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Abstract

Neuronal activity is often considered in cognitive neuroscience by the evoked
response but most the energy used by the brain is devoted to the sustaining
of ongoing dynamics in cortical networks. A combination of classification algo-
rithms (K means, Hierarchical tree, SOM) is used on intracellular recordings of
the primary visual cortex of the cat to define classes of neuronal dynamics and
to compare it with the activity evoked by a visual stimulus. Those dynamics
can be studied with simplified models (FitzHugh Nagumo, hybrid dynamical
systems, Wilson Cowan) for which an analysis is presented. Finally, with sim-
ulations of networks composed of columns of spiking neurons, we study the
ongoing dynamics in a model of the primary visual cortex and their effect on
the response evoked by a stimulus. After a learning period during which visual
stimuli are presented, waves of depolarization propagate through the network.
The study of correlations in this network shows that the ongoing dynamics
reflect the functional properties acquired during the learning period.

Keywords: Neuronal networks, dynamical systems, visual cortex.

L’activité neuronale est souvent considérée en neuroscience cognitive par la
réponse évoquée mais l’essentiel de l’énergie consommée par le cerveau permet
d’entretenir les dynamiques spontanées des réseaux corticaux. L’utilisation com-
binée d’algorithmes de classification (K means, arbre hirarchique, SOM) sur des
enregistrements intracellulaires du cortex visuel primaire du chat nous permet
de définir des classes de dynamiques neuronales et de les comparer l’activité
évoquée par un stimulus visuel. Ces dynamiques peuvent être étudiées sur des
systèmes simplifiés (FitzHugh-Nagumo, systèmes dynamiques hybrides, Wilson-
Cowan) dont nous présentons l’analyse. Enfin, par des simulations de réseaux
composés de colonnes de neurones, un modèle du cortex visuel primaire nous
permet d’étudier les dynamiques spontanées et leur effet sur la réponse à un
stimulus. Aprs une période d’apprentissage pendant laquelle des stimuli visuels
sont prsentés, des vagues de dépolarisation se propagent dans le réseau. L’étude
des corrélations dans ce réseau montre que les dynamiques spontanées reflètent
les propriétés fonctionnelles acquises au cours de l’apprentissage.

Mots-clés: Réseaux de neurones, systèmes dynamiques, cortex visuel.

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



Contents

1 Phenomenology of cortical dynamics: All you need to know
about your data 14
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Temporal signals in neuroscience . . . . . . . . . . . . . . . . . . 15

1.2.1 Analysis of a spike train . . . . . . . . . . . . . . . . . . . 16
1.2.2 Analysis of a membrane potential trace . . . . . . . . . . 18
1.2.3 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Metrics and measures. . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.1 Analog signals. . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Spike trains. . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.3 Information theoretic measures. . . . . . . . . . . . . . . . 32
1.3.4 Attractor reconstruction . . . . . . . . . . . . . . . . . . . 36

1.4 Data classification . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.1 Preprocessing of the data set . . . . . . . . . . . . . . . . 37
1.4.2 K-means clustering . . . . . . . . . . . . . . . . . . . . . . 38
1.4.3 Tree Building. . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.4 Kohonen network. . . . . . . . . . . . . . . . . . . . . . . 44
1.4.5 Misclassification and metasimilarity . . . . . . . . . . . . 46

1.5 Application to electrophysiological recordings. . . . . . . . . . . . 49
1.5.1 Parameters extracted from electrophysiological recordings. 49
1.5.2 The on-going activity data set (150 cells). . . . . . . . . . 49
1.5.3 The visually evoked data set (143 cells). . . . . . . . . . . 53

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2 The computational units of the brain: neuron and column mod-
els. 59
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2 Dynamical systems. . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.1 Invariant sets, stability. . . . . . . . . . . . . . . . . . . . 61
2.2.2 Bifurcations and normal forms . . . . . . . . . . . . . . . 62
2.2.3 Examples of bifurcations. . . . . . . . . . . . . . . . . . . 64

2.3 Stochastic dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.1 Stochastic processes. . . . . . . . . . . . . . . . . . . . . . 66
2.3.2 Stochastic calculus. . . . . . . . . . . . . . . . . . . . . . . 68

1

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



2.4 Numerical integration and analysis. . . . . . . . . . . . . . . . . . 69
2.4.1 Integration of deterministic systems. . . . . . . . . . . . . 69
2.4.2 Integration of stochastic systems . . . . . . . . . . . . . . 70
2.4.3 Analysis of dynamical systems. . . . . . . . . . . . . . . . 71

2.5 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5.1 Diversity of the cells. . . . . . . . . . . . . . . . . . . . . . 72
2.5.2 Dynamic processes. . . . . . . . . . . . . . . . . . . . . . . 73

2.6 FitzHugh Nagumo model of cell excitability . . . . . . . . . . . . 75
2.6.1 Derivation of the model . . . . . . . . . . . . . . . . . . . 75
2.6.2 Fixed points, saddle-node bifurcation, cusp . . . . . . . . 78
2.6.3 Stability of the fixed point when ∆ > 0, Hopf and gener-

alized Hopf . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.6.4 Dynamics at the organizing center with noisy input. . . . 83

2.7 Hybrid dynamical systems. . . . . . . . . . . . . . . . . . . . . . 85
2.7.1 Integrate and fire neuron models. . . . . . . . . . . . . . . 85
2.7.2 Diffusion approximation of Poissonian input. . . . . . . . 86
2.7.3 Fokker-Planck equation. . . . . . . . . . . . . . . . . . . . 87
2.7.4 Non-linear integrate and fire model. . . . . . . . . . . . . 88
2.7.5 Parameters for excitatory and inhibitory neurons. . . . . 88

2.8 Columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.8.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.8.2 Internal structure. . . . . . . . . . . . . . . . . . . . . . . 90

2.9 Mean field equations. . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.10 A column of spiking neurons. . . . . . . . . . . . . . . . . . . . . 96
2.11 Coupled columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.11.1 Reduction to oscillators. . . . . . . . . . . . . . . . . . . . 100
2.11.2 Few coupled columns. . . . . . . . . . . . . . . . . . . . . 102
2.11.3 Large population of coupled oscillators. . . . . . . . . . . 104

2.12 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 Models of the formation of V1 and of its dynamics. 109
3.1 Models of the formation of V1 . . . . . . . . . . . . . . . . . . . . 109

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2 Ice cubes model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2.1 Description of the model. . . . . . . . . . . . . . . . . . . 110
3.2.2 Parameters of the model. . . . . . . . . . . . . . . . . . . 111
3.2.3 Analysis of the dynamics. . . . . . . . . . . . . . . . . . . 113

3.3 Phenomenological models . . . . . . . . . . . . . . . . . . . . . . 117
3.3.1 The Elastic net theory . . . . . . . . . . . . . . . . . . . . 117
3.3.2 Pattern formation dynamics. . . . . . . . . . . . . . . . . 122

3.4 Learning of orientation maps. . . . . . . . . . . . . . . . . . . . . 128
3.4.1 The Van der Malsburg model for the formation of colum-

nar organisation. . . . . . . . . . . . . . . . . . . . . . . . 128
3.4.2 Learning rules. . . . . . . . . . . . . . . . . . . . . . . . . 129
3.4.3 Kohonen network. . . . . . . . . . . . . . . . . . . . . . . 133
3.4.4 Plastic lateral connections-LISSOM model . . . . . . . . . 135

2

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



3.5 Dynamics of the spiking neurons network before and after LIS-
SOM learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.5.1 LISSOM implementation and spiking neurons network. . 137
3.5.2 Rate description of the V 1 model before learning. . . . . 143
3.5.3 Dynamics in the network of spiking neurons before learning150
3.5.4 Dynamics in the network of spiking neurons after learning. 151
3.5.5 On-going activity in a model of V1. . . . . . . . . . . . . . 160

3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



Introduction

Neuronal activity is often studied through the response of brain networks to a
stimulus and in early studies of congnitive neuroscience, ongoing activity was
neglected as a disturbance but recent studies highlitghted the potential func-
tional role of these internal dynamics. It is thus important to characterize on
going dynamics and to consider their relation to the structure and function of
brain networks. We will adress these questions by analyzing and modelling the
neuronal dynamics of the cat primary visual cortex.

Advances and diversification in measurement techniques produced a huge
amount of heterogeneous data representing brain dynamics. Models of these
dynamics also generate a huge data flow which can be analyzed with the same
methods as for biological data. A first problem is to classify the dynamics so
that a simple request in a database returns recordings of the same class. Thoses
classes are also necessary to facilitate the sharing of data by creating a common
language and the International Neuroinformatics Coordination Facility aims at
defining such standards in neuroscience. Another issue with on going activity is
that recording sessions may be long and it is difficult to identify the interesting
parts of the sample. An appropriate compression of the signal would then make
navigation easier.

The large amount of data available drive modelling and the generativity of
neuroscience for producing new mathematical problems is astonishing. Those
models range from the detailed reconstruction of brain networks requiring heavy
computational ressources to reduced models which captures essential features in
an abstract manner and can be analyzed with dynamical systems theory. The
Blue Brain project at Lausanne is an example of large scale model including
many intrinsic properties and the precise morphology of the neurons and similar
projects are currently launched in Europe (Brainscales), USA (SyNAPSE) and
China (CABA). In the Brainscales project, those detailed models are combined
with mean field analysis to provide a multiscale description.

The analysis and modelling of neuronal dynamics may have several appli-
cations, it can be used to predict the effect of drugs or stimulation, it can also
be used to implement biologically inspired systems and to design brain machine
interfaces.

The organization of the brain may be studied directly by tracing anatomi-
cal patterns of connectivity or indirectly through the correlation and coherence
analysis of the brain activity and there is now huge efforts to relate these two
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measures in the neuroscience community through joint measures and theoret-
ical modelling. The brain is organized into connected clusters of cortical ar-
eas forming complex networks [1], neither regular nor random, which can be
characterized using methods from graph theory [2]. Evidence for small world
properties, constiting in a high clustering index and short average path length,
has been found and highly connected hubs in these networks can be identified.
These structural properties have functional advantage for efficient communi-
cation between areas and explain the complex dynamics observed at a large
scale.

The visual system is composed of multiple levels organized hierarchically
with each unit receiving feedforward from lower levels, feedback connections
from higher levels and lateral connections from units of the same level. The
primary visual cortex, also referred to as V1 and corresponding to the cat area
17/18, is the first cortical stage of visual processing. Inputs resulting from
visual stimulation at the retina are transmitted through the lateral geniculate
nucleus (LGN) in a feedforward fashion. Neurons of the visual system respond
preferentially to a particular area of the visual field and the size of this area gets
larger and more complex from the retina to the higher levels of the visual system.
LGN cells have circular receptive field with high response when a light stimulus
hits its center and the surround is dark for On cells, Off cell have the opposite
property of being highly activated by dark center and light surround. The simple
cells of the primary visual cortex are selective to a specific orientation with the
shape of a 2 dimensional Gabor wavelet with alternating On and Off bands.
Such selectivity is characterized by an orientation tuning curve representing the
firing rate response of the cell as a function of the orientation of the presented
bar or Gabor patch. It has been shown that orientation tuning is widespread
among mamals and similar functional properties are found across species despite
major differences in the local connectivity [3]. For primates, having a richer
visual environment than rodents and cats, receptive fields are diverse and may
contain more alternating On and Off bands than for other animals [3]. Cells
in higher areas like the inferotemporal cortex may be selective to very specific
features [4] and place cells in the hippocampus is active when the animal is
located in a small area of the environnement.

In the primary visual cortex of the cat, cells with receptive field correspond-
ing to close points of the retina fall close together so that a 2 dimensional
retinotopic map over the surface of V1 represents the visual space. This topo-
graphic organization can also be found for other sensory modalities like in the
auditory where sounds are represented by a tonotopic map with cells coding
for close frequencies located close apart. On the surface of the primary visual
cortex, the preferred orientation of cells vary smoothly turning around special
points of the map referred to as pinwheel singularities. Other features like the
spatial frequency and the direction of motion of the stimulus are coded in V1.
Lateral connections tend to favor cells with similar orientation properties and
the combination of the pinwheel map with these connection pattern constitute
a functional architecture implementing low level visual processing including fea-
ture integration and pattern completion [?].
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In the vertical direction, cells are densely connected and have similar re-
ceptive field properties both in position and orientation, providing robustness
of the code through redundancy. These functional columns are ubiquitous in
the brain from sensory areas to higher levels like the prefrontal cortex involved
in working memory and cognitive control. Thus functional columns may be
considered as mesoscale computational units supporting distributed operations
of various sorts. Actually, columns have different properties depending on the
animal species and the cortical areas considered [5] making the ¡¡tabula rasa¿¿
view of a uniform brain a crude assumption. Moreover, there are six layers in
the depth of the brain forming local circuits. Feedforward connections from the
LGN, for example, terminate onto layer IV. In abstract models, these specific
connections may be replaced by random connections with uniform probability
when the layered structure is not relevant. The graph of neurons in the primary
visual cortex is thus topographic, modular and random.

Brain dynamics can be described at multiple temporal and spatial scales
and it is important to identify its relevant features associated with the coding
of sensory information, the memory maintenance and the behavioral state. At
the single cell level, spikes are thought to convey information either by the
firing rate or their temporal relations to spikes of other cells. The firing rate
of a simple cell in V1 is thus at its maximum when the stimulus is oriented
along the preferred orientation. With such a rate coding, the timing of spikes
is not taken into account but some experiments showing fine precision suggest
evidence for a temporal coding [6] [7].

At the population level, the code is independent or correlation based de-
pending on whether temporal relationships between spike trains are taken into
account. Synchronous firing resulting from oscillatory modulation of the mem-
brane at the gamma frequency (40Hz) in the primary visual cortex of the cat was
found to implement the binding of parts of an object into a whole in 1989 [8].
Neuronal oscillations were then described in other areas and involved in many
cognitive processes like attention or memory [9]. Place cells in the hippocampus
are transiently binded into a synchronous cell assembly oscillating in the theta
band (8Hz) when a memorized place is recalled. Complex oscillatory activity
generated by specific circuits called central pattern generators is associated with
rythmic behavior like respiration, heartbeat, locomotion or chewing.

Synchronized transitions between a quiescent down state where the mem-
brane potential is hyperpolarized and a depolarized up state where the neurons
spikes are related to working memory in the prefrontal cortex with persistent
up state representing an object hold in memory [10] [11]. Several dynamics are
found in the up state, firing may be plateau-like, oscillatory or ramping [12].
Slow transitions between up and down states in the thalamus and the cortex
are also related to the slow wave observed during slow wave sleep or anesthesia
[13]. Low dimensional chaotic dynamics are often considered to reflect patholog-
ical states like epilepsy but recent findings suggest that it could provide flexible
representation used for memory [14] [15] [16] and for example, in the antenna
lobe of the fruit fly, odors have been shown to be coded as transient trajectories
in an abstract low dimensional phase space [17].
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The functional dynamics described above are often recorded at the popu-
lation level. The firing rate code is thus investigated through the detection
of activated regions of the brain with functional magnetic resonance imaging
(fMRI) when the subject is involved in a cognitive task. Transient synchrony
is also observed at large scale with electroencephalogram (EEG) and it is cor-
related with binding of a coherent percept, attention or working memory with
multiple frequency bands interacting [18]. Spatiotemporal patterns relevant for
perception or memory may also be recorded with optical imaging using volt-
age sensitive dye or with arrays of electrodes. Visual stimulation thus triggers
traveling waves in the visual cortex [19] and information processing in sensory
areas also generates specific phase patterns of oscillatory activity [20].

For a long time, the brain at rest has been considered as a passive medium in
cognitive science and most of the studies focused on evoked activity related to
a controlled task and cancelled the intrinsic dynamics through averaging. The
observation that most of the energy used by the brain is devoted to the on going
activity raised new questions about the structure and the function of default
networks having coherent activity when the subject is resting which decreases
when the subject is involved in a task [21]. The internal dynamics help the brain
to face computational problems despite the poverty of stimulus, for example only
a small part of the information impinging the retina reaches the primary visual
cortex. The intrinsic activity may implement priors reflecting knowledge about
the statistics of the visual world thus supporting theories about vision as an
inference process [22]. Default networks are also considered to support internal
thoughts and a representation of the self. Intrisic activity is also interesting to
study as it explains variability in behavior and in evoked responses.

The ongoing activity defining a global brain state depends on the state of
consciousness that is on whether the subject is sleeping, anesthetized or awake.
Sleep can be decomposed into cycles of REM and NREM1 phases. The NREM
sleep is composed of three stages having specific dynamic features. Stage 1 is
characterized by theta waves (around 7Hz) and in stage 2 spindle waves (around
10 Hz) and K complexes2 are found, predominantly in frontal areas. During
stage 3, also called slow-wave sleep, a slow oscillation in the delta band (around
1 Hz) propagates along the brain correlated with up and down states at the
cellular level. The REM sleep is a stage in which most of dreaming occurs and
the associated dynamics are similar to those observed in the awake state that
is irregular at the cellular with a nearly Gaussian distribution of the membrane
potential and with no slow oscillation at the global level measured by EEG
[13]. Both REM and NREM dynamics are involved in memory consolidation
whereas dynamics of the awake state are involved in information processing and
mental representations. The default network has been recently identified via
the BOLD signal of fMRI but the corresponding neuronal dynamics remain an
active subject of research [23]. Anesthesia have different effects on the on going
dynamics depending on the drugs used. Xylazine-ketamine thus have a drastic

1Rapid eye movements (REM) and non rapid eye movements (NREM).
2Short negative peak followed by a slower positive peak.
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effect producing synchronized up and down states close to those observed during
slow wave sleep and alfatesin or urethane producing asynchronous and irregular
activity close to those observed during the awake state [24]. In the primary
visual cortex, it has been found that the ongoing dynamics itinerates among
states corresponding to the activity evoked by a specific orientation so that the
spontaneous dynamics reflect features encoded in the map [25].

In order to model the brain dynamics listed above, several approaches can be
considered but they all have to include a dynamical system defining the units
of the network and a functional architecture to connect these units. With a
bottom-up approach, the aim is to build biologically realistic networks including
as much details as we know from studies in neuroanatomy and neurophysiology.
This bottom up approach is computationally demanding and requires a lot of
data but improvements in these domains will soon make it possible to build arti-
ficial neuronal networks with the size of the human brain (around 1011 neurons).
The phase space and the parameter space of these models is so huge that it is
difficult to control and to analyze its dynamics. With a top down approach, the
simplest phenomenological models are considered to reproduce some features of
the observed dynamics like synchronization. A model can be made more realis-
tic by considering a more complex model for the neuron, adding some dynamics
on the connection weights to model synaptic plasticity or using a more complex
architecture. A model with a bottom up approach can be reduced to a simpler
form by considering equivalent or average equations in a phase space with lower
dimension or relying on hypotheses like considering cells to have the same pa-
rameters in a population. Dynamical systems can be used to describe networks
of very few units or it should be combined with statistical physics to study very
large systems through their mean field description.

Models taking a spatial extension into account for the neurons are com-
putationally heavy because they require the integration of partial differential
equations in a 3 dimensional space and a common approximation is to consider
space clamped models, also called point neurons, where the dynamics is only
considered at the soma without modeling the propagation of the spike along the
axon. Detailed model of the dynamics at the soma, like the Hodgkin-Huxley,
include voltage gated channels and a leak current. The essential features of
the dynamics in a neuron model like spiking and bursting can be studied using
bifurcation theory and this analysis leads to reduced models [26]. A common
method is to build an oscillator based on the computation of the phase reponse
curve and this reduced system has the same synchronization properties as the
original system. Another simplification is to forget the precise wave form of the
action potential and to replace it with an instantaneous reset and a refractory
period resulting in hybrid dynamical systems which combine a continuous and
a discrete part. In the most drastic approximation, the neuron is a two states
system, it is spiking or quiescent depending on whether its total input is more
or less than a threshold.

In data-driven models, quantitative maps from studies in neuroanatomy are
used to build the network [27] whereas with a top down approach generic struc-
tures are considered, like a homogeneous population of randomly connected neu-
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rons either sparsely or densely. Repeated patterns of connectivity can be used
as building blocks for a modular structure, two connected populations, one ex-
citatory and one inbhitory, are thus a generic model for the column and these
columns can be gathered to form hypercolumns or maps [28]. Some architec-
tures have been designed specifically for information processing. For Hopfield
networks, composed of binary neurons connected symetrically, an energy func-
tion can be defined [29]. The minima of this energy function are fixed point
attractors for the dynamics which can be used for building associative memory.
As an input brings the system in the basin of attraction of fixed point, the
dynamis of the network converges toward this fixed point, performing pattern
completion and providing a way to store representions coded in the connectivity
matrix. Synfire chains were designed with multiple layers of neurons connected
in a feedforward fashion to test the ability of neuronal networks to transmit
synchronous volleys of spikes. If there are enough spikes in the input volley
and if the jitter in their timing is small enough, such architecture can propagate
synchronous activity in a stable fashion even with a background activity [30]. A
generalization for synfire chains are the polychronous groups which are repeated
patterns of spikes, including possible delays [31]. The liquid state machine is
also a neuronal architecture designed to perform computational task, it is com-
posed of three parts: time varying inputs are connected to a recurrent neuronal
networks and a readout combining neurons from the recurrent network. The
central recurrent network maps the inputs to a very high dimensional space and
connections from this reservoir of dynamics to the readout can be learned to
perform a specific task like discrimination between two possible inputs [32].

Although some transient coherent oscillations may be observed, the ongoing
activity in cortical networks associated to the awake state is highly irregular and
asynchronous. Sources of randomness in neuronal dynamics may be attributed
to intrinsic noise in ionic channels or stochasticity in synaptic transmission but
also to a chaotic regime that has been found in sparsely connected networks of
binary neurons when inhibitory inputs balance precisely the excitatory inputs
[33]. This self-sustained asynchronous activity was later obtained in networks
of integrate and fire neurons with conductance base synapses [34] or in dense
networks [35]. Up and down states, as found during slow wave sleep, have also
been modeled in neuronal networks [36] [37], collective transitions between up
and down resulting from the recurrency of the network and intrinsic properties
of the neuron like a non linear current inducing bistability of the membrane
potential or spike frequency adaptation.

In this thesis, we will propose a method of analysis for the ongoing activ-
ity in the primary visual cortex, we then study reduced models for neuronal
dynamics and in the final part such reduced models are used in a model of
the primary visual cortex. We show how an asynchronous irregular state with
a Gaussian distribution of the membrane potential at the single cell level can
be switched to state with experience dependent structured correlations with a
bimodal distribution for the membrane potential.

In the first chapter, we present a collection of tools to analyze temporal
signals in neuroscience with a special interest for spike trains, membrane po-
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tentials and EEG. Spikes are an essential feature of neuronal dynamics as they
are related to information processing and spike trains are characterized by their
mean frequency and their regularity. The naked membrane potential, that is the
membrane potential from which spikes have been removed, is also investigated
trough the moments of its distribution, the comparaison of its distribution with
the closest Gaussian distribution and measures of the bimodality of its distribu-
tion. Spectral properties of analogous signals are described and a kind of time
frequency analysis is introduced via wavelet transform. Based on the compres-
sion of the time frequency matrix, we propose an original method for building
the graph of transitions among microstates of the EEG. Signals are compared
using a distance or a correlation coefficient and specific distances have been re-
cently designed for spike trains. Information theoretic measures are promising
for the exploration of multi-channels data as can be recorded using an elec-
trode array but we point at the technical difficulties in estimating the entropies
and the heavy computations they require. Finally, attractor reconstruction is
a classical method in EEG which can also be applied to the analysis of the
membrane potential. When a set of parameters is measured for each signal, un-
supervised learning methods are applied to find a structure in the data set and
we present three possible methods: K-means, hierarchical tree and self orga-
nized maps. Each method having advantages and pitfalls, we build a similarity
measure combining results from several classification methods and which we call
metasimilarity and we also propose a method to compare partitions resulting
from different methods. Classification methods and the metasimilarity measure
are first tested on a set of random samples generated from a combination of
Gaussian distribitutions. We then apply these methods to classify 150 electro-
physiological recordings of the ongoing activity in the primary visual cortex of
anesthetized cats obtained in the last 10 years at the UNIC. For each record-
ing, 25 parameters were selected and classification methods were applied to the
obtained data set after normalization and dimension reduction. With K-means
clustering, we obtain an optimal partition into 6 clusters which define classes of
neuronal dynamics. For most of the cells, both ongoing and evoked activity are
available so that we can check how visual stimulation change the dynamics and
we conclude that it reduces the accessible dynamics. Nazied Huguet and Cyril
Monier contributed to this part by selecting and computing relevant parameters
for each cell.

In the second chapter, the computational units of the brain, the neuron and
the cortical column, are presented with methods to analyze their dynamics. We
give a short introduction to dynamical systems, either deterministic or stochas-
tic, including bifurcation theory and the Fokker-Planck equation. A first part
is dedicated to neuron models, the Hodgkin-Huxley model is commonly used to
describe the evolution of the membrane potential but its 4 dimensional phase
space and its nonlinearities make it quite complicated to study. It can be re-
duced to a two dimensional system, the FitzHugh-Nagumo model, or hybrid
dynamical systems of various types also called integrate-and-fire models. We
make a complete analysis of local bifurcations of codimensions 1 (fold and Hopf)
and 2 (Bogdanov-Takens and Bautin) in the FitzHugh-Nagumo model and we
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study the effect of noisy stimulation at a codimension 3 bifurcation point, the
organizing center of the system. Classical results about the integrate-and-fire
model under deterministic and stochastic forcing are recalled and a recent vari-
ation including an exponential non-linearity and a slow adaptation variable is
presented. In the last part of the chapter, we focus on models of the cortical
column and small and generic networks of coupled columns. A column consists
of two homogeneous populations, one excitatory and one inhibitory, and bifur-
cations of its mean field equations are well known since the work of Wilson and
Cowan. When the networks is only sparsely connected, an asynchronous irregu-
lar state can be stable and a column of integrate and fire neuron may also have
synchronous irregular or synchronous regular dynamics depending on its input
and its balance between inhibitory maximal conductance and excitatory maxi-
mal conductance. When the network have oscillatory activity, it can be reduced
to a phase oscillator, the synchronization properties of few coupled columns are
captured in such phase dynamics and in the limit of a large population of glob-
ally coupled, it is the Kuramoto model. A ring of oscillators with long range
coupling exhibit dynamics in which a part of the network is phase locked and
the other part is desynchronized. We shortly discuss a model combining a volt-
age equation and an oscillatory current so that the system has a quiescent down
state and an oscillatory up state. We studied this model at the DEI laboratory
(Riken,Tokyo) under the supervision of Yoko Yamaguchi and in collaboration
with Colin Molter. In the publication in appendix, we study the synchroniza-
tion of two coupled units and we find a small window of perfect phase synchrony
followed by chaotic behavior and a network of such units. These units can also
be used to generate working memory dynamics in a network embedding cell
assemblies and we show that the ongoing dynamics itinerates among the stored
memories.

The third chapter is devoted to rate models of the formation of V1 and
large scale networks of spiking neurons modeling a small patch of the primary
visual cortex. We present four approaches to the formation of V1 some based
on dynamics in a feature space and some based on the full dynamics of the
units activity and connection weights. The cognitive approach is based on the
modular theory of the brain, the brain is composed of many building blocks
at a low level which can be grouped together to form a functional unit at a
higher level. In the Hubel and Wiesel model for orientation selectivity in V1 for
example, aligned receptive fields in the LGN are grouped to form a simple cell
receptive field. The functional view defines a goal to the formation of V1 which
is an optimal mapping from the surface of the cortex to the feature space where
inputs are represented and variational formulation gives the dynamics to solve
this problem. The elastic net is an example of such an algorithmic approach.
With a physical approach, orientation maps and pattern of ocular dominance
results from universal mechanisms of pattern formation and phenomenological
models can give accurate prediction for the wavelength of ocular dominance
bands and the density of pinwheels. Finally, in a biological approach, a learning
mechanism, based for example on the Hebb rule, gives some dynamics on the
connection and the functional architecture gets formed as visual inputs are pre-
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sented to the network. Large scale networks of spiking neurons are implemented
using the pyNN interface to the NEST simulator to study the fine scale dynamics
of neurons in models of V1 with a modular structure. Pierre Yger contributed
to the implementation of these models. In the first model inspired by the Hubel
and Wiesel model, a regular grid of 11 × 11 columns, each containing 50 neu-
rons, is used for V1 and a grid of 11×11 is a lumped model for the Retina-LGN
inputs to V1, feed-forward connections from the inputs are hard wired to form
simple cell receptive fields. We study the possible regimes of ongoing activity
depending on the maximal conductances in the network and the response to
an oriented stimulus, either static or rotating, depending on the ongoing state.
In the second model, we take a larger grid (30 × 30) and long range isotropic
connection kernels for lateral connections. We describe the ongoing dynamics
of the network and we find that for a range of the maximal conductances some
static pattern emerges similar to the classical hallucination patterns from rate
models. In a region of the parameter space, a focal stimulation of the network
gives rise to a traveling bump, which is also a classical solution for rate models.
The connectivity of the third model is obtained after learning under presentation
of oriented stimuli in a rate model, the connection weights in the macroscopic
rate model are considered as the probability of connections between neurons of
the corresponding columns in the network of spiking neurons. When the con-
nectivity of the second model is used to initialize learning, an orientation map
emerges and the dynamics in the network of spiking neurons can be compared
before and after learning. Between the asynchronous irregular state and the
uniform saturated state, we find a region of the parameter space where neurons
in a column have collective transitions between up and down states and we show
that, in this regime, spike correlations depends both on the distance and the
difference of preferred orientation between two columns. We thus show how
the primary visual cortex may be switched from a state where neurons fire in
an asynchronous and irregular fashion to a state where experience dependent
structured correlations are propagated in the network resulting in up and down
states at the column and neuron levels.

