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Abstract

This dissertation studies soft biometrics traits, thepliability in different security and com-
mercial scenarios, as well as related usability aspectpliide the emphasis on humtacial soft
biometric traitswhich constitute the set of physical, adhered or behavimaian characteristics
that can partially differentiate, classify and identifyrhans. Such traits, which include charac-
teristics like age, gender, skin and eye color, the presehgiasses, moustache or beard, inherit
several advantages such as ease of acquisition, as welbasralircompatibility with how humans
perceive their surroundings. Speci cally, soft biomettiaits are compatible with the human
process of classifying and recalling our environment, a&@ss which involves constructions of
hierarchical structures of different re ned traits.

This thesis explores these traits, and their applicatiogoiih biometric system&BSs), and
speci cally focuses on how such systems can achieve diffegeals including database search
pruning, human identi cation, human re—identi cation gnoh a different note, prediction and
guanti cation of facial aesthetics. Our motivation origbes from the emerging importance of
such applications in our evolving society, as well as from phacticality of such systems. SBSs
generally bene t from the non-intrusive nature of acquirisoft biometric traits, and enjoy com-
putational ef ciency which in turn allows for fast, enrolmie-free and pose— exible biometric
analysis, even in the absence of consent and cooperatidmeligvolved human subjects. These
bene ts render soft biometrics indispensable in applarai that involve processing of real life
images and videos.

In terms of security, we focus on three novel functionaited SBSs: pruning the search in
large human databases, human identi cation, and humadeagttication.

With respect tchuman identi cationwe shed some light on the statistical properties of per-
tinent parameters related to SBSs, such as employed tradt$rait—instances, total categories,
size of authentication groups, spread of effective categ@nd correlation between traits. Further
we introduce and elaborate on the event of interference the event where a subject picked for
identi cation is indistinguishable from another subjectthe same authentication group.

Focusing onsearch pruning we study the use of soft biometric traits in pre- Iteringde
human image databases, i.e., in pruning a search usingisofetric traits. Motivated by practi-
cal scenarios such as time—constrained human identi catidoiometric-based video surveillance
systems, we analyze the stochastic behavior of searchngruover large and unstructured data
sets which are furthermore random and varying, and wherdditian, pruning itself is not fully
reliable but is instead prone to errors. In this stochastitrgy we explore the natural tradeoff that
appears between pruning gain and reliability, and proceerst provide average—case analysis
of the problem and then to study the atypical gain-religbliehavior, giving insight on how of-
ten pruning might fail to substantially reduce the searcdtep Moreover we consider actual soft
biometric systems (nine of them) and the correspondinggoatzation algorithms, and provide a
number of experiments that reveal the behavior of such sstelogether, analysis and exper-
imental results, offer a way to quantify, differentiate aswmpare the presented SBSs and offer
insights on design aspects for improvement of such systems.

With respect tchuman re—identi catiorwe address the problem of pose variability in surveil-
lance videos. Despite recent advances, face-recognilimmitams are still challenged when ap-
plied to the setting of video surveillance systems whictenehtly introduce variations in the pose
of subjects. We seek to provide a recognition algorithm ithapeci cally suited to a frontal-to-
side re-identi cation setting. Deviating from classicabimetric approaches, the proposed method
considers color- and texture- based soft biometric trajpeci cally those taken from patches of




hair, skin and clothes. The proposed method and the sifyadsithese patch-based traits are then
validated both analytically and empirically.

Deviating from security related themes, we focus on a cotalylaifferent application: em-
ploying soft biometrics in evaluation démale facial aestheticsThis approach is novel in that,
in the context of female facial aesthetics, it combines Isiftnetrics with previous approaches on
photo quality and beauty assessment. This study helps usderstand the role of this speci c
set of features in affecting the way humans perceive fanialges. Based on the above objec-
tive parameters, we further construct a simple linear meivat suggests modi able parameters
for aesthetics enhancement, as well as tunes systems thht seek to predict the way humans
perceive facial aesthetics. Moreover using the designedawe evaluate beauty indices with
respect to aging, facial surgery and females famous for theauty. We simulate an automatic
tool for beauty prediction with both realistic accuracy greiformance.

Remaining in the realm of human perception, we also provickenaparative study of different
access control systems based on ngerprint, PIN, soft btaoseand face recognition. Towards
comparing these systems, we design real-life access tamedaces, each based on the above
mentioned methods, and then proceeded to empirically ateathe degree of usability for each of
these interfaces. Our study is based on the recorded ass#ssof a set of users who rated their
interaction with each interface, in terms of privacy, eatese, user-friendliness, comfort and
interaction time. The results reinforce, from a usabiliirp of view, the employment of novel
biometric authentication methods as viable alternatieethé¢ currently predominant PIN based
methods for access control.

Overall this dissertation has contributed the following:

— identi cation and introduction of novel applications fepft biometrics, such as human
identi cation (bag of soft biometrics), re—identi catioas well as aesthetics prediction

— development of theoretical framework for SBSs in the aagilbns: pruning the search and
human identi cation

— application of the developed theoretical framework ostaxg SBSs

— construction of a novel image processing tool for classien of soft biometric traits and
employing such a tool in challenging scenarios

— obtaining evidence for the high user friendliness of safirtetric based control access
systems.

This work was conducted in part within the European ProjeCTBIO [@] and was

supported in part by the European Commission under corffR¢t215372.
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Notations used in this work

E : statistical expectation

of (V) -, : instantaneous normalized distribution (histogramij ¢ jg; _, for a specicv
¢ . categorization or confusion error probabilities
b. algorithmically estimated category

: soft biometric trait instances
G(v) : pruning gainG(v) := %
S : subset oh of subjects that were not pruned out
U : goodput
V( ) :setofvalid foragiven

: soft biometric trait

—tuple of different trait—instances, one possible catggdnlue eyed, with moustache and
with glasses'
= f jg_, setofall categories

: total number of categories

. inverse of pruning gain, = jSj=n
@(v) 2 [1; ]: Category thatv belongs in
ACT : absolute category rating
CO: actual category of°
C v;f=1; :
F : number of effective or non-empty categories spanned by
MOS : mean opinion score
N : computational complexity
n : size of authentication group
Perr : error probabilityP (erijv) : probability of erroneously identifying a subject
P . probability of incorrectly identifying a subject fro®
pr : pr . population statistics
r : relative throughput of a SBS8,:=lim ,; =2
S : subset ofv that remains after pruning
S v setof subjects iw that belong in a speci ¢ category
Sig : set of subjects iv that can potentially be identi ed by a SBS 'endowed' with Sjd :=
[F,S
v : elements irv
v0: subject of interest in the context of search pruning
v : authentication group containingsubjects
v(i),i =1;::;n: i-th candidate belonging to the speci c group
SB : soft biometrics
SBS : soft biometric system
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Chapter 1

Introduction

Traditional biometrics offer a natural and reliable saluatifor establishing the identity of an
individual, and for this reason, the use of human physicdltzhavioral characteristics has been
increasingly adopted in security applications. With tippr@ach maintaining various advantages
such as universality, robustness, permanence and adtigssibis not surprising that current
intrusion detection and security mechanisms and systechgli| by default at least one biometric
trait.

Building on this progress, the latest addition of soft bitmes builds and adds on the main
advantages of classical biometrics.

The beginnings of soft biometric science were laid by Algg®Bertillon in the 19th century,
who rstly introduced the idea of a person identi cation $gs based on biometric, morphological
and anthropometric determinations, 5@056]. In hisrgfBertillon considered traits like
colors of eye, hair, beard and skin; shape and size of the headkll as general discriminators like
height or weight and also indelible marks such as birth mas&ars or tattoos. These descriptors
mainly comprise what is now referred to as the familysoft biometricsa term rst introduced
by Jain et al.mb] to describe the set of charactesishiat provide (some) information about
an individual, but that are not generally suf cient for fultlescribing and identifying a person,
mainly due to the lack of distinctiveness and permanencedf gaits. As stated Iatéhh%l],
such soft biometrics traits can be inexpensive to compwr, e sensed at a distance, do not
require the cooperation of the surveillance subjects, amdbe ef ciently used to narrow down
a search for an individual from a large set of people. Along lthes ofsemantic annotation
([|S_G_ND_$] and[LBNJJO]) we here note the human compliance aftsometrics as a main difference
between soft biometrics and classical biometrics - a diffee that renders soft biometrics suitable
for many applications. The terniight biometricssee in ], similessee in ]
andattributessee in M] have been describing traits we associate to soft biarsetilhe
following de nition clari es what is considered here as s@fiometric traits.

De nition: Soft biometric traits are physical, behavioral or adherach&én characteristics,
classi able in pre—de ned human compliant categories. Seheategories are, unlike in the classi-
cal biometric case, established and time—proven by humperiexce with the aim of differenti-
ating individuals. In other words soft biometric traits areated in a natural way, used by people
to characterize other people.

Our interest in this thesis is in understanding the role sléit biometrics can play in security
and commercial systems of the future. In brief we begin byi$yiag soft biometric traits that
adhere to the above de nition. After an overview of relatedrky we proceed to explore differ-
ent applications that bene t from soft biometric systemB$S), focusing on surveillance related
person identi cation, and on pruning of large surveillametated searches. We also consider the
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speci ¢ scenario of applying soft biometrics for human fialrto-side re-identi cation. We then
change gear and deviate from security related applicatmti'e more commercially oriented ap-
plication of employing soft biometrics in quantifying ancegicting female facial aesthetics. The
above approaches are then complemented by a more practioatatic soft biometric classi ca-
tion tool that we present. Finally, motivated by human ataeqe issues, we proceed to provide a
usability study relating to soft biometrics.

1.1 Achievements and structure of the dissertation

We proceed with an explicit description of the structureh# thesis, and the introduction of
the scenarios / applications of interest in each chapter.

Chapter[2 - Soft biometrics: characteristics, advantagesrad related work

In Chaptef R we offer general considerations related tolsofhetrics. Firstly in Section 2.1
we introduce a candidate list of traits and furthermore @eakcto portray pertinent advantages and
limitations in Sectio 2]2. We then identify in Sectlon]2r@yous work on soft biometric traits.

Chapter[3 - Bag of facial soft biometrics for human identi cation

Chaptef B considers the case where a SBS can distinguisledretvset of traits (categories),
which set is large enough to allow for the classi cation thahieves human identi cation. The
concept of person identi cation based on soft biometridgiinates in the way humans perform
face recognition. Speci cally human minds decompose aadsind:mcall structure complex prob-
lems into fractions and those fractions into further swstions, see [Ley96]l [Simb6]. Conse-
qguently face recognition performed by humans is the dimigibthe face in parts, and subsequent
classi cation of those parts into categories. Those caieg@an be naturally of physical, adhered
or behavioral nature and their palette includes colorspeshi@r measurements, what we refer to
here as soft biometrics. The key is that each individual @ndtegorized in terms of such char-
acteristics, by both humans or by image processing algosithAlthough features such as hair,
eye and skin color, facial hair and shape, or body height aeighw, gait, cloth color and hu-
man metrology are generally non distinctive, a cumulatmination of such features provides
an increasingly re ned and explicit description of a hum&BSs for person identi cation have
several advantages over classical biometric systems, agnointrusiveness, computational and
time ef ciency, human compliance, exibility in pose- an&gression-variance and furthermore
an enrolment free acquirement in the absence of consentaape@tion of the observed person.
Soft biometrics allow for a reduced complexity determioatof an identity. At the same time
though, the named reduced computational complexity com#srestrictions on the size of an
authentication group. It becomes apparent that a measyperfiirmance must go beyond the
classical biometric equal error rate of the employed detscand include a different and new
parametrization. Our general interest here is to providahtful mathematical analysis of relia-
bility of general soft biometric systems, as well as to cealyi describe the asymptotic behavior of
pertinent statistical parameters that are identi ed tedy affect performance. Albeit its asymp-
totic and mathematical nature, the approach aims to prcsiitle expressions that can yield
insight into handling real life surveillance systems.

In Chaptef B, Sectidn 3.1 introduces the operational gettfra SBS. In this setting we elabo-
rate on pertinent factors, such as those of the authemticgtioup, traits, traits instances, overall
categories and their interrelations. We then proceed itid@d8.5.1 to introduce and explain the
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event ofcollision, which is of signi cant character when employing SBSs forgma identi ca-
tion. Furthermore we introduce tieimber of effective categori€swhich is later identi ed as an
important parameter related to collision, and is shownteatliy affect the overall performance of
an SBS.

Sectior 3.5.R analyzes the statistical distribution andm@F and furthermore Sectidn 3.5.3
offers an insight regarding the bounds of the statisticeblo®r ofF over large populations. These
bounds address the following practical question: if mored&iare spent towards increasing the
quality of an SBS, then what reliability gains do we expecde? The answer and further intuition
on the above bounds are provided in Sedfion 3.5.3.1, thdgpoam be found in the Appendix 3.

In Sectiori 3.5.4 we examine the in uence of algorithmicmstiion errors and give an example
on the overall performance of a realistic SBS. We improvepgbdormance by a study of the
distribution between population in the overall categqréee Sectioh 3.5.4.1. We then proceed in
Sectior 3.5.4]2 to elaborate on the human compliant aspecftdiometrics in re—identi cation,
hereby speci cally on the quanti cation of traits and on theman interaction view of an SBS.

Chapter[d - Search pruning in video surveillance systems

In Chaptef# we explore the application using soft-bioreewlated categorization-based prun-
ing to narrow down a large search.

In recent years we have experienced an increasing needitbus and organize an exponen-
tially expanding volume of images and videos. Crucial ts &ffort is the often computationally
expensive task of algorithmic search for speci ¢ elemetdasgd at unknown locations inside large
data sets. To limit computational cost, soft biometricsnprg can be used, to quickly eliminate a
portion of the initial data, an action which is then followlegla more precise and complex search
within the smaller subset of the remaining data. Such pginiethods can substantially speed up
the search, at the risk though of missing the target due &siotation errors, thus reducing the
overall reliability. We are interested in analyzing thiged vs. reliability tradeoff, and we focus
on the realistic setting where the search is time-consicaand where, as we will see later on, the
environment in which the search takes place is stochastirardically changing, and can cause
search errors. In our setting a time constrained searcts $eettentify a subject from a large set
of individuals. In this scenario, a set of subjects can ba@iduby means of categorization that is
based on different combinations of soft biometric traitstsas facial color, shapes or measure-
ments. We clarify that we limit our use of “pruning the sedrhrefer to the categorization and
subsequent elimination of soft biometric-based categprigthin the context of a search within
large databases (Figure 4.1). In the context of this work,efmination or Itering our of the
employed categories is based on the soft biometric chaistate of the subjects. The pruned
database can be subsequently processed by humans or byedrii@uch as face recognition.

Towards analyzing the pruning behavior of such SBSs, Chépietroduces the concept of
pruning gainwhich describes, as a function of pruning reliability, theltiplicative reduction
of the set size after pruning. For example a pruning gain ghglies that pruning managed to
halve the size of the original set. Section 4.5.1 providesaye case analysis of the pruning gain,
as a function of reliability, whereas Sectionl4.5 providggigal-case analysis, offering insight
on how often pruning fails to be suf ciently helpful. In theqress we provide some intuition
through examples on topics such as, how the system gaabilélf performance suffers with
increasing confusability of categories, or on whetherdaag for a rare looking subject renders
the search performance more sensitive to increases in salifity, than searching for common
looking subjects.

In Section 4.6.11 we take a more practical approach and pregem different soft biometric
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systems, and describe how the employed categorizationthlgs (eye color detector, glasses and
moustache detector) are applied on a characteristic dsgai®46 people. In the same Section we
furthermore provide simulations that reveal the varigpdind range of the pruning bene ts offered

by different SBSs. In Sectidn 4.7 we derive concise closeoh fexpressions on the measures of
pruning gain and goodput, provide simulations, as well avel@nd simulate aspects relating to
the complexity costs of different soft biometric systemntdrest.

Chapter[Q - Frontal-to-side person re-identi cation

Typically biometric face-recognition algorithms are dey®d, trained, tested and improved
under the simplifying assumption of frontal-to-frontakgen recognition. Such algorithms though
are challenged when facing scenarios that deviate fronr#ig@ng setting, such as for example
in the presence of non-constant viewpoints, including tbatél-to-side scenario. Most person
recognition algorithms, whether holistic or based on fdeiatures, only manage to optimally han-
dle pose differences that are less than aliéutegrees. As aresult, a variation in the pose is often
a more dominant factor than a variation of subjects. Thigetspf pose variation comes to the fore
in video surveillance, where a suspect may be picturedyistintal, whereas the corresponding
testimages could be captured from the side, thus introduedimntal-to-side recognition problem

Towards handling this problem, we employ multiple soft bairits related traits. One of
our tasks here is to get some insight into the signi canceheke traits, speci cally the signi -
cance of using hair, skin and clothes patches for frontside re-identi cation. We are working
on the color FERET datas@ll] with frontal gallery irador training, and side (pro le)
probe images for testing. Towards achieving re-identi@at the proposed algorithm rst ana-
lyzes the color in Sectidn 5.2.4.1 and furthermore textar8ectiorl 5.2.4]2 of the three patches.
Then we study the intensity correlations between patch&gatior 5.2.4]3. This analysis is then
followed by the construction of a single, stronger classileat combines the above measures in
Sectior 5.2.5, to re-identify the person from his or her o

Deviating from the above security related applications caesider then an application closer
to entertainment, and speci cally consider the applicat@ soft biometrics in analyzing and
guantifying facial aesthetics.

Chapter[6 - Soft biometrics for quantifying and predicting facial aesthetics

With millions of images appearing daily on Facebook, Pic&dmkr, or on different social
and dating sites, photographs are often seen as the cdrtier ost and deciding impression of a
person. At the same time though, human perception of fae&thatics in images is a priori highly
subjective.

We related among others soft biometric traits with this satdye human perception. In the
provided study we quantify insight on how basic measuresbeansed to improve photographs
for CVs or for different social and dating websites. Thispsetreate an objective view on sub-
jective efforts by experts / journalists when retouchinggms. We use the gained objective view
to examine facial aesthetics in terms of aging, facial syrgad a comparison of average females
relatively to selected females known for their beauty. $pelly in Section [6.3 we introduce
the employed database, as well as describe the basic featudemethods used in this study. In
Sectior 6.4 we proceed with numerical results, and provitiétion on the role of features, image
quality and facial features, in human perception. In Sedid, we use these accumulated con-
clusions to construct a basic linear model that predicta@tveness in facial photographs using
different facial traits as well as image properties. We teeamine and validate the designed met-
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ric. In Sectior 6.6 we employ the developed metric to conéxperiments and answer questions
regarding the beauty index in three cases: for famous &tteaemales, for aging females and in
case of facial surgery. Finally we proceed to simulate ini8ef. 7 based on both, the presented
metric, as well as state of the art algorithmic accuraciesudomatic tool for beauty prediction.

Chapter[7 - Practical implementation of soft biometrics clasi cation algorithms

Towards practical implementation of the related conceptbideas, in Chaptél 7 we develop
a tool (concatenation of classi cation algorithms) forssacation of facial soft biometric traits,
where we speci cally emphasize on the most obvious faciahiders, primarily mentioned by
humans, when portraying an unknown individual. The cowsdi tool is streamlined to achieve
reliability of identi cation at reduced complexity, and ihee focuses on simple yet robust soft-
biometric traits, including hair color, eye color and sklar, as well as the existence of beard,
moustache and glasses. We then speci cally focus on exiraand categorization of eye color,
and present an additional study where we illustrate theanae of surrounding factors like illu-
mination, eye glasses and sensors on the appearance ofieye co

In Sectio 7.1l a bag of six facial soft biometrics is elabedafor which estimation algorithms
are featured, along with the related experimental resghs, Sectiof 7.1.2. We then proceed
to focus on eye color as a soft biometric trait in Secfion 1@ examine an automatic eye color
classi er in challenging conditions, such as changingniloation, presence of glasses and camera
sensors, see Sectibnl7.4.

Chapter[8 - User acceptance study relating to soft biometrie

Finally we conclude with a usability study that veri es theew acceptance of SBSs, speci -
cally when compared to existing PIN or ngerprint accesstoarsystems.

The pervasiveness of biometric systems, and the corresgpgrbwth of the biometric market
see a], has successfully capitalized on the strefifpibmetric-based methods in accurately
and effectively identifying individuals. As a result, modestate-of-the-art intrusion detection and
security systems include by default at least one biometit tlt is the case though that little em-
phasis has been given to better understanding user-ancepad user-preference regarding such
systems. Existing usability related works, such a@@d ], focus on establish-
ing functional issues in existing ATM machines, or on studythe in uence of user interaction
on the performance of ngerprint based systems (Eee [ KﬂEDaﬂq:I interfaces (se09]).
Other interesting works (seb |usahlb|, |CGOE|, |CJMR09]')aIyze possible methods that im-
prove interface design. Our emphasis here is on providisigl on the attitudes and experiences
of users towards novel and emerging biometric veri catioetihods, and to explore whether such
novel biometric technologies can be, in terms of user aecegt valid alternatives to existing
prevalent PIN based systems. Our focus, in addition to denisig the traditional PIN-based
method, is to explore the usability aspects of systems basexassical biometrics such as n-
gerprint and face recognition, and to then proceed to stieysability of systems based on the
emerging class of soft-biometric methods. Our evaluat®hased on having the users rate and
rank their experiences with different access methods.

In Section 8.2 we brie y describe the user test setting, alb agethe conditions and the per-
formed test procedures. We then proceed to elaborate orntseie veri cation methods and on
the designed interfaces. In Section 8.2 we present thesesthined from the user study, in terms
of evaluation and quanti cation of the different usabilityeasurement characteristics. In the same
section we provide the user test outcomes of direct congragibetween the four presented meth-
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ods. Finally in Sectioh 813 we draw connections to otherigignt traits such as cost ef ciency,
accuracy and processing speed.

We nally note that this dissertation is supported by diffet journal and conference publica-
tions, which are not cited throughout the thesis, but whiehliated in full in AppendiXD.
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Chapter 2

Soft biometrics: characteristics,
advantages and related work

Soft biometrics have gained an increasing interest in tbenbtrics community for various
reasons, as of the non—intrusiveness, computationalezfayi and mostly the need for higher reli-
ability in biometric systems. In this chapter we provide arrgiew of soft biometric traits, their
classi cation, the related advantages and limitationsrtli&rmore we summarize work, already
performed on soft biometrics traits or systems integrasioiy biometrics.

2.1 Soft biometric traits

We illustrate in Tabl€ 2]1) a range of facial charactersstichich accept the de nition stated
in chaptef]l for soft biometrics. In a rst attempt to diffet@ate between soft biometric traits we
rstly identify the af liation to face or accessorycategories. We abuse slightly annotation and
include hair color in the group of facial soft biometrics. efpresented traits list is not exhaustive
and will naturally increase with technological progress.iére note that even though classically
accessorieslo not belong to biometrics, the new stated de nition cheamncorporates such traits
in the class of soft biometrics. The motivation for inclugliaccessories to soft biometrics lays
in the associated highly descriptiveness and discrinonati attributes such as clothes color, e.g.
“the person in the red shirt”. Further signi cant factors fdassifying soft biometric traits are
distinctivenessand permanence Distinctivenesss the strength with which a trait is able to dis-
tinguish between individuals. As an example 'beard’ hasvaddstinctiveness, since it can only
be applied to the male part of the population and furthernpossesses only two sub—categories
(present or not). This example points out a certain coicgldietweerdistinctivenesgndnature
of value Traits with continuous sub-categories are in general rdistinctive than traits with dis-
crete and moreover binary sub-categories. In this contextlifference betweenature of value
and human labeling of traits is the following: while hair@ohas principally different nuances and
is thus of continuous character, humans tend to discretdimgb We adopt this human approach
for developed soft biometric estimation algorithms, detecfor example hair color in categories
such as black, blond, brown, rather than RGB values.

Thepermanencef a trait plays a major role for the application for which aSSB employed. As
an example an application, where identi cation within a dayequired, will accept low perma-
nence traits like age, weight or clothing color (inter vdrarsession observation).

The nal subdivisionsubjective perceptiorefers to the degree of ambiguity associated in identi-
fying or labelling speci ¢ soft biometric traits sub-cataies. We note the relation of subjective
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Table 2.1: Table of soft biometric traits

Soft Biometric Face / Nature o Subjective
trait Accessory  of value Permanence  Distinctiveness perception
Skin color Face Continuous Medium Low Medium
Hair color Face Continuous Medium Medium Medium
Eye color Face Continuous High Medium Medium
Beard Face Binary Low/Medium Low Medium
Moustache Face Binary Low/Medium Low Medium
E’lae(ialzlurements Face Continuous High Medium Medium/High
Facial shapes Face Discrete High High High
;aeC;szrZi:eris Face Continuous High High Medium/High
Facial feature Face Discrete High High High
shapes

Make—-up Face Discrete Low Low Medium
Ethnicity Face Discrete High Medium Medium
Marks Face Discrete High Medium/High Low
Gender Face Binary High Low Low
Age Face Continuous Low/Medium Medium Medium
Glasses Accessory Binary Low/Medium Low Low
Hat Accessory Binary Low Medium Low
Scarf Accessory Binary Low Medium Low

perception to the nature of value, where an increased anujwibcategories leads to a more
dif cult classi cation. In fact subjectivity lays even irhie decision of the nature of value. In other
words, colors for example can be argued to be continuoustaltlee huge variance in nuances
blending into each other, or to be discrete due to the fattdblars can be described by discrete
RGB values.

We note that soft biometrics can be classi ed by additiorspexts such as accuracy and im-
portance, which are deducible from the named classi catiasses, depending on the cause for
speci cation (e.g. suitability for a speci ¢ application)

2.2 Characteristics, advantages and limitations

Soft biometrics has carried in some extent the attributeslasfsical biometrics over, as the
general idea of identi cation management basedao you ares still being pursuit. The traits
provide weak biometrical information about the individaad correspondingly have inherited the
predicates to beniversal] measurableandacceptable furthermore the trait's classi cation algo-
rithm(s) performanceshould be able to meet the application's requirements. Tertaio degree
also the aspectsmiquenesgpermanencandcircumventiorplay a role for soft biometrics, but are
treated to a greater extent exible.

Initially, soft biometric traits have been employed to warrdown the search of a database, in or-
der to decrease the computational time for the classicahdioc trait. An additional application
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is the fusion of soft biometrics and classical biometrigt$réo increase overall system perfor-
mance. Soft biometrics impart systems substantial adgastathey can be partly derived from
main detected classical biometric identi er, their acdfios is non intrusive and does not require
enrolment; training can be performed in advance on indalslout of the speci c identi cation
group. Summarizing soft biometric traits typically are:

— Human compliant: Traits conform with natural human dexdion labels.

— Computationally ef cient: Sensor and computational riegments are marginal.

— Enrolment free: Training of the system is performed offeland without prior knowledge

of the inspected individuals.

— Deducible from classical biometrics: Traits can be paidyived from images captured for
primary (classical) biometric identi er (e.g. eye colobf eye images).
Non intrusive: Data acquisition is user friendly or can bigy/fimperceptible.
Classi able from a distance: Data acquisition is achiéwath long range.
Classi able pose exible: Data acquisition is feasiblerin a number of poses.
Not requiring the individual's cooperation: Consent awodtcbution from the subject are
generally not needed.

— Preserving human privacy: The stored signatures are llyisanilable to everyone and

serve in this sense privacy.

The plethora or utilities has motivated an increasing nunabeesearch activities related to
soft biometrics. Inthe next section we give an overview @disit ¢ work gaining from the bene ts
related to soft biometrics.

2.3 Related work

In this section we outline work, pertinent to soft biomedrid his overview does not claim to
be an exhaustive state of the art, but rather a highlight8eteon performed scienti c studies.

Soft biometrics is a relatively novel topic and related weritolds over several research elds.
Recent work can be mainly classi ed in three research elds:

1. The rstand largest eld includes the study and identitma of traits and associated image
processing algorithms for classi cation and detectionuafts

2. The second fast growing eld identi es operational sceos for the aforementioned algo-
rithms and provides experimental results for such scesario

3. The third and smallest eld comprises of the global andothé&cal investigation of the
employment of soft biometrics applications and relatedistu

Scienti ¢ works belonging to the rst eld cover algorithmfor traits such as iris pattern, see
in [@], or facial marks, see i@og]. A broader ovewad work from the rst group is
referenced in the following sectiohs 2.13.1 &and 2.3.2.

The second eld can be sub-classi ed in subgroups whictedéhtiate the way soft biometrics
are employed, as stand—alone systems, as pre- Itering amesins of bigger systems, or as fused
parallel systems. Related scenarios include continuoireatication 0], video surveillance
see [DFBSQ9], |[FDF 10], [MKS10], person veri cation@ﬂ and moreover pen iden-
ti cation [ﬁ]. An interesting recent associated scantor SBS based person identi cation is
the recognition of faces in triage images of mass disastetgins @1]. Further examples are
given in sectiol 2.3]3.

Finally the third eld involves studies on the placement oftdbiometrics in applications such
as forensic@l] and human metrold@RlO].
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2.3.1 Facial soft biometric algorithms

Former work on soft biometrics has been performed predantijnaith the aim of preprocess-
ing. In face recognition for person identi cation, for iastce, beard detection and removal serves
an improvement of recognition results, disregarding tifi@ermation of the presence of beard.

Color based facial soft biometricsThe color based facial soft biometric traits (eye, skin,
and hair color) are the most obvious facial identi ers, meméd primarily by humans, when
portraying unknown individuals. Challenges for skin clasdion are on the one hand the low
spread of different skin colors in color space, and as a cuesee, on the other hand the high
illumination dependance of classi cation. Latter is déised in various skin locus papers, for
example in 2].

Hair color is detected by similar techniques like skin cadmd often researched along, but
has more broadly scattered color categories.LOZ]emnrd for human head detection
based on hair—color is proposed through the use of Gaussiuarendensity models describing
the distribution of hair color. IO] the fuzzy theasyused to detect faces in color images,
where two fuzzy models describe the skin color and hair coémpectively.

Eye color classi cation, unlike the other color based fasiaft biometrics is a relatively new
research topic. Few publications offer insight, M] and sectiofl 712, probably due to
the fact tha90% of humans possess brown eyes. An advantage of eye coloodatg@n is the
availability of all necessary information in images usedific pattern analysis, in other words iris
color is a free side effect. Work on fusion between iris textand color can be found iO4],
where the authors fuse iris and iris color with ngerprintdaprovide performance improvement
in respect with the unimodal systems. 08] iris colanged to successfully support an iris
indexing method.

Beard and Moustache detectioRresence of beard and moustache do not appear in the liter-
ature as an identi cation trait, but rather as an obstaciefdoe recognition, which is why their
removal is performed as a preprocessing step. As an exain jleMO06] a beard removal algo-
rithm is shown using the concept of structural similarityl @oordinate transformations.

Age Age plays an important role for long time employable systidmsed on face or body
and is a challenging and relatively new eld. An intereststgdy on face changes over time can
be found in lﬁ‘], which spans a biometric, forensic, and anthropologicemw, and further
discusses work on synthesizing images of aged facemme authors distinguish children
from adults based on the faceliris size ratio. Viola—Jore® fdetection techniqulb] is
used, followed by an iterative Canny edge detection and ai etbdircular Hough transform
for iris measuring, with good results. I] the authors observe facial skin regions of
Caucasian women and build partial least square regressimlelsto predict the chronological
and the perceived age. They nd out that the eye area and theslor uniformity are the main
attributes related to perceived age.

Gender: Gender perception and recognition has been much reseaatieadly in social and
cognitive psychology work in the context of face recogmitid=rom image processing point of
view, the topic offers as well many of approaches. A basic@ggh of understanding simple
metrology in connection to gender is offered ]. The latest efforts employ a selection
of fused biometric traits to deduce gender information. &ample in 7 ait energy im-
ages and facial features are fused and classi ed by suppotbwmachines. IrE]fI:L_B]ll] contrast
and local binary patterns are fused. Another approarﬁroposes a combined gender and
expression recognition system by modeling the face usingcine Appearance Model, feature
extraction and nally linear, polynomial and radial baseaiétion based support vector machines
for classi cation. The work in 6] proposes using adabioon several weak classi ers, ap-
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plied on low resolution grey scale images with good resiftatta et al. in MB] present a
multimodal gender recognition system, based on facial aggpee, head and mouth motion, em-
ploying the means of a uni ed probabilistic framework. Ahet approach based on motion and
appearance is the work in [HF09]. On a different note theastbf [CR115] employ thermal and
near infra-red images for gender classi cation.

