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Abstract

Neuronal activity is often considered in cognitive neuroscience byte evoked
response but most the energy used by the brain is devoted to theustaining
of ongoing dynamics in cortical networks. A combination of classi cdion algo-
rithms (K means, Hierarchical tree, SOM) is used on intracellular reordings of
the primary visual cortex of the cat to de ne classes of neuronaldynamics and
to compare it with the activity evoked by a visual stimulus. Those dynamics
can be studied with simpli ed models (FitzHugh Nagumo, hybrid dynamical
systems, Wilson Cowan) for which an analysis is presented. Finally, wh sim-
ulations of networks composed of columns of spiking neurons, we gy the
ongoing dynamics in a model of the primary visual cortex and their eect on
the response evoked by a stimulus. After a learning period during wich visual
stimuli are presented, waves of depolarization propagate throuly the network.
The study of correlations in this network shows that the ongoing dynamics
re ect the functional properties acquired during the learning period.

Keywords: Neuronal networks, dynamical systems, visual cortex.

L'activie neuronale est souvent consiceee en neuroscience ognitive par la
eponseevoqglee mais l'essentiel de lenergie consommnee paile cerveau permet
d'entretenir les dynamiques spontarees des eseaux corticauxL 'utilisation com-
biree d'algorithmes de classi cation (K means, arbre hirarchique, SOM) sur des
enregistrements intracellulaires du cortex visuel primaire du chat mus permet
de ¢k nir des classes de dynamiques neuronales et de les compardiactivie
evoqLee par un stimulus visuel. Ces dynamiques peuvent étre¢udees sur des
sysemes simplies (FitzHugh-Nagumo, sysemes dynamiques hybrides, Wilson-
Cowan) dont nous pesentons l'analyse. Enn, par des simulationsde eseaux
compoes de colonnes de neurones, un mockle du cortex visuetimaire nous
permet detudier les dynamiques spontarees et leur e et sur la eponsea un
stimulus. Aprs une periode d'apprentissage pendant laguelle des ghuli visuels
sont prsenes, des vagues de cepolarisation se propagent darie eseau. Letude
des corelations dans ce eseau montre que les dynamiques sptmees reetent
les proprees fonctionnelles acquises au cours de l'apprentissge.

Mots-cks: Reseaux de neurones, sysemes dynamiques, cortex visuel.
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Introduction

Neuronal activity is often studied through the response of brain retworks to a
stimulus and in early studies of congnitive neuroscience, ongoing aeity was
neglected as a disturbance but recent studies highlitghted the pantial func-
tional role of these internal dynamics. It is thus important to characterize on
going dynamics and to consider their relation to the structure and finction of
brain networks. We will adress these questions by analyzing and maalling the
neuronal dynamics of the cat primary visual cortex.

Advances and diversi cation in measurement techniques produceda huge
amount of heterogeneous data representing brain dynamics. Mads of these
dynamics also generate a huge data ow which can be analyzed with # same
methods as for biological data. A rst problem is to classify the dynamics so
that a simple request in a database returns recordings of the samgass. Thoses
classes are also necessary to facilitate the sharing of data by ctéay a common
language and the International Neuroinformatics Coordination Fecility aims at
de ning such standards in neuroscience. Another issue with on gomactivity is
that recording sessions may be long and it is di cult to identify the inte resting
parts of the sample. An appropriate compression of the signal wdd then make
navigation easier.

The large amount of data available drive modelling and the generativity of
neuroscience for producing new mathematical problems is astonigiy. Those
models range from the detailed reconstruction of brain networks equiring heavy
computational ressources to reduced models which captures esgial features in
an abstract manner and can be analyzed with dynamical systems #ory. The
Blue Brain project at Lausanne is an example of large scale model inctling
many intrinsic properties and the precise morphology of the neuros and similar
projects are currently launched in Europe (Brainscales), USA (SWNAPSE) and
China (CABA). In the Brainscales project, those detailed models ae combined
with mean eld analysis to provide a multiscale description.

The analysis and modelling of neuronal dynamics may have several pp-
cations, it can be used to predict the e ect of drugs or stimulation, it can also
be used to implement biologically inspired systems and to design brain nehine
interfaces.

The organization of the brain may be studied directly by tracing anatomi-
cal patterns of connectivity or indirectly through the correlation and coherence
analysis of the brain activity and there is now huge e orts to relate these two



measures in the neuroscience community through joint measuresnd theoret-
ical modelling. The brain is organized into connected clusters of coital ar-
eas forming complex networks [1], neither regular nor random, whickcan be
characterized using methods from graph theory [2]. Evidence forreall world
properties, constiting in a high clustering index and short average pth length,
has been found and highly connected hubs in these networks can heenti ed.

These structural properties have functional advantage for e cient communi-
cation between areas and explain the complex dynamics observed at large
scale.

The visual system is composed of multiple levels organized hierarchittp
with each unit receiving feedforward from lower levels, feedback emections
from higher levels and lateral connections from units of the same lal. The
primary visual cortex, also referred to as V1 and correspondingd the cat area
17/18, is the rst cortical stage of visual processing. Inputs resulting from
visual stimulation at the retina are transmitted through the latera | geniculate
nucleus (LGN) in a feedforward fashion. Neurons of the visual syem respond
preferentially to a particular area of the visual eld and the size of this area gets
larger and more complex from the retina to the higher levels of the vigal system.
LGN cells have circular receptive eld with high response when a light simulus
hits its center and the surround is dark for On cells, O cell have the opposite
property of being highly activated by dark center and light surround. The simple
cells of the primary visual cortex are selective to a speci ¢ orientaion with the
shape of a 2 dimensional Gabor wavelet with alternating On and O bards.
Such selectivity is characterized by an orientation tuning curve repesenting the
ring rate response of the cell as a function of the orientation of the presented
bar or Gabor patch. It has been shown that orientation tuning is widespread
among mamals and similar functional properties are found across ggies despite
major di erences in the local connectivity [3]. For primates, having a richer
visual environment than rodents and cats, receptive elds are dierse and may
contain more alternating On and O bands than for other animals [3]. Cells
in higher areas like the inferotemporal cortex may be selective to wy specic
features [4] and place cells in the hippocampus is active when the anirhés
located in a small area of the environnement.

In the primary visual cortex of the cat, cells with receptive eld correspond-
ing to close points of the retina fall close together so that a 2 dimerisnal
retinotopic map over the surface of V1 represents the visual spze. This topo-
graphic organization can also be found for other sensory modalitieke in the
auditory where sounds are represented by a tonotopic map with dis coding
for close frequencies located close apart. On the surface of theimary visual
cortex, the preferred orientation of cells vary smoothly turning around special
points of the map referred to as pinwheel singularities. Other featres like the
spatial frequency and the direction of motion of the stimulus are caed in V1.
Lateral connections tend to favor cells with similar orientation properties and
the combination of the pinwheel map with these connection patternconstitute
a functional architecture implementing low level visual processing icluding fea-
ture integration and pattern completion [?].



In the vertical direction, cells are densely connected and have simitare-
ceptive eld properties both in position and orientation, providing ro bustness
of the code through redundancy. These functional columns are hiquitous in
the brain from sensory areas to higher levels like the prefrontal agex involved
in working memory and cognitive control. Thus functional columns may be
considered as mesoscale computational units supporting distrib&d operations
of various sorts. Actually, columns have di erent properties depending on the
animal species and the cortical areas considered [5] making the <<tkbrasa>>
view of a uniform brain a crude assumption. Moreover, there are sixayers in
the depth of the brain forming local circuits. Feedforward connetions from the
LGN, for example, terminate onto layer IV. In abstract models, these specic
connections may be replaced by random connections with uniform mbability
when the layered structure is not relevant. The graph of neuronsn the primary
visual cortex is thus topographic, modular and random.

Brain dynamics can be described at multiple temporal and spatial scks
and it is important to identify its relevant features associated with t he coding
of sensory information, the memory maintenance and the behavial state. At
the single cell level, spikes are thought to convey information eitherby the
ring rate or their temporal relations to spikes of other cells. The ring rate
of a simple cell in V1 is thus at its maximum when the stimulus is oriented
along the preferred orientation. With such a rate coding, the timing of spikes
is not taken into account but some experiments showing ne precisio suggest
evidence for a temporal coding [6] [7].

At the population level, the code is independent or correlation basedde-
pending on whether temporal relationships between spike trains a taken into
account. Synchronous ring resulting from oscillatory modulation of the mem-
brane at the gamma frequency (40Hz) in the primary visual cortexof the cat was
found to implement the binding of parts of an object into a whole in 198 [8].
Neuronal oscillations were then described in other areas and involeein many
cognitive processes like attention or memory [9]. Place cells in the hippmmpus
are transiently binded into a synchronous cell assembly oscillating inte theta
band (8Hz) when a memorized place is recalled. Complex oscillatory aiefty
generated by speci c circuits called central pattern generatords associated with
rythmic behavior like respiration, heartbeat, locomotion or chewing

Synchronized transitions between a quiescent down state wherehé mem-
brane potential is hyperpolarized and a depolarized up state wher¢he neurons
spikes are related to working memory in the prefrontal cortex with persistent
up state representing an object hold in memory [10] [11]. Several chamics are
found in the up state, ring may be plateau-like, oscillatory or ramping [12].
Slow transitions between up and down states in the thalamus and thecortex
are also related to the slow wave observed during slow wave sleep onesthesia
[13]. Low dimensional chaotic dynamics are often considered to re patholog-
ical states like epilepsy but recent ndings suggest that it could provide exible
representation used for memory [14] [15] [16] and for example, in thantenna
lobe of the fruit y, odors have been shown to be coded as transidrtrajectories
in an abstract low dimensional phase space [17].



The functional dynamics described above are often recorded athe popu-
lation level. The ring rate code is thus investigated through the detection
of activated regions of the brain with functional magnetic resonarme imaging
(fMRI) when the subject is involved in a cognitive task. Transient synchrony
is also observed at large scale with electroencephalogram (EEG) aritlis cor-
related with binding of a coherent percept, attention or working memory with
multiple frequency bands interacting [18]. Spatiotemporal patterrs relevant for
perception or memory may also be recorded with optical imaging using/olt-
age sensitive dye or with arrays of electrodes. Visual stimulation ths triggers
traveling waves in the visual cortex [19] and information processingn sensory
areas also generates speci c phase patterns of oscillatory actiyit [20].

For a long time, the brain at rest has been considered as a passive giam in
cognitive science and most of the studies focused on evoked actiyitelated to
a controlled task and cancelled the intrinsic dynamics through averging. The
observation that most of the energy used by the brain is devotedad the on going
activity raised new questions about the structure and the function of default
networks having coherent activity when the subject is resting whit decreases
when the subject is involved in a task [21]. The internal dynamics help e brain
to face computational problems despite the poverty of stimulus, 6r example only
a small part of the information impinging the retina reaches the primary visual
cortex. The intrinsic activity may implement priors re ecting knowled ge about
the statistics of the visual world thus supporting theories about vision as an
inference process [22]. Default networks are also considered topgort internal
thoughts and a representation of the self. Intrisic activity is also interesting to
study as it explains variability in behavior and in evoked responses.

The ongoing activity de ning a global brain state depends on the stae of
consciousness that is on whether the subject is sleeping, anestlzed or awake.
Sleep can be decomposed into cycles of REM and NREMphases. The NREM
sleep is composed of three stages having speci ¢ dynamic featureStage 1 is
characterized by theta waves (around 7Hz) and in stage 2 spindle aves (around
10 Hz) and K complexe$d are found, predominantly in frontal areas. During
stage 3, also called slow-wave sleep, a slow oscillation in the delta bandrpund
1 Hz) propagates along the brain correlated with up and down state at the
cellular level. The REM sleep is a stage in which most of dreaming occursna
the associated dynamics are similar to those observed in the awakéase that
is irregular at the cellular with a nearly Gaussian distribution of the membrane
potential and with no slow oscillation at the global level measured by EEG
[13]. Both REM and NREM dynamics are involved in memory consolidation
whereas dynamics of the awake state are involved in information preessing and
mental representations. The default network has been recentlyidenti ed via
the BOLD signal of fMRI but the corresponding neuronal dynamicsremain an
active subject of research [23]. Anesthesia have di erent e ecton the on going
dynamics depending on the drugs used. Xylazine-ketamine thus ha&va drastic

1Rapid eye movements (REM) and non rapid eye movements (NREM)
2Short negative peak followed by a slower positive peak.



e ect producing synchronized up and down states close to thoseliserved during
slow wave sleep and alfatesin or urethane producing asynchronoasd irregular
activity close to those observed during the awake state [24]. In theprimary

visual cortex, it has been found that the ongoing dynamics itineraks among
states corresponding to the activity evoked by a speci ¢ orientaton so that the

spontaneous dynamics re ect features encoded in the map [25].

In order to model the brain dynamics listed above, several approeghes can be
considered but they all have to include a dynamical system de ning he units
of the network and a functional architecture to connect these uits. With a
bottom-up approach, the aim is to build biologically realistic networks including
as much details as we know from studies in neuroanatomy and neurtgysiology.
This bottom up approach is computationally demanding and requires alot of
data but improvements in these domains will soon make it possible to bild arti-
cial neuronal networks with the size of the human brain (around 10'* neurons).
The phase space and the parameter space of these models is so édntigat it is
di cult to control and to analyze its dynamics. With a top down appro ach, the
simplest phenomenological models are considered to reproduce serieatures of
the observed dynamics like synchronization. A model can be made me realis-
tic by considering a more complex model for the neuron, adding somdynamics
on the connection weights to model synaptic plasticity or using a moe complex
architecture. A model with a bottom up approach can be reduced b a simpler
form by considering equivalent or average equations in a phase spaavith lower
dimension or relying on hypotheses like considering cells to have the s& pa-
rameters in a population. Dynamical systems can be used to descrébnetworks
of very few units or it should be combined with statistical physics to gudy very
large systems through their mean eld description.

Models taking a spatial extension into account for the neurons arecom-
putationally heavy because they require the integration of partial di erential
equations in a 3 dimensional space and a common approximation is to osider
space clamped models, also called point neurons, where the dynamitsonly
considered at the soma without modeling the propagation of the spi& along the
axon. Detailed model of the dynamics at the soma, like the Hodgkin-ixley,
include voltage gated channels and a leak current. The essential deures of
the dynamics in a neuron model like spiking and bursting can be studiedising
bifurcation theory and this analysis leads to reduced models [26]. A camon
method is to build an oscillator based on the computation of the phaseeponse
curve and this reduced system has the same synchronization prepties as the
original system. Another simpli cation is to forget the precise wave form of the
action potential and to replace it with an instantaneous reset and arefractory
period resulting in hybrid dynamical systems which combine a continuais and
a discrete part. In the most drastic approximation, the neuron is atwo states
system, it is spiking or quiescent depending on whether its total inptiis more
or less than a threshold.

