L is
not required either. Those characteristics are shared by otheopular algorithms,
for example the one used during this thesis for the computation ohé optimal
perturbations (section 2.1.3). In contrast, dierent to other claracterisations of
non-normality (like pseudospectra and others in [90], or the Henriandex used in
[53]), the proposed characterisation is not necessarily relevant tioe linear opera-
tor but, being applicable to any particular trajectory, it could sere as a tool for
understanding some particular behaviour of interest. This is a magt of further
study.

2.4 Some methodological essentials

2.4.1 Perturbative Navier-Stokes equations

We will focus on the stability of a given solution of the Navier-Stokesgeations
which we will call the base ow and generally denote ag: The full ow eld us is
split asus = U + u and only the terms that are linear inu are kept. This describes
the evolution of in nitesimal perturbations of the base ow.

The Navier-Stokes equations linearized around a base ow = (U;V;W)T can
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be written as

Lyu=7r1 p (u r)U; (2.34a)

r u=0: (2.34b)
where the operatorL is given by

Ly = @@t+(u ry r? (2.35)

describes viscous di usion and advection by the base ow. A very ingotant reason
for concentrating on the linear dynamics is that the nonlinear termare conservative,
that is, they do not contribute to the energy of the perturbation[62, 91].

We will often consider a parallel shear ow of the formU = U(y)ey, corre-

sponding to a vorticity = = UYy)e,. The linear evolution of perturbations
u = (u;v;w) over this parallel ow is given by

Lou= @p UY; (2.36a)

Luv=@p; (2.36b)

Luw= @p; (2.36¢)

r u=0; (2.36d)

with the operatorLy = @+ U@ r 2 that represents advection by the base ow
and di usion. As all the coe cients in (2.36) are independent ofx and z, we can
make a plane wave decomposition by rewriting

[u;viw; pl(x; t) 1 [us v w; pj(y; t)e o ke, (2.37)

so that we can consider the wavenumbers as parameters, thelation of u and p

for a given pair [Ky; k;) being independent of the existence of a contribution with
di erent wavenumbers. We also have = @ ki k.

2.4.2 Adjoint equations

As shown in section 2.1.3, the adjoint equations can be used to cortgthe optimal
perturbations. The perturbative Navier-Stokes equations (2.34can be written in
operator form as

Lqu =0 (238)
whereq = (u;v;w;pT and
1
U U U
ev™ | Yev @ @
Lns = &)\(/ aw"’ L f_pz@v %y (2.39)
@x @y @z 0



R
Using the inner productfqq;qg = (uqg U + pgp) dxdydz; the adjoint equations can
be obtained after arranging terms and integrating by parts suchhat fqq; LnsQQ
fLs0a; 99 = BT (qq; q); whereBT (gq; ) are the boundary terms [64]. After some

manipulations and changing = t; the adjoint equations satisfyingLysdq = O;
can be written, in vector form as

% = Ug T (U ug) r pg+ r 2ug; (2.40a)

rug=0; (2.40Db)

where =r U: In the case of parallel ow considered before, (2.40) become

Lius= @pa; (2.41a)

Liva= @ps Uy (2.41b)

Liwg = @pa; (2.41c)

r u;=0; (2.41d)

whereL{, = @ U@ r ?is the adjoint of the advection di usion operator. All
the previous arguments about the plane wave decomposition (2.33e obviously
valid for (2.41), same as for (2.36).

2.4.3 Numerical methods

An essential tool was already available at the beginning of my thesighat tool is
an e cient direct numerical simulation (DNS) code for solving the Naver-Stokes
equations, either perturbative (on a two-dimensional base ow)ronot, either lin-
ear or fully nonlinear, linearly stratied or not. The DNS code is pseudspectral,
computing derivatives in Fourier space and products in physical spa, e ciently
changing between spaces by means of fast Fourier transform${f. The code was
originally written by Vincent & Meneguzzi for studying turbulence [1@]. It was
subsequently developed in LadHyX by several people (Pierre Brdwee [19], Ivan
Delbende [37], Paul Billant[16], Frarcois Gallaire [52], Jean-Marc Chormg31]...).
At my arrival, the DNS code had been upgraded and parallelized (as aption)
by Axel Deloncle [38], who also developed di erent time schemes in addit to the
original Adams-Bashforth scheme. The boundary conditions arespodic.

My work then involved rst the implementation of the adjoint NSE and the it-
erative optimization routine described in 2.1.3. As | dealt with stability aalyses
considering independently the evolution of spatial plane waves in ooe two direc-
tions, the optimization routine involved the normalization of the initial condition
for each of the corresponding wavenumbers. Also, as the bas& ocorresponding to
a mixing layer is not periodic, a special case was added for computirtgetcontri-
bution of a parallel non-periodic shear ow avoiding the computatiorof base ow
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derivatives in the adjoint equations, that is, explicitly computing (2.4) instead of
(2.40) for the parallel ow component.

Another important development on the code concerns the time ewving base
ow used for chapter 4. This involves the storage in hard disk of sekal base ow
‘snapshots'. At execution time, two base ow elds are stored in th&®AM at every
moment, the base ow at the current time and the next snapshot.The base ow
at the current time is updated every time step by the addition of thecorresponding
fraction of the next snapshot. When the time of the next snapshas reached, the
snapshot becomes the current base ow and the following snapsi®oread from disk.
During the adjoint phase of the optimization routines, the time corsponding to
the next snapshot is lower than the current time, in accordance witthe backwards
in time resolution of the adjoint equation.

A set of post-processing routines was also developed in MATLAB. This set
of post-processing routines was composed of di erent level fulons adapted to
visualize the gain and ow elds for the di erent wavenumbers. The Caya-Herring
decomposition involved in chapters 5 and 6 was also performed in MAAB.

2.5 Non-modal instability mechanisms in plane
shear ow

Here we brie y describe the Orr and lift up mechanisms, two well knawmechanisms
of non-modal energy growth of perturbations to parallel shearow. These mecha-
nisms occur in two limiting cases, the Orr mechanism for purely 2D owk{ = 0)
and the lift up for perturbations in nitely elongated in the streamwise direction
(kx = 0): These introductory descriptions of the Orr and lift up mechanismsre
placed here for consistency, most of their content can be also Molulater in the
manuscript. After describing these well known mechanism, we eng by mention-
ing some insights on the more general oblique wave perturbationsitag place for
ky; k, 8 0: These mechanisms are essentially inviscid so we set 0 in this section.

2.5.1 Orr mechanism

The Orr mechanism (Orr [82], for more recent discussions see foaeple [92, 45])
is responsible for the possibility of transient growth of perturbatio energy in the
2D case k; = 0). This mechanism originates in the kinematic deformation of
perturbation vorticity ! , = @v  @Qu by base ow advection, as exempli ed in the
gure 2.3 (same as gure 6.3). Figure 2.3 shows the evolution of theosticity !,
of the optimal perturbation for U = tanh( y)ey; streamwise wavenumbek, = 3:77
and optimization time T = 7. Shown are the optimal initial perturbation (at time
t = 0); the optimal response (att = T = 7) and the optimal perturbation at the
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t=14

(b) %

Figure 2.3: Optimal perturbations for the 2D casek; = 0). (a) !, distribution of
the optimal perturbation for k, = 3:77 andT = 7 at the initial time t = 0(a), the
optimization time t = T = 7(b) and the later time t = 14(c). The horizontal axes
show 2 wavelengths.

later time t = 14: The contours of the optimal perturbation are initially oriented
against the base ow shear ( gure 6.3a). As time evolves to= 7 ( gure 6.3b), the
corresponding! , is sheared to an almost cross-stream orientation, leading at this
time to the maximum of energy ampli cation. As the optimal perturbaion evolves
in time until t =14 (gure 6.3c), ! , is sheared further and the perturbation energy
decreases back to a lower value.

The energy ampli cation results from the kinematic deformation ofl , by the
base ow. This kinematic deformation reduces the length of the, contours while
leaving unchanged the integral of the , enclosed by the contours Stokes theorem
implies that the velocity magnitude along the (reduced in length) comturs must
increase to keep the circulation along the contours equal to theofestant) integral
of I ,: This mechanism produces a large increase in cross-stream velogityWhen
time evolves further and! , is sheared as in gure 6.3(c), the kinematic process just
described is reversed and the energy goes to zera &4

2.5.2 Lift-up mechanism

The lift-up mechanism was rst reported as an algebraic instability byEllingsen &
Palm [44] in the simple case of streamwise independent perturbatiotes inviscid
linear ow. It can be understood as the ow induced by streamwisearticity that,

superposed on positive shear, lifts up uid at low velocity while pushindown high-

1 , is strictly advected as a scalar by the base ow only when the shear isonstant. Otherwise,
the base ow can act as a source of vorticity, which is indeed what hppens for the shear instability.
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Figure 2.4: Optimal perturbations for Kg; k;) = (0;5:174) andT =7. (a) ! x of the
optimal perturbation at t = 0: (b) u of the optimal perturbationatt=T =7. The
vorticity ! and velocity u elds are respectively normalized so that the maximum
value of enstrophy ( 7+ ! 2+ ! 7) and twice the energy is 1.

