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R�esum�e

Cette th�ese est dedi�ee �a l'�etude des m�ecanismes d'instabilit�e non-modaux dans
les �ecoulements cisaill�es, principalement des couches de m�elange. On se concen-
tre sur les perturbations lin�earis�ees qui ont la plus grande croissance d'�energie
�a un temps donn�e, les `perturbations optimales', di��erentes du mode propre le
plus instable pour les syst�emes non-normaux. Une description originale de la non-
normalit�e et ses cons�equences est donn�ee dans le chapitre 2. Le chapitre 3 traite du
m�ecanisme de `lift-up' dans le cas des perturbations longitudinales non-visqueuses
sur un �ecoulement de base parall�ele et arbitraire. On trouve unenouvelle �equation
1D qui d�etermine l'ensemble des perturbations orthogonales, dont l'optimale, et per-
met de trouver des nouveaux r�esultats exacts et asymptotiques. Dans le chapitre
4 on s'int�eresse aux instabilit�es secondaires d'une couche de m�elange en utilisant
comme �etat de base l'�ecoulement 2D instationnaire et non-lin�eaire pour calculer les
perturbations optimales 3D. Selon le nombre d'onde et les temps d'optimisation
(initial et �nal), on retrouve comme r�eponses optimales les perturbations de types
`elliptique' et `hyperbolique'. Dans les chapitres 5 et 6 on consid�ere une strati�ca-
tion en densit�e dans la direction orthogonale au plan de l'�etat de base, et on utilise
une d�ecomposition de `Craya-Herring' pour analyser les perturbations en termes
de leur contenu en ondes internes et vorticit�e verticale. Les �equations d'�evolution
des perturbations lin�earis�ees autour d'un �etat de base 2D g�en�eral sont obtenues et
analys�ees au niveau de l'�energie onde/tourbillon. Ces r�esultatssont appliqu�es dans
le chapitre 6 pour analyser la g�en�eration et l'�emission d'ondes dans les perturbations
optimales sur une couche de cisaillement horizontale.

Abstract

This thesis reports a study of nonmodal instability mechanisms in shear 
ows,
mainly mixing layers. We focus on the linearized perturbations that maximize the
energy ampli�cation at �nite time, the `optimal perturbations', which in non-normal
systems are di�erent from the most unstable eigenmode. An original description of
non-normality and its consequences is provided in chapter 2. Chapter 3 deals with
the well known lift-up mechanism, for the case of longitudinal inviscidperturbations
to any parallel 
ow. A new one-dimensional equation determining theorthogonal
set of optimal and sub-optimal perturbations is found in that case, allowing to
obtain new exact and asymptotic results. In chapter 4 we addressthe secondary
instability of mixing layers, for which we use the naturally evolving 2D 
ow as a
base state to compute the 3D optimal perturbations. Among the optimal responses
we recover the usual `elliptic' and `hyperbolic' types of perturbation structure, the
largest growth depending on the spanwise wavenumber and optimization times (ini-
tial and �nal). In chapters 5 and 6 we consider density strati�cation in the direction
orthogonal to the plane of the base 
ow, and we use a `Craya-Herring' decomposition
to analyse the 
ow in terms of its internal wave and vertical vorticity content. The
perturbation equations for a general 2D base 
ow are �rst derived and interpreted
in terms of wave/vortex energetics in chapter 5. These results are used in chapter
6 to analise the strong generation and emission of internal waves produced by the
optimal perturbations to a horizontal shear layer.



Resumen

Esta tesis describe un estudio de los mecanismos de inestabilidad no-modal en 
ujos
de corte o con cizalle, especialmente capas de mezcla, que corresponden a la inter-
faz de contacto entre dos masas de 
uido con velocidad relativa. Elenfoque esta
centrado en las perturbaciones lineales cuya evoluci�on maximiza el crecimiento en-
erg�etico (de la perturbaci�on) a tiempo �nito, las `perturbaciones�optimas', distintas
del modo propio mas inestable cuando el sistema es no-normal. En elcap��tulo 2 se
entrega una descripci�on original de la no-normalidad, sus or��genes y consecuencias.
El cap��tulo 3 est�a dedicado al ya bien conocido mecanismo de `lift-up', mecanismo
no-modal que ampli�ca fuertemente las perturbaciones elongadasen la direcci�on
del 
ujo base, y que ha permitido explicar la aparici�on de este tipo deperturba-
ciones en varios contextos experimentales y aplicaciones. Para el caso de un 
ujo
sin viscosidad, hemos encontrado una nueva ecuaci�on que determina el conjunto de
perturbaciones ortogonales, entre las cuales se encuentra la perturbaci�on �optima; las
soluciones de esta ecuaci�on se pueden entender en analog��a con los estados propios
(ligados) de una part��cula cu�antica en un pozo o una caja, la perturbaci�on �optima
correspondiendo al estado fundamental. Esta ecuaci�on permiteobtener nuevos re-
sultados exactos y aproximaciones asint�oticas. En el cap��tulo 4 consideramos la
inestabilidad secundaria de una capa se mezcla. Para ello usamos comoestado base
la soluci�on no lineal y no estacionaria correspondiente a la evolucion 2D de una
capa de mezcla, y calculamos sobre ese 
ujo las perturbaciones �optimas 3D por
medio de un algoritmo iterativo de resoluci�on alternada de los problemas directo y
adjunto. De esa forma podemos integrar y describir el crecimientode las pertur-
baciones durante las distintas etapas sucesivas de la evoluci�on de lainestabilidad.
Como estado �nal o respuesta, entre las perturbaciones optimales recuperamos los
tipos `el��pticos' e `hiperb�olicos', donde el m�as ampli�cado dependedel num�ero de
onda de la perturbaci�on y los tiempos (inicial y �nal) de optimizaci�on con respecto
a la evoluci�on del 
ujo base. En los cap��tulos 5 y 6 consideramos el efecto de una
estrati�caci�on en densidad en la direcci�on perpendicular al plano del 
ujo base, y
usamos una descomposici�on de `Craya-Herring' para analizar el 
ujo en terminos
de su contenido de ondas internas y vorticidad vertical. Primero, enel cap��tulo
5, derivamos la descomposici�on en `Craya-Herring' de las ecuaciones para las per-
turbaciones linealizadas sobre un estado base horizontal arbitrario; esas ecuaciones
son luego analizadas e interpretadas en t�erminos de las transferencias energ�eticas
estado base/perturbaci�on y onda/vorticidad. Esos resultadosson luego aplicados en
el cap��tulo 6 para analizar la intensa generaci�on de ondas internasque se observa
en las perturbaciones �optimas a una capa de mezcla horizontal conestrati�caci�on
vertical.
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Chapter 1

Introduction

The great problem of contemporary science is the explanation of observed phenom-
ena which can not be directly explained from basic principles. This is a problem of
the most fundamental, even philosophical importance [18]. It concerns all scienti�c
disciplines and spans a huge variety of scales and phenomena, from molecular or-
ganization to the formation of galaxies, passing through climate andthe origin and
dynamics of the living. While there can be similarities, each discipline concerned
with the study of these and other phenomena has its own intrinsic interest. In par-
ticular Fluid Mechanics, having well established basic principles and presenting an
enormous variety of non trivial phenomena, is a �eld that gives the opportunity to
apply and develop techniques and concepts for understanding various types of com-
plex phenomena. During the last few decades, there have been important advances
concerning instability in Fluid Mechanics For example, during the last few decades,
there have been important advances in Fluid Mechanics concerning instability, that
is, the During the last few decades, for example, there have been important advances
in the theory of instabilities in Fluid Mechanics, theory that deals with the study
of the propensity or likeliness of a given 
ow, typically in an idealised situation, to
remain or change in a way that should be determined.

The main focus of this dissertation is on instability mechanisms on shear 
ows.
Mostly linear mechanisms, and more speci�cally,non-modalinstability mechanisms.
The relevance of non-modal instability mechanisms went for long timeunnoticed,
linear instability mechanisms being searched for withinclassical stability theory[42].
But very large transient growth (produced by non-modal instability mechanisms)
in systems that were stable according to classical stability theory,demonstrated the
shortcomings of the classical stability theory. This brought aboutmajor develop-
ments in the study of linear stability [46, 47, 90]. More generally, the developments
concern linear dynamics.

I consider it important to remark that methodological developments can have a
further reach than that concerning the theories in which they aredeveloped. Prob-
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ably the most robust backbone for parallels between subjects seemingly completely
di�erent, is provided by similarities of the mathematical models pertinent on each
case. It is a personal conviction that there is much to learn from establishing connec-
tions between di�erent subjects; it is a personal choice to remain open in the search
of those connections. I consider thus of primary importance the possibility that the
developments used and performed in this work be applicable for other domains. To
achieve that, it is useful to understand as deeply as possible.

An essential mathematical ingredient related to the occurrence of non-modal
instability mechanisms isnon-normality. In chapter 2 we de�ne what non-normality
is, explore what produces it and what are its consequences. (The reader interested
in the rigorous mathematical theory concerning non-self-adjointlinear operators is
referred to [36].) Also explained in chapter 2 is the methodology and aspects of linear
dynamics that are relevant in this manuscript. It also provides some(seemingly)
original results that are un�nished, and introduces the basic non-modal instability
mechanisms of shear 
ow.

In chapter 3 we show a simple new result concerning the lift-up mechanism,
one of the key pieces of shear 
ow stability that was missing for decades. The lift
up mechanism is arguably the most important non-modal instability mechanism
in plane shear 
ow. An important limitation in classical stability theory concerns
dealing with time dependent systems. In chapter 4, using the tools of the non-modal
stability theory, we study the stability of an unstationary 
ow. Tha t 
ow is a full
solution of the two-dimensional Navier-Stokes equations corresponding to a mixing
layer. We include the e�ect of density strati�cation on chapter 5. There we derive
the expression of the perturbative Navier-Stokes equations under the Boussinesq
approximation in the Craya-Herring frame. The results from chapter 5 are used
in chapter 6, where we study the stability of a horizontal shear layer with vertical
strati�cation. The Craya-Herring decomposition there allows tracing the generation
and emission of internal waves. We �nish in chapter 7 with the conclusions and
perspectives.
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Chapter 2

Some ideas on non-normality

2.1 Mathematical framework

2.1.1 Eigenmode decomposition of linear dynamics

Consider a linear dynamical system of the form

du
dt

= Lu; (2.1)

whereL is an autonomous (no time dependence) linear operator acting on the state
vector u and determining its evolution. The solution of (2.1) at timet can be written
as

u(t) = eLt u0; (2.2)

whereu0 is the initial condition. For generality, we will not specify the vector space
U to which the state vectoru belongs. We will assume, however, that the operator
L has a complete set of eigenvectors and a discrete spectrum, implying that any
initial condition u0 can be written as a linear combination of the eigenvectors ofL,
that is

u0 =
X

i

ui l i ; (2.3)

wherel i are the eigenvectors ofL satisfying

Ll i = � i l i ; (2.4)

and the sub indexi 2 N runs from 1 to the dimension of the vector spaceU: The
complex numbers� i are the eigenvalues and the spectrum is the set of eigenvalues
f � i g: The spectrumf � i g and the set of eigenvectorsf l i g are a property of the linear
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Figure 2.1: Consider the evolution of an initial conditionf composed of the di�erence
between two decaying eigenmodes� 1 and � 2: The eigenmodes� 1 and � 2 decay in
time from left to right, at di�erent rates. As a result, f increases during a transient
before eventually decaying while becoming parallel to the mode with slowest decay.
Image from Schmid, 2007 [90].

operator L acting on U: Under these assumptions, the solution of equation (2.1)
given in (2.2) becomes

u(t) =
X

i

ui l i e� i t : (2.5)

2.1.2 Normality

Equation (2.5) is key for discussing the evolution of most linear systems. The real
part of the eigenvalue� i determines whether the contribution tou(t) of the eigen-
mode l i grows or decays in time. Classical stability theory concentrates onthe
spectrum � i ; following the intuition that if every term of the sum in (2.5) decays,
then u(t) should also decay. As graphically described on �gure 2.1, this intuition
can be misleading if the eigenmodes can partially cancel each other in the right hand
side of (2.5). In the left of �gure 2.1 taken from [90], two eigenmodes� 1 and � 2

similar to each other, yield an initial condition f in which much of their contribu-
tions cancel. As time increases (moving to the right in �gure 2.1), onecan see how
f evolves and the cancellation between the two eigenmodes is partially destroyed;
this produces agrowthof f despite the decrease in the contribution from each of the
eigenmodes. If� 1 and � 2 in �gure 2.1 were orthogonal(normal ) to each other, the
decay of the� 1 and � 2 contributions to f would necessarily lead to a decay off :

The geometric notion of whether two eigenmodes belonging to a vector space
U are orthogonal or s̀imilar to each other' needs to be made precise. This can be
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done by introducing an inner product,h�; �i say, which associates a scalarhv; wi
to any pair of vectorsv and w in U: Any pair of vectors v and w are said to be
orthogonal (normal) if hv ; wi = 0: It is after the de�nition of an inner product that
one can assess normality (orthogonality) between eigenmodes; that the eigenmodes
are normal to each other means that

hl i ; l j i / � ij ; (2.6)

where � ij is the Kronecker's delta function. Normality between eigenmodes is thus
not a property of the linear operatorL only, it also depends on the inner product.
Similarly, making precise thegrowth of u (or f in �gure 2.1) requires a measure of
u (or f ): An inner product h�; �i generates a normk � k directly as1

kuk := hu; ui ; (2.7)

providing a measure for assessing the growth or decay ofu: As it is natural, the
growth in time of u(t) = eLt u0 (2.2) does not depend onu0 and L only, it also
depends on the way of measuringu(t):

In a way similar as an inner product is required to determine orthogonality
between eigenmodes,normality of the linear operator L is not a property of the
linear operator L alone, it also depends on the inner product. The linear operator
L acting on U with inner product h�; �i is de�ned to be normal if and only if L and
its adjoint L+ satisfy

L+ L = LL + ; (2.8)

where the de�ning property of the adjoint L+ under the inner producth�; �i is that

hv; Lwi =


L+ v; w

�
(2.9)

for all v and w in U: The eigenmodesl i are normal to each other under the inner
product h�; �i if and only if L is normal under that inner product. According to this
de�nition, non-normality of L occurs when it does not commute with its adjoint.

We can also remark that normality of the operatorL implies that it has a com-
plete set of eigenvectorsf l i g: As a consequence, non completeness off l i g implies
that L is non-normal. Moreover, asf l i g does not depend on the choice of inner
product, an incomplete setf l i g implies that L is non-normal for any inner product.

As the eigenvalues and eigenmodes do not depend on a choice of innerproduct,
they are more fundamental properties ofL: One could thus be tempted to disregard
(non-)normality as super
uous and focus only on the \more essential" eigenvalues
and their eigenmodes. We will see why this is simplistic in the following, when
describing an aspect that plays a very important role in this thesis.