I would like to express my sincere gratitude to Jean Petitot from the CREA
and Yves Fregnac from the UNIC, who supervised this PhD. I got my first
interest for neurogeometry in the teachings of Jean Petitot and it has been a
very exciting adventure to confront theoretical apects with experimental data
and computer simulations with Yves Fregnac’s team at the UNIC. I would also
like to thank them and Paul Bourgine from the CREA for their kind support.

I benefited from a very nice and stimulating research environment so I
warmly thank researchers and the administration staff of CREA-ISC and UNIC
for that. I would especially like to mention people I have been working with
closely: Nazied Huguet and Cyril Monier from the UNIC who contributed to
the analysis of neuronal dynamics, Gilles Wainrib from the CREA with who I
had stimulating discussions about dynamical systems applied to neuroscience
and Pierre Yger from the UNIC who made me like Python and contributed to
the implementation of large scale networks. I also thank Jonathan Touboul for
fruitful discussions about bifurcation theory and Matlab and Laurent Perrinet
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dynamics.

I am also glad to thank friends without who coffee wouldn’t taste so good:
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Finally, I would like to thank my family for their constant support and Misa
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Chapter 1

Phenomenology of cortical
dynamics: All you need to
know about your data

1.1 Introduction

In neuroscience, experimentalists are confronted with a huge amount of data
of very different nature. At the same time, given a good model, it is easy
to reproduce realistic dynamics mimicking those signals. For example, it is
possible to produce the output of a neuron given its input with great fidelity.
The simulations obtained by computer scientists also generates a huge amount
of data and the resulting signals are very close to those recorded in biology. The
similarity of these artificial and natural data suggest that the same methods of
analysis should be used. We present in this chapter a collection of tools and
techniques which can be used to analyze and classify signals in biological and
computational neurosciences.

The first part is an introduction to the common representations of the brain
activity that are the spike train, the membrane potential of a neuron and the
EEG. The dynamics at the single cell level is characterized by static properties
related to the distribution of the membrane potential, spectral properties and
firing properties. We also describe more sophisticated measures like based on
information theory to manage signals from multiple channels and attractor re-
construction which found applications in the analysis of macroscopic signals. A
method based on time frequency analysis is proposed to compress long record-
ings into a sequence of states and a graph representation of these states and their
transitions is provided. In the second part, three classification algorithms are
described: K-means, hierarchical tree and self-organized maps and we propose
some methods to compare and combine them, thus avoiding the pitfalls inherent
to each algorithm. The analysis techniques described in the first two parts are
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applied, in the third part, to single cell recordings of the ongoing activity in
the primary visual cortex of anesthetized cats. Each data sample is represented
by 25 parameters and a clusterization in this parameter space gives an optimal
partition into 6 clusters. Under visual stimulation, the same cells gathers in the
main cluster so that we find more accessible dynamics in ongoing activity than
in the evoked activity.

Classes of neuronal dynamics are classically defined by the response of a
neuron to a stereotyped electrical stimulation, this study aims at the definition
of new classes based on the ongoing and visually evoked activity.

1.2 Temporal signals in neuroscience

The nervous system is considered from Galien to Descartes by an hydraulic
analogy with a nervous fluid flowing in the pipes of the nervous system. The
electrical nature of the flow in the nervous system was first demonstrated by
Luigi Galvani in Bologna at the end of the 18th century. He reported in 1791
that an electrical stimulation of a nerve fiber of a frog could generate a muscle
contraction in its leg and, in 1797, he reported that the same contraction could
be obtained by pulling to nerve fibers together suggesting the first evidence for
animal electricity production. During the 19th century, galvanometers became
more and more precise to detect electrical signals and German physiologists,
like Emil du Bois-Reymond, could characterize the nervous signals as consti-
tuted of short depolarizing events. At the end of the 19th, the physico-chemical
mechanisms responsible for this signal were better understood with for example
the electro-chemical law giving the potential difference resulting from ion con-
centrations inside and outside the cell, now known as Nernst potential. With
the giant squid axon, Hodgkin and Huxley found, in the 30’s, a nerve fiber thick
enough to record its activity with a microelectrode clamped to the neuron and
this led to their seminal work of the 50’s were they described precisely the action
potential and proposed the model for its generation. This led to modern elec-
trophysiology were the membrane potential with spiking activity and synaptic
events is now recorded in many animal preparation. Using a thicker electrode,
the population activity can be recorded and depending on the impedance of
the electrode and the filtering of the signal, the recorded activity can reflect
the mean depolarization in the dendritic tree or the spiking activity of a set of
neurons. By using matrices of such electrodes (MEA), few hundreds of neurons
can be recorded at the same time. The Electroencephalogram (EEG) is also a
macroscopic signal measuring the spatially averaged activity over a large popu-
lation of neurons. The whole brain activity can be mapped through an electrode
array of 64 or 128 electrodes. The rhythms found in this signal are of special
interest for cognitive neuroscience. It can used for assessing the level of con-
sciousness of a subject, to detect precursors of an epilepsy crisis and it also have
specific patterns depending on the task the subject is doing. Magnetoencephalo-
gram (MEG) complements EEG by measuring the magnetic field produced by
currents running tangentially to the surface of the skull. The obtained signal
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is easier to localize and less affected by the skull but the measurement must be
done in an environment free of magnetic perturbation thus requiring a heavy
equipment. More recent techniques to record neuronal activity rely on opti-
cal methods. Through calcium imaging the propagation of an action potential
can be tracked with fine temporal and spatial resolution. Macroscopic signals
obtained from intrinsic optical imaging (IOS) or after the application of a fluo-
rescent dye sensitive to the voltage (VSD) gives a coarse grained picture of the
nervous activity in cortical tissues.

In order to analyze the ongoing dynamics in the primary visual cortex of
the cat, we will focus on the membrane potential and the intracranial EEG.
Those signals are related since EEG signal is an spatial average of the synaptic
inputs and collective variations of the membrane potential are correlated with
the EEG variations.

1.2.1 Analysis of a spike train

Spikes extraction A temporal trace of the membrane potential Vm recorded
at the soma of a cell contains spikes 1 which are short and rare events easily
detectable by a human as shown in fig 1.1 and it would bias any processing of
the membrane potential. The extraction of these spikes is thus necessary for a
simpler description of the membrane potential and a compact representation of
the information contained in the spikes.

The spike time is defined as a maximum in second derivative of the membrane
potential which correspond to an explosion of the curvature in the trace when
the spike is initiated. This maximum is one order of magnitude higher than
spurious maxima due to fluctuations in the membrane potential, so that it is
easy to detect by requiring to be at least 3 times higher than the standard
deviation.

Near the spike time, the shape of the spike can be approximated by a
quadratic curve,Vm(t) = Vm(ti) + κt2 with κ the curvature, or an exponential
function, Vm(t) = Vm(ti) + et/∆. An approximation of the spike time precision
can be obtained from the curvature,see [38] and [39]:

δt =

√

< δV >

< κ >

for ti < t < ts where ts is the time at which Vm reaches the top of the spike and
with averages taken over all spikes.

The value of the membrane potential when the spike is initiated is the spiking
threshold and the time it takes for the membrane potential to terminate, that is
to cross this threshold from top to down, is the spike duration. Spike removal is
achieved by interpolating the membrane potential trace between spike initiation
and spike termination. In fig 1.1, the interpolation is linear but smoother traces
could be obtained by using splines. An efficient way to remove all spikes on a

1The mechanism responsible for the generation of those spikes will be detailed in Chapter
2.
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membrane potential trace is to calculate the average wave form of the spike and
to estimate the spiking threshold and the spike duration on this average spike.
The same threshold and the same duration is then used for all spikes in the
trace.

Spiking activity. After the spikes have been removed, the spike train and
the spike-stripped subthreshold membrane potential (which will be referred as
membrane potential for simplicity in the following) can be analysed separately.
General methods for the analysis of spiking activity can be found in [40], [41]
and more sophisticated methods are described in [42], [43].

The spike train is a vector of spike timings, t = (ti)1<i<n of size the num-
ber of spikes detected. Actually, knowing whether the absolute value of those
times is of special interest is still an open issue but the time between two spike
occurrences gives an indication of the level of activity of the neuron. The in-
terspikes interval, ISIi = ti − ti−1, is used to define the firing instantaneous
frequency of the neuron fi =

1
ISIi

. The firing rate can be obtained by averaging

the spike count over a time window of width τ , rτ (t) = 1
τ

∫ t+τ

t ρ(t)dt where
ρ(t) =

∑

1<i<n δ(t − ti)dt is the spike train function 2. When this quantity is
averaged over all the time of the recording or on a time window larger than the
spike duration, it is called the mean firing rate and when averaged over many
neurons it is called the population firing rate. The firing frequency of a neuron
depends highly on its cellular type and on the brain area where it is located.
In visual cortex, cells fire with an average firing rate around 1 Hz in barrel
cortex 3, 5 Hz in the primary visual cortex and 15 Hz for spontaneous activity
in higher level areas like motor cortex or prefrontal cortex with up to 80 Hz
when it is activated. During a spike, the membrane is insensitive to incoming
current so that even when strongly stimulated in artificial conditions, the firing
frequency of a neuron is limited at 1000 Hz due to this refractory period of few
milliseconds.

Spike trains are digital signals that is series of 0 and 1 and an analog rep-
resentation of the spike train s is obtained after convolution of a kernel f with
the spike train function s(t) =

∑

1<i<n f(t − ti) . The commonly used kernels

are the exponential kernel, fexp(t) = H(t)e−
t
τ , H being the Heaviside function,

and the alpha kernel falpha(t) = te−
t
τ . This analog signal provides a realistic

approximation of the input current or conductance corresponding to this spike
train and, as will be shown in the part ”Metrics and measures”, it is also used
for building spike train metrics.

Spiking regularity The ISI distribution is also useful to quantify the reg-
ularity of the spiking activity of a neuron by the coefficient of variation of

interspikes intervals CV = <ISI−<ISI>>2

<ISI>
4. For a perfectly regular spiking

2The Dirac function δ(t − ti) is 1 when t = ti and 0 otherwise.
3The barrel cortex is the somatosensory receiving inputs from vibrissae of the rat or mouse
4It is thus the ratio VarianceofISIs

MeanofISIs
.

17

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



neuron, all ISIs are the same and the CV is 0. For neurons having CV = 1, the
variance of interspikes intervals is equal to its average. The simplest stochastic
process generating spike train with this property is the Poisson process, where
ISIs are independents, and it is a commonly used to model irregular trains of
events (see Chapter 2), the ISI distribution of a Poisson process follows a Gaus-
sian law. Many cells in the brain fires in a Poissonian fashion, CV ≈ 1 in the
spontaneous regime, but a closer look at the ISIs distribution shows that it is
better described with a gamma law 5 than a Gaussian law. A sub-Poissonian
ISIs distribution, CV < 1, is characteristic of cells having a more regular firing
than if its spike train was generated by a poisson process. A supra-Poissonian
ISIs distribution, CV > 1, is characteristic of cells that tend to fire with bursts
of spikes and is found in evoked activity. The slope of the decay in the ISI
distribution may also be an important parameter in cells with low frequency
spiking because it reflects how rare events occur which is not taken into account
in the previously described parameters.

1.2.2 Analysis of a membrane potential trace

Spikes are a major feature of neuronal dynamics but the subliminar activity,
that is fluctuations of the membrane potential under threshold, is also very
informative. The membrane potential is a very complex signal reflecting the
activity of the network in which it is embedded. Bistability of the membrane
potential is found in multiple areas of the nervous system. It sometimes result
from intrinsic mechanisms like in the Purkinje cells of the cerebellar cortex [44]
where it may support information processing or it may collective and rely on
network mechanisms, like in the prefrontal cortex where columns have persistent
up state during the storage of an object in the working memory. During slow
wave sleep those transitions are correlated with EEG variations. The presence
of several levels of activity, like an up activated and a down desactivated state,
indicates multistability of the network and transient oscillations are a sign of
coordinated spiking in the population. The analysis should then be led carefully
to detect such events.

Static properties As will be seen in section 4, much of the information about
a cell is hidden in its membrane potential distribution. The simplest way to
characterize it is to calculate its successive moments of order k relative to the
mean µVm, µk = E((Vm−µVm

)k. The Gaussian, used as a reference to compare
probability distribution functions, has a finite second order moment and null
moments of higher order. It is defined by

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

5The gamma law is a two parameters (k, θ) probability distribution function defined as
follows:

f(x, k, θ) = xk−1 e−x/θ

θkΓ(k)
with x, k, θ > 0 and Γ the gamma Euler function.
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Figure 1.1: Spike extraction - (Left-top) Temporal trace of the membrane
potential with spike times. (Left-bottom) Trace of the membrane potential
after the spikes have been removed. (Right) Average spike for the estimation of
the spiking threshold and spike duration.
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.
The mean of the membrane potential can be very different from one exper-

iment to another because it depends on many parameters of the experimental
preparation. It is usually between -80 and -50 mV 6. The standard deviation,
σVm

=
√
µ2, reflects the level of activity in the network. It often depends on

the mean µVm
, there are less fluctuations when a cell is close to threshold than

when it is depolarized. The mean and the standard deviation of the distribution
are sufficient to fit a Gaussian distribution and the coefficient of regression mea-
sures the goodness of the fit. The skewness, γ1 = µ3

σ3 reflects the symmetry of
deviations from the mean, it is 0 for a Gaussian distribution. A positive skew-
ness indicates the presence of micro up states as in excitation driven cells and a
negative skewness indicates the presence of micro down states as in inhibition
driven cells. The symmetry of the distribution can also be checked by using the
fitted Gaussian law as a reference and calculating the following coefficients:

S1 = 3
m− µVm

σ

and

S2 = 3
m−medVm

σ

withm, σ the mean and standard deviation of the Gaussian function andmedVm

the median of the empirical distribution. The kurtosis, β2 = µ4

σ4 − 3, reflects
the sparseness of deviations from the mean, it is 3 for a Gaussian distribution.
Distributions with kurtosis greater than 3 are flat and correspond to traces with
small and fast fluctuations as would be characteristic of a cell embedded in a
very active asynchronous network. Distributions with a kurtosis less than 3 are
sharp and corresponds to cells with slow and large deviations from the mean as
would be characteristic of a network with low but synchronous activity.

A distribution F is unimodal if there exists a mode m such that F is convex
on [−∞,m[ and F is concave on ]m,∞[. If the distribution is multimodal that
is if it contains more than one peak, the Gaussian distribution is not a good
approximation anymore and the distribution can be fitted with a sum of two or
more Gaussian laws. For bimodal, the upper peak defines an up state and the
lower peak defines a down state. The minimum of the distribution between those
two peaks is the threshold separating the up domain from the down domain.
Several parameters can be used to characterize deviations from unimodality
of a distribution. The distance between an empirical distribution and a test
distribution is ρ(F,G) = supx|F (x)−G(x)| and the dip of F is d = infρ(F,U)
where U is the set of unimodal distributions. A practical way to perform this
calculation is described in [45]. The separability is defined from the fit of a sum
of two Gaussian functions as

Sep =
m1 −m2

2(σ1 + σ2)

6The membrane potential is bounded from below by the potassium inversion potential and
from above at 0 mV by the Na inversion potential.
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with m1, m2 the means of the two Gaussian functions (m1 > m2) and σ1,
σ2 their standard deviations. The contrast between the two distributions, also
called the discretness, is defined as follows from the two Gaussian functions
resulting from the fit:

Discr = 100 ∗
∑

i

|G1(xi)−G2(xi)|
G1(xi) +G2(xi)

�60 �55 �50 �45 �40 �35 �30
Vm (mV)

Skewness

Kurtosis Bimodality

Figure 1.2: Static properties of Vm - (Top-left) Gaussian fit for the Vm
distribution of cell X. (Top-right) Examples of distributions with positive (dark)
and negative (light) skewness. (Bottom-left) Examples of distributions with
kurtosis greater than 3 (dark) and less than 3 (light). (Bottom-right) Examples
of asymmetric (dark) and symmetric (light) bimodal distributions.

Spectral properties

Autocorrelation Oscillatory behavior of the membrane potential is not
detected by the analysis of distribution and transitions between up and down
states. There are several possibilities regarding the origin of these oscillations.
The whole network can be oscillating in a robust manner at low frequency, this
is the case when the brain is in deep sleep, also called slow wave sleep, or when it
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is in a pathological state like epilepsy. Transient oscillations at higher frequency
can also be seen, and are often considered as the propagation of coherent activity
among the cell assemblies in which the neuron is embedded. A simple way to
detect oscillations in a signal s is to calculate its autocorrelation,

Rs(τ) =
1

T

∫ T

0

s(t)s(t− τ)dt.

A first time constant is given by the extinction rate, τe, which can be captured by

fitting an exponential function, e−
t
τe . In the case of cell X, the autocorrelation

decreases in a linear fashion. It is still possible to see a slight oscillatory deviation
from the linear behavior at τ ≈ 50ms, which is close to the average ISI of the
spike train.

Power spectral density (PSD) To get more information about the fre-
quency content of the membrane potential fluctuations, it is interesting to calcu-
late the power spectral density and this is done by using the Fourier transform
of the signal. The Fourier transform of a signal is

ŝ(ω) =
1

T

∫

T

s(t)eiωtdt

and the PSD is then S(ω) = ŝ(ω)ŝ∗(ω)
2π = |ŝ(ω)|2

2π . There exists several efficient
methods to compute it like the Fast Fourier Transform which requires the sam-
pling frequency of the signal to be a power of 2 [46]. It is usually represented as
a function of the frequency f = ω

2π and in decibels, SdB(f) = 10log10S(f). The
PSD is also more easy to interpret when it is smoothed by taking local averages
over a short frequency band.

The two features which should be looked at with attention are the local
peaks, indicating the oscillatory components of the trace coming from the input
temporal structure or from internal properties of the cell, and the slope of the
decay in log-representation. Many signals have a power spectrum behaving in
a 1
fα fashion and α may give indications about the process underlying fluctu-

ations of the signal. For a white noise, the spectrum is flat and α = 0. For
a Brown noise, as generated by a Wiener process, α = 2 and fluctuations may
be associated to a diffusive process. For pink noise, which can be generated by
a shot noise process, α = 1 and the origin of such fluctuations is still highly
debated, a interesting hypothesis is that it could result from a self-organized
critical process [47]. For more general Levy processes, α can take fractional
value. It was shown in a recent study that different statistics of the visual input
lead to different exponent in the scaling of the high frequencies power spec-
trum [48]. Anyway, these exponents reflecting power scale invariance should
be considered with great care because their estimation is very sensitive on the
frequency window considered. The PSD of cell X present a peak around 20 Hz
and is otherwise nearly flat on the frequency window observed.
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Wavelet analysis Fourier analysis describes in a compact manner the
structure of temporal fluctuations in a signal but it would fail to detect transient
oscillations, a solution can be to calculate the PSD over a time window for each
point of time. Continuous wavelet analysis is another way to overcome this
problem and to get a spectral representation of the signal at each time, a short
introduction to this method is provided in [49] and advanced presentation can
be found in [50]. It is gives spectral information at any point of time by
convolving the signal with a family of wavelets of different temporal scales as
shown on fig 1.3. The Morlet wavelets family, which will be used in the following,
is generated by the mother wavelet

Ψω0(t) = π− 1
4 e−

1
2 t

2

eiω0t

with
Ψσω0(t) = cσπ

− 1
4 e−

1
2 t

2

(eiσω0t − κσ)

where κσ = e−
1
2σ

2

and cσ =
(

1 + e−σ
2 − 2e−

3
4σ

2
)− 1

2

. There is a simple relation

between wavelets and their mother, Ψσω0(
t
σ ) =

√

δt
σ Ψω0(

t
σ ), with δt the time

step of the signal. The wavelet transform is then s̃t(ω) =
1
T

∫

T Ψω(t
′− t)s(t′)dt′.

It is actually simpler to use the Fourrier transform of this equation because the
convolution becomes a simple multiplication. The Fourrier transform of the

mother Morlet wavelet is Ψ̂ω0(ω) =
1

π
1
4
e−

(ω−ω0)2

2 and the Fourrier transform for

the rest of the family can be deduced by using the renormalization ω ← ω′ = σω

and Ψ̂(ω′) =
√

2πσ
δt Ψ̂(ω). The inverse FFT then gives the wavelets coefficients

in an efficient manner. Transient oscillations appears as bump in the wavelets
power spectra represented as a time frequency matrix, such a bump centered
around 15Hz can be seen in fig 1.4 at 500ms, and those bumps could be detected
automatically by using Gabor filters, see [51].

1.2.3 EEG

The electroencephalogram (EEG) is a very common signal in neuroscience, it
can be recorded with an electrode at the surface of the scalp or with an intra-
cranial electrode. As it is an analog signal, it can be processed with the same
analysis as was presented for the membrane potential from which spikes have
been removed. EEG signals are usually recorded on a longer period of time
than the membrane potential with a sampling frequency around 1 kHz whereas
the membrane potential is sampled at 10 kHz. Brain rhythms corresponding to
different cognitive states can be tracked on this recording. Hans Berger recorded
the first EEG signal on his son in 1929. He discovered the α-rhythm, an oscil-
lation around 8 Hz in the occipital region of the brain associated to a rest state
with closed eyes. It was further developed to study epilepsy and it is now widely
used to measure the level of consciousness of patients or anesthesia depth with
what is called the bispectral index. The functional role of these oscillations is
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Figure 1.3: The Morlet family - Morlet wavelets at different scales.
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ŝŝ
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Figure 1.4: Spectral properties - (Top-left) Autocorrelation of the Vm trace.
(Top-right) PSD of the Vm trace. (Middle) Time-frequency representation of the
Vm signal. (Bottom) Vm trace (red) and 20 Hz component of the time-frequency
representation (dashed).
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still an active topic of research but the low frequency rhythms are usually asso-
ciated to sleep or pathological states whereas cognitive processing is associated
to higher frequency rhythms. The frequency bands can be summarized as:

Name Frequency band Functional role
δ 1− 3Hz Slow wave sleep
θ 4− 7Hz Memory retrieving
α 8− 11Hz Resting
β 12− 20Hz Attention
γ > 20Hz Perceptual binding of a Gestalt

Recent research in cognitive neuroscience showed the importance of phase
synchronisation between electrodes across brain areas [18]. The spatio-temporal
structure of correlations between the 64 or 128 electrodes recorded makes it
possible to discriminate between conscious and unconscious perception [52], it
also reveals the attentional state of the subject [53].

The presence of brain rhythms makes the time frequency analysis partic-
ularly useful for EEG signals. For very long time series although, interesting
events are difficult to capture and it is also difficult to infer temporal relation-
ships between these rhythms. In the analysis described below, the signal is
compressed and a graphical representation of the sequences describes the tem-
poral organization of brain waves.

Example on an artificially generated signal. The artificial EEG Y, shown
in fig 1.5, was generated by repeating 3 times the following sequence:

δ → β → β + γ → θ → δ

with the γ oscillations are only active near the local maxima of the β oscillation.
This sequence of transitions among rhythms and combinations of rhythms can
be represented by a graph as shown on Fig??. The aim of the method pro-
posed below is to extract the sequence of rhythms and combinations of rhythms
activated and to build the graph corresponding to this sequence based on the
time-frequency matrix.

Compression of the time-frequency matrix. The first step is to split
the time-frequency matrix into blocks by choosing time and frequency inter-
vals where the cutting are made. Regular sampling of the time at 1Hz enables
a precise tracking of rhythms transitions and allows the detection of low fre-
quency oscillations. For the frequency axis, the cutting can be based on the
common frequency bands defined in the literature but it can also be adapted
to the particular signal by taking frequencies of local minima of the spectrum
as frontiers between the frequency bands. In the following, the frequencies are
gathered in 4 bands (b1 = [1 − 8Hz]:low frequency,b2 = [9 − 19Hz]: middle
frequency,b3 = [20 − 40Hz]: high frequency and b4 = [41 − 100Hz]: very high
frequency). The locally integrated power spectral density with sampling window

δt is obtained from the wavelet power densityW by L(t, f) = 1
δt

∫ t+δt

t W (t, f)dt

26

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



0 30 s�2.0
�1.5
�1.0
�0.5

0.0
0.5
1.0
1.5
2.0
2.5

EE
G

 Y

0 f1 f2 f3 100 Hz�70
�60
�50
�40
�30
�20
�10

0

dB

PSD

Figure 1.5: Artificial EEG Y - (Top) Artificial EEG Y. (Bottom-left) Power
spectral density of the signal with limit frequencies of the 4 bands. (Bottom-
right) State diagram representing the signal.
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and the power density relative to the frequency band i is given by Bi(t) =
1

fi+1−fi
∫ fi+1

fi
W (t, f)df . The compressed time-frequency matrix is then

Ci(t) =
1

δt(fi+1 − fi)

∫ t+δt

t

∫ fi+1

fi

W (t, f)dfdt.

This compressed matrix will be used to detect transitions in the dynamics. It
can also be used for an efficient online sonification of the signal where each
frequency band code for a note with intensity given by the matrix values at
each time. Transforming neuronal data into sound is useful because the human
ear is very good at detecting temporal structure in audio signals.

10 20 s0.1
9.0

20.0

40.0

100.0 Hz

10 20 s
Compressed time-frequency matrix C

B1

B2

B3

B4

0 9 20 40 150 Hz

L(15)

10 20 s

B1

B2

B3

B4

Figure 1.6: Compression of the EEG - (Top-left) Time-frequency represen-
tation of the signal, shaded areas represent activated bands and dashed lines
represent frontiers of the frequency bands. (Top-right) Local power spectral
density of the signal at t=15s. (Bottom-left) Compressed representation of the
time frequency matrix. (Bottom-right) Dynamics of the integrated power in the
four bands.

Definition of the symbols. Each column of the compressed matrix C pro-
vides a compact description of the frequency content of the signal at a time t.
An empirical criterion θǫ(bi, t) = (1− ǫ)Bi(t) + ǫL(t) determines if a frequency
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band bi is activate at time t by

if θǫ(bi, t) > (1− ǫ)E(Bi) + ǫE(L(t)), bi is active

. The band is temporally active at t when θ0(t) is used as criterion, it has
more power density than at other moments of time, and it is spectrally active
if θ1(t) is used, it has more power density than other frequency band. For
intermediate values of ǫ, a frequency band is active depending on its power
density relative both to other moments of time and frequency bands. In the
EEG Y at t = 15s, considering the criterion θ1, b2 and b4 are active. For each
column of the compressed matrix, a 4-bits codeword db4db3db2db1 is formed based
on the active bands of the signal. The digit bi is equal to 1 if the frequency band
bi is active and 0 if it is inactive. The codeword for EEG Y at t = 15s is 1010
and its decimal representation is 10. The same principle could be adapted to
an arbitrary number of frequency bands and the codeword representation could
be made more efficient by using Huffmann coding 7.

Building of the graph The signal can be represented as a string where each
letter is the decimal translation of the codeword (between 0 and 15). The fre-
quency of occurrences f of each letter and of each two letters word are then
collected in a dictionary and a test is applied to each two letter word. If
f(ab) > f(a)f(b), the word ab is more frequent than it would be if a and b
where appearing randomly in an independent way, the transition from a to b
will then be reported on the graph. By this way, the graph of fig 1.5 for EEG
Y is recovered. The result of this analysis for recorded EEG of 60 s duration
is shown on fig 1.6. The detection of N-letters words can be made optimal by
using Lempel-Ziv-Welch coding 8. The graph of fig 1.7 is obtained from an EEG
trace of 3 hours by drawing the strongest links. The graph can be used to build
a statistical model like a markov chain giving the probability of occurrence of
a state given the current. Transitions between brain states can also be repre-
sented as trajectories in a low dimensional phase space based on the spectral
properties of the signal [54]. It would be interesting to check how these states
relate to classes of neurodynamics at the single cell level.