velocity uid. Here we show again results for the tanh prole. Figure2.4 (same
as 6.4) shows the streamwise vorticity , of the optimal initial perturbation ( gure
6.4a) and the streamwise velocity ( gure 6.4b) of the optimal response, leading
to the optimal gain at T = 7 for k, = 5:174 andk, = 0: The !, and u elds in
gure 2.4 are respectively normalized by the maximum total enstrdgy at t = 0 and
twice the maximum total energy att = T = 7: Both elds are localized around
y = 0; in the region with strong shear. The colorbar on gure 6.4(a) re ets the
fact that at the initial time, 97 :6% of the total enstrophy is given by! ,: As time
evolves,! , remains constant and induces a constant cross-stream velooityThat v
excitesu through transport of base ow momentum, generating streamwesstreaks.
The colorbar on gure 6.4(b) re ects the fact that, after the peturbation evolves to
t = 7; most of the perturbation velocity corresponds tai: As time evolves further,
the forcing ofu by v remains constant, implying that the energy of the perturbation
grows unbounded as ! 1

2.5.3 A look at the energy evolution of perturbations of
unbounded constant shear ow

We are now familiar with the development of linear perturbations in twadi erent
cases,k, = 0 with Orr and ky = 0 in which there is lift-up. In a general case of
obligue waves, the two mechanisms can be present in a non-trivial ywarhese are
the types of perturbations that show the largest instantaneougrowth rate, and so
they are likely of importance for transition or turbulent structures.
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Figure 2.5: Schematic of the evolution of the time dependent wavenber k(t) and
the di erent parameters of its evolution.

To address the dynamics of oblique wave perturbations, we considke case of
unbounded constant shear ow with constant vorticity =  UYy), in which case
analytical solutions for plane waves with time dependent wavenumbare known.
We start from the expressions given by Farrell & loannou [48] fohe energy evolu-

tion, namely
E(t) _ j!yi®+ (Kg=K3(t))jvoi®.

— —= ; 2.42
Eo it yoi? + Kjvoj? (2.42)
where the cross-stream vorticity is given by
o, kKE P
iyiE = el +ivei® =2 (0 o) (2.43)
and the parameters of the time dependent wavenumbers are
K2(t) = 2+ ki(b); (2.44)
ky = kot Kkit; (2.45)
(t) = arctan (2.46)

k(@®

where 2= kZ+ k2 and ky is the (time dependent) cross-stream wavenumber. The
zero subscript ()o indicates the () quantity at time t = 0. A geometric description
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Figure 2.6: Energy evolution history of oblique wave perturbationsof = 0: The
horizontal axis corresponds to the (t); which varies from =2to =2 whent varies
from 1 to1l:

of the evolution of the wavenumberk can be seen in gure 2.5. Kx; k,) remains
constant while, for positive base ow vorticity , k, goes from1 to+1 whent
goes from1 to+1 . Accordingly, goes from to O.

Let's now describe! y in terms of the angle = =2 which, for > 0,
varies between =2 and + =2 whent goes from1 to +1 . Also, without loss
of generality, we can choose the time origih= 0 such that ky, = 0, which implies
Ko= and (=0. With these choices, the energy evolution (2.42) becomes

E(t) _ jlyoi®+ 2r? %jvej®+ 2cos( (1)) jvoj?
Eo i'yol2+  2jvgj?

where we have introduced the ratio = k,=k.: The ratio r controls the orientation
of the oblique waves, forr = 0 the perturbations are purely 2D and they can
grow due to the Orr mechanism. Ag increases the perturbations become oblique,
becoming streamwise independent asl 1 when the lift-up mechanism is present.
Introducing further 2 = j! 0j?= ?jvoj* we obtain

E(t) _ 2+ 7r2 2(t)+cos’f (t)g
Eo 241 ;

(2.47)

which is in a simple form that shows the ! re ectional symmetry of the
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energy evolution. The energy as! 1 is simply

E( = =2)_ 2+r2%H4

= 2.48

Figure 2.6 shows the energy evolution of the perturbations for= 0 and di erent
r: Forr = 0 the energy goesto zeroas! 1  ; and reaches its maximum at = O:
In that case, energy growth occurs for negative times, and th@twmal perturbations
(for any optimization time T) evolve in the left part with < 0: Asr increases, the
energyat = =2 (ort! 1 ) increases. For = 2= the energy att = 1
( = =2)is the same as the energy dt= 0; that is, E( =2)=E; = 1: Thus,
for r > 2=; the perturbation with the largest possible energy ampli cation (for
any time interval) goes from the global minimum tot ! 1 : The energy att = 0
is a maximum (local or global according ta) for r < 1 and becomes the global
minimum forr 1. Asr!1 ;the energyat = =2 diverges. That is the case for
the lift up mechanism. Surprisingly enough, the optimal energy gairof any xed
time T is equal for the Orr and the lift-up cases [48].
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Chapter 3

A note on the inviscid algebraic
growth for parallel shear ow: a
novel formal solution and
asymptotic approximation

Crisbbal Arratia, Jean-Marc Chomaz
Article in preparation

3.1 Introduction

Many studies have demonstrated that linear perturbations to paallel shear ow can
exhibit very large energy growth in the absence of unstable eigendss [57, 25, 48,
86, 91]. The mechanism responsible for the largest energy growtlessentially the
same for all inviscid or viscous shear ows at su ciently large Reynolsl number
Re: the forcing of cross-stream vorticity by cross-stream velocityarying in the
span. This so-called lift-up mechanism is more e cient for streamwiselongated
perturbations. It can also be understood as the ow induced by stamwise vorticity
that, superposed on positive shear, lifts up uid at low speed while ghing down
high-velocity uid.

The lift-up mechanism was rst reported as an algebraic instability byEllingsen
& Palm [44] in the simple case of streamwise indepedent perturbatiots inviscid
constant shear ow. Still in the inviscid case, Landahl [70] showedhat the in-
tegrals along the streamwise direction of localized perturbations ts&dy the same
equations as the streamwise independent perturbations (in nitelglongated). He
then showed that the constant growth of the perturbation integal corresponds to
a streamwise spreading of the disturbance, and that the integeed energy grows
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faster than linearly in time.

Most subsequent work deals with viscous ows. In wall bounded aosy it has
been shown that for largdRe the largest possible ampli cation due to lift-up scales as
Re?; and is attained after a time scaling as Re [57, 86, 91]. The dynamics of these
perturbations consists of an initial phase of energy growth due tbe inviscid lift-up
mechanism and a later decay due to viscous di usion. The spanwisewsaumberk,
corresponding to this largest possible ampli cation is of order one [B@ he situation
changes if instead of focusing on the largest transient growth fall times, one takes
into account the growth rate intensity of the perturbations. Sub is the case, for
example, when looking for the most ampli ed perturbation up to a precribed time
T: In such case the most ampli edk, results from the competition between the
inviscid lift up mechanism tending to select small scale strucures e atly localized
around the maximum shear, and viscous e ects damping small scateusture.

The case of inviscid longitudinal perturbations to an arbitrary pardel shear
ow admits very simple solutions in closed form [91]. Concerning the dptal per-
turbation problem, the analytical expression for the optimal engy growth at any
optimization time T has been given by Farrell & loannou [48] in the case of in nite
constant shear ow. Their formula has no dependence on the spaise wavenumber
because there is no length scale associated to an in nite constahear ow. Other
works dealing with the inviscid limit of optimal perturbations of the lift-up type in
compressible ow have relied on numerical computations even fordin inviscid ref-
erence cases, as done for example by Hani & Henningson [58] foubdary layers
and by Malik, Dey & Alam [74] for non-isothermal plane Couette ow. 8ll, to the
authors best knowledge, the problem of the optimal perturbatianin the simpler
case of inviscid incompressible ow has not been treated in detail ineHiterature.

Here we solve the problem of the optimal streamwise independentrpebations
for an arbitrary shear ow. In section 3.2, we give rst the solutionfor inviscid lon-
gitudinal perturbations to plane parallel ow. We highligth the connection by time
translation among the di erent elements belonging to a same trajemry in phase
space. We use this connection to reformulate the optimization prtgm in the whole
phase space to the optimization in a time variable and in a codimensiorsibspace.
Solving those optimization problems leads to a di erential eigenvaluergblem in
one dimension, whose solutions allow constructing the orthogonalsemble of the
optimal and sub-optimal perturbations. In section 3.3 we considgrlane Couette
and Poiseuille ow as examples, and we provide the exact solutions allogy to con-
struct the optimal perturbations. In section 3.4 we consider thewo main classes
of parallel shear ows: an in ectional prole with a region with maximum shear
in the ow domain, and a wall bounded ow with maximum shear at the wdl. In
those two broad classes we provide, for large; asymptotic estimates of the optimal
ampli cation and of the localisation width of the optimal perturbation around the
maximum shear.
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3.2 Formulation

We consider in nitesimal perturbationsu = Ref [u; v;w]exp(ikyX + ik,z)g to par-
allel inviscid ow U = U(y)e, with shear S(y) = U In the case of longitudinal
perturbations k, = 0 the linearised Euler equations reduce to

@u(y;t) = S(y)v(y;t); (3.1a)
@v(y;t)=0; (3.1b)
@w(y;t)=0; (3.1c)
vay; ) + ikw(y;t) = 0; (3.1d)

where the domain isy 2 (yi;Y.); the superscript © denotesy-derivative and the
boundary conditions are