1A norm from an inner product is usually de�ned as kuk :=
p

hu; ui : We de�ne (2.7) because
we will concentrate more on quadratic measures such as energy. It does not make an important
di�erence.
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2.1.3 Optimal perturbations

The computation of optimal perturbations constitutes a centralpart of the results
of this dissertation. The need for characterizing the linear dynamics of non-normal
systems has led to major developments on linear stability theory (see [90] for a
review). In classical stability theory, much importance is ascribed to the most
unstable (or least stable) eigenmode. Implicit in this stance is the ideathat the
characteristics of the most unstable eigenmode are what one expects to observe.
What one observes, however, necessarily implies a selection of a particular feature
of the system under study. This \selection of a particular feature" implies a measure,
and a measure which is sensitive to all possible features is a norm. Onestep in the
way to precise the notion of \what one expects to observe" can begiven by the
computation of the optimal perturbations.

The optimal perturbation for optimization time T is given by the solution to

Gmax (T) = max
u0

�
ku(T)k
ku0k

�
; (2.10)

whereu(T) corresponds to the vector stateu at time T that evolved from the initial
condition u0: The optimization problem (2.10) can be solved with a variational
formulation [90], which has the 
exibility that it allows including extra costs and
constraints. We shall take here a di�erent approach that puts forward the solution
procedure while highlighting a very important aspect of the dynamics. In (2.10) we
have

ku(T)k = hu(T); u(T)i ; (2.11a)

= heLT u0; eLT u0i ; (2.11b)

= heL + T eLT u0; u0i ; (2.11c)

where in (2.11c) we have used that (eLT )+ = eL + T : On the other hand, the adjoint
equation to (2.1) is2

�
dv
dt

= L+ v; (2.12)

so that eL + T corresponds to the evolution of (2.12) up to timeT after the change
t ! � t: Thus, the operatoreL + T eLT corresponds to the successive evolution of the
direct system (2.1) followed by the evolution of (2.12) witht ! � t: This can be
e�ciently performed in large systems by numerically simulating the evolution of the
direct and adjoint systems.

Equation (2.11) indicates that maximizingku(T)k amounts to �nding the u0

which grows the most under the e�ect ofeL + T eLT : When applying the opera-
tor eL + T eLT on u0; the outcomeeL + T eLT u0 approaches the leading eigenvector of

2The adjoint equation comes from writing (2.1) asAu = 0 with A = d
dt � L:

16



eL + T eLT ; say lT 1 corresponding to the largest eigenvalue� T 1 (u0 approacheslT 1

unless they are perfectly orthogonal). When applying the operator eL + T eLT succes-
sively, sayn times onu0; the outcome (eL + T eLT )nu0 approacheslT 1 asn ! 1 : This
procedure for �nding the leading eigenvector of an operator is known as the power
iteration method (or just `power method'). Applied to the direct-adjoint evolution
operator eL + T eLT , it constitutes a simple algorithm for computing the optimal per-
turbations. The �rst time it was reported in relation to 
uid dynamica l systems was
probably by Farrell & Moore in 1992 [51], altough it did not receive muchattention
until Luchini & Bottaro in 1998 [73].

It is important to remark that the operator eL + T eLT is normal. As we have seen,
that normality implies that it has an orthogonal set of eigenvectorsf lT i g; of which
the leading onelT 1 is the optimal initial perturbation. Note that computing the opti-
mal perturbation corresponds to computing the leading `input mode' of the singular
value decomposition ofeLT ; the linear operator propagating the initial conditions
to time T. The singular value decomposition (SVD) de�nes an orthogonal base of
inputs (initial conditions) and the corresponding orthogonal baseof responses, out-
comes at timeT of the initial conditions. The rest of the inputs of the SVD are
given by the set of eigenvectorsf lT i g: In a way completely symmetric between direct
and the adjoint (the adjoint of the adjoint is the direct), the corresponding set of
responses is given by the eigenvectors of the operatoreLT eL + T : The ampli�cation
factors or singular values are correspondingly given by the setf

p
� T i g:

Consistently with the exponential time dependence of the eigenmodes, the op-
timal response approaches the most unstable eigenmode asT ! 1 . The optimal
initial condition in the T ! 1 limit is given by the most unstable eigenmode of
the adjoint L+ : For a normal system, the optimal initial condition and the optimal
response for any timeT; are given by the most unstable eigenmode.

A full precise answer to the notion of \what one expects to observe" would re-
quire the knowledge of the full singular value decomposition. While there is no reason
to expect that the initial condition of the optimal perturbation will b e preferentially
excited by a random initial condition, the outcome at timeT of the optimal per-
turbation, the optimal response, will be the one with the largest energy if all initial
conditions are equally excited. Concerning stability, the optimal perturbation pro-
vides a rigorous bound (within linear dynamics) on the growth of the perturbations
while providing the particular case that best exploits the instability mechanisms
available.

2.2 A simple case study

The relevance of non-normality for linear dynamics has gone unnoticed for long and
is still fairly unknown in some �elds. In order to have an idea about thesituations
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in which non-normality can be relevant, it is key to understand the reasons that
make a physical system non-normal. For that we shall study a prototypical case.

Consider the partial di�erential equation (PDE)

@2u
@t2

= c2 @2u
@x2

+ �
@u
@t

: (2.13)

Equation (2.13) is a damped wave equation foru(x; t ) 2 R. The sign of � deter-
mines the stability of the u = 0 solution; negative � corresponds to damping and
exponential decay, positive� implies exponential instability and� = 0 gives purely
oscillatory motion. We will consider a space dependent wave speedc(x) and a 1-
dimensional domain fromxa to xb; we shall not yet specify boundary conditions.
For writing equation (2.13) in the form (2.1) we de�ne

u :=
�

u1

u2

�
; (2.14)

whereu1 = @xu and u2 = @tu. Now we can write (2.13) in the form (2.1) which is

@t

�
u1

u2

�
=

�
0 @x

c2@x �

�

| {z }
L

�
u1

u2

�
: (2.15)

We will denote, in this formulation, the set of boundary conditions ofthe direct
wave equation (2.15) asBC L (u; xa; xb) = 0.

To assess the normality (or non-normality) ofL lets consider the inner product

hv; ui r :=
Z xb

xa

vT M u dx =
Z xb

xa

(rv1u1 + v2u2) dx; (2.16)

in which M = diag( r; 1) is a diagonal matrix with a positive relative weight param-
eter r . Note that r > 0 is required to satisfy the positive de�niteness ofh�; �i , which
is one of the standard de�ning properties of an inner product, andneeded for the
inner product to generate a norm. We use (2.16) as a simple but sensible choice for
addressing some simple aspects of the choice of norm when assessing non-normality.
It is almost always possible3 to �nd a suitable inner product or change of coordinates
that will make an operator normal; we will consider here that there isan intrinsic
interest on the coordinatesu1 and u2 of u:

Having de�ned the inner product (2.16) we can computeL+ , the adjoint of L.
Integrating by parts and rewriting inside the integral the matrix product on the
form (L+ v)T M u, we obtain the Lagrange identity

hv; Lui r �


L+ v; u

�
r

= BT (v; u)
�
�
�
xb

xa

; (2.17a)

3it is possible when the set of eigenmodes is complete (almost always thecase in physically
motivated problems).
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wherein the adjoint operatorL+ is given by

L+ =
�

0 � r � 1(2cc0+ c2@x )
� r@x �

�
; (2.17b)

and the sum of boundary terms by

BT (v; u)
�
�
�
xb

xa

=
h
rv1u2 + c2v2u1

i xb

xa

: (2.17c)

We remark that, in general, (2.17a) is valid for anyu and v; whether or not they
are solutions of the direct and adjoint equations (2.1) and (2.12). The adjoint equa-
tion must imply, however, that the sum of boundary terms is zero when u and
v are solutions of the direct and adjoint equations (2.1) and (2.12), respectively.
The requirement BT (v; u)

�
�xb

xa
= 0 is thus what de�nes the adjoint boundary con-

ditions BC L +
(v ; xa; xb) = 0 : We will assume that the direct boundary conditions

BC L (u; xa; xb) = 0 are such that BT (v; u)
�
�xb

xa
= 0 holds if the adjoint boundary con-

ditions BC L +
(v ; xa; xb) = 0 are the same. That is, we will assume that the adjoint

boundary conditions are the same as the direct orBC L +
( � ; xa; xb) = BC L ( � ; xa; xb).

This assumption holds for combinations of Dirichlet (u2 = @tu = 0), Neumann
(u1 = @xu = 0) and periodic boundary conditions. If the assumption is not veri�ed,
adjoint boundary conditions BC L +

( � ; xa; xb) 6= BC L +
( � ; xa; xb) will have to apply

on v such that BT (v; u)
�
�xb

xa
= 0:

We assess the normality ofL by computing the commutator [L+ ; L] := L+ L �
LL + ; we get

[L+ ; L] =

0

@
r

�
1 � c4

r 2

�
@2

x � 2� cc0

r � �
�

1 + c2

r

�
@x

r�
�

1 + c2

r

�
@x

2c2

r [(cc0)0+ 2cc0@x ] � r
�

1 � c4

r 2

�
@2

x

1

A ; (2.18)

which being in general di�erent from zero implies thatL is in general non-normal
under the inner product (2.16). It is apparent from the di�erent terms in (2.18)
that there are multiple sources of non-normality. This is indeed the case and in the
following we will start from (2.18) to comment on non-normality and some related
aspects.

2.2.1 Some possible origins of non-normality

Space dependent coe�cients

An important source of non-normality is the space dependence ofc. This e�ect is
well known. The presence of non constant coe�cients implies that the linear PDE
can not be separated in independent Fourier modes. In (2.18) we can distinguish
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the e�ect of the non-homogeneity ofc on the terms of the right column of [L+ ; L]; in
which c0 is present. The e�ects of spatial dependence can be eliminated in some cases
by choosing an appropiate weight function in the integral. In this case, choosing
M = diag(1; c� 2) in the inner product de�nition (2.16) would result in a matrix
product ML with constant coe�cients; thus, the integration by parts would not
produce the terms withc0 in (2.18).

Homogeneous conservative case

We consider now the conservative, time reversible wave equation with constant wave
velocity such that � = c0 = 0. In that case we have

[L+ ; L]

�
�
�
�
c0;� =0

=

0

@
r

�
1 � c4

r 2

�
@2

x 0

0 � r
�

1 � c4

r 2

�
@2

x

1

A ; (2.19)

which is zero only if r 2 = c4. This shows the possibility of non-normality simply
because of the relative weight of the components in the inner product. If one chooses
r = c2, then the norm of u becomes

kukc2 = hu; ui c2 =
Z x2

x1

(c2u2
1 + u2

2) dx; (2.20)

which is the (conserved) energy of the system. We then see that,in the energy
conservative case,L is normal in the inner product that generates the energy norm
or, as it is commonly phrased for short,L is normal in the energy norm. Ifr 6= c2, the
norm kukr will not be constant during the evolution ofu but will oscillate according
to the mismatch between potential and kinetic energy as measuredby kukr .

That eigenmodes are orthogonal in the inner product generating aquadratic
conserved quantity of a linear system has been established by Held [60]. Held showed
it explicitly for the pseudomomentumand pseudoenergyof perturbations to some
atmospheric shear 
ow models4. As we shall see, there are some subtleties regarding
the orthogonality of eigenmodes when associated to conserved quantities.

4Pseudomomentum and pseudoenergy are conserved quantities which, analogous to momentum
and energy, are related to space and time continuous symmetries [93][98, § 7][21, § 4.5]. They
are related to symmetries of the basic 
ow and they are, in general,di�erent from the actual
perturbation energy and momentum [75].
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Damped oscillatory case

If we include dissipation by making� 6= 0, the system is no longer conservative and
we have for the commutator

[L+ ; L]

�
�
�
�
c0=0

=

0

@
r

�
1 � c4

r 2

�
@2

x � �
�

1 + c2

r

�
@x

r�
�

1 + c2

r

�
@x � r

�
1 � c4

r 2

�
@2

x

1

A : (2.21)

We see that takingr = c2 does no longer make [L+ ; L] = 0, or L normal, because the
o� diagonal terms are non-zero. The only way (with the inner product 2.16)5 to make
[L+ ; L] = 0 so as to have mutually orthogonal eigenmodes is to chooser = � c2: This
orthogonality yields, as in the previous case, thatkuk� c2 is a constant of motion.
However, choosingr = � c2 implies that h�; �i r is no longer positive de�nite so it
does not generate a norm. In this case, it can be veri�ed thatkuk� c2 = 0 for any u
solution of (2.13). It is then obvious thatk � k� c2 can not be a useful measure ofu
in this particular case.

What is generic of this particular case is what was shown by Held [60], namely
that if there is a quadratic form yielding a conserved quantity (pseudomomentum,
pseudoenergy, orkuk� c2 = 0 in this case), the amount of conserved quantity asso-
ciated to any growing or decaying eigenmode is zero. This implies that ifthere is
an unstable eigenmode,uu say, on a conservative system, then the quadratic form
yielding the conserved quantity does not generate a norm6 because the would-be-
norm of uu is zero. Conversely, if the quadratic conserved quantity is positive(or
negative) de�nite, then (minus) the conserved quantity generates a norm in which
the operator is normal and instability is forbidden [60][98,§ 7.6; § 7.7]. The positive
(or negative) de�niteness of a conserved quantity (and indirectlythe normality of
the operator in the corresponding inner product) is in this way useful for �nding
necessary conditions for instability. Fj�rtoft's condition [42], for example, can be
derived in this way [98, § 7.7.1].

Boundary conditions

Consider once again�; c 0 = 0 but now boundary conditions on (2.15) given by

u2(xa) = 0 ; (2.22a)

u1(xb) + �u 2(xb) = 0 ; (2.22b)

5Recalling that the eigenvectors are complex, we remark that the present discussion remains
valid if we changevT by its complex conjugatevT � in the de�nition of h�; �i r (2.16).

6Considering the spread use of the wordnorm, I consider that this has not been properly
acknowledged, in particular in [60] and [98,§ 7.2.3; § 7.6].
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where� > 0: The boundary condition (2.22b) corresponds to an absorbing boundary
such that @tu(xb) = � �@x u(xb) on the wave equation (2.13). Imposing the adjoint
boundary conditions such thatBT (u; v) = 0 in (2.17) yields

v2(xa) = 0 ; (2.23a)

v1(xb) � �v 2(xb) = 0 ; (2.23b)

which is di�erent from the direct boundary conditions; boundary conditions (2.22)
thus fall o� the initial assumption becauseBC L +

( � ; xa; xb) 6= BC L ( � ; xa; xb). The
boundary condition (2.23b) implies that there is energy injection at the boundary
xb; as opposed to the energy absortion of the direct boundary condition (2.22b).
The wave equation with the absorbing boundary conditions (2.22) has been studied
by Driscoll and Trefethen [43]. Among other things, they quantify the degree of
non-normality and �nd that it is maximum for � = 1; perfectly absorbing case in
which the spectrum is empty and all initial conditions go to zero in a �nite time.