1.3 Metrics and measures.

We consider a dataset X = (x1,x2, ...,xn). Each data xi is a p-dimensional vec-
tor representing a neuron recording. The neuron recording can be represented
by its membrane potential trace, its spike train or p parameters extracted from
those. We list below distances which can be used to evaluate the closeness of two
data samples and measures representing the structure of the data set. We first
investigate analog signals and then discuss the case of discrete data samples.

7Huffman coding is a way to perform loss-less compression of data by building a variable
length code based on the probability of occurrences of the source symbols.

8LZW algorithm also performs loss-less compression. It is based on the encoding of sub-
strings appearing in the data sequence to be compressed.
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Figure 1.7: State diagram of an EEG trace. - Each node of the graph is a
state with the number of occurrence N. The thickness of arrows represent the
probability of transitions among those states.

1.3.1 Analog signals.

Classical distances. The Minkowski distance between two data samples de-

pends on a parameter q, dq(xi,xj) = (
∑p
k=1‖xik − xjk‖q)

1
q . The Euclidian

distance is the most natural metric to evaluate the similarity between 2 data
samples. It is defined by d2(xi,xj) =

√
∑p
k=1‖xik − xjk‖2. The city block dis-

tance is also used d1(xi,xj) =
∑p

k=1‖xik − xjk‖. The distance matrix DX of
the dataset X is then obtained from the dij = dq(xi,xj).

Correlation-based measures. The Pearson correlation coefficients are de-
fined by rij = 1

p

∑p
k=1

(xik−x̄i)
σxi

(xjk−x̄j)
σxj

. It should not be confused with the

covariance matrix, Covij = 1
p

∑p
k=1(xik − x̄i)(xjk − x̄j). Other measures are

defined in a similar way. The coherence of two signals is defined by considering
the cross-correlation of the their power spectral density. The phase synchrony at
specific frequency is obtained by cross-correlating the phase of these two signals
at this band obtained from the time-frequency analysis.

1.3.2 Spike trains.

Pearson correlation. The simplest way to evaluate the similarity between
two spike trains xi and xj is to consider their Pearson correlation coefficient
defined similarly as that of a continuous signal. With such a measure, an exact
synchrony of the two spike trains is necessary for being similar. For example, if
B is just a copy of A with a shift δt greater than the time window used for the
analysis, the correlation coefficient of A and B may be zero although the two

30

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



spike trains are very similar. Other metrics have been developed to avoid such
pecularities.

Cost based method The Victor-Purpura distance [55] is based on the num-
ber of operations necessary for transforming xi into xj . The three basic op-
erations considered are spike addition or deletion both having a cost of 1 and
temporal displacement of δt having a cost of δtτ . The time constant τ is a free
parameter of the defined distance.

Convolution based method As described above, a filtered version of the
spike trains si and sj are obtained by applying exponential or Gaussian kernels
with width τ . A distance is then defined by [56]:

D2(xi, xj) =
1

τ

∫ T

0

[si(t
′)− sj(t′)]2dt′.

For two spike trains differing only by the insertion or deletion of a spike,
D2(xi, xj) =

1
2 and if the only difference is a shift δt of one spike, D2(xi, xj) =

1− e− |δt|
τ . Another similarity measure based on the filtered signals si, sj is the

following defined in [57]:

S(xi, xj) =

∫ T

0 si(t)sj(t)dt
√

∫ T

0
si(t)dt

√

∫ T

0
si(t)dt

. In both methods, a narrow width of the kernel makes the distance or similarity
measure sensitive to spike jitter whereas with a broader width, the additional
or missing spikes are detected.

Parameter free method Other methods for the estimation of (dis)similarity
are described in [58]. The ISI-distance method has the advantage of be-
ing parameter free. The current interspikes interval is defined by ISIi(t) =
min(tik|tik > t)−max(tik|tik < t) where tik is the kth spike of the ith neuron.
The ISI-distance between xi and xj is then:

D(xi, xj) =
1

T

∫ T

0

|I(t)|dt

with:

I(t) =

{

ISIi(t)
ISIj(t)

− 1 if ISIi(t) ≤ ISIj(t)
−( ISIj(t)ISIi(t)

− 1) else

31

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



1.3.3 Information theoretic measures.

Information theoretical measures, as an application field of probability theory,
heavily relies on the estimation of the probability distribution of the data sam-
ples. As this estimation for finite size samples is often a difficult task, the
following describes the concepts used in information theory with random vari-
ables and we provide simple application examples to illustrate it. For a more
deep treatment of this subject, see [59], and for applications to spike train
analysis see [40].

Shannon entropy

Definition and properties The Shannon entropy of a random variable X
taking discrete values X = [x0, ..., xm], isH(X) =

∑m
l=0−P (X = xl)log2(P (X =

xl)). H gives a measure of the uncertainty that is the number of yes/no questions
it takes to guess the value of the random variable when following an optimal
strategy based on the past occurrences of this variable. It is measured in bits
and variables with maximal entropy for a given set X follows a uniform law.
The Shannon entropy has the following properties:

• H(X) > 0

• H(X,Y ) = H(X |Y ) +H(Y )

• H(X,Y ) ≤ H(X) +H(Y ) with equality if and only if X and Y are inde-
pendent.

H can be extended to continuous variables with the differential entropy,
h(p) = −

∫∞
−∞ p(x)log(p(x))dx but classical properties of the entropy do not hold

anymore. A more convenient way for the extension to continuous variables is to
consider the relative entropy with a reference probability distribution q, also

called the Kullback-Leibler divergence: DKL(p||q) = −
∫∞
−∞ p(x)log(p(x)q(x) )dx

where q is commonly taken as a Gaussian function. The differential entropy
of a data sample of N points generated from a multivariate Gaussian law of
average µ and covariance matrix Σ is h(N (µ,Σ)) = 1

2 ln((2πe)
N |Σ|) with |Σ|

the determinant of the covariance matrix.

Estimation The estimation of differential entropy of a process is not an easy
task because a precise estimation depends on the bin width used for estimat-
ing of the probability density. The entropy is thus bounded by logNbin, the
entropy of a random variable with uniform probability distribution having the
same support. In fig 1.8, the entropy of a Gaussian signal at 10 kHz sampling
frequency is estimated across time with the number of bins being 3 times the
number of points in the signal used for estimation, the result is close to the
theoretical value.

For cell X, the entropy of the membrane potential is compared with the
entropy of a Gaussian variable with the same mean and variance in fig 1.8.
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Before the first spike, the entropy increases linearly close to the behavior of a
Gaussian random variable and it drops after the first spike. The entropy then
grows at a much slower rate because there is a big part of the range (between
-35 and -40 mV) which remains nearly unexplored.
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Figure 1.8: Differential entropy and entropy rate - (Top) Differential en-
tropy estimated for a Gaussian process (black) and for the cell X (blue). The
red line indicates the theoretical value for the Gaussian process. (Middle) 200ms
of the Vm trace used for the estimation of the entropy rate. (Bottom) Entropy
rate and its coarse grained version for 200 ms of the cell X.

Entropy rate The entropy estimate is difficult to interpret because it often
far from its theoretical value and because its range drops drastically after a
event like a spike occurrence. The entropy rate, dhdt is a better way to follows
changes in the signal. As shown on fig 1.8, the rising part of a spike is associated
with an entropy production and the falling part with entropy destruction.

Fisher information.

We suppose a parameter θ has to be estimated from observations of the random
variable X . The likelihood function f(X, θ) gives the probability distribution
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of X given θ. The Fisher information is then

I(θ) = E[(
∂lnf(X, θ)

∂θ
)2|θ].

For sufficiently regular likelihood functions, it can also be written:

I(θ) = −E[
∂2

∂θ
lnf(X, θ)|θ].

Applications. Based on this definition of information, the Cramer-Rao bound
gives the limit of precision achieved by an unbiased estimator θ̂:

V ar(θ̂) =
1

I(θ) .

This theoretical bound can then be used for example to find the interval of
confidence of the estimated frequency of an noisy oscillation. The Fisher infor-
mation is also very important in probability theory because it is used to build a
metric in spaces of probability distribution functions which is the starting point
of information geometry [60].

Mutual information.

Definition and properties The mutual information between two discrete
variables X and Y is defined from the entropy of the marginals and the joint
probability distributions I2(X,Y ) := H(X) + H(Y ) −H(XY ) or equivalently
I2(X,Y ) = H(X) − H(X |Y ), it is symmetric I2(X,Y ) = I(Y,X). There is
no restrictions anymore to extend the definition to continuous variables with
probability distributions pX and pY and the integral version is I2(X,Y ) =
−
∫∞
−∞

∫∞
−∞ pXY log(

PXY

PXPY
), it is the Kullback-Leibler divergence between the

joint law and the product of the marginal laws of X and Y. The mutual infor-
mation measures the reduction of uncertainty in the estimation of X resulting
from knowledge of Y. It is 0 for independent variables and it is H(X) when Y
is a copy of X.

Example on a multivariate Gaussian The 3 examples presented on fig 1.9
corresponds to sets of Gaussian variables (X,Y,Z) with the following covariance
matrices:

A =





.1 .75 .75
.75 .1 .75
.75 .75 .1





B =





1.22 .7 0
.7 1.22 0
0 0 1
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C =





1 0 0
0 1 0
0 0 1





In case A, where all variables are depending on each other, the mutual
information is the same for any pair of variables. In case B, where only X
and Y are correlated, the mutual information of (X,Y) is higher than for other
pairs because observations on one of the variables reduces uncertainty about the
other. When all variables are independent as in case C, the mutual information
should be 0 for any pair but the finite size of the samples introduce a bias.

A B C

IXY IXZ IYZ IXY IXZ IYZ IXY IXZ IYZ

Figure 1.9: Mutual information - Mutual information for random processes
generated by the multivariate Gaussian processes of covariance matrices A, B
and C.

Neuronal complexity.

The mutual information can be generalized into the multi-information of any
set of k random variables X: Ik(X) =

∑

1<i<kH(Xi)) − H(X), this quantity
is also called the integration of the set and it is zero when all variables are
independent. The neuronal complexity defined in [61] for a set of N variables
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is:

CN =
1

N

∑

k=1,...n−1

(
k

n
IN− < Ik >k)

with < ... >k denoting an average over all the subsets of k elements. An
approximation for weakly correlated variables is given in [62]:

CN =
n+ 1

24
(tr(R − I)2 + tr(R − I)3)

with R the correlation matrix 9 for off-diagonal elements. If the data X is
generated by a coupled Ornstein-Uhlenbeck process 10

dXt = Xt(I − C) + σdWt

, the complexity should be related to the coupling matrix. The previous ap-
proximation gives:

CN =
n+ 1

48

∑

i6=j
(C2

ij+CijCji)+
n+ 1

96

∑

i6=j 6=k
3CijCjkCik+

n+ 1

24

∑

i6=j
Cii(C

2
ij+CijCji).

The neuronal complexity is thus related to the decomposition of the structure
of the network in loops (first order term), 3-cycles (second order term),...The
neuronal complexity thus quantifies how much a system is ”more than the sum
of its parts”, a geometrical interpretation based on a comparison with families
of exponential probability distributions can be found in [63]. The neuronal
complexity is thus a promising measure for analyzing the huge amount of data
arising from neuroscience experiments but it is still difficult to estimate it in
an efficient fashion. There has been some recent progress for estimating the
entropy of spike trains [64] and computational tools for this estimation are a
growing field in neuroscience [65].

1.3.4 Attractor reconstruction

The signal recorded by intracellular electrodes or EEG devices is generated by
non linear dynamical systems of high dimension but the effective dimension of
the dynamics may be small due to the presence of rhythms. A theorem from
Whitney and Takens further developed in [66] showed that for an attractor of
effective dimension d, a delay-map in R2d+1 can be built which is qualitatively
similar to the original attractor (that is there exists a diffeomorphism trans-
forming one into the other). In this attractor reconstruction the delay and the
dimension have to be chosen.

9The correlation matrix is composed of 1’s on the diagonal and Rij =
cov(Xi,Xj)√

var(Xi)
√

var(Xi)
10Which can be considered as the linearization the stochastic Wilson-Cowan equations pre-

sented in Chapter 2
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Optimal delay A rule of the thumb for choosing the delay of an oscillatory
pattern is to take 1

4 of the period. When there is no clear period in the signal,
the optimal delay can be chosen as the minimum of the autocorrelation or the
maximum of the mutual information MI(τ) between the signal and its time
delayed version.

Correlation dimension A way to estimate the effective dimension of the
attractor of a chaotic dynamical has been proposed in the 80’s by Grassberger
and Proccaccia in [67]. From the N points of the temporal signal xi = (y(i), y(i+
τ), y(i+2τ), ..., y(i+kτ)) reconstructed from the original signal, the correlation
sum is defined as:

C(r) =
2

N(N − 1)

∑

i<j

θ(r − |xi − xj |)

and the correlation dimension is D = limr→0
logC(r)
logr so that the correlation sum

behaves as C(r) ≈ rD for small r. This correlation dimension can be calculated
for several values of the embedding dimension k and as k increases the optimal
embedding dimension is obtained when D reaches a plateau. A public domain
software called TISEAN [68] can be used for these calculations. For EEG
signals, it has been suggested that the correlation dimension of EEG signals is
reduced during sleep and pathological states like epilepsy [69].

1.4 Data classification

The previous sections showed that many parameters can be used to characterize
signals corresponding to neuronal activity and that there are several ways to
evaluate the similarity between two of those signals. In this section, we consider
that some parameters have been extracted from the recordings and we wish
to obtain a classification based on the comparison of these parameters. When
many parameters are used, it is difficult to perform a efficient classification.
This ”curse of the dimension” can be attenuated by reducing the dimension of
the parameter space.

1.4.1 Preprocessing of the data set

Normalization of the feature space The dataset X is first normalized by
x̃i = (xik−xk

σxk

)1<k<p. After this operation, all parameters have the same variance

1 and the classification based on this normalized dataset is not affected by the
range over which the parameter take values.

Orthogonalization of the feature space (PCA) Principal components of
the dataset are extracted using the covariance matrix C = X̃tX̃. C is symmetric
so it can be diagonalized C = tPΛP . Λ is a diagonal matrix where each diagonal
term represent the contribution of the corresponding eigenvector to the total
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variance. Vectors are then reordered from the one with the biggest eigenvalue
to the one with the smallest eigenvalue. For the classification of the recordings,
the dimension of the parameter space can be reduced by selecting only the M
first vectors explaining 90% of the variance.

	6 	4 	2 0 2 4 6 8 10 12	2
	1

0
1
2
3
4
5

Raw dataset

	6 	4 	2 0 2 4 6	1.5

	1.0

	0.5

0.0

0.5

1.0

1.5
After normalization and Principal Component Analysis

Figure 1.10: Preprocessing of a 2D-Gaussian dataset (300 points) -
(Top) Raw data set. (Bottom) After PCA, the principal axis of the Gaussian
becomes aligned with the horizontal axis.

1.4.2 K-means clustering

Description of the algorithm.

The K-means method is a way to clusterize cells by making an a priori assump-
tion on the number of clusters K [70]. We will discuss possible ways to select
seeds and generate partitions of the parameter space. This method is simple and
efficient, it is widely used in the scientific community but it also have pitfalls of
all unsupervised learning method. A common example of application where it
gives a poor result is the Fisher iris data base. We consider X, a set of n data
points (xi)1≤i≤n in R

p. The algorithm will partition the points around K centers
(Ck)1≤k≤K minimizing a potential function φ =

∑

1≤k≤K minxi∈Ck
‖xi − ck‖2.

This potential function is monotonically decreasing during the K-means algo-
rithm and it will always terminate because the number of possible partitions is
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bounded by Kn. Although the clustering procedure will always terminate, find-
ing the globally optimal partition is a NP hard problem 11 and we will discuss
possible solutions to approach this global optimum.

Seed selection. Seeds are the initial cluster centroids (c0j)1<j<k and the sim-
plest way to select it is to choose randomly K points as seeds with uniform
probability law from the data set. This method is standard but better results
can be obtained with a careful seeding as shown [71]. The selection of the seeds
is the following where D(x) is the distance of the point x to the closest centroid
already chosen:

a Take the first centroid c1 randomly with uniform probability law.

b Take next centroid among X with probability D(x)∑
x∈XD(x)2 .

c Repeat a and b until K centroids are selected.

For this Kmeans++ algorithm, the potential function is shown to check
E[φ] < 8(lnK + 2)φOPT where φOPT is the optimal partition of the data set.

Iterative procedure. The process unfolds in two steps repeated until con-
vergence is obtained:

1 Attribute each data point to its closest centroid by computing jc(xi) =
minjd(xi, c

t
j ). The j corresponding to the minimum distance is the cluster

id which will be attributed to the cell.

2 Compute the new centroid position ct+1
j = (

∑

xik∈Ct+1
j

xik)1≤i≤p.

3 Steps 1 and 2 are repeated until successive centroids stay close to each
other, d(ctj , c

t+1
j ) < ǫ.

where t indicates the iteration of the process.

Selection of a ”correct” partition.

The procedure described above is repeated many times and a criterion has to
be defined so that the partition is considered as robust or not too ”bad”. As we
already saw the result of the K means depends on initial conditions, so those
are changed at each iteration. The distance to used also affect the resulting
partition, the Euclidian distance is commonly used for K-means procedure and
the city-block distance is used when medians are taken as centroids.

11NP hard problems take a very long time to solve when the size of the system grows.
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Dunn Index We can consider a partition to be ”correct” if its clusters are
sufficiently compact and well separated. The relevant measures for this are the

radius of the largest cluster, Rmax = maxCk

∑
xi∈Ck

‖xi−ck‖
|Ck| and the minimum

distance between clusters, Lmin = minCi,Cj
‖ci − cj‖. These two quantities are

combined in the Dunn index DI = Lmin

Rmax
. Among the partitions generated by

the K-means algorithm, we select the one with the highest DI and we stop the
selection when there is no improvement in the DI. We also use the DI to detect
optimal K for the partition.

Frequency of occurrence of the partition After many runs of the K-
means algorithm, the final partition will often be the same. A way to quantify
this is to run the algorithm many times and to take the partition which is most
often encountered in this process.

Example on a mixture of Gaussian distributions To illustrate the K-
means algorithm, we generated artificially two data clouds A and B. In the
data set A, 180 points are randomly chosen following a 2D-Gaussian proba-
bility distribution function (pdf). The data set B is prepared with a mixture
of Gaussian probability distribution functions where for each Gaussian, having
different means and covariance matrices, 30 points are chosen randomly. The
data set A lack of any internal structure and the frequency of the most often en-
countered partition in 10000 repetitions of the K means algorithm as a function
of K, the number of centroids considered, decreases montonically in an expo-
nential fashion. In the data set B, deviations from this monotonical decrease
shows the non-homogeneity of the data set and the drastic drop when K goes
from 6 to 7 suggest that the data set can be well represented as a collection of
6 clusters.

1.4.3 Tree Building.

The K-means method to find clusters in a data set is stochastic, because the
final partition depends on the initial conditions. All the more, it is a ”flat”
method because the obtained clusters are disjoint. A clustering procedure is
hierarchical if in the resulting partition, each cluster is formed with subclusters,
themselves containing subclusters,...If two points are grouped together at a given
level, they will stay grouped at higher levels. The natural representation for a
data set on which hierarchical clustering has been applied is a tree, also called a
dendrogram. There are two possible ways to perform hierarchical clustering, it
can be started with every data sample in a singleton cluster and this bottom-up
process is an agglomerative tree building, or it can be started with a giant cluster
containing all the data samples splitted successively until each cluster contains
only one data sample and this top-down process is a divisive tree building, both
methods are described in [70] and we here focus on the agglomerative method.
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Figure 1.11: Data set A - 180 points chosen randomly with a Gaussian pdf.
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Figure 1.12: Data set B - 180 points chosen randomly with a mixture of 6
Gaussian pdfs.
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Agglomerative tree building.

Algorithm. In the agglomerative tree building method, every data point is
considered as a cluster or node. The process then merges the two closest clusters
and iterates until only one cluster remains. A pairwise distance has to be chosen
so that we can evaluate the distance between two cluster. The pairwise average-
linkage (pal) distance considers the distance between two clusters as the average
over all the pairwise distances between elements of the two clusters. The process
consists of the following steps:

1 Merge the closest clusters Ci, Cj = argmini,jdpal(Ci, Cj) into the cluster
Cl.

2 Repeat 1 until Cl contains all elements of the data set.

Application to Gaussian mixture. As for the K means clustering, the Tree
Building algorithm is applied to the data set A, 180 points randomly chosen from
a mixture of 6 Gaussian distributions. By cutting the tree at an appropriate
depth, 6 clusters are obtained corresponding to the 6 Gaussian distributions
from which the data samples are generated.

 0
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Figure 1.13: Data set B - 180 points chosen randomly with a mixture of 6
Gaussian pdfs.
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Distance matrix and cutting of the tree

Base of tree At the base of the tree, cells are ordered in a way related to
the hierarchical structure of the dataset. This order can be considered as an
interesting way to enumerate the data samples. In the distance matrix of fig
1.14, the lower triangle stands for the data samples in their initial order and the
upper triangle for the order resulting from the tree building procedure. The 6
clusters are clearly detectable in the upper triangle.

Cutting the tree An arbitrary number of clusters (bounded by the number
of cells) can be obtained by cutting the tree at an appropriate depth or more
elaborate cutting methods [72]. By splitting the tree into the same number
of clusters as resulting from the K means procedure, the two partitions can be
compared. A possible way to compare the partitions obtained from two different
methods or in two different experimental conditions is to build a matrix H of
dimensions (K1,K2) where K1 is the number of clusters resulting from the first
method and K2 for the second. Elements of the matrix are filled as follows:

Hi,j = |data samples belonging to cluster i by method 1 and j by method 2|.

1.4.4 Kohonen network.

The self-organizing map algorithm is a biologically inspired model used to map
data samples (xi)1<i<n from the input space to nodes (yj)1<j<k of the feature
space. A weight vectorwj is associated to each node and a dynamic evolution of
these weights representing learning, leads to a low dimensional representation of
the data samples. The simplified version presented below is often referred to as
a Kohonen network [73] and more sophisticated models of self-organizing maps
will be described in the Chapter 3 dealing with models of V1 formation. The
relaxation time of this dynamic evolution is a free parameter of the algorithm.
The feature space is often taken on a 2D regular grid of dimensions (Nx, Ny).
In this algorithm, the final result is dependent on the order of presentation of
data samples.

SOM algorithm For each data sample presentation, a competition is taking
place and the winner dictates the weights evolution dynamics in its neighbor-
hood. The process is as follows after random initialization of the weight vectors:

1 Compute the activation for each node in the feature space yk =
∑

(1<j<p) |wkj−
xj | and select the closest one y∗ from the data sample x.

2 Update weights according to the following learning rule:

wk(i + 1) = wk(i) + α(i)h∗k(i)(x−wk(i))

.
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Figure 1.14: Similarity and comparison of the obtained partitions -
(Left) The lower triangle shows the similarity in a random order and the upper
triangle shows the similarity between data samples ordered according to the
tree. (Right) The quantity in (i,j) indicates how many cells fall into cluster i
with the tree partition and into cluster j with the K means partition.
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Figure 1.15: SOM network. - The network is composed of input nodes x and
map nodes y.
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3 Renormalize the modified weights so that ‖w‖ = 1.

The learning rate α(i) is a decreasing function of time depending on the
relaxation time τ , a common choice is α(i) = τ(1 − i

n ). The neighborhood
function h∗k(i) is 1 if the node k is closer than the influence radius R(t) from
the winner and 0 if it is farther. The influence radius decreases as R(i) =

Rmax(1 − i
n ) with Rmax =

√

N2
x +N2

y .

Biological interpretation. The step 1 can be seen as an implementation of
a neural field and the step 2 is an example of implementation of a plasticity
rule. The algorithm is thus inspired by cognitive theories about assosiative
memory and adaptive learning. A more detailed model inspired from the SOM
but including recurrent connections will be studied in Chapter 3. The relaxation
time τ is a free parameter of the model and it should be adapted to the studied
dataset.

Application to the data set B The SOM algorithm is applied to the data
set B with τ = 0.02 and 200 iterations on 5x5 grid. As shown on Fig 1.16,
the data samples are composed of 6 main clusters with more than 15 data
samples and a collection of smaller clusters. An important property of the SOM
algorithm is that close points in the data cloud will fall onto close points of the
map.

1.4.5 Misclassification and metasimilarity

Each method employed to partition a data set should be related to the ques-
tion asked by the analyst and its advantages and pecularities should be well
understood. On the one side, the K-means method is an easy way to determine
the number of clusters into which the data set will be split. A good K can be
deduced from the evolution of the Dunn index or the frequency of occurrence
of the partition most often encountered. On the other side, it offers no indi-
cation about the relation between clusters. The tree building is very nice to
visualize the fine hierarchical structure of the data set and to provide an order
in accordance to this hierarchical structure but, as a deterministic method, its
result is highly affected by outliers. All the more, it is often difficult to know at
which depth the tree should be cut to give a good partition. To have an idea of
topological relations between clusters, the SOM algorithm makes a very good
job but it necessitates a tuning on several parameters (relaxation time, number
of iterations, size of the grid).

By employing multiple techniques, the resulting partitions can be compared.
In fig 1.14, the cluster C5 of the partition PKM (obtained from K-means) is the
same as the one from the partition PTB (obtained from tree building). The
cluster C0 in PKM becomes the cluster C2 in PTB. A data sample which is in
cluster C3 in PKM lands at C1 in PTB whereas its expected destination is C4.
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Figure 1.16: SOM classification of the data set B - (Top) Resulting 5x5
SOM. (Bottom) Cluster size distribution.
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The matrix H thus provides an easy way to detect inconsistent classification.
These misclassified points are near the frontiers between different clusters.

The 3 classification presented can be used to formalize a new notion of
similarity. The metasimilarity between the data samples i and j is defined by

µij = 1 + δKMij + δTBij − dSOMij

with δKMij = 1 if the data samples i and j are in the same cluster of PKM ,

δKMij = 1 if the data samples i and j are in the same cluster of PTB and dSOMij is
the Euclidian distance between clusters of the data samples i and j in the SOM
normalized between 0 and 1.

If µij = 3, the data samples i and j lands in the same cluster whatever
the clustering method and in that sense data samples i and j are metasimilar.
If 2 ≤ µij < 3, the two data samples are simililar but the cluster to which
they belong could be split into subclusters given by the SOM to highlight the
difference. If 1 ≤ µij < 2, i and j belongs to different clusters or there may be
a misclassification problem for one of the two samples. Finally, if µij < 1, the
two samples are clearly in different clusters. The metasimilarity thus formalize
in a comprehensive way the results of different data classification methods.

0 50 100 150

0

50

100

150

Similarity Matrix

Figure 1.17: Similarity and metasimilarity - The lower triangle shows the
similarity and the upper triangle shows the metasimilarity between data sam-
ples.

48

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



1.5 Application to electrophysiological record-
ings.

We consider the membrane potential recorded with an intracellular electrode in
area 17/18 of the anesthetized cat (alfatesin). Some parameters are extracted
from electrophysiological recordings to build the data sets. A first data set,
Spt150, is composed of 150 data samples from cells recorded during ongoing
activity. Another data set, Vis143, is composed of 143 data samples from cells
recorded during the presentation of a visual stimulus. The obtained classifica-
tion is compared to the same pool of cells during ongoing activity, Spt143.

1.5.1 Parameters extracted from electrophysiological record-
ings.

We show in fig 1.18 the list of 25 parameters with their average and standard
deviation over the population.

There are 3 groups of parameters: parameters related to the distribution of
the membrane potential, parameters related to the spectral properties of the
membrane potential and parameters related to spikes of the cell. In parameters
related to the distribution, we find moments of the distributions and coefficients
reflecting the asymmetry or the deviation from unimodality. Most of spectral pa-
rameters are fractions of the power spectrum integrated over a frequency band.
The instantaneous firing is the reciprocal of the interspikes interval whereas the
average firing rate is the spike count divided by the recording duration.

1.5.2 The on-going activity data set (150 cells).

Optimal partition. A home made K-means method is applied to Spt150
with values of K from 2 to 9 and with the Dunn index as an optimization
criterion. Only the 9 first components of the PCA are necessaty to explain 90%
of the variance. The light blue curve of fig 1.19 corresponding to K=6 shows
rapid convergence to its optimal Dunn index. Moreover, the optimal value for
K=6 (black curve) is higher than the optimal value for K=5 (red curve). This
suggest that the partition with K=6 gives a better description than with other
values of K. The optimal partition for K=6 is given on fig 1.20 and the successive
splittings of the data cloud can be visualized on fig 1.21. Note that the clustering
obtained in fig 1.20 is different from that of fig 1.21 for K=6 because k-means++
method was applied to choose initial conditions in the first case whereas it is
taken randomly with uniform probability in the second case.