V(ys;t) = v(yz;t) =0: (3.2)
The general solution of (3.1) is
u(y;t) = uo(y)  S(y)vo(W)t; (3.3a)
v(y;t) = Vo(Y); (3.3b)
w(y;t) = ivo(y)=ks; (3.3¢)

whereu,(y) and v,(y) denote, respectively, the streamwise and crosstream velocities
att =0. The energy E of solution (3.3) is

. kSVok?
E(t)= Eo Re(u,; Svi)t+ S\ZI° t%; (3.4)
where 2
OE, = Kugk? + kvok? + ‘%; (3.5)
and the inner producthf; gi between any two functionsf and g is de ned as
Z Y2
hEgi= f(y) oy)dy; (3.6)

y1
where () denotes complex conjugation. The associated norknk is
kf k%= H:f i: (3.7)
We can de ne a shifted time variable by

Re(hu,; Svol) |

kSv,k2 (3.8)

t=1
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In terms of this shifted time variable we can write the energy of any itial condition
(Uo; Vo, iVi=k;) as

2

E()= E() = Eo+ o0t (3.9)
where
01,2

2E, = kuok? + kvok? + k\%k; (3.10)

Z

Re(hu,; Sv,i
Uo = Ug SVOW (3.11)

are respectively the energy and the streamwise velocity at the néime origint =0
corresponding tot = Re(hu,; Svyi =kSV,k?); which may be positive or negative. We
stress the di erent explicit form of the energy in terms of the shitd variable by
writing E. Note that E,  E(t) for all t. Accordingly, ku,k? is the minimum of
the streamwise kinetic energy during the whole evolution history. Itan also be
noted that hu,; Sv,i = 0, which means that the streamwise velocity at = 0, u,; is
orthogonal to its time varying part Sv,t; given by (3.3a).

3.2.1 Reformulating the optimization problem

Consider the problem of computing the optimal perturbation at a nte time T, that
IS
_ E(T) .
Gopt(T) - To%l):’( m ’
whereP represents the set of all perturbation eldsu, that satisfy the incompress-
ibility condition (3.1d).

Finding the optimal perturbation involves the identi cation of the particular en-
ergy evolution that maximizes the energy growth amongst all attaable possibilities
of energy evolution. The optimization problem (3.12) is then equivalémno

E(T + to)

(3.12)

meaning that any element ofP can be expressed by a time shiti, and an initial
condition at t = 0, u,; in the codimension-1 subspac8, such that hugy; Sv,i = 0:
Any initial condition u, in (3.12) is now given byu(t = t,) passing throughu, in
S, attimet= t, (nowt=0):

We shall now maximizeE(T + t,)=E(t,). Note rst that, for tq, realizing the
maximum (3.13), the variation respect tot, should vanish:

@E(T+1t,) _ .
@ E(to)
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implying that the instantaneous growth rate of the perturbation

1 Q@Ft).

(t) = EM @t (3.15)
should be equal at the initial and nal times, i.e?
(topt) = (T + topt): (316)

Condition (3.16) is only a necessary condition. For any element & such that
kSv,k 6 0 (kSvok = 0 is a trivial stationary solution that is obviously not optimal),
(3.16) is realized for twot,:

t, =t + 2 (3.17)

op E
where = 2E,=kS\,k2. The optimal initial condition for a given u, 2 S- is given
by the upper + sign, the sign corresponding to an evolution intervaltpp; top, + T]

in the negativet domain in which E (t) decays (see (3.9)).
Replacingt, ! 7, in the optimization problem (3.13) gives

Gopt(T) = Lrjngjlsx Gop (3.18a)
where S -
T2 T T ?

GOp =1+ ﬁ + — 1+ 2— . (318b)

Equations (3.18) show that all the degrees of freedom, i.e. thg 2 S, ; enter the

optimization problem through a single parameter: For a given time horizonT; G,

is a decreasing function of and the optimization problem therefore reduces to nd
Uo 2 S, that minimizes . In terms of the components ofi, we have

2 _ Kuok? + kvok?® + k; 2kvgk?.

KSVKZ ; (3.19)

imposing that u, = 0 for the optimal perturbations (minimizing ): The optimal
perturbation problem is now reduced to the variational problem of nding v, that
minimizes 2. This is a standard variational problem, it can be formulated by writimy

2 as a function ofv, = Vop + V; Where vy is the optimal v, giving ope = min( )
and v is an arbitrary variation. The rst, v order in the expansion of ? around

LEquation (3.16) can be used as a test for numerical results.

41



Vopt gives the functional derivative 2= v evaluated atvep: The optimality condition
imposes that the functional derivative 2?=v ... =0forall v; giving

opt

V0 + k2 287 1 vop =0: (3.20)

opt

To obtain the rst term in (3.20) we have integrated by parts and usd that v
satis es the boundary conditions (3.2), which are also satis ed byqp:

Equation (3.20) is the main result of the paper. It is valid for the stramwise
independent optimal perturbations toany shear pro le S(y) and any optimization
time T: Equation (3.20) is a generalized eigenvalue problem on the “optimal par-
eter' and the optimal perturbation vyp(y). When (3.20) is satis ed by vq; the
optimal , oq; Is given by
_ kvopik? + K, 2kvdk?

2 opt

opt KSVoptk?

(3.21)

From the solution of equation (3.20) we nd the other componentsfahe optimal
perturbation ugy as

Uopt(Yst) = S(Y)Vopt(Y)(t + topt); (3.22a)
Wopt(Yit) = iVop(y)=he; (3.22b)
wheret,p is given directly by (3.17) and o as
S 2
T T
topt = 57 5 ot (3.23)

Similarly, the optimal gain for optimization time T is given by (3.18b) as

s
2 2
T2 LI S

Gop(T) =1+ 5
opt opt opt

(3.24)

From (3.20) it can be thought that v, satis es a wave equation which is evanes-
cent when 2S? < 1 and oscillatory when 2S? > 1. Thus, for (3.20) to have a
non trivial solution satisfying the boundary conditions (3.2), it is neessary that

2> Wﬁ)z for y,, in some region around the maximum o82. This requirement
imposes a lower bound on such that
2 > 1

2 ’
Smax

(3.25)

where S2_, is the maximum ofS2. Lower bound (3.25) implies an upper bound on
Gopt Which is equal to the optimal gain given by Farrell & loannou [48] foteeamwise

independent perturbations to unbounded constant shear ow.
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Equation (3.20) is analogous to the Schredinger equation govergjrthe energy
eigenstates of a quantum particle of mass: Indeed, the optimal perturbation vop
corresponds to the ground state wavefunction of a particle withnergy 1 on an
atractive potential ~ 2,S*. In this analogy, kZ is equal to 2Zn=~?, which indicates
that increasingk, corresponds to decreasing or increasing the mass. This suggests
that increasingk, allows for a more concentrated,,: (more localized eigenfunction)
around the maximum of the shear (minimum of the potential c%Iotsz). This is in
agreement with what is expected from the lift up mechanism, i.e., thahe optimal

perturbation will be localized in the region of maximum shear.

The quantum analogy does not provide a full parallel because in thegsent case
the eigenvalue multiplies the function of the coordinat&(y)? instead of the function
Vopt ONly, implying that di erent eigenvalues of a same velocity pro le corespond to
energy levels (with the same energy) for di erent quantum potemdls. Still, being
in both cases eigenvalue problems of the Sturm-Liouville type [975], eq. (3.20)
shares several important properties with the Schredinger eqtian. It is known, in
particular, that for bounded domaing there are in nite numerable real eigenvalues

i, each associated with an eigenfunctiom;. The eigenvalues can be ordered in
ascending order ¢; 1; »;:::, the index number corresponding to the quantity of
nodes of the respective eigenfuction. The parameters of the wpal perturbation
are then given byvey = Vo and o = o: Finally, the eigenfunctionsyv; form an
orthogonal set with respect to the weight functiors? so that, after normalization, we
havehv;S; v Si = j : This provides an orthonomal basis (in the energy related inner
product (3.6)) for the time dependent part ofu: This orthonormal base contains
the optimal and all the sub-optimal perturbations. The base formd by the set
u; = (Sv;0;0) is orthogonal and, altough incomplete, it spans the range of the
evolution operator for any initial condition v,: It thus provides the non trivial part
of the singular value decomposition, the rest of the space has no &émdependence
and can be span by any orthogonal base.