Ethnicity. Ethnicity recognition is an ethically and sociologicalt li@bated trait, once again
relevant for face recognition. In the context of ethnicity@iquely de ned classi cation is a
dif cult and important task. For recognition of Asian andmeAsian faces in4] machine
learning framework applies a linear discriminant analy&i®A) and multi scale analysis. A
further framework, integrating the LDA analysis for inpacé images at different scales, further
improves the classi cation performance. In the pamm ethnicity recognition approach
is based on Gabor Wavelets Transformation, combined wiitiereampling for key facial features
extraction. Finally support vector machines are used fonieity classi cation providing very
good results, even in the presence of various lighting dimmg.

Facial measurementg-acial measurements were early on found as very distaetid help-
ful in the context of facial recognitioMS]. Later stied continue employing facial measure-
ments, and apply on 306].

Recent work on facial soft biometrics is performed on saaaks and tattoos by the authors
in | Moreover patterns in the sclera have been emgpl@s a soft biometric trait as well,
see b].

2.3.2 Accessory soft biometrics

The new soft biometrics de nition allows the inclusion ofcassories among these traits. Ac-
cessories can indeed be related to personal characti@isight problems in case of glases), or
personal choices (as adornment in case of jewelry).

Eye Glasses detectiornThe forerunner for glasses detection are Jiang et all _iABIR],
performing classical edge detection on a preprocessedlgval/image. Certain face areas are
observed and an indicator for glasses is searched for. Tl snocessful identi er region for
glasses is found to be the nose part of the glasses, betweaydls. A different approach for
glasses extraction is employed 04], where a face mizdedtablished based on the Delaunay
triangulation. A 3D method to detect glasses frames is ptedén ], where 3D features
are obtained by a trinocular stereo vision system. The lessits on glasses detection up to now
are achieved on thermal imagmoq.

Scarf and glasses detectioithe work ] handles facial recognition in the presenc
of occlusions caused by glasses and scarfs. The occlusimreby detected by Gabor wavelets,
PCA and support vector machines, followed by facial reciigmiof the non-occluded part based
on block—based local binary patterns.

Cap detectionIn ] the authors work on an additional occlusion, whimpedes face
recognition, namely cap detection.

2.3.3 Combined soft biometrics

Since soft biometric traits are individually not distingtiand permanent, a combination of
those could overcome those limits. In this context, mangmepapers deal with fusion of clas-
sical biometry and soft biometry or exclusively with fusiohsoft biometric traits. An example
for latter is the work in4]. The authors %roEose aldponis for gender, body size, height,

cadence, and stride using a gait analysis tool Sefjht, and appearance are extracted
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from videos and exploited in a multiple camera video sulaede scenario in order to track the
subjects that cross the surveillance network MZOG]aaproach for recognizing the gender,
ethnicity and age with facial images is proposed. The ambraacorporates Gabor lter, Ad-
aboost learning as well as support vector machine classi&ifurther hybrid classi cation based
on gender and ethnicity is considered ['Ln_[Q_P_W98] d.nd_[ﬂwggje hybrid approach consists
of an ensemble of radial basis function networks and indeaecision trees. The authors show
robustness and good performance. A different approachnfalysis in hybrid soft biometric sys-
tems is provided |8 an@m] where semantic imfation (which corresponds to soft
biometric classi ers) is manually extracted from a seriégideos. Using the analysis of variance
the authors select a pool of traits which are considered th& nepresentative. Those traits are
then used together with gait information. The authors desirate that the additional information
provided by the semantic traits mcreases the performanttee@eople recognition system based
on gait. Those results are extendeSll] anMNIhl]e authors |nO] go one
step further and study the relation of human body measut@shvallows for certain applications
the prediction of missing body measures. ] the authors propose an approach for people
search in surveillance data, characterized by three mamaegits: sensors, body parts, and their
attributes. The body parts and attributes are here clos&yed to soft biometrics.

2.4 Domains of application

Soft biometrics are either employed as uni modal systerassitying a single trait classi ers,
or in a combination with other systems. We differentiatéofwing main domains of application.

Fusion with classical biometric traits SBSs are incorporated in multi modal biometrical
systems with the goal of increasing the overall reliahil®yich an approach has been followed, in

], where the bene ts of soft biometrics in additian hgerprint lead to an improvement
of approximately5% over the primary biometric system.

Pruning the search :SBS were employed in previous works to pre lter large biornget
databases with the aim of higher search ef ciency. Scientvork on using soft biometrics
for pruning the search can be found [n_LKB_hLIdL&_KB_B_INO9] wherenultitude of attributes,
like age, gender, hair and skin color were used for classibcaof a face database, as well as
in [b_B_DB_9j LN_eJALQB] where the impact of pruning traits likeeagiender and race was identi ed
in enhancing the performance of regular biometric systems.

A third application is the employment of a multi modal SBShiihe goal of human identi -
cation or human re-identi cation.

Human (re-)identi cation :For human (re-)identi cation the soft biometric trait redd limita-
tions of distinctiveness and permanence are overcome blgioorg multiple traits. The concept of
Bag of Soft Biometrics(BoSB) is directly inspired from tlikea of Bag of Word@b 06]
and Bag of Feature 06] developed under the contexkbifrtiming and content based image
retrieval. For the BoSB the “items” of the bag are soft biameesignatures extracted from the
visual appearance of the subject.

Other possible applications relate to the ability to matebgde based on their biometric-trait
preferences, acquiring statistical properties of bioimettenti ers of groups, avatar modelling
based on the instantaneous facial characteristics (glassard or different hair color), statistical
sampling of audiences, and many others.
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Chapter 3

Bag of facial soft biometrics for human
identi cation

The concept of person identi cation based on soft biomstddginates in the way humans
perform face recognition. Speci cally human minds decosgand hierarchically structure com-
plex problems into fractions and those fractions into fertbub-fractions, cf 6]@6].
Consequently face recognition performed by humans is thisidin of the face into parts, and
subsequent classi cation of those parts into sub-categorThose sub-categories are associated
with what refer to as soft biometrics and the key is that eadividual can be categorized in terms
of such characteristics, by humans or by image processguyitdms. Although features such
as hair, eye and skin color, facial hair and shape, or bodyhh@nd weight, gait, clothing color
and human metrology are generally non distinctive, a cutivela&aombination of such features
provides an increasingly re ned and explicit descriptidradwuman.

3.1 Main parameters: authentication group, traits, trait-instances,
and categories

The setting of interest corresponds to the general scendugoe, out of a large population, an
authentication group is randomly extracted as a randont sepeople, out of which one person is
picked for identi cation (and is different from all the othenembers of the authentication group).
We note that this general scenario is consistent with bbthcase of person veri cation as well as
of identi cation. A general soft-biometric system emplaetection that relates tosoft biometric
traits (hair color, skin color, etc), where each tiait = 1;2;:::; , is subdivided into ; trait
instancesi.e., each trait can take one of ; values. We henceforth denote as category to be any

-tuple of different trait-instances, and we let f ;g,_, de ne a set of all categories, i.e.,
the set of all combinations of soft-biometric trait-instances. The nemiif , that the system is
endowed with, is given by

= i=1 i (31)

We slightly abuse notation and henceforth say thaubject belongs to category if his
or her trait-instances are thetuple corresponding to category. We here note that to have
conclusive identi cation of a subject, and subsequentedéhtiation from the other subjects of the
authentication group, it must be the case that the subjext dot belong in the same category as
other members of the authentication group. Given a spedcitbentication group, the maximum-
likelihood optimizing rule for detecting the most probalaigtegory in which a chosen subject
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belongs, is given by:
"= argmax , P() P(y=); (3.2)

where'y is the observation vectd?,( ) is the pdf of the set of categories over the given population
(note _; P( ) = 1), andP(y=) the probability thaty is observed, given that the subject
belongs in category.

3.2 Design aspects in soft-biometric systems

In designing a soft-biometric system, the overall choic¢heftraits and trait-instances must
take into consideration aspects as traditional limitation estimation reliability, which is com-
monly a function of the sensor resolution, and of the cajisdsilof the image-processing part of
detection. In addition to this traditional aspect, new @ns come into the picture when designing
a soft-biometric system as of the size and statistics of thleeatication group (such as the pos-
sible similarities that might exist between different db§), as well as the statistical relationship
between the authentication group andThe interrelated nature of the above aspects brings to the
fore different tradeoffs. Such tradeoffs include for ex#arthe fact that an increasing, and thus
also an increasing, generally introduce a reduction in the reliability of dgten, but can poten-
tially result in a welcomed increase in the maximum autlvation group siz€n) that the sys-
tem can accommodate for. It then becomes apparent thaindesgignd analyzing soft-biometric
systems requires a deviation from traditional design ardlyars of classical multi-biometric sys-
tems, towards considering the role of the above parametedstheir effect on the tradeoffs and
the overall system performance. This approach motivaeptbposed soft-biometric system de-
sign described in chaptEl 7, as well as the subsequent sgstalysis of Sectioh 3.3.2 which also
includes simulation evaluation of the proposed system énirtkerference limited setting of very
high sensor resolution.

3.3 The proposed Soft-Biometric System

In accordance with the above design aspects, and in an &ffartl a good balance between
identi cation-reliability and complexity, we here propos soft-biometric system that focuses on
simple and robust detection from a bounded set of traits lagid trait-instances. In what follows,
we will describe these basic elements, as well as the engldgeection algorithms.

3.3.1 Chosen features of the proposed soft-biometric syste

In the presented bag of facial soft biometric traits for haritkenti cation, we allocate =6
traits, which we choose and label as:

1. skin color
hair color
eye color
presence of beard

presence of moustache

L

presence of glasses.
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In this setting we clearly assigny = 5 = g = 2, corresponding to the binary nature of
traitsi = 4;5;6. On the other hand, the rst three traits are of a discretaattar (see Table I)
and had to be categorized in consideration to the tradebifdmn reliability of detection and trait
importance. Towards this we chose to subdivide trait 1 (skilor) into ; = 3 instances and
label them (following a recommendation provided by theathpartner of a former EU project,
ACTIBIO [ACT11] to avoid any assumptions about race or etfipibased on skin color) as:

— {skin color type 1, skin color type 2, skin color 3} using nbers that increase from light

to dark,
to subdivide trait 2 (hair color) into, = 8 instances

— {light-blond, dark-blond, brown-, black-, red-, grey-hite-haired, and bald}
and to subdivide trait 3 (eye color) intg = 6 instances:

— {blue-, green-, brown-, grey-, green-, black-eyed}

As a result, the proposed system is endowed with the abditetect

= &, i=1152 (3.3)

distinct categories. For the sake of clari cation, we nat® simple examples of such categories
in

— {skin type 1, brown hair, blue eyes, no beard, no moustachglasses}

— {skin type 3, black hair, black eyes, beard present, mohstpresent, glasses present}

3.4 Statistical aspects of the constructed scheme

Relevant parameters, in addition t¢ ;, and , also include the size and statistics of the
authentication group (revealing possible similaritiesween different subjects), as well as the
statistical relationship between the authentication grand . In what follows we aim to gain
insight on the behavior of the above, in the speci ¢ settihthe proposed soft-biometric design.
The following analysis, which is by no means conclusive ug®s on providing insight on param-
eters such as: The spread of the effective categories farem guthentication group, where this
spread is used as a measure of the suitability of authenticating subjects from a certain authen-
tication group. The relationship betweanand the corresponding probability of interference as
a function of (the probability that two users share the same category dhthus be indistin-
guishable). The probability of interference-induced iileation error, again to be considered as
a measure of the system'’s reliability).

3.4.1 Spread of the category set

We here consider the case where a soft biometric system igneéelsto distinguish among

distinct categories, but where the randomly introducedhentication group only occupies a
smaller fraction of such categories, and where these cagésgare themselves substantially corre-
lated. Leaving correlation issues aside for now, we rstethe set oéffective categories ¢ to
be the set of categories that are present (are non emptyg sp#ti c authentication group. A per-
tinent measure of system diversity and performance thearbes the cardinalitye = j ¢. We
note that clearly both ¢ and ¢ are random variables, whose realizations may change with ea
realization of the authentication group. To gain insightlomabove randomness, we consider the
case where the authentication groups are each time drawndemeral population that is a xed
set of K = 646 subjects taken from the FERET datab erll], with 1152 categories,
corresponding to a pd?( ) as shown in Figure 3.1, where this pdf itself correspondbéedraits
and trait-instances of the proposed system.
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Figure 3.1:P( ) corresponding to FERET distribution and the proposed syste

Given the above, Figufe 3.2 describes the average numbenpif/eategories, E[ ¢](n),
as a function of, where the expectation is taken over the different readinatof authentication
groups.

Figure 3.2: Expected number of empty categories as a funofio (FERET).

It becomes apparent that a natural remedy for increal[ng] is to increase the overall,
which brings to the fore the natural question as to whethisrititrease in should be more a
result of an increase in the number of traits, or rather maoesalt of the number of trait-instances
(given that the trait-instances do not already span theeeptissible range per trait). We address
this resource allocation problem, under the simplifyinguasption of symmetry, where; =
foralli =1;; . Inthis symmetric setting, where clearly

= (3.4)

and where increases polynomially with and exponentially with , a simple comparison of the
two derivativesg—, 3— identi es thetrait-limited regionof a soft biometric system to be the region

< In (3.5)

in which increases faster withthan with , and where emphasis should be placed on increasing
rather than . This means that for> 16, increases faster with than with , see Table3]1.

Example 1 Practical system augmentation for increasingWe propose the bag structure of an
augmented system, where an increase in resources (suchimpeoved resolution of the sensors,
or an increased computational capability), can be allochte include the increased set of traits,
and trait-instances, as described in Table]3.2, yieldingimpressive in the order of eighty
million, which may be suitable for several applications.
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Table 3.1: SBSs with symmetric traits instances
n |2 3 4 5 6

4 8 16 32 64

9 27 81 243 729

16 64 256 1024 4096

25 125 625 3125 15625

36 216 1296 7776 46656

OOk WN

Table 3.2: Augmented set of facial soft biometric traits andesponding number of instances

Skin Hair Eye Glasses Beard Moustache Age Gender
Color Color  Color Presence Presence Presence
3 8 6 2 2 2 3 2
Make up Facial Facial feature Facial Facial feature  Facial noles Hair
Shapes Shapes measurements measurements and marks style
4 3 3 3 6 6 3

This approach in turn, brings to the fore the issue that amirng , may indeed result in an
increasedE[ ], but might affect the correlation between the differentegaties. This would
subsequently result in a reduced spread pfwhich would imply a reduced distinctiveness in
identi cation. In regards to this, we give some intuition the distinctiveness of some non-empty

categories of the proposed system, by computing the ctoelbetween these categories using
Pearson's product-moment coef cient

couX;Y) _ EI(X  x)(Y  v)l

Ixyy = (3.6)
XY X Y
The resulting correlation parameters shown below
l'EyeColor:Haircolor =  0:1964 3.7)
I'HairColor;SkinColor =  0:1375 (3.8)
I'EyeColor;SkinColor = 0:370 (3.9
I'Moustache;Beard = 0:6359 (3.10)

revealed as expected the highest correlation to be thaeketwoustache and beard.

Further intuition on related correlations is given in Figl@3, which shows the joint pdf with
respect to the eye, skin and hair color.

Figure 3.3: Color based soft biometric traits (eye-haig-skin and hair-skin color) distributions
for FERET database.
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3.4.2 Boundingn for a given interference probability

We are here interested in describing the relationship kertweand the corresponding prob-
ability of interference, as a function of. We proceed to properly de ne the event of collision or
interference De nition: The event otollision, or equivalently ofnterference describes the event
where any two or more subjects belong in the same categdfpcusing on a speci ¢ subject, we
say that this subject experiences interference if he/stonge in a category which also includes
other subjects from the authentication group. In regardisispwe are interested in gaining insight
on two probability measures. The rst measure is the prdhiglp(n; ) that the authentication
group of sizen, chosen randomly from a large population of subjects, it $hat there exist two
subjects within the group that collide. We brie y note théatenship ofp(n; ) to the famous
birthday paradox For the other measure of system reliability, we considerciise where an au-
thentication group of siza is chosen randomly from a large population of subjects, anereva
randomly chosen subject from within this authenticatioougy, collides with another member of
the same group. We denote this probabilitygés), and note that clearlg(n) < p(n). To clar-
ify, p(n) describes the probability that interference exists, etendh it might not cause error,
whereagj(n) describes the probability of an interference induced eErample:In a group ofN
subjectg(n) would describe the probability that any two subjects wilbiog to the same category

x. On the other hand(n) re ects the probability that a speci ¢ subject will interie with one
or more of theN 1 remaining subjects. We rst focus on calculating and pt@tp(n), under
the simplifying assumption of statistical uniformity oftlcategories. The closed form expression
for this probability is derived (se& [Das05]) to be

p(n)=1 p(N) (3.11)
pn)=1 1 1 1 1 2 1 N 1 (3.12)
p(n)=1 ﬁ (3.13)

We note that under the uniformity assumption, the aboveriestp(n; ) forms a lower
bound on this same probability (in the absence of the samemgdon). Equivalently, from the
above, we can also compute the maximanthat will allow for a certain probability of colli-
sion. In terms of a closed form expression, this is accommeddhy using the approximation

from [AMOQ]:

n(n 1)

pin; ) 1 e 2 =1 1 (3.14)

1
n(p; ) 2 In T p° (3.15)
corresponding to the value offor which the system will introduce interference probapigqual
top. As an example, we note that for= 1152, andp = 0:5, thenn = 39. In regards tg(n), the
closed form expression is readily seen to be
1n
gn)=1 (—— ): (3.16)

As an example we note that under the uniformity assumptiod, given = 1152, and
g = 0:5, thenn > 700 which, as expected, is much higher than the pessimisticvagat
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corresponding t@(n; ). Towards generalizing, we deviate from the uniformity aspgtion, to
rather consider a more realistic setting where the catedistyibution originates from an online
survey (seemO]), db142 subjects from Central Germany. For computational simiyligie
choose to consider a simpler, reduced version of our prapsgstem, where the traits are lim-
ited to hair color and eye color. In this setting, the hairocdtait has 7 trait-instances, and the
eye color trait has 5 trait instances, resulting in a total of 35 categories, with probabilities

In this case the probability that atl subjects are in different categories is the sum of the
products of all non-colliding even@%]:

X
Pnon_collision (N) = P()P(j):iiP( 2) (3.17)
i6j6 62

where the summation indexing corresponds to the non-engiggories with respect to the au-
thentication group.

3.4.3 Simulation evaluation of the system in the interferece limited setting

In the following we provide a simulation of the probabilitfidenti cation error, in the setting

of interest, under the assumption that the errors are durdderence, i.e., under the assumptions
that errors only happen if and only if the chosen subjecteshélie same category with another
person from the randomly chosen authentication group. Ghigesponds to the setting where
the soft-biometric approach cannot provide conclusivatideation. In the simulation, the larger
population consisted of 646 people from the FERET database,the simulation was run for
different sizes n of the authentication group. The prolitstadf identi cation error is described in
the following gure.

—&— p(N) all traits
p(N) no glasses
p(N) no skin color
p(N) no hair color
07k p(N) no eye color

0.9

0.8

0.6

0.5

>
> /

03 ; —a— q(N) all traits

g(N) no glasses
q(N) no skin color | |
= ¢(N) no hair color | |
= ((N) no eye color

0 i i i i i i i
2 4 6 8 10 12 14

Subjects N

Probability of Collision

0.2

0.1F

Figure 3.4: Collision probability in an n sized authenticatgroup.

As a measure of the importance of each trait, Figuré 3.4 ibescthe collision probability
when different traits are removed. The presence of moustaod beard seem to have the least
in uence on the detection results, whereas hair and eye ¢alee the highest impact on distinc-
tiveness.
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3.5 Reliability and scaling laws

In this section we seek to provide insightful mathematicellgsis of reliability of general soft
biometric systems (SBSs), as well as to study error everdsuaderlying factors. Furthermore
we will proceed to articulate related closed form expressior the single and averaged SBS be-
havior by concisely describing the asymptotic behavioratipent statistical parameters that are
identi ed to directly affect performance. Albeit its asytoic and mathematical nature, the ap-
proach aims to provide simple expressions that can yielghihgto handling real life surveillance
systems.

Along with the general setting from section13.1, in which wterred to the randomly extracted
set ofn people, out of which one person is picked for identi catiorg here introduce the notation
of v for such an-tuple of people. Furthermore we denote\y), i = 1;:::; n thei-th candidate
belonging to the speci c group.

3.5.1 Error events, interference, and effective categorse

Let the randomly chosen subject for identi cation, belongcategory 2 . The SBS rst
produces an estimatdsof , and based on this estimate, tries to identify the chosejestbe.,
tries to establish which candidate wncorresponds to the chosen subject. An error occurs when
the SBS fails to correctly identify the chosen subject, asimfg him or her with another candidate
from the currenin-tuplev. An error can hence certainly occur when the category isriecty
estimate@, i.e., whenP & | orcan possibly occur when the chosen subyc} interferes with
another subject (j ) from the authentication group, i.e., when the chosen subject is essentially
indistinguishable to the SBS from some other candidates.iliVe recall that interference occurs,
whenever two or more subjects belong in the same category.

For a givenv, let S v be the set of subjects wm that belong in a speci ¢ category.
Furthermore leSy denote the set of people inwho do not belong in any of the categories in

. We here note that no subject can simultaneously belong dootwmore categories, but also
note that it is entirely possible thgg j = 0, for some 2 . Hence an error is caused due to
estimation noise (resulting iR 6 ), due to interference (subject indistinguishable fromeoth
subjects inv), or when the chosen candidate belong&in(system is not designed to recognize
the subject of interest).

For a giverv, let

F(v):=jf 2 : jSj> 0gj

denote the number of effective categories, i.e., the nurabénon-empty) categories that fully
characterize the subjects¥n For notational simplicity we henceforth write to denoteF (v),
and we let the dependence wibe implied.

3.5.1.1 The role of interference on the reliability of SBSs

Towards evaluating the overall probability of identi cati error, we rst establish the prob-
ability of error for a given set (authentication group) We note the two characteristic extreme
instances of (v) = nandF(v) = 1. Inthe rst case, the random-tuplev over which identi -
cation will take place, happens to be such that each sulnjecbelongs to a different category, in
which case none of the subjects interferes with anotheestibjdenti cation. On the other hand,
the second case corresponds to the (unfortunate) reahsatifv where all subjects im fall under

1. this possibility will be addressed later on




the same category (all subjectsvrhappen to share the same features), and where identi cation
is highly unreliable.

Before proceeding with the analysis, we brie y de ne soméation. Firstwe leP ; 2
denote the probability of incorrectly identifying a sulljidoom S , and we adopt for now the
simplifying assumption that this probability be indepemidef the speci ¢ subject it . Without
loss of generality, we also I1&;;  ; Sg correspond to thé (v) = F non-empty categories, and
note that  n since one subject can belong to just one category. Furtlrerme let

Sid = [ F:lS

denote the set of subjectsvrthat can potentially be identi ed by the SBS ‘endowed' withand
we note thaSig = [ _; S . Also note tha§Spj = n j Sigj, thatS \ So=; for °6 , and

that
. . % - .
jSiaj= IS
=1
We proceed to derive the error probability for any giwen

Lemma 1 Let a subject be drawn uniformly at random from a randomlydra-tuplev. Then
the probabilityP (errjv) of erroneously identifying that subject, is given by
P
. F o T,P
P(errjiv) =1 7; (3.18)

whereF (v) = F is the number of effective categories spanned by

The following corollary holds for the interference limitedse where errors due to feature estima-
tion are ignorea, i.e., whereP =0.

Corollary 0.1 For the same setting and measure as in Leriina 1, under thédergace limited
assumption, the probability of errd? (errjv) is given by
F

P(errjv) =1 Pt (3.19)

for anyv such that-(v) = F.

The above reveals the somewhat surprising fact that, giyére reliability of an SBS for iden-
ti cation of subjects inv, is independent of the subjects’ distributienn the different categories,
and instead only depends &n As a result this reliability remains identical when emgdyover
differentn-tuples that xF.

Proof of Lemma&ll: See Appendik A.

We proceed with a clarifying example.

Example 2 Consider an SBS equipped with three featyress 3), limited to (correctly) iden-
tifying dark hair, gray hair, and blond hair, i.e., = f’dark hair' = 4, ‘gray hair' = »,
“blond hair' = 3g. Consider drawing at random, from a population correspaggdio the resi-
dents of Nice, threa-tuples, withn = 12, each with a different subject categorization, as shown
in Table[3.3. Despite their different category distributjdhe rst two sets/; andv introduce the
same number of effective categories= 3, and hence the same probability of erroneous detection
P (errjvy) = P(errjv,) = 3= (averaged over the subjects in each set). On the other handsfo
with F = 2, the probability of error increases t@(errjvz) =5 =6.

2. we assume that estimation causes substantially fewasehan interference does and ignore them for now
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Table 3.3: lllustration of Exampld 2

L [ af 2 afF [P(erv) |
vi][10] 1] 1 | 3| 34
Vo | 4| 4| 43| 34
v3 |10 2| 0 | 2| 5%

Up to now the result corresponded to the case of speci czatitins ofv, where we saw that
the probability of error for each realization of lengthwas a function only of the realization of
F (v) which was a random variable describing the number of caiegepanned by the specic
groupv. We now proceed to average over all such realizatiorend describe the overall proba-
bility of error. This analysis is better suited to evaluateecasemble of distributed SBSs deployed
over a large populationMe henceforth focus on the interference limited selﬁing, we make the
simplifying assumptionth&® =0; > 0.

Lemma 2 The probability of error averaged over afi-tuplesv randomly drawn from a suf -
ciently large population, is given by

Ev[F (V)]

Ev[P(errjv)] =1 -

(3.20)

and is dependent only on the rst order statisticg-af

Proof: The proof follows directly from Lemmig 1.

An example follows, related to the above.

Example 3 Consider the case where the city of Nice installs throughbatcity a number of
independent SBHsnd is interested to know the average reliability that thegstems will jointly
provide, over a period of two months The result in Lemm@ 2 gives the general expression of
the average reliability that is jointly provided by the dibuted SBSs, indexed lny for all n.
Indexing byn simply means that the average is taken over all cases whendi ichtion is related

to a random sev of sizen.

We now proceed to establish the statistical behavidf ghcluding the meaik[F ].

Despite the fact that the probability of error [n_(3.24) isuadtion only of the rst moment
of F, our interest in the entire probability density functioersts from our desire to be able to
understand rare behaviors Bf More on this will be seen in the asymptotic analysis that wil
follow.

3. Itis noted though that with increasingthe probability of erroneous identi cation is, in real gms, expected
to increase. This will be considered in future work. Towardtivating the interference limited setting, we note that
such setting generally corresponds to cases where a vargdeSBS allows for to be substantially larger than thus
resulting in a probability of interfence that is small butnwegligible and which has to be accounted for.

4. Independence follows from the assumption that the @iffeSBSs are placed suf ciently far apart.

5. In this example it is assumed that the number of indeper8BBSs and the time period are suf ciently large to
jointly allow for ergodicity.




3.5.2 Analysis of interference patterns in SBSs

Given andn < , we are interested in establishing the probabiit{F) that a randomly
drawnn-tuple of people will havd- active categories out of a total ofin( ;n ) possible active
categorief. We here accept the simplifying assumptionuoiform distributionof the observed
subjects over the categoriesi.e., that

P(v(i)2S )= }; 8 2 ;i nm (3.21)

We also accept that < . The following then holds.

Lemma 3 Given andn, and under the uniformity assumption, the distributioraé described
by
F n F

( FXMn P Ly ey
: Tooi=l (noiy( i)

; (3.22)

P(F)=

whereF can take values betwedmandn.

Proof of Lemmal3: See Appendik A.

Example 4 Consider the case where=9;n =5;F = 3. Then the cardinality of the set of all
possiblen-tuples that spark = 3 effective categories, is given by the product of the folhgwi
three terms.
— The rsttermis( ( 1) ( F+1)= ﬁ =9 8 7 =504 which describes
the number of ways one can pick whieh= 3 categories will be lled.
— Having picked these = 3 categories, the secondterm(is (n 1) (n F +1))=
ﬁ =5 4 3 = 60, which describes the number of ways one can place exactly one
subject in each of these picked categories.
— We are now left with  F = 2 subjects, that can be associated freely to any oRhe 3
speci ¢ picked categories. Hence the third terrFi8 F = 32 = 9 corresponding to the

cardinality off1;2; ;Fg" F.

Motivated by Lemmal2, we now proceed to describe the rst psiatistics ofF. The proof
is direct.

Lemma 4 Under the uniformity assumption, the meariois given by

En F+1

xXn xXn RS o
F)i(n F)I
EfFWI= FP(F)=  plDF)

F=1 F=1 i=1 (n DIC i)

(3.23)

Remark 1 The event of no interference corresponds to the case Wheren. Decreasing values
of % imply higher degrees of interference. An increasingso results in reduced interference.

Related cases are plotted in Figlre 3.5.
Finally, directly from the above, we have the following.

6. Clarifying example: What is the statistical behavioFothat is encountered by a distributed set of SBSs in the
city of Nice?
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Expected value of F, for N=1,2,...r, r =20,50,100,120
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Figure 3.5:E,[F] for =20;50;100 120 n 2 [3;4;:::; ]. We note that for suf ciently larger
thann, thenE,[F] n.

Theorem 1 In the described operational setting of interest, under ititerference limited and
uniformity assumptions, the probability of error averagexer all possiblen-tuplesv, that is
provided by an SBS endowed witlcategories, is given by

En F+1
Ev[P(ern)] = 1 P T (3.24)
( F)X(n F)n L, @ =)!( 0!

Proof of Theorerhl1:The proof is direct from Lemnid 2 and frofn (3123).
Related examples are plotted in Fighre 3.6.

Average P(err) for N=[3,4,.../]  =20,50,100,120
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Figure 3.6:E,[P(err] for =20;50;100,120, n 2 [3;4;:::; 1.

We proceed to explore scaling laws of SBS employed for humanti cation.

3.5.3 Asymptotic bounds on subject interference

In this section we seek to gain insight on the role of increg@sesources (increasing in
reducing the subject interference experienced by an SB&ci8plly we seek to gain insight
on the following practical question: if more funds are sp@nwtards increasing the quality of




an SBS by increasing, then what reliability gains do we expect to see? This goess only
partially answered here, but some insight is provided irfidha of bounds on the different subject-
interference patterns seen by an SBS. The asymptotic baingsify the hard to manipulate
results of Lemmal3 and Theordr 1, and provide insightfukjpretations. A motivating example
is presented before the result.

Example 5 Consider an SBS operating in the city of Berlin, where for acsp n, this system
allows for a certain average reliability. Now the city of Haris ready to allocate further funds,
which can be applied towards doubling the number of categorithat the system can identify.
Such an increase can come about, for example, by increasmgumber and quality of sensors,
which can now better identify more soft-biometric traitheThatural question to ask is how this
extra funding will help to improve the system? The boundgmvilght, suggest that doubling
will result in a doubly exponential reduction in the probl#lyithat a speci ¢ degree of interference
will occur.

Further clarifying examples that motivate this approaehgiven in Sectiof 3.5.3.1.
The following describes the result.
Lemmab5 Let n
h:= Iiqu —; (3.25)
de ne therelative throughpuof a soft biometrics system, and let:= fn; 0 f 1. Thenthe
asymptotic behavior & (F) is bounded as
lim
1 log

logP(f) 2 h(1+f): (3.26)
Proof of Lemmals: See Appendik A.