In data-driven models, quantitative maps from studies in neuroanagaomy are
used to build the network [27] whereas with a top down approach gegric struc-
tures are considered, like a homogeneous population of randomly onected neu-



rons either sparsely or densely. Repeated patterns of connectty can be used
as building blocks for a modular structure, two connected populatims, one ex-
citatory and one inbhitory, are thus a generic model for the columnand these
columns can be gathered to form hypercolumns or maps [28]. Somedchitec-
tures have been designed speci cally for information processing. df Hop eld

networks, composed of binary neurons connected symetrically,raenergy func-
tion can be de ned [29]. The minima of this energy function are xed pant

attractors for the dynamics which can be used for building associave memory.
As an input brings the system in the basin of attraction of xed point, the
dynamis of the network converges toward this xed point, performing pattern

completion and providing a way to store representions coded in theannectivity

matrix. Syn re chains were designed with multiple layers of neurons onnected
in a feedforward fashion to test the ability of neuronal networks to transmit

synchronous volleys of spikes. If there are enough spikes in the inp volley

and if the jitter in their timing is small enough, such architecture can propagate
synchronous activity in a stable fashion even with a background advity [30]. A

generalization for syn re chains are the polychronous groups whic are repeated
patterns of spikes, including possible delays [31]. The liquid state mache is
also a neuronal architecture designed to perform computationatask, it is com-
posed of three parts: time varying inputs are connected to a reauent neuronal
networks and a readout combining neurons from the recurrent nevork. The

central recurrent network maps the inputs to a very high dimensimal space and
connections from this reservoir of dynamics to the readout can bdearned to
perform a speci c task like discrimination between two possible inputs [32].

Although some transient coherent oscillations may be observed, t ongoing
activity in cortical networks associated to the awake state is highlyirregular and
asynchronous. Sources of randomness in neuronal dynamics mhg attributed
to intrinsic noise in ionic channels or stochasticity in synaptic transmission but
also to a chaotic regime that has been found in sparsely connectedetworks of
binary neurons when inhibitory inputs balance precisely the excitatay inputs
[33]. This self-sustained asynchronous activity was later obtained imetworks
of integrate and re neurons with conductance base synapses [Bér in dense
networks [35]. Up and down states, as found during slow wave sleepave also
been modeled in neuronal networks [36] [37], collective transitions Ihween up
and down resulting from the recurrency of the network and intrinsic properties
of the neuron like a non linear current inducing bistability of the membrane
potential or spike frequency adaptation.

In this thesis, we will propose a method of analysis for the ongoing div-
ity in the primary visual cortex, we then study reduced models for neuronal
dynamics and in the nal part such reduced models are used in a modeof
the primary visual cortex. We show how an asynchronous irregularstate with
a Gaussian distribution of the membrane potential at the single cell l&el can
be switched to state with experience dependent structured coelations with a
bimodal distribution for the membrane potential.

In the rst chapter, we present a collection of tools to analyze ternporal
signals in neuroscience with a special interest for spike trains, menmane po-



tentials and EEG. Spikes are an essential feature of neuronal dymics as they
are related to information processing and spike trains are charaetrized by their
mean frequency and their regularity. The naked membrane poteritl, that is the
membrane potential from which spikes have been removed, is also iastigated
trough the moments of its distribution, the comparaison of its distribution with
the closest Gaussian distribution and measures of the bimodality of & distribu-
tion. Spectral properties of analogous signals are described andkind of time
frequency analysis is introduced via wavelet transform. Based onhte compres-
sion of the time frequency matrix, we propose an original method fo building
the graph of transitions among microstates of the EEG. Signals areompared
using a distance or a correlation coe cient and speci ¢ distances hae been re-
cently designed for spike trains. Information theoretic measuresare promising
for the exploration of multi-channels data as can be recorded usin@n elec-
trode array but we point at the technical di culties in estimating the entropies
and the heavy computations they require. Finally, attractor reconstruction is
a classical method in EEG which can also be applied to the analysis of the
membrane potential. When a set of parameters is measured for easignal, un-
supervised learning methods are applied to nd a structure in the dda set and
we present three possible methods: K-means, hierarchical treend self orga-
nized maps. Each method having advantages and pitfalls, we build a siitarity
measure combining results from several classi cation methods andhich we call
metasimilarity and we also propose a method to compare partitions rsulting
from di erent methods. Classi cation methods and the metasimilarit y measure
are rst tested on a set of random samples generated from a conitation of
Gaussian distribitutions. We then apply these methods to classify 18 electro-
physiological recordings of the ongoing activity in the primary visual cortex of
anesthetized cats obtained in the last 10 years at the UNIC. For eeh record-
ing, 25 parameters were selected and classi cation methods wergplied to the
obtained data set after normalization and dimension reduction. With K-means
clustering, we obtain an optimal partition into 6 clusters which de ne classes of
neuronal dynamics. For most of the cells, both ongoing and evokedctivity are
available so that we can check how visual stimulation change the dymaics and
we conclude that it reduces the accessible dynamics. Nazied Huguand Cyril
Monier contributed to this part by selecting and computing relevant parameters
for each cell.

In the second chapter, the computational units of the brain, the neuron and
the cortical column, are presented with methods to analyze their gnamics. We
give a short introduction to dynamical systems, either deterministic or stochas-
tic, including bifurcation theory and the Fokker-Planck equation. A rst part
is dedicated to neuron models, the Hodgkin-Huxley model is commonlysed to
describe the evolution of the membrane potential but its 4 dimensioal phase
space and its nonlinearities make it quite complicated to study. It canbe re-
duced to a two dimensional system, the FitzHugh-Nagumo model, ohybrid
dynamical systems of various types also called integrate-and- remodels. We
make a complete analysis of local bifurcations of codimensions 1 (folshd Hopf)
and 2 (Bogdanov-Takens and Bautin) in the FitzHugh-Nagumo modé and we
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study the e ect of noisy stimulation at a codimension 3 bifurcation point, the

organizing center of the system. Classical results about the integte-and- re

model under deterministic and stochastic forcing are recalled and aecent vari-
ation including an exponential non-linearity and a slow adaptation variable is
presented. In the last part of the chapter, we focus on models othe cortical

column and small and generic networks of coupled columns. A columnomsists
of two homogeneous populations, one excitatory and one inhibitoryand bifur-

cations of its mean eld equations are well known since the work of Wilen and
Cowan. When the networks is only sparsely connected, an asyncbnous irregu-
lar state can be stable and a column of integrate and re neuron mayalso have
synchronous irregular or synchronous regular dynamics dependinon its input

and its balance between inhibitory maximal conductance and excitabry maxi-

mal conductance. When the network have oscillatory activity, it can be reduced
to a phase oscillator, the synchronization properties of few couplcolumns are
captured in such phase dynamics and in the limit of a large population ofylob-
ally coupled, it is the Kuramoto model. A ring of oscillators with long range
coupling exhibit dynamics in which a part of the network is phase lockedand

the other part is desynchronized. We shortly discuss a model conibing a volt-

age equation and an oscillatory current so that the system has a gascent down
state and an oscillatory up state. We studied this model at the DEI laboratory

(Riken,Tokyo) under the supervision of Yoko Yamaguchi and in collaloration

with Colin Molter. In the publication in appendix, we study the synchro niza-
tion of two coupled units and we nd a small window of perfect phase gnchrony

followed by chaotic behavior and a network of such units. These ung can also
be used to generate working memory dynamics in a network embeddincell
assemblies and we show that the ongoing dynamics itinerates amongpé stored
memories.

The third chapter is devoted to rate models of the formation of V1 and
large scale networks of spiking neurons modeling a small patch of therimary
visual cortex. We present four approaches to the formation of \1 some based
on dynamics in a feature space and some based on the full dynamic$ the
units activity and connection weights. The cognitive approach is bagd on the
modular theory of the brain, the brain is composed of many building blaks
at a low level which can be grouped together to form a functional uit at a
higher level. In the Hubel and Wiesel model for orientation selectiviy in V1 for
example, aligned receptive elds in the LGN are grouped to form a simfe cell
receptive eld. The functional view de nes a goal to the formation of V1 which
is an optimal mapping from the surface of the cortex to the featue space where
inputs are represented and variational formulation gives the dynanics to solve
this problem. The elastic net is an example of such an algorithmic apprach.
With a physical approach, orientation maps and pattern of ocular dominance
results from universal mechanisms of pattern formation and pheomenological
models can give accurate prediction for the wavelength of ocular dainance
bands and the density of pinwheels. Finally, in a biological approach, darning
mechanism, based for example on the Hebb rule, gives some dynamios the
connection and the functional architecture gets formed as visulinputs are pre-
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sented to the network. Large scale networks of spiking neuronsra implemented
using the pyNN interface to the NEST simulator to study the ne scale dynamics
of neurons in models of V1 with a modular structure. Pierre Yger cotributed
to the implementation of these models. In the rst model inspired by the Hubel
and Wiesel model, a regular grid of 11 11 columns, each containing 50 neu-
rons, is used for V1 and a grid of 11 11 is a lumped model for the Retina-LGN
inputs to V1, feed-forward connections from the inputs are hardwired to form
simple cell receptive elds. We study the possible regimes of ongoingcéivity
depending on the maximal conductances in the network and the rgmnse to
an oriented stimulus, either static or rotating, depending on the orgoing state.
In the second model, we take a larger grid (30 30) and long range isotropic
connection kernels for lateral connections. We describe the ongw dynamics
of the network and we nd that for a range of the maximal conductances some
static pattern emerges similar to the classical hallucination patterrs from rate
models. In a region of the parameter space, a focal stimulation ofite network
gives rise to a traveling bump, which is also a classical solution for ratenodels.
The connectivity of the third model is obtained after learning under presentation
of oriented stimuli in a rate model, the connection weights in the macoscopic
rate model are considered as the probability of connections betven neurons of
the corresponding columns in the network of spiking neurons. Wherthe con-
nectivity of the second model is used to initialize learning, an orientaton map
emerges and the dynamics in the network of spiking neurons can beompared
before and after learning. Between the asynchronous irregulartate and the
uniform saturated state, we nd a region of the parameter spacewhere neurons
in a column have collective transitions between up and down states ahwe show
that, in this regime, spike correlations depends both on the distane and the
di erence of preferred orientation between two columns. We thusshow how
the primary visual cortex may be switched from a state where neuons re in
an asynchronous and irregular fashion to a state where experieecdependent
structured correlations are propagated in the network resultingin up and down
states at the column and neuron levels.
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Chapter 1

Phenomenology of cortical
dynamics: All you need to
know about your data

1.1 Introduction

In neuroscience, experimentalists are confronted with a huge ammt of data
of very dierent nature. At the same time, given a good model, it is easy
to reproduce realistic dynamics mimicking those signals. For exampleit is
possible to produce the output of a neuron given its input with great delity.
The simulations obtained by computer scientists also generates a lye amount
of data and the resulting signals are very close to those recorded iniology. The
similarity of these arti cial and natural data suggest that the sam e methods of
analysis should be used. We present in this chapter a collection of td® and
techniques which can be used to analyze and classify signals in biologicnd
computational neurosciences.

The rst part is an introduction to the common representations of the brain
activity that are the spike train, the membrane potential of a neuron and the
EEG. The dynamics at the single cell level is characterized by static poperties
related to the distribution of the membrane potential, spectral properties and
ring properties. We also describe more sophisticated measures likbased on
information theory to manage signals from multiple channels and attactor re-
construction which found applications in the analysis of macroscopisignals. A
method based on time frequency analysis is proposed to compressiprecord-
ings into a sequence of states and a graph representation of theestates and their
transitions is provided. In the second part, three classi cation algorithms are
described: K-means, hierarchical tree and self-organized mapsd we propose
some methods to compare and combine them, thus avoiding the pités inherent
to each algorithm. The analysis techniques described in the rst twoparts are
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applied, in the third part, to single cell recordings of the ongoing actvity in
the primary visual cortex of anesthetized cats. Each data samplés represented
by 25 parameters and a clusterization in this parameter space givean optimal
partition into 6 clusters. Under visual stimulation, the same cells gathers in the
main cluster so that we nd more accessible dynamics in ongoing activit than
in the evoked activity.

Classes of neuronal dynamics are classically de ned by the respomnf a
neuron to a stereotyped electrical stimulation, this study aims at the de nition
of new classes based on the ongoing and visually evoked activity.

1.2 Temporal signals in neuroscience

The nervous system is considered from Galien to Descartes by an Hgaulic
analogy with a nervous uid owing in the pipes of the nervous system The
electrical nature of the ow in the nervous system was rst demonstrated by
Luigi Galvani in Bologna at the end of the 18" century. He reported in 1791
that an electrical stimulation of a nerve ber of a frog could generae a muscle
contraction in its leg and, in 1797, he reported that the same contaction could
be obtained by pulling to nerve bers together suggesting the rst evidence for
animal electricity production. During the 19™ century, galvanometers became
more and more precise to detect electrical signals and German phigdogists,
like Emil du Bois-Reymond, could characterize the nervous signals asonsti-
tuted of short depolarizing events. At the end of the 19", the physico-chemical
mechanisms responsible for this signal were better understood witfor example
the electro-chemical law giving the potential di erence resulting from ion con-
centrations inside and outside the cell, now known as Nernst poterl. With
the giant squid axon, Hodgkin and Huxley found, in the 30's, a nerve ber thick
enough to record its activity with a microelectrode clamped to the nairon and
this led to their seminal work of the 50's were they described precidg the action
potential and proposed the model for its generation. This led to malern elec-
trophysiology were the membrane potential with spiking activity and synaptic
events is now recorded in many animal preparation. Using a thicker lectrode,
the population activity can be recorded and depending on the impedace of
the electrode and the lItering of the signal, the recorded activity can re ect
the mean depolarization in the dendritic tree or the spiking activity of a set of
neurons. By using matrices of such electrodes (MEA), few hundigs of neurons
can be recorded at the same time. The Electroencephalogram (EEGs also a
macroscopic signal measuring the spatially averaged activity over éarge popu-
lation of neurons. The whole brain activity can be mapped through anelectrode
array of 64 or 128 electrodes. The rhythms found in this signal aref special
interest for cognitive neuroscience. It can used for assessingehevel of con-
sciousness of a subject, to detect precursors of an epilepsy dsigind it also have
speci ¢ patterns depending on the task the subject is doing. Magetoencephalo-
gram (MEG) complements EEG by measuring the magnetic eld produced by
currents running tangentially to the surface of the skull. The obtained signal
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is easier to localize and less a ected by the skull but the measuremémust be
done in an environment free of magnetic perturbation thus requirirg a heavy
equipment. More recent technigues to record neuronal activity ely on opti-
cal methods. Through calcium imaging the propagation of an action ptential
can be tracked with ne temporal and spatial resolution. Macrosmpic signals
obtained from intrinsic optical imaging (IOS) or after the application of a uo-
rescent dye sensitive to the voltage (VSD) gives a coarse grainedgture of the
nervous activity in cortical tissues.