Description of the partition. By a multifactorial decomposition analysis
in Matlab, the main relevant parameters for the description of the partition
are those related to the distribution of Vm and the frequency content in high
frequency. The largest cluster (red) is composed of cells having a Gaussian
distribution. The smallest cluster (pink) is composed of cells having a symmetric
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Parameter Average Standard deviation
Mean of Vm [mV] -66.94 3.91
Std of Vm [mV] 4.54 1.60
Skewness of Vm 0.61 0.53
S1 1.38 1.34
S2 0.40 0.40
kurtosis of Vm 0.34 1.42
Dip Test 4.21 12.66
Separability 22.32 15.38
Discretness 82.69 9.81
Regression coefficient
from a fit of the distribution with a Gaussian 0.93 0.084
Regression of 2 Gaussians - Regression 1 Gaussian 0.054 0.074
Regression of 3 Gaussians-Regression of 2 Gaussians 0.0029 0.010
Slope coefficient of the Vm PSD -2.74 0.43
Power ratio 0.93 0.44
Power in the delta band of the Vm PSD [dB] 0.41 15.86
Power in the theta band of the Vm PSD [dB] 30.83 7.79
Power in the alpha band of the Vm PSD [dB] 16.32 5.07
Power in the beta band of the Vm PSD [dB] 12.22 5.10
Power in the gamma band of the Vm PSD [dB] 14.40 11.09
Ratio between maximal autocorrelation
and mean autocorrelation of Vm 3.87 2.71
Relaxation time of the autocorrelation [ms] 35.92 24.88
Average firing rate [Hz] 5.78 5.84
Instantaneous firing rate [Hz] 34.40 30.36
Coefficient of variation of interspikes intervals 1.28 0.40
Slope coefficient of the ISI distribution -0.13 0.50

Figure 1.18: Parameters used for the classification of the cells.
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Figure 1.19: Dunn index for Spt150 - The evolution of the Dunn index over
iterations is plotted for several values of K. The black curve corresponding to
K=6 saturates faster and at a higher value than the red curve corresponding to
K=5.
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Figure 1.20: Optimal partition of Spt for K=6- Each cluster is represented
by a different color and centroids are represented by square boxes. Axes are the
3 first principal components.
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bimodal distribution and up and down transitions are correlated with the EEG
fluctuations. The yellow cluster corresponds to very sharp distribution of Vm,
that is cells with slow variations of Vm have correlations with the EEG. The
deep blue and green clusters correspond to cells having asymmetric bimodal
distributions dominated by the up and the down state respectively. The light
blue cluster correspond to cells having a broad Vm distribution but only one
peak. The data samples which are the closest from the centroids give a good
summary of this partition and wo examples of membrane potential for each
cluster with the associated EEG signal are shown on fig 1.22.

1.5.3 The visually evoked data set (143 cells).

For the visually evoked data set of 143 cells, Vis143, 11 components of the PCA
are necessary to explain 90% of the variance. As can be seen on fig 1.23, the tree
obtained for this data set is not well equilibrated because some few cells behaves
very differently from the major part of the cells. This can be checked on the H
matrix of fig 1.24, with all cells gathering in the fourth cluster of the tree based
partition. The metasimilarity matrix describes the partition at a finer scale.

Clusterization of Spt143. The same algorithms were applied to the reduced
data set of 143 cells of on-going for which the visually evoked activity is avail-
able. The K-means with the frequency of occurrence of the partition as an
optimization criterion gives 4 clusters as optimal partition. Similarly to the
clusterization of Vis143 cutting the tree in 4 clusters gives a poor result because
it gathers most of the cells in a giant cluster.

Visually evoked activity compared to the spontaneous activity In
the first three components of the PCA, the standard deviation is 1.25 for the
spontaneous activity whereas it is 1.11 for the visually evoked activity. The
visual stimulation thus pushes the activity toward the central red cluster of
fig 1.27 corresponding to a Gaussian distribution of the membrane potential.
There is no creation of a new domain for the dynamics as shown on fig 1.27.
The comparison matrix for the clustering of the spontaneous activity data set
and the visually evoked data set shows that there is a correspondance between
the cluster 3 of the spontaneous activity data set and the cluster 1 of the visually
evoked data set and another between cluster 2 of Spt and cluster 3 of Vis. Thus
for clusters 2 and 3 of the spontaneous activity, cells don’t jump to other clusters
but stay close together when a visual stimulus is presented.

1.6 Conclusion

We presented a method to characterize and classify neuronal dynamics. Each
classification has its own pitfalls and it is thus necessary to rely on a multi-
algorithm approach to obtain a robust classification. We now summarize the
classes obtained in the K means partition. The red cluster in fig 1.20 is the
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Figure 1.22: Example of dynamics from the 6 clusters. - For each cluster,
the upper traces are membrane potentials and below is the EEG.
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Figure 1.23: Tree obtained for the 143 cells of the visually evoked
activity dataset.

Similarity and metasimilarity H matrix

Figure 1.24: Summary of the clustering algorithms for the 143 cells of
the visually evoked activity data set. - (Left) The lower triangle is the
similarity matrix and the upper triangle is the metasimilarity matrix. (Right)
H matrix obtained from the K-means partition and the cutting of the tree into
four components.
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Figure 1.25: Tree obtained for the 143 cells of the spontaneous activity
dataset.

Similarity and metasimilarity H matrix

Figure 1.26: Summary of the clustering algorithms for the 143 cells
of the spontaneous activity data set. - (Left) The lower triangle is the
similarity matrix and the upper triangle is the metasimilarity matrix. (Right)
H matrix obtained from the K-means partition and the cutting of the tree into
four components.
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Figure 1.27: PCA space. - The on-going activity (red) and the visually evoked
activity (green) data sets are projected on the PCAs of the on-going activity
data set.

Sp
t

Vis

Figure 1.28: H matrix for Spt and Vis. - The on-going activity (red) and
the visually evoked activity (green) data sets are projected on the PCAs of the
on-going activity data set.
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biggest cluster of Spt150 with 6 clusters and, during visual stimulation, neuronal
dynamics gathers in this central cloud. Cells in this cluster are characterized by
a Gaussian distribution of the membrane potential and we suggest that it defines
an operating state of the network in which inputs are processed in a fast and
efficient manner. Theoretical arguments explaining how such an asynchronous
irregular state can be sustained in the network will be given in the next chapter.
In the pink cluster, cells have a clear bistable behaviour and transitions between
up and down states are correlated with the EEG suggesting a coherent low
frequency oscillation at the network level, similar to that observed during slow
wave sleep. In the yellow cluster, cells have only very few large deviations
from the mean membrane potential suggesting discharge in a synfire mode. An
estimation of the number of synchronous inputs generating the synaptic events
may be computed from the measurement of the size of these events. Other
classes includes cells with micro up or micro down states.

Morphological reconstruction of the neurons could determine whether some
of the classes we obtained characterizes a specific cellular type or a cell can access
any of the classes. It has been shown, in xylazine-ketamine preparations, that
the up state of bistable cell share many similarities with the irregular activity
of the awake state [74] so that the same cell could be in the red cluster or the
pink cluster depending on the global state of the brain monitored by anesthesia.
It would also be interesting to check if classes of neuronal dynamics are related
to the states obtained after compression of long EEG recordings and if a cell
jumps from a cluster to another during an EEG state transition.

The classes defined above can also be used to investigate how the functional
properties of a cell depends on the state of the network in which it is embedded.
In a work realized at the UNIC by Nicolas Benech on 118 cells of the data set we
studied, it was shown that most of bistable cells have a complex receptive field
and that their latency is longer than when cells have monomodal distribution
characterizing the operating state. It was shown, in a xylazine-ketamine prepa-
ration, that the response to visual stimulation is enhanced when the stimulus is
triggered during the up state [75] so that up states may be a cellular analog of
attentional facilitation [76].
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Chapter 2

The computational units of
the brain: neuron and
column models.

2.1 Introduction.

In the 19th century, innovative staining techniques of the nervous system by pi-
onneers of histology, like Gerlach and Golgi, were used to support the reticular
theory of cerebrospinal organization. The brain tissue was considered to be a
continuous net of nerve fibers with holistic properties, being an exception to
the cell theory. At the end of the 19th, Ramon y Cajal improved Golgi staining
techniques and contributed to the opposite theory: the neuron doctrine. The
reticular theory was also in contradiction with the localization of function in
the brain like the Broca area dedicated to speech production and discovered
in 1861. Sherrigton also supported the neuron theory and named synapse the
connexion point between two neurons. The neuron is composed of a dendritic
arbor on which presynaptic neurons make contact at dendrites, a cell body, also
called soma and an axon. If inputs incoming to the cell body are sufficient, a
spike is initiatiated at the axon hillock and propagates through the axon. These
parts are illustrated on fig 2.1 for a generic neuron but many cell types with
their specific morphology are found in the cortex. This all-or-none behaviour
was used to design simplified models capturing the computational properties
of the neuron, that is the way inputs are combined before deciding whether to
spike or not. In a simple example of such artificial neurons, originally proposed
by McCullough and Pitts [77], a weighted sum of the inputs is passed through
a sigmoid transfer function. Having interesting computational properties, like
any boolean function can be implemented by a network of such units, this arti-
ficial neural network, sometimes with different transfer functions and additional
learning dynamics on the weights, were a key element in the development of
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cybernetics and more specifically connectionism. Beside such formal approach,
the understanding of the biophysical mechanisms responsible for spike genera-
tion and propagation resulted in more realistic models of the neuron dynamics
which will be presented in this chapter.

Figure 2.1: Diagram of a neuron with myalinated axon. - The den-
drites, the soma, the axon and additional structures are indicated (Adapted
from http://en.wikipedia.org/wiki/Neuron).

The modular theory of the brain and observations in histology led to the dis-
covery of another set of computational unit at a mesoscale: the cortical columns.
Cortical columns have been defined on anatomical ground with minicolumns of
50µm width containing around a hundred of cells being the result of cell mi-
gration during development [78]. The macrocolumn is defined on a functional
ground, as described in the introduction, but its anatomical subtrates are esti-
mated of around 300µm for the visual cortex of the macaque monkey in [79].
A typical macrocolumn contains few thousands of cells and the detailed model
of a cortical column of the rat somatosensory cortex in the Blue Brain project
contains 10000 neurons of 200 possible types in a space of 500µm width and
1.5mm depth [80]. The column gathers cells coding for the same feature of
the inputs so that a feature is reflected in the activity of a population of cells
rather than in a single cell spike train. This redundancy in the vertical direc-
tion of the cortex makes the code robust to perturbations of the dynamics like
synaptic transmission failure or intrinsic fluctuations in cortical dynamics. First
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evidences for such columnar organization were found in the somatosensory cor-
tex of the cat by Mounstcastle [81] in the 50s and few years later in Hubel and
Wiesel work on the primary visual cortex of the cat [82].

Depending on the animal and the area considered, the neuronal computa-
tions can be understood at the single cell level or at the column level, it is thus
necessary to analyze models of these computational units with tools from the
theory of dynamical systems which will be presented in this chapter. Biolog-
ically realistic models of the neuron have several variables (4 in the classical
Hodgkin-Huxley model) often following a non-linear evolution equation making
their analysis a difficult task. Reduced low dimensional models capture the es-
sential features of the dynamics taking advantage of linearly related variables in
the Fitz-Hugh Nagumo model or caricaturating the spike by an instantaneous
reset after the membrane crosses a threshold. Models of a cortical column, with
their huge state space, can also be reduced by considering the mean field ap-
proximation of the network. In this chapter, after presenting the neuron and
the cortical column, we give a short introduction to dynamical systems and then
apply such methods to models of the computational units of the nervous system.

2.2 Dynamical systems.

A neuron and a column can both exhibit complex dynamics and the theory of
dynamical systems is of great use to understand it. The main concepts and
some examples are briefly summarized bellow and a full presentation of the
bifurcation theory can be found in [83], [84] and [85].

2.2.1 Invariant sets, stability.

A dynamical system consists of the triple T,X,φt, where T is a time set, X is
a state space and φt is a family of evolution operators parametrized by t ∈ T
and satisfying the following properties: φ0 = id and φt+s = φt ◦ φs. Dynamical
systems are studied through the orbits they produce and an orbit starting at x0
is the ordered subset of the state space X, Or(x0) = {x ∈ X : x = φtx0 for all
t ∈ T such that φtx0 is defined}. The phase portrait result from the partitioning
of the state space into orbits. Particularly simple orbits consist of fixed points
and limit cycles. A point x0 ∈ X is a fixed point if φtx0 = x0 for all t ∈ T . A
cycle L0 is a periodic orbit such that each point x0 ∈ L0 satisfies φ

t+T0x0 = φtx0
with some T0 > 0, for all t ∈ T . A cycle with no other cycle in the neighborhood
is called a limit cycle. Fixed point and limit cycle are two examples of invariant
sets that is a subset S ∈ X such that for each point x0 ∈ S, φtx0 ∈ S for all
t ∈ T . Invariant sets more complex than fixed points and cycles are related
to chaotic dynamics. An important property of an invariant set is its stability
because it determines if nearby orbits will be attracted to this set and then if
the invariant will be observable in the dynamics of the system. An invariant set
S0 is Lyapunov stable if for any sufficiently small neighborhood U ⊂ S0 there
exists a neighborhood V ⊂ S0 such that φtx ∈ U for all x ∈ V and all t > 0. An
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invariant set S0 is asymptotically stable if there exists a neighborhood U0 ⊂ S0

such that φt → S0 for all x ∈ U0 as t → ∞. An invariant set is stable if it is
both Lyapunov stable and asymptotically stable. A dynamical system can be
defined from a system of differential equations, ẋ = f(x), where the orbits are
the solutions of the system. The fixed point x0 is stable if the eigenvalues, λi,
of the Jacobian matrix, A = fx(x0), of the system at the fixed point all have
negative real part, Reλi < 0. Asymptotic stability of a fixed point x0 can also
be demonstrated if there exists a Lyapunov function for the system near x0,
that is a continuous function defined on a neighborhood of x0, minimum in x0
and strictly decreasing on its domain of definition. In some cases, the vector
field f defining the dynamical system can be derived from a potential V such
that f = ∇V . Fixed points of the system will be critical points of the potential
and it will be stable if it is a local minimum.

2.2.2 Bifurcations and normal forms

The phase portrait is a good description of a dynamical system and it can be
used to compare different dynamical systems. Thus, two phase portraits are
topologically equivalent if there exists a homeomorphism mapping the orbits of
one onto the orbits of the other, preserving the direction of time. Fixed points
can then be classified into stable node, stable focus, unstable node, unstable
focus or unstable saddle (see fig 2.2). If there is no eigenvalue of the Jacobian
on the imaginary axis, the fixed point is hyperbolic. When a parameter varia-
tion leads to a topologically nonequivalent phase portrait, a bifurcation occurs.
The codimension of the bifurcation is the number of independant conditions
determining the bifurcation. Informations about these changes are gathered in
a bifurcation diagram which represent the phase portrait for various parameter
values. An equivalence relation between dynamical systems have to consider
a mapping from the parameter space of the first to the parameter space of
the second. If we take ẋ = f(x, α), x ∈ R

n, α ∈ R
m and ẏ = f(y, β), y ∈ R

n,
β ∈ R

m, those two dynamical systems are topologically equivalent if there exists
a homeomorphism of the parameter space p : R

m → R
m, β = p(α) and there

is a parameter dependent homeomorphism of the phase space hα: R
n → R

n,
y = hα, mapping orbits of the first system at parameter values α onto orbits
of the second system at parameter values β = p(α), preserving the direction of
time. The two systems are locally topologically equivalent near the origin if

• there exists a mapping (x, α)→ (hα(x), p(α)) defined in a small neighbor-
hood of (x, α) = (0, 0),

• p is an homeomorphism defined in a small neighborhood of α = 0,

• p(0) = 0,

• hα is a parameter dependent homeomorphism defined in a small neighbor-
hood Uα of x = 0, with h0(0) = 0, mapping the orbits of the first system
in Uα onto the orbits of the second system in hα(Uα).
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Figure 2.2: Classification of fixed points for a 2D system. - Depending
on the sign of eigenvalues of the Jacobian, a fixed point can be: stable node,
stable focus, unstable node, unstable focus or unstable saddle (Adapted from
[83]).
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A dynamical system defined by a polynomial with a bifurcation of the origin
may be topologically equivalent to a simpler polynomial, that is a polynomial of
lower degree or taking the symmetry of the system into account. The simplest
of such systems is called a topological normal form for this bifurcation if any
generic system 1 with an equilibrium satisfying the same bifurcation condition
is locally topologically equivalent near the origin to this system for some values
of the coefficient of the polynomial.

2.2.3 Examples of bifurcations.

Fold bifurcation.

The most simple bifurcations are related to the loss of hyperbolicity of a fixed
point. The fold (also called saddle-node) bifurcation occurs when the Jacobian
matrix at a fixed point has a zero eigenvalue. The simple dynamical system
ẋ = x2 + α has a nonhyperbolic equilibrium x0 = 0 with λ = fx(0, 0) = 0 when
α = 0. When α < 0, there are two equilibria x±(α) = ±

√
α, with x+ unstable

and x− stable, and when α crosses zero from negative to positive values, the two
equilibria collide and disappear so that there is no equilibrium anymore when
α > 0 as shown on the bifurcation diagram on fig 2.3. It can be shown that any
system with higher order terms is locally topologically equivalent to the previous
system. Furthermore, any generic dynamical system having a fold bifurcation of
the equilibrium x0 = 0 at α = 0 is locally topologically equivalent to ẏ = y2+β,
which is then a normal form for the fold bifurcation. The conditions for the
bifurcation to be generic are the non degeneracy condition, 1

2fxx(0, 0)0, and the
transversality condition, fα(0, 0) 6= 0.

Hopf bifurcation.

If at some parameter value, eigenvalues are ±iω, a Hopf bifurcation occurs with
a limit cycle emerging from a fixed point. This can only occur in at least 2
dimensional systems and the topological normal forms for such bifurcation is:

{

dx
dt = βx− y + sx(x2 + y2 − α)
dy
dt = x+ βy + sy(x2 + y2 − α)

with s = ±1 depending on the Lyapunov coefficient of the original system.
If s = −1, the fixed point becomes repelling at α = 0 and the activity follows
the branch of the stable periodic orbit, this is the supercritical Hopf bifurcation.
If s = 1, the Hopf bifurcation is subcritical, unstable periodic orbits colliding
with the stable node so that it becomes repelling after the bifurcation and the
system jumps to the closest stable set (see fig 2.3).

1A generic system satisfies:

• A nondegeneracy condition: at least one coefficient of higher order than linear don’t
vanish at the bifurcation point.

• A transversality condition: derivative of the real part of the eigenvalue with respect to
the bifurcation parameter is non zero a the bifurcation point.
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Fold

Supercrit ical Hopf

 

Subcrit ical Hopf

Figure 2.3: Bifurcation diagrams - (Up) Fold bifurcation. (Midle) Supercrit-
ical Hopf bifurcation. (Down) Subcritical Hopf bifurcation.
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Homoclinic orbit.

An orbit starting at x is called homoclinic to the equilibrium x0 if φtx→ x0 as
t → ±∞, that is the orbit connects the saddle x0 to itself. Heteroclinic orbits
connect a saddle to another saddle. These phenomena are found for a particular
value of the parameter which is an example of global bifurcation.

2.3 Stochastic dynamics.

Often some random behaviour is observed in neuronal data and a noise term
is often included in models of neuronal dynamics. Thus to get a good repre-
sentation of the dynamics, one realization is not enough and it is necessary to
consider averages and distributions over an ensemble of realizations of the pro-
cesses. An introduction to stochastic dynamics and random dynamical systems
can be found in [86], [87] and [88].

2.3.1 Stochastic processes.

Definition Given a probability space (Ω,F , P ), with Ω the set of possible
outcomes, F the set of events and P the probabilities attributed to these events,
a stochastic process is a collection of random variables Xt, t ∈ T defined on
(Ω,F , P ). The process is discrete in time if T = N and continuous in time if
T = R+. The Markov property characterizes minimal memory processes where
the present state is sufficient to get the full distribution over the future, this can
be expressed by the following conditional probability distributions:

p(xk+1, tk+1; ...;xn, tn|x1, t1; ...;xk, tk) = p(xk+1, tk+1; ...;xn, tn|xk, tk).
A Markovian process checks the Chapman-Kolmogorov equation for transition
probabilities:

p(x1, t1|x3, t3) =
∫

dx2p(x1, t1|x2, t2)p(x2, t2|x3, t3)
.

There are several kinds of stochastic processes:

• Continuous processes where the random variables can take all possible
values in their range of definition.

• Jump processes where the random variables can take values on a finite set
and jumps from one of this value to another.

• Point processes where event take place at random times.

The definition for the continuity of a stochastic process is given by the Lindeberg
condition, for every ǫ > 0:

lim∆t→0

∫

|x−z|>ǫ
dxp(x, t +∆t|z, t) = 0

.
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The Brownian motion. A simple example of stochastic process checking the
Markov property is the Brownian motion 2 B(t), t ∈ T characterized as follows:

• B(0)=0.

• For all t1 < t2 < ... < tn, increments B(t2) − B(t1), ..., B(tn) − B(tn−1)
are random independent variables.

• For 0 < s < t, the random variable B(t)−B(s) follows a normal distribu-
tion N (0, t− s)

• The transition probabilities of B(t) checks the Lindeberg continuity con-
dition.

The probability distribution of B(t) follows a Gaussian law with meanE[B(t)] =
0 and E[B(t)2] = t, it is then a solution of the following diffusion equation:

∂p(x, t)

∂t
=

1

2

∂2p(x, t)

∂x2
, p(x, 0) = δ(x)

having as solution p(x, t) = 1√
2πt

e−
x2

2t .

The increments ∆B(ti) for a process can be generated by the Box-Mueller
algorithm:

• Pick up U and V, random numbers independent and from a uniform law
in [0, 1].

• Compute X =
√

−2ln(U)cos(2πV ) and Y =
√

−2ln(U)sin(2πV ).

then X and Y are independent random variables with N (0, 1) as probability
density function.

The Poisson process A Poisson process is a counting process, (Nt)t≥0 a
family of random variables indexed by t ∈ R and taking values in N with
independent successive increments and the probability distribution of (Nt) only
depending on the length of the time intervals. For such a process (Nt)t≥0

follows a Poisson distribution : P (Nt+τ − Nt = k) = eλτ (λτ)k

k! with λ the
rate of the process, times between to events follows an exponential distribution
f(T ) = λe−λT . The average inter events interval is E[T ] = 1

λ and the variance
is E[(T −E[T ])2 = 1

λ2 .

Ito processes Ito processes can be written in integral form:

x(t) = x(0) +

∫ t

0

a(x, s)ds +

∫ t

0

b(x, s)dB(s)

2It was named after the botanist Robert Brown who observed random trajectories of pollen
particles in water and it is sometimes called a Wiener process after the mathematician Norbert
Wiener who provided a formalization for it.
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or equivalently as a stochastic differential equation 3:

dx(t) = a(x, t)dt+ b(x, t)dB(t).

Where a(x, t) stands for the deterministic part of the dynamics and b(x, t) for
the stochastic part, the noise term is additive if b doesn’t depend on x and is
multiplicative otherwise. For a multiplicative noise, the integral formula can be
interpreted with Ito’s definition

∫ t

0

b(x, s)dB(s) = limn→∞

n
∑

i=1

b(x(ti−1))(B(ti)−B(ti−1))

or with Stratanovich’s definition
∫ t

0

b(x, s)dB(s) = limn→∞

n
∑

i=1

b(
x(ti−1) + x(ti)

2
, ti−1)(B(ti)−B(ti−1))

but for additive noise the two formulations are equivalent.

2.3.2 Stochastic calculus.

Ito’s formula and Forward Kolmogorov equation In stochastic calculus,
the chain rule for derivation must be modified because terms of order (dB(t))2

are of same order as dt. The derivative of y = f(x) is then at first order in dt:

dy(t) = (
∂f(x)

∂x
a(x, t) +

1

2

∂2f(x)

∂x2
b2(x, t))dt +

∂f(x)

∂x
b(x, t)dB(t).

Applying this formula to E[f(x)] =
∫

f(x, t)p(x, t)dx, with p the probability
distribution of x, gives:

d

dt

∫

f(x, t)p(x, t)dx =

∫

[
∂f(x)

∂x
a(x, t) +

1

2

∂2f(x)

∂x2
b2(x, t)]p(x, t)dx

which can be integrated by parts:

d

dt

∫

f(x, t)p(x, t)dx =

∫

[−∂p(x, t)a(x, t)
∂x

+
1

2

∂2p(x, t)b2(x, t)

∂x2
]f(x, t)dx.

As this is checked for any f, it gives the forward Kolmogorov or Fokker-Planck
equation 4:

dp(x, t)

dt
= −∂p(x, t)a(x, t)

∂x
+

1

2

∂2p(x, t)b2(x, t)

∂x2
.

It can be generalized to N-dimensional processes so that:

dx(t) = a(x, t)dt+ b(x, t)dB(t)

3called the Langevin equation.
4It can also be derived as the Kramers-Moyal expansion of the Chapman-Kolgomogorov

equation truncated at order 2, see [87].
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have the following Fokker-Planck equation:

∂p(x, t)

∂t
=

∑

1≤i≤N

∂ai((x), t)p(x, t)

∂x
+

∑

1≤i≤N

∑

1≤j≤N

∂2b(x, t)bT (x, t)p(x, t)

∂xi∂xj
.

By introducing probability currents, for 1 ≤ i ≤ N :

Ji = ai(x, t)p(x, t) −
1

2

∑

1≤j≤N

∂bij(x, t)p(x, t)

∂xj
,

the Fokker-Planck equation can be written as a conservation law for the prob-
ability density:

∂p(x, t)

∂t
+

∑

1≤j≤N

∂Ji(x, t)

∂xj
= 0

Boundary conditions must be added to be able to solve this equation, it is
commonly taken as lim|x|→±∞p(x, t) = 0 but absorbing or reflecting barriers
may be specified.

2.4 Numerical integration and analysis.

We now present some numerical integration schemes for ordinary differential
equations with a special focus on explicit methods. In an explicit method xn+1

only depends on previous values xk whereas in implicit methods it alsodepends
on itself.

2.4.1 Integration of deterministic systems.

Euler scheme. For a one dimensional dynamical system defined by the fol-
lowing differential equation:

dx(t)

dt
= f(t, x(t))

a trajectory starting at x(t0) = x0 can be integrated with a time step h by the
Euler method, for n > 0:

xn+1 = xn + hf(tn, xn)

which is just the approximation obtained by considering the first terms of the
Taylor expansion. The higher order approximation is

xn+1 = xn + hf(xn) + h2(
∂f

∂t
(tn, xn) +

∂f

∂x
(tn, xn)f(tn, xn))

so that the error between the numerical solution and the exact solution scales
as h2 thus being of order 1.
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Heun scheme The Heun method is another one step integration scheme:

xn+1 = xn +
h

2
(f(tn, xn) + f(tn, un + hf(tn, xn)))

but it is of order 2 so that the error scales as h3.

Runge Kutta scheme When f is non-linear, errors from the Euler method
can be reduced by employing more sophisticated methods like the Runge Kutta
methods which includes multiple steps. In the fourth order method, two inter-
mediate points are introduced, so that:

xn+1 = xn +
h

6

4
∑

i=1

biki

with b1 = 1, b2 = 2, b3 = 2, b4 = 1 and

k1 = f(tn, yn)

k2 = f(tn +
h

2
, xn +

h

2
k1)

k3 = f(tn +
h

2
, xn +

h

2
k2)

k4 = f(tn+1, xn +
h

2
k3)

A s stage Runge Kutta method cannot be of order higher than s and this
method can be extrapolated to an arbitrary number f stages increasing the
accuracy. In the Gill’s method, coefficients are a bit modified: b1 =,b2 = 2 −√
2,b3 = 2 +

√
2,b4 = 1 and

k1 = f(tn, xn)

k2 = f(tn +
h

2
, xn +

h

2
k1)

k3 = f(tn +
h

2
, xn +

h

2
(−1 +

√
2)k1 + h(1−

√
2

2
)k2)

k4 = f(tn + h, xn −
h
√
2

2
k1 + (1 +

√
2

2
)k3).

These methods can also be improved to implement time step adaptivity.

2.4.2 Integration of stochastic systems

Numerical integration scheme can also be used to integrate stochastic dynamics.
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Euler-Maruyama method. For a stochastic differential equations, like with
additive noise dx(t) = f(t, x)h+σ(x)dB(t), the Euler method can be modified by
introducing the stochastic term: xn+1 = yn + hf(tn, xn) + σ(xn)

√
h(B(tn+1)−

B(tn) where ∆(Bt) = B(tn+1) − B(tn) are independent and identically dis-
tributed random variables of mean 0 and variance 1.