The case considered here is an example of non-normality produced by boundary
conditions. As in the previous case, normality in the energy norm of the conser-
vative system is broken as energy conservation is violated. This gives an example
in which violating the equality BC L +

( � ; xa; xb) = BC L ( � ; xa; xb) between boundary
conditions of the direct and adjoint equations produces non-normality.

Structural non-normality

We have restricted so far to a linear dynamical system which was derived from
a di�erential equation (2.13) on a single functionu. This is a strong restriction
concerning the type of non-normality that can be present. In a system with more
independent components, non-normality will greatly depend on theparticular way
in which the di�erent components a�ect each other. Those mutuale�ects between
di�erent components of a system are re
ected in the non-zero elements of the matrix
representation of the operatorL: The non-normality brought about by these inter-
component interactions is of a di�erent type than the previously described non-
normalities; it might be calledstructural non-normality, where the structure referred
to is the way in which di�erent components couple to each other. As an example
we can consider the addition of a coupled variable into system (2.15) as

@2u
@t2

= c2 @2u
@x2

+ �
@u
@t

+ �g;

@g
@t

= 
g:
(2.24a)
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which in the form (2.1) becomes

@t

0

@
u1

u2

u3

1

A =

0

@
0 @x 0

c2@x � �
0 0 


1

A

| {z }
L3

0

@
u1

u2

u3

1

A ; (2.24b)

whereu3 = g: The role ofg in (2.24a) (or u3 in 2.24b) is clear, it excites the equation
for u while evolving independently. It can be easily veri�ed that system (2.24) is
indeed non-normal.

2.2.2 Non-normality is normal

It might seem surprising that the simple addition of dissipation brakesthe normality
of L in the energy norm. The surprise may arise because the dissipative term appears
in the diagonal ofL and in the same position in the adjointL+ , so one could say that
the � term is self-adjoint (compare� in (2.15) and in (2.17b)). In this particular case
the destroyed non-normality makes sense if one thinks that damped eigenmodes on
a �nite domain are not purely sinusoidal, so they do not satisfy simple orthogonality
relations. More in general, the destroyed non-normality makes sense if we consider
that the addition of two normal operatorsL1 and L2 (as can be conceptualized the
addition of dissipation to the pure wave operator) is not necessarilynormal since

[L+
1 + L+

2 ; L1 + L2] = [ L+
1 ; L2] + [ L+

2 ; L1]: (2.25)

That is, for L1 + L2 to be normal is also needed thatL1 and L2 commute with each
other's adjoints. If we think on the damped wave equation, however, it does not
seem that the non-normality ofL plays an important dynamical role, nor is it clear
how non-normality could help understanding the dynamics. This indicates that non-
normality is ubiquituous and that it should be explained and characterized when it
manifests itself relevant for the dynamics, as it could be in the case of structural non-
normality. But non-normality does not need explanation in the general case. On
the contrary, the particular situation needing a good reason to happen isnormality
rather than non-normality.

We have seen that for conservative systems, normality occurs for the norm yield-
ing the conserved quantities. But the relation between normality and conserved
quantities can not be kept when there are exponentially growing or decaying modes.
Farrell & Ioannou [50] have shown that the general norm in which a system is nor-
mal corresponds to a weighted sum of the amplitude of each mode in the eigenmode
expansion. That is, the evolution ofkuk in the (quadratic) general normal norm
(existing for an L with a complete set of eigenvectors) is given by

kuk = mi jui j2j exp 2� i tj2 (2.26)
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where mi > 0 and the ui are as in (2.5). This means that, for a normal system,
all change inku(t)k is due to exponentially damping or unstable eigenmodes. In
a subspace of purely oscillatory eigenmodes, the energy norm doesnot explicitly
correspond to the sum of amplitudes (2.26), but it attributes the same weight to
each pair of conjugate modes.

To conclude, non-normality in the energy norm is given by the possibility of
u to change its energy during its evolution in the absence of unstable or decaying
eigenmodes. This extends directly to other norms.

2.3 Probing non-normality without eigenmodes
Some new ideas

In this section I sketch some open re
ections developed during thecourse of my
thesis.

2.3.1 A conserved quantity for normal systems

Consideru 2 Rn evolving according to the autonomous linear dynamical system

du
dt

= Lu: (2.27a)

Consider alsov 2 Rn evolving back in time on the same dynamical system, that is,
following

�
dv
dt

= Lv; (2.27b)

corresponding to (2.27a) under the transformationt ! � t: As before, we will assume
that L has a complete set of eigenvectorsl i and a discrete spectrumf � i g satisfying

Ll i = � i l i : (2.28)

Now let's consider an inner productha; bi for a; b 2 Rn : The inner product h�; �i ,
being de�ned overRn ; is also a bilinear form, meaning that it satis�es

h� 1a1 + � 2a2; bi = � 1ha1; bi + � 2ha2; bi ; (2.29a)

ha; � 1b1 + � 2b2i = � 1ha; b1i + � 2ha; b2i : (2.29b)

If we use the inner producth�; �i to characterize the combined evolution of the
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linear systems (2.27a) and (2.27b), we have that

dhu; v i
dt

=
�

du
dt

; v
�

+
�

u;
dv
dt

�
; (2.30a)

= hLu; v i � h u; Lv i (2.30b)

= hui Ll i ; vj l j i � h ui l i ; vj Ll j i (2.30c)

= ui vj h� i l i ; l j i � ui vj hl i ; � j l j i (2.30d)

= ui vj hl i ; l j i (� j � � i ); (2.30e)

where sum over repeated indices is implied. In (2.30c),u and v have been expanded
in the basis of eigenvectors ofL as in (2.3). Then, in (2.30d,e) we have used (2.29)
and the eigenmode de�ning property (2.28) in (2.30d).

In (2.30e), it is straightforward to see that hu; v i is a conserved quantity of
the composed system ifhl i ; l j i = � ij , independently of the initial conditions for
u and v: That is, if L is normal (the l i mutually orthogonal) under the scalar
product h�; �i , then the value of the quantity hu; v i is conserved under the evolution
of systems (2.27a) and (2.27b). The converse, namely (u; v) being conserved for a
non-normal system, may be valid only for properly chosen initial conditions (setting
appropriately the set of ui and vi coe�cients). Thus, hu; v i is conserved under
the evolution of (2.27) for any pair of initial conditions (u0; v0); if and only if L is
normal.

It should be noted that the computation d
dt hu; v i does not require knowledge of

the eigenmodesf l i g; which in some applications can be very expensive to obtain.
Note also that the variation rate of hu; v i is given by the sum of the eigenmodes
superposition (given by the value ofhl i ; l j i ) weighted by the coe�cients ui and vj

of the expansion in eigenmodes, and the di�erence between eigenvalues. Taking a
look at �gure 2.1 showing the graphic description of transient growth, one can see
that these are the aspects involved in transient growth, namely the superposition of
the eigenmodes composing the evolving solution and the di�erence ofgrowth rate
between eigenvalues. This suggests that the conservation property shown in (2.30)
could be helpful to assess non-modal transient growth.

2.3.2 Manifestation of the conservation on trajectories

We would like to assess the possible e�ects of the conservation shown in (2.30) for
the evolution of the time forward system (2.27a) alone. Lets then consideru(t) for
t 2 [0; � ] given by the evolution of (2.27a). We can de�ne then a functionM (t1; t2)
of two time variables as

M (t1; t2) = hu(t1); u(t2)i ; (2.31)

such that M
�
�
t1= t2= t

= ku(t)k is the norm ofu(t): Figure 2.2 shows the (t1; t2)-plane.
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Figure 2.2: The grey area corresponds tot1; t2 < �: When going fromA to C we
have constantt1 + t2 = 2t � and M varying as M (t � + t; t � � t) with t going from
t � � � to � � t � : The curvature of M when passing throughB (along the dashed
path) vanishes for normal systems.

Knowledge ofu(t) in [0; T] implies knowledge ofM (t1; t2) over the grey area in �gure
2.2. Along the diagonalt1 = t2 we haveM

�
�
t1= t2= t

= ku(t)k; corresponding to the
evolution of the norm ofu(t): The dashed lines inside the shaded area correspond
to lines of constantt1 + t2: When moving down and to the right along the constant
t1 + t2 lines,M (t1; t2) varies according to (2.30). Thus, ifL is normal, M will remain
constant along constantt1 + t2 lines, for any trajectory u(t). Equivalently, M can
vary along constantt1 + t2 lines only if L is non-normal.

It would be interesting to assess the e�ects of non-normality in thevariation of
ku(t)k; instantaneously at any given timet = t � say, by computing the variation of
M along constantt1 + t2 lines. However, the �rst derivative of M along constant
t1 + t2 is zero when evaluated att1 = t2; by symmetry. A possibility is given by the
second derivative, or the curvature ofM along constantt1 + t2 lines, which can be
easily computed as

d2

d�t2
hu(t � + �t); u(t � � �t)i = 2

��
d2u
dt2

; u
�

�
�

du
dt

;
du
dt

��

t= t �

; (2.32a)

=
X

i;j

ui (t � )uj (t � )hl i ; l j i (� j � � i )2; (2.32b)
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where (2.32b) is obtained from the eigenmode decomposition and some simple ma-
nipulations. While the right hand side of (2.32a) shows that there is noneed of the
modal decomposition to compute (2.32), the expression (2.32b) shows that there
is indeed no contribution from each eigenmode alone; only superpositions between
di�erent eigenmodes contribute. The idea is to relate 2.32 to the non-normal e�ects
in ku(t)k and understand its meaning and signi�cance. For example, on dimensional
grounds and because 2.32 is a second derivative in time, the quantity(2.32) can be
compared to the acceleration ofku(t)k due to non normality, which is given by

d2

dt2
hu(t); u(t)i =

X

i

(2ui � i )2

| {z }
modal

+
X

i 6= j

ui uj hl i ; l j i (� j + � i )2

| {z }
non modal

: (2.33)

Clearly, for normal systems only the �rst term in the right hand sideof (2.33) will
be present. It could be interesting to explore the possibility that 2.32 (or, perhaps,
some comparison/combination between 2.33, (2.32) and each of theterms in the
right hand sides of (2.32a)) could give some information about the non modal terms
in (2.33). However, the quantitative relevance of this connection isfor the moment
speculative.

As already mentioned, computing (2.32) does not require knowledgeof the eigen-
modes. It should be noted that an explicit expression of the linear operator L is
not required either. Those characteristics are shared by other popular algorithms,
for example the one used during this thesis for the computation of the optimal
perturbations (section 2.1.3). In contrast, di�erent to other characterisations of
non-normality (like pseudospectra and others in [90], or the Henriciindex used in
[53]), the proposed characterisation is not necessarily relevant tothe linear opera-
tor but, being applicable to any particular trajectory, it could serve as a tool for
understanding some particular behaviour of interest. This is a matter of further
study.

2.4 Some methodological essentials

2.4.1 Perturbative Navier-Stokes equations

We will focus on the stability of a given solution of the Navier-Stokes equations
which we will call the base 
ow and generally denote asU : The full 
ow �eld u f is
split as u f = U + u and only the terms that are linear inu are kept. This describes
the evolution of in�nitesimal perturbations of the base 
ow.

The Navier-Stokes equations linearized around a base 
owU = ( U; V; W)T can
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be written as

LU u = �r p � (u � r )U ; (2.34a)

r � u = 0: (2.34b)

where the operatorLU is given by

LU =
@
@t

+ ( U �r ) � � r 2 (2.35)

describes viscous di�usion and advection by the base 
ow. A very important reason
for concentrating on the linear dynamics is that the nonlinear termsare conservative,
that is, they do not contribute to the energy of the perturbation[62, 91].

We will often consider a parallel shear 
ow of the formU = U(y)ex , corre-
sponding to a vorticity 
 = 
 = � U0(y)ez. The linear evolution of perturbations
u = ( u; v; w) over this parallel 
ow is given by

LUu = � @x p � U0v; (2.36a)

LUv = � @yp; (2.36b)

LUw = � @zp; (2.36c)

r � u = 0; (2.36d)

with the operator LU = @t + U@x � � r 2 that represents advection by the base 
ow
and di�usion. As all the coe�cients in (2.36) are independent ofx and z, we can
make a plane wave decomposition by rewriting

[u; v; w; p](x; t) �! [u; v; w; p](y; t)ei (kx x+ kz z) ; (2.37)

so that we can consider the wavenumbers as parameters, the evolution of u and p
for a given pair (kx ; kz) being independent of the existence of a contribution with
di�erent wavenumbers. We also haver 2 = @2

y � k2
x � k2

z .

2.4.2 Adjoint equations

As shown in section 2.1.3, the adjoint equations can be used to compute the optimal
perturbations. The perturbative Navier-Stokes equations (2.34) can be written in
operator form as

LNS q = 0 (2.38)

whereq = ( u; v; w; p)T and

LNS =

0

B
B
B
@

LU + @U
@x

@U
@y

@U
@z

@
@x

@V
@x LU + @V

@y
@V
@z

@
@y

@W
@x

@W
@y LU + @W

@z
@
@z

@
@x

@
@y

@
@z 0

1

C
C
C
A

: (2.39)
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Using the inner productf qd; qg =
R

(ud�u + pdp) dxdydz; the adjoint equations can
be obtained after arranging terms and integrating by parts such that f qd; LNS qg �
f L+

NS qd; qg = BT (qd; q); whereBT (qd; q) are the boundary terms [64]. After some
manipulations and changing� = � t; the adjoint equations satisfyingL+

NS qd = 0;
can be written, in vector form as

@ud

@�
= 
 � ud � r � (U � ud) � r pd + � r 2ud; (2.40a)

r � ud = 0; (2.40b)

where
 = r � U : In the case of parallel 
ow considered before, (2.40) become

L+
Uud = � @x pd; (2.41a)

L+
U vd = � @ypd � U0ud; (2.41b)

L+
Uwd = � @zpd; (2.41c)

r � u+
d = 0; (2.41d)

whereL+
U = @� � U@x � � r 2 is the adjoint of the advection di�usion operator. All

the previous arguments about the plane wave decomposition (2.37)are obviously
valid for (2.41), same as for (2.36).

2.4.3 Numerical methods

An essential tool was already available at the beginning of my thesis.That tool is
an e�cient direct numerical simulation (DNS) code for solving the Navier-Stokes
equations, either perturbative (on a two-dimensional base 
ow) or not, either lin-
ear or fully nonlinear, linearly strati�ed or not. The DNS code is pseudospectral,
computing derivatives in Fourier space and products in physical space, e�ciently
changing between spaces by means of fast Fourier transforms (FFT). The code was
originally written by Vincent & Meneguzzi for studying turbulence [100]. It was
subsequently developed in LadHyX by several people (Pierre Brancher [19], Ivan
Delbende [37], Paul Billant[16], Fran�cois Gallaire [52], Jean-Marc Chomaz [31]...).
At my arrival, the DNS code had been upgraded and parallelized (as anoption)
by Axel Deloncle [38], who also developed di�erent time schemes in addition to the
original Adams-Bashforth scheme. The boundary conditions are periodic.