3.5.3.1 Interpretation of bounds

Lemma[b bounds the statistical behaviorRofF ) in the high regime (for large values of
). To gain intuition we compare two cases corresponding to different relative-throughput
regimes. In the rst case we ask thatis close to , corresponding to the highest relative-
throughput ofr = 1, and directly get from[(3.26) thai(h;f) ;=2 h(1+ f) = d@;f) =
1 f; 0<f < 1 Inthe second case we reduce the relative-throughput tesmond to the
case whera is approximately half of (h = 1=2), which in turn givesd(h;f) = d(%;f) =
8 1.0<f< 1=2 Asexpectedi(l;f) >d(1;f); 8f i

Towards gaining further insight, let us use this same exanplshed some light on how
Lemmd succinctly quanti es the increase in the probabiliiat a certain amount of interference
will occur, for a given increase in the relative-throughpfithe soft biometrics system. To see
this, consider the case where there is a deviation away fhentypicalf = h by some small
xed ,toanewf = h , and note that the value ofde nes the extend of the interfererﬂ,e
because a largerimplies a smallef , and thus a reducdé for the samen. In the high relative-
throughput case of our example, we have that h =1 ,and thus thad(1;1 )= ,
which implies that the probability of such deviation (andiudé corresponding interference) is in
the order of 941 ) = . On the other hand, in the lower relative-throughput caserevh
f=h =3 ,wehavethat(3;5 )= 3+ 5, whichimplies that the probability of the same
deviation in the lower throughput setting is in the order off Giz ) = (G*32) <<

7. Note that interference may occur only i# 0.
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In other words the bound in Lemnha 5 implies that, a reductibthe relative-throughput from

its maximal value oh= 1 to a suf ciently smallern= % for high enough , results in a
substantial and exponential reduction in the probabilftinterference, fronP (h = 1) to
P(h= 1) (3+2),

We have up to now focused on the interference limited scenatiere errors occur only due to
more than one subject belonging to one category. In the eekibs[3.5.4 we consider estimation
error and a more pragmatic way to improve the overall rdligtonf a SBS.

3.5.4 Estimation reliability

In the aforementioned operational setting of interest, ritiability of an SBS captures the
probability of false identi cation of a randomly chosen pen out of a random set of subjects.
In such a setting, the reliability of an SBS is generally tedato:

— the number of categories that the system can identify.

— the degree with which these features/categories refrésechosen set (of subjects) over

which identi cation will take place

— n, where a highen corresponds to identifying a person among an increasirgtelset of

possibly similar-looking people

— robustness with which these categories can be detected

We here proceed to study the general SBS error probabibitytaning inevitably all above
mentioned factors including the algorithmic categorimaterror—probabilities. With other words
we examine, the re—identi cation error probability, regl@ss of the underlying source, which can
be both due to misclassifcation or due to interference.

Given the knowledge of the population statistics and magetive exact algorithmic reliabil-
ities (true detection rates and additionally the confugiaobabilities), we can use a maximum—
likelihood (ML) optimizing rule to compute the maximal pesbr probability for each category.
We note here that the ML optimizing rule for the most probafaitegory in which a chosen subject
belongs, is given by:

"= argmax, P( ) P(y=); (3.27)

whergy is the observation vectdp,( ) is the pdf of the set of categories over the given population
(note _; P( i) = 1), andP(y= ) the probability that y is observed, given that the subject
belongs in category.

3.5.4.1 Improving SBS reliability

In the most common case of a training set, which provided itisat information on all con-
fusion factors as of alP (y= ), we can nd heuristic rules to combat the overall error ptuibity
Perr . Given the large amount of empty categories, see the diitvib of over-all-categories in
the FERET population in Figufe 3.1, and furthermore the elmesented correlations between
traits, certain misclassi cations can be identi ed andarciled. An example for a heuristic error
conciliation attempt can be the following.

Example 6 We take into account the given large FERET population andB8 presented in
sectio 3.311. We simulate again the same identi catiomare, where here we simulate an esti-
mation error of10%for the color soft biometric traits (hair, skin and eye cglovWhen fusing the
traits on decision level (hard fusion) those errors natlyadd up. That is why a soft decision,
taking into account the con dence levels of the extracteduiees and also the reliability of the
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Table 3.4. Example for a heuristic rule. SBS endowed with 4 categories and a given known
population (distribution in thel categories). If our SBS estimates categopyfor a subject to
belong into, due to th® probability of occurrence, the system decides for the nesbable

category, namely ;.
Category 1 o Probability for occurrence of | givenn

05
0
03
02

= = O O
= O Fr O

1
2
3
4

underlying algorithm is used, since it will discriminatense error cases. In the classi cation
step we can easily identify subjects classi ed into "emptegories. Since those categories are
of probability O to occur, due to the known population, an intelligent clasgion system recog-
nizes these cases and reclassi es those subjects in "sinediegories with higher probabilities
of occurrence(=non—empty categories). A "similar" catgghereby is a category with highest
probability for misclassi cation, given the wrongly deted category. We here assume that an
error caused by misclassi cation of one trait is more proathan the misclassi cation of two
or more traits. For visualization see Talile B.4: if a subjiectlassi ed into the category ,, the
system recognizes thag is an empty category and searches for the next probable aateghich

in this case would be;. This simple heuristic rule leads already to a signi cantoaciliation of
the added up estimation error of the SBS, see Figure 3.7.

06
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03

02

Subjects N

Figure 3.7: Errors in a SBS system: interference limitedregstimation reliability error, com-
pensated error.

In the following we outline an additional error, which candssociated to SBSs when used in
a scenario, where the traits are re—identi ed based on a hutescription.

3.5.4.2 Human machine interaction

The immense bene t of having human understandable and ¢amgoft biometric traits over
classical biometrics, enables a computer aided biomeatacch to have as an input a human de-
scription of the target subject. The importance of relagplieations becomes evident in cases,
such as a loss of a child in a mall, where the mother can jusigea description of the child and
computer based search can be performed on available seadab material. Along with the ben-

e t of human compliance come though additional quanti catiand human-machine interaction
errors. Such errors can have different causes.
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— Quanti cation error: the discrete values of soft biometraits are mapped onto a limited
amount of bins and cause such an error. A lower amount of lwmegponds to less mis-
classi cations at the cost though of decreasing distimetass of this trait, as elaborated
above.

— The nomenclature of traits varies and is ambiguous. Fanpleaa hair color that might be
denoted with "red" can be labeled by different subjects aariety of synonyms: auburn,
orange, copper, reddish; but also as a completely diffdraitte.g. brown. A related study
establishing labels for soft biometric traits with the Manital Turk was recently conducted
by the authors ir@l].

— Different people perceive different traits (e.g. coladgerently. Speci cally if the witness
of a crime has a different color understanding than the SB®meing the search it can
lead to an erroneous search. This aspect though can be madirifithe witness is asked to
point at reference colors than just human labeling.

— The awareness of people can be bad or wrong in how they reerdralis.

— Often occurring mixed categories like red-brown for hailoc can be challenging for all,
human perception, the SBS - training and - classi catiomp ste

To visualize just the quanti cation error introduced by antmn understandable SBS we have

the following simulation. We display in Figuke 3.8 on the drad purely the collision probability
of subjects with 8 quanti cation bins(=traits instanceghair color (light blond, dark blond, red,
brown, black, grey, white and bald). On the other hand we llagere—identi cation of non—
guanti ed and discrete computer—to—computer search.dtiisterest, that even in the presence of
an estimation error the over all error probability is deseshin the absence of quanti cation error.
A full computer—to—computer is presented in Chapter 5 ardisglly in Figure[5.4, where the
performance of a SBS employing AdaBoisI_L—El:llT 98] boostedrétyms for hair, skin and cloths
color, their textures and patch histograms is illustratétie system is used for frontal-to—side
re—identi cation.
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Figure 3.8: Re—identi cation error for hair color in amsized authentication group.

3.6 Summary

In this chapter we explored the use of multi-trait SBSs famhua identi cation, studying an-
alytically the relationship between an authenticatiorugre, its sizen, the featured categories
and the effective categori€s. Then we proceeded to show that in the interference limigtiihg,
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for a given randomly chosen authentication graymf a given sizen, the reliability of identi -
cation (averaged over the subjects/inis a function only of the number of non-empty categories
F (v). Furthermore we provided statistical analysis of thisatglity, over large populations. The
latter part provided bounds that, in the interference Bhisetting suggest axponentialreduc-
tion in the probability of interference patterns, as a restila linear increase in . Finally we
made some observations regarding algorithmic estimatiohgave an example of how to coun-
teract, given known population statistics.

Having analyzed in this chapter pertinent measures andnaigsain the process of human
identi cation based on SBSs, we proceed in the next chaptersfudy the process of employing
SBSs for pruning a large database search. The goal will pertbieto identify a subject, but rather
to pre- Iter such a large database for a consecutive praogsgith a more reliable algorithm, e.g.
classical face recognition.
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Chapter 4

Search pruning in video survelillance
systems

In recent years we have experienced an increasing needuttius and organize an expo-
nentially expanding volume of data that may take the formaafiong other things, images and
videos. Crucial to this effort is the often computationadtypensive task of algorithmic search
for speci ¢ elements placed at unknown locations insidgeadata sets. To limit computational
cost, pre- Itering such as pruning can be used, to quickimiglate a portion of the initial data, an
action which is then followed by a more precise and complexcdewithin the smaller subset of
the remaining data. Such pruning methods can substardjgdigd up the search, at the risk though
of missing the target, thus reducing the overall reliapil@ommon pre- Itering methods include
video indexing and image classi cation with respect to c], patterns, object4],
or feature vectormG].

4.1 Categorization-based pruning

Our interest in analyzing this speed vs. reliability trafflefocuses on the realistic setting
where the search is time-constrained and where, as we wilbser on, the environment in which
the search takes place is stochastic, dynamically chapngmdjcan cause search errors. We note
here that there is a fundamental difference between seanahsiructured versus structured data,
where the latter can be handled with very ef cient algorithrauch as the sphere decoding algo-
rithm. One widely known practical scenario that adhereshéabove stochastic setting, is the
scenario of biometric-based video surveillance. In thisirsg a time constrained search seeks
to identify a subject from within a large set of individualgeat may consist of, for example, the
people surrounding the subject in a speci ¢ instance at @isptocation. In the language of
biometrics we provide analysis on the general speed-ifijgbehavior in search pruning. In this
scenario, a set of subjects can be pruned by means of caiatyami that is based on different
combinations of soft biometric traits such as facial cofbrapes or measurements. The need for
such biometrically-based search pruning often comes téotlee such as in the case of the 2005
London bombing and the 2011 London riots where a sizeabttidraof the police force worked
for days to screen a fraction of the available surveillarideas relating to the event.

We stay focused on search pruning based on soft biometriceeimind the reader that this
analysis can be generally applied to several domains of ammpision or other disciplines that
adhere to the setting of categorization-based pruningrie-tonstrained searches over error-prone
stochastic environments. We clarify that we refeptaning the searclas the categorization and




44 4. SARCH PRUNING IN VIDEO SURVEILLANCE SYSTEMS

further elimination of categories, which limits large dzdaes of subjects to a fraction of the initial
database, see Figure.1. In the context of this chaptetithmation or Itering of the employed
categories is based on the soft biometric characterisfitsessubjects. The pruned database can
be subsequently processed by humans or by a biometric sdiabeasecognition.

The approach of pruning the search using SBSs, can apply¢oasee-identi cation scenar-
ios, including the following:

— Atheftin a crowded mall is observed by different people \ghe partial information about
the thief's appearance. Based on this information, a @&$gpsearch applies SBS methods
to cut down on the long surveillance video recordings froress cameras.

— A mother has lost her child and can describe traits likehelgtcolor and height of the child.
Video surveillance material can be pruned and resultingsstipns can be displayed to the
mother.

The above cases support the applicability of SBSs, but alsat that together with the bene ts
of such systems, come considerable risks such as that afesusly pruning out the target of the
search. This brings to the fore the need to jointly analyeegdins and risks of such systems.

In the setting of human identi cation, we consider the secenahere we search for a speci c
subject of interestenoted as® belonging to a large and randomly draauthentication group
v of n subjects, where each subject belongs to one oftegories The elements of the set
(authentication groupy are derived randomly from a larger population, which adéi¢oea set
of population statistics. A category corresponds to subjedio adhere to a speci ¢ combination
of soft biometric characteristics, so for example one maysiter a category consisting of blond,
tall, females. We note the analogy to the scenario from ehnhtbut proceed to elaborate on the
different goal of the current chapter.

With n being potentially large, we seek to simplify the search fdsjectv® within v by al-
gorithmic pruningbased on categorization, i.e., by rst identifying the sdig that potentially
belong to the same category @ and by then pruning out all other subjects that have not been
estimated to share the same traity¥4sPruning is then expected to be followed by careful search
of the remaining unpruned set. Such categorization-bageuiny allows for a search speedup
through a reduction in the search space, fromo some smaller and easier to handleSethich
is the subset of that remains after pruning, see Figlrel 4.1 and Figurde 4.4.r€duction though
happens in the presence of a set of categorization erroapildlesf ; g, called confusion proba-
bilities, that essentially describe how easy it is for categs to be confused, hence also describing
the probability that the estimation algorithm erroneousitynes out the subject of interest, by
falsely categorizing it. This confusion set, together with set of population statistidsr g; _;
which describes how common a certain category is insideattye Ipopulation, jointly de ne the
statistical performance of the search pruning, which wé exiplore. The above aspects will be
precisely described later on.

Example 7 An example of a suf ciently large population includes theahitants of a certain
city, and an example of a randomly chosen authenticatiommi@-tuple) v includes the set of
people captured by a video surveillance system in the alméoned city between 11:00 and
11:05 yesterday. An example SBS could be able to classistdnices of hair color, 6 instances of
height and 2 of gender, thus being able to differentiate betw =5 6 2 = 60 distinct categories.
An example search could seek for a subject that was desciibbelong to the rst category of,
say, blond and tall females. The subject and the rest of thieeatication group oh = 1000
people, were captured by a video-surveillance system abajppately the same time and place
somewhere in the city. In this city, each SBS-based categmpgars with probabilityp:;  ; pso,
and each such category can be confused for the rst categatty pvobability »; ; go. The
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Figure 4.1: System overview.

SBS makes an error whenewdis pruned out, thus it allows for reliability of,. To clarify, having
p1 = 0:1implies that approximately one in ten city inhabitants alend-tall-females, and having

2 = 0:05 means that the system (its feature estimation algoritherg)g to confuse the second
category for the rst category with probability equal @05.

What becomes apparent though is that a more aggressivengrohsubjects irv results in a
smallerS and a higher pruning gain, but as categorization entailmatbn errors, such a gain
could come at the risk of erroneously pruning out the subjéthat we are searching for, thus
reducing the system reliability.

Reliability and pruning gain are naturally affected by, amgother things, the distinctiveness
and differentiability of the subjest’from the rest of the people in the speci ¢ authenticationugro
v over which pruning will take place that particular instande several scenarios though, this
distinctiveness changes randomly becaus#iself changes randomly. This introduces a stochastic
environment. In this case, depending on the instance inhwtfiand its surroundings  vPwere
captured by the system, some instances would kagensist of bystanders that look similar to
the subject of interest®, and other instances would haveonsist of people who look suf ciently
different from the subject. Naturally the rst case is geaailr expected to allow for a lower
pruning gain than the second case.

The pruning gain and reliability behavior can also be afiddby the system design. At one
extreme we nd a very conservative system that prunes out mlmee ofv only if it is highly
con dent about its estimation and categorization, in whiglse the system yields maximal relia-
bility (near-zero error probability) but with a much reddgeruning gain. At the other extreme,
we nd an effective but unreliable system which aggressiy@lunes out subjects m, resulting
in a potentially much reduced search spg&g &< n ), at a high risk though of an error. In the
above S| denotes the cardinality of s&t

4.2 Contributions

In the next section we elaborate on the concepprahing gainwhich describes, as a func-
tion of pruning reliability, the multiplicative reductioof the set size after pruning: for example a
pruning gain of 2 implies that pruning managed to halve the sf the original set. Secti¢n 4.5.1
provides average case analysis of the pruning gain, as adorof reliability, whereas Sectidn 4.5
provides atypical-case analysis, offering insight on hé&ropruning fails to be suf ciently help-
ful. In the process we try to provide some intuition througtaraples on topics such as, how
the system gain-reliability performance suffers with g&sing confusability of categories, or on
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Figure 4.2: Pruning gain, as a function of the confusabihitgbability , for the uniform error
setting, and fop; = 0:1. Plotted for =3 and =38.

whether searching for a rare looking subject renders theclsgaerformance more sensitive to

increases in confusability, than searching for commonitopkubjects. We then present nine dif-

ferent soft biometric systems, and describe how the emglogieegorization algorithms (eye color

detector, glasses and moustache detector) are appliedlmaracteristic database of 646 people.
In Sectior[ 4.6.11 we provide simulations that reveal theallity and range of the pruning bene-

ts offered by different SBSs. In Sectidn 4.7 we provide cisecclosed form expressions on the
measures of pruning gain and goodput, provide simulatesmsyell as derive and simulate aspects
relating to the complexity costs of different soft biometiystems of interest.

Before proving the aforementioned results we hasten to giwvee insight, as to what is to
come. In the setting of I@;ge, Sectiol 4.5]1 easily tells us that the average pruning géies
the form of the inverse of (_, pr ¢, which is illustrated in an example in Figure 4.2 for dif-
ferent (uniform) confusability probabilities, for the eawhere the search is for an individual that
belongs to a category that occurs once every ten people oarigef case of two different systems
that can respectively distinguish 3 or 8 categories. Thpiedy analysis in Section 4.5 is more
involved and is better illustrated with an example, whicksaghat is the probability that a system
that can identify = 3 categories, that searches for a subject of the rst categbat has80
percent reliability, that introduces confusability paegers » = 0:2; 3 = 0:3 and operates over a
population with statisticp; = 0:4; p> = 0:25; p3 = 0:35, will prune the search to only a fraction
of = jSj=n. We note that here is the inverse of the pruning gain. We plot in Figlrel 4.3 the
asymptotic rate of decay for this probability,

J():= NIi!gn rLOTQP(ij >n) (4.2)

for different values of . From theJ ( ) in Figure[4.3 we can draw different conclusions, such as:
— Focusing on = 0:475whereJ (0:475) = 0, we see that the size of the (after pruning) set
S is typically (most commonly - with probability that does n@ainish withn) 47:5% of the
original sizen. In the absence of errors, this would have been equad to 40%, but the
errors cause a reduction of the average gain by aboit
— Focusing on = 0:72, we note that the probability that pruning removes less thabi72 =
28% of the original set is approximately given ley", whereas focusing on = 0:62, we
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Figure 4.3: Asymptotic rate of decay &f(jSj > n ), for = 3, reliability 0:8, population
statisticsp; = 0:4; p, = 0:25; p3 = 0:35and confusability parameters = 0:2; 3 =0:3.

note that the probability that pruning removes less than0:62 = 38% of the original set,
is approximately given by "=2. The probability that pruning removes less than half the
elements is approximate( > 0:5) e "1,

The expressions from the above graphs will be derived inldatar.

4.3 Gainvs. reliability in soft biometric systems

As an intermediate measure of ef ciency we consider thetgmsneouspruning gain de-
ned here as

n
V)= —; 4.2
V) = i5; (4.2)
which simply describd the size reduction, frona to S, and which can vary from (no pruning
gain) ton. In terms of system design, one could also considerdladive gain

r(v):=1 J% 2 [0;1]; (4.3)

describing the fraction of people inthat was pruned out.

It is noted here thaB(v), and by extension(v), vary randomly with, among other things, the
relationship between andv® the current estimation conditions as well as the error luiipas
of the system. For example, we note thav iandv° are such that® belongs in a category in
which very few other members gfbelong to, then the SBS-based pruning is expected to produce
a very smallS and a high gain. If though, at the same time, the estimatipaluéties (algorithms
and hardware) of the system result in the characteristio# being easily confusable with the
characteristics of another populous category jrthenS will be generally larger, and the gain
smaller.

As a result, any reasonable analysis of the gain-relighdéhavior must be of a statistical
nature and must naturally re ect the categorization re rat) the corresponding estimation error
capabilities of the system, as well as the statistics ofdrgel population.

1. We here assume that the SBS is asked to leave at least gaetsnl$.
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Figure 4.4: Pruning process: categorization and elinomabif categories.

4.4 General setting

For this chapter, as mentioned above, we consider the gettirere there is a search for a
subject of interest® from within a largerauthentication groupf n subjectsy. The subject of
interestv®is randomly placed inside, and in turnv is randomly drawn from a larger population.

Each member of belongs to one of categoriesCs v; f =1; ; , with probability equal
to
‘C.
pr = EVJT”; f=1, ., (4.4)

whereE is used to denote the statistical expectation. Such categor be for example (labeled
as) 'blue eyed, with moustache and with glasses'. The safinbiric system goes through the
elementss 2 v, and provides an estima@(v) 2 [1; ] of the category that belongs in. Foc®
denoting the actual category of, where this category is considered to be known to the system,
then each elementis pruned out if and only i@(v) 6 CC Speci cally the SBS produces a set

S=fv2v:@wv=Cch v

of subjects that were not pruned out. The pruning gain comwes the fact thasS is generally
smaller tharv.
It is the case that pruning which results in generally sma&leis associated to a higher gain,
but also a higher risk of erroneously pruning out the targbjextv®, thus reducing theeliability
of the SBS. Both reliability and pruning gain are naturalfieeted by different parameters such
as
— the category distribution of the authentication greuyp
— the distinctiveness of the category to whidbelongs
— the system design: a conservatively tuned system willgoouny with low risk to prune out
v? allowing for a high false acceptance rate FAR, on the otlaadran aggressive system
will prune stronger with the cost of a higher false rejectiate FRR.
Furthermore, the gain is clearly a functionafConsequently any meaningful analysis of an SBS
will have to be statistical in nature. We here consider theraye behavior of such systems. In
such a case we will see that two aspects prove to be crucia mingdj the average case behavior
of the system. The rst aspect is the population statistiogd thhe second is the error behavior of
the different categorization algorithms. Speci cally werl consider the vector

p:=lpups  pl (4.5)
which de nes the entire population statistics. In termsmwbebehavior, we de ne

i = POV =C¢ :v2C) (4.6)
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to be the probability that the algorithms will categorizeoithejth categoryC;j, an element which
actually belongs to théh categoryC; (see Figuré4l5 for a graphical illustration). Simply
i;j 2[1; ]isthe element of thgh row andjth column of what is known as the  confusion
matrix, which we denote here &s.

2 3
1 12 1
21 22 2
E = § ) z : 4.7)
12
Related to these parameters we also de ne
X
f = fi (4.8)
i=1;i6f

to denote the probability that a member of categ@ryis wrongly categorized. Finally we use the
notation

e=[12 I 4.9

Real

categories Estimated

categories

System reliability

Figure 4.5: Confusion parametdrs g.

4.5 Statistical analysis using the method of types and infonation
divergence

Let us consider a scenario where a search for a subfecirned out to be extremely inef-
fective, and fell below the expectations, due to a very unfaate matching of the subject with
its surroundings/. This unfortunate scenario motivates the natural questfdrow often will a
system that was designed to achieve a certain average ajg@hiity behavior, fall short of the
expectations, providing an atypically small pruning gamndl éeaving its users with an atypically
large and unmanagealffe It consequently brings to the previously related questisuch as for
example, how will this probability be altered if we change ttardware and algorithmic resources
of the system (change the and ), or change the setting in which the system operates (change
thep;).
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We proceed to analyze these issues and rst recall that favencauthentication group,
the categorization algorithm identi es s8tof all unpruned subjects, de ned &= fv 2 v :
@(v) = 1g: We are here interested in the size of the search after prusiperi cally in the
parameter

S
=129 : (4.10)
n=
which represenga relative deviation ofSj from a baselinen= . It can be seen that the typical,
i.e., common, value of is (see also Sectidn 4.5.1)

0= BEy—= Prof: (4.12)

We are now interested in the entire tail behavior (not justtiipical part of it), i.e., we are inter-
ested in understanding the probability of having an autbatmbn groupv that results in atypically
unhelpful pruningl > ), or atypically helpful prunind < o).
Towards this let .y
or (V) := 2, (4.12)
let ap(v) = f of(v)gi_, describe thanstantaneoushormalized distribution (histogram) of
fj Ct jo; -, for the speci ¢, randomly chosen and xed authenticatioowpwyv, and let

..
g (4.13)

pi=fprg. =fE

denote thenormalized statisticapopulation distribution ofj Cs jg; _; .
Furthermore, for a given, let

=—0 1f : (4.14)

let 1(v) = fags(v)g -, and (v):=f o(v), 1(v)g, and IeE

X
V()= 0 1;f min( ;  of); 1f = ; (4.15)
f=1

denote the set of valid for a given , i.e., describe the set of all possible authentication ggou
and categorization errors that can resufiSp= 2.
Given the information that ; has on g, given that is implied by 1; and given that the
algorithms here categorize a subject independently ofr athiejects, it can be seen that for any
2V( ), itisthe case that

P(C )

P( o 1)=P( oP( 1 0 (4.16)
Y

P( O;f) P( l;fj O;f): (4-17)
f=1 f=1

2. Note the small change in notation compared to SeEfidn#ha change is meant to make the derivations more
concise.
3. For simplicity of notation we will henceforth usey; 1; ; of; 1 and letthe association tobe implied
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The following lemma describes the asymptotic behavioP ¢f ; ), forany 2 V(). To
clarify, the lemma describes the asymptotic rate of decath@fjoint probability of an authen-
tication group with histogram o and an estimation/categorization process corresponding t
given that the group and categorization process result impruned set of size

isj= 1 (4.18)

for some0 . This behavior will be described below as a concise funabitine binomial

rate-function (se6])
xlog(*) + (1 x)log(+%) f 2

f

xlog(z*5)+ (1 x)log(*%*) f =1:

1

I (x) = (4.19)

The lemma follows.

Lemma 6 X
. lo . -
im —2P( ;)= D( oiip)+ oflf —
N1 n= o
f=1 :
where X o
D( ojip) = of log——
¢ Pr
is the informational divergence betweeg andp (see [CT06]).

The proof follows soon after. We now proceed with the maimltesvhich averages the out-
come in Lemm&l6, over all possible authentication groups.

Theorem 2 In SBS-based pruning, the size of the remainingSgtsatis es the following:

X X |
IOy = dim pgsi My = inf ot log 2L+ 7 ey 5 (4.20)
NI  n= Vo e oif

Furthermore we have the following.

Theorem 3 The probability that after pruning, the search space is biggesp. smaller) than
n is given for o by

. log ... n, _

NII!lm nTP(jSJ > )=J() (4.22)
andfor < g

. log _ ... n, _ _

NIl!gn nTP(ij < )=J(): (4.22)

The above describe how often we encounter authenticatmupgy and feature estimation behav-
ior that jointly cause the gain to deviate, by a speci ¢ degfeom the common behavior described
in (4.11), i.e., how often the pruning is atypically ineffiee or atypically effective. We offer the
intuition that the atypical behavior of the pruning gain @ntnated by a small set of authenti-
cation groups, that minimize the expression in Thedrém ZhSuinimization was presented in
Fig.[4.3, and in examples that will follow after the proofs.

Please see the AnnEx B for the proofs.

The following examples are meant to provide insight on théstical behavior of pruning.
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Example 8 (How often will the gain be very small?) We recall the discussion in section¥4.2 where
a pruning (surveillance) system can identify= 3 categories, operates with reliability; = 0:8

over a population with statistigs; = 0:4; p2 = 0:25, p3 = 0:35and has confusability parameters

2> = 0:2; 3 = 0:3. In the context of the above theorems we note that the relsaiidy shown

in Figure[4.3 applies by substitutingwith = = =3. Consequently from Figute 4.3 we recall
the following. The size of the (after pruning) &eis typically 47:5% of the original sizen. The
probability that pruning removes less thdn 0:72 = 28% of the original set, is approximately
given bye " = e 3" because, as Figufe 4.3 showg0:72) 1 (recall = 3). Similarly the
same Figure tells us that the probability that pruning ree®Vess tharl  0:62 = 38% of the
original set, is approximately given ey =2 = e 32 pecausel (0:62) 1=2.

In the following example we are interested in understanttiegoehavior of the search pruning
in the case of rare authentication groups.

Example 9 (Which groups cause speci ¢ problems?)Consider the case where a (soft biomet-
rics based) pruning system has = 2 identi able categories, population probabilitiep =

[p; 1 p], and confusion probabilities = [1 ;] (this means that the probability that the

rst category is confused for the second, is equal to makhegreverse error). We want to un-

derstand what types of authentication groups will causepsuning system to prune out only, for

example, a fourth of the populatiojBf 3n=4). The answer will turn out to be that the typical

groups that cause such reduced pruning, hd@@6 of the subjects in the rst category, and the
rest in the other category.

To see this we recall that (see Theofen)sj)  5jSj = 3n=4 which implies that = 3=2.
For denoting the fraction of the subjects {in that belong in the rst category, and after some
algebra that we ignore here, it can be shown that g— whichyields =3=7 43%

A further clarifying example focuses on the case of a statiby symmetric, i.e., maximally
diverse population.

Example 10 (Male or female?) Consider a city wittb0% male ands0%female population (=

2;p1 = p2 = 0:5). Let the confusion probabilities as before to be equalhm $ense thatf =

[1 ; 1. Weare interested in the following questions. For a systeangearches for a male ( rst
category), how often will the system prune out only a thirdhef population (as opposed to the
expected one half)? How often will we run across an authatitio group with , ag.1 = 20%
males, and then have the system prune out 6% of the overall size (as opposed to the expected
80%)? As it turns out, the rst answer reveals a probabilifyaboute "4, and the second answer
reveals a probability of abou¢ "=°. Forn 50, the two probabilities are about ve in a million
and forty- ve in a million respectively.

To see this, rstnote thatq.1 = . Then we have that
. log ... n

I(; 11 )= 1 —P(Sj= = ; 1);

Goona )= lim —2POSI= 550 1)

inflI(; 215 )=1(G; 11= )=
2 log2 +2(1 )log 2(1 )+ log +(2 )log(2 ):

To see the above, just calculate the derivativé wiith respect to 1.1. For the behavior of
weseethat( )=inf inf ., 1(; 115 )=1( =p; 1;2=p1; )
= log +(2 )log(2 );whichcan be seen by calculating the derivativendf | (; 1.1; )
with respect to .
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4.5.1 Typical behavior: average gain and goodput

We here provide expressions for the average pruning gairehsisithe goodput which jointly
considers gain and reliability. This is followed by severalrifying examples.
In terms g the average pruning gain, it is straightforwandt tthis takes the forn® :
vw (V) = f=1 Pr o 1; and similarly the average relative gain takes the f&my r (v)
f=1 Pr (1 ). We recall that reliability is given by;.
In combining the above average gain measure with relighilie consider the (averaggdod-
put, denoted asJ, which for the sake of simplicity is here offered a conciserf@f a weighted
product between reliability and gain,

U= ,'G>? (4.23)

for some chosen positive; » that describe the importance paid to reliability and to prgrgain
respectively.
We proceed with clarifying examples.

Example 11 (Average gain with error uniformity) Intheuniform error settingwhere the prob-
ability of erroneous categorization of subjects is assutodae equal to for all categories | i.e.,
where y = = 11:8f =2; ; ,itisthe case that

G= pi+ p (4.24)

This was already illustrated in Fig. 4.2. We quickly notettfeat p; = 1=, the gain remains equal
to 1=p, irrespective of and irrespective of the rest of the population statispesf 2.

Example 12 (Average gain with uniform error scaling) Now consider the case where the uni-
max( ; 0)

form error increases with as = ———~ | 1. Then for any set of population statistics,
it is the case that 1

G( )= pafl+( ) 1+ ; (4.25)
which approachess( ) = (pa[l +( ) 1+ ) 'as increases. We briey note that, as

expected, in the regime of very high reliability { 0), and irrespective of ps g; _, , the pruning
gain approache%l? In the other extreme of low reliability (! 1), the gain approaches; 1

We proceed with an example on the average goodput.

Example 13 (Average goodput with error uniformity) Under error uniformity where erroneous
categorization happens with probability and 1}){11 = 3 =1, the goodput takes the form
Ul)s ——: 4.26
OF S ) (420
To offer insight we note that the goodput starts at a maximfibh pll for a near zero value of
, and then decreases with a slope of

U _ pp 1 .