Milstein method Milstein’s scheme is as follows:

xn+1 = yn + hf(tn, xn) + σ(xn)
√
h(B(tn+1)−B(tn))

+hσ(xn)σ
′(xn)((B(tn+1)−B(tn))

2 − 1)

2.4.3 Analysis of dynamical systems.

Spectral analysis. The Fourrier spectrum of the raw stochastic signal is
not the best tool for the analysis of a stochastic signal because it will de-
pend on the specific realization of the noise term. The autocorrelation is
a better solution for describing properties of the signal. For a signal y(t),
the Fourrier transform is ŷ(ω) =

∫∞
−∞ y(t)e−iωtdt and the autocorrelation is

< y(t + τ)y∗(t) >=
∫ ∫∞

−∞ P (x1, t + τ, x2, t)dx1dx2. The Wiener-Kintchine
theorem then relates the spectral density S(ω) =< ŷ(ω)ŷ ∗ (0) > to the auto-
correlation < y(τ)y ∗ (0) > by S(ω) =

∫∞
−∞ e−iωτ < y(τ)y ∗ (0) > dτ .

Lyapunov exponent. Dynamical systems are said to be chaotic if their tra-
jectories diverge exponentially. For trajectories separated by δx0 at initial time,
the difference grows as δx(t) = δx0e

λt and the growth coefficient λ is a good
indicator of chaotic systems when it is positive, it is called the Lyapunov expo-
nent of the system. For multi-dimensional sytems, there are several directions
along which coefficients can be contracting (λ < 0) or expanding (λ > 0). If
there exist an invariant set, like a limit cycle, λ = 0 along this set. For smooth
dynamical systems, chaotic trajectories shows up only when the dimension is at
least three. The Lyapunov spectrum (the set of Lyapunov exponents) is usually
calculated by following the dynamics of along the Jacobian and then calculating
the expansion and contraction rates. For a system

ẋ = f(x),

the equivalent linear system is

u̇ = Df(x)u.

To avoid accumulation of the dynamics of perturbations along the direction
corresponding to the maximal Lyapunov exponent, a Gram-Schmidt orthonor-
malization procedure is usually adopted [89] transforming a set of vectors
(u1, ..., un) into a orthonormal basis of Rn (v1, ..., vn):

w1 = u1, v1 =
w1

‖w1‖
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w2 = u2 − (u2.v1)v1,
w2

‖w2‖
...

wn = un −
n−1
∑

k=1

(un.vk)vk,
wn
‖wn‖

This orthonormalization procedure is done every T , K times, while equations
for x and u are integrated. The ith Lyapunov exponent is computed as λi =<
ln‖wi‖ > with < . > is the average over iterations.

2.5 Neuron

Neurons have a huge diversity in their structure and their dynamic properties.
The Neurolex initiative 5 tries to build a common language for their classifica-
tion following the Petilla classification for GABAergic neurons [90]. We first
describe the diversity of cells encountered in the brain and then we show how
simple models can account for essential features the dynamics of the membrane
potential in spite of the cellular diversity.

2.5.1 Diversity of the cells.

Excitatory and inhibitory cells. The major classification of cells is on their
influence to other neurons which is mediated for chemical synapses by neuro-
transmitters flowing at the synaptic cleft which is the 20nm space between
axons terminals and dendritic buttons (see fig 2.1). Neuronal interactions de-
pends on the receptor type, AMPA 6 and NMDA 7 synapses are excitatory
whereas GABAa and GABAb 8 synapses are usually considered as inhibitory
although these synapses have excitatory effect in early developmental stages.
Neurons can also interact through electrical synapses, also called, where the
signal can be transmitted faster than for chemical and often bidirectionally via
physical contact between the two neurons. The effect of such synapses can be
depolarizing or hyperpolarizing depending on the presynaptic activity.

Structure. Another way to classify neurons is on their structure. The most
common and biggest neuron in the cortex is the excitatory pyramidal cell which
has a triangular soma, a dense dendritic tree with apical and basal parts and a
long myelinated axon. Another class of excitatory cells are spiny stellate cells
having a symmetric star shape with localized axon. The majority of inhibitory
interneurons in layer IV are basket cells. Another class of GABAergic inhibitory
interneurons, the chandelier cell, is named after the shape of its axon terminals
and the Purkinje cell, also GABAergic but located in the cerebellar cortex, is
famous for its beautiful planar dendritic arbor.

5Available at http://www.neurolex.org.
6AMPA stands for α-amino-3-hydroxy-5-methylisoazol-4-propionate
7NMDA stands for N-methyl-D-aspartic acid
8GABA stands for gamma-aminobutyric acid.
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Channels. The membrane of a neuron includes many voltage gated channels
letting ions flow inside or outside the cell depending on the membrane voltage.
These channels can also be used to classify neurons. Potassium and sodium
channels are present for all neuron types and explain spike generation in the
Hodgkin-Huxley model. Other channels are involved in more specific processes
like the T-type voltage-gated calcium channel, responsible for the tonic bursting
of thalamic cells.

Firing pattern. Neurons can also be classified based on their firing properties
in response to a step of input current [91]. Inhibitory interneurons are often
fast spiking cells with constant and short interspike interval (ISI). Excitatory
cells have different patterns like non-adapting regular spiking with constant
ISI but longer than for fast spiking cells. For adapting regular spiking cells,
ISI decreases during the response. Intrinsic bursting cells fire with few spikes
very close together at the response onset. The Petilla classification includes
more complex firing patterns like stuttering, irregular or accelerating. For some
neurons, the study of the after potential hyperpolarization can also be helpful
for classification.

2.5.2 Dynamic processes.

Models of the dynamics of the membrane potential should include a spike gen-
eration mechanism and also describe the synaptic interaction.

Spike generation. The generation of spikes is attributed to two ionic con-
centrations: K+ and Na+. At rest, potassium ions are in excess outside the
cell and sodium ions are in excess inside the cell. When the concentrations of
these ions inside and outside the cell are balanced to reach equilibrium, the
corresponding difference of potential between the inside and the outside is given
by the Nernst potential defined as

ENernst =
RT

zF ln
cout
cin

,

with
R = 6.02.1023mol−1

the Avogadro constant ,

F = 9.6510−4C.mol−1

the Faraday constant, T the temperature, z the number of charges carried by
the ion and cin,cout the ion concentrations inside and outside the cell. When the
membrane potential deviates from this value, a ionic current is generated pro-
portional to the deviation (V − ENernst) (with EK = −77mV , ENa = 50mV ).
Moreover, the coefficient of proportionality of this current is constant for a pas-
sive channel like the leak current IL = gL(V − EL) (with EL = −65mV ) but
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it depends on the voltage for active channels like the Na and K channels. Each
ion flux is conditioned on the opening or closing of active gates. Each gate can
be open or closed with transition probability from open to close α(V ) and from
closed to open β(V ). The fraction of open channels follows the dynamics:

dm

dt
= α(V )(1−m)− β(V )m

or equivalently:
dm

dt
=

(m∞ −m)

τ(V )

with m∞ = α(V )
α(V )+β(V ) and τ(V ) = 1

α(V )+β(V ) . In the Hodgkin-Huxley model,

3 channel variables are considered: one for the fraction of activation of the
potassium gate n, one for the fraction of activation of the sodium gate m and
one for the fraction of inactivation of the sodium gate 1 − h. The current
corresponding to these ionic transports are

IK = ḡKn
4(V − EK)

and
INa = ¯gNahm

3(V − ENa)
with ḡK and ḡNa the maximal conductances. When the cell is slightly depolar-
ized Na channels open and flow inside the cell, while V is increasing until the
driving current proportional to (V − ENa) becomes small and Na gets inacti-
vated. Then K currents activate and the potassium driving force (V − EK) is
strong so that the membrane potential decreases and return to its resting value.

Synapse dynamics. An action potential propagates along the axon and when
it reaches the synaptic terminals, neurotransmitters are released in the synaptic
cleft and postsynaptic events are triggered in the postsynaptic neuron. The
corresponding current is

Isyn = gsyn(t)(V (t)− Esyn)

with the synaptic conductances gsyn(t) = ḡsyns(t) generated from the incoming
spikes by the following dynamics:

τsyn
ds

dt
= −s+ τsyn

∑

k

δ(t− tk)

where k runs over all presynaptic spikes and the Dirac impulse defined as δ(x) =
0 for x = 0 and 0 elsewhere. The solution for s is a sum of exponential s(t) =
∑

k e
− (t−tk)

τsyn . When the dynamics for s is of second order:

d2s

dt2
+

2

τsyn

ds

dt
+

1

τ2syn
s =

1

τ2syn

∑

k

δ(t− tk),
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the solution is a sum of α-functions:

s(t) =
∑

k

t

τ2syn
e
− (t−tk)

τsyn .

The synaptic reversal potential is EE = 0mv for excitatory synapses and EI =
−80mV for inhibitory synapses. For electrical synapses, the synaptic current
are: Isyn = ḡsyn(Vpost − Vpre). Slow dynamics, like depression, facilitation or
spike timing dependent plasticity can also be included in a synapse [92] [93].

Membrane equation. The membrane of the neuron can be seen as a capac-
itive medium and an equivalent cable equation can be written to describe the
propagation of an action potential along the passive parts of the cell the Rall
model:

C
dV

dt
= −V +

d2V

dx2
.

Active currents responsible for the generation of the action potential are in-
cluded in a space clamped version of the model with the equivalent circuit
drawn on fig . Applying the Kirchoff law in this circuit gives the Hodgkin-
Huxley equation:

C
dV

dt
= −Im − IE − II

with Im =
∑

i gi(V − Ei) (i = K,Na, L) the intrinsic currents and IE,I =
gE,I(V − EE,I) the synaptic currents.

gNa

ENa

gK

EK

C
gE

EE

gI

EI

Figure 2.4: Equivalent circuit for the Hodgkin-Huxley neuron. - Voltage-
gated sodium and potassium channels (gNa, gK) and synaptic channels and
synaptic channels (gE , gI). The capacity C scales the membrane time constant.

2.6 FitzHugh Nagumo model of cell excitability

2.6.1 Derivation of the model

The full Hodgkin-Huxley (HH) system of equations describing the dynamics of
the membrane potential of a neuron is difficult to study and in th 60’s, it was
difficult to simulate. Fitz-Hugh and Nagumo thus used the simplified system
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which shares many properties with the full system and make a geometric analysis
feasible. The system is composed of two variables at different time scales tuned
by the parameter ǫ, the limit ǫ→ 0 making it a slow-fast system.

Starting from the HH equations, two approximations reduce the 4-dimensional
system to a 2-dimensional system. The full HH system takes sodium, potassium
and leak currents into account:

Cm
dV

dt
= I(t)− gl(V − El)− gKn4(V − EK)− gNam3h(V − VNa)

τn(V )
dn

dt
= n∞(V )− n(t)

τh(V )
dh

dt
= h∞(V )− h(t)

τm(V )
dm

dt
= m∞(V )−m(t)

with

τ(n,h,m) =
1

α(n,h,m) + β(n,h,m)
,

(n∞, h∞,m∞) =
α(n,h,m)

α(n,h,m) + β(n,h,m)
,

αn =
.01(V + 55)

1− e−.1(V+55)
,

βn = .125e−.0125(V+65)

αh = 0.07e−.05(V+65),

βh =
1

1 + e−.1(V+35)
,

αm =
.1(V + 40)

1− e−.1(V+40)
,

βm = 4e.0556(V+65).

Simulations of these dynamics suggest that some approximations leading to
a simpler formulation. The dynamics in the middle panel of figure 2.5 shows
that variations of m are quasi-instantenous, so that m(t) ≈ m∞(V ) and the
model can be reduced to become 3-dimensional. As seen in the bottom panel
of figure 2.5 and in the left panel of figure 2.6, n and h are close to the relation
1.1n(t)+h(t) ≈ 0.89, that brings the model to a 2-dimensional simplified system:

Cm
dV

dt
= I(t)− gl(V − El)− gKn4(V − EK)

−gNam∞(V )(0.89− 1.1n)(V − VNa)

τn(V )
dn

dt
= n∞(V )− n(t)
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Figure 2.5: Simulation of the Hodgkin-Huxley model. (Up) Dynamics of the
membrane potential. (Middle) Dynamics of the activation and inactivation
variables of the ionic channels. (Down) 1.1 n(t)+h(t).
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Figure 2.6: (Left) (n,h) dynamics and the line 1.1 n+h=0.89 (Right) (V,n)
dynamics and nullclines of the reduced 2D system
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Figure 2.7: Phase portrait of Fitzhugh Nagumo system (Adapted from the
Scholarpedia.org article on the FitzHugh-Nagumo model

In the right panel of figure 2.6, the V-nullcline has a N-shape so that it can
be approximated by a cubic function and the slow nullcline can be approximated
by a straight line leading to the FitzHugh-Nagumo equations:

{

ǫ dxdt = x− x3

3 + y
dy
dt = −(x− a+ by)

with ǫ > 0.

2.6.2 Fixed points, saddle-node bifurcation, cusp

Nullclines are
{

y = −x+ x3

3
y = a−x

b

Fixed points are at the intersection of these lines and are the roots of x
3

3 +
(−1 + 1

b )x − a
b which is of the form x3 + px + q = 0 and can be solved using

Cardan’s method.
Here p = 3(−1 + 1

b ) and q = −3ab , the discriminant is ∆ = q2 + 4
27p

3:

78

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



Figure 2.8: (Left) x0 plotted in color depending on a and b. There are three
fixed points in the green areas, the black line is the curve of fold bifurcations and
a cusp bifurcation occur at (1, 0).(Right) The red area is where det(J|x0

) > 0

• If ∆ ≥ 0, there is only one real root to the system :

x0 =
3

√

−q +
√
∆

2
+

3

√

−q −
√
∆

2

• if ∆ < 0 it has 3 solutions(k ∈ 0, 1, 2):

xk = 2

√

−p
3

cos(
1

3
arccos(

−q
2

√

27

−p3 ) +
2kπ

3
)

A fold bifurcation occurs when det(J|x0
) =

−b(1−x2
0)+1

ǫ = 0, it is the line
separating the 3 fixed points zone from the one fixed point zone as shown on

fig 2.8. When a = 0, fixed points are roots of −x3

3 + (1 − b)x + a which is the
normal form of a cusp bifurcation at (b = 1, a = 0).

2.6.3 Stability of the fixed point when ∆ > 0, Hopf and
generalized Hopf

Stability matrix near equilibrium x0:

J|x0
=

(

1−x2
0

ǫ
1
ǫ

−1 −b

)

thus det(J|x0
) =

−b(1−x2
0)+1

ǫ and tr(J|x0
) =

1−x2
0

ǫ − b.
The characteristic equation is given by:

P (λ) = λ2 − tr(J|x0
)λ+ det(J|x0

)

= λ2 − (−b+ (1− x20)
ǫ

)λ+
−b(1− x20) + 1

ǫ
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∆′ = tr(J|x0
)2 − 4det(J|x0

) = (−b+ (1− x20)
ǫ

)2 − 4
−b(1− x20) + 1

ǫ

and eigenvalues of J|x0
are

λ± =
tr(J|x0

)±
√

tr(J|x0
)2 − 4det(J|x0

)

2

thus damping is µ = 1
2 tr(J|x0

) and frequency modulation is ω = 1
2

√

tr(J|x0
)2 − 4det(J|x0

).
Andronov-Hopf bifurcation occurs when:

tr(J|x0
) = (−b+ (1− x20)

ǫ
) = 0

det(J|x0
) =

−b(1− x20) + 1

ǫ
> 0

at the bifurcation point b =
(1−x2

0)
ǫ and λ± = ±i

√

−b2 + 1
ǫ = ±iω0.

To get the normal form, we change coordinates introducing the following
vectors:

q =

(

−(b+ λ+)
1

)

is eigenvector of J|x0
related to λ+.

p =

(

ǫ(b+ λ−)
1

)

is eigenvector of TJ|x0
related to λ−.

The scalar product is < p, q >= (p̂1q1 + p̂2q2) = 2ǫb(−b+ iω).

We then normalize p taking: p→ p
<p,q>

so that: p =

(

− i
2ω

1− i bω

)

We now make the change of coordinates z =< p, x > and with F the non-
linear part of the system, the complex variable z is solution of the system:

ż = λ+z+ < p, F (zq, zq) >= λz +
∑

1≤k+l≤3

gkl
k!l!

zkz

g(z, z) =< p, F (X0 + zq + zq) >

g(z, z) =
i

2ǫω
(− (zq)3

3
− (zq)3

3
−zq(zq)2−(zq)2zq−x0(zq)2zq−x0zq(zq)2−2x0zqzq)

Coefficients of the Taylor expansion are g20 = −ix0

ωǫ2 ((2b2ǫ− 1)+2ǫωb), g11 =
−ix0

ωǫ2 , g21 = −ω+ib
ωǫ2 .

It can be shown that z can be changed to a variable w which after rescaling
of the time is solution of the normal form:

ẇ = (β + i)w + l1w|w|2

with β = µ
ω and l1 = Re 1

2ω (ig20g11−2i|g11|− i
3 |g02|+ωg21) and more simply

at the bifurcation :
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l1 =
1

2ω2
Re(ig20g11 + ωg21)

.

l1 =
−ǫω2 + 2x20b

ǫ3ω

The sign of the first Lyapunov coefficient characterizes the Hopf bifurcation:

• If l1 < 0, a stable limit cycle emerges at the bifurcation point, it is a
supercritical bifurcation.

• If l1 > 0, an unstable limit cycle emerges at the bifurcation point, it is a
subcritical bifurcation.

• Bautin bifurcation occurs when l1 = 0, that is when ǫ = 2b−1
b2 .

There are two possible normal forms for the Bautin bifurcation depending on
the sign of the higher order terms (second Lyapunov coefficient l2):

ż = (β1 + i)z + β2z|z|2 ± z|z|4

with coefficients β1 = Re(λ)
Im(λ) and β2 =

√
l2l1. A polar coordinate transformation,

z = reiφ, of the - normal form gives:

{

ρ̇ = ρ(β1 + β2ρ
2 − ρ4),

φ̇ = 1.

The only equilibrium is ρ = 0 and β1 + β2ρ
2 − ρ4 = 0 may have zero, two

or only one solution at the fold of cycles point. There are thus two branches
starting from the Bautin point:

• A line H of Hopf bifrcations, beta1 = 0, supercritical for β2 < 0 and
subcritical for β2 > 0.

• A curve β2 + 4β1 = 0 with β2 > 0, where two limit cycles collide.

Bogdanov-Takens bifurcation occurs when:

{

tr(J|x0
) = (−b+ (1−x2

0)
ǫ ) = 0

det(J|x0
) =

−b(1−x2
0)+1

ǫ = 0

that is when ǫ = 1
b2 . The normal forms for this bifurcation are:

{

η̇1 = η2,
η̇2 = β1 + β2η1 + η21 ± η1η2.

Moreover, there are three branches passing through the Bogdanov-Takens
bifurcation point:

• The line, β1 = 0, of Hopf bifurcations.
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Figure 2.9: (Colored surface) Hopf bifurcation curves (tr(J|x0
) = 0) for various

values values of a. (Black curve) Fold bifurcation for ǫ = 1, it is the invariant
along the ǫ axis. (Red line) Bogdanov-Takens bifurcation curve (det(J|x0

) = 0).
(Green line) Bautin bifurcation curve (l1 = 0).

• The parabola, 4β1 − β2
2 = 0, of fold bifurcations.

• The half parabola , β1 = − 6
25β

2
2 , of saddle homoclinic bifurcation.

The different types of bifurcation (fold, Hopf, Bautin and Bogdanov-Takens)
are represented on the 3D parameter space in fig 2.9. The vertical line of
cusp bifurcations,(b = 1, a = 0), and curves for Bautin and Bogdanov-Takens
bifurcations intersect at (b = 1, a = 0, ǫ = 1), this singular situation indicates
that this point is a codimension three bifurcation point. It is the organizing
center for the dynamics and any behavior of the system is accessible in its
neighborhood (except those associated with the slow-fast limit ǫ→ 0).

A normal form for the codimenson three bifurcation point was found along
the cusp line in [94]. The system is shown to be topologically equivalent to the
following system:

{

ẋ1 = y1 − x3
1

3 ,

ẏ1 = −x
3
1

3 .
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Figure 2.10: Fold and Hopf bifurcation curves starting from the organizing
center ǫ = 1 and examples of vector fields.

2.6.4 Dynamics at the organizing center with noisy input.

Bifurcation diagram near (a = 0, b = 1, ǫ = 1) with example of vector fields (one
fixed point, two fixed points and limit cycle) are illustrated on fig 2.10. There
is a limit cycle inside the Hopf region, there are 3 fixed points, two of which are
stable, inside the fold region and there is a single fixed point elsewhere.

By adding a random component being a Brownian motion, the dynamics
writes:

{

ǫdx = (x− x3

3 + y)dt+ σ
√
dtdBt

dy = −(x− a+ by)dt

The associated Fokker Planck equation is:

∂P

∂t
= − ∂

∂x
[(x− x3

3
+ y)P ]− ∂

∂x
[(x − a+ by)P ] +

σ

2

∂2P

∂x2

In fig 2.11, the dynamics of x is shown for three different noise variance but
with the same realization of the random process integrated with a stochastic
Heun scheme. Although different noise variances are used, the irregularities are
similar within the 3 traces.

The power spetrum density is then computed for different values of σ and
the frequency F0 at which this power is maximum is reported on fig 2.12 and
2.13. When the random process is initialized by different seeds, F0 increases
smoothly with σ whereas it increases by jumping from one plateau to another
when the same noise realization is used.
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Figure 2.11: Examples of traces for various sigma.
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Figure 2.12: (Up) Spectrum for big values of the noise variance. (Down) Dom-
inant frequency F0 of the spectrum and energy S0 at this frequency. Noise
realization are the same for all tested σ.
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Figure 2.13: (Up) Spectrum for big values of the noise variance. (Down) Dom-
inant frequency F0 of the spectrum and energy S0 at this frequency. Noise
realisation are different for all tested σ.

Lyapunov exponents calculated for different values of σ do not show chaotic
dynamics as it stays negative on fig 2.14. In a wavelet analysis, bumps of high
power are visible in two frequency bands. The low frequency component could
result from noise induced switching between two stable fixed points inside the
fold region and the high frequency component could be related to the limit cycle
inside the Hopf region.

2.7 Hybrid dynamical systems.

In the Fitz Hugh Nagumo approximation of the membrane potential, the 2 di-
mensions dynamical system was smooth but the dynamics can also be reduced
with a combination of smooth and discontinuous dynamics, with an instanta-
neous reset from the spike threshold to the resting potential. Such systems
combining continuous and discontinuous dynamics are referred as hybrib sys-
tems [95].

2.7.1 Integrate and fire neuron models.

Leaky integrate and fire neuron (LIF): constant input. The simplest
neuron model after the simple Poisson process consist of the membrane equation
with a leak current and external input, spikes are generated by a discontinuity so
that the membrane potential is reset to Vr when the voltage crosses a threshold
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Figure 2.14: (Left) Lyapunov exponents depending on sigma. (Right) Time-
frequency analysis of the signal with time steps on the horizontal axis and
frequency in Hertz on the vertical axis.

value Vth. The dynamics then follows:

C
dV

dt
= −gL(V − EL) + Iext

If V (t−) > VT then V (t+) = Vr.

In the case of constant external input I0 applied by an electrode to an isolated
neuron with no synaptic inputs, there is a threshold current IT = gL(VT −EL)
so that if I < IT , the stable fixed point solution is the subthreshold potential
V∞ = EL + I0

gL
and if I > Ith, the neuron spikes regularly. The time dependent

solution of the equation is V (t) = V∞ + Ae−
t
τ with A = V (0) − V∞ and the

time constant, τ = C
gL

. Considering the potential initially at its reset value,

V (0) = Vr , the threshold is reached at time T so that Vth = V∞+(Vr−V∞)e−
T
τ

and thus the stationary interspikes interval of the neuron is

T = τln
VT − V∞
Vr − V∞

.

2.7.2 Diffusion approximation of Poissonian input.

In the Stein model [96], the free membrane potential (without considering the
threshold for spikes) follows the stochastic differential equation (considering the
normalized voltage V → gL(V − EL):

dV (t) = −V (t)dt + sEdNE(t) + sIdNI(t)

where NE ,NI are Poisson processes of rates λE , λI simulating incoming spike
trains and sE > 0,sI < 0 the amplitude of excitatory and inhibitory synaptic
events. The diffusion approximation consist in taking simultaneously the limits
of small amplitude of synaptic events and large rates of the Poisson processes,
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it was shown in [97] that this model converges in law to the following Orstein-
Uhlenbeck process:

dV (t) = (−V (t) + µ)dt+ σdB(t)

with
µ(t, v0) = v0e

−t + (sEλE + sIλI)(1− e−t)
and

σ2(t, v0) =
s2EλE + s2IλI

2
(1− e−2t)

the drift and diffusion coefficients. The stationary density for the membrane
potential is the following Gaussian probability distribution:

p(V, t|v0, 0) =
1

√

2πσ2(t, v0)
e
− (V −µ(t,v0)2

2σ2(t,v0) .

2.7.3 Fokker-Planck equation.

We consider the LIF model:

C
dV

dt
= −gL(V − EL) + Iext

If V (t−) > Vth then V (t+) = Vr

with a refractory period τr during which V is clamped to the reset value. The
Fokker-Planck equation for the probability distribution of the membrane poten-
tial is:

∂P (V, t)

∂t
=
∂(gL(V − EL)− µ)P (v, t)

∂v
+ σ2 ∂

2P (V, t)

∂V 2
+ r(t)δ(V − Vr)

with µ and σ taken from the diffusion approximation and δ(x) =

{

1 if x = 0
0 else

.

It can be written in the form of a conservation law:

∂P (V, t)

∂t
= −∂J(V, t)

∂V

with the probability current

J(v, t) = (−gL(V − EL) + µ)P (v, t) + σ2 ∂P (V, t)

∂V
+ r(t)H(V − Vr)

with H the Heaviside function. Boundary conditions on the lower part are

limV→−∞P (V, t) = 0 and limV→−∞V P (V, t) = 0 so that
∫ VT

−∞ P (V, t)dV is
finite. At the threshold, the condition is absorbing P (VT , t) = 0 and the prob-
ability current through threshold is the firing rate r(t) so that

∂P (VT , t)

∂V
= −r(t)

σ2
.
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Taking neurons in the refractory state into account, the normalization condition

writes:
∫ Vth

−∞ P (V, t)dV +
∫ t

t−τr r(s)ds. The stationary firing rate for this model

is shown in [98] to check:

r−1 =
√
π

∫
Vr−µ

σ

Vr−µ
σ

es
2

(1 + erf(s))ds

with erf the error function

erf(x) =
1

π

∫ x

−x
e−s

2

ds.

2.7.4 Non-linear integrate and fire model.

The leaky integrate and fire neuron model is simple to use but has limited
behavior and several more recent models have integrated a non-linearity to sim-
ulate the spiking mechanism and a secondary variable to provide an adaptation
mechanism. This non-linearity is quadratic in the Izhikevich model [99] and
exponential in the Brette-Gerstner model [100] and with such sophistications,
the diversity observed in neuronal dynamics can be reproduced easily. The
Brette-Gerstner model is driven by the following equation:

C
dV

dt
= −gL(V − EL) + gL∆T e

V −VT
∆T − w + I

τw
dw

dt
= a(V − EL)− w

with C, gL and EL the same parameters as in the LIF, ∆T shaping the spike, I
the external input, τm, the adaptation time scale and a scaling the contribution
of the voltage to the adaptive variable dynamics. When V > VT , the exponential
term grows very fast corresponding to a spike and when the voltage crosses Vcut,
the voltage is reset and the adaptation variable is increased:

if V > Vcut

{

V = Vr
w = w + b

When I < Ith, the system set in a quiescent fixed point and I > Ith leads
to persistent firing of the neuron through saddle-node bifurcation if a < gL

τw
and through Andronov-Hopf bifurcation if a > gL

τw
. The bifurcation to persis-

tent firing when a = gL
τw

corresponds to a codimension two Bogdanov-Takens
bifurcation [101].