In order to analyze the ongoing dynamics in the primary visual corte of
the cat, we will focus on the membrane potential and the intracranal EEG.
Those signals are related since EEG signal is an spatial average ofefsynaptic
inputs and collective variations of the membrane potential are corelated with
the EEG variations.

1.2.1 Analysis of a spike train

Spikes extraction A temporal trace of the membrane potential V,, recorded
at the soma of a cell contains spike$ which are short and rare events easily
detectable by a human as shown in g 1.1 and it would bias any processun of
the membrane potential. The extraction of these spikes is thus neessary for a
simpler description of the membrane potential and a compact repreentation of
the information contained in the spikes.

The spike time is de ned as a maximum in second derivative of the memlane
potential which correspond to an explosion of the curvature in thetrace when
the spike is initiated. This maximum is one order of magnitude higher than
spurious maxima due to uctuations in the membrane potential, so that it is
easy to detect by requiring to be at least 3 times higher than the stadard
deviation.

Near the spike time, the shape of the spike can be approximated by a
quadratic curve Vp (t) = Vin(t;) + t 2 with  the curvature, or an exponential
function, Vi, (t) = Vi (ti) + € . An approximation of the spike time precision
can be obtained from the curvature,see [38] and [39]:

r—
<V >

< >

t =

fortj <t<t s wherets is the time at which V,, reaches the top of the spike and
with averages taken over all spikes.

The value of the membrane potential when the spike is initiated is the piking
threshold and the time it takes for the membrane potential to terminate, that is
to cross this threshold from top to down, is the spike duration. Spile removal is
achieved by interpolating the membrane potential trace between gike initiation
and spike termination. In g 1.1, the interpolation is linear but smooth er traces
could be obtained by using splines. An e cient way to remove all spikeson a

1The mechanism responsible for the generation of those spike s will be detailed in Chapter
2.
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membrane potential trace is to calculate the average wave form ahe spike and
to estimate the spiking threshold and the spike duration on this aveage spike.
The same threshold and the same duration is then used for all spikes the
trace.

Spiking activity. After the spikes have been removed, the spike train and
the spike-stripped subthreshold membrane potential (which will bereferred as
membrane potential for simplicity in the following) can be analysed seprately.
General methods for the analysis of spiking activity can be found in [8], [41]
and more sophisticated methods are described in [42], [43].

The spike train is a vector of spike timings,t = (tj)i<i<n Of size the num-
ber of spikes detected. Actually, knowing whether the absolute vaue of those
times is of special interest is still an open issue but the time betweenwo spike
occurrences gives an indication of the level of activity of the neurn. The in-
terspikes interval, ISI; = t; t; 1, is used to de ne the ring instantaneous

frequency of the neuronf; = ﬁ The ring rate can be obtajned by averaging
t+

the spi‘ga count over a time window of width , r (t) = % ¢ (t)dt where

(t)= ., (t ti)dtis the spike train function 2. When this quantity is
averaged over all the time of the recording or on a time window largethan the
spike duration, it is called the mean ring rate and when averaged ove many
neurons it is called the population ring rate. The ring frequency of a neuron
depends highly on its cellular type and on the brain area where it is locatd.
In visual cortex, cells re with an average ring rate around 1 Hz in barrel
cortex 3, 5 Hz in the primary visual cortex and 15 Hz for spontaneous activiy
in higher level areas like motor cortex or prefrontal cortex with up to 80 Hz
when it is activated. During a spike, the membrane is insensitive to incaing
current so that even when strongly stimulated in arti cial condition s, the ring
frequency of a neuron is limited at 1000 Hz due to this refractory pgod of few
milliseconds.

Spike trains are digital signals that is series of 0 and 1 and an analog pe
resentation of the spike train s ’§ obtained after convolution of a kernelf with
the spike train function s(t) = .., f(t t). The commonly used kernels
are the exponential kernel,f o, (t) = H (t)e “, H being the Heaviside function,
and the alpha kernelf ypna (t) = te . This analog signal provides a realistic
approximation of the input current or conductance correspondirg to this spike
train and, as will be shown in the part "Metrics and measures", it is also used
for building spike train metrics.

Spiking regularity The ISI distribution is also useful to quantify the reg-
ularity of the spiking activity of a neuron by the coe cient of variatio n of

interspikes intervals CV = % 4. For a perfectly regular spiking

2The Dirac function (t tj)is 1 when t = t; and O otherwise.
3The barrel cortex is the somatosensory receiving inputs fro m vibrissae of the rat or mouse

41t is thus the ratio  YafianceoflSls
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neuron, all ISls are the same and the CV is 0. For neurons havin@V =1, the
variance of interspikes intervals is equal to its average. The simpléstochastic
process generating spike train with this property is the Poisson proess, where
ISIs are independents, and it is a commonly used to model irregularrains of
events (see Chapter 2), the ISI distribution of a Poisson procesfllows a Gaus-
sian law. Many cells in the brain res in a Poissonian fashion,CV 1 in the
spontaneous regime, but a closer look at the ISIs distribution show that it is
better described with a gamma law® than a Gaussian law. A sub-Poissonian
ISIs distribution, CV < 1, is characteristic of cells having a more regular ring
than if its spike train was generated by a poisson process. A suprBeissonian
ISIs distribution, CV > 1, is characteristic of cells that tend to re with bursts
of spikes and is found in evoked activity. The slope of the decay in thdSlI
distribution may also be an important parameter in cells with low frequency
spiking because it re ects how rare events occur which is not takeinto account
in the previously described parameters.

1.2.2 Analysis of a membrane potential trace

Spikes are a major feature of neuronal dynamics but the subliminamctivity,
that is uctuations of the membrane potential under threshold, is also very
informative. The membrane potential is a very complex signal re ed¢ing the
activity of the network in which it is embedded. Bistability of the membr ane
potential is found in multiple areas of the nervous system. It someimes result
from intrinsic mechanisms like in the Purkinje cells of the cerebellar cotlex [44]
where it may support information processing or it may collective and ely on
network mechanisms, like in the prefrontal cortex where columns hve persistent
up state during the storage of an object in the working memory. Duing slow
wave sleep those transitions are correlated with EEG variations. Tle presence
of several levels of activity, like an up activated and a down desactiated state,
indicates multistability of the network and transient oscillations are a sign of
coordinated spiking in the population. The analysis should then be led arefully
to detect such events.

Static properties As will be seen in section 4, much of the information about
a cell is hidden in its membrane potential distribution. The simplest way to
characterize it is to calculate its successive moments of order k retige to the
mean vm, k= E((Mmn v, )¥. The Gaussian, used as a reference to compare
probability distribution functions, has a nite second order moment and null
moments of higher order. It is de ned by

> )?

1
f(X): pﬁe T2 2

5The gamma law is a two parameters ( k; ) probability distribution function de ned as

follows:
k1%
f(xk; )= x

K (k)

with x;k; > 0 and the gamma Euler function.
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Spike detection
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Figure 1.1: Spike extraction - (Left-top) Temporal trace of the membrane

potential with spike times. (Left-bottom) Trace of the membrane potential
after the spikes have been removed. (Right) Average spike for # estimation of
the spiking threshold and spike duration.
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The mean of the membrane potential can be very di erent from oneexper-
iment to another because it depends on many parameters of the perimental
preparation. It is usually between -80 and -50 mV®. The standard deviation,

v, = 2, reects the level of activity in the network. It often depends on
the mean v, , there are less uctuations when a cell is close to threshold than
when it is depolarized. The mean and the standard deviation of the digibution
are su cient to t a Gaussian distribution and the coe cient of regr ession mea-
sures the goodness of the t. Theskewness 1 = -§ re ects the symmetry of
deviations from the mean, it is 0 for a Gaussian distribution. A positive skew-
ness indicates the presence of micro up states as in excitation drimecells and a
negative skewness indicates the presence of micro down states iasinhibition
driven cells. The symmetry of the distribution can also be checked byising the
tted Gaussian law as a reference and calculating the following coe dents:

g =3 Vm

and

S, =3 m  medy,,
with m, the mean and standard deviation of the Gaussian function andnedy,,
the median of the empirical distribution. The kurtosis, , = — 3, reects
the sparseness of deviations from the mean, it is 3 for a Gaussian digbution.
Distributions with kurtosis greater than 3 are at and correspond to traces with
small and fast uctuations as would be characteristic of a cell embdded in a
very active asynchronous network. Distributions with a kurtosis less than 3 are
sharp and corresponds to cells with slow and large deviations from # mean as
would be characteristic of a network with low but synchronous activity.

A distribution F is unimodal if there exists a modem such that F is convex
on[1 ;m[and F is concave onin; 1 [. If the distribution is multimodal that
is if it contains more than one peak, the Gaussian distribution is not a god
approximation anymore and the distribution can be tted with a sum o f two or
more Gaussian laws. For bimodal, the upper peak de nes an up statend the
lower peak de nes a down state. The minimum of the distribution between those
two peaks is the threshold separating the up domain from the down dmain.
Several parameters can be used to characterize deviations fromnimodality
of a distribution. The distance between an empirical distribution and a test
distribution is  (F; G) = supkjF(x) G(x)j and the dip of F isd = inf (F;U)
where U is the set of unimodal distributions. A practical way to perform this
calculation is described in [45]. The separability is de ned from the t of a sum
of two Gaussian functions as

mq mo
2( 1+ 2)

6The membrane potential is bounded from below by the potassiu m inversion potential and
from above at 0 mV by the Na inversion potential.

Sep=
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with m;, m, the means of the two Gaussian functions i, > m;) and 1,

> their standard deviations. The contrast between the two distributions, also
called the discretness, is de ned as follows from the two Gaussian fictions
resulting from the t:

X jGi(xi)  Ga(xi)i

Discr =100
Gi(xi) + Ga(xi)
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Figure 1.2: Static properties of Vy - (Top-left) Gaussian t for the Vq
distribution of cell X. (Top-right) Examples of distributions with pos itive (dark)
and negative (light) skewness. (Bottom-left) Examples of distributions with
kurtosis greater than 3 (dark) and less than 3 (light). (Bottom-r ight) Examples
of asymmetric (dark) and symmetric (light) bimodal distributions.

Spectral properties

Autocorrelation Oscillatory behavior of the membrane potential is not
detected by the analysis of distribution and transitions between upand down
states. There are several possibilities regarding the origin of thesoscillations.
The whole network can be oscillating in a robust manner at low frequeny, this
is the case when the brain is in deep sleep, also called slow wave sleepysien it
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is in a pathological state like epilepsy. Transient oscillations at higher fequency
can also be seen, and are often considered as the propagation oherent activity
among the cell assemblies in which the neuron is embedded. A simple way
detect oscillations in a signals is to calculate its autocorrelation,
12T
Rs( )= = s(t)s(t  )dt:
T o

A rsttime constant is given by the extinction rate, ¢, which can be captured by
tting an exponential function, e “e. In the case of cell X, the autocorrelation
decreases in a linear fashion. It is still possible to see a slight oscillatpdeviation

from the linear behavior at 50ms, which is close to the average ISI of the
spike train.
Power spectral density (PSD) To get more information about the fre-

quency content of the membrane potential uctuations, it is inter esting to calcu-
late the power spectral density and this is done by using the Fourietransform
of the signal. The Fourier transform of a signal is

z

&)= ?1 Ts(t)e“t dt

and the PSD is thenS(!) = s )Zg ¢) = 19(2! J®  There exists several e cient

methods to compute it like the Fast Fourier Transform which requires the sam-
pling frequency of the signal to be a power of 2 [46]. It is usually reprgented as
a function of the frequencyf = 2'— and in decibels,Sys (f ) = 10log10S(f ). The

PSD is also more easy to interpret when it is smoothed by taking local @erages
over a short frequency band.

The two features which should be looked at with attention are the loal
peaks, indicating the oscillatory components of the trace coming fom the input
temporal structure or from internal properties of the cell, and the slope of the
decay in log-representation. Many signals have a power spectrumdhaving in
a fi fashion and may give indications about the process underlying uctu-
ations of the signal. For a white noise, the spectrum is at and = 0. For
a Brown noise, as generated by a Wiener process, = 2 and uctuations may
be associated to a di usive process. For pink noise, which can be gerated by
a shot noise process, = 1 and the origin of such uctuations is still highly
debated, a interesting hypothesis is that it could result from a selferganized
critical process [47]. For more general Levy processes, can take fractional
value. It was shown in a recent study that di erent statistics of th e visual input
lead to dierent exponent in the scaling of the high frequencies powe spec-
trum [48]. Anyway, these exponents re ecting power scale invariage should
be considered with great care because their estimation is very seitige on the
frequency window considered. The PSD of cell X present a peak anod 20 Hz
and is otherwise nearly at on the frequency window observed.
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Wavelet analysis Fourier analysis describes in a compact manner the
structure of temporal uctuations in a signal but it would fail to de tect transient
oscillations, a solution can be to calculate the PSD over a time window foeach
point of time. Continuous wavelet analysis is another way to overcore this
problem and to get a spectral representation of the signal at edcttime, a short
introduction to this method is provided in [49] and advanced presenation can
be found in [50]. It is gives spectral information at any point of time by
convolving the signal with a family of wavelets of di erent temporal scales as
shown on g 1.3. The Morlet wavelets family, which will be used in the following,
is generated by the mother wavelet

L= de 3l ot
with
NOERS ie %tz(ei! ot )
where =e t “andc = 1+e ° 2 3° . There is a simple relation
between wavelets and their mother, | (%) = A L 1,(1), with t the time

step of the signal. The wavelet transform is thense(! ) = + | (t® t)s(t9dt®
It is actually simpler to use the Fourrier transform of this equation because the

convolution becomes a simple multiplication. The Fourrier transform d the

o 2 .
mother Morlet waveletis ", (! ) = e “—=°= and the Fourrier transform for
1

the rest of theqfam_ily can be deduced by using the renormalization 10= 1

and 119 = Zt—'( I'). The inverse FFT then gives the wavelets coe cients

in an e cient manner. Transient oscillations appears as bump in the wavelets
power spectra represented as a time frequency matrix, such a bup centered
around 15Hz can be seen in g 1.4 at 500ms, and those bumps could ldetected
automatically by using Gabor Iters, see [51].