[ +p )%

which as expecteﬂiis negative for allp; < 1. We here see thah Yiio! 2—p3p—1 which is
1

positive and decreasing ioy. Within the context of the example, the intuition that we d&aw is
that, for the same increase ilﬁ, a search for a rare looking subjegb{ small) can be much more
sensitive, in terms of goodput, to outside perturbationgiuations in ) than searches for more
common looking individualgf large).

(4.27)

4. We note that asking fg8] 1, implies that + p1(1 ) > 1 (seel[4.2h)) which guarantees thétis nite.
5. An example of such a deterioration that causes an incieasean be a reduction in the luminosity around the
subjects.
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We now proceed with the application of the derived measunesal life SBSs and furthermore
guantify these SBSs.

4.6 Practical application of above analysis on proposed SBS

We adopt the results & real soft biometric trait categorization algorithms frohmapte ¥ by
speci cally taking over the related confusion matrices.e$@ algorithms are error prone systems
for

— categorization ofl eye colors: based on Gaussian Mixture Models with expectatiaxi-

mization classi cation of hue and saturation values in th& i

— moustache detection: based on skin color and hair colopadson in the region below the

nose,

— glasses detection: based on edge and line detection betheeyes.

Using the three traits, we construct nine different SBS<chvimie list below in Table4]1. All re-
lated confusion matrices and related population stagistie listed in AppendixIB. The large pop-
ulation in which we employ those SBSs is based on the sttisfithe FERET databa rii].
For this purpose we annotated the 646 subjects in the FER&bDake in terms of glasses, mous-
tache and eye color.

| SBS | Description | ]
2e' Categorization of 2 eye colors 2
m' Moustache detection 2
g Glasses detection 2
e’ Categorization of 4 eye colors 4
‘mg’ Moustache and Glasses detection 4
2em'’ 2 eye color categories and moustache detection 4
“2eg' 2 eye color categories and glasses detection| 4

‘2emg' | 2 eye color classes, moustache and glasses detectin

“4emg' | 4 eye color classes, moustache and glasses detecfién

Table 4.1: SBSs labeling and description of thessociated categories

In the following we analyze the pruning gain related to thespnted systems.

4.6.1 Simulations: the instantaneous pruning gain

A pertinent characteristic of an SBS is the amount by whiehitiitial database is reduced. As
a measure of this we adopt the pruning gain from above to be:

IS
n
describing the fraction of subjects fromwhich was pruned out. This ranges frdhno pruning
gain) tol.

We proceed to illustrate the variability ofv), as a function o but also ofv®. To understand
this variability we can note that#®belongs in a rare category (e.g. green eyes), then we gineral
expect a higher gain, thanvP belonged in a more common category (e.g. black eyes). Slyila
if v happens to comprise of people who look similavfdhen the gain will be smaller than the
case where anothercomprised of people who looked suf ciently different frorfi

To illustrate these relationships we proceed with soméfglag simulations involving the
presented SBSs. In these simulations we randomly pick l&lzaéons ofv, each consisting of

riv):=1 2 [0; 1]; (4.28)
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n = 50 subjects, out of which we randomly pigR and we perform error-prone pruning according
to the confusion matrices presented in the Appendix.

In Figurel4.6 we demonstrate this pruning gain in an expertrimeolving the SBS labeled as
“4e' (see Table4]1), which employs= 4 categories, and which acts on the population that shares
the distribution of the FERET database.

10 20 30 40 50 60 70 80 90 100

Figure 4.6: SBS “4e', n=50, target subjefibelongs to a random categoB/.

For further understanding we proceed with some variatidki® simulation.
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Figure 4.7: SBS “mg', n=50, target subjebelongs to categorg ="moustache - glasses".

One point we observed is that generally, even in the presaibe confusion matrices, having
more categories generally (but not always) translates tghehgain.

We note that for = 16, n = 20, and a target persorf who is blue eyed and has no glasses
and no moustache, Figure 4110 reports pruning gain valugs 095. This corresponds to the
pruning out 0of95% of v, which in this speci c case is equivalent to saying that tH&SShas
entirely identi ed v°.

Furthermore we note that, as expected, an increasing digthion group sizen generally
introduces a smaller variability in the gain; see for exafpburd 4.D witm = 200.

The Figured 417 and 4.8 allow for a gain comparison, whereispdly the rst considers
the case wherg® belongs in the rare category of people having glasses andtashe, and in
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Figure 4.8: SBS “mg', n=50, target subjefbelongs to categorg =“no moustache - no glasses".
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Figure 4.9: SBS "mg’, n=200, target subja&belongs to categor “=“no moustache - no
glasses”.

the other more common case wherf&belongs in the category of people without glasses and
moustache. The operating ranges of the pruning gain re @icextly the distinctiveness of the
target subject, given in both cases the same populationyateins characteristics.

4.7 Average case analysis of gain, reliability and computainal-cost
effects of pruning

4.7.1 Average pruning gain and related error

We proceed with presenting a concise description of theageegain of an SBS, where the
gainr(v) is averaged over all possible authentication groupand over the randomness of the
categorization errorg/, as elaborated in 4.3.

The following describes the average gain and reliabilitaSBS.

Proposition 1 An SBS system endowed with a categorization confusionxagmd error vector
e, and operating over a general population with statisticgegi byp, allows for a probability of




57

0.9 B

0.85 N

0.81-

pruning Gain r(v)

0.75 B

0.7~ —| N
0.65 I I I I I
0

15
Realization t

Figure 4.10: SBS “emg’, n=20, target subje@belongs to categorg =“Blue eyes - no moustache
- no glasses".

error given by
Perr = pTe

and an average gain of
r:=Eywrf(v)=1 p'Ep: (4.29)

A relevant question is whether it is better, in terms of iasiag the average gain, to invest in
soft biometric traits like tattoos, scars and birth markBiol are rare, but distinctive, or if it is of
more value to invest in facial measures and facial colorsyhith subjects are distributed more
uniformly. The above proposition addresses this questimhcan show that investing towards a
uniform category distribution for a given population is mealuable in terms of gain.

We illustrate the average gain and pruning error for the gsed SBSs in Figurie 4111 and
provide the exact values in Table 2.

At this point we can establish also the measurgarfdput which was introduced in4.5.1 as a
measure that jointly considers both the gain and the réitialbapabilities of an SBS.

Average goodput of search pruning The measure of goodput, combines as introducéd inl4.5.1
the pruning gain with reliability. For the sake of simplicthe measure, denoted herelhgakes
the form of a weighted product between reliability and gain

U=1 Pey 'r? (4.30)

for some chosen positive;; » that respectively describe the importance paid to religtéind
to pruning gain. We note the change of the expression froriosdd.5.1, which forms though
are both equivalent. We proceed to evaluate and rank the @BsSs in terms of the introduced
characteristics gain, error and goodput and set herebyiiieg variables; = ,=1.

Table[4.7.11 provides the results on the proposed nine SBSs.olWerve that the highest
goodput is attributed to system “4e' endowed with 4 eye coddegories. The enhanced systems
"2emg' and “4emg' introduce a gain increase, but at the domth increased error probability. On
the other hand the systems "2e', ‘'m’, 'g', and "2eg' intragllmwer error probabilities but at a
cost of low average pruning gain. The intertwined relatigpdetween error, gain and goodput
is illustrated in Figuré 4.11. Given the measure of goodpaican compare SBSs, by prioritizing
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ISBS | Per | r | U |
“2¢' 0.0750] 0.4743] 0.4388
‘m' 0.1420| 0.2538| 0.2177
g’ 0.0690| 0.3275| 0.3049

“4e' 0.1522| 0.7039| 0.5968
‘'mg’ 0.2012| 0.4982| 0.3979
"2em' | 0.2063| 0.6077| 0.4823
“2eqd’ 0.1388| 0.6465| 0.5568
"2emg' | 0.2611| 0.7362| 0.5440
“4emg' | 0.3227| 0.8514| 0.5766

Table 4.2: Pruning error, gain and goodput of the proposessSB
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Figure 4.11: Pruning error, gain and goodput of the prop&ie8s.

the gain or the error contribution depending on the appticascenario. If we are interested in
pruning aggressively a big database, we would emphasizbeogain and choose a system like
“4emg’, at the cost though of an increased FRR. If we want tken@aconservative search prune
with a low risk of pruning out the target subject, then syst@eg' is more suitable to be our
system of choice. The question arises here of how to boundase when an enhancement of a
system is pro table in terms of goodput. With other words isaaldition of a soft biometric trait
a positive contribution to the SBS or does the related aeeeaugpr outweighs the related pruning
gain? This is addressed in Equatibn (4.30) and can be andwepending on a given application,
population statistics and error probability.

4.7.2 Computational cost reduction

We brie y discuss the computational savings that resultif®cpding a computationally expen-
sive algorithm (e.g. full person recognition) with prunibgsed on generally simpler categoriza-
tion algorithms. In terms of analysis, [€tbe the total number of soft biometric traits (e.g. system
“4emg' corresponds td = 3 traits:t = 1 for eyest = 2 for moustachet = 3 for glasses). Fur-
thermore letN; be the average computational complexity required to implencategorization,
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for one person, for trait, t = 1;2; ; T. At the same time Lell;, be the average complexity
associated with the face recognition algorithm, per pers8iven a naive way of pruning, we
conclude that the overall computational complehityis given as

N =n Nt + jSjNy, ; (4.31)
i=1

which re ects the fact that the categorization algorithrostheT traits would be employed om
people, and the computationally expensive face recognigorithm would be employed only on
jSj people. We relate this computational complexityto the computational complexity required
if only the face recognition system was employed on the ewntir Towards this we have the
following.

Proposition 2 Pruning results in a computational cost reduction to a fractof NNy, that is
equal to P
EN_ _ o Ne p' Ep: (4.32)
NN ¢, N ' '

Example: We proceed with the evaluation of our presented SBSs wittethlifferent esti-
mated relationships between the computational complefitye face recognition systeid, ,
and that of implementing a trait, i.e., .
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Figure 4.12: Complexity cost reduction provided by the pnésd SBSs. In the above, the ratio
Nt =N; varies.

Figurel4.1? re ects on the computational cost reductiorhefpiroposed SBSs. In this context
the best systems are "4e' and “4emg’, which reduce the catigoial cost by more than half. The
system “4e' speci cally has very low complexity, since thargputation involves just one trait,
but where the four categories are suf cient to increase thie,gand hence reduce the number
of people on which the face recognition system is appliednil8@ily system “4emg' achieves
good complexity, mainly because of its high pruning gainjoktsubstantially reduces the cost
of applying the face recognition system. Also interestiogée is the cost increase for systems
‘'m' and ‘'mg'. This means that those systems reduce thelidai@base insuf ciently and cannot
justify their computational costs.
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4.8 Summary

The current chapter provided statistical analysis of thie giad reliability in pruning the search
over large data sets, where these sets are random and wlerestla possibility that the pruning
may entail errors. In this setting, pruning plays the rol@m- ltering, similar to techniques such
as video indexing. The analysis may offer insight on betesighing pre- ltering algorithms for
different search settings. We further studied nine difieractual, soft biometric systems, as well
as analyzed and experimented with factors like average, gmoning gain and goodput. Using
these factors, we provided a quanti able comparison ofdrmstems. Furthermore we identi ed
relations between SBS enhancement, error probaBility pruning gairr and goodput). These
ndings bring to the fore some SBS design aspects. Finallygese insight on the computational
cost reduction related to person recognition systems wituaing mechanism. This insight re-
vealed some of the bene ts of applying SBS for pre Itering.

We here studied and analyzed the pertinent charactenistated to search pruning performed
by SBSs. In the next chapter we examine a third scenarior (@ftean identi cation and pruning
the search), namely human re-identi cation. In such a sgena what follows, we explore the
capability and limitations of existing SB algorithms. Wedlgy introduce an additional challenge
of frontal-to-side pose variation.
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Chapter 5

Frontal-to-side person re—identi cation

Typically biometric face-recognition algorithms are deyed, trained, tested and improved
under the simplifying assumption of frontal-to-frontakgen recognition. Such algorithms though
are challenged when facing scenarios that deviate fronr#imng setting, such as for example
in the presence of non-constant viewpoints, including tbatal-to-side scenario. Most person
recognition algorithms, whether holistic or based on fideiatures, only manage to optimally han-
dle pose differences that are less than aliéutegrees. As a result, a variation in the pose is often
a more dominant factor than a variation of subjects. Thigetspf pose variation comes to the fore
in video surveillance, where a suspect may be picturedystintal, whereas the corresponding
testimages could be captured from the side, thus introdwadiontal-to-side recognition problem

Towards handling this problem, we draw as already in the tehsi® and ¥4 from the way
humans perform frontal-to-side recognition, that is byngssimple and evident traits like hair,
skin and clothes color. One of our tasks here is to get somghingto the signi cance of
these traits, speci cally the signi cance of using hair,irsland clothes patches for frontal-to-
side re-identi cation. We mention that we work on the col&RET datase@ill] with frontal
gallery images for training, and side (pro le) probe imadestesting. Towards achieving re-
identi cation, the proposed algorithm rst analyzes thdaroand texture of the three patches, as
well as their intensity correlations. This analysis is tl@iowed by the construction of a single,
stronger classi er that combines the above measures, tderdify the person from his or her
pro le.

5.1 Related work

Pose invariant face recognition has been addressed inafiffapproaches which, as described
in ], can be classi ed in following three categories

— mapping methods: construction of a 3D model based on maneathe 2D imagOS])

— geometric methods: construction of a 3D model based orges2D image (see [SVRND7

— statistical methods: statistical learning methods #late frontal to non-frontal poses (sé_ﬂ)ﬂFOS].
An overview of these frontal-to-side face recognition noethwas given i9], which work
also addressed some of the methods' limitations in handlifigrent pose variations. Such meth-
ods can be originally found in |WMR])1] and |WA$5], which recorded a true recognition rate
of 50-60% over an authentication group of 100 subjects.eBetsults on pose-variant face recog-
nition were recorded i [PEWF08] which employed statistivethods to achieve reliability of
92%over an authentication group with the same size.
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We here take a rather different and more direct approacteisghse that the proposed method
does not require mapping or a-priori learning. In applyimg approach, we provide a preliminary
study on the role of a speci ¢ set of simple features in frbtdaside face recognition. These
selected features are based on soft biometrics, as sualrdeaire highly applicable in video
surveillance scenarios. To clarify, we referrgidenti cation as the correctly relating of data to
an already explicitly identi ed subject (see [MSNO03]). Oused traits of hair, skin and clothes
color and texture also belong in this category of soft bigrodtaits, and are thus of special interest
for video surveillance applications.

5.2 System model, simulations and analysis

In what follows we empirically study the error probability a system for extraction and
classi cation of properties related to the above describeldr soft biometric patches. We rst
de ne the operational setting, and also clarify what we adeisto be system reliability, addressing
different reliability related factors, whose impact we ewae. The clarifying experiments are then
followed by a preliminary analytical exposition of the argrobability of a combined classi er
consisting of the above described traits.

5.2.1 Operational scenario

The setting of interest corresponds to the re-identi aaidd a randomly chosen subjetafget
subjecj out of a random authentication group, where subjects ileiyaind probe images have
approximately 90 degrees pose difference.

Patches retrieval\We retrieve automatically patches corresponding to thiensgpf hair, skin
and clothes, see Figure b.1, based on the coordinates oéfaceyes. The size of each patch is
determined empirically by one half and one third distanceenfter-to-center eye distance. The
frontal placement of the patches is following, horizontalertically respectively:

— hair patch: from nose towards left side / top of the head,

— skin patch: centered around left eye / centered betweethnaod eyes,

— clothes patch: from left side of the head towards left / meguatouth-top of head distance).
The horizontal side face placements of the patches are:-(nose-chin distance), eye towards
left, head length-chin. Those coordinates were providedalvith the images from the FERET
database, but are also easily obtainable by state of theaatdetectors, like the OpenCV imple-
mentation of the Viola and Jones aIgoritOla].

Following the extraction of the patches we retrieve a seeafure vectors including the color
and texture information. In this operational setting otnaist, thereliability of our system cap-
tures the probability of false identi cation of a randomlfgasen person out of a random setnof
subjects. This reliability relates to the following parasrs:

— Factor 1. The number of categories that the system carifijeat in the previous chapters

and4 we refer to as.

— Factor 2. The degree with which these features / catege@esent the chosen set of

subjects over which identi cation will take place.

— Factor 3. The robustness with which these categories cdatbeted.

Finally reliability is related (empirically and analytitg to n, where a highen corresponds to
identifying a person among an increasingly large set ofipbssimilar-looking people.

We will proceed with the discussion and illustration of theee three named pertinent factors.
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[
1 ]
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Figure 5.1: Frontal / gallery and pro le / probe image of ajegh Corresponding ROIs for hair,
skin and clothes color.

5.2.2 Factor 1. Number of categories that the system can idéfy

Our system employs soft biometric traits, where each tsastubdivided intdrait-instances
that directly have an impact on the number of overall caiegor. We here note that in the sci-
enti ¢ work [] the terminology trait and semantic temas used instead. For this speci c
scenario, our system is endowed with the traits hair, skahsmrt color as well as texture and
intensity correlation. It is to be noted that, as alreadywsha the chaptergl3 arid 4 the more
categories a system can classify subjects into, the maeblelthe system is in terms of distinc-
tiveness.

We proceed with the description of population of categories

5.2.3 Factor 2. Category representation of the chosen set sifibjects

The distribution of subjects over the set ofategories naturally has an impact on the speci c
importance of the different traits and thus also affects libbavior of the system for a given
population. Tablé 5]1 and Table b.2 give example distrilmstj with respect to skin and hair
color traits, based oR65subjects from the color FERET database. For clarifying erpents we
attributed this subset into three subcategories of skiarantd eight subcategories of hair color.
It is evident that the trait hair color has a higher distwetiess and thus greater importance than
skin color, since it has more instances in which the sub@subdivided into. This observation
is illustrated in Figur€5]2 and we follow with the explawati

| Categories] 1 [ 2 | 3 |
| Skin Color | 62.64% | 28.66% | 8.7% |

Table 5.1: Distribution of FERET subijects in the three slafoc categories.

| Categories] 1 | 2 | 3 [ 4]5] 6 [ 7 | 8 |
[ Hair Color | 4.2% | 26.8% | 46.4% | 3% | 3% | 3.4% | 1.5% | 11.7% |

Table 5.2: Distribution of FERET subjects in eight hair catategories.

In the case of (re-)identi cation the only way to unambigsltyurecognize a person is an
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exclusive category membership, with other words a subgttonly be (re-)identi ed if he or she
is the only one assigned to a category. Hereby it is of intethat the target subject does not
collide with any other subject inside the authenticatioougrin terms of category, see 314.2.

In the example, of subjects-categories distribution pdliees illustrated in Tablé 511 and
Table[5.2 the probabilities for collision for skin and hailar as functions oh are portrayed in
Figure[5.2. For this experiment we randomly pitlsubjects out of the color FERET subset, pick
randomly one of then subjects as target subject and examine if the target sutpdldes with
somebody else from the given authentication group. We teglaperform this experiment and
compute nally an averaged collision error probability aiaction ofn.

0.9
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—fe— Hair Color | |
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Figure 5.2: Probability of collision in the FERET databasedkin and hair color.

This collision error can be decreased by considering magndtive or multiple traits. We
note here that the collision error probability is the minmmerror bound a system can achieve
given the speci c traits in a certain population.

In what follows we will include automatic category classation and analyze the in uence of
estimation errors caused by algorithm limitations.

5.2.4 Factor 3. Robustness of categories estimation

In this section we take into consideration the over all eprmbability, containing inevitably
of the above discussed collision error- and furthermorehefalgorithmic categorization error-
probabilities. With other words we examine, how often thgéasubject is wrongly re-identi ed,
regardless of the underlying source, which can be both attm or collision error character.
Thereby we again randomly pick an authentication groum aubjects and randomly declare
one of then subjects as the target subject for re—identi cation. Thenproceed to train our
algorithms with the feature vectors extracted from the lpedoof the frontal gallery images. As
feature vectors we here rstly consider the color inforroatprovided by the selected patches. For
this purpose we work in the HSV (hue, saturation, value)rcgpi@ace and use the hue and saturation
information as feature vectors. We train an AdaBoost clasgt with these feature vectors
and subsequently re-identify the randomly picked targbjezii by matching their feature vectors
of the probe patches (retrieved from the pro le image) whb trained ones (frontal). We repeat
the procedure and average the error probability over adltitens for all values ofi. We note here
that we do not consider anymore the manual annotation ofjoaés used for the experiment in
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Figure 5.3: Boosting of soft biometric patches.

Section 5.2, instead we use the discrete HS distributi@olors. By doing so we do not have
anymore human compliant categories, but a more re ned aoikef classi cation.

5.2.4.1 Boosting of patch color

Boostingis referred toadditive logistic regressiorand is the combination of weak classi-
ers, which classi ers alone should perform slightly batthan random into one higher accuracy
classi er. This combined classi er is a sum of the weighedakelassi ers, where the weight
of each classi er is a function of the accuracy of the coroegpng classi er. This concept is
consistent with the concept of soft biometrics, where weetawnultitude of weak biometric in-
formation that we want to combine to a stronger classi aatiypothesis. We selected a discrete
AdaBoost.MH algorithm, se@%} for multi class clasation, for its good performance and
robustness against over tting.

We train hue and saturation (HS) per gallery patch using AdaBand evaluate posterior
probabilities of the HS vectors of the probe patch relatethéotarget subject and each patch of
then trained subjects. An error occurs, if the HS vectors of galiind probe patch of the target
subject do not match. The results on error probability asnatfon of the authentication group
sizen for each patch color and the combined color patches areardhigsl in[5.8. As expected,
and similar to the collision experiment in Section 5.2.2 th-identi cation error probability is
increasing with an increasing authentication group. Wih&rrobserve that clothing color has the
strongest distinctiveness. The explanation thereforkasdlothing color is distributed in a high
range of colors and is thus easier to distinguish. Furthezeme surprisingly notice a much higher
performance of skin or hair color than in the pure collisioralgsis, see Figufe 3.2. For example,
in an authentication group & subjects, AdaBoost re-identi cation provides an errorbaibility
for skin color of abou0:48, where in the collision analysis we achieve o0i85. This interesting
error decrease is due to the limited human capability farrdjsishing and classi cation of skin
color in only three categories, which classi cation wasyonsed in the collision analysis. In the
current AdaBoost estimation setting the classi cation idgden, non human compliant but of a
higher ef ciency.

As expected the combined classi er has a stronger classonaaccuracy than the single clas-
si ers. The performance of the combined classi er is thowggiticed by several factors. Firstly
the traits used are partly correlated, ee 8.4.1. Furtherthe estimation errors of traits are cor-
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related as wellf sgimationerror  (HairColor;skincolor ) = 0:22, which shows a tendency of jointly
occurrence of classi cation errors, for both hair and skitoc classi cation. On a different note
we point out that each further trait and its classi cationoercontributes negatively to the over all
categorization error and thus the over all error probabititincreasing with an increasing num-
ber of traits and categories On the other hand with each further trait the collision pdaibty
decreases.

We proceed with the description and inclusion of two furtpeoperties of the employed
patches, namely texture and intensity difference.

5.2.4.2 Patch texture

We formalize a descriptor for textline including following four characteristics and compute
them on the graylevel images for each patch.

Contrast measure of the intensity contrast between a pixel and igghber over the whole
image. The contrast in an image is related to its variancdrarta and is:

X
xi= i jite(ii); (5.1)
isj
wherei andj denote the gray scale intensities of two pixelsgfers to the gray level co-occurrence
matrix, which describes the co-occurrence of gray scaémgities between two image areas. Each
element(i;] ) in a gray level co-occurrence matrix speci es the numbenés that the pixel with

value i occurred horizontally adjacent to a pixel with vajue
Correlation measure for correlation of neighboring pixels and is ded@ts:

IR (I (R (VD)

i

X2 (5.2)

iij

where ; and ; stand for the mean values of the two areas arowanttlj, ; and j represent the
related standard deviations.

Energy sum of squared elements or angular second moment. Enengl/tecpne corresponds

to a uniform color image. X

x3=  p(i;])? (5.3)

i
Homogeneitymeasure of the closeness of distribution of elements.
p(i;j )
Xq4 = P Erre—— 5.4
4 15 ] (5.4)

iij

5.2.4.3 Patch histogram distance

Along with the color information we integrate into our clessa simple relation measure for
the divergence between the intensity probability densihcfions (pdf) of patches concerning one
subject. With other words we express the three relatiosdhgiween intensities within a subject:
hair—skin, skin—clothes and hair—clothes. Speaking inxamgle we expect to have a higher
distance measure for a person with brown hair and light diam tfor a person with blond hair
and light skin. For the computation we convert the patchegdyg level intensities and assess the
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Figure 5.4: Overall-classi er obtained by boosting cokesture and intensity differences.

L1-distance three times per person for all relations betvibe patches. For two distributioms
ands of discrete random character the measure is given as:

%55
D =kr sk = ir(k)  s(k)j; (5.5)
k=1

where k represents a bin of the 255 intensity bins in a gralg scege.

5.2.5 Combined overall-classi er

The combined over—all—classi er, which boosts all desedliltraits, color, texture and intensity
differences performs with a decreased error probabilitytans outperforms expectedly the color
classi er shown in Figurg5]3. Still the achieved error pablity of 0:1 in an authentication group
of 4 subjects is not suf cient enough for a robust re-idea#tion system. This limited enhanced
performance is due to the strong illumination dependeno®lof and furthermore due to correla-
tions between traits, e.g. hair color—skin color or skiroceskin texture, s€e 3.4.1. We here note
that the FERET database is a database captured with cedittighting conditions, so with a dif-
ferent testing database we expect the performance to decaeditionally. Towards increasing the
performance the amount of sub-classi ers can be extendédrems emphasis should be placed
on classi ers not based on color information. The systentdrcurrent constellation can be used
as a pruning system for more robust systems or as an addiggsizm for multi-trait biometric
systems.

5.3 Summary

Motivated by realistic surveillance scenarios, we addrédsa this chapter the problem of
frontal-to-side facial recognition, providing re—idea#tion algorithms/classi ers that are specif-
ically suited for this setting. Emphasis was placed on ckssthat belong in the class of soft
biometric traits, speci cally color—, texture— and intégs based traits taken from patches of
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hair, skin and clothes. Towards providing insight, the wpr&sented different identi cation ex-
periments that adhere to the frontal-to—side setting, disamg@resented a preliminary analytical
study that seeks to impart intuition on the role of the abosést in improving algorithmic reli-
ability. Our analysis described the overall error prokighiboth as a function of collisions and
of erroneous categorizations for given sizes of authetmticagroups. In the presence of a mod-
erate reliability of the patches-based method, the arabgjgests promising applications of this
method in settings such as pruning of searches.

After the analysis of the three security related applicetiof human identi cation, pruning
the search and human re—identi cation in the chagter$ 3d4Baim the following chapter deviate
from security and introduce a commercial applications ofdée facial aesthetics. We note that
in the employment of a SBSs, the system remains the saméy #udelast analytic step changes
when moving from security to entertainment.
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Chapter 6

Soft biometrics for quantifying and
predicting facial aesthetics

With millions of images appearing daily on Facebook, Pic&dmkr, or on different social
and dating sites, photographs are often seen as the cdrtier ost and deciding impression of a
person. At the same time though, human perception of fae&ihatics in images is a priori highly
subjective. The nature of this perception has long beeroexgbkeparatelyfrom psychological
and photographical points of view, respectively focusimgtloe properties of the subject and of
the image. The photographical point of view, correspondmgphoto-quality assessment and
enhancement, has recently attracted further attentiorly pdue to the vast amount of digital
images that are now available, as well as due to the ease witthwligital image manipulation
can now be achieved.

6.1 Related work

The present work draws from former work in three areas, namlaksical facial aesthetics,
photo—quality and aesthetics and image processing baseddeognition.

6.1.1 Facial aesthetics

There are substantial amounts of works, both from psycledbgnd sociological points of
view, studying human perception of facial attractiveness kbeauty. Such perception is highly
subjective and is in uenced by sociological and culturadtéas and furthermore by individual
preferences. Although appreciation of beauty is subjedativin other words "beauty is in the eye
of the beholder”, there are some characteristics that tifiemave identi ed to evoke superior
pleasure when looking at. One such characteristic geyeasdiociated to beauty and perfection is
the golden ratio’ 1:6180339887 When this divine proportion appears in both nature or art,
they are perceived harmonic and aesthetic, ocOS].ttﬁactive human face containsin
several proportions, e.g face height / width and face hédilgitation of eyes, see Figure 6.1.

A further main characteristic symmetrywhich was evolutionary bene cial in its direct anal-
ogy to health M]. Another sign for health and fertility averagenessf facial character-
istics, not to be confused with faces of average person ] the authors present a study
showing that mathematically average faces are considezadtiful. This study though contra-
dicts with other theorems stating that attractivenessignplistinctive facial features. In terms
of such features in literature following speci cations agsociated with beauty: a narrow face,
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Figure 6.1: Golden ratio applied in a human face.

fuller lips, long and dark eyelashes, high cheek bones amadadl sose 1 . An overview of
psychological studies based on face proportions and synasiét presented irLL]?LiO].

Finally thebabyfacenessr cute faces elicit sympathy and protective urges. Traitmbyfaces
include a big round forehead, low located eyes and mouthydiigd eyes and small chin, see
Figure[6.2.

Figure 6.2: Babyfacesness theorem: females with childtikiés are perceived sympathetic.

6.1.2 Beauty and image processing

From an image processing point of view, few attempts seelpio# and validate some of
the aforementioned psychological results and even int®early methods for beauty prediction.
In ] for example, the authors present a multi-layeuronal network for beauty learning
and prediction regarding faces without landmarks. Suchcagahes often accept interesting appli-
cations, as the automatic forecast of beauty after a plastigery in @4]. The same work deals
with beauty classi cation, considering facial measuretseand ratios, such as ratios of distances

from pupil to chin and from nose to lips (see also the work iRMAE01] and [MJIDOSY]).

6.1.3 Photo—quality and aesthetics

Broad background work on image quality assessment (IQApedad in applications such
as image transmission, lossy compression, restoratioreanancement. The subjective criteria
intertwined with image quality are assessed in numerousicadbr mobile phones, electronic
tabs or cameras. A number of automatic IQA algorithms has bedt on those metrics. For an
overview of related works, see [WBS$04] and [SSB06].

From a photographic point of view, the presence of peopleir flacial expressions, image
sharpness, contrast, colorfulness and composition ater$awhich play a pivotal role in subjec-
tive perception and accordingly evaluation of an image,[@]. Recent works on photog-




71

raphy considerations incIud@lO] am 10]. Her#i®yauthors reveal that appealing
photographs draw from single appealing image regions alkaseheir location and the authors

use this proposition to automatically enhance photo-gudfihoto-quality can be also in uenced
by image composition, selO]. Finally there are curséudies, which model aesthetic
perception of videomm. Such methods have becomeasangly relevant due to the preva-
lence of low price consumer electronic products.

6.2 Contribution

In this chapter we study the role of objective measures inetiogl the way humans perceive
facial images. In establishing the results, we incorpoaatew broad spectrum of known aesthet-
ical facial characteristics, as well as consider the rolbasfic image properties and photograph
aesthetics. This allows us to draw different conclusionsherintertwined roles of facial features
in de ning the aesthetics in female head-and-shouldemgesaas well as allows for further insight
on how aesthetics can be in uenced by careful modi cations.

Towards further quantifying such insights, we constructaisiblinear metric that models the
role of selected traits in affecting the way humans perceaeh images. This model applies as a
step towards an automatic and holistic prediction of faaésdthetics in images.

The study provides quantitative insight on how basic messsuan be used to improve pho-
tographs for CVs or for different social and dating websitEkis helps create an objective view
on subjective efforts by experts / journalists when retouglmages. We use the gained objective
view to examine facial aesthetics in terms of aging, faciejery and a comparison of average
females relatively to selected females known for their beau

The novelty in here lies mainly in two aspects. The rst onthet we expand the pool of facial
features to include non permanent features such as makeagence of glasses, or hair-style. The
second novelty comes from the fact that we seek to combinethats of both research areas, thus
to jointly study and understand the role of facial featuned af image processing states.