My work then involved �rst the implementation of the adjoint NSE and the it-
erative optimization routine described in 2.1.3. As I dealt with stability analyses
considering independently the evolution of spatial plane waves in oneor two direc-
tions, the optimization routine involved the normalization of the initial condition
for each of the corresponding wavenumbers. Also, as the base 
ow corresponding to
a mixing layer is not periodic, a special case was added for computing the contri-
bution of a parallel non-periodic shear 
ow avoiding the computationof base 
ow
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derivatives in the adjoint equations, that is, explicitly computing (2.41) instead of
(2.40) for the parallel 
ow component.

Another important development on the code concerns the time evolving base

ow used for chapter 4. This involves the storage in hard disk of several base 
ow
`snapshots'. At execution time, two base 
ow �elds are stored in theRAM at every
moment, the base 
ow at the current time and the next snapshot.The base 
ow
at the current time is updated every time step by the addition of thecorresponding
fraction of the next snapshot. When the time of the next snapshot is reached, the
snapshot becomes the current base 
ow and the following snapshot is read from disk.
During the adjoint phase of the optimization routines, the time corresponding to
the next snapshot is lower than the current time, in accordance with the backwards
in time resolution of the adjoint equation.

A set of post-processing routines was also developed in MATLAB® . This set
of post-processing routines was composed of di�erent level functions adapted to
visualize the gain and 
ow �elds for the di�erent wavenumbers. The Craya-Herring
decomposition involved in chapters 5 and 6 was also performed in MATLAB.

2.5 Non-modal instability mechanisms in plane
shear 
ow

Here we brie
y describe the Orr and lift up mechanisms, two well known mechanisms
of non-modal energy growth of perturbations to parallel shear 
ow. These mecha-
nisms occur in two limiting cases, the Orr mechanism for purely 2D 
ow (kz = 0)
and the lift up for perturbations in�nitely elongated in the streamwise direction
(kx = 0) : These introductory descriptions of the Orr and lift up mechanisms are
placed here for consistency, most of their content can be also found later in the
manuscript. After describing these well known mechanism, we end up by mention-
ing some insights on the more general oblique wave perturbations taking place for
kx ; kz 6= 0: These mechanisms are essentially inviscid so we set� = 0 in this section.

2.5.1 Orr mechanism

The Orr mechanism (Orr [82], for more recent discussions see for example [92, 45])
is responsible for the possibility of transient growth of perturbation energy in the
2D case (kz = 0). This mechanism originates in the kinematic deformation of
perturbation vorticity ! z = @xv � @yu by base 
ow advection, as exempli�ed in the
�gure 2.3 (same as �gure 6.3). Figure 2.3 shows the evolution of the vorticity ! z

of the optimal perturbation for U = tanh( y)ex ; streamwise wavenumberkx = 3:77
and optimization time T = 7. Shown are the optimal initial perturbation (at time
t = 0) ; the optimal response (att = T = 7) and the optimal perturbation at the
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Figure 2.3: Optimal perturbations for the 2D case (kz = 0). (a) ! z distribution of
the optimal perturbation for kx = 3:77 andT = 7 at the initial time t = 0(a), the
optimization time t = T = 7(b) and the later time t = 14(c). The horizontal axes
show 2 wavelengths.

later time t = 14: The contours of the optimal perturbation are initially oriented
against the base 
ow shear (�gure 6.3a). As time evolves tot = 7 (�gure 6.3b), the
corresponding! z is sheared to an almost cross-stream orientation, leading at this
time to the maximum of energy ampli�cation. As the optimal perturbation evolves
in time until t = 14 (�gure 6.3c), ! z is sheared further and the perturbation energy
decreases back to a lower value.

The energy ampli�cation results from the kinematic deformation of! z by the
base 
ow. This kinematic deformation reduces the length of the! z contours while
leaving unchanged the integral of the! z enclosed by the contours7. Stokes theorem
implies that the velocity magnitude along the (reduced in length) contours must
increase to keep the circulation along the contours equal to the (constant) integral
of ! z: This mechanism produces a large increase in cross-stream velocityv: When
time evolves further and! z is sheared as in �gure 6.3(c), the kinematic process just
described is reversed and the energy goes to zero ast ! 1 :

2.5.2 Lift-up mechanism

The lift-up mechanism was �rst reported as an algebraic instability byEllingsen &
Palm [44] in the simple case of streamwise independent perturbationsto inviscid
linear 
ow. It can be understood as the 
ow induced by streamwise vorticity that,
superposed on positive shear, lifts up 
uid at low velocity while pushingdown high-

7! z is strictly advected as a scalar by the base 
ow only when the shear isconstant. Otherwise,
the base 
ow can act as a source of vorticity, which is indeed what happens for the shear instability.
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Figure 2.4: Optimal perturbations for (kx ; kz) = (0 ; 5:174) andT = 7. (a) ! x of the
optimal perturbation at t = 0: (b) u of the optimal perturbation at t = T = 7. The
vorticity ! and velocity u �elds are respectively normalized so that the maximum
value of enstrophy (! 2

x + ! 2
y + ! 2

z) and twice the energy is 1.

velocity 
uid. Here we show again results for the tanh pro�le. Figure2.4 (same
as 6.4) shows the streamwise vorticity! x of the optimal initial perturbation (�gure
6.4a) and the streamwise velocityu (�gure 6.4b) of the optimal response, leading
to the optimal gain at T = 7 for kz = 5:174 andkx = 0: The ! x and u �elds in
�gure 2.4 are respectively normalized by the maximum total enstrophy at t = 0 and
twice the maximum total energy at t = T = 7: Both �elds are localized around
y = 0; in the region with strong shear. The colorbar on �gure 6.4(a) re
ects the
fact that at the initial time, 97 :6% of the total enstrophy is given by! x : As time
evolves,! x remains constant and induces a constant cross-stream velocityv: That v
excitesu through transport of base 
ow momentum, generating streamwise streaks.
The colorbar on �gure 6.4(b) re
ects the fact that, after the perturbation evolves to
t = 7; most of the perturbation velocity corresponds tou: As time evolves further,
the forcing ofu by v remains constant, implying that the energy of the perturbation
grows unbounded ast ! 1 :

2.5.3 A look at the energy evolution of perturbations of
unbounded constant shear 
ow

We are now familiar with the development of linear perturbations in twodi�erent
cases,kz = 0 with Orr and kx = 0 in which there is lift-up. In a general case of
oblique waves, the two mechanisms can be present in a non-trivial way. These are
the types of perturbations that show the largest instantaneousgrowth rate, and so
they are likely of importance for transition or turbulent structures.
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Figure 2.5: Schematic of the evolution of the time dependent wavenumber k(t) and
the di�erent parameters of its evolution.

To address the dynamics of oblique wave perturbations, we consider the case of
unbounded constant shear 
ow with constant vorticity 
 = � U0(y), in which case
analytical solutions for plane waves with time dependent wavenumber are known.
We start from the expressions given by Farrell & Ioannou [48] for the energy evolu-
tion, namely

E(t)
E0

=
j! y j2 + ( K 4

0=K 2(t)) jv0j2

j! y0j2 + K 2
0 jv0j2

; (2.42)

where the cross-stream vorticity is given by

j! y j2 = j! y0j2 + jv0j2
�

kzK 2
0

kx �

� 2

(� (t) � � 0)2 (2.43)

and the parameters of the time dependent wavenumbers are

K 2(t) = � 2 + k2
y(t); (2.44)

ky = ky0 + 
 kx t; (2.45)

� (t) = arctan
�

�
ky(t)

�
; (2.46)

where � 2 = k2
x + k2

z and ky is the (time dependent) cross-stream wavenumber. The
zero subscript (�)0 indicates the (�) quantity at time t = 0. A geometric description
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Figure 2.6: Energy evolution history of oblique wave perturbations for � = 0: The
horizontal axis corresponds to the� (t); which varies from� �= 2 to �= 2 whent varies
from �1 to 1 :

of the evolution of the wavenumberk can be seen in �gure 2.5. (kx ; kz) remains
constant while, for positive base 
ow vorticity 
, ky goes from�1 to + 1 when t
goes from�1 to + 1 . Accordingly, � goes from� to 0.

Let's now describe! y in terms of the angle� = �= 2 � � which, for 
 > 0,
varies between� �= 2 and +�= 2 when t goes from�1 to + 1 . Also, without loss
of generality, we can choose the time origint = 0 such that ky0 = 0, which implies
K 0 = � and � 0 = 0. With these choices, the energy evolution (2.42) becomes

E(t)
E0

=
j! y0j2 + � 2r 2� 2jv0j2 + � 2 cos2 (� (t)) jv0j2

j! y0j2 + � 2jv0j2

where we have introduced the ratior = kz=kx : The ratio r controls the orientation
of the oblique waves, forr = 0 the perturbations are purely 2D and they can
grow due to the Orr mechanism. Asr increases the perturbations become oblique,
becoming streamwise independent asr ! 1 when the lift-up mechanism is present.
Introducing further � 2 = j! y0j2=� 2jv0j2 we obtain

E(t)
E0

=
� 2 + r 2� 2(t) + cos2 f � (t)g

� 2 + 1
; (2.47)

which is in a simple form that shows the� ! � � re
ectional symmetry of the
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energy evolution. The energy ast ! 1 is simply

E(� = � �= 2)
E0

=
� 2 + r 2� 2=4

� 2 + 1
: (2.48)

Figure 2.6 shows the energy evolution of the perturbations for� = 0 and di�erent
r: For r = 0 the energy goes to zero ast ! �1 ; and reaches its maximum att = 0:
In that case, energy growth occurs for negative times, and the optimal perturbations
(for any optimization time T) evolve in the left part with � < 0: As r increases, the
energy at � = � �= 2 (or t ! �1 ) increases. Forr = 2=�; the energy at t = �1
(� = � �= 2) is the same as the energy att = 0; that is, E(� �= 2)=E0 = 1: Thus,
for r > 2=�; the perturbation with the largest possible energy ampli�cation (for
any time interval) goes from the global minimum tot ! 1 : The energy at t = 0
is a maximum (local or global according tor ) for r < 1 and becomes the global
minimum for r � 1: As r ! 1 ; the energy at� = �= 2 diverges. That is the case for
the lift up mechanism. Surprisingly enough, the optimal energy gain for any �xed
time T is equal for the Orr and the lift-up cases [48].
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Chapter 3

A note on the inviscid algebraic
growth for parallel shear 
ow: a
novel formal solution and
asymptotic approximation

Crist�obal Arratia, Jean-Marc Chomaz
Article in preparation

3.1 Introduction

Many studies have demonstrated that linear perturbations to parallel shear 
ow can
exhibit very large energy growth in the absence of unstable eigenmodes [57, 25, 48,
86, 91]. The mechanism responsible for the largest energy growth isessentially the
same for all inviscid or viscous shear 
ows at su�ciently large Reynolds number
Re: the forcing of cross-stream vorticity by cross-stream velocityvarying in the
span. This so-called lift-up mechanism is more e�cient for streamwiseelongated
perturbations. It can also be understood as the 
ow induced by streamwise vorticity
that, superposed on positive shear, lifts up 
uid at low speed while pushing down
high-velocity 
uid.

The lift-up mechanism was �rst reported as an algebraic instability byEllingsen
& Palm [44] in the simple case of streamwise indepedent perturbationsto inviscid
constant shear 
ow. Still in the inviscid case, Landahl [70] showed that the in-
tegrals along the streamwise direction of localized perturbations satisfy the same
equations as the streamwise independent perturbations (in�nitelyelongated). He
then showed that the constant growth of the perturbation integral corresponds to
a streamwise spreading of the disturbance, and that the integrated energy grows
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faster than linearly in time.
Most subsequent work deals with viscous 
ows. In wall bounded 
ows, it has

been shown that for largeRe the largest possible ampli�cation due to lift-up scales as
Re2; and is attained after a time scaling as� Re [57, 86, 91]. The dynamics of these
perturbations consists of an initial phase of energy growth due tothe inviscid lift-up
mechanism and a later decay due to viscous di�usion. The spanwise wavenumberkz

corresponding to this largest possible ampli�cation is of order one [86], The situation
changes if instead of focusing on the largest transient growth forall times, one takes
into account the growth rate intensity of the perturbations. Such is the case, for
example, when looking for the most ampli�ed perturbation up to a prescribed time
T: In such case the most ampli�edkz results from the competition between the
inviscid lift up mechanism tending to select small scale strucures e�ciently localized
around the maximum shear, and viscous e�ects damping small scale structure.

The case of inviscid longitudinal perturbations to an arbitrary parallel shear

ow admits very simple solutions in closed form [91]. Concerning the optimal per-
turbation problem, the analytical expression for the optimal energy growth at any
optimization time T has been given by Farrell & Ioannou [48] in the case of in�nite
constant shear 
ow. Their formula has no dependence on the spanwise wavenumber
because there is no length scale associated to an in�nite constant shear 
ow. Other
works dealing with the inviscid limit of optimal perturbations of the lift-up type in
compressible 
ow have relied on numerical computations even for their inviscid ref-
erence cases, as done for example by Hani� & Henningson [58] for boundary layers
and by Malik, Dey & Alam [74] for non-isothermal plane Couette 
ow. Still, to the
authors best knowledge, the problem of the optimal perturbations in the simpler
case of inviscid incompressible 
ow has not been treated in detail in the literature.