1.23 EEG

The electroencephalogram (EEG) is a very common signal in neuroggnce, it
can be recorded with an electrode at the surface of the scalp or witan intra-
cranial electrode. As it is an analog signal, it can be processed with # same
analysis as was presented for the membrane potential from whichpgkes have
been removed. EEG signals are usually recorded on a longer period time
than the membrane potential with a sampling frequency around 1 kH whereas
the membrane potential is sampled at 10 kHz. Brain rhythms correponding to
di erent cognitive states can be tracked on this recording. Hans Rerger recorded
the rst EEG signal on his son in 1929. He discovered the -rhythm, an oscil-
lation around 8 Hz in the occipital region of the brain associated to a est state
with closed eyes. It was further developed to study epilepsy and it isow widely
used to measure the level of consciousness of patients or anessia depth with
what is called the bispectral index. The functional role of these ostations is
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The Morlet wavelets family
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Figure 1.3: The Morlet family - Morlet wavelets at di erent scales.
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Autocorrelation PSD
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Figure 1.4: Spectral properties - (Top-left) Autocorrelation of the V, trace.

(Top-right) PSD of the V, trace. (Middle) Time-frequency representation of the

Vi signal. (Bottom) V;, trace (red) and 20 Hz component of the time-frequency
representation (dashed).
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still an active topic of research but the low frequency rhythms areusually asso-
ciated to sleep or pathological states whereas cognitive processjns associated
to higher frequency rhythms. The frequency bands can be summi&ed as:

Name | Frequency band Functional role
1 3Hz Slow wave sleep
4 THz Memory retrieving
8 11Hz Resting
12 20Hz Attention
> 20Hz Perceptual binding of a Gestalt

Recent research in cognitive neuroscience showed the importancéd phase
synchronisation between electrodes across brain areas [18]. Theadio-temporal
structure of correlations between the 64 or 128 electrodes remed makes it
possible to discriminate between conscious and unconscious pertiep [52], it
also reveals the attentional state of the subject [53].

The presence of brain rhythms makes the time frequency analysisgutic-
ularly useful for EEG signals. For very long time series although, inteesting
events are di cult to capture and it is also di cult to infer temporal r  elation-
ships between these rhythms. In the analysis described below, theignal is
compressed and a graphical representation of the sequencessdebes the tem-
poral organization of brain waves.

Example on an arti cially generated signal. The arti cial EEG Y, shown
in g 1.5, was generated by repeating 3 times the following sequence:

! ! + ! !

with the  oscillations are only active near the local maxima of the oscillation.
This sequence of transitions among rhythms and combinations of fthms can
be represented by a graph as shown on Fig??. The aim of the methogro-
posed below is to extract the sequence of rhythms and combinatianof rhythms
activated and to build the graph corresponding to this sequence bsed on the
time-frequency matrix.

Compression of the time-frequency matrix. The rst step is to split
the time-frequency matrix into blocks by choosing time and frequemy inter-
vals where the cutting are made. Regular sampling of the time at 1Hz mables
a precise tracking of rhythms transitions and allows the detection é low fre-
quency oscillations. For the frequency axis, the cutting can be basd on the
common frequency bands de ned in the literature but it can also be aapted
to the particular signal by taking frequencies of local minima of the pectrum
as frontiers between the frequency bands. In the following, therbquencies are
gathered in 4 bands pp = [1 8Hz]:!low frequencyb, = [9 19Hz]: middle
frequencyps = [20 40Hz]: high frequency andb, = [41 100Hz]: very high
frequency). The locally integrated power spectral density with sampling window

t is obtained from the wavelet power densityW by L (t;f ) = % t“ ! W (t; f )dt
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Figure 1.5: Arti cial EEG Y - (Top) Arti cial EEG Y. (Bottom-left) Power
spectral density of the signal with limit frequencies of the 4 bands. (Bottom-
right) State diagram representing the signal.
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and the_power density relative to the frequency bandi is given by B;(t) =
1 ffi”l W (t;f )df . The compressed time-frequency matrix is then

fi+1 fi
1 Zt+t Zfi+1

l:(fi+1 fi) t fi

This compressed matrix will be used to detect transitions in the dynamics. It
can also be used for an e cient online soni cation of the signal whereeach
frequency band code for a note with intensity given by the matrix vaues at
each time. Transforming neuronal data into sound is useful becase the human
ear is very good at detecting temporal structure in audio signals.

G(t) = W (t; f )ddt:

L(15)

100.0 Hz

A0 fm = = = = ==

200 = = = = - - -

0 == = m ===
0.1

B, |

10 20s 10 20s
Compressed time-frequency matrix C

Figure 1.6: Compression of the EEG - (Top-left) Time-frequency represen-
tation of the signal, shaded areas represent activated bands andashed lines
represent frontiers of the frequency bands. (Top-right) Locd power spectral
density of the signal at t=15s. (Bottom-left) Compressed representation of the
time frequency matrix. (Bottom-right) Dynamics of the integrate d power in the
four bands.

De nition of the symbols. Each column of the compressed matrixC pro-
vides a compact description of the frequency content of the sigriaat a time t.
An empirical criterion (b;t)=(1 )Bi(t) + L (t) determines if a frequency
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band by is activate at time t by
if (b;t)> (@ )E(Bi)+ E(L(t); b is active

The band is temporally active at t when ¢(t) is used as criterion, it has
more power density than at other moments of time, and it is spectrdly active
if 1(t) is used, it has more power density than other frequency band. Fo
intermediate values of , a frequency band is active depending on its power
density relative both to other moments of time and frequency band. In the
EEG Y at t = 15s, considering the criterion 1, b, and by are active. For each
column of the compressed matrix, a 4-bits codeword, dy, dy, dy, is formed based
on the active bands of the signal. The digith is equal to 1 if the frequency band
b is active and O if it is inactive. The codeword for EEG Y att = 15sis 1010
and its decimal representation is 10. The same principle could be adapd to
an arbitrary number of frequency bands and the codeword reprgentation could
be made more e cient by using Hu mann coding .

Building of the graph The signal can be represented as a string where each
letter is the decimal translation of the codeword (between 0 and 15 The fre-
quency of occurrences f of each letter and of each two letters wi are then
collected in a dictionary and a test is applied to each two letter word. F
f(ab) > f (a)f (b), the word ab is more frequent than it would be if a and b
where appearing randomly in an independent way, the transition fron a to b
will then be reported on the graph. By this way, the graph of g 1.5 for EEG
Y is recovered. The result of this analysis for recorded EEG of 60 sutation
is shown on g 1.6. The detection of N-letters words can be made opial by
using Lempel-Ziv-Welch coding®. The graph of g 1.7 is obtained from an EEG
trace of 3 hours by drawing the strongest links. The graph can be sed to build
a statistical model like a markov chain giving the probability of occurrence of
a state given the current. Transitions between brain states can Bo be repre-
sented as trajectories in a low dimensional phase space based oretlspectral
properties of the signal [54]. It would be interesting to check how tkese states
relate to classes of neurodynamics at the single cell level.

1.3 Metrics and measures.

We consider a datasetX = (x1;X2;::;X,). Each data x; is a p-dimensional vec-
tor representing a neuron recording. The neuron recording can & represented
by its membrane potential trace, its spike train or p parameters exracted from
those. We list below distances which can be used to evaluate the clasess of two
data samples and measures representing the structure of the taset. We rst
investigate analog signals and then discuss the case of discrete dasamples.

"Hu man coding is a way to perform loss-less compression of da ta by building a variable
length code based on the probability of occurrences of the so urce symbols.

81.ZW algorithm also performs loss-less compression. It is ba sed on the encoding of sub-
strings appearing in the data sequence to be compressed.
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Figure 1.7: State diagram of an EEG trace. - Each node of the graph is a
state with the number of occurrence N. The thickness of arrows epresent the
probability of transitions among those states.

1.3.1 Analog signals.

Classical distances.  The Minkowski dgtance between two data samples de-
pends on a parameter q,dq(Xi;X;) = ( E:l KXk Xijk kq)%. The Euclidian
distance is the most natural metric 8 gvaluate the similarity between 2 data
samples. It is de ned by da(xi; %j) = k=1 KXik  Xjk k2. The city block dis-
tance is also useddi(xi;xj) =  F_; kxik Xy k. The distance matrix Dx of
the dataset X is then obtained from the dj = dq(Xi; X;).

Correlation-basedpmeasures. The Pearson correlation coe cients are de-

ned by rj = 5 [, b x) O 1) it should not be confused with the
! J

covariance matrix, Covj = % P, (Xk  Xi)(Xk  Xj). Other measures are

de ned in a similar way. The coherence of two signals is de ned by corigering
the cross-correlation of the their power spectral density. The pase synchrony at
speci ¢ frequency is obtained by cross-correlating the phase othese two signals
at this band obtained from the time-frequency analysis.

1.3.2 Spike trains.

Pearson correlation. The simplest way to evaluate the similarity between
two spike trains x; and x; is to consider their Pearson correlation coe cient
de ned similarly as that of a continuous signal. With such a measure, a exact
synchrony of the two spike trains is necessary for being similar. Foexample, if
B is just a copy of A with a shift t greater than the time window used for the
analysis, the correlation coe cient of A and B may be zero although the two
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spike trains are very similar. Other metrics have been developed towid such
pecularities.

Cost based method  The Victor-Purpura distance [55] is based on the num-
ber of operations necessary for transforming; into xj. The three basic op-
erations considered are spike addition or deletion both having a costf 1 and
temporal displacement of t having a cost of L. The time constant is a free
parameter of the de ned distance.

Convolution based method As described above, a Itered version of the
spike trains s; and s; are obtained by applying exponential or Gaussian kernels
with width . A distance is then de ned by [56]:

Zq
1
D?(xi;x)= = [si(t) s (t)dt®
0
For two spike trains diering only by the insertion or deletion of a spike,
D2(xi;Xj) = % and if the only di erence is a shift t of one spike,D?(x;;Xx;) =
1 e . Another similarity measure based on the Itered signalss;, sj is the
following de ned in [57]:

s (s Ot
Si(t)s;
S(xiixj) = &g i q’RT
o Si(hdt ) si(t)dt
. In both methods, a narrow width of the kernel makes the distane or similarity
measure sensitive to spike jitter whereas with a broader width, theadditional
or missing spikes are detected.

Parameter free method Other methods for the estimation of (dis)similarity
are described in [58]. The ISI-distance method has the advantagef de-
ing parameter free. The current interspikes interval is de ned by ISI;(t) =
min (ty jte >t) max(ti jti <t) wherety is the k™ spike of thei®™ neuron.
The ISI-distance betweenx; and x; is then:

147
D(xi;xj) = T , jl(t)jdt
with: (
ISI :
0 = 'S'.”sglgml if IS1i(t) 1S1; (1)
(ISIIi(t) 1) else
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1.3.3 Information theoretic measures.

Information theoretical measures, as an application eld of probaility theory,
heavily relies on the estimation of the probability distribution of the data sam-
ples. As this estimation for nite size samples is often a dicult task, t he
following describes the concepts used in information theory with radom vari-
ables and we provide simple application examples to illustrate it. For a moe
deep treatment of this subject, see [59], and for applications to ske train
analysis see [40].

Shannon entropy

De nition and properties The Shannon ensopy of a random variableX

taking discrete valuesX =[Xp; 5 Xm], isH(X) = {20 P(X = x)log(P(X =
X1)). H gives a measure of the uncertainty that is the number of yesho questions
it takes to guess the value of the random variable when following an djmal

strategy based on the past occurrences of this variable. It is mered in bits
and variables with maximal entropy for a given set X follows a uniform law.
The Shannon entropy has the following properties:

H(X)> 0
H(X;Y)= H(XjY)+ H(Y)

H(X;Y) H(X)+ H(Y) with equality if and only if X and Y are inde-
pendent.

H canRPe extended to continuous variables with the dierential entropy,
h(p) = 1 P(x)log(p(x))dx but classical properties of the entropy do not hold
anymore. A more convenient way for the extension to continuous ariables is to
consider the relative entropy with a reference probabilitdeistribution g, also
called the Kullback-Leibler divergence: Dk (pjjg) = i p(x)Iog(%)dx
where g is commonly taken as a Gaussian function. The di erential etropy
of a data sample of N points generated from a multivariate Gaussian ha of
average and covariance matrix ish(N(; )) = %In((2 e)Vj j) with j j
the determinant of the covariance matrix.

Estimation = The estimation of di erential entropy of a process is not an easy
task because a precise estimation depends on the bin width used festimat-
ing of the probability density. The entropy is thus bounded by logN, , the
entropy of a random variable with uniform probability distribution hav ing the
same support. In g 1.8, the entropy of a Gaussian signal at 10 kHzsampling
frequency is estimated across time with the number of bins being 3 tires the
number of points in the signal used for estimation, the result is closdo the
theoretical value.

For cell X, the entropy of the membrane potential is compared with the
entropy of a Gaussian variable with the same mean and variance in g B.
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Before the rst spike, the entropy increases linearly close to the khavior of a
Gaussian random variable and it drops after the rst spike. The entropy then
grows at a much slower rate because there is a big part of the rangdetween
-35 and -40 mV) which remains nearly unexplored.

— Gaussian
— cell X

Differential entropy h

300 ms

S
E
E
>
1s
=)
o
8
>
S
=
“éo% ms 1s
Figure 1.8: Di erential entropy and entropy rate - (Top) Di erential en-

tropy estimated for a Gaussian process (black) and for the cell XIflue). The
red line indicates the theoretical value for the Gaussian process.Middle) 200ms
of the V,,, trace used for the estimation of the entropy rate. (Bottom) Entropy
rate and its coarse grained version for 200 ms of the cell X.