2.7.5 Parameters for excitatory and inhibitory neurons.

Inhibitory neurons are usually considered to be fast spiking cells, with no adap-
tation, and excitatory neurons shows adaptive behavior with their firing rate
slowly decreasing when a constant input is injected. Parameters used in the
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Parameters of the membrane potential

Membrane time constant [ms]: τm = C
gL

20

Membrane capacity [nF]: C 0.2
Membrane resting potential [mV]: EL −60
Reset membrane potential [mV]: Vr −60
Threshold membrane potential [mV]: VT −50
Cutting membrane potential [mV]: Vcut 20
Refractory period [ms]: τr 5
Parameters of the synapse
Excitatory synapse time constant [ms]: τsynE 2
Inhibitory synapse time constant [ms]: τsynI 1
Excitatory synapse reversal potential [mV]: EsynE

0
Inhibitory synapse reversal potential [mV]: EsynI

−80
Parameters of the adaptation variable Regular spiking (E) Fast spiking (I)
Increment of the adaptation variable: b 0.04 0
Scaling of the membrane potential contribution
to the adaptation dynamics: a 0.001 .1
Adaptation time constant [ms]: τw 120 50

Figure 2.15: Parameter used for excitatory and inhibitory cells in the adaptive
exponential integrate and fire neuron model.

simulations are listed in fig 2.15. The parameters for the regular spiking cell are
taken from the result of fitting procedure on Hodgkin-Huxley model [102] or
real data [103]. The average firing rate of a neuron connected to a Poisson input
spike train is plotted for various input frequencies in fig 2.16. The adaptation
added to the excitatory neuron linearizes this frequency-response curve.

2.8 Columns.

As we saw in the introduction, columnar structure support the modular view
of the brain. There are still some controversy about what is the definition of a
column and its internal structure.

2.8.1 Definition.

Anatomical column. During cell migration, minicolumnar structures can
be seen and will stay in such a packed form in the adult neocortex. These
microcolumns have around 50µm diameter and contain from 80 to 100 neurons.
It has been supposed from the 80’s that it is a uniform structure across areas
and species but more recent observations found inter-individual and inter-species
variability in the size and density in neurons of these columns [78].
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Figure 2.16: Frequency-response curves. - Average firing rate response
to a Poisson input spike train at various frequencies for excitatory (red) and
inhibitory (blue).

Functional column. At larger scale, as described in the introduction, func-
tional columns are characterized by the response properties of its neurons. The
diameter of a column is around 300µm and it is composed of around 60-80 mini-
columns. Hypercolumns in primary visual cortex gathers cells having similar
receptive field position but for which the preferred orientation may differ, it is
around 1mm width. Columns related to more complex features can be found
in inferotemporal cortex [104] or columns coding for a feature hold in memory
can be found in prefrontal cortex [10].

2.8.2 Internal structure.

E-I network. The most common way to model a column is to consider a
group of excitatory cells and a group of inhibitory cells. It is common to take
80% of excitatory cells and 20% of inhibitory cells. Composition of the network
should also take the cell properties into account, with excitatory cells showing
adaptation whereas inhibitory cells have fast spiking dynamics.

Neural circuit. A cortical column spans over 6 layers and networks account-
ing for this laminar structure are called neural circuits. In the Jansen and Rit
model [105], three populations are considered for a column: one of excitatory
pyramidal cells (located in layer II/III or layer V), one of inhibitory interneurons
and one of excitatory interneurons located in IV. The LAMINART architecture
also include three layers: II/III, IV and VI [106]. Detailed realizations of a neo-
cortical column of the rat have also been realized including the detailed anatomy
of the neuron in the blue brain project [80]. Templates based on the anatomical
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studies of V1 assessed the precise connection probabilities among the different
layers and may offer a good description of the column (see [27] using data from
[107] and [108]). More recent data describing a circuits of the visual cortex are
available in [109].

2.9 Mean field equations.

Derivation of the Wilson-Cowan equations For a single column model,
the activity is described by a macroscopic variable x(t) describing the proportion
of neurons firing at time t. After a neuron spikes, there is a refractory period
τr during which the neuron is non responsive and for excitatory neurons, the
proportion of neurons which are not in their refractory period at time t is

1−
∫ t

t−τr
X(t′)dt′.

Neurons heterogeneity, introduced by a distribution D(θ) of firing threshold or
a distrbution C(w) on the number of afferent synapses to a neuron, shapes the
response function, S(x) =

∫ x

0
D(θ)dθ or S(x) =

∫∞
θ
x

C(w)dw. This response can

be taken as the sigmoid function, S(x) = 1
1+e−a(x−θ) whith the gain a and the

threshold θ.
For a column with a level of recurrence α receiving the input β, the average

excitation:
∫ t

−∞
h(t− t′)(αX(t′) + β)dt′

with h an exponentially decreasing function. The dynamics then follow:

X(t+ τ) = (1−
∫ t

t−τ
X(t′)dt′)S(

∫ t

−∞
h(t− t′)(αX(t′) + β)dt′

By considering averages :f̄(t) = 1
s

∫ t

t−s f(t
′)dt′, integrals can be approximated

so that:
∫ t

t−τ
X(t′)dt′ → rX̄(t)

∫ t

−∞
h(t− t′)X(t′)dt′ → kX̄(t)

By keeping X instead of X̄ and using the Taylor formula X(t + τ) = X(t) +
τ dXdt + o(τ), we reach the following equation:

τ
dX

dt
= −X + (1− rX)S(αX + β).
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Bifurcations in a one excitatory population model Thus for a one pop-
ulation model with self-connection α and external input β, considering r = 0,
the dynamics follows:

dx

dt
= −x+ S(αx + β)

for which fixed points checks: x0 = S(αx0 + β). As shown on fig 2.17, there can
be one or three fixed points depending on the parameters α, β. As the input
β is varied, for sufficiently high values of the recurrence α, two saddle-nodde
bifurcations occur when the linear part cancel out: αS′(αx0 + β) = 1 which
corresponds to the first diagonal y = x

α being tangent to the response function.
As α is decreased, there is an αc where the two saddle-node curves collide, this
is the cusp of the system.

�0.5 0.0 0.5 1.0 1.5 2.0
x
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x
+

� )

�=�7

�=�20

Figure 2.17: Response function for various β - There can be one or three
fixed points depending on the number of intersection points between the re-
sponse function and the line g(x) = x).

Phenomenological model of UP and DOWN states. Based on the pre-
vious demonstration of cusp bifurcation, the system can be approximated by its
normal form near the bifurcation point. Near a cusp point, the population is
described by the following dynamics: ẋ = −∇E(r) deriving from the potential
E(r) = r4 + ar2 + bx. When a goes from negative to positive values, the simple
well potential becomes a double well potential and a scales the separation be-
tween the two fixed points and the height of the unstable fixed point. When the
parameter b = 0, the double well potential is symmetric and one of the two fixed
points has minimal potential when b 6= 0. The equation for the mean activity
in a column is then:

dr = −(r3 + ar + b)dt+ σdWt.
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Figure 2.18: Saddle-node bifurcation. - (Left) SN bifurcations as β varies.
(Right) Cusp point in the α, β.
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When a > 0, the potential from which the dynamics derives has a single fixed
point, ru = 0, and the stochastic system has fluctuations around that fixed
point whereas when a < 0, the corresponding potential has two fixed points,
rs = ±

√
a, and transitions between these two fixed points are induced by noise.

The corresponding Fokker-Planck equation is :

∂p(r, t)

∂t
=

∂

∂r
(∇E(r)p(r, t)) +

σ

2

∂2p(r, t)

∂r2

and the stationary distribution is:

p0(r) = N e
−2∇E(r)

σ .

The time between transition from one of the stable node to the other is given
by the inverse of the Kramers rate [87]:

Ts =
π

|
√

E′′(ru)|E′′(rs)
e

E(ru)−E(rs)
σ .

If an additional low frequency, ω, forcing is added to the system, there is a noise
intensity for which coherent transitions occurs between the two fixed points.
The condition for such stochastic resonance is 2Ts = Tω.

The description of the network activity in terms of attractors was used in a
more sophisticated network modeling decision making in [110].

Bifurcations in the two populations model of a column. According
to Dale’s principle, neuronal cells should be considered based on their synaptic
influence on other cells, into excitatory and inhibitory cells leading to the mean-
field model:

τe
dE

dt
= −E + (1− reE)S(ae(c1E − c2I − θe + P ))

τi
dI

dt
= −I + (1− riI)S(ai(c3E − c4I − θi +Q))

The system then have one or several fixed points or even limit cycles as shown
in these classical results from Wilson and Cowan in [111]:

• If c1 >
9
ae
, there are some constant (P,Q) configurations for which the

system has 3 fixed points.

• If aec2
aec1−9 >

aic4+9
aic3

, there are some constant (P,Q) configurations for which
the system has 5 fixed points.

• If c1ae > c4ai + 18, at least one fixed point is unstable.

• If aec2
aec1−9 > aic4 + 9aic3,

aec1−9
aec2

< 1 and the preceding condition for fixed
point instability holds, then for Q = 0, there exists a threshold P0 such
by increasing P , a limit cycle appears when P > P0.
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Figure 2.19: Stochastic forcing of the normal form near the cusp bi-
furcation. - (Up) a > 0, the firing rate r shows fluctuations around the single
fixed point. (Down) a < 0, r has stochastic transitions between the two fixed
points.
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2.10 A column of spiking neurons.

The network is composed of two populations, 80% of the cells are excitatory and
20% are inhibitory. Excitatory cells are regular spiking with adaptation and in-
hibitory ones are fast spiking. When connections in the network are considered
as sparse, there can be several behaviors depending on the balance between ex-
citation and inhibition. For high values of the maximal excitatory conductance
with low value of the inhibitory conductance, the network saturates to its maxi-
mal frequency and for higher values of the maximal inhibitory conductance, the
network have collective oscillations or asynchronous state. The asynchronous
irregular regime was first described in a theoretical work of Van Vreeswijk and
Sompolinsky in [33] for a network of sparsely connected binary neurons with ex-
citatory currents balancing precisely the inhibitory ones and this asynchronous
state was later reported for integrate and fire neurons with current synapses
[112] or conductance synapses [113].
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Figure 2.20: Activity of the 40 excitatory neurons in a column com-
posed of 50 neurons. - (Up) Raster plot of a column. (Down) Average firing
rate in the column.

Asynchronous irregular regime in a network of binary neurons. The
network is composed of two populations, one with NE excitatory neurons and
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one with NI inhibitory neurons. At each time, a neuron i from population k
gets its state updated according to: σki (t) = H(uki (t)) where H is the Heaviside

function H(x) =

{

0 if x < 0
1 if x ≥ 0

and uki (t) is the input to the neuron i at time

t:

uki (t) =
∑

l=E,I

Nk
∑

j=1

J lkij σ
l
j(t) + uk0 − θk

with uk0 the external input and θk the threshold for neurons of the population k.
Each neuron receive input from K neurons with connection strength Jklij = Jkl√

K
so that the network is sparsely connected: 1 << K << N . Moreover, because
the absolute scale of the input is of no relevance, it is possible to consider
JEE = JEI = 1 and JE = −JIE , JI = −JII . The population averaged firing
rate is mk = 1

Nk

∑Nk

i=1 σ
k
i (t) and it checks the mean field equation [33]:

τk
dmk(t)

dt
= −mk(t) + erf(−uk

αk
)

with the mean input for neurons of the population k:

uk(t) =
√
K(

∑

l=E,I

Jlkml(t) + Ekm0)− θk

where m0 is the mean rate of external sources connecting with strength E√
K

to

the excitatory population and I√
K

to the inhibitory population, and the variance

of the input to the population is

αk(t) =
∑

l=1,2

(Jlk)
2ml(t).

The complementary error function is:

erf(z) =

∫ ∞

z

e−
x2

2
dx

2π
.

Apart from saturating fixed points resulting in mE ,mI = 0, 1 or mE ,mI = 1, 0,
there can be a balanced fixed with finite inputs so that:

Em0 +mE − JEmI = O(
1√
K

)

Em0 +mE − JImI = O(
1√
K

)

so that as K →∞:

mE =
JIE − JEI
JE − JI

m0

mI =
E − I
JE − JI

m0
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and the balanced state can exist if these stationary firing rates are positive, that
is if:

E

I
>
JE
JI

> 1

or
E

I
<
JE
JI

< 1.

Furthermore there can be unbalanced solution mE ,mI = 1, 1 with inputs uk =√
K of order

√
K if

E

I
<
JE
JI

< 1

or if 1 > JE and 1 > JI so that the conditions to obtain a balanced state are:

E

I
>
JE
JI

> 1

and
JE > 1.

The balanced state achieve perfect tracking of a time varying input with the
effective time constant being much smaller than for the unbalanced state.

Fokker-Planck equations for a column of integrate-and-fire neurons.
A network with a similar column architecture was studied with integrate-and-
fire neurons as units of the network [112]. The dynamics for each neuron is:

dVi
dt

= − 1

τ
Vi +

∑

j

∑

k

Jijδ(t− tk −D)

and if
Vi(t) > Vth, Vi(t+ τref ) = Vr

where k runs over spikes of the neuron j and j runs over the input neurons
to the neuron i consisting of Cext neurons from the external source, CE =
ǫNE neurons from the excitatory population and CI = ǫNI neurons from the
inhibitory population with ǫ << 1 so that connections are sparse. Moreover,
notations are simplified by taking CI = γCE . The delay D stands for the
propagation time along the axon and the dendritic tree. The PSP amplitude for
external and recurrent synapses are taken to be equal, J , and for the inhibitory
synapses, the PSP amplitude is gJ . For such a network, the Langevin equation
is:

τ
dVi
dt

= −Vi + µ(t) + σ
√
τηi(t)

with the average and variance of the input composed of a recurrent part and an
external part, both resulting from Poissonian spike trains :

µ(t) = CEJ(1− γg)ν(t−D)τ + CEJνextτ
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and
σ = J

√

CE(1 + γg)ν(t−D)τ + CEνext.

The corresponding Fokker Planck equation for the probability density of the
membrane voltage is

∂P (v, t)

∂t
=

∂

∂V
((V − µ(t))P (V, t)) + σ2

2

∂2P (V, t)

∂V 2

which can be rewritten in terms of probability flux:

∂P (V, t)

∂t
= −∂S(V, t)

∂V

with

S(V, t) = −(V − µ(t))P (V, t)− σ2

2

∂P (V, t)

∂V
.

Boundary conditions should be precised for this equation to have a unique so-
lution.

• At the threshold voltage, the probability flux gives the firing rate and this
firing rate stays finite so that S(Vth, t) = ν(t) and P (V, t) = 0 for V ≥ Vth.
This results in ∂P (Vth,t)

∂V = − 2ν(t)τ
σ2(t) .

• At the reset potential, the probability distribution is continuous and the
probability flux from the threshold potential is reinjected taking the re-
fractory period into account so that the probability flux has the following
discontinuity S(V +

r , t)− S(V −
r , t) = ν(t− τref ) or

∂P (V +
r , t)

∂V
− ∂P (V −

r , t)

∂V
= −2ν(t− τref )τ

σ2(t)
.

• The integral of the probability distribution should stay finite so that
P (V, t)→ 0 and V P (V, t)→ 0 when V → −∞.

• Finally, as a probability distribution, it checks the following normalization
condition:

∫ Vth

−infty
P (V, t)dV +

∫ t

t−τref
ν(u)du = 1.

The stationary distribution solution of the Fokker Planck equation with such
conditions for the voltage is

P0(V ) =
2ν0τ

σ0
e
− (V −µ0)2

σ2
0

∫

Vth−µ0
σ0

V −µ0
σ0

H(u− Vr)eu
2

du

. With H the Heaviside function, H(x) = 1 if x > 0 and H(x) = 0 otherwise,
and

µ0 = CEJτ(νext + ν0(1 − gγ)
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σ2
0 = CEJ

2τ(νext + ν0(1 + g2γ)).

The normalization condition gives the stationary firing rate ν0:

1

ν0
= τref + 2τ

∫

Vth−µ0
σ0

Vr−µ0
σ0

dueu
2

∫ u

−∞
dve−v

2

.

Linear stability analysis gives the Hopf bifurcation lines where transition to
synchronous spiking occurrs. The computation of the coefficient of variation of
interspikes intervals on numerical simulations of the network then determines
whether the spiking is regular or irregular. The diagram for the network with
uniform delays D = 1.5ms is shown on fig 2.21 depending on the external fre-
quency and the relative strength of excitatory and inhibitory currents. There are
three lines separating asynchronous behaviour from synchronous instabilities:

• A vertical line at g = 4 corresponds to exact balancing of inhibitory and
excitatory currents. For g < 4, the activity is synchronous regular at high
frequency and for g > 4, neurons spike at low frequency asynchronously.

• For g > 4, at low external input frequency, a branch separates the asyn-
chronous irregular state from a low frequency synchronous irregular regime.

• For g > 4, at high external input frequency, a branch separates the
asynchronous irregular state from a high frequency synchronous irregu-
lar regime.

Moreover, in the triangular region near g = 4 and with external frequency
close to threshold, the activity combines a slow oscillation and a high frequency
spiking on top of it.

2.11 Coupled columns.

2.11.1 Reduction to oscillators.

For two weakly coupled columns, the mean field equations are:

{

dEk

dt = −Ek + S(Aek + ηaeUl)
dIk
dt = −Ik + S(Aik + ηaiVl)

with populations k, l = 1, 2 k 6= l and

Ul = a1E1 − a2Il

Vl = a3El − a4Il
Aek = ae(c1Ek − c2Ik − θe + Pk)

Aik = ae(c3Ek − c4Ik − θi).
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Figure 2.21: Diagram of a network of IF neurons (Adapted from [112]).
- Parameters are the relative strength of inhibition g and the frequency of the
external input rescaled by the frequency needed to reach threshold without
feedback, νth = Vth

CEJτ
. Possible states are described as asynchronous (A), syn-

chronous (S), regular (R) or irregular (I).
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A change of variables leads to the Hopf normal form and the reduction of the
oscillators to their phases φ1, φ2 leads to the system:

{

dφ1

dt = ω1 −K12sin(φ1 − φ2)
dφ2

dt = ω2 −K21sin(φ2 − φ1)

with coupling terms proportional to ηaeS
′(Aek) and ηaeS

′(Aik).

2.11.2 Few coupled columns.

Arnold tongues. For a single oscillator with forcing frequency ω and self-
coupling K:

dφ

dt
= ω −Ksin(φ)

various mode locking are possible depending on ω and K. Arnold tongues are

regions of the parameter space where the mode locking index φ̇
ω is uniform. The

largest areas are integer modes and smaller areas are fractional modes, modes
0, 12 , 1,

3
2 , 2 can be seen on fig 2.22.
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Figure 2.22: Arnold tongues. - Mode locking index φ̇
ω depending on the

intrinsic frequency ω and the self-coupling K.
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Synchronization transition. For two coupled oscillators forced at frequen-
cies ω1 and ω2 and symmetrically coupled with strength K, it is convenient to
consider the phase difference ψ = φ1(t)− φ2(t) which follows:

dψ(t)

dt
= ∆ω + 2K sinψ

with ∆ω = ω1 − ω2. If the coupling is strong enough, the stationary phase
difference is ∆φ = arcsin −∆ω

2K . If K < Kc = ∆ω
2 , there is no stationary so-

lution. There is thus a frequency synchronization transition at Kc and it is a
second order transition as the order parameter is continuous and its derivative
is discontinuous at the transition point. The transition can be seen on fig 2.23

where the average phase difference, ∆φ = 1
T

∫ T

0
ψdt, is plotted as a function of

the coupling strength for oscillators frequencies, ω1 = 1.2 and ω2 = 1.
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Figure 2.23: Synchronization of two oscilators depending on the cou-
pling K. - The average phase difference is constant until Kc at which the two
oscillators start getting synchronized.

Partial synchronization. With three oscillators, partial synchronization oc-
curs as the coupling strength K is increased with oscillators with closest fre-
quency synchronizing first. The sequence of such synchronization transitions is
shown for three oscillators of frequencies ω1 = 1, ω2 = 0.4 and ω3 = 0.2 in fig
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2.24 where the instantaneous frequencies of oscillators are plotted as a function
of the coupling strength K.
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Figure 2.24: Partial synchronization for 3 oscillators. - For loose coupling,
oscillators run at their intrinsic frequency, for intermediate values of the coupling
only the two oscillators with the closest frequency are frequency locked and for
higher values of the coupling, the network oscillates in full synchrony.

For N ≥ 4, phase chaos was shown to occur through torus destruction as
the coupling strength is increased [114].

2.11.3 Large population of coupled oscillators.

A population of globally coupled oscillators. The Kuramoto model is
widely used to study synchronization between coupled units [115] and it is
composed of N oscillators coupled, with N >> 1, according to the equations:

dφi
dt

= ωi +
∑

j

Kijsin(φj − φi)

with 1 ≤ i ≤ N , intrinsic frequencies distributed according to g(ω) and the
original model the coupling is homogeneous Kij = K

N > 0. The dynamics can
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then be written as:
dφi
dt

= ωi +Krsin(ψ − φi)

with the order parameter defined as reiψ = 1
N

∑

k e
iφk , r ∈ [0, 1] measures

the coherence in the population and ψ is the average phase. The coherence
is r = 0 for weak coupling with oscillators moving independently and it is
r = 1 when strong coupling makes all phases equal to ψ. Equivalently, the
order parameter can be expressed a function of the probability distributions for
intrinsic frequencies ,g(ω), and for the phases, ρ(φ, ω, t):

reiψ =

∫ π

−π

∫ ∞

−∞
eiφρ(φ, ω, t)dωdφ.

Moreover, the distribution ρ satisfies the continuity equation:

∂ρ

∂t
+

∂

∂φ
[(ω + rsin(ψ − φ)ρ]

and the normalization condition:
∫ π

−π
ρ(ω, φ, t)dφ.

The incoherent solution corresponds to r = 0 and ρ = 1
2π with all phases having

equal probability of being occupied. A branch of partially synchronized solutions
starts at Kc = 2

πg(0) and with a Loretzian distribution 9 for g, the coherence

behaves as r =
√

1− Kc

K .

Chimera states. We now consider a ring of oscillators with long range con-
nections:

dφ(x, t)

dt
= ω +

∫ 1

0

K(x, x′)sin(φ(x, t)− φ(x′, t) + α)dx′

where the connections are made through a Gaussian kernelK(x, x′) = Ae−
|x−x′|2

2σ2 .
With initial condition constant over an interval and randomly distributed with
a Gaussian profile on its complementary, the network settle in a chimera state
where a part of the network is phase locked and the other part is oscillating in
an asynchronous manner as shown in fig 2.25.

Flip-flop network. A network of oscillators can be coupled to Wilson-Cowan
units with equations:

dxi
dt

= −xi + σ(cos(φ) − cos(φ0)) +
∑

j

wijf(xj) + I

9A Lorentzian distribution is of the form g(ω) = γ/π
γ2+ω2 .
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Figure 2.25: Chimera state. - Ring of oscillators with a part of the network
phase locked and the complementary oscillating asynchronously.
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dφi
dt

= ω + (β − ρxi)sin(φi)

where xi is the membrane voltage of the component i and cos(φi) is an
oscillating contribution to the dynamics scaled by σ and the membrane impacts
the oscillators dynamics by a factor rho. f(xi) is the firing rate of the neuron
i taken as an hyperbolic tangent and φ0 is chosen so that the state where
(xi, φi) = (0, φ0) is a fixed point for the network. The conditions for stability
of this fixed point are given in [116] reproduced in appendix. Two coupled
units show down state, low frequency, antiphase oscillation for weak coupling
and up state, high frequency, in-phase oscillation for large coupling. Before the
phase-locked solution exists, a small window of chaotic behaviour is observed.
In a larger network, the spontaneous activity wanders around cell assemblies
storing memories.

2.12 Conclusion.

In this chapter, we explored the dynamics of computational units of the brain
using bifurcation theory and the Fokker-Planck equation. The Hodgkin Huxley
model for the dynamics of the membrane potential of a neuron is difficult to
analyze and heavy to integrate. The FitzHugh Nagumo model is a reduction
of the dynamics to a two dimensional phase model controlled by three param-
eters. With the analysis of bifurcations in this system, we found an organizing
center for the dynamics in the neighborhood of which any possible dynamics is
accessible. Stochastic forcing at this point resulted in the emergence of multiple
timescales which may be traces of the attractors available in its neighborhood:
limit cycle for the fast timescale and stochastic transitions between two fixed
points for the slow timescale. We also noticed, for identical realizations of the
noise, that the formant of the dynamics increases in a plateau like fashion when
increasing the variance of the noise. The integrate and fire model is another
phenomenological model commonly used for efficient simulation and we intro-
duced a two dimensional version, the adaptive integrate and fire neuron which
have a large repertoire of dynamics. For a column, mean field models provides
a compact description and the network activity can be characteried by the syn-
chrony and the regularity of firing. When columns have a collective oscillation
resulting from a Hopf bifurcation in their mean field equation, the rich variety
of possible dynamics was described using networks of coupled phase oscillators:
resonance, frequency synchrony, phase synchrony and chimera states.

We saw that the asynchronous state described in the first part can be mod-
eled as the chaotic dynamics of a balanced network of sparsely connected binary
neurons. Networks of spiking neurons have a similar state and it can even be
self-sustained for a very long time with conductance based neurons. The length
of these supertransients of irregular activity depends exponentially on the size of
the network [34]. The computation of Lyapunov exponents for hybrid dynam-
ical systems needs special care [117] and when the largest of these exponent is
not positive, this state is called stable chaos. Chaotic behavior of a macroscopic
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variable, collective chaos, and chimera states have also been reported recently
in networks of spiking neurons [118]. Neuronal networks thus have rich variety
of dynamics and their potential use for solving computational tasks offers new
approaches in artificial intelligence [119].
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Chapter 3

Models of the formation of
V1 and of its dynamics.

3.1 Models of the formation of V1

3.1.1 Introduction

Several functional properties of the brain are represented as maps: the body is
represented by motor and somatosensory homunculus and the surrounding space
is represented in cognitive maps of the hippocampus. The primary visual cortex
is also endowed with multiple feature maps which provide a representation of
the input space. Retinotopy is the mapping of spatial positions of the visual
space onto the surface so that close points of the visual space are represented by
neurons which are close together in the cortex. Ocular dominance of a neuron
indicates how its inputs are biased toward the left or right eyes and this selectiv-
ity is organized into alternating bands. The selectivity of neurons to orientation
also forms maps with special points, pinwheel singularities, around which the
preferred orientation varies smoothly. Those maps are structurally related, with
lines of iso-orientation orthogonal to the frontiers of ocular dominance domains.
Some other features are also encoded in V1 like spatial frequency or direction
of motion. In an early model proposed by Hubel and Wiesel, orientation se-
lectivity result from the specific pattern of connections from LGN inputs but
later studies highlighted the contribution of lateral connections for sharpening
the orientation tuning curve.

Hebbian plasticity rule on the feedforward and lateral connections leads to
the formation of orientation maps in firing rate models. Obtaining similar results
with spiking neurons and spike timing dependent plasticity rules is still an open
challenge and require heavy computational resources. On the other side, firing
rate models are only a coarse grain version of the dynamics and don’t have
the fine scale complexity of spiking neurons. The column based networks of
spiking we propose combine these two approaches for efficient simulation of the
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visual cortex. A grid of columns of spiking neurons having the same structure
as exposed in chapter 2 are used to study the fine temporal dynamics of the
network after a transient stimulation and a firing rate model is used for the
learning an orientation map, each unit representing a column and the connection
weight between two units representing the probability of connection between two
neurons of their corresponding neurons.

This chapter aims at describing the ongoing activity in models of V1, its in-
fluence on visual information processing and its structuration through learning.

Four approaches to the formation of V1 are presented and we present results
on three large scale implementations of V1 models. First, in an ice cubes model
of a pinwheel inspired, connections are hard wired to implement orientation se-
lectivity and we study ongoing dynamics and the response to static or rotating
bars. A second model is a large grid of columns with isotropic connection ker-
nels for which the ongoing dynamics and the response to focalized stimulation
are studied. The connections in the third network are the outcome of Heb-
bian learning when the connectivity of the isotropic model is used to initialize
connection weights so that we can show how visual experience shapes spiking
correlations in the network.

3.2 Ice cubes model.

3.2.1 Description of the model.

The simplest way to build a model of the visual cortex is to pack columns
together in a ”crystal-like” manner so that it achieves its function of local ex-
traction of oriented lines. The construction of V1 in a hierarchical manner was
initially proposed by Hubel and Wiesel in the 60’s [82] based on their electro-
physiological recordings in the cat area 17. The redundancy of coding that they
discovered in the vertical direction (cortical depth) suggested that the cortical
column could be the unitary building block of the cortex. The model of V1
they proposed is then obtained from an appropriate packing of these elemen-
tary units with hard wired connections. The wiring of these fixed connections is
derived from the observed cortical fibers and from simplifying hypothesis when
these observations are not possible.

As connections are fixed, retinotopy is imposed by simply providing a set of
neighboring cortical columns with afferent connections from cells corresponding
to a defined position. This group of columns defines an hypercolumn. The
whole retinal space is then represented by an array of such hypercolumns, see
fig 3.1. The ocular dominance domains can also be modeled by alternating an
hypercolumn taking its inputs from the right eye with an hypercolumn taking
its inputs from the left eye.