Here we solve the problem of the optimal streamwise independent perturbations
for an arbitrary shear 
ow. In section 3.2, we give �rst the solutionfor inviscid lon-
gitudinal perturbations to plane parallel 
ow. We highligth the connection by time
translation among the di�erent elements belonging to a same trajectory in phase
space. We use this connection to reformulate the optimization problem in the whole
phase space to the optimization in a time variable and in a codimension-1subspace.
Solving those optimization problems leads to a di�erential eigenvalue problem in
one dimension, whose solutions allow constructing the orthogonal ensemble of the
optimal and sub-optimal perturbations. In section 3.3 we considerplane Couette
and Poiseuille 
ow as examples, and we provide the exact solutions allowing to con-
struct the optimal perturbations. In section 3.4 we consider the two main classes
of parallel shear 
ows: an in
ectional pro�le with a region with maximum shear
in the 
ow domain, and a wall bounded 
ow with maximum shear at the wall. In
those two broad classes we provide, for largekz; asymptotic estimates of the optimal
ampli�cation and of the localisation width of the optimal perturbation around the
maximum shear.
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3.2 Formulation

We consider in�nitesimal perturbations u = Ref [u; v; w] exp(ik xx + ik zz)g to par-
allel inviscid 
ow U = U(y)ex with shear S(y) = U0. In the case of longitudinal
perturbations kx = 0 the linearised Euler equations reduce to

@tu(y; t) = � S(y)v(y; t); (3.1a)

@tv(y; t) = 0 ; (3.1b)

@tw(y; t) = 0 ; (3.1c)

v0(y; t) + ik zw(y; t) = 0 ; (3.1d)

where the domain isy 2 (y1; y2); the superscript 0 denotesy-derivative and the
boundary conditions are

v(y1; t) = v(y2; t) = 0 : (3.2)

The general solution of (3.1) is

u(y; t) = uo(y) � S(y)vo(y)t; (3.3a)

v(y; t) = vo(y); (3.3b)

w(y; t) = iv 0
o(y)=kz; (3.3c)

whereuo(y) and vo(y) denote, respectively, the streamwise and crosstream velocities
at t = 0. The energy E of solution (3.3) is

E(t) = Eo � Re(huo; Svoi ) t +
kSvok2

2
t2; (3.4)

where

2Eo = kuok2 + kvok2 +
kv0

ok
2

k2
z

; (3.5)

and the inner producthf; g i between any two functionsf and g is de�ned as

hf; g i =
Z y2

y1

f (y)� g(y) dy; (3.6)

where (� )� denotes complex conjugation. The associated normk � k is

kf k2 = hf; f i : (3.7)

We can de�ne a shifted time variable by

�t = t �
Re(huo; Svoi )

kSvok2
: (3.8)

39



In terms of this shifted time variable we can write the energy of any initial condition
(uo; vo; iv 0

o=kz) as

E(t) = �E(�t) = �Eo +
kSvok2

2
�t2; (3.9)

where

2 �Eo = k�uok2 + kvok2 +
kv0

ok
2

k2
z

; (3.10)

�uo = uo � Svo
Re(huo; Svoi )

kSvok2
(3.11)

are respectively the energy and the streamwise velocity at the newtime origin �t = 0
corresponding tot = Re(huo; Svoi =kSvok2); which may be positive or negative. We
stress the di�erent explicit form of the energy in terms of the shifted variable by
writing �E. Note that �Eo � E(t) for all t. Accordingly, k�uok2 is the minimum of
the streamwise kinetic energy during the whole evolution history. Itcan also be
noted that h�uo; Svoi = 0, which means that the streamwise velocity at�t = 0, �uo; is
orthogonal to its time varying part Svot; given by (3.3a).

3.2.1 Reformulating the optimization problem

Consider the problem of computing the optimal perturbation at a �nite time T, that
is

Gopt(T) = max
uo2P

�
E(T)
E(0)

�
; (3.12)

whereP represents the set of all perturbation �eldsuo that satisfy the incompress-
ibility condition (3.1d).

Finding the optimal perturbation involves the identi�cation of the particular en-
ergy evolution that maximizes the energy growth amongst all attainable possibilities
of energy evolution. The optimization problem (3.12) is then equivalent to

Gopt(T) = max
�to 2 R;�uo2S ?

� �E(T + �to)
�E(�to)

�
; (3.13)

meaning that any element ofP can be expressed by a time shift�to and an initial
condition at �t = 0, �uo; in the codimension-1 subspaceS? such that h�uo; Svoi = 0:
Any initial condition uo in (3.12) is now given by�u(�t = �to) passing through�uo in
S? at time t = � �to (now �t = 0) :

We shall now maximize �E(T + �to)= �E(�to). Note �rst that, for �topt realizing the
maximum (3.13), the variation respect to�to should vanish:

@
@�to

E(T + �to)
E(�to)

= 0; (3.14)
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implying that the instantaneous growth rate of the perturbation

� (t) =
1

2E(t)
@E(t)

@t
; (3.15)

should be equal at the initial and �nal times, i.e.1

� (�topt) = � (T + �topt): (3.16)

Condition (3.16) is only a necessary condition. For any element ofS? such that
kSvok 6= 0 ( kSvok = 0 is a trivial stationary solution that is obviously not optimal),
(3.16) is realized for two�to:

�to = �t �
op � �

T
2

�

s �
T
2

� 2

+ � 2; (3.17)

where� =
p

2 �Eo=kSvok2. The optimal initial condition for a given �uo 2 S? is given
by the upper + sign, the � sign corresponding to an evolution interval [�top; �top + T]
in the negative �t domain in which �E(�t) decays (see (3.9)).

Replacing�to ! �t+
op in the optimization problem (3.13) gives

Gopt(T) = max
�uo2S ?

� �Gop

�
(3.18a)

where

�Gop = 1 +
T2

2� 2
+

T
�

s

1 +
�

T
2�

� 2

: (3.18b)

Equations (3.18) show that all the degrees of freedom, i.e. the�uo 2 S? ; enter the
optimization problem through a single parameter�: For a given time horizonT; �Gop

is a decreasing function of� and the optimization problem therefore reduces to �nd
�uo 2 S? that minimizes � . In terms of the components of�uo we have

� 2 =
k�uok2 + kvok2 + k� 2

z kv0
ok

2

kSvok2
; (3.19)

imposing that �uo = 0 for the optimal perturbations (minimizing � ): The optimal
perturbation problem is now reduced to the variational problem of �nding vo that
minimizes� 2. This is a standard variational problem, it can be formulated by writing
� 2 as a function ofvo = vopt + �v; wherevopt is the optimal vo giving � opt = min( � )
and �v is an arbitrary variation. The �rst, �v order in the expansion of� 2 around

1Equation (3.16) can be used as a test for numerical results.
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vopt gives the functional derivative�� 2=�v evaluated atvopt: The optimality condition
imposes that the functional derivative�� 2=�v

�
�
vopt

= 0 for all �v; giving

v00
opt + k2

z

�
� 2S2 � 1

�
vopt = 0: (3.20)

To obtain the �rst term in (3.20) we have integrated by parts and used that �v
satis�es the boundary conditions (3.2), which are also satis�ed byvopt:

Equation (3.20) is the main result of the paper. It is valid for the streamwise
independent optimal perturbations toany shear pro�le S(y) and any optimization
time T: Equation (3.20) is a generalized eigenvalue problem on the `optimal param-
eter' � and the optimal perturbation vopt(y). When (3.20) is satis�ed by vopt; the
optimal � , � opt; is given by

� 2
opt =

kvoptk2 + k� 2
z kv0

optk
2

kSvoptk2
: (3.21)

From the solution of equation (3.20) we �nd the other components of the optimal
perturbation uopt as

uopt(y; t) = S(y)vopt(y)( t + �topt); (3.22a)

wopt(y; t) = iv 0
opt(y)=kz; (3.22b)

where �topt is given directly by (3.17) and� opt as

�topt = �
T
2

+

s �
T
2

� 2

+ � 2
opt: (3.23)

Similarly, the optimal gain for optimization time T is given by (3.18b) as

Gopt(T) = 1 +
T2

2� 2
opt

+
T

� opt

s

1 +
�

T
2� opt

� 2

: (3.24)

From (3.20) it can be thought that vopt satis�es a wave equation which is evanes-
cent when � 2S2 < 1 and oscillatory when� 2S2 > 1. Thus, for (3.20) to have a
non trivial solution satisfying the boundary conditions (3.2), it is necessary that
� 2 > 1

S(ym )2 for ym in some region around the maximum ofS2. This requirement
imposes a lower bound on� such that

� 2 >
1

S2
max

; (3.25)

whereS2
max is the maximum ofS2. Lower bound (3.25) implies an upper bound on

Gopt which is equal to the optimal gain given by Farrell & Ioannou [48] for streamwise
independent perturbations to unbounded constant shear 
ow.
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Equation (3.20) is analogous to the Schr•odinger equation governing the energy
eigenstates of a quantum particle of massm: Indeed, the optimal perturbation vopt

corresponds to the ground state wavefunction of a particle with energy � 1 on an
atractive potential � � 2

optS
2. In this analogy, k2

z is equal to 2m=~2, which indicates
that increasingkz corresponds to decreasing~ or increasing the mass. This suggests
that increasingkz allows for a more concentratedvopt (more localized eigenfunction)
around the maximum of the shear (minimum of the potential� � 2

optS
2). This is in

agreement with what is expected from the lift up mechanism, i.e., thatthe optimal
perturbation will be localized in the region of maximum shear.

The quantum analogy does not provide a full parallel because in the present case
the eigenvalue multiplies the function of the coordinateS(y)2 instead of the function
vopt only, implying that di�erent eigenvalues of a same velocity pro�le correspond to
energy levels (with the same energy) for di�erent quantum potentials. Still, being
in both cases eigenvalue problems of the Sturm-Liouville type [97,§ 5], eq. (3.20)
shares several important properties with the Schr•odinger equation. It is known, in
particular, that for bounded domains2 there are in�nite numerable real eigenvalues
� i , each associated with an eigenfunctionvi . The eigenvalues can be ordered in
ascending order� 0; � 1; � 2; : : : , the index number corresponding to the quantity of
nodes of the respective eigenfuction. The parameters of the optimal perturbation
are then given byvopt = v0 and � opt = � 0: Finally, the eigenfunctionsvi form an
orthogonal set with respect to the weight functionS2 so that, after normalization, we
havehvi S; vj Si = � ij : This provides an orthonomal basis (in the energy related inner
product (3.6)) for the time dependent part ofu: This orthonormal base contains
the optimal and all the sub-optimal perturbations. The base formed by the set
u i = ( Svi ; 0; 0) is orthogonal and, altough incomplete, it spans the range of the
evolution operator for any initial condition vo: It thus provides the non trivial part
of the singular value decomposition, the rest of the space has no time dependence
and can be span by any orthogonal base.

2One could expect that in the present case this is also true for in�nitedomains, at least when
the shear is localized in a �nite region. In that case, solutions in the quantum analogy correspond
to bound states in a potential well (given by the shear region) whose depth increases with�: Thus,
where a quantum well potential provides a �nite set of bound states depending on the depth of
the well [see for example 71, problem 2 in§ 22], a similar localised shear problem should provide
in�nite eigenfunctions because the `potential well' becomes deeperas the eigenvalue� n increases
with n.
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3.3 Base 
ow examples:
Couette and Poiseuille 
ow

3.3.1 Couette

We consider plane Couette 
ow in the regiony 2 [0; 1]: For plane Couette 
ow the
shear rateS is constant and (3.20) has in�nite solutions of the form

vn� 1 = sin ( n�y ) (3.26a)

� 2
n� 1 =

1
S2

�
1 +

n2� 2

k2
z

�
(3.26b)

for n = 1; 2; : : : ; 1 : The optimal crosstream velocityvopt = v0 is then obtained
by evaluating (3.26a) at n = 1: Similarly, the eigenvalue leading to the optimal
ampli�cation is given by

� opt = � 0 =
1

jSj

s

1 +
�

�
kz

� 2

; (3.27)

which, after replacing in (3.24), yields the optimal gain at timeT

Gopt(T) = 1 +
T2S2 + TjSj

p
T2S2 + 4(1 + � 2)

2(1 + � 2)
; (3.28)

where
� =

�
kz

; (3.29)

is half the spanwise wavelength of the perturbation. From (3.22a),the optimal
initial streamwise velocity is given by

uopt

�
�
�
t=0

= Svopt

"
T
2

�
�

1 + � 2

S2
+

T2

4

� 1=2
#

: (3.30)

Equation (3.30) is similar to the expression given by Farrell & Ioannou[48, see
their equation (19)] for the optimal initial condition in the constant shear case.
Their expression within square brackets reduces to ours if one sets their crosstream
wavenumber to satisfy the boundary conditions forv: However, they do not give
explicitly the ratio between the amplitudes of the di�erent components of the 
ow,
so a full comparison with their solution can not be directly made. Still, the corre-
spondence of the two square brackets con�rms, up to a multiplicative constant, the
dependence ofuopt

�
�
t=0

on the di�erent parameters.
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3.3.2 Poiseuille

We consider plane Poiseuille 
owU(y) = 1 � y2 for y 2 [� 1; 1]: Equation (3.20) can
be written as

v00+ (�y2 � � )v = 0; (3.31a)

after change of variables

�y =
p

2�k zy; (3.31b)

� =
kz

2�
; (3.31c)

and the boundary conditions are

v
�
�

�y= �
p

2�k z
= 0: (3.31d)

The even solutions of (3.31a), such thatv(�y) = v(� �y); are given by

v(�y) = e� i �y2=2
1F1(�

i
4

(i + � );
1
2

; i �y2); (3.32)

where1F1(a; b; z) is the con
uent hypergeometric function of the �rst kind [1]. The
� 2n for eachkz are obtained parametrically as

� 2(n� 1) =
�n

2
p

�
(3.33a)

kz = �n
p

� (3.33b)

where�n is the n-th zero of1F1(� i
4(i + � ); 1

2; i �y2): The �rst zero �1 has been computed
with MATHEMATICA ® , allowing for the computation of the optimal gain.

Figure 3.1 shows the optimal gain for optimization timeT = 0:1 as a function
of kz for this inviscid case, as presently given using (3.33), and for the viscous
case computed directly by numerically solving the singular value decomposition
for di�erent Reynolds numbers by Soundar, Chomaz & Huerre ([94],details of the
numerical procedure in their paper). As Reynolds numberRe increases, the optimal
gain increases and the correspondingkz also increases, approaching the inviscid curve
computed presently.
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Figure 3.1: Optimal gain for Poiseuille 
ow andT = 0:1: The thick black line shows
the present inviscid result obtained from (3.24) and (3.33). The� ; � and · symbols
correspond to the optimal gain for viscous 
ow at Reynolds numbers as speci�ed on
the �gure, courtesy of Jon Soundar [94]. The dashed line distinguishable from the
exact solution (thick black line) for kz . 10; shows the asymptotic estimate of the
optimal gain obtained from (3.62) evaluated up to order� 4=3:

3.4 Large kz estimates

3.4.1 In
ectional shear 
ow in in�nite domain

Consider the case of an in�nite domain where the shear is maximum at ay location
taken to be y = 0: Then S2 can be approximated around that maximum as

S2(y) � S2
o + SoS00

oy2 (3.34)

whereS2
o and S00

o are respectively the value ofS2 and the second derivative ofS at
y = 0, and SoS00

o < 0 so that S2
o is maximum. Replacing the approximation (3.34)

into (3.20) yields
� v00+ � 2k2

z jSoS00
o jy2v = k2

z(� 2S2
o � 1)v; (3.35)

where we have omitted the subscript (�)opt. This equation (3.35) can be identi�ed
with the Schr•odinger equation for a quantum particle with massm in a harmonic
potential m! 2y2=2

�  00+
m2! 2

~2
y2 =

2mE
~2

 ; (3.36)
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where is the wave function and the eigenvalueE is the energy of the corresponding
eigenstate. Equation (3.36) is the same as (3.35) after the corresponding identi�ca-
tions

m2! 2

~2
$ � 2k2

z jSoS00
o j; (3.37a)

2mE
~2

$ k2
z(� 2S2

o � 1) (3.37b)

and
 $ v: (3.37c)

Equation (3.36) is treated in standard quantum mechanics textbooks [11]. It is
known to have solutions satisfying the boundary conditions (�1 ) = 0 (strictly
valid here when the 
ow is unbounded) when

E
~!