Entropy rate The entropy estimate is di cult to interpret because it often
far from its theoretical value and because its range drops drastaly after a
event like a spike occurrence. The entropy rate,% is a better way to follows
changes in the signal. As shown on g 1.8, the rising part of a spike is a&®ciated
with an entropy production and the falling part with entropy destru ction.

Fisher information.

We suppose a parameter has to be estimated from observations of the random
variable X . The likelihood function f (X; ) gives the probability distribution
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of X given . The Fisher information is then

@Inf(X ) s

1) = E(——2%—)% I

For su ciently regular likelihood functions, it can also be written:

()= E[g”ﬁ X; )i I

Applications. Based on this de nition of information, the Cramer-Rao bound
gives the limit of precision achieved by an unbiased estimator :

This theoretical bound can then be used for example to nd the inteval of
con dence of the estimated frequency of an noisy oscillation. The Bher infor-
mation is also very important in probability theory because it is used to build a
metric in spaces of probability distribution functions which is the starting point
of information geometry [60].

Mutual information.

De nition and properties The mutual information between two discrete
variables X and Y is de ned from the entropy of the marginals and the joint
probability distributions 1,(X;Y ) = H(X)+ H(Y) H(XY) or equivalently
12(X;Y) = H(X) H(X]jY), it is symmetric 1,(X;Y) = I(Y;X). There is
no restrictions anymore to extend the de nition to continuous variables with
prgzbab,ggty distributions px and py and the integral version is [2(X;Y ) =

1 1 bxy log( PXYY , it is the Kullback-Leibler divergence between the
joint law and the product of the marginal laws of X and Y. The mutual infor-
mation measures the reduction of uncertainty in the estimation of X resulting
from knowledge of Y. It is O for independent variables and it isH (X ) when Y
is a copy of X.

Example on a multivariate Gaussian The 3 examples presented on g 1.9
corresponds to sets of Gaussian variables{(,Y ,Z) with the following covariance
matrices:

0 1
1 75 75
A= @75 1 :75A
75 75 1
0 1
1.22 7 O
B=@:7 122 A
0 0 1
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0 1
100
c=@ 1 A
0 01
In case A, where all variables are depending on each other, the mual

information is the same for any pair of variables. In case B, where dg X
and Y are correlated, the mutual information of (X,Y ) is higher than for other
pairs because observations on one of the variables reduces urtegmty about the
other. When all variables are independent as in case C, the mutual fiormation
should be 0 for any pair but the nite size of the samples introduce a las.

AN/
Il 10

Xy 'Xz 'yz Xy 'xXz 'vyz Xy 'Xz 'vyz

Figure 1.9: Mutual information - Mutual information for random processes
generated by the multivariate Gaussian processes of covarianceatrices A, B
and C.

Neuronal complexity.

The mutual information can be generglized into the multi-information of any
set of k random variablesX: 1(X) = ;.4 H(Xi)) H(X), this quantity
is also called the integration of the set and it is zero when all variables 1
independent. The neuronal complexity de ned in [61] for a set of N wariables
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k
(HIN <lk>y)

CN:

with < :: > denoting an average over all the subsets of k elements. An
approximation for weakly correlated variables is given in [62]:

"FlaR 12+oR 1)

G =7

with R the correlation matrix ° for o -diagonal elements. If the data X is
generated by a coupled Ornstein-Uhlenbeck proces$

dthxt(I C)+ th
, the complexity should be related to the coupling matrix. The previous ap-
proximation gives:
n+1 X n+1 X n+1 X .
48 (CIJZ + Cij Cji )+ —_— 3Cij Cjk Cik + CiI(Cij2 + Cij Cji )Z
i8] i6]6k i8]

CN:

The neuronal complexity is thus related to the decomposition of thestructure
of the network in loops (rst order term), 3-cycles (second orde term),...The
neuronal complexity thus quanti es how much a system is "more than the sum
of its parts”, a geometrical interpretation based on a comparisonwith families
of exponential probability distributions can be found in [63]. The neuronal
complexity is thus a promising measure for analyzing the huge amounof data
arising from neuroscience experiments but it is still di cult to estimat e it in
an e cient fashion. There has been some recent progress for dgtating the
entropy of spike trains [64] and computational tools for this estimdion are a
growing eld in neuroscience [65].

1.3.4 Attractor reconstruction

The signal recorded by intracellular electrodes or EEG devices is gemated by
non linear dynamical systems of high dimension but the e ective dimesion of
the dynamics may be small due to the presence of rhythms. A the@m from
Whitney and Takens further developed in [66] showed that for an atractor of
e ective dimension d, a delay-map inR2%*1 can be built which is qualitatively
similar to the original attractor (that is there exists a di eomorphis m trans-
forming one into the other). In this attractor reconstruction th e delay and the
dimension have to be chosen.

cov (XX j)
var (Xi) var (Xj)
10Which can be considered as the linearization the stochastic Wilson-Cowan equations pre-
sented in Chapter 2

9The correlation matrix is composed of 1's on the diagonal and Rj =
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Optimal delay A rule of the thumb for choosing the delay of an oscillatory
pattern is to take % of the period. When there is no clear period in the signal,
the optimal delay can be chosen as the minimum of the autocorrelatio or the

maximum of the mutual information MI ( ) between the signal and its time

delayed version.

Correlation dimension A way to estimate the e ective dimension of the
attractor of a chaotic dynamical has been proposed in the 80's by @ssberger
and Proccacciain [67]. From the N points of the temporal signak; = (y(i);y(i+

);y(i+2 );::y(i+ k ) reconstructed from the original signal, the correlation
sum is de ned as:

2 X

CO=IW D

(rjxi xj)
i<j

and the correlation dimension isD = lim, OIO?O(;r(r) so that the correlation sum

behaves asC(r) rP for small r. This correlation dimension can be calculated
for several values of the embedding dimensiok and ask increases the optimal
embedding dimension is obtained when D reaches a plateau. A public doan

software called TISEAN [68] can be used for these calculations. FOEEG

signals, it has been suggested that the correlation dimension of EEGignals is
reduced during sleep and pathological states like epilepsy [69].

1.4 Data classi cation

The previous sections showed that many parameters can be used tharacterize
signals corresponding to neuronal activity and that there are segral ways to
evaluate the similarity between two of those signals. In this sectionwe consider
that some parameters have been extracted from the recordingand we wish
to obtain a classi cation based on the comparison of these paramets. When
many parameters are used, it is dicult to perform a e cient classic ation.
This "curse of the dimension" can be attenuated by reducing the dinension of
the parameter space.

1.4.1 Preprocessing of the data set

Normalization of the feature space The dataset X is rst normalized by
xi = (¥—2k)14<p . After this operation, all parameters have the same variance

X

k
1 and the classi cation based on this normalized dataset is not a eced by the
range over which the parameter take values.

Orthogonalization of the feature space (PCA) Principal components of
the dataset are extracted using the covariance matrixC = X'X". C is symmetric
so it can be diagonalizedC = 'P P. is a diagonal matrix where each diagonal
term represent the contribution of the corresponding eigenvedr to the total
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variance. Vectors are then reordered from the one with the bigget eigenvalue
to the one with the smallest eigenvalue. For the classi cation of the ecordings,
the dimension of the parameter space can be reduced by selectingllp the M
rst vectors explaining 90% of the variance.

Raw dataset
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Figure 1.10: Preprocessing of a 2D-Gaussian dataset (300 points) -
(Top) Raw data set. (Bottom) After PCA, the principal axis of the Gaussian
becomes aligned with the horizontal axis.

1.4.2 K-means clustering
Description of the algorithm.

The K-means method is a way to clusterize cells by making an a priori esimp-
tion on the number of clusters K [70]. We will discuss possible ways to $ect
seeds and generate partitions of the parameter space. This metll is simple and
e cient, it is widely used in the scienti c community but it also have pitfa lIs of
all unsupervised learning method. A common example of application ware it
gives a poor result is the Fisher iris data base. We consideX, a set of n data
points (xj)1 i n in RP. The algorithm will partitiopthe points around K centers

(Ck)1 « k minimizing a potential function = | |,  Miny 2¢c, KX; c k2.
This potential function is monotonically decreasing during the K-means algo-
rithm and it will always terminate because the number of possible paritions is
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bounded byK ". Although the clustering procedure will always terminate, nd-
ing the globally optimal partition is a NP hard problem ' and we will discuss
possible solutions to approach this global optimum.

Seed selection.  Seeds are the initial cluster centroids ¢’)1<j<« and the sim-
plest way to select it is to choose randomly K points as seeds with unifon

probability law from the data set. This method is standard but better results

can be obtained with a careful seeding as shown [71]. The selectiontbe seeds
is the following where D (x) is the distance of the point x to the closest centroid
already chosen:

a Take the rst centroid c; randomly with uniform probability law.

b Take next centroid among X with probability %.
x2 X

¢ Repeat a and b until K centroids are selected.

For this Kmeans++ algorithm, the potential function is shown to che ck
E[ 1< 8(InK +2) opt wWhere op7 is the optimal partition of the data set.

Iterative procedure. The process unfolds in two steps repeated until con-
vergence is obtained:

1 Attribute each data point to its closest centroid by computing jc(x;) =
min d(x;; ct). The j corresponding to the minimum distance is the cluster
id which will be attributed to the cell.

. . P
2 Compute the new centroid positionc;** = ( aikzc!® XK1 i ps

3 Steps 1 and 2 are repeated until successive centroids stay close each

other, d(c!;¢j**) <

wheret indicates the iteration of the process.

Selection of a "correct" partition.

The procedure described above is repeated many times and a crifen has to
be de ned so that the partition is considered as robust or not too "bad". As we
already saw the result of the K means depends on initial conditions, & those
are changed at each iteration. The distance to used also a ect theesulting
partition, the Euclidian distance is commonly used for K-means procédure and
the city-block distance is used when medians are taken as centroids

1INP hard problems take a very long time to solve when the size of the system grows.
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Dunn Index  We can consider a partition to be "correct" if its clusters are
su ciently compact and well separated. The rglevant measures fo this are the

radius of the largest cluster,Rmax = maxc, XiZCjkCt)j(i %X and the minimum
distance between clustersl.min = minc,.c; kG ¢ k. These two quantities are
combined in the Dunn index DI = FLezax . Among the partitions generated by
the K-means algorithm, we select the one with the highest DI and we top the
selection when there is no improvement in the DI. We also use the DI taletect

optimal K for the partition.

Frequency of occurrence of the partition After many runs of the K-
means algorithm, the nal partition will often be the same. A way to q uantify
this is to run the algorithm many times and to take the partition which is most
often encountered in this process.

Example on a mixture of Gaussian distributions To illustrate the K-
means algorithm, we generated arti cially two data clouds A and B. In the
data set A, 180 points are randomly chosen following a 2D-Gaussian proba-
bility distribution function (pdf). The data set B is prepared with a mixture
of Gaussian probability distribution functions where for each Gausgn, having
di erent means and covariance matrices, 30 points are chosen ralomly. The
data set A lack of any internal structure and the frequency of the most ofen en-
countered partition in 10000 repetitions of the K means algorithm asa function
of K, the number of centroids considered, decreases montonicallyn an expo-
nential fashion. In the data set B, deviations from this monotonical decrease
shows the non-homogeneity of the data set and the drastic drop ten K goes
from 6 to 7 suggest that the data set can be well represented as eollection of
6 clusters.

1.4.3 Tree Building.

The K-means method to nd clusters in a data set is stochastic, beause the
nal partition depends on the initial conditions. All the more, itis a " at"
method because the obtained clusters are disjoint. A clustering pycedure is
hierarchical if in the resulting partition, each cluster is formed with subclusters,
themselves containing subclusters,...If two points are grouped todker at a given
level, they will stay grouped at higher levels. The natural represetation for a
data set on which hierarchical clustering has been applied is a tree|so called a
dendrogram. There are two possible ways to perform hierarchicatlustering, it
can be started with every data sample in a singleton cluster and this bttom-up
process is an agglomerative tree building, or it can be started with aigint cluster
containing all the data samples splitted successively until each clugr contains
only one data sample and this top-down process is a divisive tree buildm both
methods are described in [70] and we here focus on the agglomeraimethod.
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Figure 1.11: Data set A - 180 points chosen randomly with a Gaussian pdf.
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Figure 1.12: Data set B - 180 points chosen randomly with a mixture of 6
Gaussian pdfs.
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Agglomerative tree building.

Algorithm. In the agglomerative tree building method, every data point is
considered as a cluster or node. The process then merges the telosest clusters
and iterates until only one cluster remains. A pairwise distance hasad be chosen
so that we can evaluate the distance between two cluster. The paivise average-
linkage (pal) distance considers the distance between two clustemss the average
over all the pairwise distances between elements of the two cluster The process
consists of the following steps:

1 Merge the closest cluster<C;; C; = argmin; dpa (Ci; Cj) into the cluster
C.

2 Repeat 1 until C; contains all elements of the data set.

Application to Gaussian mixture. As for the K means clustering, the Tree
Building algorithm is applied to the data set A, 180 points randomly chosen from
a mixture of 6 Gaussian distributions. By cutting the tree at an appropriate
depth, 6 clusters are obtained corresponding to the 6 Gaussian disbutions

from which the data samples are generated.
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Figure 1.13: Data set B - 180 points chosen randomly with a mixture of 6
Gaussian pdfs.
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Distance matrix and cutting of the tree

Base of tree At the base of the tree, cells are ordered in a way related to
the hierarchical structure of the dataset. This order can be cosidered as an
interesting way to enumerate the data samples. In the distance mix of ¢
1.14, the lower triangle stands for the data samples in their initial order and the
upper triangle for the order resulting from the tree building procedure. The 6
clusters are clearly detectable in the upper triangle.

Cutting the tree An arbitrary number of clusters (bounded by the number
of cells) can be obtained by cutting the tree at an appropriate deph or more
elaborate cutting methods [72]. By splitting the tree into the same nunber
of clusters as resulting from the K means procedure, the two paitions can be
compared. A possible way to compare the partitions obtained fromwo di erent
methods or in two di erent experimental conditions is to build a matrix H of
dimensions K 1;K 2) where K is the number of clusters resulting from the rst
method and K, for the second. Elements of the matrix are lled as follows:

Hi; = jdata samples belonging to cluster i by method 1 and j by method P

1.4.4 Kohonen network.

The self-organizing map algorithm is a biologically inspired model used tanap
data samples &i)1<i<n from the input space to nodes §;)1<j« Of the feature
space. A weight vectorw; is associated to each node and a dynamic evolution of
these weights representing learning, leads to a low dimensional regsentation of
the data samples. The simpli ed version presented below is often refred to as
a Kohonen network [73] and more sophisticated models of self-orgaing maps
will be described in the Chapter 3 dealing with models of V1 formation. The
relaxation time of this dynamic evolution is a free parameter of the algrithm.
The feature space is often taken on a 2D regular grid of dimensionsSN; Ny).
In this algorithm, the nal result is dependent on the order of presentation of
data samples.