6.3 Study of aesthetics in facial photographs

In our study we conside37 different characteristics that include facial propori@and traits,
facial expressions, as well as image properties. All thésgacteristics are, manually or auto-
matically extracted from a database3#5 facial images. The greater part of the datab2&6),
images, is used for training purposes and furtbe@images are tested for the related validation.
Each image is associated with human ratings for attraais®nas explained in Sectiion 613.1. The
database forms the empirical base for the further study @endifferent features and properties
relate to attractiveness.

We proceed with the details of the database and relatedathéstics.

6.3.1 Database

The database consists325randomly downloaded head-and-shoulders images from the we
site HOTorNOT [Hot1fl]. HOTorNOT has been previously usednrage processing studies
(see [[_QISY_G_lb] lLS_B_tIJlO]), due to the suf ciently large libbyaof images, and the related rat-
ings and demographic information.

Each image depicts a young female subject (see for examgl&ERi and Figl_ 6]4.) and was
rated by a multitude of users of the web site. The rating, otadesof one to ten, corresponds to
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the notion of attractiveness. The relevance and robusufebe provided ratings was con rmed
in an experiment in], where subjects re-rated a collection of images. Fareggng
robustness, we consider only images that have received @esiy high number of ratings,
speci cally more than70 ratings. We will henceforth refer to these ratings asNfean Opinion
Score(MOS). Among the chosen images of the database the iwvBas was7:9, the standard
deviation wasdl:4, whereas the minimum value wds3 and the maximum value wé&s9.

The JPEG images in our database are of different resoludind®f different qualities.

We now proceed with the description of the two groups of aergd features: the photograph-
aesthetics (image properties), and the facial aesthatitsharacteristics, from both groups, are
stated in Table 6.1.

6.3.2 Photograph aesthetics

The considered photograph aesthetic features are herecgfigachosen to be simple and
objective. Firstly we include characteristics such as ienaggsolution, image format (portrait or
landscape) and illumination. Furthermore, we considerdhegive angle of the face in the pho-
tograph (this angle is denoted asn Fig.[6.3). We also incorporate the zoom-factor, spediyca
how large the face appears in comparison to the image heiginally we also connect three
novel image quality traits with facial aesthetics, whichpmevious work have been associated to
photograph-aesthetics: thaative foreground positiorthe BIQI and theJPEG quality measure

Regarding theelative foreground positionwe essentially compute if the distance of the fore-
ground's center of mass, (left eye, right eye or nose tipeetvely, sel]) to one of the stress
points (see@m]) is shorter than to the center of the em&gr clarity Figuré 613 illustrates
the stress points of the image, where each of the four st@assgs in a distance af=3" the
image width andl=3"? the image height from the boundary of the image, an aspestedeirom
the "Rule of thirds". In case that the foreground's centemass is equidistant to all stress points,
which is the case in the image center, it has been shown thgcts lose their attention and
interest.

The BIQI measureis based on the distorted image statistics and it employpastipector
machines for classi cation (sele_LMB_de] aﬂd_LMBJ)%]). laidlind quality measure; speci cally
it is a no-reference assessment measure on image quality.

TheJPEG quality measuren the other hand considers artifacts caused by JPEG cosiqores
such as blockiness and blurriness, evaluating again afaceree score per ima02].

6.3.3 Facial characteristics

Literature related to facial beauty (s@all]) idergtigertinent traits including the size of
the face, the location and size of facial features like eyese, and mouth, brows, lashes and lids,
facial proportions, as well as the condition of the skin. ISlierature con rms the role of these
facial features in affecting human perception of beaute (sealll] and [BL10]). Drawing from
this previous work, we also consider ratios of facial feesuand/or their locations by relating a
multitude of measures, speci cally including known fack@auty ratios adhering to the golden
ratio, e.g.x16 (see Table 6.1 for notations).

Moreover we proceed a step further and consider soft bigengtearacteristics, such as eye-,
hair- and skin-color, face- and brows-shape, as well agpoesof glasses, make-up style and hair
style.

The full set of facial features is listed in Table 6.1 and carchtegorized in the following ve
groups:
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Figure 6.3: Example image of the web site HOTorN®MOS = 9:8. The white disks represent
the stress points, the red cross the image center.

Ratios of facial features and their locations,
Facial color traits,
Shapes of face and facial features,
Non permanent traits, and
Expression.
Features related to the mouth and nose width were not egg|aite to the variety of expres-
sions within the database. This expression variety caugeiscaint diversity in the measurements
of both, mouth and nose. All selected traits are listed ind#@hl (the photograph aesthetics are

Figure 6.4: Example image of the web site HOTorN®TOS = 9:2 with employed facial mea-
sures.

highlighted for a better overview). Table C.1 and Table ®@.2hie Appendix exhibit the traits,
trait instances and furthermore the range of magnitude [fgghetograph aesthetics and facial
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aesthetics respectively.

Table 6.1:Characteristics listed in decreasing order witpeesto the
absolute Pearson’s correlation coefficient, rel@®edrson’s correlation
coefficients and related ~ -model weights, see Figure 6.3 and Figur¢
for notations of facial measures

Trait x Pearson’s -
correlation Model
coefficient weight
fimos i

;;; Ratio (eye height / head length) | 0.5111 18.3506
EiéRauo (head width / head length) | 0.4487 45780
x3. Eye make up 0.3788 0.3055
xs. Face shape 0.3521 0.1606
xs. Eye Brow shape 0.2523 0.3337
. Fullness of Lips 0.2242 0.2019
x7. Ratio (from top of head to nose /| 0.2198

head lengthjd+c)/a -17.8277
xg. Glasses -0.2095 -0.6707
Xo. Lipstick 0.1997 0.0502
X1¢. Skin goodness -0.1856 -0.3930
X11. Hair Length / Style -0.1851 -0.0657
x12. Ratio (from top of head to mouth) 0.1818 41919
/ head lengthjd+c+e)/a i

X13. Ratio (from top of head to eye / | 0.1774

head lengthyl/a 49.3939
Xu4. Image format 0.1682 0.1695
X;5. Ratio (eye width / distance 0.1336 0.8982
between eyegqh-i)/(2.i)

X16. Ratio (from nose to chin / eye to| -0.1204 0.0970
nose)(a-d-c)/c

Xi7. Left eye distance to middle of

X1 Right eye distance to middle of

X19. Ratio (from top of head eye / eye -0.1012 -1.0091
to nosey/c

Xz0. IMage Resolution 0.1012 -0.3493
Xo1. EXpression -0.0913 -0.3176
X2,. Ratio (outside distance between| -0.0833 -1.7261
eyes / top of the head to ey#)l

Xo3. JPEG quality measure 0.0802 0.9007
Xo4. Eyes symmetry.93<(left eye -0.0653 -0.0552
width)/(right eye width) <1.06

Xz5. Ratio (from eye to nose / nose t¢ 0.0642 0.0462
mouth)c/e

Xz6. Nose distance to middle of image

X7. lllumination 0.0374 0.0127
Xzg. Skin Color -0.0368 -0.0549
Xz9. Ratio (from top of head to eye / | 0.0328 -6.2474
eye to lip)d/(c+e)

Xz Ratio (eye-nose/head widtt'p 0.0252 -0.6324
31. Zoomfactor/Image resolution -0.0201 -148.738
x32. Eye Color -0.0177 -0.0156
Xs3. Hair Color -0.0167 0.0312

Xaa. Angle of face -0.0137 -0.2688

Xas. BIQI 0.0121 -0.0053
x36. Ratio (from nose to chin / lips to| -0.0057 -1.6907
chin) (a-d-c)/(a-d-c-e)

Xz7. Ratio (Distance eyes/ head -0.0028 13.9586
length)g/a

6.4 Results

6.4.1 Effect of traits on theMOS rating

Our rst goal is to nd correlation measures for each of tBigéextracted traits and tHd OS
in order to observe the importance of each characteristioifman perception. The preprocessing
step for theMOS related study includes the removal of ab&3b of the images, due to their
outlier character (i.e> 2 x, given thatx; is each function of the described traits).
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A direct way to nd a relationship between th¢OS and each of th&7 traits is using Pear-

son's correlation coef cient. We remind the reader thattiwo vectors X = X1;X2;:::; Xy and
Y = yi1;¥2;:::;¥Yn, the Pearson's correlation coef cient is given by
coX;Y E[(X Y
fxy = MX;Y) _ EI( x ) Y)]; 6.1)
XY X Y

where x and vy are being the standard deviations ¥randY , respectively. The coef cient
ranges between 1 and 1, with the two extreme points being obtained when the vaemlare
maximally linearly related.

Pearson's correlation coef cients are calculated foralivectors, each vector corresponding
to a feature. Per feature,260-valuesX vector describes each feature for each one of26@
training image. The260-values vectol describes each image relateldDS rating. Table 6.1
itemizes these coef cients in decreasing order of imparganith respect to the absolute Pearson's
correlation coef cient.

6.4.2 Insight provided from empirical data

The rst notable result reveals the strong correlation teetw the best ranked traits and the
MOS, which even exceeds a Pearson's correlation coef cienO:6ffor the trait ratio eye-
height/face-height'. Particularly in regard to an autam® OS prediction image processing tool
these results are very encouraging. Further we observehioéd-quality features play a less sig-
ni cant role than facial aesthetics, as expected, but thieynat to be neglected, since they achieve
anriamos = 0:168 Moreover we note that the high ranked tradgis X, andx4, which represent
the ratios (eye-height/face-height) and (head-widthdrezight), and furthermore face shape, see
Table 6.1 are features corresponding strongly to persoeighw. This outcome brings to the fore
the strong importance of low human weight for aestheticsttheumore it is worth noting that
Table 6.1 reveals the surprising fact among others, thatpeomanent traits place a pivotal role
in raising theM OS rating. Eye make-up, lipstick, glasses and hair-style hi@naong the topl1l
of the obtained ranking. These results hint the high modiighof facial aesthetics perception
by simple means like make-up or hair styling. The relevariaye make-up had been previously
observed in|[GKYG10]. Together with the different conctrs that one may draw from Table
6.1, it also becomes apparent that different questionsaised, on the interconnectedness of the
different traits. This is addressed in Section 8.4.3. Wynak note that traits, such as, x7,

X12 andxi3 directly comply with the well known babyfaceness hypothe(s'ee@l]), which
describes that childlike facial features in females inseeattractiveness, such features include big
eyes, e.gX; and a relative low location of facial elements, exy., X12 andx;3. One measure
known for increasing attractiveness, if equal to the golddio = 1:618 is X3e.

6.4.3 Interconnectedness of different traits

To get a better understanding of the role of the differeritstia raising theM OS, it is helpful
to study the inter-relationship between these traits. iBrasldressed in Table C.3 in the Appendix,
which describes the correlation between selected traitg. tb lack of space we limit the correla-
tion matrix to just a group of the rst six traits. Table C.3rcanswer different questions such as
for example the validity of the conclusion in Table 6.1 on ittng@ortance of the make-up feature.
In this case, the question arises whether it is truly the mgkéat affects th&1OS or whether

1. For information on denotation of features and accordingralues, please refer to the Appendix, Table C.2
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already attractive subjects use make-up more heavily. eTal® suggests a low correlation be-
tween the facial proportions (representing beauty) andnegike-up, which validates the strong
role of makeup in raising the1OS.

6.5 Model for facial aesthetics

We choose a linear metric due to its simplicity and the ling@aracter of the traits with in-
creasingM OS. We perform multiple regression with the multivariate dated obtain aviOS
estimation metric with the following form:

;
MOS = X iXi: (6.2)
i=1
The resulting weights; corresponding to each trait are denoted in Table 6.1.

We here note that the weights of the model are not normalireldda not give information
about the importance of each characteristic. With othedgjove did not normalize for the sake
of reproducibility -MOS can be computed with features labeled as in Table C.1 ane Talin
Appendix C and related weights from Table 6.1. The impoiasfdhe characteristics is conveyed
by the Pearson's correlation coef cientg; mos .

6.5.1 Validation of the obtained metric

To validate our model we compute the following three paramset
— Pearson's correlation coef cient. As described above, iairs computed to be

Mwosmos = 0:7690 (6.3)

— Spearman's rank correlation coef cient, which is a measofr how well the relation be-
tween two variables can be described by a monotonic functibhe coef cient ranges
between -1 and 1, with the two extreme points being obtaineehvthe variables are purely
monotonic functions of each other. This coef cient takes tbrm

6 ;d .

n(nz 1)’

rg = (6.4)
whered;, = rank (x;) rank(y;) is the difference between the ranks of theobservation
of the two variables. The variable denotes the number of observations. The coef cient,
which is often used due to its robustness to outliers, wasized here to be

FsMosMos = 0:7645 (6.5)
— Mean standard error of the difference between the estihuitiectiveM OS and the actual

subjectiveM OS.
MSE =0:7398 (6.6)

These results clearly outperform the outcomes from Eigessfafr,, ..., = 0:18, as well as

, )
neural networks,, .., = 0:458(see[GKYG1D]), but the comparison is not very adequate as
we would compare manual extraction with automatic extomctif facial aesthetics. Nevertheless
the potential of our approach is evident and we proceed withbast validation of the facial
aesthetics metric. For this purpose we annotate®ireaits beyond the training set, in an extra
testing set ob5images. Once more we excluded outlie3sniages) and we computed the metric
veri cation measures for the estimat&OS and the according actull OS
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— Pearson's correlation coef cient:

Mos:Mos = 0:7794 (6.7)
— Spearman’'s rank correlation coef cient:
FsMos:Mos = 0:786Q (6.8)
— Mean standard error:
MSE =1:158 (6.9)

The high Pearson's coef cient implies a robust predictiartw@acy of the facial aesthetics
metric. The Spearman's coef cient gives an indication abibe correlation between estimated
and realMOS, but without the restriction of linear dependence. It cdass each monotonic
function connecting the two vectors. In our case this cdefit is relatively high as well. The
MSE on the other hand gives an idea about the absolute erweeée the predicted and actual
values. It is interesting to observe that the testing satiges even higher correlation coef cients
than the calibration set, but the MSE reveals that the ateseluor increases for the testing set,
and thus that the actual performance decreases.

We proceed with three experiments using the valid&dlS —prediction metric.

6.6 Experiments withMOS

The above designed MOS prediction metric is in this sectiopleyed towards (partial) quan-
ti cation of the general concept of beauty. We are specilgahterested in addressing questions
such as:

— Are famous females known for their beauty more beautifahthverage females?

— What is the in uence of age on beauty?

— How much does facial surgery change the beauty score?

Towards addressing the above, we proceed to apply our noetilmages drawn from the internet
and from of cial databases such as the FG—NET and the Plagtgery database.

6.6.1 Metric veri cation on highly ranked females

Towards veri cation of its usefulness, we applied the abodesignedV OS —prediction metric
on images of females who have been highly ranked by the popddia. Speci cally we consid-
ered images of females leading the listPebple's magazinas the "most beautiful people' from
1991 to 2011, as well as the top 10 entries from the same tighéoyear 2010. The considered im-
ages included, among others, those of Jennifer Lopez (wi2BEl), Julia Roberts and Angelina
Jolie. After annotation and calculation of the related eadices, we contrasted the results from
the above lists, to those we obtained when we consideredeisnagm the HOTorNOT database
(see Figuré 6]5). The test validated our choice of metriath thie entries from the above “beau-
tiful people' lists, consistently scoring signi cantly diner scores, as well as exhibiting a lower
variance. We displayed, for both image sets, the average MiQfes, as well as those within a
con dence interval 0B5%

6.6.2 Dependence between beauty and age: FG—NET aging datske

Towards investigating the dependence between beauty andaegconsidered images from
the FG—NET databas 11], as this database providestbhswuiltiple images of subjects as
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Figure 6.5: Comparison of averalyeOS for subjects of the HOTorNOT database and of average
MOS for subjects of the People’'s magazine most beautiful pelistleAverageM OS andMOS
values with related a con dence interval 85%

they age. We speci cally selected females with images atégl from a broad time spectrum,
e.g. images available from an age abb8tyears old ta60 years old. We annotated labeled these
images with the facial and photographic traits from Sedfidh2 and Section 6.3.3 and computed
the correspondiniyt OS values. We obtained per subject several beauty scoresexpanar time.
Since the range of these beauty functions differed on the Blkaf& between different females, we
normalized the functions th, with 1 being the maximunM OS per female. We then averaged the
normalized beauty over time functions and estimated basédeoresult a polynomial function of
the 5th degree. Figufe ®.6 displays the merged functionghencklated estimation function. The
resulting beauty function over time bares a maximum betwiberage23to 33. The outcome
can be explained on the one hand by traits changes like wesnkhd presence of glasses with
advancing age, as well as on the other hand by a reducedshiereegards to make up or hair

style.

e e e ee
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-
B

Figure 6.6: MOS for females of different ages normalized toper female, withl being the
maximumM OS per female, and furthermore averaged over all consideradléss.

6.6.3 Facial surgery

We also examined the effect bfepharoplasty(eyelid lifting surgery) on the beauty index.
Our choice of this speci ¢ parameter and surgery was mavdlly the fact that eye size has been
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shown to have a high impact on our chosen beauty metric. Wioraly selected 20 image pairs
(before and after the surg@ysee Figur€6l7) from thglastic surgery databa], and
after annotation, we computed the related beauty indiaggerdstingly our analysis suggested a
relatively small surgery gain in th®1OS increase. Speci cally the increase revealed a modest
surgery impact on the beauty index, with variations rangingverage between 1% and 4%.

Figure 6.7: Examples of the Plastic Surgery Database. Thirlages depict the subjects before
surgery, the right images after surgery.

We proceed with the analysis and simulation of an automaticfor facial beauty prediction.

6.7 Towards an automatic tool for female beauty prediction

An automatic tool including classi cation regarding &V above presented traits will have
the bene t of a maximal achievable prediction score, at gmae time though each automatically
detected trait will bring an additional classi cation eriiato the prediction performance. Thus in
designing such an automatic tool a tradeoff between p@spitddiction score and categorization
error has to be considered. We illustrate an analysis ofigiied scores evoked by different
combinations of traits in Table 6.2.

Trait X; Pearson’s correlation
coefficientr;vos

X1 0.5112
Xq, X 0.5921
X1, X, X12 0.5923
X1, X9, X: 0.6319
X1, X2, Xg 0.6165
X1, X9, X12, X15 0.5930
X1, Xo, X3, Xg 0.6502

0.6070
0.6392
0.6662
0.6711
0.6357

Motivated by this Table 6.2 and towards simulating a raaligtitomatic tool for beauty pre-
diction, we select a limited set of signi cant traits; ; X»; Xg, with other words factors describing
how big the eyes of a person are, the ratio head width/heaghthend the presence of glasses.
Moreover we add acquisition traits with no extra error intpaach as<i4; X20; X23, namely im-
age format, JPEG quality measure and image resolution. ¥vigtitoceed to appropriate reliability
scores related t®;; X2; Xg based on state of the art categorization algorithms:

2. For this experiment all values attached to non permangits tvere arti cially kept constant for "before surgery”
and "after surgery" images.
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— facial landmark recognition with accuracy of@®23 pixels and2:1%, reported in the work
[DMod],

— face localization with accuracy betwe@d%and98%depending on the database presented

in [GLW* 11] and

— glasses detection with accuracy9d® shown in M].

We deteriorate the manually annotated data with the abalestie algorithmic estimation
accuracies and compute the Pearson's correlation coet detween user MOS rating and the
predictedOS based on simulated error prone algorithms. We obtain astagimulated beauty
prediction performance presented in Table 6.3. Such amaiio tool, based only on three traits
provides related results that would outperform outcomes fEigenfaces of =0:18

(seel[GKYG10]) and neural networl<§ﬂos_,vIOS = 0:458 (see [GKYG10])).

MOS:MOS )

Combined Traits Xx; Pearson’s correlation

coefficientr; yos

X1 0.5112
X1, Xo 0.5921
X1, X2, Xg 0.6165
X1, %o, X, KR 0.6357
Degradedx, 0.4927
Degradedx;, X, 0.5722
Degradedx;, X, Xg 0.5810
and degraded;, x,, Xg 0.6007

6.8 Summary

In this chapter, we presented a study on facial aesthetiphatographs, where we compared
objective measures (hamely photograph quality measuseml foeauty characteristics and soft
biometrics), with human subjective perception. Our anglygvealed a substantial correlation be-
tween different selected traits, and the correspondi@S -related beauty indices. Speci cally
we presented that non permanent features can in uenceyniggM OS, and based on our anal-
ysis we conclude that facial aesthetics in images can inBeesubstantially modi able. With
other words parameters such as the presence of makeup @seégldhe image quality as well
as different image post—processing methods can signilgaiftect the resulting OS. Further-
more we constructed a linear MOS-based metric which wasesafidly employed to quantify
beauty-index variations due to aging and surgery. Our wpgties towards building a basis for
designing new image-processing tools that further auterpegdiction of aesthetics in facial im-
ages. Towards this we provided a simulation of an automaéidigtion tool based on state of the
art categorization algorithms and the designed MOS—ptiedicnetric.

By now we ensured the user of the practicality of SBS for sgcas well as entertainment
applications. In a next step we provide a chapter 7 featuliaggi cation algorithms of a SBS, as
employed and analyzed in the chapfdrs 3[adnd 4.
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Chapter 7

Practical implementation of soft
biometrics classi cation algorithms

7.1 Set of facial soft biometrics

As elaborated in Chaptét 2 higher and more satisfactoryndisteness can be achieved by
using more than one trait, rather than a single trait. Thushere propose a set of facial soft
biometrics that can be exploited for human identi catios,slhown in Chaptdrl 3. In an effort to
nd a good balance between identi cation—reliability androplexity, we here propose a soft—
biometric system that focuses on simple and robust clagono from a bounded set of traits
and their trait—instances. In what follows, we will deserithese basic elements, as well as the
employed classi cation algorithms.

In the presented set of facial soft biometric traits, wecte6 traits, which we choose and
label as shown in Table 7.1.

Table 7.1: Table of Facial soft biometric traits

SB trait Algorithm Database

Skin color Deduced from [KMB] FERET
Hair color  Deduced from [ZSHO08] FERET

Eye color Own developed UBIRIS2
Beard Own developed FERET
Moustache Own developed FERET

Glasses Deduced from [JBABOO] FERET

We proceed now to specify basic aspects of the classi catigorithms that were used for
trait-instance identi cation.

7.1.1 Classi cation algorithms

The basic classi cation tool consisted of an automatic fabface and facial features detector,
which was partially drawn and modi ed from the algorithms [@] Implementation of the
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different classi cation algorithms (see Talple17.1 for amoxew) was performed using Open@.\/

Before describing some basic aspects of the implementédckagsi cation algorithms, we
note few pertinent issues that accompany categorizatiegafling coordinate determination, we
note that typical eye, skin and hair color classi ers reguinowledge of the eye coordinates, and
similarly hair color categorization requires knowledgetiué coordinates for the upper head re-
gion. The precise computation and extraction of the charistic regions of interest (ROI) (see
Figure[7.1) for the eyes, mouth, nose and upper face codedinare essential for the subsequent
classi cation. For higher accuracy, only in the trainingst all coordinates were manually an-
notated. The considered ROls for the selected soft biom@tits are illustrated in Figufe_7.1.
Identi cation of the ROl was generally followed by acquisit of the Hue, Saturation and Value
(HSV) values. We note that the HSV color—space was chosehdimg robust to illumination
changes, as well as for the fact that it allows for a high degfeindependence between the H,
S, and V parameters, which renders the system capable &r bettdle light changes or shad-
ows. Regarding outlier ltering, we used a simple threshofdthe HSV values, based on the
color standard—deviation. This was followed by HSV normalization. Regarding theistial
modelling, the probability density functions of skin, eymdehair color were computed using 3—
component Gaussian mixture models whose parameters waratesl using the EM algorithm.
Posterior probabilities over the observed HSV vectors fotrained trait instances were com-
puted, followed by a majority vote decision on the categatirait instance.

Figure 7.1: ROI for the set of facial soft biometrics. Outlieering was a function of the standard
deviation and the mean for each of the H,S and V parameters.

1) Eye Color classi cation:In this setting, careful and precise consideration of thé WRé&s
particularly important, due to the region's inherently dinsee. The speci ¢ ROIs were retrieved
using the circular Hough transform, followed by pupil andceotion extraction, and then by ac-
quisition of the HSV vectors. Regarding the training steggheeye color group was trained using
images from the UBIRIS2 database. A more elaborate study on eye detection and ege col
classi cation follows in Section 7]2.

2) Hair color classi cation: The hair color ROl was chosen as a thin bar in the upper head
region, as indicated in FigukeT.1. Training utilized 30 R images for each of the hair colors,
where the annotation was done manually.

3) Skin color classi cation: Classi cation of skin color was done in accordance to the eye
coordinates which de ned the ROI for the skin color classition to be the area underneath the
ocular region. Training utilized 33 FERET images per skitocgroup, which were again anno-
tated manually.

1. OpenCV webpage on Source forge http://souceforgenogtfiis/opencvlibrary/
2. available for download at http://iris.di.ubi.pt/ulsi2i. html
3. available for download at http://www.itl.nist.gov/iddmanid/feret
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4) Eye glasses detectioMowards glasses detection, we considered that the areasdatioe
eyes can be searched both for hints of glasses as well asafs g# ections. Challenges related
to the fact that glasses frames are either occasionallynglsethat they often resemble wrinkles,
brows, shades and hair. A further challenge came from thettat illumination variations hin-
dered the appearance of re ections. These challenges vaaidd by placing emphasis on a ROI
corresponding to the nose part of the glasses. The spedaritthm consisted of eye position
estimation, grey—level conversion, histogram equalirgtextraction of region between the eyes,
Laplacian edge detection and nally line detection.

5) Beard and Moustache Detectiom this case, face detection and feature localization were
followed by identi cation of the ROIs. These ROIs includesthhin for the beard, and the area
between the mouth and nose for the moustache. The coloratstimwvas followed by outlier
extraction and HSV normalization. The presence of beard/ amdnoustache was based on the
Euclidean distance between the processed observatiorkiarahsl hair—color information respec-
tively. The presence of moustache was determined indepénde

Algorithmic dependenciesAs is the case with general optimization problems, idertiign
of algorithmic dependencies endows the system with inecbasliability and computational ef-
ciency. Towards this we refer to notable examples of sucpesglencies, such as that between
skin color and glasses where, due to ROI overlap, the preseiglasses has an impact on the
perceived skin color. This information can be utilized amdpyed by modifying the ROI for
skin color classi cation. Additionally we recall that skavlor is employed in the classi cation of
hair, detection of beard and moustache, where furthernheréatter two traits are also contingent
upon hair color. Figure_712 sketches further dependendigseanentioned facial soft biometric
traits. Some of these dependencies were partly exploitdtkeiprocess of classi cation.

Figure 7.2: Facial Soft Biometric traits algorithmic dedencies.

7.1.2 Experimental results

The above introduced algorithms for categorization of thesen facial soft biometric traits
are here examined and evaluated. It is to be noted that ttedfasses, beard and moustache are
of a binary character, whereas the color based facial ppaigsess discrete traits instances.

Glasses:Tests for eye glasses detection were performed on a testing snages of FEREF
database. The threshold based algorithm provided a calessi cation rate (containing the true
positive and true negative rate) &:17% (see Tablé 7]2) comparable to the resultijn_g@BOO].

Color based Facial Soft biometric traits: Eye, Skin and H&@olor: In the context of the
color based facial soft biometrics it is to be noted, thatrtheber of the established classi cation
groups was adjusted to both, the performance and limisdmuman perception and estimation
capabilities. Results are presented in true positive rabesconfusion matrices in Figure177.3.

4. available for download at http://www.itl.nist.gov/iddmanid/feret
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Table 7.2: Glasses, beard, and moustache detection reBuexperiments are conducted on the

well known FERET database.
SBtrait Detectionrate FPR FNR

Glasses 87:17% 717% 566%
Beard 80:7% 81% 112%
Moustache 72:8% 127% 145%

Table 7.3: Eye, Skin and Hair Color True Positive Rates
Eye Color Skin Color Hair Color

True Positive Rate 72:6% 792% 7008%

For the latter the values range from white (no confusion) laxh (maximum confusion). The
diagonal elds correspond to the true positive rates. Eylera@sults were performed on a testing
set containing 5 eye color groups, namely black, brown,,liugy and green. The images were
retrieved from the UBIRIS2 database and results are predéntTabld 7.8 and in Figute 7.3.(a).
We here brie y note the peak confusion rate between blue aag gye color, mostly responsible
for the overall break—in in the true positive rate. Hair catoclassi ed in 5 groups, black, brown,
red, blond and grey. A testing set of FERET images providedrihrabldZ.B and Figufe7.3.(b)
presented results. Skin color exhibits low variation inoc@paces and thus slight illumination
changes result in wrong classi cations. Due to this chakethe limitation of 3 skin color groups
was adopted with related results presented in Table 7.3 apotefZ.3.(c). The confusions were
mostly due to illumination variances and detected shadavigh result in a shift on the skin color
shades.

(a) (b) (©)
Figure 7.3: Confusion matrices: (a) Eye Color (b) Hair Calod (c) Skin Color.

Beard and Moustache detectio®@nce more a set of FERET images was employed for the
validation of beard an moustache. The binary charactereofrits (present or not present) is in
real images ambiguous, due to various lengths and shapesaal Bnd moustache. This factor
made a unique annotation and then in turn estimation dif ewd led to the results shown in
Table[Z.2. A small fraction of the wrong detections is duen®niot correspondence between hair
color and beard/moustache color, which we assumed in tleetitet algorithm.

To understand the presented experimental results, werpedaletailed study on one of the
traits namely eye color.
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7.2 Eye color as a soft biometric trait

In this section we focus on eye color as a soft biometric,tvelitere we spot eye color infor-
mation, previously mostly disregarded by classical iritgra and texture recognition methods.
We then speci cally examine extraction and categorizatbeye color and conduct an additional
study where we illustrate the in uence of surrounding fasttike illumination, eye glasses and
sensors on the appearance of eye color.

7.2.1 The human iris color

The human ocular region bears a plethora of biometric tvaitis different importance, such
as iris, sclera and retina patterns, eye shape, eye brove slmpsize and eye color. Eye color
has been mainly neglected, probably for the reason that $08rnans have brown eyes. The
distribution of eye colors characterizing Caucasian amatisgally European subjects is of a big-
ger deviation than in the rest of the world, as an example @fGkrman speaking region proves
in M]. Eye color is determined by the amount and typeigfiments in the eye's iris and
is genetically inherited. It is of more permanent charatien other soft biometric traits. We
note though that 'hazel’ eye color is a special case, wherg khown to change its colors. A
study @E] shows that eye color changes slightly over the span oleésy The extraction
of eye color is of very sensitive character, since the arema! (around 11mm) and color itself is
dif cult to deduce because of its illumination sensitivit further dif culty is the variable size of
the pupil (mainly due to illumination), froB 4mmupto5 9mm. Then again, positive factors
for the feasibility of eye color classi cation are the snealand lower-priced surveillance sensors,
which are increasingly available, and furthermore providger resolutions.

7.2.2 Related work

Few preliminary scienti ¢ works on eye color exist, as on jeakivity of human eye color
grading [SSG 90], IFCBO$], on human analysis of eye color photogra@] and rst
preliminary classi cation attempti_LMRQ_LbO] anb_LEDHOCs‘We clearly differentiate our work,
by presenting a full automatic eye color categorizatiortesysand furthermore by providing in-
sight on related pertinent factors.