= n +
1
2

; (3.38)

for n = 0; 1; 2; : : : etc. Using the identi�cation (3.37), equation (3.38) reads

kzp
jSoS00

o j

�
�S 2

o �
1
�

�
= 2n + 1: (3.39)

Solving the quadratic equation (3.39) for� > 0 yields

� n =
� m

jSoj

�
n +

1
2

�
+

1
jSoj

s

� 2
m

�
n +

1
2

� 2

+ 1 (3.40)

where

� m =
1

jkzj

s
jS00

o j
jSoj

: (3.41)

For n = 0, (3.42) gives an estimate of� 0 for large kz (or � m � 1)

� 0 =
� m

2jSoj
+

1
jSoj

r
� 2

m

4
+ 1; (3.42)

which yields an estimate forGopt:
The circles (ž ) in �gure (3.2) show the optimal gain for T = 7 as a function

of kz for a tanh pro�le U(y) = tanh( y); computed numerically as described in
chapter 2. The continuous line shows the corresponding estimate given by (3.42)
with � m =

p
2=jkzj (corresponding to (3.41) forU(y) = tanh( y)) replaced into (3.24).

The estimate (3.42) provides the good asymptotic behaviour of theoptimal gain as
kz ! 1 :
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Figure 3.2: Optimal gain for T = 7 for an in
ectional 
ow. The circles show the
optimal gain for an inviscid tanh pro�le and the line the estimate from (3.42). Note
that the kz-axis has been cut at lowkz for a better vertical resolution.

The full solution of (3.35) is given by the corresponding set of eigenfunctions

vn = Hn (
 ny)e� 
 2
n y 2

2 (3.43a)

where

 n =

p
� n jkzSoS00

o j (3.43b)

and Hn is the Hermite polynomial of degreen [1]. For n = 0 we have that the
optimal perturbation vopt reduces to a Gaussian

vopt � v0 = e�

 2

0 y 2

2 ; (3.44a)

where


 0 =

 
jS00

o j
2jSoj

+

s
S002

o

4S2
o

+ k2
z
jS00

o j
jSoj

! 1=2

: (3.44b)

Expressions (3.44) provide the asymptotic localisation of the eigenfunction around
the in
ection point (maximum of S2) as kz ! 1 : Indeed, forkz ! 1 , (3.44b) goes
ask1=2

z (jS00
o=Soj)1=4 and the optimal perturbation in the limit becomes

vopt � exp

 

�
1
2

s
jS00

o j
jSoj

kzy2

!

; (3.45)
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Figure 3.3: vopt for an in
ectional (tanh( y)) pro�le and kz = 6:28 (dash-dotted line),
kz = 12:6 (dashed line),kz = 25:1 (continuous black line) andkz = 50:3 (dotted
line). (a) vopt(y) showing the localization of the optimal perturbations around the
maximum of shear. The di�erent perturbations are normalized so that all optimal
initial conditions have the same energy. (b) Samevopt as in (a) but normalized (such
that vopt

�
�
y=0

= 1) and plotted as a function ofyk1=2
z (jS00

o=Soj)1=4: The grey line shows
vopt as given by (3.45).

implying that the optimal perturbation becomes increasingly localizedin a region
whose width scales ask� 1=2

z :
Figure 3.3(a) showsvopt(y) for the tanh pro�le (same as in �gure 3.2) and for

di�erent kz: It can be observed that the optimal perturbations indeed becomein-
creasingly localised aroundy = 0 as kz increases. Figure 3.3(b) shows the same
vopt as in 3.3(a) but normalized and plotted as a function of the rescaled coordinate
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k1=2
z (jS00

o=Soj)1=4y; and also the limiting optimal perturbation given by (3.45) (grey
line). It can be seen that (3.45) constitutes a remarkably good approximation of
the computed vopt; becoming increasingly accurate askz increases. These results
support the pertinence of the local approximation considered here.

The present estimate may be turned into a full asymptotic solution by introduc-
ing an inner layer around the in
ection point scaling ask� 1=2

z where the solution
is given by (3.43), matched with two surrounding outer layers wherethe solution
is evanescent. This solution should become a good approximation around the in-

ection point even in a con�ned domain (provided the maximum is not close to a
wall).

3.4.2 Bounded 
ow with maximum shear at a wall

Consider now the domainy 2 [0; 1 ) and that S2(y) has its maximum at y = 0.
Close to the boundary,S2 can be approximately written as

S2(y) � S2
o + 2SoS0

oy; (3.46)

whereSoS0
o < 0. Replacing (3.46) into (3.20) yields

v00� (ay � b)v = 0 (3.47)

where
a = 2k2

z � 2jSoS0
oj (3.48)

and
b= k2

z(� 2S2
o � 1): (3.49)

Equation (3.47) is subject to the boundary conditionsv(0) = 0 and v(1 ) = 0.
Replacing into (3.47) the rescaled coordinate

Y � a1=3y (3.50)

yields

v00�
�

Y �
b

a2=3

�
v = 0: (3.51)

Introducing now the shifted coordinate

�Y = Y �
b

a2=3
(3.52)

allows to write the problem in the standard form

v00� �Y v = 0; (3.53)
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and the boundary condition aty = 0 reads now

v

�
�
�
�

�Y = � b
a2=3

= 0: (3.54)

Equation (3.53) can be solved in terms of Airy functions Ai(�Y) (Abramowitz, Ste-
gun, page 446). The Airy function Ai(�Y) decays monotonically to zero when�Y > 0
and is oscillatory for �Y < 0. To satisfy the boundary condition at the wall (3.54),
it is needed that � b=a2=3 be a zero of Ai(�Y), i.e.

(� 2S2
o � 1)3 = � 4� 3

n � 2� 2S2
o; (3.55)

where

� 2 �
S02

o

S2
ok2

z
(3.56)

and � n < 0 is then-th zero of the Airy function. Condition (3.55) is a cubic equation
for � 2 whose roots can be found by standard formulas, yielding the discrete set of
eigenvalues

(� nSo)2 = 1 +
� n

3
+

� n (6 + � n)
3D(� n)

+
D(� n )

3
; (3.57)

where
� n = � 4� 3

n � 2 (3.58)

and

D(� ) �
�

27
2

� + 9� 2 + � 3 +
3
2

�
p

3(27 + 4� )
� 1=3

: (3.59)

It is however more instructing to consider the perturbations of the limiting solution
� 2S2

o = 1 at the large wavenumber limit � 2 = 0. The leading order correction can
be found by writing � 2S2

o = 1 + �� 
 into (3.55) leading to

� 3� 3
 = � 4� 3
n � 2(1 + 2�� 
 + � 2� 2
 ): (3.60)

To balance the equation at leading order in� we must have
 = 2=3. We then have
an equation for�

� 3 = � 4� 3
n (1 + 2�� 2=3 + � 2� 4=3) (3.61)

which can be solved as a series in powers of� 2=3. After solving for the 3 leading
order terms of this� expansion we have

� 2S2
o = 1 +

�
� 4� 3

n � 2
� 1=3

+
2
3

�
� 4� 3

n � 2
� 2=3

+
1
3

(� 4� 3
n � 2) + O(� 8=3); (3.62)

where it should be remembered that� n < 0. The dashed line in �gure 3.1 shows
the estimate of the optimal gainGopt obtained from the �rst three terms of (3.62).
The agreement is strikingly good forkz & 10:
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Regarding the localization of the perturbation near the wall, one canreplace the
leading order solution of� on the coordinate rescaling parametera given in (3.48)
giving

a =
jS0

oj
2jSoj

k2
z + O(k2=3

z ): (3.63)

Recall that the rescaling in (3.50) is given bya1=3, which at leading order when
kz ! 1 becomesa1=3 ! (2jS0

oj=jSoj)1=3k2=3
z : Thus, in this case of maximum shear

at a wall, the inviscid optimal perturbations localize in an inner layer scaling like
k� 2=3

z asymptotically askz ! 1 :

3.5 Conclusion

We have formally solved the optimal perturbation problem for streamwise indepen-
dent perturbations to arbitrary inviscid parallel 
ow. An important aspect in this
derivation was the use of time invariance. For every problem invariant under time
translation (stationary), the optimisation over all initial conditions can be split in an
optimization over an initial time to which satis�es (3.16), and an optimisation on a
subspace of codimension 1: In this inviscid case, the �E(�t) = �E(� �t) symmetry of the
energy evolution further constrains the possibilities for energy evolution, simplifying
the resulting expressions.

It turns out that, for a given base 
ow pro�le and spanwise wavenumber kz;
the maximum ampli�cation for any optimization time T depends on a single real
parameter�: We have provided the expression of the optimal gainGopt(T) as a func-
tion of �; which appears as the eigenvalue in an eigenvalue problem that also yields
the shape of the optimal perturbation and all the sub-optimal perturbations. The
eigenvalue problem was solved to provide exact analytical solutions for the inviscid
streamwise independent optimal perturbations for plane Couetteand Poiseuille 
ow.

Asymptotic approximations in the limit kz ! 1 were provided in two generic
cases: in
ectional shear and wall bounded shear with the maximum at the wall. For
in
ectional shear (with a maximum within the domain),the thickness ofthe optimal
perturbation scales ask� 1=2

z ; becoming increasingly localized at the in
ection point.
For maximum shear at a wall,the localization of the optimal perturbation at the
maximum of the shear is stronger, the thickness scaling ask� 2=3

z :
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Chapter 4

Transient perturbation growth in
time-dependent mixing layers

Crist�obal Arratia, Colm-Cille Caul�eld, Jean-Marc Choma z
Article submitted to Journal of Fluid Mechanics

Abstract

We investigate numerically the transient linear growth of three-dimensional per-
turbations in an homogeneous time-evolving mixing layer, which perturbations are
optimal in terms of their kinetic energy gain over a �nite, predetermined time in-
terval. We model the mixing layer with an initial parallel velocity distribution
U (y) = U0 tanh(y=d)ex with Reynolds numberRe = U0d=� = 1000, where� is the
kinematic viscosity of the 
uid. We consider a range of time intervals on both a
constant `frozen' background 
ow and a time-dependent two-dimensional 
ow as-
sociated with the growth and nonlinear saturation of the most-unstable eigenmode
of linear theory of the initial parallel velocity distribution, which rolls up into the
classical Rayleigh instability commonly referred to as a `Kelvin-Helmholtz' (KH)
billow. For short enough times, the most ampli�ed perturbations on the frozen tanh
pro�le are inherently three-dimensional, and are most appropriately described as
`oblique wave' perturbations which grow through a subtle combination of the Orr
and lift-up mechanisms (and hence we refer to these as `OL' perturbations), while for
longer times, the optimal perturbations are two-dimensional, the optimal response
being very similar to the KH normal mode, with a slight enhancement ofgain due
to enhanced energy extraction from the mean shear through theOrr mechanism.
For the time-evolving KH base 
ow, OL perturbations continue to dominate over
su�ciently short time intervals. However, for longer time intervals, which involve
substantial evolution of the non-parallel primary KH billow into isolated elliptical
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vortices, two broad classes of inherently three-dimensional linearoptimal perturba-
tion arise, associated at low wavenumbers with the well-known core-centred elliptical
translative instability, and at higher wavenumbers with the braid-centred hyperbolic
instability. The `hyperbolic' perturbation is relatively ine�cient in explo iting the
gain of the OL perturbations, and so only dominates the smaller wavenumber (ulti-
mately) core-centred perturbations when the time evolution of the base 
ow or the
start time of the optimization interval does not allow the OL perturbations much
opportunity to grow. When the OL perturbations can grow at relatively small span-
wise wavenumber on a time-evolving 
ow, they initially grow in the braid,and then
trigger an elliptical core-centred perturbation by a strong coupling with the primary
KH billow.

4.1 Introduction

Gaining an understanding of the mechanisms by which initially laminar 
ows un-
dergo the transition to disordered turbulent motion is one of the fundamental chal-
lenges of 
uid dynamics research. A particularly important archetype 
ow is the
so-called mixing layer, where the 
uid has initially a vertical, (`cross-stream') in
ec-
tional and monotonic variation in streamwise velocity, due for example to viscous
di�usion of a step-change in velocity some distance downstream of asplitter plate.
Provided the 
ow's Reynolds numberRe = Ud=� is su�ciently large (where U is
some characteristic scale of the streamwise velocity which varies over a characteristic
vertical (or equivalently cross-stream) distanced, and � is the kinematic viscosity of
the 
uid) it is very well-known that this 
ow is susceptible to a strong primary insta-
bility, commonly referred to as the Kelvin-Helmholtz (KH) instability, t hough in an
unstrati�ed 
ow where the mixing layer has a �nite depth and an in
ectional veloc-
ity pro�le, it is perhaps more appropriate to refer to the instability as a `Rayleigh'
instability (see for example Drazin & Reid [42] for a fuller discussion).

The primary instability manifests itself at �nite amplitude as a two-dimensional
train of elliptical spanwise vortices, (centred on elliptical stagnation points) which
`roll up' from the initial strip of spanwise vorticity, and are connected by `braid'
regions of high strain and depleted (spanwise) vorticity, in turn centred on hyper-
bolic �xed points. These primary instabilities have been observed in experiment
(e.g. Brown & Roshko [20]) and numerical simulation (Metcalfe et al. [78]) and are
known to be strongly subject to subharmonic merging quasi-two-dimensional insta-
bilities which lead to an increase in depth of the mixing layer (Winant & Browand
[103]). However, it appears that they are merely an intermediate stage in the ap-
proach of a 
ow to the `mixing transition' (see Dimotakis [40] for a review) which
seems to require the development of some secondary, inherently three-dimensional
`instability', which upon growth to �nite amplitude and interaction with t he primary
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billow train leads to a break down to small scale motions, and a marked increase
in dissipation characteristic of turbulent motion. In this paper, we focus on these
(experimentally-observed) three-dimensional perturbations, and deliberately �lter
out the complicating e�ect of subharmonic merging instabilities by restricting the
time-dependent 
ow to a streamwise extent equivalent to the wavelength of the most
unstable KH `billow'.