SOM algorithm For each data sample presentation, a competition is taking
place and the winner dictates the weights evolution dynamics in its neigbor-
hood. The process is as follows after random initialization of the weighvectors:

- . P .
1 Compute the activation for each node in the feature spacgy = (<j<p ) Wk
X;jj and select the closest ong from the data samplex.

2 Update weights according to the following learning rule:

Wi (i +1) = wi(i)+  ()h k()(x  wi(i))
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Figure 1.14: Similarity and comparison of the obtained partitions -
(Left) The lower triangle shows the similarity in a random order and the upper
triangle shows the similarity between data samples ordered accordmto the
tree. (Right) The quantity in (i,j) indicates how many cells fall into clus ter i
with the tree partition and into cluster j with the K means partition.

Figure 1.15: SOM network. - The network is composed of input nodes x and
map nodes .
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3 Renormalize the modi ed weights so thatkwk = 1.

The learning rate (i) is a decreasing function of time depending on the
relaxation time , a common choice is (i) = (1 :1—). The neighborhood
function h (i) is 1 if the node k is closer than the in uence radius R(t) from
the winner and O if it is farther. The in uence radius decreases asR(i) =

Rmax (1 ) with Rpax = N2+ N2

Biological interpretation. The step 1 can be seen as an implementation of
a neural eld and the step 2 is an example of implementation of a plastity
rule. The algorithm is thus inspired by cognitive theories about assostive
memory and adaptive learning. A more detailed model inspired from tle SOM
but including recurrent connections will be studied in Chapter 3. Therelaxation
time is a free parameter of the model and it should be adapted to the stied
dataset.

Application to the data set B The SOM algorithm is applied to the data
set B with = 0:02 and 200 iterations on 5x5 grid. As shown on Fig 1.16,
the data samples are composed of 6 main clusters with more than 15ath
samples and a collection of smaller clusters. An important property 6the SOM
algorithm is that close points in the data cloud will fall onto close points of the
map.

1.4.5 Misclassi cation and metasimilarity

Each method employed to partition a data set should be related to tle ques-
tion asked by the analyst and its advantages and pecularities shoulde well
understood. On the one side, the K-means method is an easy way tetermine
the number of clusters into which the data set will be split. A good K can be
deduced from the evolution of the Dunn index or the frequency of ocurrence
of the partition most often encountered. On the other side, it o ers no indi-
cation about the relation between clusters. The tree building is verynice to
visualize the ne hierarchical structure of the data set and to provide an order
in accordance to this hierarchical structure but, as a determinisic method, its
result is highly a ected by outliers. All the more, it is often dicultto k now at
which depth the tree should be cut to give a good partition. To have a idea of
topological relations between clusters, the SOM algorithm makes aery good
job but it necessitates a tuning on several parameters (relaxatio time, number
of iterations, size of the grid).

By employing multiple techniques, the resulting partitions can be compred.
In g 1.14, the cluster Cs of the partition Pxu (obtained from K-means) is the
same as the one from the partitionPrg (obtained from tree building). The
cluster Cy in Pxy becomes the clusterC, in Prg. A data sample which is in
cluster C3 in Pxy lands at C; in Prg whereas its expected destination i,.
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Cluster sizes distribution

Figure 1.16: SOM classi cation of the data set B - (Top) Resulting 5x5
SOM. (Bottom) Cluster size distribution.
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The matrix H thus provides an easy way to detect inconsistent clasiscation.
These misclassi ed points are near the frontiers between di erentclusters.

The 3 classi cation presented can be used to formalize a new notionfo
similarity. The metasimilarity between the data samples i and j is de ned by

i =1+ KM 4 TB d?OM

i i
with KM = 1 if the data samples i and j are in the same cluster ofP*M |

M = 1if the data samples i and j are in the same cluster o T® and d7°™ is
the Euclidian distance between clusters of the data samples i and j ithe SOM
normalized between 0 and 1.

If § = 3, the data samples i and j lands in the same cluster whatever
the clustering method and in that sense data samples i and j are mesimilar.
If 2 i < 3, the two data samples are simililar but the cluster to which
they belong could be split into subclusters given by the SOM to highlightthe
dierence. If 1 j < 2,iandjbelongs to dierent clusters or there may be
a misclassi cation problem for one of the two samples. Finally, if j < 1, the
two samples are clearly in di erent clusters. The metasimilarity thus formalize
in a comprehensive way the results of di erent data classi cation mehods.

Similarity Matrix
0 :

50 b

100 b

150 b

0 50 100 150

Figure 1.17: Similarity and metasimilarity - The lower triangle shows the
similarity and the upper triangle shows the metasimilarity between data sam-
ples.
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1.5 Application to electrophysiological record-
ings.

We consider the membrane potential recorded with an intracellular ¢éectrode in
area 17/18 of the anesthetized cat (alfatesin). Some parametsrare extracted
from electrophysiological recordings to build the data sets. A rst data set,
Spt150, is composed of 150 data samples from cells recorded durimggoing
activity. Another data set, Vis143, is composed of 143 data sampkefrom cells
recorded during the presentation of a visual stimulus. The obtaind classi ca-
tion is compared to the same pool of cells during ongoing activity, Spt43.

1.5.1 Parameters extracted from electrophysiological rec ord-
ings.

We show in g 1.18 the list of 25 parameters with their average and stadard
deviation over the population.

There are 3 groups of parameters: parameters related to the disbution of
the membrane potential, parameters related to the spectral prperties of the
membrane potential and parameters related to spikes of the cell.n parameters
related to the distribution, we nd moments of the distributions and coe cients
re ecting the asymmetry or the deviation from unimodality. Most of spectral pa-
rameters are fractions of the power spectrum integrated over drequency band.
The instantaneous ring is the reciprocal of the interspikes interval whereas the
average ring rate is the spike count divided by the recording duration.

1.5.2 The on-going activity data set (150 cells).

Optimal partition. A home made K-means method is applied to Spt150
with values of K from 2 to 9 and with the Dunn index as an optimization
criterion. Only the 9 rst components of the PCA are necessaty toexplain 90%
of the variance. The light blue curve of g 1.19 corresponding to K=6 shows
rapid convergence to its optimal Dunn index. Moreover, the optimd value for
K=6 (black curve) is higher than the optimal value for K=5 (red curv e). This
suggest that the partition with K=6 gives a better description than with other
values of K. The optimal partition for K=6 is given on g 1.20 and the su ccessive
splittings of the data cloud can be visualized on g 1.21. Note that theclustering
obtained in g 1.20 is di erent from that of g 1.21 for K=6 because k- means++
method was applied to choose initial conditions in the rst case wheras it is
taken randomly with uniform probability in the second case.

Description of the partition. By a multifactorial decomposition analysis
in Matlab, the main relevant parameters for the description of the partition

are those related to the distribution of V,, and the frequency content in high
frequency. The largest cluster (red) is composed of cells having a @issian
distribution. The smallest cluster (pink) is composed of cells having a gmmetric
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Parameter Average | Standard deviation
Mean of Vi, [mV] -66.94 3.91
Std of Vip [mV] 4.54 1.60
Skewness ol 0.61 0.53
S1 1.38 1.34
S2 0.40 0.40
kurtosis of Vm 0.34 1.42
Dip Test 4.21 12.66
Separability 22.32 15.38
Discretness 82.69 9.81
Regression coe cient

from a t of the distribution with a Gaussian 0.93 0.084
Regression of 2 Gaussians - Regression 1 Gaussian 0.054 0.074
Regression of 3 Gaussians-Regression of 2 Gaussians0.0029 0.010
Slope coe cient of the Vm PSD -2.74 0.43
Power ratio 0.93 0.44
Power in the delta band of the V,,, PSD [dB] 0.41 15.86
Power in the theta band of the V,, PSD [dB] 30.83 7.79
Power in the alpha band of theV,,, PSD [dB] 16.32 5.07
Power in the beta band of theV,,, PSD [dB] 12.22 5.10
Power in the gamma band of theV,, PSD [dB] 14.40 11.09
Ratio between maximal autocorrelation

and mean autocorrelation ofVy, 3.87 2.71
Relaxation time of the autocorrelation [ms] 35.92 24.88
Average ring rate [Hz] 5.78 5.84
Instantaneous ring rate [Hz] 34.40 30.36
Coe cient of variation of interspikes intervals 1.28 0.40
Slope coe cient of the ISI distribution -0.13 0.50

Figure 1.18: Parameters used for the classi cation of the cells.
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Figure 1.19: Dunn index for Spt150 - The evolution of the Dunn index over
iterations is plotted for several values of K. The black curve correponding to
K=6 saturates faster and at a higher value than the red curve coresponding to

K=5.

pca Spt-K=6

pca 3

Figure 1.20: Optimal partition of Spt for K=6 - Each cluster is represented
by a di erent color and centroids are represented by square boxe@ Axes are the

3 rst principal components.
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Figure 1.21: Clustering of Spt150 for di erent values of K - For each K,
the clusters are represented by di erent colors in the PCA space.Red curves
show the Dunn index evolution over 2000 iterations.
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bimodal distribution and up and down transitions are correlated with the EEG
uctuations. The yellow cluster corresponds to very sharp distribution of Vp,
that is cells with slow variations of Vi, have correlations with the EEG. The
deep blue and green clusters correspond to cells having asymmetriimodal
distributions dominated by the up and the down state respectively. The light

blue cluster correspond to cells having a broadv, distribution but only one

peak. The data samples which are the closest from the centroids g&va good
summary of this partition and wo examples of membrane potential fo each
cluster with the associated EEG signal are shown on g 1.22.

1.5.3 The visually evoked data set (143 cells).

For the visually evoked data set of 143 cells, Vis143, 11 components the PCA

are necessary to explain 90% of the variance. As can be seen on @38, the tree
obtained for this data set is not well equilibrated because some fewetls behaves
very di erently from the major part of the cells. This can be checked on the H

matrix of g 1.24, with all cells gathering in the fourth cluster of the t ree based
partition. The metasimilarity matrix describes the partition at a ner scale.

Clusterization of Spt143. The same algorithms were applied to the reduced
data set of 143 cells of on-going for which the visually evoked activityis avail-
able. The K-means with the frequency of occurrence of the partibn as an
optimization criterion gives 4 clusters as optimal partition. Similarly to the
clusterization of Vis143 cutting the tree in 4 clusters gives a poor rsult because
it gathers most of the cells in a giant cluster.

Visually evoked activity compared to the spontaneous activ ity In

the rst three components of the PCA, the standard deviation is 1.25 for the
spontaneous activity whereas it is 1.11 for the visually evoked activig. The

visual stimulation thus pushes the activity toward the central red cluster of
g 1.27 corresponding to a Gaussian distribution of the membrane ptential.

There is no creation of a new domain for the dynamics as shown on g.27.
The comparison matrix for the clustering of the spontaneous actiity data set

and the visually evoked data set shows that there is a corresponaee between
the cluster 3 of the spontaneous activity data set and the clusterl of the visually
evoked data set and another between cluster 2 of Spt and clusted of Vis. Thus
for clusters 2 and 3 of the spontaneous activity, cells don't jump toother clusters
but stay close together when a visual stimulus is presented.

1.6 Conclusion

We presented a method to characterize and classify neuronal dymics. Each
classi cation has its own pitfalls and it is thus necessary to rely on a muti-
algorithm approach to obtain a robust classi cation. We now summairize the
classes obtained in the K means partition. The red cluster in g 1.20 is he
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Figure 1.22: Example of dynamics from the 6 clusters. - For each cluster,
the upper traces are membrane potentials and below is the EEG.

54




dendrogram

0.8 r -

0.6 -

height

0.2 -

0 i N s e

Figure 1.23: Tree obtained for the 143 cells of the visually evoked
activity dataset.

Similarity and metasimilarity H matrix

Figure 1.24: Summary of the clustering algorithms for the 143 cells of

the visually evoked activity data set. - (Left) The lower triangle is the
similarity matrix and the upper triangle is the metasimilarity matrix. (Rig ht)
H matrix obtained from the K-means partition and the cutting of the tree into
four components.
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Figure 1.25: Tree obtained for the 143 cells of the spontaneous activity
dataset.

Similarity and metasimilarity H matrix

Figure 1.26: Summary of the clustering algorithms for the 143 cells

of the spontaneous activity data set. - (Left) The lower triangle is the
similarity matrix and the upper triangle is the metasimilarity matrix. (Rig ht)
H matrix obtained from the K-means partition and the cutting of the tree into
four components.
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Figure 1.27: PCA space. - The on-going activity (red) and the visually evoked
activity (green) data sets are projected on the PCAs of the on-ging activity
data set.

Vis

Spt

Figure 1.28: H matrix for Spt and Vis. - The on-going activity (red) and
the visually evoked activity (green) data sets are projected on tle PCAs of the
on-going activity data set.

57



biggest cluster of Spt150 with 6 clusters and, during visual stimulaion, neuronal
dynamics gathers in this central cloud. Cells in this cluster are charaterized by
a Gaussian distribution of the membrane potential and we suggesthat it de nes

an operating state of the network in which inputs are processed in dast and
e cient manner. Theoretical arguments explaining how such an asychronous
irregular state can be sustained in the network will be given in the nex chapter.

In the pink cluster, cells have a clear bistable behaviour and transitims between
up and down states are correlated with the EEG suggesting a cohent low
frequency oscillation at the network level, similar to that observed diuring slow
wave sleep. In the yellow cluster, cells have only very few large devigins
from the mean membrane potential suggesting discharge in a syne mode. An
estimation of the number of synchronous inputs generating the syaptic events
may be computed from the measurement of the size of these event Other
classes includes cells with micro up or micro down states.

Morphological reconstruction of the neurons could determine whther some
of the classes we obtained characterizes a speci c cellular type oreell can access
any of the classes. It has been shown, in xylazine-ketamine prepations, that
the up state of bistable cell share many similarities with the irregular ectivity
of the awake state [74] so that the same cell could be in the red clust or the
pink cluster depending on the global state of the brain monitored byanesthesia.
It would also be interesting to check if classes of neuronal dynamicare related
to the states obtained after compression of long EEG recordingsra if a cell
jumps from a cluster to another during an EEG state transition.