We present here a preliminary study towards a robust eye ctassi er. In Sectiorl 7.3 we
describe an automatic eye color classi cation algorithrhjali contains automatic iris extraction
and Gaussian mixture models for classi cation. Simultarshp related results on the reliability
are presented. Sectibnl7.4 offers a preliminary study dofsevith impact on eye color classi ca-
tion, such as illumination, camera sensor, presence aggaand consideration of the left or right
eyes. Such an eye color classi er can serve as a preprogestsip of an iris pattern classi cation
system, where we do not expect to increase the reliabilithefoverall system (iris patterns are
considered as highly reliable biometrics), but our systatihar can pre prune the database to save
computational complexity and time, see Chapter 4 M}JP%

7.3 lIris color classi cation

In designing an automatic eye color classi cation systene, ¢hoice of the method for iris
extraction as well as the color classi cation have to meetcdhteria of reliability, of time and of
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Table 7.4: GMM eye color results for manually segmentecesid

Black Brown Green Blue
100% 100% 87.5% 81.8%

computational ef ciency. In accordance with these aspiedisis section we present an iris extrac-
tion technique and a classi cation method and jointly exaerthem on a large color eyes database
captured in visual light, the UBIRIS]. It contains261 subjects featuring diverse illu-
minations and iris positions. We manually annotated a suliisthe database and obtained the
following four eye color sets for both, training and test{afpout3=4 and1=4, respectively):

— Black: 100 images

— Brown: 85 images

— Blue: 81 images

— Green: 60 images
Those colors were speci ed, as on the one hand they are Istiaigzard and human distinguish-
able and on the other hand, enough images are availablesféoltbwing modeling.

7.3.1 Gaussian Mixture Models and color spaces

Manual region of interest (ROI) extractiofowards the statistical modeling, the selected and
annotated subset of UBIRIS2 images are manually croppegbtd affects of re ections or traces
of the pupil. An illustration of the manual performed colottraction is shown in Figure_7.4.
The four probability density functions (pdf), one for eadior, are then computed considering
all pixels of the extracted region of interest (ROI), usingd@nponent Gaussian mixture models
(GMM). The GMM parameters are estimated using the expectatiaximization (EM) algorithm.
We refer to this step as training and perform it for the fouocspaces: RGB, HSV, CieLAB and
CieLuv in order to assess the color space best suited foragedescription.

Figure 7.4: Manual iris color region extraction.

For the testing step, the set of images is again manuallypebjand posterior probabilities
over all observed pixels are computed, followed by a majmate decision on the categorized eye
color. The analysis is performed on manually extracted &s&qg prove the suitability of GMM
for color distinguishing. The best results are acquireghrgsingly on the RGB color space; see
Table[Z.4, for which reason, the rest of the study consideedysthe RGB color space.

In the rst case of wrong classi cations, blue is confused fgween and in the second case,
green for brown.

Automatic region of interest (ROI) extractiorzurthermore, the test was performed on au-
tomatically extracted color irides of UBIRIS2 images. Wedixy segment the color part of the
irides by the automatic extraction method presentemwhsed on circular Hough transfor-
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Table 7.5: GMM eye color results for automatically segmernitieles

DetnReal Black Brown Green Blue

Black 90.9% 5.26% 6.25%
Brown 89.47% 14.28%

Green 4.54% 78.57% 18.75%
Blue 454% 5.26% 7.14% 75%

mation. We then proceed to again compute, pixel by pixel, spoy the means of GMM and
EM for the training. For the testing again the posterior pialities for a new, again automatically
segmented testing set are computed. This time the majaotsy nule is extended and contains
following considerations. An eye appears as brown, gredsiua, if it contains pigments repre-
senting those colors, but the brown, green or blue fractmesdhot necessarily have to possess the
highest percentage. Mainly the pupil and the dark boundangribute to a higher occurrence of
black color, and often brighter irises enclose a multitufiugher darker pigments, which con-
stitute in patterns. In black eyes on the other hand, theklpaccentage is at lea®t3 of the iris
pixels. Following rules were deduced from the above comatdns and adhere with priority to
the majority vote rule:

1. If the iris contains more than 70% of black pixels, the gatized color is black.

2. If black is the majority, but accounting less than 50%nttiee second strongest color is the
categorized color.

3. If black is the majority, but accounting less than 50% araim and green are in the same
range, the categorized color is green.

The related results following those rules can be found inél@@. The values in the diagonal,
highlighted in gray, represent the true classi cation sat&ll other elds illustrate the confusions
between the real and estimated eye colors.

Two examples of confusions are provided in Figure 7.5. Indtecase a green eye is confused
with black. It is to be noted that the pupil, iris boundangHas and an unfavorable illumination
establish a high percentage of the image and thus of the plaekfraction. In the second case a
blue eye is categorized as green. On the one hand the eyensogiteenish pigmentation, and on
the other hand the presence of the lid and pupil account éowtlong estimation.

Figure 7.5: Examples of wrong classi ed eye colors.

7.4 In uential factors

Eye color classi cation is a challenging task, especialhder real life conditions, mainly
due to the small size of the ROI and the glass-like surfacehefapple of the eye. Smallest
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Table 7.6: Eye color database for in uential factors study

Subjects 8

Eye colors 8: black, brown, hazel, green-brown, light gregeen-blue, blue, light blue
Camera sensors 2: white balanced Cannon 400D, webcam tlodgi&zMegapixel
llluminations 4: (in of ce) daylight, daylight+room liglst ashlight, uorescent table light
Pair of glasses 2

external changes may have impact on the perception andcaigipn of eye color. To understand
the magnitude of the impact we here study following pertiremd frequently occurring factors:
illumination variation, presence of glasses, differemcpearception of observation of left and right
eye, and nally the in uence of two camera sensors. For thislg we captured a small database of
eight subjects (see Talile I7.6), each with a different cdieyes. For each subject we produced 7
different images: four of the images under real life illuations, one image with a second camera
sensor, and nally two images, one for each pair of glasses.ndfe that for the further analysis
the ROIs were extracted manually (see Fiduré 7.4) to elitainay traces of the pupil and light
re ections.

In the following study performed on the presented database;onsider red and green chro-
maticities, following similar studies, regarding skin iscand we note that: = R=(R + G + B)
andg= G=R + G+ B).

7.4.1 lllumination variation

The spectrum of incoming light plays a major role in many bebnes applications and es-
pecially in color based ones. Intuitively, it is expectedttilumination has also a strong impact
on eye color. That is why we here study the subjects of the @eorded database in 4 real
illumination conditions.

Figure 7.6: lllumination variation of eye colors.

We here captured the subjects of our database in followitigminations conditions: daylight
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and of ce lights, daylight, ashlight and a uorescent tablight. Clear shifts in the color space
can be observed. For conciseness and to avoid overlap wayortly 5 subjects. It is clear that
a robust eye color categorization technique must consiagrcape with illumination variations.

A possible solution is to estimate the illumination coruatfiti A self suggesting illumination esti-

mation method is proposed HMOG], where the color of ttlera serves as estimator of the
ROI.

7.4.2 Glassesin uence

The presence of glasses is another interfering factor,giiyrexamined in the context of face
recognition and naturally of importance in the current eyleiccategorization study.

Figure 7.7: Eye colors behavior with and without glassesgtant illumination).

The subjects were asked for this test to wear 2 differenspafiglasses. It is interesting to
compare this graph with the illumination variation one (F&{Z.6) in order to comprehend the
immense drift eye glasses cause in eye color. It is evidetitalstable eye color categorization
system should include a priori glasses detection. To détegpresence of glasses in an ef cient
and robust manner, we can perform histogram normalizat@iowed by Canny edge detection
on the area between the eyes. A further line detection iteicdie presence of the frame part of
the glasses. This algorithm was deduced f@BOO]. Feroelor classi cation in the case of
presence and absence of glasses the eye color classi dddhmable to estimate and compensate
the color shift of the estimated values.

7.4.3 Consideration of left and right eye color

We here show that the strong illumination in uence has ndy @émpact on images captured
under different illumination conditions, but also on thdaroperception of left and right eye.
Although none of our subjects has the seldom condition adrioehromia (different iris colors of
left and right eye), a drift between the colors of left andhtigye can be observed. The illumination
for this graph was constant daylight falling sidely on thesfaf the subjects, to achieve in order a
maximum illumination difference between left and right eye
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Figure 7.8: Eye colors of left and right eyes for 2 subjeats 4f different illuminations).

7.4.4 Camera sensors

For the sake of completeness we proceed to provide a gragiteshift between two camera
sensors (Logitech Webcam and Cannon 400D). The measureddats is clearly in uenced by
the characteristics of the cameras.

Figure 7.9: Eye colors captured with two camera sensorsstanhillumination).

We note that the presented study identi es each one of thenievel in uential factors as
disturbing for eye color categorization. The measure ofartgnce for each one of them is ascer-
tained by the embedding application.
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7.5 Summary

This chapter presented classi cation algorithms relatesix facial soft biometric traits, namely
the color of eye, skin and hair and moreover beard, moustasteglasses and provide accord-
ing results. We then speci cally focused on and examinedosyer, developed an automatic eye
classi cation system and studied the impact of externaidiecon the appearance of eye color. We
have identi ed and illustrated color shifts due to variatiof illumination, presence of glasses, the
difference of perception of left and right eye, as well astugaving two different camera sensors.

In the last chaptdr] 8 we deviate from the analysis and dexedop point of view towards SBS
and examine instead the user friendliness of such a systemobigling a study on user acceptance
towards such systems. In this study we compare SBSs to oithvelric systems, as well as to
the classical PIN system toward access control.
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Chapter 8

User acceptance study relating to soft
biometrics

The pervasiveness of biometric systems, and the corresgpgdowth of the biometric mar-
ket, see,@a}, has successfully capitalized on thegitref biometric-based methods in ac-
curately and effectively identifying individuals. As a us modern state-of-the-art intrusion de-
tection and security systems include by default at leastoom@etric trait. It is the case though
that little emphasis has been given to better understangieg-acceptance and user-preference
regarding such systems. Existing usability related wasksh as in 3] anmﬂ, fo-
cus on establishing functional issues in existing ATM maekj or on studying the in uence of
user interaction on the performance of ngerprint basedesys (seel [KED11]) and interfaces
(see 9]). Other interesting works (see [usa11b506], [CIMR09]), analyze possible
methods that improve interface design. Our emphasis hesa [@oviding insight on the atti-
tudes and experiences of users towards novel and emerginggtsic veri cation methods, and
to explore whether such novel biometric technologies carirb&rms of user acceptance, valid
alternatives to existing prevalent PIN based systems. @uusf in addition to considering the
traditional PIN based method, is to explore the usabilityeats of systems based on classical
biometrics such as ngerprint and face recognition, anchentproceed to study the usability of
systems based on the emerging class of soft-biometric mgtt@ur evaluation is based on having
the users rate and rank their experiences with differerésscmethods.

8.1 Usalbility of access control methods

A successful access control system must ds_e_e_LBH90]|_an@_ﬂ})imcorporate common user
understanding and knowledge in order to enable a naturaliaoohstrained interaction with the
user. Generally this interaction involves a number of défe subtasks, which must be planned
and structured to allow for simplicity and comfort. The sedpgsent mapping of such tasks onto the
interface should be intuitive, obvious and user friendlyrtRermore such designs should impart
feedback in the form of descriptions or state indicationsdpess bar, message window). Finally
the selected design should be robust against human errbesaliove considerations will be the
guiding principles of our tests and of the correspondindilisastudy.
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8.1.1 Testing Methodology

Test Setup A set of 15 users (5 female, 10 male) of different nationaditg ethnicity between
26 and 37 years old was randomly selected from an of ce cormplith the condition to not
work on biometrics. The participants were not paid. The vess consistent with the ITU-T
recommendatioOO], that is to say we followed methodénteractive user tests of setting,
equipment and environment, as well as subjects trainingsafiditation of opinions. We used
rating methods according to the absolute category rati@R)A Speci cally for the ratings of the
four access systems we presented each one at a time andusetirate them independently. We
denote this rating as MOS (mean opinion score), which spars oe grade scale, ve being
"excellent” and one being "very poor". The user study to@celin a computer laboratory, with
similar conditions to an of ce. The duration per test was @bloalf an hour. We performed a
Wizard of Oz study, se3], speci cally the employedenfaces were functional, however
the acquired data was not processed. Hence processinguahmton is not part of this study,
neither the veri cation accuracy of the presented methotise employed laptop was a DELL
E4310. The documentation of the study contains the notesesdtmpnnaires and related observer
notes.

Figure 8.1: Interfaces of the soft biometrics, face, PIN angrprint based access methods.

Procedure :The four access methods, see Fiduré 8.1, were presente@anuhstrated by the
observer of the study. Additional information on the methoaks of the differences between the
methods, was provided. Subsequently participants of testady freely explored the available
systems. In the next step users were asked to log in with eatdtesystems. Subsequently
an interview about the user experience was conducted. Hsers were asked to absolutely rate
(from 1 to 5, 5 being excellent) and comment on different atpéeasiness, clarity, comfort and
speed of the methods). Then users were confronted with temmesios, where in the rst scenario
the user accesses his/ her personal computer; whereas se¢had scenario the user acquires
the right of entry for a lab in a crowded corridor. The suiliépiof the methods was enquired
for both scenarios. Additionally to the absolute ratings tisers were asked to rank the methods
in terms of speed, easiness, privacy preservation andIbgatisfaction. Finally the users were
invited to select freely one method to log in with a task tadraale. This preference was noted
as spontaneous and practical preference. In the followiagiwe details on the different access
methods.

8.1.2 Access methods

We selected four substantially different accessing methodterms of both, interface and
technology, namely soft biometrics, face, PIN and ngampbased access. In consent of recom-
mendations for user friendly human computer interfaces t&l&é], [QQ_O_‘B] andLLNj_e_Q?:]) we
developed four access systems, see Figuie 8.1. All fourfates were designed to be similar in
terms of structure and processing time in order to place asiplon the four interaction elements:
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Table 8.1: User experience on access methods.

Soft Biometrics Face PIN Fingerprint
0/15 2/15 15/15 12/15

camera capturing, ngerprint scanning and PIN entry. Allifonterfaces initially asked for the
entry of the username. In the following the methods diffeaedhey acquire the following diverse
information:

Soft biometrics, denoted as SB : For the soft biometric based authentication method the user
is captured by the laptop integrated webcam and weak bigrfatial classi ers including age,
gender, hair and skin color are extracted. He / she can utteored capture his / her face by
pressing a button. An indicator in the related window désithe one-by-one processing of each
trait.

Face, denoted as Face : Similar to soft biometrics, in the face based system the tddbe
user is captured, but he / she is asked to place their facerigrdepned blue elliptical mark. This
constraint is originally designed in order to differengisihe rsttwo access methods. Furthermore
it indicates the common pose-constrain of face recognition

PIN, denoted as PIN : Additionally to the username for the PIN based veri catiorve-digit
password was requested, along with a button con rmatiorafsuccessful veri cation.

Fingerprint, denoted as FP : In this access method a scanner acquired the user ngeatat
of the index nger of the left hand. To initiate the scanningpgess the user had to press the
con rm button. The processing time of all systems, indidalgy progressing bars, was designed
to be very similar in order not to affect the user preference.

8.2 User study related results

Firstly we inquired previous experience of users on thegiresl access methods, see Ta-
ble[8.1. All users employ PIN based veri cation system daiy personal computers, ATMs,
mobile phones or web pages. This fact can be biasing on thbam&towards PIN, on the other
hand it accelerates the awareness of related drawbacksristugly the majority of user had
previous experience with ngerprint based veri cation ®®s incorporated in personal laptops
or for border control. Soft biometrics was a novel technitpuell subjects, whereas face based
veri cation was used before by two users.

Then we proceeded with the questions about usability ilateasures in context of the dif-
ferent methods.

8.2.1 Ease of access, user friendliness, time to acquire adkrity

The rst graph in Figurd_8J2 re ects on how intuitive usersufal the system. All methods
provide according to the users an intuitive access, butlsofhetrics was signi cantly best re-
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Figure 8.2: User rating of the provided access methodsiintef ease of access, user friendliness,
speed and clarity: MOS and standard deviation.

ceived in terms of both, user friendliness and ease of accé&s explain this result with the
seamless soft biometrics based veri cation without curabere additional interaction (as in all
other cases, placing nger on scanner, face in blue marky @fia PIN). The majority of female
users expressed though concerns regarding the non-parasaotcaptured soft biometric traits
such as hair color. Few users questioned the distinctigeoka soft biometrics related system.
Some users stated that they would prefer an access constehsyvithout any contact. The ma-
jority stated to be biased by the prevalent use of PIN basg@s\s, but was still convinced such a
system bears disadvantages as of forgetting a passwordiagta keep too many. Few test par-
ticipants had hygienic concerns related to the ngerprotess system. As of time of acquisition,
users were asked to evaluate the time used for operatingtiesasystem (different from system
processing time). All systems exhibit similar acquisitiome ratings. The clarity of the systems
was a measure for the feedback a user gets from each system.usts appreciated the blue
mark of the face recognition based system as it helped dah&aapturing, whereas in regards
to PIN they valued the feedback to each step (e.g. the ™" sysnfor how many digits they had
already have entered).

8.2.2 Access of private computer vs. crowded environment aess

In the next step the access methods were associated in twargse personal computer ac-
cess and crowded environment access, and rated. Confiiitethe thought of employing those
methods for personal veri cation, the majority of users@gsed immediate concern about the ac-
curacy of the systems. They were asked to disregard for tiay $his factor. Figure 8l3 illustrates
the access method preference in terms of personal compmdessa There was no strong user
preference; all methods were basically comparably rategke ldne user noted the illumination
dependence of the camera based traits and stated not bevdladjust to that in this scenario.

Figure 8.3: User preference of access methods for persongbuter use: MOS and con dence
intervals for a con dence of 0.95.

In the second scenario users showed a signi cant preferemese ngerprint in crowded
environments. The PIN based veri cation is last with thes@athat user had experienced or were
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scared of their PIN being spying. Regarding face and softibtacs, two users reported not to be
fully comfortable to be captured by a camera in front of caijees. It is interesting to compare
the two scenarios (see Figlirel8.3 with Figuré 8.4), wheréaslewas basically the same, given a
different environment. The ratings though are partly saanitly different (see FP and PIN).

Figure 8.4: User preference of access methods in crowdddoament: MOS and con dence
intervals for a con dence of 0.95.

8.2.3 Time to Acquire, Ease of Use and Data Security

To evaluate statistical signi cance of the differenceswmsn the access methods, we per-
formed additionally Wilcoxon test@SG], due to the tielely small sample size. Hence we
asked users to rank the four access methods (1 to 4, 1 beimythieer one) in terms of speed,
ease to access and data security. For the following graphsnballer the bars are the better the
access method was ranked.

Figure 8.5: User comparison of presented access methodsms bf speed, simplicity and data
security: MOS and standard deviation. Small bars reprdsghtrankings.

In terms of acquisition time and simplicity soft biometrigsre ranked signi cantly better than
the other methods. In respect to privacy, users were madedhet their data, in particular face
image, list of soft features, PIN and ngerprint, would berstd on a database. This data can be
on the one hand misused by operators, and on the other hakedhagdsers felt most comfortable
with providing both, PIN or a soft biometrics based list feorage on a database. Users were
ambiguous about which they found is the riskiest trait teegiway, ngerprint or a face image.

8.2.4 Ranking of favorite access methods

The last question regarded the overall satisfaction of tadotds. Users named in this context
different priorities. On the one hand privacy preservati@s named by three users as justi cation
for their ranking, on the other hand the easiness of use. &hats on this ranking are displayed in
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Figure[8.6. The majority of users, although not stronglyifeamwith biometrics, emphasized that
the ranking as it is, holds only in the case of equal accessa&ton accuracies for all methods.

Figure 8.6: Overall user preference of access methods.| 8aralrepresent high rankings.

However, to verify the ranked preference users were alsngive nal task to freely choose
one of the four systems with the goal of reading a le. Figuré ilustrates the ranking ordered
by number of selections. The Soft biometrics module was witsh chosen and thus the favorite,
followed by PIN and ngerprint and nally face based veri tan (due to similarity with soft
biometrics, but longer acquisition due to the blue mark).

Figure 8.7: Freely selected access methods for performiagka

To recapitulate the testing, generally users were eagexpmre both the known and new
access methods. The primary concern of all users was refatediability and accuracy of the
presented methods. Furthermore about half of the userd atkeit spoo ng methods (e.g. hold-
ing a photo in front of the camera) and related countermeasuihese reactions are evidence that
users are aware of novel techniques and have a need to bééiiaa on system characteristic in
order to gain the trust of the users for the access methods.

8.3 Comparison of access control systems

Using the above usability study we proceed to perform a moadmparison by including
characteristics pertinent to access control systems, asidost ef ciency, accuracy, processing
speed and maximum amount of enrolled users. We identi edtiexj commercially available ac-
cess control systems based on ngerprint, face and PIN bastidods, see Talle 8.2. We selected
cost ef cient appliances representing each method andriget @and related speci cations in com-
parison. We note that the PIN based system is the most widellahle access control system,
followed by ngerprint based systems, and only few face ggition based systems. There are no
commercially available soft biometrics access controlesys yet.
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Table 8.2: Comparison of existing access control systemsgcs:

Trait Cost Accuracy Users Speed
FP $140 FRR =1%, FAR=0.0001% 500 s
Face  $320 >99.9% 100 < 1s
PIN $1599 100% 500 s

We illustrate usability and presented system performameéerims of cost, accuracy, users and
processing speed in FigureB.8.

Figure 8.8: Comparison of ngerprint (FP), face recognitiand PIN based access control sys-
tems.

8.4 Summary

We presented a user study investigating the preference eff af $est participants on access
methods, namely soft biometrics, face, PIN and ngerprasédd access methods. This preference
was evaluated generally in terms of usability measures) as@ase of use, intuitiveness and log-
in-speed. Furthermore two scenarios were hereby assegma cally personal computer access
and entrance of a security lab in a crowded environment. Tigising outcome is that although
all users were strongly biased towards the PIN based vdiboamethod, by daily using it, the
biometric based options were overall equally or even siggmtly better rated than the PIN based
system. Users appreciated the comfort, easiness and spesatiern technology. Speci cally
they favored the soft biometrics system, due to the provate@cy preservation and ease of use.
We demonstrated furthermore a broader comparison of egiaticess control systems, taking into
account the evaluated usability and moreover cost ef giepoocessing speed and accuracy.
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Conclusions

This dissertation explored the role of soft biometrics inus#y related applications, as well
as in quantifying and predicting female facial aesthetf@sr analysis was accompanied by con-
structions of practical trait classi cation algorithmsathwere tested on existing image databases.
We also performed a usability study of systems that emploi soft biometric identi ers.

In terms of security, we focused on three related applinatimamely: a) applying SBSs to
achieve complete person identi cation, b) applying SBSgttione a large database in order to
reduce the search space, and c) applying soft biometrigseimion re-identi cation, with a focus
on the frontal vs. side scenario.

Applying SBSs to achieve complete person identi cation

We explored in this context the use of multi-trait SBSs fomlam identi cation, studying
analytically the identi cation capabilities of the systeas a function of the authentication group
v, its sizen, the featured categories and the effective categori¢ds. We showed that in the
interference limited setting, for a given randomly chosathantication groupw, of a given size
n, then the reliability of identi cation (averaged over thebgects inv) is a function only of the
number of non-empty categori€g(v). Then we provided statistical analysis of this reliabjlity
over large populations. The latter part provided boundsg thahe interference limited setting
suggest amxponentiakeduction in the probability of interference patterns, assalt of alinear
increase in .

Applying SBSs to prune a large database in order to reduce theearch space

We provided statistical analysis of the gain and reliapilit pruning the search over large
data sets, where these sets are random and where there isilalippshat the pruning may en-
tail errors. In this setting, pruning plays the role of pileering, similar to techniques such as
video indexing. The average-case analysis presented deseribed the typical assistance that
pruning provides in reducing the search space, whereas-thrgations based analysis provided
insight as to how often pruning can behave in an atypicallyelpful, or atypically helpful man-
ner. The analysis may offer insight on better designing peeing algorithms for different search
settings. We further studied nine different, actual, saftrietric systems, as well as analyzed and
experimented with factors like average error, pruning @aid goodput. Using these factors, we
provided a quanti able comparison of these systems. Furtbee we identi ed relations between
SBS enhancement, error probabifity; , pruning gainr and goodputJ. These ndings bring to
the fore some SBS design aspects. We also gave insight ootigutational cost reduction that
can be introduced by SBS-based pruning in the setting obpeeognition.
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Applying soft biometrics for person re-identi cation, wit h a focus on the frontal vs.
side scenario

Motivated by realistic surveillance scenarios, the worllradsed the problem of frontal-to-
side facial recognition, providing re—identi cation algthms/classi ers that are speci cally suited
for this setting. Emphasis was placed on classi ers thatgin the class of soft biometric traits,
speci cally color—, texture— and intensity— based tradiisen from patches of hair, skin and clothes.
Towards providing insight, the work presented differerntl cation experiments that adhere to
the frontal-to—side setting, as well as presented a pmdirgianalytical study that seeks to impart
intuition on the role of the above traits in improving algbmic reliability. Our analysis described
the overall error probability, both as a function of colbliss and of erroneous categorizations for
given sizes of authentication groups. In the presence ofdenate reliability of the patches-based
method, the analysis suggests promising applications®fitethod in settings such as pruning of
searches.

Applying soft biometrics quanti cation and prediction of f emale facial aesthetics

In terms offemale facial aestheti¢csve presented a study on facial aesthetics in photographs,
where we compared objective measures (namely photogragiitygmeasures, facial beauty char-
acteristics and non permanent facial features), with husudnjective perception. Our analysis
revealed a substantial correlation between differenttadetraits, and the correspondiMOS -
related beauty indices. Speci cally we presented that renmanent features can in uence highly
the MOS, and based on our analysis we conclude that facial aesgthetitnages can indeed
be substantially modi able. With other words parametershsas the presence of makeup and
glasses, the image quality as well as different image postegsing methods can signi cantly
affect the resultingOS. Furthermore we constructed a linear MOS—based metrichwiis
successfully employed to quantify beauty-index variaiolne to aging and surgery. Our work
applies towards building a basis for designing new imagegssing tools that further automate
prediction of aesthetics in facial images. Towards this wavided a simulation of an automatic
prediction tool based on state-of-art classi cation aitjons and the designed MOS—prediction
metric.

The above approaches were accompanied by a more practicedhted part where we de-
signed arautomatic soft biometrics classi cation taoSpeci cally we focused on eye, skin and
hair color, as well as on the presence of beard, moustachglassks.

In terms ofusability analysiswe presented a user study investigating the preferencesef a
of test participants on access methods, namely soft bisegtace, PIN and ngerprint based
access methods. This preference was evaluated generabynis of usability measures, such
as ease of use, intuitiveness and log-in-speed. Furthermar scenarios were hereby assessed,
speci cally personal computer access and entrance of aiiggtab in a crowded environment.
The surprising outcome is that although all users were glyobiased towards the PIN based
veri cation method, by daily use, the biometric based opsievere overall equally or even signif-
icantly better rated than the PIN based system. Users dpfgéd¢he comfort, easiness and speed
of modern technology. Speci cally they favored the softroetrics system, due to the provided
privacy preservation and ease of use.
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Future Work

It is becoming apparent that surveillance will increagmafifect our quality of life and secu-
rity. Research in this area has been embraced by both academiindustry. For this reason,
security related biometric systems will become larger aondendynamic. We see the area of soft
biometrics having from now on a solid position in such systeffowards this we will need better
understanding of the component parts of such SBSs, andespomding better understanding of
novel trait classi cation algorithms, as well as novel wayombining and analyzing such algo-
rithms. Our aim will be to allow for more ef cient SBSs, busaldevelop a rigorous understanding
of the capabilities and limits of such systems.

Our aim in the future will also be, in addition to developingvel algorithms for SBSs, to also
identify and develop new commercial applications that camelt by the power of soft biometrics.
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Appendix A

Appendix for Section[3

A.1 Proofs
Proof of Lemma&@lLet b denote the estimated category andR€t ) denote the probability
that the chosen subject belongs to category indexed by=0;1; ;F. Then we have
X
P(eriF)=  P(S ;b= )P(enjs ;P= )

=0

X
+ P(S;bs )P(erjs ;bs )
=0

X
@ 7 ps)p(b= js)P(eris ;b= )
=0

X
+ PGS )P(bs js)P(ernis ;Ps )
=0

M Njsj, X

C N P(S)P(P=js)P(eris ;P= )

=1

X
+ P(S)P(bs js)P(eris ;bs ) (A1)
=1

Hence

P(erjF)

iSj 1 S|
+ —
. NP

= + iSj 1 PjSj+P +PjSj (A2




which gives

X

PermF) = 1 Jl\lﬂJrNi iSj 1+P (A.3)
=1
F TFp

(3) 1 Tzl: (A.4)

In the abovda) is due to Bayes rul€b) considers that
P(erjSe; P=0)= P(enjSy; P60)=1
and that

P (So; P =0) P(erijSo; P=0)
+ P(So; P68 0)P(erjSo; P& 0)
N jSj.

= P(So;P=0) 1+P(Sp;P60) 1=P(Sp) = N

(c) considers tha® (S ) = '3 thatP(P= jS)=1 P ,thatP(erjS ;P6 )=1,andthat

jSi 1,

P(erjs :b= )= 21 _~.
(er ) 5]

P
and nally (d) considers that le iSj=iSj.

Proof of Lemmal3 et Cr be the total number dfl -tuplesv that introduce- effective feature
categories. Then
! N! N F

CEETTEIN R

(A.5)

where the rst termﬁ describes the total number of walyscategories can be chosen to host

subjects, the second term% describes the total number of wasinitial people, out ofN
people, can be chosen to |l thefecategories, and where the third teFY T describes the total
number of ways thé& effective categories can be freely associated to theNestF subjects.

Finally we note that
C
P(F)= Py—
i=1 “i

which completes the proof.

Example 14 Consider the case where=9;N =5;F = 3. Then the cardinality of the set of all
possibleN -tuples that sparr = 3 effective categories, is given by the product of the folhgwi
three terms.
— The rsttermis( ( 1) ( F+1)= ﬁ =9 8 7 =504 which describes
the number of ways one can pick whieh= 3 categories will be lled.
— Having picked these = 3 categories, the secondterm(id (N 1) (N F+1))=
ﬁ =5 4 3 =60, which describes the number of ways one can place exactly one
subject in each of these picked categories.
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— We are now left wittN  F = 2 subjects, that can be associated freely to any oRhe 3
speci ¢ picked categories. Hence the third ternFi¥ F = 32 = 9 corresponding to the
cardinality off1;2; ;FgV F.