20ne could expect that in the present case this is also true for in nitedomains, at least when
the shear is localized in a nite region. In that case, solutions in the gantum analogy correspond
to bound states in a potential well (given by the shear region) whoe depth increases with : Thus,
where a quantum well potential provides a nite set of bound states depending on the depth of
the well [see for example 71, problem 2 in22], a similar localised shear problem should provide
in nite eigenfunctions because the “potential well' becomes deepedis the eigenvalue ,, increases
with n.
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3.3 Base ow examples:
Couette and Poiseuille ow

3.3.1 Couette

We consider plane Couette ow in the regiory 2 [0; 1]: For plane Couette ow the
shear rateS is constant and (3.20) has in nite solutions of the form

V, 1=sin(ny) (3.26a)
1 n2 2
2= 5 1t @ (3.26b)

forn =1;2:::;1 : The optimal crosstream velocityvy, = Vo is then obtained
by evaluating (3.26a) atn = 1: Similarly, the eigenvalue leading to the optimal
ampli cation is given by
S
1

= o= = 1+ — 3.27
opt 0 JSJ kz ( )

2

which, after replacing in (3.24), yields the optimal gain at timeT

T2S% + TijIo T2S2+4(1+ ?).
21+ ?) ’

Gopt(T) =1+ (3.28)

where
= —; 3.29
c (3.29)
is half the spanwise wavelength of the perturbation. From (3.22a}he optimal
initial streamwise velocity is given by

#
T 1+ 2 T2
uopt 0 = Svopt E ? + 7 . (330)

Equation (3.30) is similar to the expression given by Farrell & loannof48, see
their equation (19)] for the optimal initial condition in the constant shear case.
Their expression within square brackets reduces to ours if one séfeir crosstream
wavenumber to satisfy the boundary conditions for: However, they do not give
explicitly the ratio between the amplitudes of the di erent componets of the ow,
so a full comparison with their solution can not be directly made. Still,He corre-
spondence of the two square brackets con rms, up to a multiplicae constant, the
dependence ol 1= ON the di erent parameters.
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3.3.2 Poiseuille

We consider plane Poiseuille owJ(y) =1 y?fory 2 [ 1;1]: Equation (3.20) can
be written as

v% (y? v =0; (3.31a)
after change of variables
Y
y= 2Kk.y; (3.31b)
= ;—Z; (3.31c)

and the boundary conditions are

V. p.._=0: (3.31d)

The even solutions of (3.31a), such that(y) = v( y); are given by
V(y) = e V2R l—l(i + ) %; iy?); (3.32)

where1F,(a; b; z) is the con uent hypergeometric function of the rst kind [1]. The
on for eachk, are obtained parametrically as

2(n 1) = —F’n—z = (3.33a)
k= 0~ (3.33b)

where ,, is the n-th zero of |F1( 4(i+ ); 3;iy?): The rstzero ; has been computed
with MATHEMATICA  , allowing for the computation of the optimal gain.

Figure 3.1 shows the optimal gain for optimization timel = 0:1 as a function
of k, for this inviscid case, as presently given using (3.33), and for the emis
case computed directly by numerically solving the singular value decpwsition
for di erent Reynolds numbers by Soundar, Chomaz & Huerre ([94etails of the
numerical procedure in their paper). As Reynolds numbd®e increases, the optimal
gain increases and the correspondirkg also increases, approaching the inviscid curve
computed presently.
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Figure 3.1: Optimal gain for Poiseuille ow andT = 0:1: The thick black line shows
the present inviscid result obtained from (3.24) and (3.33). The; and symbols

correspond to the optimal gain for viscous ow at Reynolds numbsras speci ed on
the gure, courtesy of Jon Soundar [94]. The dashed line distinguighle from the

exact solution (thick black line) fork, . 10 shows the asymptotic estimate of the
optimal gain obtained from (3.62) evaluated up to order4=3:

3.4 Large k, estimates

3.4.1 In ectional shear ow in in nite domain

Consider the case of an in nite domain where the shear is maximum atyadocation
taken to bey = 0: Then S? can be approximated around that maximum as

S*(y) S2+ S,S%? (3.34)

where S2 and Sare respectively the value 052 and the second derivative of at
y =0, and S,S< 0 so that S2 is maximum. Replacing the approximation (3.34)
into (3.20) yields

V% 2k2jS.S%y?v = k2( 2S2 1)v; (3.35)
where we have omitted the subscript Jopn:. This equation (3.35) can be identi ed
with the Schmdinger equation for a quantum particle with massn in a harmonic
potential m! 2y?=2

21 2
OO+m! > _ 2mE

-2 -2

(3.36)
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where is the wave function and the eigenvalug is the energy of the corresponding
eigenstate. Equation (3.36) is the same as (3.35) after the copesding identi ca-
tions

m?2! 2
2

2mE
~2

$  *kISeSo: (3.37a)

$ K %S 1) (3.37b)

and
$ v (3.37¢)

Equation (3.36) is treated in standard quantum mechanics textbds [11]. It is
known to have solutions satisfying the boundary conditions (1 ) = O (strictly
valid here when the ow is unbounded) when

E 1
j =n+ é, (338)
forn=0;1;2;::: etc. Using the identi cation (3.37), equation (3.38) reads
pikzi S2 1 =2n+1: (3.39)
jSSP ° ' '
Solving the quadratic equation (3.39) for > 0 yields
S 2
1 1 1
=L n+Z + - 2 n+Z +1 3.40
T iSe] 2 Sy ™ 2 (3.40)
where S
1 jSY
= — 3.41
" ke iSd] (3.41)

For n =0, (3.42) gives an estimate of for largek, (or , 1)

i
m o, 1 —f2“+1- (3.42)
2jSoj  jSd 4 '

0:

which yields an estimate forGgp:

The circles () in gure (3.2) show the optimal gain for T = 7 as a function
of k, for a tanh prole U(y) = tanh(y); computed numerically as described in
chapter 2.,The continuous line shows the corresponding estimateven by (3.42)
with = 25k,j (corresponding to (3.41) folJ(y) = tanh( y)) replaced into (3.24).
The estimate (3.42) provides the good asymptotic behaviour of treptimal gain as
k,!1
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Figure 3.2: Optimal gain forT = 7 for an in ectional ow. The circles show the
optimal gain for an inviscid tanh pro le and the line the estimate from 8.42). Note
that the k,-axis has been cut at lovk, for a better vertical resolution.

The full solution of (3.35) is given by the corresponding set of eigemictions

2,2
n

Vo = Ho( ny)e 2 (3.43a)

where D
n=  nikzSeS% (3.43b)

and H, is the Hermite polynomial of degreen [1]. For n = 0 we have that the
optimal perturbation vy, reduces to a Gaussian

gy?

Voo Vo=€ 2 (3.44a)

where s | 1

= R
2jSdj 4S5 7IS]
Expressions (3.44) provide the asymptotic localisation of the eigemiction around
the in ection point (maximum of S?) ask, ! 1 :Indeed, fork, !'1 , (3.44b) goes
ask; 2(jSP%S,))* and the optimal perturbation in the limit becomes
s !

1 <O
Vopt  EXD : JS°?kzy2 : (3.45)

2 ]S

(3.44b)

48



o
~
T

©
N
T

(b) -2 -3 2 -1 0 1 2 3 4
ykz 2 (1S9ESj)

Figure 3.3: vy for an in ectional (tanh(y)) pro le and k, = 6:28 (dash-dotted line),
k, = 12:6 (dashed line),k, = 25:1 (continuous black line) andk, = 50:3 (dotted
line). (a) Vopi(y) showing the localization of the optimal perturbations around the
maximum of shear. The di erent perturbations are normalized so tt all optimal
initial conditions have the same energy. (b) Same, as in (a) but normalized (such
that Vop: ,_, = 1) and plotted as a function ofyk; 2(jSP2S,j)™: The grey line shows
Vopt @S given by (3.45).

implying that the optimal perturbation becomes increasingly localizedh a region
whose width scales ak, *™:

Figure 3.3(a) showsv,y(y) for the tanh pro le (same as in gure 3.2) and for
di erent k,: It can be observed that the optimal perturbations indeed becomia-
creasingly localised around/ = 0 as k, increases. Figure 3.3(b) shows the same
Vopt @s in 3.3(a) but normalized and plotted as a function of the rescaledardinate
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kz 2(jSP%S,j)y; and also the limiting optimal perturbation given by (3.45) (grey
line). It can be seen that (3.45) constitutes a remarkably good apgximation of
the computed vy,; becoming increasingly accurate ak, increases. These results
support the pertinence of the local approximation considered her

The present estimate may be turned into a full asymptotic solutionyintroduc-
ing an inner layer around the in ection point scaling ask, ' where the solution
is given by (3.43), matched with two surrounding outer layers wherthe solution
is evanescent. This solution should become a good approximation w@md the in-
ection point even in a con ned domain (provided the maximum is not clse to a
wall).

3.4.2 Bounded ow with maximum shear at a wall

Consider now the domainy 2 [0;1 ) and that S?(y) has its maximum aty = O.
Close to the boundary,S? can be approximately written as

S2(y) S2+2S.SY; (3.46)

where S,S? < 0. Replacing (3.46) into (3.20) yields

v (ay bv=0 (3.47)
where

a=2k? ?jS,SJ (3.48)
and

b= k3( 2S2 1) (3.49)

Equation (3.47) is subject to the boundary conditionsy(0) = 0 and v(1 ) = 0.
Replacing into (3.47) the rescaled coordinate

Y aPy (3.50)
yields
b
ve oy == v=0: (3.51)

b
allows to write the problem in the standard form
v? Yv=0; (3.53)
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and the boundary condition aty = 0 reads now

v =0: (3.54)

Y=—=%
22=3

Equation (3.53) can be solved in terms of Airy functions AX) (Abramowitz, Ste-
gun, page 446). The Airy function Ai{Y') decays monotonically to zero whery > 0
and is oscillatory forY < 0. To satisfy the boundary condition at the wall (3.54),
it is needed that b= be a zero of AiYY), i.e.