The classes de ned above can also be used to investigate how thenfttional
properties of a cell depends on the state of the network in which it iembedded.
In a work realized at the UNIC by Nicolas Benech on 118 cells of the dat set we
studied, it was shown that most of bistable cells have a complex recepe eld
and that their latency is longer than when cells have monomodal distibution
characterizing the operating state. It was shown, in a xylazine-keamine prepa-
ration, that the response to visual stimulation is enhanced when tke stimulus is
triggered during the up state [75] so that up states may be a cellulamnalog of
attentional facilitation [76].
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Chapter 2

The computational units of
the brain: neuron and
column models.

2.1 Introduction.

In the 19 century, innovative staining techniques of the nervous system bypi-

onneers of histology, like Gerlach and Golgi, were used to support #hreticular
theory of cerebrospinal organization. The brain tissue was consited to be a
continuous net of nerve bers with holistic properties, being an exeption to

the cell theory. At the end of the 19", Ramon y Cajal improved Golgi staining
techniques and contributed to the opposite theory: the neuron dctrine. The
reticular theory was also in contradiction with the localization of function in

the brain like the Broca area dedicated to speech production and divered
in 1861. Sherrigton also supported the neuron theory and namedysapse the
connexion point between two neurons. The neuron is composed of dendritic

arbor on which presynaptic neurons make contact at dendrites, aell body, also
called soma and an axon. If inputs incoming to the cell body are su cient, a
spike is initiatiated at the axon hillock and propagates through the axon. These
parts are illustrated on g 2.1 for a generic neuron but many cell types with
their speci ¢ morphology are found in the cortex. This all-or-none behaviour
was used to design simpli ed models capturing the computational prperties
of the neuron, that is the way inputs are combined before deciding Wwether to
spike or not. In a simple example of such arti cial neurons, originally proposed
by McCullough and Pitts [77], a weighted sum of the inputs is passed though
a sigmoid transfer function. Having interesting computational properties, like
any boolean function can be implemented by a network of such unitsthis arti-

cial neural network, sometimes with di erent transfer function s and additional
learning dynamics on the weights, were a key element in the developme of
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cybernetics and more speci cally connectionism. Beside such formiapproach,
the understanding of the biophysical mechanisms responsible fopgke genera-
tion and propagation resulted in more realistic models of the neuron gnamics
which will be presented in this chapter.

)
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\ ‘

//%

-
= Vg

Figure 2.1: Diagram of a neuron with myalinated axon. - The den-
drites, the soma, the axon and additional structures are indicatel (Adapted
from http://en.wikipedia.org/wiki/Neuron).

The modular theory of the brain and observations in histology led to the dis-
covery of another set of computational unit at a mesoscale: theartical columns.
Cortical columns have been de ned on anatomical ground with minicdumns of
50m width containing around a hundred of cells being the result of cell mi-
gration during development [78]. The macrocolumn is de ned on a funtional
ground, as described in the introduction, but its anatomical subtrates are esti-
mated of around 300m for the visual cortex of the macaque monkey in [79].
A typical macrocolumn contains few thousands of cells and the detiged model
of a cortical column of the rat somatosensory cortex in the Blue Bain project
contains 10000 neurons of 200 possible types in a space of 300 width and
1:5mm depth [80]. The column gathers cells coding for the same feature of
the inputs so that a feature is re ected in the activity of a populatio n of cells
rather than in a single cell spike train. This redundancy in the vertical direc-
tion of the cortex makes the code robust to perturbations of thedynamics like
synaptic transmission failure or intrinsic uctuations in cortical dyn amics. First

60



evidences for such columnar organization were found in the somasensory cor-
tex of the cat by Mounstcastle [81] in the 50s and few years later in Hbel and
Wiesel work on the primary visual cortex of the cat [82].

Depending on the animal and the area considered, the neuronal ogputa-
tions can be understood at the single cell level or at the column leveit is thus
necessary to analyze models of these computational units with tde from the
theory of dynamical systems which will be presented in this chapter Biolog-
ically realistic models of the neuron have several variables (4 in the clsical
Hodgkin-Huxley model) often following a non-linear evolution equationmaking
their analysis a di cult task. Reduced low dimensional models capture the es-
sential features of the dynamics taking advantage of linearly relagd variables in
the Fitz-Hugh Nagumo model or caricaturating the spike by an instantaneous
reset after the membrane crosses a threshold. Models of a coréiccolumn, with
their huge state space, can also be reduced by considering the neaeld ap-
proximation of the network. In this chapter, after presenting the neuron and
the cortical column, we give a short introduction to dynamical systems and then
apply such methods to models of the computational units of the nevous system.

2.2 Dynamical systems.

A neuron and a column can both exhibit complex dynamics and the theoy of
dynamical systems is of great use to understand it. The main cong#s and
some examples are brie y summarized bellow and a full presentation fothe
bifurcation theory can be found in [83], [84] and [85].

2.2.1 Invariant sets, stability.

A dynamical system consists of the triple T,X, !, where T is a time set, X is
a state space and ! is a family of evolution operators parametrized byt 2 T

and satisfying the following properties: °=id and *S= ' S Dynamical
systems are studied through the orbits they produce and an orbitstarting at xo
is the ordered subset of the state space XQr(Xg) = fx 2 X :x = xq for all

t 2 T such that 'Xg is de nedg. The phase portrait result from the partitioning

of the state space into orbits. Particularly simple orbits consist of xed points
and limit cycles. A point xg 2 X is a xed pointif 'xg= xgforalt2 T. A
cycleL g is a periodic orbit such that each pointxg 2 Lo satises " Toxg = g
with some Ty > 0, forallt 2 T. A cycle with no other cycle in the neighborhood
is called a limit cycle. Fixed point and limit cycle are two examples of invariart
sets that is a subsetS 2 X such that for each pointxg 2 S, 'Xo 2 S for all

t 2 T. Invariant sets more complex than xed points and cycles are relaéd
to chaotic dynamics. An important property of an invariant set is its stability

because it determines if nearby orbits will be attracted to this set ad then if
the invariant will be observable in the dynamics of the system. An invaiant set
Sp is Lyapunov stable if for any su ciently small neighborhood U Sy there
exists a neighborhoodv ~ Sg suchthat 'x 2 U forallx2 V andallt> 0. An
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invariant set Sy is asymptotically stable if there exists a neighborhoodU,  Sp
suchthat '! Spforall x2 Ugast!1 . An invariant set is stable if it is
both Lyapunov stable and asymptotically stable. A dynamical system can be
de ned from a system of di erential equations, x = f (x), where the orbits are
the solutions of the system. The xed point xg is stable if the eigenvalues, i,
of the Jacobian matrix, A = f4(Xp), of the system at the xed point all have
negative real part, Re ; < 0. Asymptotic stability of a xed point X can also
be demonstrated if there exists a Lyapunov function for the sysém near Xo,
that is a continuous function de ned on a neighborhood ofxg, minimum in Xg
and strictly decreasing on its domain of de nition. In some cases, te vector
eld f de ning the dynamical system can be derived from a potential V such
that f = r V. Fixed points of the system will be critical points of the potential
and it will be stable if it is a local minimum.

2.2.2 Bifurcations and normal forms

The phase portrait is a good description of a dynamical system and ittan be
used to compare di erent dynamical systems. Thus, two phase pdraits are
topologically equivalent if there exists a homeomorphism mapping the its of
one onto the orbits of the other, preserving the direction of time. Fixed points
can then be classi ed into stable node, stable focus, unstable nodeinstable
focus or unstable saddle (see g 2.2). If there is no eigenvalue of éhJacobian
on the imaginary axis, the xed point is hyperbolic. When a parameter varia-
tion leads to a topologically nonequivalent phase portrait, a bifurcaion occurs.
The codimension of the bifurcation is the number of independant coditions
determining the bifurcation. Informations about these changes & gathered in
a bifurcation diagram which represent the phase portrait for various parameter
values. An equivalence relation between dynamical systems have toonsider
a mapping from the parameter space of the rst to the parameter space of
the second. If we takex = f(x; ), x2 R", 2RMandy=f(y; ), y2R",
2 R™, those two dynamical systems are topologically equivalent if there xsts
a homeomorphism of the parameter space : R™ ! R™, = p( ) and there
is a parameter dependent homeomorphism of the phase spate: R" ! R",
y = h , mapping orbits of the rst system at parameter values onto orbits
of the second system at parameter values = p( ), preserving the direction of
time. The two systems are locally topologically equivalent near the orign if

there exists amapping &; )! (h (x);p( )) de ned in a small neighbor-
hood of (x; )=(0;0);

p is an homeomorphism de ned in a small neighborhood of =0;
p(0)=0;

h is a parameter dependent homeomorphism de ned in a small neighber
hood U of x =0, with hg(0) = 0, mapping the orbits of the rst system
in U onto the orbits of the second system inh (U ).
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Figure 2.2: Classi cation of xed points for a 2D system. - Depending
on the sign of eigenvalues of the Jacobian, a xed point can be: stdb node,
stable focus, unstable node, unstable focus or unstable saddle ¢apted from

[83]).
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A dynamical system de ned by a polynomial with a bifurcation of the origin
may be topologically equivalent to a simpler polynomial, that is a polynomid of
lower degree or taking the symmetry of the system into account. Tie simplest
of such systems is called a topological normal form for this bifurcdbn if any
generic system! with an equilibrium satisfying the same bifurcation condition
is locally topologically equivalent near the origin to this system for somevalues
of the coe cient of the polynomial.

2.2.3 Examples of bifurcations.
Fold bifurcation.

The most simple bifurcations are related to the loss of hyperbolicity d a xed
point. The fold (also called saddle-node) bifurcation occurs when tk Jacobian
matrix at a xed point has a zero eigenvalue. The simple dynamical syeem
x = x2+ has a nonhyperbolic equilibriumxo = 0 with _ = f,(0;0) = 0 when
=0. When < 0, there are two equilibriax ( )= P ~, with x4 unstable

and x stable, and when crosses zero from negative to positive values, the two
equilibria collide and disappear so that there is no equilibrium anymore wien

> 0 as shown on the bifurcation diagram on g 2.3. It can be shown thatany
system with higher order terms is locally topologically equivalent to theprevious
system. Furthermore, any generic dynamical system having a fol@ifurcation of
the equilibrium xg =0at =0 is locally topologically equivalentto y = y?+
which is then a normal form for the fold bifurcation. The conditions for the
bifurcation to be generic are the non degeneracy condition%fXX (0; 0)0, and the
transversality condition, f (0;0) 6 0.

Hopf bifurcation.

If at some parameter value, eigenvalues are i! , a Hopf bifurcation occurs with
a limit cycle emerging from a xed point. This can only occur in at least 2
dimensional systems and the topological normal forms for such hifcation is:

(é—?‘ = X y+sx(x2+y? )
L = x+y+syx®+y? )
with s = 1 depending on the Lyapunov coe cient of the original system.
If s= 1, the xed point becomes repelling at = 0 and the activity follows

the branch of the stable periodic orbit, this is the supercritical Hopf bifurcation.
If s =1, the Hopf bifurcation is subcritical, unstable periodic orbits collidin g
with the stable node so that it becomes repelling after the bifurcation and the
system jumps to the closest stable set (see g 2.3).

1A generic system satis es:

A nondegeneracy condition: at least one coe cient of higher  order than linear don't
vanish at the bifurcation point.

A transversality condition: derivative of the real part of t  he eigenvalue with respect to
the bifurcation parameter is non zero a the bifurcation poin t.
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Figure 2.3: Bifurcation diagrams - (Up) Fold bifurcation. (Midle) Supercrit-
ical Hopf bifurcation. (Down) Subcritical Hopf bifurcation.
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Homoclinic orbit.

An orbit starting at x is called homoclinic to the equilibrium xq if 'x! xg as
t!r1 , that is the orbit connects the saddlexg to itself. Heteroclinic orbits
connect a saddle to another saddle. These phenomena are fourat & particular
value of the parameter which is an example of global bifurcation.

2.3 Stochastic dynamics.

Often some random behaviour is observed in neuronal data and a e term
is often included in models of neuronal dynamics. Thus to get a goodepre-
sentation of the dynamics, one realization is not enough and it is nesary to
consider averages and distributions over an ensemble of realizatierof the pro-
cesses. An introduction to stochastic dynamics and random dynaical systems
can be found in [86], [87] and [88].

2.3.1 Stochastic processes.

De nition Given a probability space ( ;F;P), with the set of possible
outcomes,F the set of events andP the probabilities attributed to these events,
a stochastic process is a collection of random variableX;t 2 T de ned on
( ;F;P). The process is discrete in time ifT = N and continuous in time if
T = R*. The Markov property characterizes minimal memory processes tere
the present state is su cient to get the full distribution over the f uture, this can
be expressed by the following conditional probability distributions:

P(Xi+1 5 et 5255 Xn s taXa T 25 X ) = P(Xk+t 5t 5 555 Xn s tajXe )

A Markovian process checks the Chapman-Kolmogorov equation fotransition

probabilities:
Z

p(x1;t1jXa;tz) = dxop(X1; tijXz;t2)p(X2; t2jXa; ta)

There are several kinds of stochastic processes:

Continuous processes where the random variables can take all pgible
values in their range of de nition.

Jump processes where the random variables can take values on aita set
and jumps from one of this value to another.

Point processes where event take place at random times.
The de nition for the continuity of a stochastic process is given by the Lindeberg
condition, for every > 0:

lim ¢ o dxp(x;t + tjz;t)=0

ix zj>
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The Brownian motion. A simple example of stochastic process checking the
Markov property is the Brownian motion 2 B(t);t 2 T characterized as follows:

B(0)=0.

Forall t1 <t, <::i<ty,,incrementsB(ty) B(t1);:55B(th) B(th 1)
are random independent variables.

For 0 <s <t , the random variable B(t) B (s) follows a normal distribu-
tion N (0;t )

The transition probabilities of B(t) checks the Lindeberg continuity con-
dition.
The probability distribution of B(t) follows a Gaussian law with mean E[B (t)] =
0 and E[B(t)?] = t, it is then a solution of the following di usion equation:

@pxt) _ 1@p(xt).
@t 2 @%

p(x; 0) = (x)

><2
having as solutionp(x;t) = pzl—Te i
The increments B(t;j) for a process can be generated by the Box-Mueller
algorithm:

Pick up U and V, random numbers independent and from a uniform law
in [0; 1].