There have been two main candidates proposed for this secondaryinstability
which allows the transition to turbulence. Since the primary KH `billows'are ellip-
tical (and centred on elliptical stagnation points of the 
ow) and are a�ected by the
strain �eld associated with their neighbours, it has often been hypothesized that they
may be subject to a relatively low-wavenumber, inherently three-dimensional `ellip-
tical instability' of a strained elliptical vortex (see Pierrehumbert & Widnall [85];
Bayly [14]; Wale�e [101]; and Kerswell [67] for a comprehensive review). Although
numerical simulations do show evidence of core-centred perturbations, the most no-
ticeable three-dimensional structures in both experiment and numerical simulations
are relatively higher wavenumber `rib vortices' (see Hussain [65] foran early review)
i.e. `thin' essentially streamwise-aligned braid-centred vortices that wrap around
the primary billow cores. This apparent mismatch in the initial growth location and
the �nite amplitude manifestation for these rib vortices was initially a major point
of concern for theoreticians.

Pierrehumbert & Widnall [85] had identi�ed a core-centred instability (which
they referred to as the `translative instability' due to the fact that this instability
is characterised by a periodic shift of the vortical core) on a periodic row of Stuart
vortices and speculated as to their relevance for the streamwise vortices observed
in mixing layers. The fact that the translative instability is localized in the vortex
cores led Corcos & Lin [33] to speculate about a di�erent mechanism:\ ... it is likely
that the strong streamwise vorticity that appears and persists in the central part of
the braids, and which is responsible for the streamwise streaks... is caused early on
by the original (three-dimensional) shear instability rather than by the translative
instability, and thereafter lives a fossil life." That the dynamics of the initial stages
of the 
ow could play a role on the later development of the mixing layeris stressed by
Corcos & Lin [33]: \Either nonlinear interactions of waves of neighbouring spanwise
wavenumber (particularly di�cult to study numerically over a �nite domain) or the
competitive advantage given by particular initial conditions may lead to a selective
mechanism." A precise assessment of these conjectures was di�cult at that time.
Subsequent research for mechanisms causing the observed three-dimensional features
of shear layers have focused mainly on secondary instabilities present on the fully-
developed KH billows; this program succeeded in �nding various unstable modes
and instability mechanisms.

Of particular signi�cance was the secondary stability analysis of Klaassen &
Peltier [68]. Under the (strong) assumption that the primary billow 
ow is com-
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pletely frozen in time, Klaassen & Peltier [68] showed that the billow wassuscepti-
ble to another secondary three-dimensional `hyperbolic' instability, at substantially
smaller wavelength than the elliptical instability and centred on the braid region
between neighbouring billow cores. Another distinguishing characteristic between
the two instabilities is that the elliptical instability, associated as it is with periodic
de
ections of the primary billow core, is associated with substantialspanwise per-
turbation vorticity, while the hyperbolic instability is associated with substantial
vertical (cross-stream) and streamwise perturbation vorticitybetween neighbouring
primary billow cores.

Numerical simulation (for example Rogers & Moser [88]; Caul�eld & Peltier
[29], who also con�rmed the analysis of Klaassen & Peltier [68] at higherresolution)
suggest strongly that both elliptical and hyperbolic instabilities can occur within the
evolving 
ow. Yet at �nite amplitude, the `rib' streamwise-aligned vortices appear to
be braid-centred. Therefore, there is a strong suggestion thathyperbolic instabilities
play the key role in transition. Nevertheless, since the primary billowsare indeed
susceptible to `elliptical' or `translative' instabilities, there is every chance that the
complicated interactions conjectured by Corcos & Lin [33] may well occur. Indeed,
numerical simulations show that perturbations in the braid lead to streamwise-
aligned rib vortices and substantial perturbation of billow core, andin some way
the combination leads to transition, leading Rogers & Moser [88] to argue that:
\ While it may be useful, in attempting to understand the translative instability,
to distinguish between instability mechanisms that are localized to the roller cores
or the braid region, the results discussed above make it clear that perturbations in
the core and braid grow together. Therefore, in interpreting results of experiments
or simulations, the three-dimensional instability shouldbe considered to be a global
instability of the entire 
ow. "

However, the central `frozen-in-time' assumption of the analysispresented by
Klaassen & Peltier [68] is not completely supported by evidence from numerical
simulations. If seeded with a small-amplitude initial perturbation, theprimary bil-
low instability does indeed saturate at �nite amplitude, after a periodof close to
exponential growth. Even in the absence of merger, the primary billow is by no
means steady, but undergoes quasi-periodic oscillations, with energetic exchange
between the base 
ow and the perturbation. Therefore, it is important to consider
the inherent time-dependence of the underlying 
ow in the development of three-
dimensional perturbations, particularly in considering the growth of perturbations
over a �nite time interval. Furthermore, from such frozen-in-timeanalyses it is nat-
ural to think of elliptical and hyperbolic instabilities as instabilities of the saturated
primary billow, with the billow acting as a `catalyst' for their onset. But in reality
the primary billow takes a certain amount of time to `roll-up' to its saturated state,
and so a natural open question is the extent to which signi�cant perturbations can
grow on a time-evolving base state, as it is at least possible that these perturba-

56



tions might be growing right from when the 
ow is organised as a simple,essentially
parallel in
ectional shear 
ow.

Naturally, considering such problems of the development of perturbations on a
time-evolving underlying 
ow is further complicated by the inherent non-normality
of the linearised Navier-Stokes operator. Because of this, it is well-known that the
energy of the perturbations can grow transiently (i.e. over a �nitetime interval)
on a stationary background 
ow even in the absence of a primary `normal mode'
instability, or alternatively at a rate transiently larger than the underlying normal
mode growth rate, and the development of non-modal stability theory (see Schmid
[90] for a review) allows the investigation of the role of initial conditions over �nite
time intervals in a time-varying base state in a systematic way. Indeed, there is evi-
dence from simple models of the braid region, as presented by Caul�eld & Kerswell
[28], that the hyperbolic instability is particularly suited to transient growth, and
recently, Ortiz & Chomaz [83] have identiti�ed a new possible growth mechanism
for braid-like regions, which they relate to the `anti-lift-up' mechanism previously
described by Antkowiak & Brancher [4].

From a physical viewpoint, there are two natural mechanisms whichhave been
identi�ed as causing (energetic) transient growth of perturbations in shear 
ows,
known as the Orr mechanism (as originally presented by Orr [82]) and the lift-up
mechanism (see Ellingsen & Palm [44], Landahl [70]). The Orr mechanism involves
counter-rotating vortices which are parallel to the base 
ow's (and hence spanwise)
vorticity being tilted into and against the mean shear and hence ampli�ed by the
base shear via the working of the Reynolds stress. This mechanism ise�cient at
relatively high streamwise wavenumbers (i.e. small scales) on short time scales as
demonstrated by Butler & Farrell [25]. On the other hand, in the lift-up mech-
anism, streamwise vortices interact with the basic shear to generate streamwise
perturbation velocity. As shown by Butler & Farrell [25], this mechanism operates
at somewhat smaller wavenumbers, and on somewhat larger time scales. Naturally,
in an intermediate range of either wavenumber or time interval, combinations or
`mixtures' of these two growth mechanisms can occur, as discussed for example by
Gu�egan, Huerre & Schmid [56].

Much of the focus of research into `optimal' transient growth (i.e. the identi�-
cation of perturbations which have the largest relative growth in their perturbation
kinetic energy or gain over some �nite time interval) has been on 
owssuch as
plane Couette 
ow or pipe 
ow where there is no linear instability, or channel 
ow
where the linear instability onsets at a much higher Reynolds number than tran-
sition is observed to occur in experiment and simulations. In such circumstances,
the transiently growing perturbations will clearly dominate the 
ow evolution. On
the other hand, if there are unstable `normal' modes, it is not immediately obvious
what role, if any is played by transient perturbations (utilising the Orr mechanism,
the lift-up mechanism, or indeed some mixture of the two) in the 
ow evolution.
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The conventional picture (consistent with experimental and numerical evidence) is
that the 
ow will be ultimately dominated by the most-unstable (eigen) mode of
linear theory. However, it is not at all clear how long this process takes, and it is at
least conceivable that an appropriately chosen initial perturbationmay grow very
rapidly, at least over a short time. Such a transient perturbation,allowed to develop
to �nite amplitude, and thus to modify the base 
ow in a nontrivial manner, may
actually preclude the development of the primary KH billow, leading potentially to
a kind of `bypass' transition with no primary instability development.

In summary, there are therefore three key open questions of interest. Firstly,
are the previously-identi�ed elliptical and/or hyperbolic instabilities `optimal' per-
turbations of an in
ectional shear layer in any sense? Secondly, what is the role of
the time-dependence of the evolving billow in the development of optimal growing
perturbations? In particular, do elliptical and hyperbolic instabilities rely funda-
mentally on the primary billow being fully saturated, or can they grow as the pri-
mary billow rolls up? And thirdly, how relevant are the simple idealized pictures
of modal instability and physical growth mechanisms to the actual development of
perturbations within an in
ectional shear layer 
ow?

These questions will be addressed in this paper using the tools of non-modal
stability analysis (as discussed in detail in the review of Schmid [90]). Inparticu-
lar a linearized time-stepping Navier-Stokes equation solver and its adjoint will be
`looped' and hence iterated mutiple times to identify the properties of the `optimal'
linear perturbation (in the sense that the relative gain of the kineticenergy of the
perturbation is maximised over some time interval). This power iteration looping
method is very well suited to the problem at hand, as this method canstraightfor-
wardly embed the properties of a time-evolving base state in the equation solvers
(both direct and adjoint) which are used. Indeed, with an evolving base 
ow, there
is an interesting mathematical subtlety to do with the fact that notonly the length
of the time interval over which optimization of gain occurs is important, but also the
chosen start time (in the evolution of the base state) is signi�cant to the secondary
perturbations.

This paper is organised as follows. After brie
y introducing the (largely now
conventional) mathematical formulation and algorithm in section 4.2,focussing on
the implications of using a time-evolving base 
ow state, we �rst consider transient
perturbation growth (over a wide range of optimizing time intervals)on an initial hy-
perbolic tangent frozen in time by the application of a body force. Insection 4.3, we
focus in particular on identifying the time interval over which the conventional KH
instability mode is not the optimal response. Having considered transient perturba-
tion growth on the steady hyperbolic tangent base 
ow, we generate a time-evolving
two-dimensional single KH billow at su�ciently high Reynolds number to grow to
a non-trivial �nite amplitude. In section 4.4 we then consider transient perturba-
tion growth on this time-evolving, non-parallel billow base 
ow over a range of time
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intervals. We classify and characterise the predicted optimal perturbations both in
terms of energy within core, and also the relative size of components of enstrophy.
This compartmentalization of the enstrophy is very useful to interpret the proper-
ties of the (in general) three-dimensional perturbations, and to identify any possible
connection to the previously-predicted elliptical and hyperbolic instabilities, as well
as the crucial physical growth mechanisms. In section 4.5 we then also consider the
importance of the chosen start time of the optimization time interval relative to the
time-evolution of the primary KH billow on the `optimal' perturbation, discussing
the possible signi�cance of the of the `anti-lift-up' mechanism described in Ortiz &
Chomaz [83] for initial perturbation growth in the braid. Finally, in section 4.6 we
draw our conclusions, and present suggestions for future work,particularly consid-
ering the possible use of full nonlinear direct numerical simulations toinvestigate
the �nite amplitude evolution of the identi�ed `optimal' perturbations .

4.2 Mathematical formulation

We consider the linear evolution of perturbationsup to a base 
owU (t) under the in-
compressible Navier-Stokes equations. The base 
owU = ( U(x; y; t); V(x; y; t); 0)T

is restricted to (at most) two dimensions, while the perturbationup is allowed to
evolve in three dimensions. We choose a coordinate system so thatx is in the
streamwise direction,y is in the vertical (or equivalently cross-stream) direction,
and z is in the spanwise direction. Scaling the 
ow variables with the characteristic
velocity scaleU and the shear layer length scaled (mentioned in the introduction) to
de�ne the Reynolds number, the nondimensional linearized Navier-Stokes equations
are thus

@up

@t
+ ( U (t)�r )up = �r pp � (up�r )U (t) + Re� 1r 2up; (4.1a)

r � up = 0: (4.1b)

The boundary conditions are periodic inx and z; with up and r pp tending to zero
when jyj ! 1 :

Formally, the calculations of solutions to the governing equations (4.1) may be
thought of as a propagator of the (perturbation) velocity �eld from some initial time
t i to some �nal time t f , i.e.

up(t f ) = � � (t f ; t i )up(t i ) (4.2)

where the sub-index� represents the parameters, the Reynolds number and the
geometry (and perhaps discretization in practice) of the 
ow domain under consid-
eration. We are thus interested in the optimization of the gainG(�; T; T 0) de�ned
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as

G(�; T; T 0) �
E(�; T )
E(�; T 0)

=
hup(T); up(T)i
hup(T0); up(T0)i

(4.3a)

=
h� � (T; T0)up(T0); � � (T; T0)up(T0)i

hup(T0); up(T0)i
(4.3b)

=
hup(T0); � y

� (T; T0)� � (T; T0)up(T0)i
hup(T0); up(T0)i

; (4.3c)

where angled brackets denote the conventional inner product yielding the energyE;
and the superscripty denotes theadjoint such that

hud; � � upi = h� y
� ud; upi ; (4.4)

for all ud and up: Without loss of generality, we normalise the inner product so that
E(�; T 0) = 1 :

It can be easily seen that the adjoint of the propagator �y� (T; T0) corresponds to
the propagator of the adjoint equations fromT to T0: (For time dependent equations,
this can be directly shown by taking the adjoint of the propagator as given in the
equation (4) of Farrell & Ioannou [47].) It is straightforward to establish (see for
example Hill [64], Donnadieuet al. [41]) that the adjoint equations of (4.1) are

@ud

@�
= 
 (� � ) � ud � r � (U (� � ) � ud) � r pd + Re� 1r 2ud; (4.5a)

r � ud = 0: (4.5b)

In these equations� = � t, 
 = r � U , ud is the adjoint velocity variable, pd is
the equivalent `pressure' adjoint variable enforcing incompressibility, the boundary
conditions are the same as for (4.1), and the initial condition according to (4.3c)
is ud(T) = � � (T; T0)up(T0): As is commonly understood, due to the integration
by parts that is implicit in the de�nition of the adjoint, the relative sign s of the
time derivative and the Laplacian are di�erent for the direct and theadjoint Navier-
Stokes equations, implying that the adjoint equations are well-posed when integrated
backwards in time. It is also clear that even if the propagator �� is not self-adjoint,
the combination � y

� � � is self-adjoint. The optimal perturbation is that which attains
the maximum gain

Gmax (�; T; T 0) = max
u p (T0 )

fG(�; T; T 0)g; (4.6)

where the maximisation is over all choices of initial conditionsup(T0). Since the oper-
ator � y

� � � is self-adjoint this maximum is given by its leading eigenmode. Through-
out this paper we will set the central 
ow parameterRe = 1000, which is su�ciently
large to ensure that the primary instability rolls up into a �nite amplitud e, energetic
billow.
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These adjoint equations can be solved using a straightforward modi�cation of
a pseudo-spectral DNS code with an Adams-Bashforth time scheme (as previously
described and utilised by Donnadieuet al. [41]). In particular, the central point
arising from the integration by parts that the Laplacian operator has an opposite sign
(and hence that the adjoint propagator is well-posed when integrating backward
in time) is very simple to implement computationally. The iterative optimization
algorithm essentially relies on power iteration (see Schmid [90] for more details).
A guess for the initial conditionsu0 is integrated forwards in time fromt = T0 to
the target time t = T using the (forward) propagator � � . The �nal state uT is
then used as the `initial' conditions for the adjoint propagator �y� , which is then
integrated `backward' in time from T to T0. This `�nal' state (after appropriate
rescaling, see for example (4.11)) is then used as the initial conditionfor the next
loop of this iteration. Multiple iterations of this entire loop will naturally lead to
the solution being dominated by the eigenfunction of the (combined)operator � y

� � �

associated with the eigenvalue with the largest real part. This leading eigenmode of
course corresponds (up to scaling) to the initial perturbation which has the largest
gain over the target time interval.