(%% 10°= 47 %72 (3.55)
where
2 SO
ST (3.56)

and , < Oisthen-th zero of the Airy function. Condition (3.55) is a cubic equation
for 2 whose roots can be found by standard formulas, yielding the distzeset of
eigenvalues

76+ 1), D(n).

So)? =1+ + 3.57
( nSo) 3 30( 1) 3 (3.57)
where
= 432 (3.58)
n n

and -

ot
D() 2?7 +9 2+ 3+g’ 327+4) (3.59)

It is however more instructing to consider the perturbations of th limiting solution
232 = 1 at the large wavenumber limit 2 = 0. The leading order correction can
be found by writing 2S2 =1+ into (3.55) leading to

33 = 43142 o+ 272 (3.60)

To balance the equation at leading order in we must have = 2=3. We then have
an equation for

= 4 31+2 P+ 25 (3.61)
which can be solved as a series in powers 8f3. After solving for the 3 leading
order terms of this expansion we have

=1+ 432002 4320 (43940 @6
where it should be remembered that,, < 0. The dashed line in gure 3.1 shows
the estimate of the optimal gainG,,; obtained from the rst three terms of (3.62).

The agreement is strikingly good fok, & 10:
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Regarding the localization of the perturbation near the wall, one careplace the
leading order solution of on the coordinate rescaling parametea given in (3.48)
giving

_ sy
2jSo)
Recall that the rescaling in (3.50) is given bya*™3, which at leading order when
k,'1 becomesa™ ! (2jS%5S,j)¥2kz™: Thus, in this case of maximum shear
at a wall, the inviscid optimal perturbations localize in an inner layer sdag like
k. = asymptotically ask, ! 1

k2 + O(k¥3): (3.63)

3.5 Conclusion

We have formally solved the optimal perturbation problem for streawise indepen-
dent perturbations to arbitrary inviscid parallel ow. An important aspect in this
derivation was the use of time invariance. For every problem invariamnder time
translation (stationary), the optimisation over all initial conditions can be splitin an
optimization over an initial time t, which satis es (3.16), and an optimisation on a
subspace of codimension In this inviscid case, theE(t) = E( t) symmetry of the
energy evolution further constrains the possibilities for energy eltion, simplifying
the resulting expressions.

It turns out that, for a given base ow prole and spanwise wavenmber k;;
the maximum ampli cation for any optimization time T depends on a single real
parameter : We have provided the expression of the optimal gai@,:(T) as a func-
tion of ; which appears as the eigenvalue in an eigenvalue problem that also yseld
the shape of the optimal perturbation and all the sub-optimal peurbations. The
eigenvalue problem was solved to provide exact analytical solutiorm the inviscid
streamwise independent optimal perturbations for plane Couettnd Poiseuille ow.

Asymptotic approximations in the limit k, ! 1  were provided in two generic
cases: in ectional shear and wall bounded shear with the maximunt #éne wall. For
in ectional shear (with a maximum within the domain),the thickness ofthe optimal
perturbation scales ak; =2 becoming increasingly localized at the in ection point.
For maximum shear at a wall,the localization of the optimal perturbatia at the
maximum of the shear is stronger, the thickness scaling ks>
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Chapter 4

Transient perturbation growth In
time-dependent mixing layers

Crisbbal Arratia, Colm-Cille Caul eld, Jean-Marc Choma Z
Article submitted to Journal of Fluid Mechanics

Abstract

We investigate numerically the transient linear growth of three-dimesional per-
turbations in an homogeneous time-evolving mixing layer, which pentbations are
optimal in terms of their kinetic energy gain over a nite, predeternmed time in-
terval. We model the mixing layer with an initial parallel velocity distribution
U (y) = Ugtanh(y=de, with Reynolds numberRe = Uyd= = 1000, where is the
kinematic viscosity of the uid. We consider a range of time intervals o both a
constant “frozen' background ow and a time-dependent two-diensional ow as-
sociated with the growth and nonlinear saturation of the most-uriable eigenmode
of linear theory of the initial parallel velocity distribution, which rolls up into the
classical Rayleigh instability commonly referred to as a "Kelvin-Helmhatt (KH)
billow. For short enough times, the most ampli ed perturbations on he frozen tanh
pro le are inherently three-dimensional, and are most appropriatg described as
‘oblique wave' perturbations which grow through a subtle combinatioof the Orr
and lift-up mechanisms (and hence we refer to these as "OL' petations), while for
longer times, the optimal perturbations are two-dimensional, thepiimal response
being very similar to the KH normal mode, with a slight enhancement ajain due
to enhanced energy extraction from the mean shear through th@rr mechanism.
For the time-evolving KH base ow, OL perturbations continue to deninate over
su ciently short time intervals. However, for longer time intervals, which involve
substantial evolution of the non-parallel primary KH billow into isolatel elliptical
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vortices, two broad classes of inherently three-dimensional lineaptimal perturba-
tion arise, associated at low wavenumbers with the well-known cocentred elliptical
translative instability, and at higher wavenumbers with the braid-catred hyperbolic
instability. The “hyperbolic' perturbation is relatively ine cient in explo iting the
gain of the OL perturbations, and so only dominates the smaller wawember (ulti-
mately) core-centred perturbations when the time evolution of th base ow or the
start time of the optimization interval does not allow the OL perturbations much
opportunity to grow. When the OL perturbations can grow at relaively small span-
wise wavenumber on a time-evolving ow, they initially grow in the braid,and then
trigger an elliptical core-centred perturbation by a strong couplig with the primary
KH billow.

4.1 Introduction

Gaining an understanding of the mechanisms by which initially laminar ow un-
dergo the transition to disordered turbulent motion is one of the fadamental chal-
lenges of uid dynamics research. A particularly important archetge ow is the
so-called mixing layer, where the uid has initially a vertical, (‘cross-seam’) in ec-

tional and monotonic variation in streamwise velocity, due for exanie to viscous
di usion of a step-change in velocity some distance downstream ofsalitter plate.

Provided the ow's Reynolds numberRe = Ud= is su ciently large (where U is
some characteristic scale of the streamwise velocity which variegoea characteristic
vertical (or equivalently cross-stream) distance, and is the kinematic viscosity of
the uid) it is very well-known that this ow is susceptible to a strong primary insta-

bility, commonly referred to as the Kelvin-Helmholtz (KH) instability, t hough in an
unstrati ed ow where the mixing layer has a nite depth and an in ectional veloc-
ity pro le, it is perhaps more appropriate to refer to the instability as a "Rayleigh'
instability (see for example Drazin & Reid [42] for a fuller discussion).

The primary instability manifests itself at nite amplitude as a two-dimensional
train of elliptical spanwise vortices, (centred on elliptical stagnatio points) which
“roll up' from the initial strip of spanwise vorticity, and are connecéd by braid'
regions of high strain and depleted (spanwise) vorticity, in turn cered on hyper-
bolic xed points. These primary instabilities have been observed in prriment
(e.g. Brown & Roshko [20]) and numerical simulation (Metcalfe et al. [T8and are
known to be strongly subject to subharmonic merging quasi-twordensional insta-
bilities which lead to an increase in depth of the mixing layer (Winant & Brawvand
[103]). However, it appears that they are merely an intermediate a&ge in the ap-
proach of a ow to the ‘mixing transition' (see Dimotakis [40] for a relew) which
seems to require the development of some secondary, inherentiyee-dimensional
“instability’, which upon growth to nite amplitude and interaction with t he primary
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billow train leads to a break down to small scale motions, and a markedcirease
in dissipation characteristic of turbulent motion. In this paper, we dcus on these
(experimentally-observed) three-dimensional perturbations,nal deliberately Iter
out the complicating e ect of subharmonic merging instabilities by resicting the
time-dependent ow to a streamwise extent equivalent to the walength of the most
unstable KH “billow".

There have been two main candidates proposed for this secondangtability
which allows the transition to turbulence. Since the primary KH “billowsare ellip-
tical (and centred on elliptical stagnation points of the ow) and ae a ected by the
strain eld associated with their neighbours, it has often been hygbesized that they
may be subject to a relatively low-wavenumber, inherently threethensional “ellip-
tical instability' of a strained elliptical vortex (see Pierrehumbert & Widnall [85];
Bayly [14]; Wale e [101]; and Kerswell [67] for a comprehensive reviewAlthough
numerical simulations do show evidence of core-centred pertutioas, the most no-
ticeable three-dimensional structures in both experiment and nuenical simulations
are relatively higher wavenumber ‘rib vortices' (see Hussain [65] fam early review)
i.e. ‘thin' essentially streamwise-aligned braid-centred vortices thavrap around
the primary billow cores. This apparent mismatch in the initial growth leation and
the nite amplitude manifestation for these rib vortices was initially a major point
of concern for theoreticians.