Proof of LemmalRecall from [3.2R) that

P(F)= FN P ' N
(F)= ( F)I(N F)!r iN:1iN (N i)Y i) 1 (A.6)
and note that X\
i1 iN i (N |)|( |)| 1 ( N)I

corresponding to thil th summandi = N), and corresponding to the fact that all summands are
non-negative. As a result

FNF

PE) RN B N

Using Stirling's approximatiort[ATSﬁ)Z] that holds in the agytotically high setting of interest,
we have

FN F .
( F) F(N PN F( N) Ne@ 2V

P(F)— (A.7)

and as a result

P(f)
(fr )r @ f)
_( fr ) fr (r fr )r fr ( r) r @2 (1+fr)
r@f) @ fr)

Ty rang frya@m
r1 f) @)

r fr)y @ D@ 1) @ ne @y (A8)
In the above we use to denoteexponential equalitywhere
: . logf

f= B lim I(?g = B; (A.9)

with _; _being similarly de ned. The result immediately follows.
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Appendix B

Appendix to Section4

B.1 Proofs

Proof of Lemma&aléWe rst note that
P( o) = e "( o=iip) = ¢ "D oii P (B.1)
P
where as previously statdd( gjjp) = ¢ of Iogloo—f?f is the information divergence (also
called the Kullback-Leibler distance) betweeg andp. We use= to denote exponential equal-

logf (M) _ 4and’ . are similarly de ned. In

ity, i.e., we writef (n) = e " to denote Jim
establishind?( 1j o), we focus on a speci ¢ categoffy, and look to calculate

. N . ..n
P S\ Cij=— 1t JiCtj=— of (B.2)

i.e., to calculate the probability that pruning introduées;; elements, fronC; to S, given that
there are® o+ elements ofC; . Towards this we note that there is a total of

. . n
iCti= — of (B.3)

possible elements i@; which may be categorized, each with probability to belong toC; by
the categorization algorithm. The fraction of such elerséhat are asked to be categorized to
belong toCy, is de ned by to be

IS\ Crj _ *ou |
Xf = —/——— = —— = ——; B.4
f 1Ct] 1G] oif (B.4)
an event which happens with probability

. N .. n
P(x¢)=P SV Crj=— 1 ] iCej= — of

= el ijlf(xf); (B.5)

where in the above (x¢) = x; log(*5)+(1  x)log(} Xff ) is the rate function of the binomial
distribution with parameter; (cf. 1). Now given that
. Y . . n . .n
P( 1 o)= P jS\Crj=— 1 J jCrj= — of (B.6)

f=1




110 B. APPENDIX TOSECTIONM

we conclude that X
log I . _ Lf .
e 00PC i 0= orli(—): (B.7)

f

lim
N1

Finally giventhatP( ; )= P( o)P( 1j o);we conclude that limy; r']ngIogP( ;)=
D( oi P)+ ¢ ofle(—r):

0;

Proof of Theoren]2:The proof is direct from thenethod of typesgcf. MD, which ap-
plies after noting thajVv( )j n? _e 8 > 0;and thatsup v )yP(C) P()

IVO)isup oy () P( )
Proof of Theorerh]3The proof is direct by noting that for any> 0, then for o We have
. log ... n . log ... n,.
I\|I|£n nTP(ij>( + )—)> NI|!£n nTP(ij> -); (B.8)
and similarly for < o we have

, log _ ... n _ log _ ... n,.
NI|!£n nTP(jS]<( )—) > |\l||!r1n nTP(ij< =): (B.9)

B.2 Confusion matrices and population characteristics foproposed
systems

| | Light eyes| Dark eyes|
Light eyes| 0.9266 0.0734
Dark eyes| 0.0759 0.9238

[ pc | 03762 | 0.6238 |

Table B.1: Confusion matrix related to "2e": 2 eye color gatées

| | No moustache Moustache]

No moustachg 0.8730 0.1270
Moustache 0.2720 0.7280
[ Pc | 07340 | 0.1623 |

Table B.2: Confusion matrix related to ‘'m': moustache d&tec

| | No glasses| Glasses

No glasse§ 0.9283 | 0.0717
Glasses 0.0566 | 0.9434

[pc [ 0.0849 | 0.0188]

Table B.3: Confusion matrix related to "g": glasses detecti
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| | Blue | Green | Brown | Black |
Blue 0.75 | 0.1875 0 0.0625
Green | 0.0714| 0.7858| 0.1428 0

Brown | 0.0526 0 0.8948| 0.0526
Black | 0.0455| 0.0455 0 0.909

[pc [ 0.3251] 0.0511] 0.2399] 0.3839]

Table B.4: Confusion matrix and population statisticstezlao "4e': 4 eye color categories

No moustachg No moustachg Moustache| No moustache
No glasses Glasses No glasses| Glasses
00 01 10 11
00 0.8104 0.0626 0.1179 0.0091
01 0.0494 0.8236 0.0072 0.1198
10 0.2525 0.0195 0.6758 0.0522
11 0.0154 0.2566 0.0412 0.6868
| pc | 0.7340 | 0.1623 | 0.0849 | 0.0188 |

Table B.5: Confusion matrix and population statisticsteglato "mg':; moustache - glasses system

light eyes light eyes dark eyes | dark eyes
no moustachg moustache no moustachg moustache
00 01 10 11
00 0.8089 0.1177 0.0641 0.0093
01 0.2520 0.6746 0.0200 0.0534
10 0.0663 0.0096 0.8065 0.1173
11 0.0207 0.0553 0.2513 0.6725
[pc| 03371 | 0.0390 | 05591 | 0.0647 |

Table B.6: Confusion matrix and population statisticsteslao "2em': 2 eye color and moustache
classi cation

light eyes | light eyes| dark eyes| dark eyes

no glasseg glasses | no glassey glasses
00 01 10 11

00 | 0.8602 0.0664 0.0681 0.0053

01 0.0524 0.8741 0.0042 0.0693

10 | 0.0705 0.0054 0.8575 0.0662

11 0.0043 0.0716 0.0523 0.8715

[pc | 0.3080 | 0.0681 | 0.5109 | 0.1130 |

Table B.7: Confusion matrix and population statistics tedlato “2eg': 2 eye color and glasses

classi cation
L_IL[LE

Figure B.1: Category nomenclature for “2emg'
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\ | 000 [ 001 | 010 | 011 | 100 | 101 | 110 | 111 |
000 0.751] 0.058] 0.109] 0.008] 0.059[ 0.005] 0.009 | 0.001
001 | 0.046 | 0.763| 0.007| 0.111| 0.004 | 0.060| 0.001 | 0.009
010| 0.234| 0.018| 0.626| 0.048 | 0.018| 0.001| 0.050 | 0.004
011| 0.014| 0.238| 0.038| 0.636 | 0.001| 0.019| 0.003 | 0.050
100 | 0.061| 0.005| 0.009 | 0.001| 0.749 | 0.058| 0.109 | 0.008
101 | 0.004| 0.062| 0.001| 0.009 | 0.046 | 0.761 | 0.007 | 0.111
110 | 0.019| 0.001| 0.051| 0.004 | 0.233 | 0.018| 0.624 | 0.048
111 0.001| 0.019| 0.003| 0.052| 0.014 | 0.237| 0.038 | 0.634

pc | 0.276] 0.061] 0.032] 0.007] 0.458] 0.101] 0.053] 0.012|

Table B.8: Confusion matrix and population statistics texlao "2emg': 2 eye color, moustache
and glasses classi cation; see FiglrelB.1 for the nomemaat
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Appendix C

Appendix for Section[6

Table C.1: Photograph aesthetic traits, according trait irstan

and annotations

[ Trait x; [ Traitinstance

| " 14 Image format | L:Portrait, 2:Landscape

[ T2 JPEG quality measure [14]] Continuous

[ a4 Angle of face [ Continuous

|5 BIQI (cf. [12][13]) | Continuous
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Table C.2: Facial aesthetic traits, according trait instareoes annotations
Trait Xi Trait instance
X;. Ratio (Eye height / Continuous
head lengthj/a
X,. Ratio (Head width / Continuous
Head length)b/a
xs. Eye make up 0:No make up, 0.5: light make-up, 1:strong make-
up

Xs. Face shape

1 : 3: 4:
5:2&3, 6:1&3, 7:1&2
xs. Eye Brow shape
1 2: 3:
Xs. Fullness of Lips 0:Thin lips, 0.5:medium, 1:full lips
7. Ratio (from top of head Continuous
to nose)/head length
(d+c)/a
Xs. Glasses 0:No glasses, l:glasses
Xo. Lipstick 0:No lipstick, 1:bright lipstick, 2:flashy lipstick
X10. Skin goodness 1:Clear skin, 2:not clear skin (pimples)
Xi11. Hair Length / Style 1:Short, 2:shoulder, 3:long, 4:half tied back,eiti
back
X12. Ratio (from top of Continuous
head to mouth)/head
length(d+c+e)/a
x13. Ratio (from top of Continuous
head to eye/head length)
dia
xi5. Ratio (eye width / Continuous
distance between eye)
i)/(2.0)
X16. Ratio (from nose to Continuous
chin / eye to nosep-d-
c)lc
X10. Ratio (from top of Continuous
head eye / eye to nos#t
X21. Expression 1:Smile + teeth, 2:smile, 3:neutral, 4:corner @ th

mouth facing down, 5:non of all
X22. Ratio (outside distance Continuous

between eyes/ top of the
head to eyeh/d

Xz2. Eyes symmetry 0.93<(left eye width)/(right eye width) <1.06
X5 Ratio (from eye to Continuous

nose / nose to moutbje

Xzs. Skin Color 1, 2, 3 (from light to dark)

Xa9. Ratio (from top of Continuous

head to eye / eye to lip)

d/(ct+e)

Xa0. Ratio (eye-nose/head| Continuous

width) c/b

X32. Eye Color 1:blue, 2:green, 3:brown, 4:black, 5:mix
X33. Hair Color 1:blond, 2:brown, 3:black, 4:red, 5:dark blond

Xs6. Ratio (from nose to Continuous
chin / lips to chin)a-d-
c)/(a-d-c-e)

xa7. Ratio (Distance eyes/ | Continuous
head lengthy/a

Table C.3: Correlation matrix of selected non permanent and

permanent traits, see Table 1 for notationg of
X1 X2 X3 Xa Xs Xe
X1 1 0.317 | 0.308 0.153 0.151 0.161
X, | 0.317 1 0.132 0.268 0.034 0.097
X3 | 0.308 0.132 1 0.140 0.158 0.10
X4 | 0.153 0.268| 0.140 1 -0.0036 0.12%
Xs | 0.151 0.034| 0.158  -0.0036 1 0.15
Xs | 0.092 0.092| 0.108 0.122 0.155 1
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Appendix D

Publications

The featured list spans over all published and to be puldistobeuments of the author. None
of these publications appear in the Bibliography.

Journals

A. Dantcheva and C. Velardo and A. D'Angelo and J.-L. Duget®ag of soft biometrics for
person identi cation. New trends and challengeMultimedia Tools and Applicationsol.
51, no. 2, pp. 739 - 777, 2011.

A. Dantcheva and J.-L. Dugelay, “Perception of Female F&8=auty based on Anthropometric,
Non Permanent and Acquisition Characteristics,” to be stibch

A. Dantcheva, P. Elia and J. L. Dugelay, “Human-like perssridenti cation using soft biomet-
rics,” to be submitted.

Conference Papers

A. Dantcheva, J.-L. Dugelay, and P. Elia, “Person recognitising a bag of facial soft biometrics
(BoFSB),in Proc. of IEEE MMSP2010.

A. Dantcheva and J.-L. Dugelay and P. Elia, “Soft biometyisteams: reliability and asymptotic
bounds,’in Proc. of BTAS2010.

A. Dantcheva and N. Erdogmus and J.-L. Dugelay, “On the biiig of eye color as a soft
biometric trait,”in Proc. of WACV2011.

A. Dantcheva and J.-L. Dugelay, “Female facial aesthetassetd on soft biometrics and photo-
quality,” in Proc. of ICME,2011.

A. Dantcheva and J.-L. Dugelay, “Frontal-to-side face desti cation based on hair, skin and
cloths patches,h Proc. of AVSS2011.

A. Dantcheva, A. Singh, P. Elia, J. L. Dugelay, “Search pngnvideo surveillance systems:
Ef ciency-reliability tradeoff,” in Proc. of ICCV Workshop IWITINCVPR, 1st IEEE Work-
shop on Information Theory in Computer Vision and Pattercdgeition in the Interna-
tional Conference on Computer Visidz011.

A. Dantcheva, P. Elia and J. -L. Dugelay, “Gain, reliabibityd complexity measures in biometric
search pruning based on soft biometric categorizatiorpfrstied to ICME 2011.

A. Dantcheva, J. -L. Dugelay, “User Acceptance of Accesstfobbased on Fingerprint, PIN,
Soft Biometrics and Face Recognition,” submitted to ICBR201




116 D. PUBLICATIONS

M. Quaret, A. Dantcheva, R. Min, L. Daniel, J. -L. Dugelay, IB-ACE, a biometric face
demonstrator,” ACMMM 2010, ACM Multimedia 2010, October-29, 2010, Firenze, Italy
, pp 1613-1616.

Book Chapter

C. Velardo, J. -L. Dugelay, L. Daniel, A. Dantcheva, N. Erdags, N. Kose, R. Min, X. Zhao,
“Introduction to biometry Book chapter of "Multimedia Imagnd Video Processing™ (2nd
edition); CRC Press; 2011
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Ce travail présente comment les biométries douces peuvent étre utilisées pour
OfLGHQWLILFDWLRQ HW OD YpULILFDWLRQ GH SHUVRQQHV [/HV
SUpVHQWHQW OfDYQQOWRVHIGHW WHDMHRRILU XQH IDLEOH FRPSOH
De plus ils permettent une analyse biométrique rapide et-saregistrement
SUpDODEOH HW SHXYHQW HPSOR\pV HQ OYDEVHQFH GX FRQVHQ
sujet sous surveillance.

Poussés par les potentielles utilisations de la biométrie douce, noustq@résen
une analyse statistique de la fiabilité de systémes de biométries douces utilisant
SOXVLHXUV WUDLWV SRXU OfYLGHQWLILFDWLRQ GHV SHUVRC
particulierement certains aspects de la conception de systéme de biométrie douce.
2Q V Tds&eWd plssi aux caractéristiques statistiques des traits, des instances de
wuDLW HW j OD WDLOOH GX JURXSH GIDXWKHQWLILFDWLRQ 1R
OHV OLPLWHV GH V\VWgPHV GH ELRPpWULH GRXFHV &HWWH D
une meileXUH FRPSUpKHQVLRQ GHV HUw HdotUdleGalix GILGHQWLILFDW
interférences ou aux erreurs de classification.

1. Introduction

/D ELRPpWULH WUDGLWLRQQHOOH RIITUH XQH VROXWLRQ QDW
GHV LQGLYLGXV G¢YResatibb HddRardcebsiidied pRyaiduesl et
FRPSRUWHPHQWDOHY GDQV OHV VA\VWqQPHV GH VpFXULWp &HWW
GIrWUH XQLYHUVHOOH UREXVW®HH VM IERXQH RRWH UHDW VIRFKFWH ¥ XHE C
mécanismes et systemes de sécurité actupts) importe leur fonction
JRXYHUQHPHQWDOH RX FRPPHUFLDOH VIDSSXLH VXU DX PF
ELRPpWULTXH JRUW GH FHWWH FRQVWDWDWLRQ OHV ELRP|
complétent les avantages de la biométrie classique.

/H SUHPLHU V\WiWaifhHde& fidrsdhhes basée sur la biométrie fut
introduit au 19eme siécle par Alphonse Bertillon [RHO 56]. Ce systeme utilisait tout
aussi bien les traits tels que la couleur des yeux, des cheveux et de la peau, la forme
et la taille de la téte queddiscriminateurs généraux comme la taille, le poids ou
encore des marques indélébile telles que les taches de naissance, les cicatrices et les
WDWRXDJHV &HV GHVFULSWHXUV FRQVWLWXHQW SULQFLSDOHF
VRXV O9DS Siepedd3 doudR®) GH

Les traits de la biométrie douce sont des caractéristiques physiques,
FRPSRUWHPHQWDOHY RX HIWHUQHV j OfKRPPH pFKDUSH VDF
FRPPH pWDQW FRQIRBPOITIDQOHMURRPEH OD ELRPpWULH FODVVL
catégoriesVRQW pWDEOLHYV GDQV OH WHPSV SDU OYH[SpULHQFH KXF
OHV LQGLYLGXV (Q GIDXWUHV WHUPHV OHV WUDLWYV GH OD |
PDQLqQUH QDWXUHOOH HW VRQW XWLOLVpV SDU OHV SHUVRQQ
personnes.



Les temes biométries légeres[AIL 04], traits sémantiques[SAM 08],
comparaison[KUM 09] et attributs [VAQ 09] sont des descripteurs de traits
associes aux biométries douces.

11.'RPDLQHY GIDSSOLFDWLRQ

Les biométries douces sont utilisées soit comme systém® R G D O-&HifeH VW
HQ QH FODVVLILDQW TX{fXQ VHXO WUDLW VRLW HQ FRPELQDLVF
pouvons difféerencieOHY GRPDLQHY GY{DSSOLFDWLRQ VXLYDQWYV

+Fusion avec des traits de la biométrie classique : les systéemes de biométrie
douce sonincorporés dans des systémes biométriques multimodaux avec comme
OYREMHFWLI GIDFFURLWUH OD TXDOLWp JOREDOH &HWWH DSSI
@ RX OHV DXWHXUV PRQWUHQW QRWDPPHQW TXH OTXWLOLVELC
SOXV GH O Y Ht&&admketQine melibration des performances de 5%.
t+Elagage de la recherchées systemes de biométries douces peuvent également
étre employés pour préfiltrer de larges bases de données avec comme objectif
GIDXJPHQWHU OfHIILFDHALWYHVHWXW UDINDIOJWFEHQVELRPpWULHYV
j GHV ILQV GfpODJDJH VRQW SUpVHQGNWPN],GNEWYV >.80 @ >.80
@ 'DQV >.80 @ >.80 @ OHV DXWHXUV XWLOLVHQW OHV L
genre, les cheveux et la couleur de peau pour la clagsificfaciale tandis [GIV
@ >1(: @ PRQWUHQW TXH OHV DWWULEXWY WHOV TXH Of
SHUPHWWHQW GIDPpOLRUHU OHV SHUIRUPDQFHY GH V\WWqgPHV

+(Re) ldentification des humains SRXU OfLGHQWLILFDRE®WLRQ GHV KXPDL
limitations de la biométrie douce, a savoir la #f@TmManence et namicité, sont
contournées en combinant plusieurs traits. Le concept de sac de biométries douces,
en anglais 8ag of Soft Biometrics HVW GLUHFWHPHQW LQVSLUH GH OfLGpt
mots[WOL 06], [JOA 98] et de sac de caractéristiques [LAZ 06] développée dans le
FRQWH[WH GH OfH[WUDFWLRQ DXWRPDWLTXH GH WH[WH HW GH
le contenu. Dans le cadre du sac de biométries douces, les éléments du sac sont les
signaturesGH OD ELRPpWULH GRXFH HWUDLWHYV GH OfDSSDUHQFH Y

1.2. Travaux connexes

Dans ce paragraphe nous présentons les travaux les plus pertinents des
ELRPpWULHVY GRXFHV &HW DSHUoX QH SUpWHQG SDV rWUH XQ
serait plubt une mise en évidence sélective de quelques études scientifiqgues de la
littérature existante.

La biométrie douce est un domaine de recherche trés récent et les travaux sur le
VXMHW VIpWHQGHQW VXU GRPDLQH GH UHFKHUFKH /HV FRQ\
peuvent étre divisées en trois principaux domaines de recherche



+/H SOXV JUDQG FRPSUHQG OfpWXGH HW OfYLGHQWLILFDWLRC
GHY DOJRULWKPHYVY GH FODVVLILFDWLRQ HW GH GpWHFWLRQ XW

L e deuxieme domaine eexpansion identifie les scenarios opérationnels pour
les algorithmes mentionnésaessus et fournit des résultats expérimentaux pour ces
VFHQDULRV FL OYREMHFWLI SULQFLSDO HVW GH UpGXLUH
DXJPHQWDQW OfHIILFDFLWp GX V\VWgPH

+tH WURLVLgPH GRPDLQH HW DXVVL OH PRLQV H[SORUp SR
QRWDPPHQW OfTpWXGH JOREDOH HW WKpRULTXH GH OYXWLC
biométries douces.

Les travaux scientifiques appartenant au premier domaine englobent les
algorithmes deWUDLWYV WHOV TXH OfLULYV >67%$ @ RX OHV PDUTXHV I
XQH SUpVHQWDWLRQ SOXVY ODUJH HW GpWDLOOpH VXU FHV DOJI
a [DAN 104].

Le second domaine peut, a son tour, étre divisé en-dmuaines qui se
differencieQW OHV XQV GHV DXWUHV SDU OHXU PDQLqUH GIXWLOLVF
distingue notamment le cas ou les hiométries douces sont employées comme
systéemes autonomes, comme mécanismes ddiltpmge ou comme systémes
paralleles. Les applications incluéh OTLGHQWLILFDWLRQ FRQWLQXH >1,, @
surveillance (voir [DEN 10], [FOO 10], [MEL 10]), la vérification de personnes
>38%$5 @ HW HQILQ OTLGHQWLILFDWLRQ GH SHUVRQQHV >=(: (
VAIVWgPH GTLGHQWLILFDW L R RorgHies douceRcQrlisteverel® Vp VXU OHYV
UHFRIJQLWLRQ IDFLDOH GDQV OH WUL GLPDJHVY GH FDWDVWUR S

(QILQ OH WURLVLgPH GRPDLQH LQFOXH OfpWXGH GX SODFHF
dans des applications telles que la criminologie [JAI 11] et la métrologie de
OfKRPPH >%$'- @

Les autres applications possibles concernent la capacité de relier les personnes en
VH EDVDQW VXU OHXUV SUplpUHQFHY GH WUDLWYV ELRPpWULT:
VWDWLVWLTXHV GILGHQWLILFDWHXUMaBbdRFBptWiULTXHY GH JURX:!
GIYDYDWDU EDVpH VXU OHV FDUDFWpPULVWLTXHV IDFLDOHYV LQV\
GHV FKHYHX[ OfpFKDQWLOORQQDJH VWDWLVWLTXH GIDXGLHQI

2 /HV ELRPpWULHYVY GRXFHV SRXU OTLGHQWLILFDWLRQ KXPDLQH

Dans ce# partie, nous analysons un scenario dans lequel un ensemble de
ELRPpWULHY GRXFHV HVW XWLOLVp SRXU OYLGHQWLILFDWLRQ (
donner un apercu des facteurs pertinents a la conception et des limitations

/H GLVSRVLWLI 6nfipWiX &ehardrdéherlNselon lequel un groupe
GIDXWKHQ@eN ISHFOWRRQHY HVW DOpDWRLUHPHQW SUpOHYp GYXC
ODUJH 'H FH JURXSH GNmeiéoihes QY pdiséhbe/\est R QorGdur
arbitrairement sélectionnée pour authécdifion et différenciée des autres membres



du groupe. Notons que ce scénario général inclue tout aussi bien les cas de la
YpULILFDWLRQ GH SHUVRQQHV TXH OHV FDV GILGHQWLILFDWI
biométries douces effectue la détection en employargits de la biométrie douce

(couleur des cheveux, couleur de peau, etc.) ou chaque trait i lavec ) peut

étre subdivisé einstances de traits; F I H'dik¥ que chaque trait i peut prendre

XQH GHV YAiHYus\dénotonsatégorie WRXW HQVHPEOH GH pPOpPHQWYV (
éléments étant ici les instances des différents tiSiti. - = <Tg="9@5 OfHQVHPEOH GH !
FDWpJRUXBYUHHOMWQVHPEOH GH WRXWHY OHV ! FRPELQDLVRQV

biométrie douce. Le nombre de catégoresGRQW HVW GRWp OH V\WVWgPH VIH[S
comme suit

o Abes & [1]

OR\HQQDQW XQ OpJHU DEXV G th Qpt@iadient 2QRRXY GLURQV TXT
catégorie3VL VHV LQVWDQFHY GH WUDLWY VRQW XQ HQVHPEOH GH
OD FDWpJRW.HXH BRWMB@DYRLU XQH DXWKHQWLILFDWLRQ FRQFC
SDU FRQVpTXHQW VD GLIIpUHQFLDWLRQ GHV DXWUHV VXMHWYV
QRXV GHYRQV rWUH GDQV OH FDV R OHGLW VXMHW QTDSSDUW
que les autres membresJW R XSH GIDXWKHQWLILFDWLRQ
(WDQW GRQQH XQ JURXSH GIDXWKHQWLILFDWLRQ VSpFLILTXH
maximum de vraisemblance (MV) de détection de la catégorie la plus probable a
ODTXHOOH XQ VXMHW DSSDUWLHQW VI{pFULW FRPPH VXLW

YL=N€f&.. 2:1;2:UT, [2]

oty HVYW OH YHFWHX® 3@t RiEonttidhYde Wehdréde probabilité de
OfHQVHPEOH GHV FDWpJRULHV SRX EsX®ptomRIEXODWLRQ GRQQp
GYREVHUYHU \ VDFKDQW TXH OH 3WRappélons BuSpadkRdgsvV LHQW j OD FDV
queAl & TiLs

Nous tenons a souligner que tout comme; et !, les paramétres tels que la
WDLOOH OHV VWDWLVWLTXHYV GX JURXSH GIYDXWKHQWLILFDWL
pour un systeme de biométrie douce. Dans la suite, notall@éns le
IRQFWLRQQHPHQW GX V\VWgPH GH ELRPpWULHY GRXFHV LQWUR
TXL VXLW QYHVW HQ DXFXQ FDV H[KDXVWLYH HW VIDWWDFKHUL
sur les parameétres tels que

+la propagation des catégories effectivesXxgd XQ JURXSH GIDXWKHQWLILFDW
GRQQp /D SURSDJDWLRQ HVW XWLOLVpH LFL FRPPH XQH PHVX
SRXU OIDXWKHQWLILFDWLRQ GH VXMHWYVY GTXQ FHUWDLQ JURXS

+/D UHODWLRQ HQWUH 1 HW VD SUREDEfoi@tiiowvp GILOQWHUIpUHQ
- OD SUREDELOLWpPp TXH GHX[ XWLOLVDWHXUV SDUWDJHQW
indissociable)

+/D SUREDELOLWpPp GH OfHUUHXU GYDXWKHQWLILFDWLRQ GXH
étre considérée comme mesure de la fiabilité du systeme.



2.1. Propagation de la catégories-

Nous considérons ici le cas ou un systéeme de biométries douces serait congu
SRXU OD GLVWLQFWLRQ SDUPL ! FDWpJRULHY GLVWLQFWHV
JURXSH GITLGHQWLILFDWLRQ RFFXSH GH IDoR€& DUELWUDLUH XQ
catégoriesétant substantiellement corrélées emite. Mettons les problemes de
FRUUpODWLRQ SRXU OfLQVWDQ vategbries @ffectives/ VRQV OTHQVHPE
FRPPH pWDQW OfHQVHPEOH G Hddile DoM pides)daHsvurSUpVHQWHYV  F Tt
JURXSH GIDXRQKWKPFILILAXWL 'DQV FH FRYWHEAH OD FDUGLQDO
une mesure qui nous renseigne sur la diversité et les performances du systeme.
Rappelons néanmoins que H Wsdnt des variables aléatoires dont les réalisations
peuvent avec chacune des @0 UHQFHY GX JURXSH GI{DXWKHQWLILFDWLRQ
Afin de mieux comprendre le caractére aléatoirdesdsus, nous considérons le
FDV Re OHV JURXSHV GIDXWKHQWLILFDWLRQ VRQW WLUpV GTXC
ensemble de K = 646 sujets pris dans la base de donB€dSTF DYHF !
catégories correspondant a une densité de probabilitd; illustrée en Figurel.
Cette densité de probabilité correspond aux traits et instances de traits du systéeme
proposeé.

Figurel. :T;correspondant a la distribution de Feret et au systéme proposé

Etant doné la description précédente, Figure GHFULW OfpTXDWLRQ GX QRPEU
moyen de catégories vides

Fx(>d(N), (3]

HQ IRQFWLRQ GH 1 HW Re OYfHVSpUDQFH HVW HIIHFWXpH VXU
JURXSH GIDXWKHQWLILFDWLRQ



Figure2. Nombre moyerte categories vides en function de N (Feret)

Il devient évident que la solution naturelle pour augmenteg] Efonsiste en
augmenter !, ce qui revient naturellement a se poser la question a savoir si
OTDXJPHQWGWIYRQ LGH VH W U D @txtiok des Sanbres QeHtraiisk J P H
RX SDU XQH DXJPHQWDWLRQ GX QRPEUH GILQVWDQFHV GH WUL
FH SUREOgPH GYDOORFDWLRQ GH UHVVRXUFHV VRXV OTK\SRWK
ou | SRXU WRXW L « $YHF F HaMWWIE pBSOBRWKgVH GH V\PpW

[4]

FIHAMGLUH TXH ! DXJPHQWH GH IDoRQ SRO\QRPLDOH DYHF
DYHF 8QH FRPSDUDLV%%%@HQHGHNWG®wu@bQMHJLHU OD UpJL

limite de trait G XQ V\VWqPH GH ELRPpWULH FRPPH pWDQW OD UpJLRQ
(5]
TXYIDYHF HW Re Of

oLJ
HW (

1 0JZ49d

DXJPHQWH SOXV UDSLGHPHQW DYHF

Re !
SOXW{W TXH GH

OTDXJPHQWDWLRQ GH

Exemplex$XJPHQWDWLRQ SUDW L Tetdissa:NaDs grogdson®ldl SR XU

VWUXFWXUH GH VDF GYfXQ V\VWgPH DXJPHQWp V\VWqPH GDQV

ressources (amélioration de la résolution des capteurs, augmentation de la capacité
IDoRe&ps¢mDIXVVL LQFOXUH XC

GH FDOFXO SHXW rWUH DOORXp GH
GHV WUDLWYV HW GITLQVWDQFHV G Et amidiBalnVéivisiield O TXH GpFULWH

valeurs de! GH O TR UG UHng6E millidnx RtWGUI Honviendrait a diverses

applications.
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Couleur Coule | Coule | Présence| Présence | Présence | Age | Genre
de peau ur des| ur des| de de barbe | de
cheve | yeux | lunettes moustache
ux
3 8 6 2 2 2 3 2
Maqui | Forme | Formes  deg Mésures | Mésures  deg Marques et| Longueu
llage | de caratéristiques| faciales | caractéristiqueq grain de| r des
visage | du visage du visage beauté du cheveux
visage
4 3 3 3 6 6 3

Tableau 1. Ensemble augmenté des traits du visage de la biométrie douce et leur nombre
GILQVWDQFH GH wuDLWV

22. /LPLWHV GH 1 SRXU XQH SUREDELOLWp GTLQWHUIHUHQFH GRC(

Dans cette partie, nous allons notamment décrireelation entre N et la
SUREDELOLWp GYLQWHUIpUHQFH FRUUHVSRQGDQWH HQ IRQFV
FODLUHPHQW OfYfpYgQHPHQW GH FROOLVLRQ RX LQWHUIpUHQFH
Définition: on parle decollision ou interférencelorsque deux ou plusieurs sujets
quelconquespparter QHQW j OD PrPH FDWpJRULH (Q SDUODQW GTXQ V.
GLURQV TXTXQ VXMHW VXELW XQH LQWHUIpUHQFH VILO HOOH
FRQWLHQW DXVVL GHV VXMHWY GX JURXSH GIDXWKHQWLILFDWL
Au regard de ceci, nous nous intéressons a deux medarg@sobabilité. La
premiere est la probabilitd:04; TXH OH JURXSH GYDXWKHQWLILFDWLRQ G|
FKRLVL DUELWUDLUHPHQW GfXQH JUDQGH SRSXODWLRQ GH V>
deux sujets en collision. Rappelons brievement la relatiorLd@ aé; et du fameux
SDUDGR[H GH OYDQQLYHUVDLUH 3RXU OHV DXWUHV PHVXUHV C
FRQVLGpURQY OH FDV Re XQ JURXSH GYDXWKHQWLILFDWLRQ C
choisi parmi une large population de sujets et ou un sujet quelconquegdripe
GH FH JURXSH GIDXWKHQWLILFDWLRQ VHUDLW HQ FROOLVLRQ C
groupe. Nous dénotons cette probabilité q(N) et rappelons également que g(N) <
S 1 3RXU UpVXPHU S 1 GpFULW OD SUREDEEOLWp TXH OfLQW
SXLVVH LQGXLUH GHVY HUUHXUV WDQGLY TXH T 1 GpFULW OD SU
interférences.
Exemple: Dans un groupe de 10 sujets p(N) décrit la probabilité que deux sujets
arbitrairement choisis parmi les 10 sujets appartiennent a la méégeat3,. q(N)
UHSUpVHQWH OD SUREDELOLWpP TXTXQ VXMHW SDUWLFXOLHU
SOXVLHXUV GHYV VXMHWV UHVWDQWY /D SUREDELOLWpP TXH
SURGXLVH HVW GRQF VXSpULHXUH j OD SISBEEEEELOLWp TXTXQ VX
qui se traduit par q(N) < p(N).
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I1RXV QRXV DWWDFKHURQV GYDERUG j FDOFXOHU HW UHSUpV
VLPSOLILFDWULFH GITXQLIRUPLWp VWDWLVWLTXH GHV FDWpJ
OTH[SUHVVLRQ GH FHWWH SURASDEH)LcOmNE gtaitVy W GpPRQWUpPH YRLL

sFARZ@FIA QO
1

'raq L] (6]
s Pé
et peut équivalemment étre développée comme suit
L:03; L SF @F A@F A4 @ F<°AL s F——— [7]

U. 2¢;é

IRWRQV TXH VRXV OfK\SRWKqVH G9#Qd-tB3dlBLWp OD SUREDE
constitue une limite inférieure de cette méme probabilité (ici en absence de
OTK\SRWKgVH GYIXQLIRUPLWpP 'H PDQLgUH pTXLYDOHQWH QR
valeur maximale de N pouKQH SUREDELOLWpPp GH FROOLVLRQ GRQQpH 6HC
HQ IRUPH IHUPpH FH FDOFXO VIDSSXLH VXLW OfDSSUR[LPDWLR

AL

L:0%; NSF @2A - 8]

issue de [AHM 00] et dont la résolution suivant N donne
0:L8; N §téCH B A [9]

Ce qui correspath a la valeur de N pour laquelle le systéme aura une probabilité
GTILOQWHUIBUMIQWHH G THEEBRSDe p=8.R dhlbbtiendrait N = 39.