The orientation selectivity is implemented by considering a cylindrical parametriza-
tion (r, θ) of the hypercolumn. Columns having a similar azimuth θ code for
the same orientation φ = θ

2 and the radial dimension is redundant. The topo-
logical charge of the pinwheel is positive if orientations are turning clockwise
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and negative for anti-clockwise rotation. More detailed models consider that
the r-dimension is used to code the selectivity to spatial frequencies [120]. The
shape of the receptive field of simple cells could then be explained by a linear
summation of aligned LGN inputs from ON and OFF channels, see fig 3.2. The
resulting receptive field is a derivative of Gaussian and gives an effective de-
scription of how a cortical cell from V1 receives inputs from the eyes through
the LGN. Other types of cells, like complex (phase invariant) or hypercomplex
(tuned to an optimal bar length), can be built on the same principle with a
pool of simple cells with same position, same orientation and all possible phases
connecting to complex thus being phase invariant. This is an example where
the serial and hierarchical doctrines of the with feedforward projections from
the eye to the visual cortex is very efficient.

The lateral connectivity in primary visual cortex is classically modeled by a
difference of Gaussians that is excitatory at short range and inhibitory at long
range although, as described in the introduction of this chapter, more realistic
architecture should include long range excitation.

3.2.2 Parameters of the model.

A pinwheel is composed of N ×N columns placed on a regular grid with coor-
dinates X ∈ [−1, 1] and Y ∈ [−1, 1]. Each column receives afferent inputs from
all the cells in the retinal layer and in this model all columns code for the same
location, columns only differ in their preferred orientation. The retinal layer is
also composed of 11× 11 cells with coordinates x ∈ [−1, 1] and y ∈ [−1, 1]. The
activity of these retinal cells is modeled as inhomogeneous Poisson processes
with rates corresponding to the light intensity of the visual input.

The afferent connectivity of a column c located at (Xc, Yc) in the cortical
plane with azimuth θ = arctan Xc

Yc
from a cell located at a retinal position (x, y)

is given by a directional second derivative of Gaussian. For Xc = 0, the second

derivative of G(x, y) = e−
x2+y2

σ2 is taken along the x-dimension:

∂2G(x, y)

∂x2
= A0(1−

2

σ2
x2)e−

x2+y2

σ2

with A0 a constant. For θ 6= 0 and taking A0 = 1, the connectivity is obtained
by considering a rotation of the coordinates:

W aff
xy,θ = (1− 2

σ2
(x cos

θ

2
+ y sin

θ

2
)2)e−

(x cos θ
2
+y sin θ

2
)2+(−x sin θ

2
+y cos θ

2
)2

σ2

where σ parametrizes the sharpness of the receptive field. As density of con-
nections, it is restricted to [−1, 1], with negative weights corresponding to the
inhibitory projections and positive weights to the excitatory ones. The integral
of this function is zero so that a column should receive as many excitatory con-
nections as inhibitory connections. In practice, as the retinal space is restricted
to [−1, 1]× [−1, 1] and most inhibitory connections are too small to make any
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Figure 3.1: Ice Cube model - (A) A pinwheel with colors representing the
preferred orientations of columns turning clockwise. (B) The receptive field of a
column having π

4 as preferred orientation. (C) A ”crystal-like” orientation map
is built by packing pinwheels together.112
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Figure 3.2: Simple cell model. - Cells from the LGN with ON center receptive
fields feeds giving its orientation preference (Adapted from [82]).

connection 1 and the excitatory connections slightly overtake the inhibitory
ones.

The lateral connectivity is restricted to the nearest neighbors, the column
has a density p = 0.2 of self connections and the 8 neighboring column project
to it with probability p = 0.1 both for excitation and inhibition. Parameters
of the neurons are the same as described in table 2.15 of Chapter 2, a column
being composed of 40 excitatory cells and 10 inhibitory cells.

During the 500 ms before the presentation of a stimulus, the cortical layer
is ignited with a Poissonian stimulation at high rate, each column is connected
with density 0.2 to a 5000 Hz Poisson spike train. The visual stimulation is a
static or a rotating bar and the retinal activity corresponding to this stimulation
is a set of Poisson spike trains with rates:

axy = f0e
−( x cosα(t)+y sinα(t)

σL
)2+(−x sinα(t)+ycosα(t)

σl
)2

with α(t) the orientation of the bar,f0 the maximum frequency 60Hz, σL = 0.35
the length of the bar and σl = 0.05 the width of the bar.

3.2.3 Analysis of the dynamics.

On-going activity: Phase diagram The maximal conductances of excita-
tory (gE) and inhibitory (gI) is varied and the resulting mean firing rate, mean
coefficient of variation of interspikes intervals (ISI) and mean pairwise correla-
tion between spike trains are plotted in a phase diagram on fig 3.4. There are
three distinct regimes:

• When gI = 0, the network is highly active with regular spiking of the cells
but spikes are asynchronous.

1For two columns A and B, each containing N neurons, for a connection probability PAB <
1

N2 , there will be nearly no connection from neurons of A to B.
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Input Response

y

x X

Y

Figure 3.3: Response of the pinwheel to an oriented bar - (Left) Retinal
activity corresponding to an oriented bar. (Right) Response of the pinwheel,
the contrast indicates the firing rate of the column and the color codes for the
preferred orientation of the column.
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• When gE > gI , currents are dominated by excitation, the network is highly
active with correlated regular spiking. This shows the synchronizing effect
of inhibition.

• When gI > gE , currents are dominated by inhibition, the network ac-
tivity is low and decreases when gI is increased. Spiking occurs in an
asynchronous irregular fashion.

0 0.1
gI

0

0.1

g E

Firing rate [Hz]

0 105

0 0.1
gI

CV

0.00 1.05

0 0.1
gI

Corr

0.000 0.225

Figure 3.4: Phase diagram for the Ice cubes model - (Left) Average firing
rate in Hertz. (Middle) Average coefficient of variation of the ISI distribution
of spike trains. (Right) Average local correlation, that is correlation between
spike trains of neurons belonging to the same column.

Response to a rotating bar. A rotating bar is presented to the network with
a speed of 60Hz. A snapshot of the response of the network in the inhibition
dominated regime is shown on fig 3.5. The activity in the inhibition dominated
regime is a bump rotating at the same speed as the rotating bar, even at high
rotation frequency 2, and this periodic activity is shown on fig 3.5. In the
excitation dominated regime, no response specific to the stimulus can be seen.

2By the discretness of the grid, at very high frequency rotation, the bar is flashed periodi-
cally rather than rotating smoothly.
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Figure 3.5: Response to a rotating bar - (Top) Average firing rate for a
line of columns passing through the center. (Middle) Membrane potential of
a neuron in column at position (0,5). (Bottom) Raster plot of the column at
position (0,5).
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Orientation tuning curve. As can be expected from the response to a ro-
tating bar, the response to static bar is also very different depending on the
regime of spontaneous activity. For characterizing the functional response of a
cell, it is common to use the tuning curve that measures the firing rate of a
cell as a function of the orientation of the presented stimulus φ. In our case we
record the tuning curve of two columns at different positions of the pinwheel,
one is close to the pinwheel singularity and the other is far (five columns away)
from the pinwheel singularity. For each situation the map is shifted so that
the central column of the network is the one from which the tuning curve is
recorded. When the network is in the excitation dominated regime, the tuning
curve is flat because the response is washed out by the spontaneous activity. In
the inhibition dominated regime, the tuning curve is peaked with the maximum
indicating the preferred orientation as can be seen on fig 3.6. In this regime, the
tuning curve is much sharper for a column close to the pinwheel center than for
a column far from the pinwheel center and the level of correlations is the same
for all orientations, see fig 3.7. The level of activity in neighboring columns
explains the sharpness of the orientation tuning curve close to the pinwheel
center. Those columns around a column have very preferred orientation close
to the pinwheel singularity and have low firing rate and thus do not excite the
central column whereas far from the pinwheel, neighboring columns are excited
for orientations similar to the preferred orientation of the central column.

3.3 Phenomenological models

The Ice Cubes model of V 1 is based on the observations gathered from bio-
logical studies of the connectivity patterns, it tries to reproduce by hand these
connectivity patterns and adds minimal assumptions when biology cannot help
in choosing between different options. We explore here the models which forget
about the biological processes but focuses on more abstract properties of V 1.
They aim to answer to simple questions like ”What is the goal to achieve dur-
ing the formation of V 1?” or ”What are the universal properties governing the
formation of V 1?” and can be analyzed in some simple cases. Such models are
reviewed in [121].

3.3.1 The Elastic net theory

Multiple features are engrafted in V1 through its functional maps for retinotopy,
occular dominance and orientation preference. The mapping of visual stimu-
lations parameters (X and Y positions, x and y coordinates of the preferred
orientation and occularity) onto the cortical surface in layer IV is achieved dur-
ing the formation of V 1 with points close in the parameter space falling close
onto the cortex. With the Elastic Net model, the formation of V 1 is seen as
an optimization process directed toward this mapping with the minimal wiring
length.
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Figure 3.6: Orientation tuning curves. - (Left) Inhibition dominated regime,
close to the pinwheel center in black and far in red. (Right) Excitation domi-
nated regime with the same color conventions.

118

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



$%/2. %/2
&50

0

50

100

150

200

Fi
ri

n
g
 r

a
te

Near pinwheel center

$%/2. %/2
&50

0

50

100

150

200
Far from pinwheel center

$%/2. %/2

'

&0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

$%/2. %/2

'

&0.2

0.0

0.2

0.4

0.6
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Figure 3.8: Neighboring columns - Preferred orientation and activity level
(thickness of links) of neighboring columns.
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A simple framework to apply the Elastic Net algorithm is the traveling sales-
man problem (TSP). A salesman has to visit N cities placed on a 2-dimensional
plane and the problem is to find the shortest closed tour in which all cities are
visited. This problem is NP-complete, that is it cannot be solved in a polyno-
mial time of the number of cities to visit. An exhaustive search is possible when
the number of cities is small but the computation time becomes very large as
N grows. The TSP is formally equivalent to the mapping of N points regularly
spaced on an elastic ring onto N points of the plane.

There are N cities with positions (xi)1≤i≤N on the plane and N path points
with positions (yj)1≤j≤N on the elastic ring. The rule for changing the position
of a path point is the following:

∆yj = α
∑

i

wij(xi − yj) + βk(yj+1 − 2yj + yj−1),

where α scales the contribution of the cities in attracting path points and βk
scales the elastic forces from the neighboring points on the path. The weight
wij represents the normalized attraction that the city point i has on the path
point j and is defined as

wij =
e

|xi−yj|
2

2k2

∑

p e
|xi−yp|2

2k2

so that an energy function E can be defined:

E = −αk
∑

i

log(
∑

j

e
|xi−yj|

2

2k2

∑

p e
|xi−yj|

2

2k2

) +
β

2

∑

j

|yi+1 − yi|2

with ∆yj = −k ∂E∂yj
. The free parameter k is slowly decreased along the pro-

cedure, in a similar way as what is done in simulated annealing algorithms, so
that the attraction of the cities becomes more and more specific to their closer
path points. The analysis of this energy function was done in [122], for large
values of k, the energy has only one minimum but the energy bifurcates as k
decreases and then present several local minima. The solution reached by the
Elastic Net algorithm is not necessarily the global optimum but the obtained
minimum is not too far from the optimal solution [123].

After the original model of Durbin [123], Goodhill et al [124] proposed an
implementation of the Elastic Net that generates stripe patterns similar to those
observed for ocular dominance domains. In this setting, the cities with positions
xi represent LGN units scattered on two parallel planes separated by a small
gap in 3 dimensional space. The cortex is then an elastic sheet with positions yj

having the same change rule a explained above. The width of stripes appearing
in this model is controlled by the ratio between the distance separating the two
LGN sheets and the distance between two neighboring LGN units. This model
can test the effect of monocular deprivation by changing the value of α for one of
the two eyes. The result obtained in [125] is that the stripes associated with the

121

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



eye with the smallest α get lower periodicity without changing the periodicity of
the stripes associated to the other eye. Similar principles have been successfully
applied to the formation of orientation selectivity.

3.3.2 Pattern formation dynamics.

In the previous model, the formation of V1 is reduced to the solving of a mapping
problem between spaces of different dimensions. The Elastic Net algorithm is
successful in reproducing the stripe patterns observed for ocular dominance
map and in predicting the effect of visual deprivation but it does so in a rather
artificial manner and the history of this pattern formation may be very different
from that observed in biology. Pattern formation is a well known phenomena
in physics and biology and the possible dynamical systems used to model it are
reviewed in [126] and [127]. We will see how these universal models can be used
for the formation of ocular dominance stripes and orientation preference maps
by integrating physical constrains and symmetries. In these kind of models
some biologically relevant aspects are forgotten, for example, the fast dynamic
corresponding to the neuronal activity is not taken into account to emphasize
the slow dynamics of the synapses.

Ocular dominance stripes The model presented here was first implemented
in [128]. It is based on simple rules for the growth of synapses:

• Locally, synapses from the same type activate their growth but inhibit
the growth of the same synapses in an annular region around the growth
region.

• Synapses of different eyes have opposite influences.

The influence of cells of the same type (wRR or wLL) can then be represented by
a difference of Gaussians of the distance r between the two synapses considered:

w = Ae
− r2

d1 −Be− r2

d2

with d1 < d2 and the influence between synapses from different eyes (wRL or
wLR) is represented by the same functions with opposite signs. By this way,
the symmetry between the left and the right eye is taken into account. The
growth rate of synapses from the right eye is given by:

sR = wRR ⋆ nR + wLR ⋆ nL

where ⋆ stands for the spatial convolution, with for functions f and g defined
on the domain D:

f ⋆ g =

∫ ∫

D

g(|r− r′|)f(r′)dr′

and nR, nL are the spatial densities of synapses.
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The temporal variations in the number of synapses of both types are also
constrained in this model by the fact that the densities should stay in a reason-
able range. As densities, it is positive and it is also supposed that at any given
point r, the local density is bounded by the maximal density N , nR(r) < N .
The general form of temporal variations in synapses density of the right eye is
thus :

∂nR(r)

∂t
= sRf(nR)

with f , a function constrained by f(0) = 0 and f(N) = 0. These constrains
can be satisfied by taking for example f(nR) = nR(nR−N) and the dynamical
system for the two spatial densities is:
{

∂nR(r)
∂t = (wRR ⋆ nR + wLRnL)n

2
R(1 − N

nR
)

∂nL(r)
∂t = (wRL ⋆ nR + wLLnL)n

2
L(1− N

nL
)

The total number of synapses can be considered as locally constant and
uniform across the area: nR(x)+nL(x) = N and the system is then reduced to
a single equation:

∂nR
∂t

= (wRR ⋆ (2nR −N))f(n).

There are 3 fixed points to this equation:

• n = 0 is stable because at first order

∂n

∂t
≈ −Nnw ⋆ N < 0

.

• n = N is also stable for symmetry reasons so that if all synapses becomes
wired to an eye at time T, there won’t be any synapses from the other eye
after this time.

• n = N
2 is then unstable.

To consider how instabilities develop near the unstable state, we consider a
small perturbation x = n − N

2 . The evolution of such a perturbation is driven
by:

∂x

∂t
=
N2(w ⋆ x)

2
.

To analyze the transient behavior of the perturbation, it is decomposed as follow,
x = x0(r)e

λt. The evolution equation becomes independent of the time variable:

λx0(r) =
N2(w ⋆ x0(r))

2
.

The Fourier transform of this equation gives a dispersion relation indicating
the stable and unstable modes for the propagation of instabilities (Note that
convolution becomes a product after Fourrier transform).

λ(k)x̂0(k) =
N2W (k)x̂0(k)

2
.
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Unstable modes grow when λ(k) > 0 that is when

W (k) =

∫ ∫

D

w(|r − r′|)eik.r′dr′ > 0.

The Fousrier transform of a Gaussian function is a Gaussian function so that:

W (k) = 2π

∫ ∞

0

(Ae−
|r−r′|2

d1 −Be−
|r−r′|2

d2 )eikr
′

dr′

W (k) = A
√

πd1e
−π2d1k

2 −B
√

πd2e
−π2d2k

2

. The periodicity of ocular dominance stripes will be given by k⋆ at which W
is maximum, around 0.45 mm with the parameters indicated in fig 3.9.

In order to model the non-uniform distribution of biological markers, like
cytochrome oxydase blobs, the upper bound on the density of synapses can be
taken as spatially periodic function, N(r) = N̄ + κu(r). It was shown in [129]
that the pattern formed in this modified model get aligned with the synaptic
density.

Orientation preference maps. The formation of orientation columns can
be treated in a similar way to that of ocular dominance stripes even if there are
some differences. The ocular dominance at a point of the cortex was quantified
by a single number n but the orientation preference and selectivity of a column
is measured by a vector or its complex representation z. The argument of z is
related to the preferred orientation θ of the column:

θ =
1

2
arctan

ℜ(z)
ℑ(z)

with the factor 1
2 restricting θ between −π2 and π

2 . The module |z| quantifies the
selectivity of the response of the column to a bar of orientation θ, it is related
to the amount of cells in the column having θ as preferred orientation.

Orientation preference maps are organized around pinwheel singularities
where all orientations collapse. Depending on whether the orientations turn
clockwise or anticlockwise around the singularity, a positive or negative topo-
logical charge is attributed to the singularity. This topological charge can be
calculated from the orientation preference field:

QA =
1

2π

∮

C

∇θ(r)ds

where the integral is taken over a closed contour surrounding the singularity.
The orientation maps can be characterized by their spatial correlation func-

tions between points at positions r1

C(r1, r2) =< z(r1)z̄(r2) >

C⋆(r1, r2) =< z(r1)z(r2) >
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Figure 3.9: Swindale model for the formation of ocular dominance
stripes - (Top) Kernels describing the influence of synapses from the same eye
(wRR, wLL) or from opposite eyes (wRL, wLR). (Bottom) Fourrier transform of
the kernel corresponding to synapses from the same eye. The wavelength, k⋆,
for which it reaches maximum indicates the typical periodicity of the stripes.
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The dynamics for the change in z can be written in a general form:

∂z

∂t
= F [z]

Taking a similar approach to the model for the ocular dominance stripes,
the following form for F was proposed in [130]:

F [z] = (w ⋆ z)f(|z|)

with w the difference of Gaussians defined in the description of the model for
the formation of ocular dominance stripes and f(|z|) = Z − |z| providing an
upper bound Z on the selectivity of a column. The only difference with the
previous model for the formation of ocular domains is that the field o takes real
values whereas for orientation preference, the field z takes complex values and
thus similarly to what was shown for ocular dominance, the spatial frequency
of the orientation map will be given by k⋆ for which the Fourrier transform of
wRR is maximal.

The following model of V 1 was proposed in [131]:

F [z] = L[z] + η

without taking an explicit form for the deterministic kernel L and the noise
term η but just constraining the symmetries of F :

• F is invariant by translation: F [TRz] = TRL[z] with TRz(r) = z(r+R).

• F is invariant by rotation: F [Rαz] = RαF [z] with Rα the rotation matrix

of angle α:

(

cosα sinα
− sinα cosα

)

• F is invariant under phase shift: F [eiφz] = eiφF [z].

Phase shift invariance implies that F [0] = 0 and then the homogeneous state
z(r) = 0 is a stationary solution of the system. The phase shift invariance also
implies that

< eiφz(r1)e
iφz(r2) >=< z(r1)z(r2) >

so that C⋆ is null everywhere. The translation invariance implies that C(r1, r2)
only depends on the distance x = |r1 − r2|. The characteristic wavelength Λ of
the orientation map can then be computed by considering the maximum in the
Fourrier spectrum of the correlation function:

P (k) =
1

2π

∫

C(x)eikxdx

Thanks to an analogy with the physics of defects, the analysis of this spectrum
gives a lower bound for the density of pinwheels ρ = π

Λ2 (1 + α) with α > 0.
This result suggest that for animals with an abnormally low pinwheel density
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compared to the wavelength of the orientation map, a phase of pinwheel anhi-
hilation must occur before the map stabilizes. This linear model gives a lower
bound on the pinwheel density but it doesn’t have any saturation and if it is run
without a strong randomness term, the pinwheel density will grow unbounded.
A solution to this problem is to consider a non-linear part in F .

The orientation maps are supposed to emerge through Turing instability and
an explicit form for F up to third order can be inspired by pattern formation
theory [126]:

F = L+N2 +N3

with

• L = a − (k2c +∇2)2, the Swift-Hohenberg operator for describing hydro-
dynamic instability with kc the wavelength of the emerging instability.

• N2 = 0, for symmetry reasons.

• N3[z(r)] = (1−g)|z(r)|2z(r)+(g−2)
∫

Kσ(r
′−r)z(r)(|z(r′)|2+ 1

2 z̄(r)z(r
′)2)dr′

with the kernel Kσ = 1
2πσ2 e

− r2

2σ2 accounting for long range interactions
and g tuning the fraction of non-linearity coming from local and non-local
interactions.

The detailed analysis of this model near criticality, a << 1, together with
the phase diagram in parameters ( σkc ,g) can be found in [132]. It is shown that
for this non-linear model, the pinwheel density will be close to π thus avoiding
the unbounded proliferation observed with the purely linear model.

The symmetries considered above are only an approximation of what is
observed in the visual cortex. The appropriate invariance is the following:
F [Rαz] = RαF [zeiα]. A model was proposed recently [133] to take this sym-
metry into account during development with the following non-linear dynamics
for the orientation si = (six, six) of the column i at location ri:

∂si
∂t

= si(1− |si|2) +
∑

j

[J(rij)sj +K(rij(si .̂rij)r̂ij],

with rij the distance between columns i and j and r̂ij the unitary vector directed
by ri − rj and j running over all columns. The isotropic coupling J is positive
on a disk of radius R

2 around the column i and negative on an annular region

between R
2 and R. The long range term K is taken as constant over the map,

it scales the anisotropic input to the column which depends on the colinearity
and coaxial alignment between orientations of columns i and j, this term is
invariant under joint rotation of the orientations and the grid supporting the
columns. In the model with full rotation invariance (K = 0), pair annihilation
of pinwheels leads to maps with no singularity (rainbow patterns). Adding a
non-zero anisotropic term (whether positive or negative) result in stable maps
with pinwheels. A similar positive anisotropic term is also included in mean
field models of V 1 dynamics and the action of the special euclidean group on
R2 × S1 under which it is invariant is also called the shift-twist representation
of the Euclidean group [134], [135].
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3.4 Learning of orientation maps.

In the models described in the two previous sections, biological details of the
formation of V1 were avoided by relying on simplifying hypothesis or universal
models which behavior can be studied analytically. Models closer to biology con-
sider the coupling between the dynamics of neuronal activity and the dynamics
on the synapses. Changes in the strength of a synapse, if it lasts for few seconds
to a minute, is called short-term plasticity and is responsible for synaptic de-
pression and facilitation which are supposed to give a computational advantage
for optimal detection and adaptation to changing inputs [136]. Changes can
also last for hours or days and this long term plasticity implements learning.
The long term potentiation (LTP), increasing the synaptic strength between
two coactive neurons, was first described in the rabbit hippocampus [137]. The
long term depression is necessary to avoid saturation of all synapses to their
maximal strength. In the classical Hebb rule [138], summarized in ”cells that
fire together, get wired together”, the synaptic change during learing is related
to the averaged dynamics of the presynaptic and the postsynaptic neurons. In
spike timing dependent plasticity [93], synaptic changes depend on the precise
timing between the presynaptic and postsynaptic spike, LTP (LTD) is induced
if the presynaptic neuron spikes few milliseconds before (after) the postsynaptic
neuron. Hebbian learning was widely used in the 80’s to implement associative
memory through Hopfield network as an example of unsupervised learning. In
such network, fixed point attractors of the dynamics can be used to store mem-
ories. With this unsupervised learning, after a partial presentation of the input,
the network dynamics converge towards the closest memory state. In super-
vised learning, the network is trained on a set of examples, each example is an
input and the desired output to this input and the network change synapses to
improve the matching between the desired output and the effective input, for
example by backpropagating an error signal [139], and the network can classify
then new inputs. Computational models of the development of visual cortex
were successfully developed in the 80’s. These models, described below, are
closer to the biological processes associated to learning than phenomenological
models but are also hardly tractable analytically.

3.4.1 The Van der Malsburg model for the formation of
columnar organisation.

In a seminal paper of 1973 [140], Christopher Von der Malsburg implemented
the first model producing orientation maps. It includes a retinal layer with 19
cells and a cortical layer with 169 excitatory (E) and inhibitory (I) cells disposed
on hexagonal grids. The activity Hk represents the firing rate of the neuron k
in the cortical layer, driven by a linear differential equation:

dHk(t)

dt
= −αkHk(t) +

∑

l

plkH
⋆
l (t) +

∑

i

sikA
⋆
i (t)

where ⋆ indicates a thresholded version of the signal to which it is applied.
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The fixed recurrent connections are wired according to a Colonnier scheme
(1966). The connectivity kernels w from which the pkl are defined have trun-
cated Gaussian shapes of extent σ with wII = 0, σEE = σEI and σIE > σEE .
The plastic synapse sik representing the strength of connection between the af-
ferent cell i and the excitatory cortical cell k evolves according to a version of
the Hebb rule:

If there is a coincidence of activity in an afferent fiber i and a
cortical E cell k then sik is increased to sik +∆s, ∆s being propor-
tional to the signal on the afferent fiber i and to the output signal of
the E cell k. Then all the sjk leading to the same cortical cell k are
renormalized to keep the sum

∑

j sjk constant.

A set of nine stimuli was presented to the network, each containing seven
active retinal cells and representing a bar of a given orientation. After this
training period, each cell fires for a specific orientation and cells are activated
in clusters reaching a columnar organization close to what is observed in V 1,
see fig 3.10. The input space is thus mapped on the 2 dimensional surface of
the cortex as was done in an abstract way for the elastic net.

3.4.2 Learning rules.

The classical Hebbian learning rule for the synaptic weight from cell i to cell k
is the following:

wik(t+ 1) = wik(t) + αaiak

where ai and ak are the pre and postsynaptic activities and α is a free parameter
called the learning rate. To avoid unbounded growth of the weights, a normal-
ization scheme should be adopted, it can be substractive or multiplicative. This
can be illustrated by considering two binary input neurons of activity IR and
IL connected with positive synaptic weights wR and wL to a cortical neuron of
activity O = wRIR + wLIL. With substractive normalization, the dynamics on
the weights is:

∆wR = IRO −
1

2
(IRO + ILO)

∆wL = ILO −
1

2
(IRO + ILO)

replacing O with its value gives

∆wR =
1

2
(wRI

2
R + (wL − wR)IRIL + wLI

2
L)

∆wL =
1

2
(wRI

2
R + (wR − wL)IRIL + wLI

2
L)

then taking averages over input presentations with < I2R >=< I2L >= 1 and
< IRIL >= C gives the continuous time dynamics:

d < wR >

dt
=

1

2
(< wR > +(< wL > − < wR >)C+ < wL >)
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Figure 3.10: Orientation map. - Pattern of activity for the 9 oriented bars
presented as input (Adapted from [140]).
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d < wL >

dt
=

1

2
(< wL > +(< wR > − < wL >)C+ < wR >)

which can be written:
dw

dt
= A.w

with w =

(

< wR >
< wL >

)

and A = 1
2

(

1− C 1 + C
1 + C 1− C

)

. The eigenvalue λ1 = 1 is

associated to the eigenvector

(

1
1

)

and would lead to unbounded growth of the

two weights. Weights are usually bounded so that this mode can be ignored.

The eigenvalue λ2 = −C is associated to the eigenvector

(

1
−1

)

so that one

weight is increasing while the other is decreasing until the system reaches (0, 1)
or (1, 0) depending on the stimulation history. If the substractive normalization
is used, all weights end up with the value 0 or one and their dynamics is driven by
correlations in the inputs. The cortical neurons would then be purely monocular.

To avoid such drastic synapse elimination, the most commonly used normal-
ization scheme is divisive, then for a synapse from cell i to cell k:

wik(t+ 1) =
wik(t) + αaiak

√

∑

j(wjk(t) + αajak)2

where j runs across all the input cells of the cell k can be approximated by the
local Oja’s rule:

wik(t+ 1) = wik(t) + αaiak − αwika2k
With such learning dynamics, it was demonstrated that a neuronal network can
compute the principal components of the input space [141].

The Bienenstock-Cooper-Munro (BCM) learning rule [142] is another way
to avoid the unbounded growth of weights. It provides a mechanism increasing
the connection when the sum of weighted input to the neuron is superior to a
threshold but also decreasing the weights when the post-synaptic is less than
the threshold. The rule in continuous time is:

ẇik(t) = −ǫwik(t) + φ(ak(t), āk(t))ai(t)

with ak =
∑

j wjkaj the sum of weighted inputs to the neuron k, āk(t) is the
average of the post-synaptic activity over a time T and the function:

φ(ak(t), āk(t)) < 0 if ak(t) < (
āk
a0

)pāk(t)

and

φ(ak(t), āk(t)) > 0 if ak(t) > (
āk
a0

)pāk(t).