Pierrehumbert & Widnall [85] had identi ed a core-centred instability (which
they referred to as the “translative instability’ due to the fact thd this instability
is characterised by a periodic shift of the vortical core) on a periadrow of Stuart
vortices and speculated as to their relevance for the streamwisertices observed
in mixing layers. The fact that the translative instability is localized in the vortex
cores led Corcos & Lin [33] to speculate about a di erent mechanisr... it is likely
that the strong streamwise vorticity that appears and pesss in the central part of
the braids, and which is responsible for the streamwise sks... is caused early on
by the original (three-dimensional) shear instability rater than by the translative
instability, and thereafter lives a fossil lifé. That the dynamics of the initial stages
of the ow could play a role on the later development of the mixing layeis stressed by
Corcos & Lin [33]: \Either nonlinear interactions of waves of neighbouring spavise
wavenumber (particularly di cult to study numerically ove a nite domain) or the
competitive advantage given by particular initial condibns may lead to a selective
mechanism! A precise assessment of these conjectures was di cult at thatirhe.
Subsequent research for mechanisms causing the observeddhtenensional features
of shear layers have focused mainly on secondary instabilities prasen the fully-
developed KH billows; this program succeeded in nding various undike modes
and instability mechanisms.

Of particular signi cance was the secondary stability analysis of Klasen &
Peltier [68]. Under the (strong) assumption that the primary billow ow is com-
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pletely frozen in time, Klaassen & Peltier [68] showed that the billow wasuscepti-
ble to another secondary three-dimensional “hyperbolic' instabilitat substantially

smaller wavelength than the elliptical instability and centred on the baid region
between neighbouring billow cores. Another distinguishing characistic between
the two instabilities is that the elliptical instability, associated as it is with periodic
de ections of the primary billow core, is associated with substantiadpanwise per-
turbation vorticity, while the hyperbolic instability is associated with substantial

vertical (cross-stream) and streamwise perturbation vorticitppetween neighbouring
primary billow cores.

Numerical simulation (for example Rogers & Moser [88]; Caul eld & Peltre
[29], who also con rmed the analysis of Klaassen & Peltier [68] at highezsolution)
suggest strongly that both elliptical and hyperbolic instabilities can ocur within the
evolving ow. Yet at nite amplitude, the “rib' streamwise-aligned vortices appear to
be braid-centred. Therefore, there is a strong suggestion thiagperbolic instabilities
play the key role in transition. Nevertheless, since the primary billoware indeed
susceptible to “elliptical' or “translative' instabilities, there is every cance that the
complicated interactions conjectured by Corcos & Lin [33] may wellcour. Indeed,
numerical simulations show that perturbations in the braid lead to seamwise-
aligned rib vortices and substantial perturbation of billow core, andn some way
the combination leads to transition, leading Rogers & Moser [88] to gue that:
\ While it may be useful, in attempting to understand the tratetive instability,
to distinguish between instability mechanisms that are &lized to the roller cores
or the braid region, the results discussed above make it cldaat perturbations in
the core and braid grow together. Therefore, in interpreton results of experiments
or simulations, the three-dimensional instability shoulde considered to be a global
instability of the entire ow."

However, the central “frozen-in-time' assumption of the analysigresented by
Klaassen & Peltier [68] is not completely supported by evidence fronumerical
simulations. If seeded with a small-amplitude initial perturbation, theprimary bil-
low instability does indeed saturate at nite amplitude, after a periodof close to
exponential growth. Even in the absence of merger, the primaryillow is by no
means steady, but undergoes quasi-periodic oscillations, with egetic exchange
between the base ow and the perturbation. Therefore, it is impadant to consider
the inherent time-dependence of the underlying ow in the developemt of three-
dimensional perturbations, particularly in considering the growth bperturbations
over a nite time interval. Furthermore, from such frozen-in-timeanalyses it is nat-
ural to think of elliptical and hyperbolic instabilities as instabilities of the saturated
primary billow, with the billow acting as a “catalyst' for their onset. Butin reality
the primary billow takes a certain amount of time to “roll-up' to its satuated state,
and so a natural open question is the extent to which signi cant pausrbations can
grow on a time-evolving base state, as it is at least possible that tleeperturba-
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tions might be growing right from when the ow is organised as a simplessentially
parallel in ectional shear ow.

Naturally, considering such problems of the development of pertoations on a
time-evolving underlying ow is further complicated by the inherent on-normality
of the linearised Navier-Stokes operator. Because of this, it is wktlown that the
energy of the perturbations can grow transiently (i.e. over a nitetime interval)
on a stationary background ow even in the absence of a primary ‘moal mode'
instability, or alternatively at a rate transiently larger than the underlying normal
mode growth rate, and the development of non-modal stability they (see Schmid
[90] for a review) allows the investigation of the role of initial conditiog over nite
time intervals in a time-varying base state in a systematic way. Indéethere is evi-
dence from simple models of the braid region, as presented by Cald & Kerswell
[28], that the hyperbolic instability is particularly suited to transient growth, and
recently, Ortiz & Chomaz [83] have identitied a new possible growth chanism
for braid-like regions, which they relate to the "anti-lift-up’ mecharsm previously
described by Antkowiak & Brancher [4].

From a physical viewpoint, there are two natural mechanisms whichave been
identi ed as causing (energetic) transient growth of perturbatias in shear ows,
known as the Orr mechanism (as originally presented by Orr [82]) andhé lift-up
mechanism (see Ellingsen & Palm [44], Landahl [70]). The Orr mechanisnvoives
counter-rotating vortices which are parallel to the base ow's (ad hence spanwise)
vorticity being tilted into and against the mean shear and hence ampled by the
base shear via the working of the Reynolds stress. This mechanisneisient at
relatively high streamwise wavenumbers (i.e. small scales) on shoirné scales as
demonstrated by Butler & Farrell [25]. On the other hand, in the liftup mech-
anism, streamwise vortices interact with the basic shear to gené&astreamwise
perturbation velocity. As shown by Butler & Farrell [25], this mechamsm operates
at somewhat smaller wavenumbers, and on somewhat larger time lesa Naturally,
in an intermediate range of either wavenumber or time interval, conntations or
‘mixtures' of these two growth mechanisms can occur, as discub$er example by
Gwegan, Huerre & Schmid [56].

Much of the focus of research into “optimal' transient growth (i.e. hte identi -
cation of perturbations which have the largest relative growth in thir perturbation
kinetic energy or gain over some nite time interval) has been on owsuch as
plane Couette ow or pipe ow where there is no linear instability, or clannel ow
where the linear instability onsets at a much higher Reynolds numbeha&n tran-
sition is observed to occur in experiment and simulations. In such cinmstances,
the transiently growing perturbations will clearly dominate the ow evolution. On
the other hand, if there are unstable "normal' modes, it is not immedigly obvious
what role, if any is played by transient perturbations (utilising the Or mechanism,
the lift-up mechanism, or indeed some mixture of the two) in the ow eolution.
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The conventional picture (consistent with experimental and nunrecal evidence) is
that the ow will be ultimately dominated by the most-unstable (eiger) mode of
linear theory. However, it is not at all clear how long this process tals, and it is at
least conceivable that an appropriately chosen initial perturbatioomay grow very
rapidly, at least over a short time. Such a transient perturbationallowed to develop
to nite amplitude, and thus to modify the base ow in a nontrivial manner, may
actually preclude the development of the primary KH billow, leading pa@ntially to

a kind of "bypass' transition with no primary instability development.

In summary, there are therefore three key open questions of enest. Firstly,
are the previously-identi ed elliptical and/or hyperbolic instabilities “gptimal' per-
turbations of an in ectional shear layer in any sense? Secondly, atis the role of
the time-dependence of the evolving billow in the development of optahgrowing
perturbations? In particular, do elliptical and hyperbolic instabilities rely funda-
mentally on the primary billow being fully saturated, or can they grow a the pri-
mary billow rolls up? And thirdly, how relevant are the simple idealized pieires
of modal instability and physical growth mechanisms to the actual el/elopment of
perturbations within an in ectional shear layer ow?

These questions will be addressed in this paper using the tools of frandal
stability analysis (as discussed in detail in the review of Schmid [90]). articu-
lar a linearized time-stepping Navier-Stokes equation solver and itgljaint will be
‘looped' and hence iterated mutiple times to identify the propertiesfahe “optimal’
linear perturbation (in the sense that the relative gain of the kinetieenergy of the
perturbation is maximised over some time interval). This power iteradbn looping
method is very well suited to the problem at hand, as this method castraightfor-
wardly embed the properties of a time-evolving base state in the egjion solvers
(both direct and adjoint) which are used. Indeed, with an evolving &se ow, there
is an interesting mathematical subtlety to do with the fact that notonly the length
of the time interval over which optimization of gain occurs is importan but also the
chosen start time (in the evolution of the base state) is signi cantd the secondary
perturbations.

This paper is organised as follows. After briey introducing the (largly now
conventional) mathematical formulation and algorithm in section 4.2focussing on
the implications of using a time-evolving base ow state, we rst conder transient
perturbation growth (over a wide range of optimizing time intervalsn an initial hy-
perbolic tangent frozen in time by the application of a body force. Isection 4.3, we
focus in particular on identifying the time interval over which the comentional KH
instability mode is not the optimal response. Having considered transient perturba-
tion growth on the steady hyperbolic tangent base ow, we genet@a time-evolving
two-dimensional single KH billow at su ciently high Reynolds number to gow to
a non-trivial nite amplitude. In section 4.4 we then consider transiat perturba-
tion growth on this time-evolving, non-parallel billow base ow over aange of time
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intervals. We classify and characterise the predicted optimal pentbations both in

terms of energy within core, and also the relative size of componsrif enstrophy.
This compartmentalization of the enstrophy is very useful to intgret the proper-
ties of the (in general) three-dimensional perturbations, and to &htify any possible
connection to the previously-predicted elliptical and hyperbolic instbilities, as well
as the crucial physical growth mechanisms. In section 4.5 we thels@consider the
importance of the chosen start time of the optimization time intervarelative to the

time-evolution of the primary KH billow on the “optimal' perturbation, discussing
the possible signi cance of the of the “anti-lift-up' mechanism desbed in Ortiz &

Chomagz [83] for initial perturbation growth in the braid. Finally, in se¢ion 4.6 we
draw our conclusions, and present suggestions for future wogarticularly consid-
ering the possible use of full nonlinear direct numerical simulations tovestigate
the nite amplitude evolution of the identi ed “optimal' perturbations .