(Q GIDXWUHV WHUPHV pWDQW GRQQp XQ V\WWgPH GH ELRPpV
catégories, une répartitiamiforme des sujets dans ces catégories et la probabilité

GH TXIXQH FROOLVLRQ VXUYLHQQH HVW YpULILpH SRXU WRX'

/fTH[SUHVVLRQ HQ IRUPH IHUPpH GH T 1 HVW OD VXLYDQWH
25 R
“ .LsF@®—Aa [4.10]
I

$ WLWUH GTH[HPSQHsswé! O © 06 €6 tRugbQre sous hypothése
GIXQLIRUPLWp RQ D 1! FH TXL FRPPH RQ SRXUUDLW VT\ D
supérieur a sa valeur pessimiste correspondant &0,

'DQV XQ VRXFL GH JpQpUDOLVDWLRQ QRXV QRXV pORLJQ
GIXQLIRUPLWp DILQ GH FRQVLGpUHU XQ VFpQDULR SOXV UpD
FDWpJRULHV SURYLHQW GTXQH EDVH GH GRQQpHV GH OD YLH



12

probabilité que tous les Bujets soient dans des catégories différentes est la somme
des produits des évenements de-ooltision [AHM 00] :

L:0&; LsFA. o T.; kT.0d :Te; [11]

Re OYLQGLFH GH VRPPDWLRQ FR-Widesl ¥R @@rddpe] FDWpPpJIJRULHV C
G 1D XW K H Q Wte IprébRbilite B9 sci&Matisée en FigBre&ette figure nous

montre que cette probabilité dépasse, bien que ce soit de peu, la probabilité obtenue

VRXV OTK\SRWKgVH GTXQLIRUPLWpP

p(N) tous traits

p(N) sans lunettes

p(N) sans couleur de peau

p(N) sans couleur cheveux
p(N) sans couleur des yeux

Probabilité
de collision

g(N)tous traits

g(N) sans lunettes

g(N) sans couleur de peau

g(N) sans couleur cheveux
g(N) sans couleur des yeux

Nombre de sujets

Figure 3. q(N) et p(N) pour ne distribution réelle et uniforme

423. 6LPXODWLRQ GTpYDOXDWLRQ GX V\VWgPH GDQV OHV LQWH!
par des capteurs de tres hautes resolutions

'DQV FH TXL VXLW QRXV VLPXOHURQV OD SUREDELOLWp GTHL
scénario GTLQWpUrw HW VRXV OTK\SRWKgVH TXH OHV HUUHXUV
LQWHUIpUH®REGEHYH AMRXWWMV OTK\SRWKqVH TXH OHV HUUHXUV VH
VHXOHPHQW VL OH VXMHW FKRLVL SDUWDJH OD PrPH FDWpJRUL
GX JURXSH G idhXGEK ¢o@edpbnd &UzdE ou le systéme de biométries ne
pourrait fournir une authentification concluante. Dans cette simulation, la plus
grande population était constitué de 646 personnes de la base de d&REFEF
la simulation a été effectué po LIl pUHQWHY WDLOOHV 1 GX JURXSH GIDXW
/D SUREDELOLWpPp GTHUUHXU GIDXWKHQWLILFDWLRQ HVW UHSUp
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La Figure3. montrela probabilité de collision lorsque différent traits sont enlevés

FRPPH PHVXUH GH OYLPSRUWDQFH GH FKDTXH WUDLW /D SUpV|
VHPEOH DYRLU OH PRLQV GTLQIOXHQFH VXU OHV UpVXOWDWYV
FRXOHXUV GH FKHonHuhg diandeGrfiluenkd la différenciation des
individus.

B3PUREDELOLWpPp GITHUUHXU WRWDOH GT1XQ V\VWgqPH GH ELRPpWU

Dans le scenario opérationnel décritdeissus, ldfiabilité GTXQ VI\VWqPH GTXQ
systeme de biométries douces dépend de la prabeWWp GH IDXVVH LGHQWLILFDWLRQ
SHUVRQQH TXHOFRQTXH GH OTfHQVHPEOH GHV 1 SHUVRQQHV
Dans un tel contexte, la fiabilité du systtme de biométries douces est
généralement liée:
+au nombre de catégories que le systéme peut identifier
+au degré avec leq@ OHV FDUDFWpPULVWLTXHY FDWpJRULHYV UHSUp\
FKRLVL GH VXMHWYVY VXU OQHTXHO SRUWH OTLGHQWLILFDWLRQ
+a N sachant que les valeurs élevées de N reviennent a identifier une personne
parmi de plus larges ensembles de personnes simjlaires
+a larobustesse avec laquelle ces catégories peuvent étre détectées.

1RXV SURFpGRQV LFL j OfpWXGH GH OD SUREDELOLWpP GTHUL
biométries doucegroir [DAN 114]), incluant ici en plus des facteurs citéslessus,
OHV SUREDE L @elLcaténarisathnl dldotithiue.Q GIDXWUHY WHUPHV QRXYV
H[DPLQRQV OD SUREDELOLWp GYfHUUHXU HW FH TXHOTXH VRLW
que les erreurs de notre systeme peuvent dues a une mauvaise classification ou a
ONLQWHUIpUHQFH edtHié aux stitistidlubsDi&/ 18 pbipation étudiée et le
VHFRQG DX FRPSRUWHPHQW GH OfHUUHXU GHV GLIIpUHQWYV D
Nous

[12]

qui définit entierement les statitisques de la population.

(Q WHUPHV GcHhpdiierhrit) nGud regardons le systéme de biométries
douces comme un systéme capable de classer un sujet de la catggoria
catégorie estimée ou de classer ledit sujet dans la mauvaise catégorief-igire

3. Nous definissosciapres

[13]
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la probabilité que le systéme de biométries douces mette les sujet§fellsse3

dans laj™classe3 (voir Figure4 SRXU OfLOOXVWUDWLRQ JUDSKLTXH 30X\
@ HVW OfpOpPHdgeet@HaPDFRORQQH GH FH TXH OTRQ QRPPH GDQ
littérature matrice de confusion et que nous notons E

[14]

Toujours en lien avec ces paramétres, définissons
[15]

3RXU GpQRWHU OD SUREDELOLW3psotxgix@sseHPEUH GH OD FDWpJR
Finalement, nous utilisons la notation

[16]

Figure 4. Paramétres de confusi§E
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Un systeme de biométrie douce de matrice de confusSidhW GH YHFWeH XU GYHUUHXU
qui opére sur une population dont les statistiques sont donnéep patune
SUREDELOLWpP GTHUUHXU 3

[17]

431. 3UREDELOLWp GYHUUHXU GI1XQ V\VWgPH -GH ELRPpWULHV
identification frontale-latérale

Pour quantifier et mieux analys,, nous présentons ici un réel systeme de
biométries douces, de matrice de confustoemployé sur la population de la base
de données de FERET. Pour cette expérience, nous prenons une fois dem plus,
JURXSH G1DXW KHNQsydtd.L BrD BUjetRdg dBBH sujets est ensuite
arbitrairement comme sujfdf LEOH GH OYDXWKHQWLILFDWLRQ 1RXV SURFp
OfHQWUDVQHPHQW GHY DOJRULWKPHYV GH FODVVLILFDWLRQ YR
vecteur decaractéristiques contenant les traits suivants

Contraste :PHVXUH VXU WRXWH OfLPDJH GH OfLQWHQVLWpP GX FR(
VHV YRLVLQV /H FRQWUDVWH GYXQH LPDJH HVW OLp j VD YL
VIH[SULPH FRPPH VXLW

[18]

oui et représente la@iveau de gris de deux pixelssg réfere au niveau de gris de

la matrice de comccurrence. La matrice de-oacurrence décrit la eoccurrence de

niveaux de gris entre deux imageshaque élémeri,j) indiquant alors lenombre

de fois que le pixel de valeuest horizontalement adjacent au pixel de vajleur
Corrélation: mesure la corrélation des pixels voisins et noté

[19]
ou l; ety représentent, respectivement, les valeurs moyennes des voisinagep de
tandis quelet ] représentent leurs variances respectives.

Energie:La VRPPH GHV FDUUpV GHV pOpPHQWYV RX PRPHQW DQJXOLD
énergie de 1 correspond a une imageaseur uniforme.

[20]
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Homogénéité mesure de la proximité de la distribution des éléments

[21]

tdistance: en conjonction avec les informations de couleur et de texture, nous
intégrons une mesure de relation simple en notre classificateur. Cette mesure
VILQWpUHVVH j OD GLYHUJHQFH HQWUH OD GHQVLWpP GH SUREL
relative a un sujet. Autrement dit, nous exprimons les trois relations entre les
differentes intensités du sujetheveux peau, pea@ habits et cheveuk habits.
Nous nous attendrions par exemple a avoir une distance plus élevée avec une
personne ayant des cheveux¢c® HXU FKkWDLQ HW XQH SHDX FODLUH TXYDYH
ayant des cheveux blonds et une peau claire. Nous convertissons ensuite les
parcelles en niveau de gris et évaluons trois fois par personne la distance L1 et ce
pour toutes les relations entre les plese Pour deux distributions et s de
caracteres aléatoires, cette mesure est donnée par

[22]

ook UHSUpVHQWH XQ SRLQW SDUPL OHV SRLQWYV GTLQWHQVLW
de gris.

Un tel vecteur de caractéristiques e ¢UDLW GH FKDTXH JDOOpULH GTLPDJH\
OTpWDSH G9{HQW Uidentfibnd HeQswjetitileRexX faidamt correspondre
son/ses vecteurs de caractéristiques avec les vecteurs de caractéristiques des N sujets
IRXUQLY SDU GH Of9pW D SeiteGfpé@ridhtafion Qdd idgesvde 1D Q V
JDOOpULH VRQW GHV SRUWUDLWY GH IDFH GH VXMHWYV HW SR>
photographiés de profil.
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Figure 5. Portrait de face et de profil pour un sujet de la galénec
FRUUHVSRQGDQFH HQWUH OHV UpJLRQV GILQWpPUrwW SRXU OHV |
FRXOHXU GTKDELWYV

&HWWH SURFpGXUH HVW UpSpWpH DILQ GH PR\HQQHU OD SUF
les itérations pour toutes les valeurs de N. La classification correspondante est
HITHFWXpH SDU OTDOJRULWKPH $GD%R RME¥entdd/e®D SUREDELOLW
Figure®.

Figure 6. SBUREDELOLWpAQAXKQUUHWNgBH GH ELRPpWULHY GRXFHV E
classificateur a entrées multiples Adaboost

Le systéme de biométrie douce qui booste tous les traits décrits, couleur, texture
et intensité fonctionne pour un scewaou la différence entre les 2 poses est
GYHQYLURQ GHJUpV 1RWRQV LFL TXH OHV DOJRULWKPHV FC
IDFLDOH TXfLOV VRLHQW KROLVWLTXHVY RX EDVpV VXU OHV
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capables de gérer des différences de pose de meirid degrés. Néanmoins le

VI\VWgPH GH ELRPpWULH GRXFH SUpVHQWpP D XQH SUREDELOL\
JURXSH GIDXWKHQWLILFDWLRQ GH VXMHWYVY FH TXL QH VHUDL
VAIVWgPH GIYLGHQWLILFDWLRQ UREXVWHiées&&dlVa SHUIRUPDQFHV
corrélation entre traits i.e. couleur de chevewouleur de peau ou couleur de

peal? texture de peauvfir [DAN 10b]). Une solution pour améliorer ces

performances consiste en augmenter le nombre de catégories. Dans ce cas, il

faudrait aussi SUHQGUH HQ FRPSWH OfHUUHXU DMRXWpH HW pYDOXHE
rapport au gain apportée par la nouvelle catégorie.

4. Conclusions

'DQV FH FKDSLWUH QRXV DYRQV H[SORUp OfXWLOLVDWLRQ
GRXFHV j SOXVLHXUV \tiod Ba_psrsongds XNouOayars Hafawrhdrit F D
pWXGLp OD UHODWLRQ HQWUsd taillel NJ lgsext&gdrideff BsK WKH QW LILFDW LR
catégories effectives..

Il devient évident que la surveillance affectera de plus en plus nos qualité de vie
et sécurité. Bur cette raison, les systémes de sécurité utilisant les biométries vont
étre de plus dynamiques. Nous voyons le domaine des biométries douces avoir une
position de plus en plus forte dans de tels systémes.

Dans cette optique, nous devons avoir une medlecompréhension des
composantes telles que les systéemes biométries douces sans toute fois négliger la
FRPSUpKHQVLRQ GITDOJRULWKPHYV GH FODVVLILFDWLRQ GH QR?
combinaisonde ces¥L 1RWUH REMHFWLI VHUDelsytéagHRpOLRUHU OTHIIL
biométries douces tout en développant une compréhension rigoureuse de ces
capacités et limites.
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Abstract

This dissertation studies soft biometrics traits, thepliability in different security and com-
mercial scenarios, as well as related usability aspectpliide the emphasis on humtacial soft
biometric traitswhich constitute the set of physical, adhered or behavimaian characteristics
that can partially differentiate, classify and identifyrhans. Such traits, which include charac-
teristics like age, gender, skin and eye color, the presehgiasses, moustache or beard, inherit
several advantages such as ease of acquisition, as welbasralircompatibility with how humans
perceive their surroundings. Speci cally, soft biomettiaits are compatible with the human
process of classifying and recalling our environment, a&@ss which involves constructions of
hierarchical structures of different re ned traits.

This thesis explores these traits, and their applicatiogoiih biometric system&BSs), and
speci cally focuses on how such systems can achieve diffegeals including database search
pruning, human identi cation, human re—identi cation gnoh a different note, prediction and
guanti cation of facial aesthetics. Our motivation origbes from the emerging importance of
such applications in our evolving society, as well as from phacticality of such systems. SBSs
generally bene t from the non-intrusive nature of acquirisoft biometric traits, and enjoy com-
putational ef ciency which in turn allows for fast, enrolmie-free and pose— exible biometric
analysis, even in the absence of consent and cooperatidmeligvolved human subjects. These
bene ts render soft biometrics indispensable in applarai that involve processing of real life
images and videos.

In terms of security, we focus on three novel functionaited SBSs: pruning the search in
large human databases, human identi cation, and humadeagttication.

With respect tchuman identi cationwe shed some light on the statistical properties of per-
tinent parameters related to SBSs, such as employed tradt$rait—instances, total categories,
size of authentication groups, spread of effective categ@nd correlation between traits. Further
we introduce and elaborate on the event of interference the event where a subject picked for
identi cation is indistinguishable from another subjectthe same authentication group.

Focusing onsearch pruning we study the use of soft biometric traits in pre- Iteringde
human image databases, i.e., in pruning a search usingisofetric traits. Motivated by practi-
cal scenarios such as time—constrained human identi catidoiometric-based video surveillance
systems, we analyze the stochastic behavior of searchngruover large and unstructured data
sets which are furthermore random and varying, and wherdditian, pruning itself is not fully
reliable but is instead prone to errors. In this stochastitrgy we explore the natural tradeoff that
appears between pruning gain and reliability, and proceerst provide average—case analysis
of the problem and then to study the atypical gain-religbliehavior, giving insight on how of-
ten pruning might fail to substantially reduce the searcdtep Moreover we consider actual soft
biometric systems (nine of them) and the correspondinggoatzation algorithms, and provide a
number of experiments that reveal the behavior of such sstelogether, analysis and exper-
imental results, offer a way to quantify, differentiate aswmpare the presented SBSs and offer
insights on design aspects for improvement of such systems.

With respect tchuman re—identi catiorwe address the problem of pose variability in surveil-
lance videos. Despite recent advances, face-recognilimmitams are still challenged when ap-
plied to the setting of video surveillance systems whictenehtly introduce variations in the pose
of subjects. We seek to provide a recognition algorithm ithapeci cally suited to a frontal-to-
side re-identi cation setting. Deviating from classicabimetric approaches, the proposed method
considers color- and texture- based soft biometric trajpeci cally those taken from patches of




hair, skin and clothes. The proposed method and the sifyadsithese patch-based traits are then
validated both analytically and empirically.

Deviating from security related themes, we focus on a cotelylelifferent application: em-
ploying soft biometrics in evaluation démale facial aestheticsThis approach is novel in that,
in the context of female facial aesthetics, it combines Isioftnetrics with previous approaches on
photo quality and beauty assessment. This study helps usderstand the role of this speci c
set of features in affecting the way humans perceive fanialges. Based on the above objec-
tive parameters, we further construct a simple linear meivat suggests modi able parameters
for aesthetics enhancement, as well as tunes systems thit seek to predict the way humans
perceive facial aesthetics. Moreover using the designedianvee evaluate beauty indices with
respect to aging, facial surgery and females famous for tiesauty. We simulate an automatic
tool for beauty prediction with both realistic accuracy gmiformance.

Remaining in the realm of human perception, we also provickenaparative study of different
access control systems based on ngerprint, PIN, soft btooseand face recognition. Towards
comparing these systems, we design real-life access tamedfaces, each based on the above
mentioned methods, and then proceeded to empirically aeathe degree of usability for each of
these interfaces. Our study is based on the recorded ass#ssof a set of users who rated their
interaction with each interface, in terms of privacy, eabese, user-friendliness, comfort and
interaction time. The results reinforce, from a usabilibirp of view, the employment of novel
biometric authentication methods as viable alternatieethé¢ currently predominant PIN based
methods for access control.

Overall this dissertation has contributed the following:

— identi cation and introduction of novel applications fepft biometrics, such as human
identi cation (bag of soft biometrics), re—identi catioas well as aesthetics prediction

— development of theoretical framework for SBSs in the aajpibns: pruning the search and
human identi cation

— application of the developed theoretical framework ostaxj SBSs

— construction of a novel image processing tool for classien of soft biometric traits and
employing such a tool in challenging scenarios

— obtaining evidence for the high user friendliness of safimetric based control access
systems.

This work was conducted in part within the European ProjeCTBIO [@] and was

supported in part by the European Commission under corffR¢t215372.

Soft Biometrics

Traditional biometrics offer a natural and reliable sadntifor establishing the identity of an
individual, and for this reason, the use of human physicdltzhavioral characteristics has been
increasingly adopted in security applications. With tippr@ach maintaining various advantages
such as universality, robustness, permanence and adtigssibis not surprising that current
intrusion detection and security mechanisms and systechgli| by default at least one biometric
trait.

Building on this progress, the latest addition of soft bitrice builds and adds on the main
advantages of classical biometrics.

The beginnings of soft biometric science were laid by Algg@Bertillon in the 19th century,




who rstly introduced the idea of a person identi cation $gs based on biometric, morphological
and anthropometric determinations, 056]. In higrgfBertillon considered traits like
colors of eye, hair, beard and skin; shape and size of the heackll as general discriminators like
height or weight and also indelible marks such as birth maars or tattoos. These descriptors
mainly comprise what is now referred to as the familysoft biometricsa term rst introduced
by Jain et aI.b] to describe the set of charactesistiat provide (some) information about
an individual, but that are not generally suf cient for fultlescribing and identifying a person,
mainly due to the lack of distinctiveness and permanencedf fraits. As stated Iat4a],
such soft biometrics traits can be inexpensive to compue, be sensed at a distance, do not
require the cooperation of the surveillance subjects, amdbe ef ciently used to narrow down
a search for an individual from a large set of people. Along lthes ofsemantic annotation
([|S_G_ND_$] and[LBNJJO]) we here note the human compliance aftsometrics as a main difference
between soft biometrics and classical biometrics - a diffee that renders soft biometrics suitable
for many applications. The termigiht biometricssee in M], similessee in MQ]
andattributessee in ] have been describing traits we associate to soft bigrsethe
following de nition clari es what is considered here as s@fiometric traits.

De nition: Soft biometric traits are physical, behavioral or adherach&éin characteristics,
classi able in pre—de ned human compliant categories. Séheategories are, unlike in the classi-
cal biometric case, established and time—proven by humperiexce with the aim of differenti-
ating individuals. In other words soft biometric traits areated in a natural way, used by people
to characterize other people.

Our interest in this thesis is in understanding the role sléitbiometrics can play in security
and commercial systems of the future. In brief we begin byi$yiag soft biometric traits that
adhere to the above de nition. After an overview of relatedrky we proceed to explore differ-
ent applications that bene t from soft biometric systemB$&S), focusing on surveillance related
person identi cation, and on pruning of large surveillametated searches. We also consider the
speci ¢ scenario of applying soft biometrics for human fi@rto-side re-identi cation. We then
change gear and deviate from security related applicatmti'e more commercially oriented ap-
plication of employing soft biometrics in quantifying ancegicting female facial aesthetics. The
above approaches are then complemented by a more practioatatic soft biometric classi ca-
tion tool that we present. Finally, motivated by human ataeqe issues, we proceed to provide a
usability study relating to soft biometrics.

Achievements of the dissertation

We proceed with an explicit description of the scenarios applications of interest in the
thesis.

Soft biometrics: characteristics, advantages and relateavork

We illustrate in Tablé]l) a range of facial characteristidsiol accept the de nition stated
in for soft biometrics. In a rst attempt to differentiate taeeen soft biometric traits we rstly
identify the af liation to face or accessorycategories. We abuse slightly annotation and include
hair color in the group of facial soft biometrics. The presentraits list is not exhaustive and
will naturally increase with technological progress.Weeheote that even though classicadlg-
cessorieslo not belong to biometrics, the new stated de nition cleamcorporates such traits in
the class of soft biometrics. The motivation for includirggessories to soft biometrics lays in the
associated highly descriptiveness and discriminationttabates such as clothes color, e.g. “the




person in the red shirt”. Further signi cant factors for s$#ying soft biometric traits ardistinc-
tivenessand permanenceDistinctivenesss the strength with which a trait is able to distinguish
between individuals. As an example 'beard’ has a low disitreoess, since it can only be applied
to the male part of the population and furthermore possamdgswo sub—categories (present or
not). This example points out a certain correlation betwaistinctivenessand nature of value
Traits with continuous sub-categories are in general mténdtive than traits with discrete and
moreover binary sub-categories. In this context the difiee betweenature of valueand human
labeling of traits is the following: while hair color has pcipally different nuances and is thus of
continuous character, humans tend to discrete labelingadtpt this human approach for devel-
oped soft biometric estimation algorithms, detecting faaraple hair color in categories such as
black, blond, brown, rather than RGB values.
Thepermanencef a trait plays a major role for the application for which aSSB employed. As
an example an application, where identi cation within a dayequired, will accept low perma-
nence traits like age, weight or clothing color (inter vdrarsession observation).
The nal subdivisionsubjective perceptiorefers to the degree of ambiguity associated in identi-
fying or labelling speci ¢ soft biometric traits sub-cataies. We note the relation of subjective
perception to the nature of value, where an increased anuusbcategories leads to a more
dif cult classi cation. In fact subjectivity lays even irhie decision of the nature of value. In other
words, colors for example can be argued to be continuoustaltlee huge variance in nuances
blending into each other, or to be discrete due to the fattcblars can be described by discrete
RGB values.
We note that soft biometrics can be classi ed by additiorspexts such as accuracy and im-
portance, which are deducible from the named classi catiasses, depending on the cause for
speci cation (e.g. suitability for a speci ¢ application)

Characteristics, advantages and limitations

Soft biometrics has carried in some extent the attributeslasfsical biometrics over, as the
general idea of identi cation management basedadro you ares still being pursuit. The traits
provide weak biometrical information about the individaald correspondingly have inherited the
predicates to beniversal] measurableandacceptable furthermore the trait's classi cation algo-
rithm(s) performanceshould be able to meet the application's requirements. Tertaio degree
also the aspectsmiquenesgpermanencandcircumventiorplay a role for soft biometrics, but are
treated to a greater extent exible.
Initially, soft biometric traits have been employed to warrdown the search of a database, in or-
der to decrease the computational time for the classicahdioc trait. An additional application
is the fusion of soft biometrics and classical biometrigt$réo increase overall system perfor-
mance. Soft biometrics impart systems substantial adgastathey can be partly derived from
main detected classical biometric identi er, their acdfios is non intrusive and does not require
enrolment; training can be performed in advance on indalslout of the speci c identi cation
group. Summarizing soft biometric traits typically are:

— Human compliant: Traits conform with natural human dexdizmn labels.

— Computationally ef cient: Sensor and computational riegments are marginal.

— Enrolment free: Training of the system is performed offeland without prior knowledge

of the inspected individuals.
— Deducible from classical biometrics: Traits can be paidyived from images captured for
primary (classical) biometric identi er (e.g. eye colobf eye images).

— Non intrusive: Data acquisition is user friendly or can biyfimperceptible.

— Classi able from a distance: Data acquisition is achideatt long range.

— Classi able pose exible: Data acquisition is feasiblern a number of poses.




Table 1: Table of soft biometric traits

Soft Biometric Face / Nature e Subijective
trait Accessory  of value Permanence  Distinctiveness perception
Skin color Face Continuous Medium Low Medium
Hair color Face Continuous Medium Medium Medium
Eye color Face Continuous High Medium Medium
Beard Face Binary Low/Medium Low Medium
Moustache Face Binary Low/Medium Low Medium
;aecalzlurements Face Continuous High Medium Medium/High
Facial shapes Face Discrete High High High
Facialfeature ... Continuous High High Medium/High
measurements

Facial feature Face Discrete High High High
shapes

Make—up Face Discrete Low Low Medium
Ethnicity Face Discrete High Medium Medium
Marks Face Discrete High Medium/High Low
Gender Face Binary High Low Low
Age Face Continuous Low/Medium Medium Medium
Glasses Accessory Binary Low/Medium Low Low
Hat Accessory Binary Low Medium Low
Scarf Accessory Binary Low Medium Low




— Not requiring the individual's cooperation: Consent andtcbution from the subject are

generally not needed.

— Preserving human privacy: The stored signatures are llyisanilable to everyone and

serve in this sense privacy.

The plethora or utilities has motivated an increasing nunabeesearch activities related to
soft biometrics. We give an overview of scienti ¢ work gaigi from the bene ts related to soft
biometrics.

Related workiVe here outline work, pertinent to soft biometrics. Thisrmeieyv does not claim
to be an exhaustive state of the art, but rather a highlightsen on performed scienti ¢ studies.

Soft biometrics is a relatively novel topic and related weritolds over several research elds.
Recent work can be mainly classi ed in three research elds:

1. The rstand largest eld includes the study and identitma of traits and associated image
processing algorithms for classi cation and detectionuafts

2. The second fast growing eld identi es operational sceos for the aforementioned algo-
rithms and provides experimental results for such scesario

3. The third and smallest eld comprises of the global andbthécal investigation of the
employment of soft biometrics applications and relatedistu

Scienti ¢ works belonging to the rst eld cover algorithmfor traits such as iris pattern, see
in ], or facial marks, see i09].

The second eld can be sub-classi ed in subgroups whictedéhtiate the way soft biometrics
are employed, as stand—alone systems, as pre- Itering amésins of bigger systems, or as fused
parallel systems. Related scenarios include continuoiireatication 0], video surveillance
see |DFBﬁ5d9, [EDL ld], IMK§1¢], person veri cation4] and moreover pen iden-
ti cation [ ]. An interesting recent associated scenfor SBS based person identi cation is
the recognition of faces in triage images of mass disadigat&ins 1].

Finally the third eld involves studies on the placement oftdbiometrics in applications such
as forensic@l] and human metrold@RlO].

Bag of facial soft biometrics for human identi cation

We consider the case where a SBS can distinguish betweeroatssts (categories), which
set is large enough to allow for the classi cation that agbgehuman identi cation. The concept
of person identi cation based on soft biometrics origirsitethe way humans perform face recog-
nition. Speci cally human minds decompose and hierardhjicgtructure complex problems into
fractions and those fractions into further sub-fracticsese ],6]. Consequently face
recognition performed by humans is the division of the facgarts, and subsequent classi cation
of those parts into categories. Those categories can beatgtwf physical, adhered or behavioral
nature and their palette includes colors, shapes or measuts, what we refer to here as soft
biometrics. The key is that each individual can be categdrin terms of such characteristics,
by both humans or by image processing algorithms. Althoegiuires such as hair, eye and skin
color, facial hair and shape, or body height and weight,, gdith color and human metrology
are generally non distinctive, a cumulative combinatiosuth features provides an increasingly
re ned and explicit description of a human. SBSs for persienii cation have several advan-
tages over classical biometric systems, as of non introes& computational and time ef ciency,
human compliance, exibility in pose- and expression-aade and furthermore an enrolment free
acquirement in the absence of consent and cooperation afberved person. Soft biometrics
allow for a reduced complexity determination of an identay the same time though, the named




reduced computational complexity comes with restrictionghe size of an authentication group.
It becomes apparent that a measure of performance must gaddye classical biometric equal
error rate of the employed detectors and include a diffesadtnew parametrization. Our general
interest here is to provide insightful mathematical arialgs reliability of general soft biometric
systems, as well as to concisely describe the asymptotiavimehof pertinent statistical param-
eters that are identi ed to directly affect performance.béit its asymptotic and mathematical
nature, the approach aims to provide simple expressionsdmayield insight into handling real
life surveillance systems.

We introduce the setting of interest, which correspondbeaeneral scenario where, out of a
large population, an authentication group is randomlyaetéd as a random set ofpeople, out
of which one person is picked for identi cation (and is diéat from all the other members of
the authentication group). We note that this general saeigconsistent with both, the case of
person veri cation as well as of identi cation. A generalfsbiometric system employs detection
that relates to soft biometric traits (hair color, skin color, etc), wheeeh traiti, i =1;2;:::;
is subdivided into ; trait instances i.e., each traif can take one of ; values. We henceforth
denote as category to be anytuple of different trait-instances, and we let f g,_; dene
a set of all categories, i.e., the set of allcombinations of soft-biometric trait-instances. The
number of , that the system is endowed with, is given by

= =1 i 1)

In this setting we elaborate on pertinent factors, such asetlof the authentication group,
traits, traits instances, overall categories and thegrietations. We then proceed to introduce and
explain the event ofollision, which is of signi cant character when employing SBSs forquas
identi cation. event where any two or more subjects belamghie same category. Focusing on
a speci ¢ subject, we say that this subject experiencesfarence if he/she belongs in a category
which also includes other subjects from the authenticagimup. In regards to this, we are inter-
ested in gaining insight on two probability measures. That measure is the probabilig(n; )
that the authentication group of sime chosen randomly from a large population of subjects, is
such that there exist two subjects within the group thaidmll\We brie y note the relationship of
p(n; ) to the famousirthday paradox For the other measure of system reliability, we consider
the case where an authentication group of size chosen randomly from a large population of
subjects, and where a randomly chosen subject from withinatthentication group, collides
with another member of the same group. We denote this priiyads g(n), and note that clearly
g(n) < p(n). To clarify, p(n) describes the probability that interference exists, etenidh it
might not cause error, wheregén) describes the probability of an interference induced error
Example:ln a group ofN subjectsp(n) would describe the probability that any two subjects will
belong to the same category. On the other hand(n) re ects the probability that a speci ¢ sub-
ject will interfere with one or more of thd 1 remaining subjects. In the following we provide a
simulation of the probability of identi cation error, in éhsetting of interest, under the assumption
that the errors are due to interference, i.e., under thexgssons that errors only happen if and
only if the chosen subject shares the same category witlhhanpérson from the randomly chosen
authentication group. This corresponds to the setting evttez soft-biometric approach cannot
provide conclusive identi cation. In the simulation, trerdier population consisted of 646 people
from the FERET database, and the simulation was run forrdiffesizes n of the authentication
group. The probability of identi cation error is describadthe following gure.

As a measure of the importance of each trait, Figlire 1 descthie collision probability when
different traits are removed. The presence of moustachéeed seem to have the least in uence
on the detection results, whereas hair and eye color havadghest impact on distinctiveness.
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