4.3 Transient response of a frozen parallel hyper-
bolic tangent shear 
ow

4.3.1 Base 
ow and decomposition of perturbations

As discussed in the introduction, the �rst problem we consider is thetransient
growth of in�nitesimally small perturbations on a steady parallel in
ectional shear

ow. We consider a tanh pro�le

U (y) = tanh( y)ex ; (4.7)

as an appropriate choice for this parallel base 
ow. Due to the factthat the 
ow we
consider has �nite di�usion (with Re = 1000), over time such a pro�le will spread
vertically (or equivalently cross-stream). Therefore, for the base 
ow (4.7) to be a
solution to the governing equations, we formally add a body force

F = � Re� 1 tanh(y)00ex ; (4.8)

to the full Navier-Stokes equations so thatU (y) = tanh( y)ex is actually a solution.
This is done in classical stability studies (Drazin & Reid [42]) and yields (4.1a)
without a source term from base 
ow di�usion. Therefore, the perturbations are
evolving in a 
ow with �nite Re, but the base (parallel) 
ow U (y) de�ned by (4.7)
is `frozen'.
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Because the governing equations (4.1) with the base 
ow (4.7) havecoe�cients
with no dependence onx and z; we can spectrally decompose the perturbations as

[up; pp](x; y; z; t) = Re
�
[u; p](y; t)ei (kx x+ kz z)

�
: (4.9)

We can then compute they-dependent eigenfunctions [u; p] independently for each
(kx ; kz). This computation can be implemented e�ciently within a three-dimensional
linearized code, as there is no interaction between modes with di�erent ( kx ; kz)
combinations. We can thus identify the energy of each of the perturbations as

E(kx ; kz; t) =
Z ymax

ymin

u � � u dy; (4.10)

where � denotes the complex conjugate, andymin = � 12:5 and ymax = 12:5 are the
minimum and maximum vertical extents of the 
ow domain respectively. It is also
important to note that the energy is normalized so that the total energy on each of
the modes is one initially, i.e.

E(kx ; kz; T0) = 1 ; (4.11)

so that consecutive iterations converge to the optimal perturbation for all the com-
puted (kx ; kz); avoiding potential computational problems if the less ampli�ed modes
were allowed to have signi�cantly smaller amplitude than the most ampli�ed ones.
A convenient way to characterize the various perturbations is by using the mean
optimal growth rate

� m (kx ; kz; T) =
ln[Gmax (kx ; kz; T)]

2T
; (4.12)

where the optimization is across all possibley-dependent eigenfunctions of the gain
from T0 = 0 to the target time T.

As the optimization time increases, unsurprisingly the maximum optimal mean
growth rate (further maximised over all choices ofkx and kz) approaches from above
the maximum growth rate of the classic (modal) KH instability, that is,max(� m ) !
max(� KH ) as T ! 1 ; with the maximising streamwise wavenumberkmax

x ! kKH

approaching that of the most unstable KH modal instability andkz ! 0. A more
detailed quantitative description of this behaviour is shown in �gure 4.1.

4.3.2 Optimal perturbations: OL-type and K-type

Figures 4.1a and b show the optimal mean growth rates� m (kx ; kz) for T = 7 (�gure
4.1a) andT = 20 (�gure 4.1b). For T = 7, it is clear that the most ampli�ed opti-
mal perturbation is inherently three-dimensional (3D, i.e. withkz 6= 0) : The largest
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Figure 4.1: (Top) Contours of the optimal mean growth rate� m as de�ned in (4.12)
for optimization times T=7 (a) and T=20 (b). In both �gures the con tour levels are
set in steps of 0.011, decreasing from 0:275 forT = 7 (a) and from 0:209 forT = 20
(b). Each global maximum is indicated by a black dot (· ) and two characteristic
`OL-type' optimal perturbations, `OLE' and `OLH' as discussed in the text, are
represented in (b) by the� (OLE) and the + (OLH) symbols. (Bottom) � max (M),
kmax

z (� ) and kmax
x (� ) i.e. maximum over (kx ; kz) of � m (T) and associatedkz and kx .

The upper horizontal line (associated with the left hand vertical axis) indicates the
maximum growth rate of the KH instability that occurs for streamwise wavenumber
kKH = 0:4425 (indicated by the lower horizontal line, associated with the right hand
vertical axis) and kz = 0:
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� m computed is� max = 0:2824 at (kmax
x ; kmax

z ) = (1 :142; 1:396) and is marked with
a black dot (· ) in �gure 4.1a. Conversely, forT = 20; the most ampli�ed optimal
perturbation is two-dimensional (2D, i.e. withkz = 0) ; and the largest� m computed
is � max = 0:2109 at (kmax

x ; kmax
z ) = (0 :5236; 0) and marked with a black dot (· ) in

�gure 4.1b. This particular combination of wavenumbers is in the region of param-
eter space that is known to be susceptible to the KH instability. Figure 4.1c shows,
for di�erent T; the largest computed optimal mean growth rates� max (left axis) and
their corresponding wavenumbers (kmax

x ; kmax
z ) (right axis). The horizontal lines of

�gure 4.1c correspond to� KH = 0:1881; the growth rate of the most unstable mode
of the KH instability at this Re (upper horizontal line), and to kKH = 0:4425; the
streamwise wavenumber corresponding to the most unstable mode. As T increases,
� max ; kmax

x and kmax
z decrease and approach the values corresponding to the most

unstable KH mode, � KH ; kKH and 0; respectively. The most ampli�ed perturba-
tions are inherently 3D forT � 13; but then become 2D forT & 14: Thus, we can
distinguish between two qualitatively di�erent types of strongly ampli�ed optimal
perturbations, which dominate depending on the particular targettime chosen. We
�nd that 3D perturbations dominate for short T; while 2D perturbations (clearly
related to the KH normal mode instability) dominate for largerT:

As already discussed in the introduction, the large ampli�cation of 3D, oblique
wave perturbations forT � 10 is a universal feature of plane shear 
ow, as discussed
in detail by Farrell & Ioannou [49]. Both the Orr (Orr [82]) and the lift-up (Ellingsen
& Palm [44]) mechanism have an e�ect on the evolution of 3D perturbations in plane
shear 
ows. As discussed in detail by Farrell and Ioannou [48], the large ampli�cation
for such 3D perturbations is due to a synergy between the two mechanisms; according
to their description, the increased vertical (cross-stream) perturbation velocity v
produced by the Orr mechanism excitesu through the lift-up mechanism. Therefore,
we choose to refer to these early-time interval 3D perturbationsas being of `OL-
type', as they may be thought of as utilizing both Orr and lift-up mechanisms. In
this simpli�ed picture, the relative contribution of the Orr and lift-up mechanisms
depends on the orientation of the oblique waves, going from pure Orr for kz = 0
(and perhaps some KH-like behaviour if in the KH unstable region) to pure lift-up
as kx=kz ! 0. In terms of the di�erent components of vorticity, it is important to
keep in mind that the Orr mechanism acts on the spanwise vorticity! z; and that
the lift-up mechanism corresponds to large production of cross-stream (or vertical)
vorticity ! y:

Furthermore, the early-time OL-type perturbation is inherently transient, unlike
the perturbations which are identi�ed over longer time intervals. This aspect of
the perturbations' character is shown in �gure 4.2 where we plot the instantaneous
growth rate

� (t) =
1

2E
dE
dt

(4.13)
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Figure 4.2: The variation of the growth rate� (as de�ned in (4.13)) with time of
some representative optimal perturbations. The grey-dashed line corresponds to the
optimal perturbation for T = 7 and (kx ; kz) = (1 :142; 1:396), (marked with a black
dot on �gure 4.1a); the black-dashed line corresponds to the optimal perturbation for
T = 20 and (kx ; kz) = ( kKH ; 0); (marked with a black dot on �gure 4.1b); the black
line corresponds to the `OLE' perturbation forT = 20 and (kx ; kz) = ( kKH ; 0:698)
(marked with a � on �gure 4.1b), and the grey line corresponds to the `OLH'
perturbation for T = 20 and (kx ; kz) = ( kKH ; 3:142) (marked with a + on �gure
4.1b).

of optimal perturbations for T = 7 (grey-dashed line, the most ampli�ed OL-type
mode marked with (· ) in �gure 4.1a), T = 20 for (kx ; kz) = ( kKH ; 0) (black-dashed
line, corresponds to the most unstablekx); which since it corresponds to a KH insta-
bility we refer to as a K-type perturbation, and T = 20 for (kx ; kz) = ( kKH ; 0:698)
and (kx ; kz) = ( kKH ; 3:142) (marked respectively by� and + in �gure 4.1b, dis-
cussed in more detail in section 4.4.2), which are OL-type perturbations labelled
as OLE and OLH respectively, in anticipation of the `elliptical' and `hyperbolic'
instabilities to which these perturbations will be related. The growthrate � of the
T = 7 optimal perturbation is very large at the beginning and then decays rapidly,
becoming negative at aboutt � 12; as is typical for such transient perturbations.
Conversely, the growth rate for the K-type perturbation eventually asymptotes to
a �nite value (the growth rate of the modal KH instability). Initially ho wever, this
perturbation also shows a slight non-normal mode enhancement ofthe (instanta-
neous) growth rate, associated with the perturbation extracting energy transiently
via the Orr mechanism.

Finally, the 3D longer time-interval OL-type perturbations labelled OLE and
OLH show both early-time strong transient growth (with an earlier and stronger
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Figure 4.3: Energy density in the (x; y)-plane of the OLE optimal perturbation for
T = 20 and (kx ; kz) = ( kKH ; 0:698) at t = 5 and t = 15.

peak for OLH but larger growth up to t = T = 20 for OLE), and much smaller (but
for OLE still positive) growth rate at later times. The positive growth rate of the
OLE perturbation at late times is consistent with the sub-dominant mode of the
KH instability existing at its corresponding wavenumbers (kx ; kz) = ( kKH ; 0:698):
Figure 4.3 shows the energy density of the same perturbation labelled OLE at times
t = 5 and t = 15: This quantity is normalised such that its integral over the (x; y)
domain containing one wavelength is one att = T0 = 0. At t = 5; the optimal
perturbation is oriented slightly against the shear, and fort = 15 it has been tilted,
as is characteristic of short time optimal perturbations, at least partially subject to
the Orr mechanism. The smaller longer-time growth rate for this perturbation is also
consistent with the classic Squire transformation (Squire [95]) whichdemonstrates
that oblique 3D disturbances are equivalent to 2D disturbances in a 
ow with a
lower Re (and hence lower growth rate). In light of all these characteristics, we call
this perturbation OL-type because most of the growth up tot = 20 corresponds to
non-modal growth.

These observations are entirely consistent with previous work, and in particu-
lar do not show evidence of either `elliptical' instability or `hyperbolic' instability
(henceforth referred to as E-type and H-type perturbations for consistency with the
OL-type and K-type nomenclature introduced above) which numerical simulation
and laboratory experiment suggest are essential characteristics of transition in in-

ectional shear layers. Of course, this is largely unsurprising as a parallel base state
has no elliptical or hyperbolic points. Indeed, it seems entirely reasonable that the
primary billow, or a developing nonlinear K-type perturbation, will actas a catalyst
for transition by encouraging the development of E-type or H-type perturbations.
To investigate whether the OL-type perturbations can be relatedto the appearance
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of E-type or H-type perturbations, one should consider the natural, nonlinear evolu-
tion of the K-type perturbation giving rise to the primary billow. Therefore, in the
next section, we describe the properties of just such a non-parallel, time-dependent
yet inherently 2D `base' 
ow, whose non-modal `stability' properties we can then
analyse.

4.4 Transient response of K-type time-dependent

ow

4.4.1 Base 
ow

To generate a non-parallel, time-dependent 2D K-type base 
ow, we performed a
sequence of fully nonlinear direct numerical simulations (DNS) of 2D perturbations
of the hyperbolic tangent parallel base 
ow discussed in the previous section 4.3.
The size of the computational domain in the streamwise direction is set to L x = 14:2;
(i.e. kx = 0:4425 = kKH ) which corresponds to one wavelength of the most unstable
eigenmode of K-type. In particular, this size of computational domain, along with
periodic boundary conditions suppresses the possibility of subharmonic mergings. It
also restricts the possible choices of streamwise wavenumber to (integer) multiples of
kKH . From the numerical evidence this is unlikely to be too restrictive, although from
�gure 4.1, the streamwise wavenumber of the most unstable OL-type perturbation
is substantially larger than kKH . The number of gridpoints in the x-direction is
Nx = 256: The number of points in the vertical cross-stream,y-direction is Ny = 512
and the corresponding box size is (as already noted)L y = 25, which we believe (see
for example Hazel [59]) is su�ciently large for the evolution of the primary KH
billow not to be a�ected signi�cantly by the vertical boundaries.

The DNS was initialized with random perturbations with zero mean and small
amplitude. The initial amplitude was chosen small enough so that, after the initial
transients, the most unstable mode appears long before nonlineare�ects are notice-
able. However, the procedure we chose to construct the base 
ow subsequently used
in our stability analysis is a little involved, due to the complicating e�ect of the
di�usion of the in
ectional shear layer due to the �nite value of the 
 ow's Reynolds
number. As a �rst step in this procedure, we simulated a 
ow with thebody force
(4.8) which `freezes' the in
ectional shear layer included in the governing (nonlin-
ear) Navier-Stokes equations. The curve in �gure 4.4 shows part of the evolution in
time of the perturbation energyE; in this �rst reference simulation with the body
force. In �gure 4.4, ln(E) grows linearly in time �rst, (at a rate entirely consistent
with (twice) the growth rate of a K-type modal instability) then begins to saturate,
reaches a maximum and �nally oscillates slightly. Those stages correspond to the
exponential growth of energy due to the KH instability and the subsequent nonlin-
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