4.2 Mathematical formulation

We consider the linear evolution of perturbationsi, to a base owU (t) under the in-
compressible Navier-Stokes equations. The base dw= (U(x;y;t);V(x;y;t);0)"
is restricted to (at most) two dimensions, while the perturbationu, is allowed to
evolve in three dimensions. We choose a coordinate system so tlkats in the
streamwise direction,y is in the vertical (or equivalently cross-stream) direction,
and z is in the spanwise direction. Scaling the ow variables with the charaetistic
velocity scaleU and the shear layer length scald (mentioned in the introduction) to
de ne the Reynolds number, the nondimensional linearized Navietdkes equations
are thus

CL

ot (U r)up=r1 pp (Upr )U(t)+ Re 'r 2uy; (4.1a)

r up=0: (4.1b)

The boundary conditions are periodic ik and z; with u, and r p, tending to zero
whenjyj!'1

Formally, the calculations of solutions to the governing equations (#) may be
thought of as a propagator of the (perturbation) velocity eld from some initial time
t; to some nal time t;, i.e.

Up(ti) = (tr; t)up(ti) (4.2)

where the sub-index represents the parameters, the Reynolds number and the
geometry (and perhaps discretization in practice) of the ow domia under consid-
eration. We are thus interested in the optimization of the gairG(; T; T o) de ned
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as
ECT) _ hup(T);up(T)i

GO ECTo) ~ Pupl(To): up(To)i (4-33)
_h (T; To)up(To);  (T; To)up(To)i
) o (To): Up(To)] (4.30)
_ hup(To); Y(T;To)  (T; To)up(To)i . (4.30)

hup(To); up(To)i

where angled brackets denote the conventional inner product ideng the energyE;
and the superscripty denotes theadjoint such that

hug;  upi = h Yug;upi; (4.4)

for all ug and up: Without loss of generality, we normalise the inner product so that
E(;To)=1:

It can be easily seen that the adjoint of the propagator ”(T; Ty) corresponds to
the propagator of the adjoint equations fronT to Ty: (For time dependent equations,
this can be directly shown by taking the adjoint of the propagator & given in the
equation (4) of Farrell & loannou [47].) It is straightforward to esablish (see for
example Hill [64], Donnadiewet al. [41]) that the adjoint equations of (4.1) are

% = () usr  (U( ) ug r pst+Re’rug (4.5a)
r ug=0: (4.5b)
In these equations = t, = U, uyg is the adjoint velocity variable, pq is

the equivalent “pressure' adjoint variable enforcing incompressibylitthe boundary
conditions are the same as for (4.1), and the initial condition accargy to (4.3c)
is ug(T) = (T; To)up(To): As is commonly understood, due to the integration
by parts that is implicit in the de nition of the adjoint, the relative sign s of the
time derivative and the Laplacian are di erent for the direct and theadjoint Navier-
Stokes equations, implying that the adjoint equations are well-podevhen integrated
backwards in time. It is also clear that even if the propagator is not self-adjoint,
the combination ¥ is self-adjoint. The optimal perturbation is that which attains
the maximum gain

Gh\ax(;T;TO): En(a%)fG(;T;TO)g; (46)

P

where the maximisation is over all choices of initial conditions,(To). Since the oper-
ator ¥ is self-adjoint this maximum is given by its leading eigenmode. Through-
out this paper we will set the central ow parameterRe = 1000, which is su ciently
large to ensure that the primary instability rolls up into a nite amplitud e, energetic
billow.
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These adjoint equations can be solved using a straightforward niaxhtion of
a pseudo-spectral DNS code with an Adams-Bashforth time scherfas previously
described and utilised by Donnadietet al. [41]). In particular, the central point
arising from the integration by parts that the Laplacian operator fas an opposite sign
(and hence that the adjoint propagator is well-posed when integiiag backward
in time) is very simple to implement computationally. The iterative optimization
algorithm essentially relies on power iteration (see Schmid [90] for neodetails).
A guess for the initial conditionsuyg is integrated forwards in time fromt = T, to
the target time t = T using the (forward) propagator . The nal state ut is
then used as the ‘initial' conditions for the adjoint propagator ¥, which is then
integrated "backward' in time fromT to To. This "~ nal' state (after appropriate
rescaling, see for example (4.11)) is then used as the initial conditifor the next
loop of this iteration. Multiple iterations of this entire loop will naturally lead to
the solution being dominated by the eigenfunction of the (combined)perator *
associated with the eigenvalue with the largest real part. This leadineigenmode of
course corresponds (up to scaling) to the initial perturbation whit has the largest
gain over the target time interval.

4.3 Transient response of a frozen parallel hyper-
bolic tangent shear ow

4.3.1 Base ow and decomposition of perturbations

As discussed in the introduction, the rst problem we consider is theransient
growth of in nitesimally small perturbations on a steady parallel in ectional shear
ow. We consider a tanh pro le

U (y) = tanh( y)ey; (4.7)

as an appropriate choice for this parallel base ow. Due to the fathat the ow we
consider has nite di usion (with Re = 1000), over time such a pro le will spread
vertically (or equivalently cross-stream). Therefore, for the s ow (4.7) to be a
solution to the governing equations, we formally add a body force

F= Re ‘tanh(y)%;; (4.8)

to the full Navier-Stokes equations so thatJ (y) = tanh( y)e, is actually a solution.
This is done in classical stability studies (Drazin & Reid [42]) and yields (4a)l
without a source term from base ow diusion. Therefore, the pedurbations are
evolving in a ow with nite Re, but the base (parallel) ow U (y) de ned by (4.7)
is “frozen'.
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Because the governing equations (4.1) with the base ow (4.7) hagee cients
with no dependence orx and z; we can spectrally decompose the perturbations as

[Up: Po](Xy; ;1) = Re [u;pl(y; eoien (4.9)

We can then compute they-dependent eigenfunctionsuy; p] independently for each
(k«; kz). This computation can be implemented e ciently within a three-dimersional
linearized code, as there is no interaction between modes with di ertte(ky; k)

combinations. We can thus identify the energy of each of the pertations as

Ymax
E (ke kzit) = u udy, (4.10)
Ymin

where denotes the complex conjugate, ang,i, = 125 andyna = 12:5 are the

minimum and maximum vertical extents of the ow domain respectively It is also

important to note that the energy is normalized so that the total eergy on each of
the modes is one initially, i.e.

E(Ky; ks To) = 1; (4.11)

so that consecutive iterations converge to the optimal perturlieon for all the com-
puted (ky; k;); avoiding potential computational problems if the less ampli ed modes
were allowed to have signi cantly smaller amplitude than the most amplied ones.
A convenient way to characterize the various perturbations is bysing the mean
optimal growth rate

IN[Ginax (Kxi kz; T)1
2T !

where the optimization is across all possiblg-dependent eigenfunctions of the gain
from Ty = O to the target time T.

As the optimization time increases, unsurprisingly the maximum optinlanean
growth rate (further maximised over all choices ok, and k,) approaches from above
the maximum growth rate of the classic (modal) KH instability, that is,max( ) !
max( «v ) @asT !'1 ; with the maximising streamwise wavenumbeky® ! k.,
approaching that of the most unstable KH modal instability andk, ! 0. A more
detailed quantitative description of this behaviour is shown in gure 4L.

m (ke ko3 T) = (4.12)

4.3.2 Optimal perturbations: OL-type and K-type

Figures 4.1a and b show the optimal mean growth rates, (ky; k;) for T =7 ( gure
4.1a) andT = 20 (gure 4.1b). For T =7, it is clear that the most ampli ed opti-
mal perturbation is inherently three-dimensional (3D, i.e. withk, 6 0): The largest
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Figure 4.1: (Top) Contours of the optimal mean growth rate ,, as de ned in (4.12)
for optimization times T=7 (a) and T=20 (b). In both gures the con tour levels are
set in steps of 0.011, decreasing from2J5 forT = 7 (a) and from 0:209 forT = 20

(b). Each global maximum is indicated by a black dot ( and two characteristic
"OL-type' optimal perturbations, "'OLE' and "OLH' as discussed in th text, are
represented in (b) by the (OLE) and the + (OLH) symbols. (Bottom) ax (M),

k@ ()and k™ () i.e. maximum over Ky; k;) of (T) and associated, and k.