Compute X = P 2in(U)cog2V )and Y = P 2iIn(U)sin(2 V).

then X and Y are independent random variables withN (0;1) as probability
density function.

The Poisson process A Poisson process is a counting processN¢): o a
family of random variables indexed byt 2 R and taking values in N with
independent successive increments and the probability distributionof (N¢) only
depending on the length of the time intervals. For such a processNi): o

k
follows a Poisson distribution : P (N Ny = k) = % with the
rate of the process, times between to events follows an exponeat distribution
f(T)= e T . The average inter events interval iSE[T] = % and the variance

iSE[(T E[T])?= L:

Ito processes Ito processes can be written in integral form:
Z, Z,
x(t)= x(0)+  a(x;s)ds+  b(x;s)dB(s)
0 0

2|t was named after the botanist Robert Brown who observed ran  dom trajectories of pollen
particles in water and it is sometimes called a Wiener proces s after the mathematician Norbert
Wiener who provided a formalization for it.

67



or equivalently as a stochastic di erential equation 3:
dx(t) = a(x;t)dt + b(x;t)dB(t):

Where a(x;t) stands for the deterministic part of the dynamics and b(x;t) for
the stochastic part, the noise term is additive if b doesn't depend onx and is
multiplicative otherwise. For a multiplicative noise, the integral formu la can be
interpreted with Ito's de nition
Z, 0

b(x;s)dB(s) = lim ny b(x(ti 1))(B(ti) B(ti 1))
0 i=1
or with Stratanovich's de nition

Z X . _
tb(x;s)dB(s): lim nig b(M;X(t');ti D(B(t) B(ti 1))
0

i=1

but for additive noise the two formulations are equivalent.

2.3.2 Stochastic calculus.

Ito's formula and Forward Kolmogorov equation In stochastic calculus,
the chain rule for derivation must be modi ed because terms of orde (dB(t))?
are of same order aglt. The derivative of y = f (x) is then at rst order in dt:

@K) x:t) + ;@é(;)bz(x;t))dt %b(xt)dB(t)

R
Applying this formula to EJ[f (x)] = f (x;t)p(x;t)dx, with p the probability
distribution of x, gives:
z

S OpL o = [@“ 2060+ 3 8L 20 oo
which can be integrated by parts:
Z
d . . _ @pt)a(xt)  1@pt)Pet).. , .
o f(x;t)p(x;t)dx = [ @x + > @z If (x;t)dx:

As this is checked for any f, it gives the forward Kolmogorov or Fokler-Planck
equation *:
dpixit) - @pit)ait) . 1@p(x)P(xit).
dt @x 2 @% '

It can be generalized to N-dimensional processes so that:

dx(t) = a(x;t)dt + b(x;t)dB(t)

3called the Langevin equation.
41t can also be derived as the Kramers-Moyal expansion of the C hapman-Kolgomogorov
equation truncated at order 2, see [87].
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have the following Fokker-Planck equation:

@p;t) _ X @aAMinpxit , X X @b(xbT (x)p(x;t) .
@t @x @x@x '

11 N 11 N1 j N

By introducing probability currents, for1 i N :

@j (x;)p(x;t) .

Ji = a(x;t)p(x;t) @x

1) N

the Fokker-Planck equation can be written as a conservation law fothe prob-
ability density:

@i, X @xt) _,
@t @x
Boundary conditions must be added to be able to solve this equationjt is

commonly taken aslim ;1  p(x;t) = 0 but absorbing or re ecting barriers
may be speci ed.

1) N

2.4 Numerical integration and analysis.

We now present some numerical integration schemes for ordinaryierential
equations with a special focus on explicit methods. In an explicit metlod X +1
only depends on previous valuesy whereas in implicit methods it alsodepends
on itself.

2.4.1 Integration of deterministic systems.

Euler scheme. For a one dimensional dynamical system de ned by the fol-
lowing di erential equation:
dx(t)
dt

= f({tx(1))

a trajectory starting at x(tg) = Xo can be integrated with a time step h by the
Euler method, for n > 0:

Xn+1 = Xn + hf (tn;Xn)

which is just the approximation obtained by considering the rst ter ms of the
Taylor expansion. The higher order approximation is

Xns1 = Xn + hf (xn) + hz(%ft(tn;xm %&tn;xn)f (tn: Xn))

so that the error between the numerical solution and the exact shution scales
ash? thus being of order 1.
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Heun scheme The Heun method is another one step integration scheme:
h
Xn+1 = Xp + E(f (tn;Xn)+ f(tn;un + hf (tnh;xn)))
but it is of order 2 so that the error scales ash®.

Runge Kutta scheme When f is non-linear, errors from the Euler method
can be reduced by employing more sophisticated methods like the Rye Kutta
methods which includes multiple steps. In the fourth order method,two inter-
mediate points are introduced, so that:

h X!
Xn+l=Xn+6 bk;
i=1
with by =1, b =2, g =2, by =1 and
ki = f(th;yn)

h h
ko= f(ta + 5 Xn * Ekl)

h h
ks = f(tn + E;Xn + Ekz)

h
k4 = f (tn+1 ;Xn + Ekg)

A s stage Runge Kutta method cannot be of order higher thans and this
method can be extrapolated to an arbitrary number f stages incrasing the
Bc_curacy. Inthe Gill's method, coe cients are a bit modied: by =, =2

2z =2+ 2b,=1and

h h
k, = f(tn + E;Xn + Ekl)
h h p_ "3
k3 = f(tn + E;Xn + E( 1+ 2)|(1+ h(l 7)'(2)

P~ P~
kg = f(th + h;Xp h72k1+(1+ 72)k3):

These methods can also be improved to implement time step adaptivity

2.4.2 Integration of stochastic systems

Numerical integration scheme can also be used to integrate stocktic dynamics.
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Euler-Maruyama method. For a stochastic di erential equations, like with
additive noisedx(t) = f (t;x)h+ (x)dB(t), the Euler method can Fggmodi ed by
introducing the stochastic term: Xn+1 = yn + hf (th;Xn)+  (Xn) h(B(th+1)
B(t,) where ( Bt) = B(th+1) B(tn) are independent and identically dis-
tributed random variables of mean 0 and variance 1.

Milstein method Milstein's scheme is as follows:

Xn+1 = Yo+ hf(th;Xn)+ (Xn)pﬁ(B(tnﬂ) B(tn))
+h (xn) (%n)(B(tns1) B(ta)? 1)

2.4.3 Analysis of dynamical systems.

Spectral analysis.  The Fourrier spectrum of the raw stochastic signal is
not the best tool for the analysis of a stochastic signal because iwill de-
pend on the specic realization of the noise term. The autocorrelaton is
a better solution for describing pr;glperties of the signal. For a signky(t),
the Fourrier transfornhiﬁy(! )= 1 Yy(e " dt and the autocorrelation is
<y(t+ )y @) >= 1 P(xguit+ ;xait)dxidxa. The Wiener-Kintchine
theorem then relates the spectral derﬁiltyS(! )=<9(")y (0)> to the auto-
correlaton<y( )y (0)>byS(t)= ;| e" <y()y (0)>d .

Lyapunov exponent. Dynamical systems are said to be chaotic if their tra-
jectories diverge exponentially. For trajectories separated byx ¢ at initial time,
the dierence grows as x (t) = x¢e! and the growth coe cient is a good
indicator of chaotic systems when it is positive, it is called the Lyapunw expo-
nent of the system. For multi-dimensional sytems, there are seval directions
along which coe cients can be contracting ( < 0) or expanding ( > 0). If
there exist an invariant set, like a limit cycle, =0 along this set. For smooth
dynamical systems, chaotic trajectories shows up only when theithension is at
least three. The Lyapunov spectrum (the set of Lyapunov expoents) is usually
calculated by following the dynamics of along the Jacobian and then daulating
the expansion and contraction rates. For a system

x = f(x);
the equivalent linear system is
u= Df (x)u:

To avoid accumulation of the dynamics of perturbations along the direction
corresponding to the maximal Lyapunov exponent, a Gram-Schmit orthonor-
malization procedure is usually adopted [89] transforming a set of w&ors
(ug;:::;up) into a orthonormal basis of R" (v1;::;vn):

W1
le k

W1 = Ug;V1 =
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W»
Wz = Uz (Uz:vi)vi,

szk
X 1 W
n
Wh = U Upn Vg ) Vi,
n n k:1( n k) k kWnk

This orthonormalization procedure is done everyT, K times, while equations
for x and u are integrated. The i" Lyapunov exponent is computed as ; =<
Inkwik > with <:> is the average over iterations.

2.5 Neuron

Neurons have a huge diversity in their structure and their dynamic groperties.
The Neurolex initiative ° tries to build a common language for their classi ca-
tion following the Petilla classi cation for GABAergic neurons [90]. We r st
describe the diversity of cells encountered in the brain and then wehow how
simple models can account for essential features the dynamics di¢ membrane
potential in spite of the cellular diversity.

2.5.1 Diversity of the cells.

Excitatory and inhibitory cells. The major classi cation of cells is on their
in uence to other neurons which is mediated for chemical synapseby neuro-
transmitters owing at the synaptic cleft which is the 20 nm space between
axons terminals and dendritic buttons (see g 2.1). Neuronal interactions de-
pends on the receptor type, AMPA ® and NMDA 7 synapses are excitatory
whereas GABAa and GABAD 8 synapses are usually considered as inhibitory
although these synapses have excitatory e ect in early developmwal stages.
Neurons can also interact through electrical synapses, also calledvhere the
signal can be transmitted faster than for chemical and often bidiectionally via
physical contact between the two neurons. The e ect of such sgapses can be
depolarizing or hyperpolarizing depending on the presynaptic activiy.

Structure.  Another way to classify neurons is on their structure. The most
common and biggest neuron in the cortex is the excitatory pyramidacell which
has a triangular soma, a dense dendritic tree with apical and basal @rts and a
long myelinated axon. Another class of excitatory cells are spiny stéate cells
having a symmetric star shape with localized axon. The majority of inhibitory
interneurons in layer IV are basket cells. Another class of GABAerdg inhibitory
interneurons, the chandelier cell, is named after the shape of its an terminals
and the Purkinje cell, also GABAergic but located in the cerebellar cotex, is
famous for its beautiful planar dendritic arbor.

5 Available at http://www.neurolex.org.

6 AMPA stands for  -amino-3-hydroxy-5-methylisoazol-4-propionate
"NMDA stands for N-methyl-D-aspartic acid

8 GABA stands for gamma-aminobutyric acid.
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Channels. The membrane of a neuron includes many voltage gated channels
letting ions ow inside or outside the cell depending on the membrane wltage.
These channels can also be used to classify neurons. Potassium asaidium
channels are present for all neuron types and explain spike gendian in the
Hodgkin-Huxley model. Other channels are involved in more speci ¢ pocesses
like the T-type voltage-gated calcium channel, responsible for the dnic bursting
of thalamic cells.

Firing pattern. Neurons can also be classi ed based on their ring properties
in response to a step of input current [91]. Inhibitory interneurons are often
fast spiking cells with constant and short interspike interval (ISI). Excitatory
cells have dierent patterns like non-adapting regular spiking with constant
ISI but longer than for fast spiking cells. For adapting regular spiking cells,
ISI decreases during the response. Intrinsic bursting cells re wih few spikes
very close together at the response onset. The Petilla classi catio includes
more complex ring patterns like stuttering, irregular or accelerating. For some
neurons, the study of the after potential hyperpolarization canalso be helpful
for classi cation.

2.5.2 Dynamic processes.

Models of the dynamics of the membrane potential should include a ske gen-
eration mechanism and also describe the synaptic interaction.

Spike generation. The generation of spikes is attributed to two ionic con-
centrations: K* and Na*. At rest, potassium ions are in excess outside the
cell and sodium ions are in excess inside the cell. When the concentiahs of
these ions inside and outside the cell are balanced to reach equilibriunthe
corresponding di erence of potential between the inside and the otside is given
by the Nernst potential de ned as

RT Cout
E = —In ;
Nernst ZF Cin

with
R =6:0210%mol !

the Avogadro constant ,
F =9:6510 “C:mol *

the Faraday constant, T the temperature, z the number of charges carried by
the ion and ¢, ,cout the ion concentrations inside and outside the cell. When the
membrane potential deviates from this value, a ionic current is geneated pro-
portional to the deviation (V  Enernst ) (With Ex =  77mV, Ena = 50mV).
Moreover, the coe cient of proportionality of this current is cons tant for a pas-
sive channel like the leak currentl, = g . (V E.) (with E. = 65mV) but
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it depends on the voltage for active channels like the Na and K chanrs. Each
ion ux is conditioned on the opening or closing of active gates. Each gte can
be open or closed with transition probability from open to close (V) and from
closed to open (V). The fraction of open channels follows the dynamics:

M- v m Wm
dt
or equivalently:
dm _(m;y m)
dt (V)
with m; = % and (V) = —yy—wy: In the Hodgkin-Huxley model,

3 channel variables are considered: one for the fraction of activen of the
potassium gaten, one for the fraction of activation of the sodium gatem and
one for the fraction of inactivation of the sodium gate 1 h. The current
corresponding to these ionic transports are

Ik = g n?(V Ek)

and
INa= gNahms(V ENa)

with gk and gna the maximal conductances. When the cell is slightly depolar-
ized Na channels open and ow inside the cell, whileV is increasing until the
driving current proportional to (V'  Ena) becomes small andNa gets inacti-
vated. Then K currents activate and the potassium driving force ¢ Eg) is
strong so that the membrane potential decreases and return tdts resting value.

Synapse dynamics.  An action potential propagates along the axon and when
it reaches the synaptic terminals, neurotransmitters are releasgin the synaptic

cleft and postsynaptic events are triggered in the postsynaptic euron. The

corresponding current is

I'syn = Gsyn (D(V (L)  Esyn)

with the synaptic conductancesgsyn (t) = gsyn S(t) generated from the incoming
spikes by the following dynamics:

ds X
syna = St gyn (t t)

wherek runs over all presynaptic spikes and the Dirac impulse de ned as(x) =

0 for x = 0 and O elsewhere. The solution fors is a sum of exponentials(t) =
P (t ty) . .
€ Sn. When the dynamics for s is of second order:

¢s, 2ds 11X
dt? syn dt szyn szyn K

(t ),
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