The upper horizontal line (associated with the left hand vertical as) indicates the
maximum growth rate of the KH instability that occurs for streamwig wavenumber
ke, = 0:4425 (indicated by the lower horizontal line, associated with the rigihand

vertical axis) andk, = 0:
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m computed IS max = 0:2824 at 7' ; k") = (1:142 1:396) and is marked with
a black dot () in gure 4.1a. Conversely, forT = 20; the most ampli ed optimal
perturbation is two-dimensional (2D, i.e. withk, = 0) ; and the largest ,, computed
IS max = 0:2109 at K ; k") = (0:52360) and marked with a black dot () in
gure 4.1b. This particular combination of wavenumbers is in the regio of param-
eter space that is known to be susceptible to the KH instability. Figue 4.1¢c shows,
for di erent T;the largest computed optimal mean growth rates .« (left axis) and
their corresponding wavenumbersk{® ; k") (right axis). The horizontal lines of
gure 4.1c correspond to , = 0:1881% the growth rate of the most unstable mode
of the KH instability at this Re (upper horizontal line), and tok,, = 0:4425 the
streamwise wavenumber corresponding to the most unstable modes T increases,

max; K& and k' decrease and approach the values corresponding to the most
unstable KH mode, ., ; kq; and O, respectively. The most ampli ed perturba-
tions are inherently 3D forT 13, but then become 2D forT & 14 Thus, we can
distinguish between two qualitatively di erent types of strongly ampi ed optimal
perturbations, which dominate depending on the particular targetime chosen. We
nd that 3D perturbations dominate for short T; while 2D perturbations (clearly
related to the KH normal mode instability) dominate for largerT:

As already discussed in the introduction, the large ampli cation of 3Doblique
wave perturbations forT 10 is a universal feature of plane shear ow, as discussed
in detail by Farrell & loannou [49]. Both the Orr (Orr [82]) and the lift-up (Ellingsen
& Palm [44]) mechanism have an e ect on the evolution of 3D perturb&ns in plane
shear ows. As discussed in detail by Farrell and loannou [48], thertge ampli cation
for such 3D perturbations is due to a synergy between the two nie@misms; according
to their description, the increased vertical (cross-stream) pemrbation velocity v
produced by the Orr mechanism excites through the lift-up mechanism. Therefore,
we choose to refer to these early-time interval 3D perturbationas being of "OL-
type', as they may be thought of as utilizing both Orr and lift-up meclnisms. In
this simpli ed picture, the relative contribution of the Orr and lift-up mechanisms
depends on the orientation of the oblique waves, going from pure iCfor k, = 0
(and perhaps some KH-like behaviour if in the KH unstable region) toyse lift-up
asky=k, ! 0. In terms of the di erent components of vorticity, it is important to
keep in mind that the Orr mechanism acts on the spanwise vorticity ,; and that
the lift-up mechanism corresponds to large production of crosgeam (or vertical)
vorticity !y:

Furthermore, the early-time OL-type perturbation is inherently transient, unlike
the perturbations which are identi ed over longer time intervals. Ths aspect of
the perturbations' character is shown in gure 4.2 where we plot th instantaneous
growth rate

1 dE

(t) = oE dt (4.13)
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Figure 4.2: The variation of the growth rate (as de ned in (4.13)) with time of
some representative optimal perturbations. The grey-dashed ércorresponds to the
optimal perturbation for T =7 and (ky; k;) = (1:142 1:396), (marked with a black
doton gure 4.1a); the black-dashed line corresponds to the optahperturbation for
T =20 and (Kg; kz) = (kg ; 0); (marked with a black dot on gure 4.1b); the black
line corresponds to the "OLE' perturbation forT = 20 and (kx; k;) = ( Ky, ; 0:698)
(marked with a  on gure 4.1b), and the grey line corresponds to the "OLH'
perturbation for T = 20 and (ky; k;) = (ke ;3:142) (marked with a + on gure
4.1b).

of optimal perturbations for T = 7 (grey-dashed line, the most ampli ed OL-type
mode marked with () in gure 4.1a), T = 20 for (ky; k;) = (k«, ;0) (black-dashed
line, corresponds to the most unstablk,); which since it corresponds to a KH insta-
bility we refer to as a K-type perturbation, and T = 20 for (Ky; K;) = ( Kgy ; 0:698)
and (ky; k;) = (kg ;3:142) (marked respectively by and + in gure 4.1b, dis-
cussed in more detail in section 4.4.2), which are OL-type perturbans labelled
as OLE and OLH respectively, in anticipation of the “elliptical' and "hypérolic'
instabilities to which these perturbations will be related. The growthrate of the
T =7 optimal perturbation is very large at the beginning and then decgs rapidly,
becoming negative at about 12 as is typical for such transient perturbations.
Conversely, the growth rate for the K-type perturbation eventally asymptotes to
a nite value (the growth rate of the modal KH instability). Initially ho wever, this
perturbation also shows a slight non-normal mode enhancement tbe (instanta-
neous) growth rate, associated with the perturbation extractig energy transiently
via the Orr mechanism.

Finally, the 3D longer time-interval OL-type perturbations labelled Q.E and
OLH show both early-time strong transient growth (with an earlier ad stronger
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Figure 4.3: Energy density in the X; y)-plane of the OLE optimal perturbation for
T =20 and (ky; k;) = (kgy ;0:698) att =5 and t = 15.

peak for OLH but larger growth up tot = T = 20 for OLE), and much smaller (but
for OLE still positive) growth rate at later times. The positive growth rate of the
OLE perturbation at late times is consistent with the sub-dominant node of the
KH instability existing at its corresponding wavenumbers K,; k;) = ( kg, ; 0:698).

Figure 4.3 shows the energy density of the same perturbation labell®LE at times

t =5 and t = 15: This quantity is normalised such that its integral over the X;y)

domain containing one wavelength is one @ = To = 0. At t = 5; the optimal

perturbation is oriented slightly against the shear, and fot = 15 it has been tilted,
as is characteristic of short time optimal perturbations, at least g@rtially subject to

the Orr mechanism. The smaller longer-time growth rate for this p&usrbation is also
consistent with the classic Squire transformation (Squire [95]) whiatkemonstrates
that oblique 3D disturbances are equivalent to 2D disturbances in aow with a

lower Re (and hence lower growth rate). In light of all these characterists; we call
this perturbation OL-type because most of the growth up td = 20 corresponds to
non-modal growth.

These observations are entirely consistent with previous work, énn particu-
lar do not show evidence of either “elliptical' instability or “hyperbolic' ingbility
(henceforth referred to as E-type and H-type perturbationsof consistency with the
OL-type and K-type nomenclature introduced above) which numeésal simulation
and laboratory experiment suggest are essential characteristiof transition in in-
ectional shear layers. Of course, this is largely unsurprising as afallel base state
has no elliptical or hyperbolic points. Indeed, it seems entirely reasable that the
primary billow, or a developing nonlinear K-type perturbation, will actas a catalyst
for transition by encouraging the development of E-type or H-tye perturbations.
To investigate whether the OL-type perturbations can be relatetb the appearance
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of E-type or H-type perturbations, one should consider the natal, nonlinear evolu-
tion of the K-type perturbation giving rise to the primary billow. Therefore, in the
next section, we describe the properties of just such a non-ples time-dependent
yet inherently 2D “base' ow, whose non-modal “stability' propertie we can then
analyse.

4.4 Transient response of K-type time-dependent
ow

441 Base ow

To generate a non-parallel, time-dependent 2D K-type base ow,evperformed a
sequence of fully nonlinear direct numerical simulations (DNS) of 2Depturbations
of the hyperbolic tangent parallel base ow discussed in the previeusection 4.3.
The size of the computational domain in the streamwise direction istde L, = 14:2;
(i.e. kg = 0:4425 =k, ) which corresponds to one wavelength of the most unstable
eigenmode of K-type. In particular, this size of computational doain, along with
periodic boundary conditions suppresses the possibility of subhasnic mergings. It
also restricts the possible choices of streamwise wavenumber tagger) multiples of
k«, . From the numerical evidence this is unlikely to be too restrictive, aftough from
gure 4.1, the streamwise wavenumber of the most unstable OL4{te perturbation
is substantially larger than k., . The number of gridpoints in the x-direction is
Ny = 256: The number of points in the vertical cross-streamy-direction isN, = 512
and the corresponding box size is (as already noted) = 25, which we believe (see
for example Hazel [59]) is su ciently large for the evolution of the prinary KH
billow not to be a ected signi cantly by the vertical boundaries.

The DNS was initialized with random perturbations with zero mean andrsall
amplitude. The initial amplitude was chosen small enough so that, &t the initial
transients, the most unstable mode appears long before nonlineaects are notice-
able. However, the procedure we chose to construct the basev subsequently used
in our stability analysis is a little involved, due to the complicating e ect d the
di usion of the in ectional shear layer due to the nite value of the ow's Reynolds
number. As a rst step in this procedure, we simulated a ow with thebody force
(4.8) which “freezes' the in ectional shear layer included in the gorr@ng (nonlin-
ear) Navier-Stokes equations. The curve in gure 4.4 shows part the evolution in
time of the perturbation energyE; in this rst reference simulation with the body
force. In gure 4.4, In(E) grows linearly in time rst, (at a rate entirely consistent
with (twice) the growth rate of a K-type modal instability) then begins to saturate,
reaches a maximum and nally oscillates slightly. Those stages corpesd to the
exponential growth of energy due to the KH instability and the sulequent nonlin-
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