The average post-synaptic activity thus acts as a sliding threshold determining
whether the strength of the connection is increased or decreased. This plasticity
rule leads to the development of orientation selectivity in a stable manner.
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Another set of rules is related to the instrinsic plasticity changing the re-
sponse function of a neuron rather than the strength of the connection to con-
strain output activity to have maximum entropy [143] or to follow an exponen-
tial distribution [144]. The output y of the neuron is related to its input x by
a sigmoidal response function: y = 1

1+e−(σx+θ) with σ > 0 the slope of the quasi
linear part and θ > 0 the threshold. The probability distribution function of y

and x are related by py(y) =
px(x)
∂y/∂x with

∂y

∂x
= σy(1− y)

for a sigmoidal function. A stochastic gradient rule for maximizing a function
L(y) is built as follows:

σ(t+ 1) = σ(t) + η
∂L(y)

∂σ

θ(t+ 1) = θ(t) + η
∂L(y)

∂θ

The differential entropy of the output is h(y) = −
∫∞
−∞ py(y)ln(py(y))dy. With

the previous expressions for py, h(y) = E[ln(σy(1− y))]−E[ln(px(x))], but the
second term doesn’t contribute to the output of the neuron so that maximizing
the entropy comes to maxmize L(y) = ln ∂y∂x . We thus obtain the Bell-Sejnowski
(BS) rule:

σ(t+ 1) = σ(t) + η(
1

σ(t)
+ x(t)(1 − y(t))

θ(t+ 1) = θ(t) + η(1− 2y(t))

with η > 0, a free parameter similar to the learning rate encountered in synaptic
learning rules. The mutual information between the input and the output of the
neuron is I(x, y) = h(y)−h(y|x) so that this rule is also maximizing the mutual
information between the input and the output. In the rule for σ, correlated
activity leads to a decrease of the parameter and for that reason it is another
example of anti-Hebbian learning. Constraining the output distribution to be
exponential can be formalized as minimizing the Kullback-Leibler divergence
between py(y) and the target exponential distribution ptar of parameter µ > 0 :

D(py||ptar) =
∫ ∞

−∞
py(y)ln

py(y)
1
µe

− x
µ

by keeping only terms depending on y, this minimization is equivalent to the
maximization of L(y) = h(y) − 1

µE[y] that is close to what was done when
deriving the BS rule with an additional term for constraining the mean firing
rate. The Triesch rule is then

σ(t+ 1) = σ(t) + η(
1

σ(t)
+ x(t)− (2 +

1

µ
)x(t)y(t) +

1

µ
x(t)y(t)2)
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θ(t+ 1) = θ(t) + η(1− (2 +
1

µ
)y(t) +

1

µ
y(t)2).

Neuromodulation mediated by acetylcholine or serotonin changes the excitabil-
ity property of these neurons and could thus support such an intrinsic plasticity.
A review of models of neuromodulation is provided in [145]. Hallucination pat-
terns could originate from such changes in intrinsic excitability.

3.4.3 Kohonen network.

A simplified version of the SOM was proposed in [73]. As shortly presented in
the first chapter, the algorithm is composed of two parts:

• A competitive stage where the cortical neuron r giving maximal response
is selected.

• A cooperative stage where weights are updated locally around the winning
neuron.

The rule for updating weights is:

wik(t+ 1) = wik + α(ai − wik)hrk(t)

with

hrk(t) = e
− (xr−xk)2+(yr−yk)2

σ(t)2

the neighborhood function which extent σ is decreased across time in a simi-
lar way to what was presented for the elastic net. Because it doesn’t include
explicitly the activity of the cortical units but only the activity of the retinal
units, this model is computationnally less expensive than the original model
proposed by Von der Malsburg and it enables mathematical analysis. Kohonen
then demonstrated some general properties of its algorithm:

• The input space is more precisely mapped along dimensions having the
largest standard deviation.

• Close points in the input space are mapped onto close points in the cortical
space.

• Over-represented domains of the input space are mapped onto large do-
mains of the cortical space.

An analysis of the Kohonen network is applied to the formation of primary
visual cortex was done in [146]. A cortical unit is located at position r = (r1, r2)
in a 2 dimensional space with periodic boundary conditions and is represented
by a 5 dimensional feature vector w(r). The feature vector is a way to code the
receptive field properties of the cortical unit and contains:

• x and y, the positions in the retinal space which it is coding for.
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• Re(z) and Im(z), the components of the vector representing the orientation
preference and selectivity of the unit.

• o = nR−N/2
N characterising the ocular dominance of the unit, with nR the

density of synapses connecting to the right eye and N the density of both
types of synapses (right or left). It is 0 if the unit is perfectly binocular,
1 if it receives inputs from the right eye and −1 from the left eye.

The inputs presented to the network are 2 dimensional Gaussians. Each input
a can be represented in the feature space:

a =













x
y

q cos(2φ)
q sin(2φ)

o













with (x, y) the position of the center of the Gaussian in the retinal space, q
its ellipticity, φ the angle between the principal axis of the Gaussian and the
horizontal axis in retinal space and o the occularity of the input. Given a
probability distribution P (a) of inputs, with a ∈ A, the average change is

E(∆w(r|w(r)) = α

∫

A
(a−w(r))hs(a)rP (a)da

with the winner unit being selected by:

s(a) = minr|a−w(r)|

The stationary states are the ones for which:

E(∆w(r|w0(r)) = 0

An obvious stationary state is the purely retinotopic state :

w0 =













Mr1
Mr2
0
0
0













where the cortical space is a copy of the retinal space with the magnification
factor M . A whole class of stationary states can be obtained by considering
translations, reflection or rotations by an angle multiple of π of w0. The for-
mation of columnar organization associated to orientation and occularity ca, be
understood by analyzing the stability through perturbations of these stationary
states. This is done in Obermayer 1992 by writing the Fokker-Planck equation
in Fourrier space for u(r) = w(r) − w0(r). The order parameters, (Ti)1≤i≤5,
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for this equation are the standard deviation of the inputs along each dimension
i of the input space:

Ti =

∫

A(ai− < ai >)
2P (a)da

∫

A
P (a)da

with < ai >=
∫

A aiP (a)da. The eigenvalues of the linear part of the Fokker
Planck equation becomes positive, making the stationary state w0 unstable,
when

Ti > Tthresh =
1

2

√
eMσ.

While inputs keep being similar in their orientation and occularity dimensions,
the purely retinotopic state is stable. As the variance in these dimensions crosses
a threshold, columnar organization is formed. The fluctuations around the
stationary state when inputs are in the suprathreshold threshold regime can be
described by the correlation function calculated in [146]:

Cii(k) =
α

2
πT 2

i σ
2 e−

σ2

4 k
2

e−
σ2

4 k
2 − T 2

i k
2

M2

where i > 2 are the indices corresponding to the orientation and occularity
dimensions. These fluctuations are finite for k → 0 and grow linearly with the
learning rate α.

3.4.4 Plastic lateral connections-LISSOM model

The Kohonen algorithm is based on a winner take all competition so that only
one input can be presented at a time. Another pitfall is the symmetry implied by
the Gaussian neighborhood function. In visual cortex, the connections between
columns are not isotropic and this can be changed by imposing some dynamics
on the weights associated to lateral connections.

The Lateral Interactions Synergically Self Organized Maps, LISSOM, model
overcomes these problems [147]. The LISSOM can be summarized in five prin-
ciples:

• The cortical layer is composed by excitatory and inhibitory units disposed
regularly on a N ×N grid.

• Inputs from the retina are transmitted through ON and OFF channels
of the LGN ( N × N ). Connections from the retina to the LGN are
differences of Gaussian functions, mexican-hat like for the ON channel
and reversed for the OFF channel.

• Lateral connections are plastic and initialized as Gaussians with inhibition
wider than excitation.

• The activity of a unit is determined by summing linearly the inputs and
applying a sigmoidal function or its piecewise linear approximation.
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Figure 3.11: LISSOM Model - (Left) Description of the LISSOM architec-
ture. Connections in red are fixed and those in orange are plastic. (Right-Top)
Wiring diagram between two columns. (Right-Bottom) Typical dynamics of an
excitatory (red) and inhibitory (blue) cells.
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• Weight dynamics follows Hebbian rule with divisive normalization.

For each stimulus presentation aRet, the activity of a LGN unit located at
position y is:

aLGN(y) = h(
∑

x

wRet−LGN (x,y)aRet(x))

where h is the piecewise linear approximation of a sigmoid:

h(a) =







0 if a ≤ θ1
a−θ1
θ2−θ1 if θ1 < a < θ2
1 if a ≥ θ2

The input from LGN to a cortical unit at location y is

s(y) = γLGN(
∑

x∈LGNOn

wLGNOn(x,y)aLGN (x)+
∑

x∈LGNOff

wLGNOff (x,y)aLGN (x))

At the first step of an input presentation, the cortical activity in y is

aCort(y, 0) = h(s(y)

and it includes lateral inputs in the next time steps

aCort(y, t) = h(s(y+γE
∑

x∈Cort
wE(x,y)aCort(x, t−1)+γI

∑

x∈Cort
wI(x,y)aCort(x, t−1))

γLGN , γE and γI are the relative strengths of afferent, excitatory and inhibitory
connections. The rule for updating the weights coming to a unit located in y is

w′(x,y) =
w(x,y) + αa(x)a(y)
∑

zw(z,y) + αa(z)a(y)

3.5 Dynamics of the spiking neurons network
before and after LISSOM learning.

In the same spirit to what was done for the pinwheel in section, a network is built
from a connectivty scheme obtained by LISSOM learning. The LISSOM network
is run through the Topographica library 3. The connectivity is extracted before
and after learning to study the different dynamics arising from the corresponding
networks.

3.5.1 LISSOM implementation and spiking neurons net-
work.

LISSOM simulation. The parameters used in the LISSOM algorithm are
listed in fig 3.12.

3Available at http://topographica.org/
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Parameter Value Description
Pattern of stimulation
nI 2 Number of bars at each presentation.
sI 0.088388 Size of a bar

(width of the small axis of Gaussian).
arI 4.66667 Aspect ratio of the bar

(long axis)/(small axis).
sepI 0.595826 Minimum of separation

between the centers of 2 bars.
Sheets
dRet 28 density of retinal units.
dLGN 56 density of LGN units.
dCort 56 density of cortical units.
Connections
Retina− LGN
σcenter 0.07385 Size of the center Gaussian

for On and Off receptive fields.
σsurround 0.29540 Size of the surround Gaussian

for On and Off receptive fields.
γR 2.33 Strength of afferent connections to LGN.
LGN−V1

σLGN 0.27083 Size of the Gaussian from which
the weights of the afferent connectivity

are initialized randomly.
γLGN 1.0 Strength of afferent connections to V1.
αLGN 0.47949 Learning rate for afferent connections to V1.
V1 −V1

σE 0.10417 Size of the Gaussian from which
lateral excitatory connections are initialized.

σI 0.22917 Size of the Gaussian from which
lateral inhibitory connections are initialized.

γE 0.9 Strength of lateral excitatory connections.
γI -0.9 Strength of lateral inhibitory connections.
αE 2.55528 Learning rate for lateral excitatory connections.
αI 1.80873 Learning rate for lateral inhibitory connections.

Figure 3.12: Parameters used in the LISSOM model for the learning of connec-
tivity.
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During this learning phase, all connections have a delay of 0.05. After each
stimulus presentation, weights are let evolving during a time tsettle = 2. A
particular feature of the algorithm is a shrinkage of the excitatory kernel similar
to what was described for the Elastic Net. At the 300th learning time step, all
excitatory connections further than 2 columns of the central unit are pruned
and excitatory weights are restricted to this central region as can be visualized
on the fig 3.13. The evolution in the shape of receptive fields are illustrated
in fig 3.14 for afferent connections and in fig 3.15 for lateral connections. The
rotational symmetry is broken by the learning and this results in the emergence
of functional properties of the units for detecting orientations. An example of
the resulting orientation map is shown in fig 3.16. With a reverse difference
of Gaussians connectivity, only two orientations are selected and organize in a
checkboard pattern. With long range excitatory connections, stable orientation
maps with pinwheels can emerge only if a second V 1 layer is added [147].

Figure 3.13: Evolution of the connectivity profile. - The average profile
of connectivity is shown for different stages of the learning with excitatory con-
nections in red and inhibitory connections in blue. Each profile is fitted with

a Gaussian function (e
x2

λ2 ) and the corresponding λ is reported in the box.The
shrinkage can be detected between the profiles at 200 and 500 learning steps.
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Figure 3.14: Evolution of the afferent projective fields. - The projective
fields shows the connection weights from a central LGN afferents neuron (ON or
OFF) to V1. Before learning, it is initialized from a 2D Gaussian distribution(Bl.

140

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



La
te

ra
l E

xc
ita

to
ry

Before learning

La
te

ra
l I

nh
ib

ito
ry

After learning

Figure 3.15: Evolution of the lateral connections. - The excitatory and
inhibitory connections in V1 are shown before and after learning.
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Figure 3.16: Orientation preference map. - Resulting map after 20000 time
steps. Each color codes for an orientation between [−π2 , π2 ].
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Exportation of the connectivity. The V1 sheet has dimensions 56× 56 but
in the corresponding spiking neurons network, to avoid boundary effects on the
connectivity, only the 30× 30 central part is extracted. Weights obtained with
LISSOM are between 0 and 1 with many small values, these values can then be
used as probability of connection between two columns. This probability will
be multiplied by a factor l with a saturation, so that the maximum probability
of connection is 1, to scale the influence of lateral connections. The differences
between the networks before and after learning can be quantified by measur-
ing their graph properties. The graph of neurons built from the connectivity
described above has directed connections with only one connection possible be-
tween two neurons. For each neuron, the in degree is the number of neurons
connecting to this neuron and the out degree is the number of neurons to which
it connects. Considering the same graph as undirected, if there is a connection
for each pair in three neurons, there is a triangle passing through these neurons.
The clustering coefficient of a node v of the graph is the fraction of possible
triangles that actually exist:

Cv =
2T (v)

deg(v)(deg(v)− 1)

This is computed using the networkx Python library 4 and shown in fig 3.17.
In and out degrees don’t change after learning but the clustering coefficient
goes from 0.01 before to 0.12 (0.05) for excitatory (inhibitory) neurons after
learning. This clustering of the connections is associated to the smaller extent
of connectivity profiles shown in fig 3.13 and the break in anisotropy shown in
fig 3.15.

Spiking neurons network implementation Implementation of the net-
work is done in with the PyNN implementation of the NEST simulator [148]
and analysis of the result is done using Neurotools 5. The adaptive exponential
integrate and fire equations model the dynamics of each neuron with parame-
ters described in chapter II for excitatory and inhibitory cells. Each column is
composed of 80 excitatory neurons and 20 inhibitory neurons. Such network
are difficult to study because many parameters are involved and insights for
the analysis from coarse grained description of the network before analyzing
numerical simulations.

3.5.2 Rate description of the V 1 model before learning.

The connectivity kernels are isotropic at the beginning of the learning process
and due to this symetry, the associated rate model can be analyzed easily. A
important difference is that in the rate model, the spatial area is supposed to
be an infinite plane whereas in the simulations it is a 30x30 grid. In order to
avoid border effects in our simulations, we looped connections to make boundary
conditions periodic.

4Available at http://networkx.lanl.gov/.
5Both available at www.neuralensemble.org
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Figure 3.17: Graph properties of the network - (Left) Before learning.
(Right) After learning.

144

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



Eigenforms of the two dimensional model.

Wilson-Cowan equations in continuous space. As we saw in chapter II,
the Wilson-Cowan equations give a coarse grained description of the activity
of a neuronal network by the dynamics of its average firing rate. The same
model can be considered in its spatially continuous version, where the space is
represented by a 2D plane with infinite or periodic boundary conditions as was
done in [149] [150] [151] [152]. Note that the activity based model described
in Chapter 2 can also be extended to this limit. Considering the average rate
of a group of neurons located at the position r in the plane as E(r, t) for the
excitatory population and I(r, t) for the inhibitory one, the dynamics evolve as:

∂E

∂t
= −E + fE(αEEµwEE ⋆ E − αIEwIE ⋆ I)

∂I

∂t
= −I + fI(αEIµwEI ⋆ E − αIIwII ⋆ I).

with:

• ⋆ standing for spatial convolution, f ⋆ g(x) =
∫

R2 f(x− y)g(y)dy

• fk, with k ∈ E, I, the same kind of response function encountered in
Chapter 2, it can be taken as sigmoidal function with fk(0) = 0.

• wkl(r, r′), with k, l ∈ E, I, is the strength of the connection from the group
of neurons located in r to the group of neurons located in r′. This function
only depends on the relative distance |r − r′| between the two groups. It
is positive, bounded with

∫

R2 wkl(r)dr = 1 and its Fourrier transform

ŵ(k) =
∫

R2 w(r)e
ikrdr is a decreasing function of |k|. A common choice

for this connectivity kernels is the Gaussian function w(r = e−|r|2.

• µ is a parameter modulating the excitability of the network and αkl, k, l ∈
E, I, scales the contribution of population k to the input of population l.

(E0(r), I0(r)) = (0, 0) is a stationary solution of the system and we wish
to track instabilities which can arise from this uniform state. The stability of
the uniform solution can be deduced from the linear system equivalent to the
original equations near (E0, I0).

∂E

∂t
= −E + f ′

E(0)αEEµwEE ⋆ E + f ′
I(0)αIEwIE ⋆ I

∂I

∂t
= −I + f ′

E(0)αEIµwEI ⋆ E + f ′
I(0)αIIwII ⋆ I

and by the expansions E(r, t) =
∑

k Ê(k)eλt+ikx and I(r, t) =
∑

k Î(k)e
λt+ikx,

we reach the following system for the instability mode Â = (Ê(k), Î(k)) of wave
vector k:

λÂ(k) = B(µ)Â
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with

B(µ) =

(

−1 + f ′
E(0)αEEµŵEE(k) f ′

I(0)αIEŵIE(k)
f ′
E(0)αEIµŵEI(k) −1 + f ′

I(0)αIIŵII(k)

)

with ŵkl(k) =
∫

D wkl(r)e
ik.rdr, the Fourrier transform of the connectivity ker-

nel, which for a Gaussian function is wkl(k) =
√
πe−π

2|k|2 . This eigenvalue
problem leads to the dispersion relation det(B(µ) − λI) = 0. Eigenvalues of B
are

λ± =
1

2
(tr(B) ±

√

tr(B)2 − 4det(B).

If λ± both have a negative real part, the uniform state is stable. If one of them
is positive, unstable modes unfolds resulting in Turing patterns and moreover if
tr(B) > 0 and tr(B)2 < 4det(B), those patterns are oscillatory which is known
as the Turing-Hopf mechanism for instability [126]. When µ is increased, at
least one of the eigenvalues for a given k becomes positive because ŵkl > 0 thus
provoking the emergence of patterns of spatial frequency k. The selected k is

the one for which λ(k) is maximum that is the one at which dλ(|k|)
d|k| = 0.

Reduced model. The previous model gives the spatial periodicity of the
emerging pattern but the rotational and translational symmetries of the con-
nectivity kernels make several doubly periodic patterns possible 6 The relative
stability of patterns with different symmetries can be studied on a reduced one
dimensional activity based model 7, as proposed in [153]. The activity at a
position r follows:

∂a(r, t)

∂t
= −a(r, t) +

∫

D
w(|r − r′|)f(a(r′))dr′.

with f a sigmoidal function and w the difference of Gaussians connectivity kernel
of extents σe, σi and amplitudes Ae, Ai as encountered in the Swindale model
of part 2 in this chapter:

w(|r|) = Ae
σe
e
− x2

σ2
e − Ai

σi
e
− x2

σ2
i

of Fourrier transform:

ŵ(|k|) = √π(Aee−π
2σ2

e |k|2 −Aie−π
2σ2

i |k|2).

The dispersion relation for this simplified model is :

λ(|k|) = −1 + µŵ(|k̂|)

with µ = f ′(0) as a bifurcation parameter. As µ increases there is a range of
k = |k| for which λ(k) > 0 around the k0 corresponding to the maximum of λ
as ca be seen on fig 3.18.

6Periodic in the x and y dimensions.
7This model is obtained from the two populations model by considering that the inhibitory

dynamics are faster than the excitatory one, replacing the sigmoid in the equation for in-
hibitory activity by its linear approximation and taking wII = 0.
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Figure 3.18: Eigenvalue λ as a function of the norm of the wavevector
k. - This function is plotted for 3 increasing values of µ. When there exist
a range over which λ is positive, the k for which λ is maximum indicates the
spatial frequency of the emerging pattern.
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Near the critical value of µ where a non-uniform pattern arise, the periodicity
will be around k0 but there are several patterns respecting this symmetry:

• For the square pattern, the activity can be expanded as

b(x, t) = c1(t)e
ik1x + c∗1(t)e

−ik1x + c2(t)e
ik2x + c∗2(t)e

−ik2x

with k1 = k0(1, 0) and k2 = k0(0, 1).

• For the rhombic pattern, the activity can be expanded in a similar way
but with k2 = k0(cosφ, sinφ).

• For the hexagonal pattern, the activity is expanded in the three terms
corresponding to the three vectors generating the pattern:

k1 = k0(1, 0), k2 = k0(
1

2
,−1

2
) and k3 = k0(−

1

2
,−1

2
)

The equations for the dynamics of the coefficients of this expansion, cn, can
be obtained by applying perturbation methods and give the relative stability
of the possible patterns. The resulting approximation is the following cubic
equation for the square or rhombic pattern:

∂cn
∂τ

= cn(µ− µc − Γ0|cn|2 − 2Γφ|cm|2)

with m,n = 1, 2 and m 6= n. A model including anisotropic long range connec-
tions was studied in [134] [154].

Localized bump of activity and traveling wave.

Bump solution. Other types of solutions such as localized bumps and trav-
eling waves also exist in such neural field models ( see [155] for a review). An
bump solution has been found in [156] when a Heaviside function 8 is used for
f in the following one-dimensional layer:

∂a(x, t)

∂t
= −a(x, t) +

∫ ∞

−∞
w(|x − y|)f(a(y, t))dy

with w being a difference of Gaussians. A bump solution A(x) of length d
and centered on x0 is defined as a stationary solution such that A(x) = 0 on
] −∞, x0 − d

2 ] and A(x) > 0 on ]x0 − d
2 , x0 +

d
2 [. For such a solution centered

on x0 = 0:

−A(x) +
∫

R[A(x)]

w(x − x′)dx = 0

8The Heaviside function is defined as follows:

Hθ(x) =

{

1 if x > θ

0 else
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with R[A] = x|A(x) > 0. By considering this equation at x = − d2 , we obtain

h+
∫ d

0 w(x)dx = h+W (d) = 0 and this condition is also sufficient. Moreover the
stability of this solution is studied by considering that the excited region have
moving boundaries x1(t) < x2(t) with the slope of the pattern at boundaries

being ci =
∂a(xi,t)
∂x (i = 1, 2). From the definition of the excited region, a(xi, t) =

0, a(xi + dxi, t+ dt) = 0 and thus

∂a(xi, t)

∂t
dt+

∂a(xi, t)

∂x
dx = 0

dxi
dt

= − ∂a(xi, t)/∂t
∂a(xi, t)/∂x

and thus
dxi
dt

=
1

c
(±W (x2 − x1) + h)

so that the evolution equation for the length of the excited region l(t) = x2(t)−
x1(t) is:

dl

dt
= (

1

c1
+

1

c2
)[W (l) + h]

. The stationary solution with length l0 is stable if dW (l)
dl |l=l0 < 0.

Travelling wave. A traveling wave for this model is a solution a(z), z = x−ct
where c is a constant wavespeed, with:

• a monotonic.

• 0 ≤ a ≤ 1.

• a(−∞) = 0, a(∞) = 1.

In [157], the existence and uniqueness of such a traveling wave in one di-
mensional rate model was demonstrated when the response function, f , checks
the following properties:

• f continuously differentiable with f ′ > 0.

• F (a) = −a+ f(a) has three zeros at 0,0 < a0 < 0 and 1.

• f ′(0) < 0 and f ′(1) < 1.

The solution a(z) can be replaced in the model equation, with z = x − ct and
z′ = x′ − ct:

−c∂a(z)
∂z

= −a(z) +
∫ ∞

−∞
w(z − z′)f(a(z′))dz′

k is such that
∫ ∞

−∞
k(x)dx = 1
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and then

−ca′2f ′(u) = F (a)f ′(a)a′ +

∫ ∞

−∞
w(z − z′)(f(a(z′))− f(a(z′)))f ′(a(z))a′(z)dz′

Integrating according to z gives:

−c
∫ ∞

−∞
a′2f ′(a)dz =

∫ 1

0

F (a)f ′(a)da+

∫ ∞

−∞
w(z−z′)(f(a(z′)−f(a(z))f ′(a(z))a′(z)dzdz′.

The last integral can be rewritten:

1

2

∫ ∞

−∞

∫ ∞

−∞
w(z − z′)(f(a(z′)− f(a))(f ′(a(z))a′(z)− f ′(a(z′))a′(z′))dzdz′

then by changing z′ → z − s, this integral is:

1

2

∫ ∞

−∞

∫ ∞

−∞
w(s)(f(a(z − s)− f(z))(f ′(a(z))a′(z)− f ′(a(z − s))a′(z − s))dzds

which when integrated along z is 0 so that:

−c
∫ ∞

−∞
a′2f ′(a)dz =

∫ 1

0

F (a)f ′(a)da.

Moreover
∫ 1

0

F (a)(f ′(a)− 1)da =
1

2
[F (a)2]10 = 0

and then

c = −
∫ 1

0 F (a)da
∫∞
−∞ a′2f ′(a)da

the speed of the wave thus being of the same sign as −
∫ 1

0
F (a)da. In models

taking adaptation into account, dynamic patterns are found in [158] [159]
[160].

3.5.3 Dynamics in the network of spiking neurons before
learning

Periodic boundary conditions: Phase diagram and emergence of static
patterns. As was done for the Ice Cubes model, we provide a phase diagram
(gI , gE) on fig 3.19 indicating the mean and variance of firing rate and the mean
of the coefficient of variation of the ISI. There are 3 regimes:

• When excitation dominates, neurons in the whole network fire at maximal
frequency. Those regimes are located in the red area of the top panel in
fig 3.19.
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• When inhibition dominates, neurons of the network fire in an asynchronous
irregular fashion. Those regime with high CV are located in the red area
of the middle panel in fig 3.19.

• In the well-balanced regime, we see patterns with some parts of the net-
work firing at a high frequency and other parts having a low firing fre-
quency. Those patterns are similar to the eigenforms found in the previ-
ously described Turing mechanism. A snapshot of such a pattern is shown
in fig 3.20.

The bifurcation diagram for the emergence of the pattern as gE increases is
shown in fig 3.21 for gI = 1.5. At low gE , the firing rate map is homogeneous
with low firing rate. At high values of ge, the map is also homogeneous but with
high firing rate. For intermediate values of gE, there are some non-homogeneous
patterns. Note that, if we only look at the average firing over the network, this
transition is not seen.

Finite square boundaries: traveling wave. In another set of simulations,
we take keep finite square boundaries and we provide only a local stimulation by
connecting Poissonian spike trains as input to the 4 central columns. The firing
rate model suggest that the response of the network should be a static bump
but due to inhomogeneities of the graph and in the input stimulation, this bump
starts moving in a given direction and it is then reflected on the boundaries.
For some regimes of (gE , gI), the initial bump splits into three bumps rotating
on the map.

3.5.4 Dynamics in the network of spiking neurons after
learning.

Phase diagram The first parameter varied when building the phase diagram
is the balance between maximal conductance of inhibition and excitation gI

gE

with keeping gE + gI = 0.024nS (verifier 0.024) and the second parameter is
the lateral strength that is a factor multiplying the probabilities of connection
obtained after the LISSOM learning in the rate model. As for the previous
model, we detect three regimes:

• The saturated regime (S) is found for low values of gI
gE

and high values
of the lateral strength. In this regime, all neurons fire spikes regularly at
their maximal frequency such that the coefficient of variation of interspikes
intervals is 0.

• An asynchronous irregular (A) regime (CV ≈ 1) is found at high values
of gI

gE
and low values of the lateral strength. This well-mixed regime is a

good candidate for the on-going activity in awake state.

• A synchronous bursty (B) regime is found in between the two previously
described regimes. In this regime, neurons fire spikes in a supra-Poissonian
fashion (CV > 1).
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Figure 3.19: Phase diagrams (gE , gI) for the network before learning -
The indicated values of conductances gE , gI are normalized so that it should be
multiplied by 0.006nS to get the values used in the simulations.
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Figure 3.20: Static pattern - Firing rate pattern over the 30× 30 obtained at
the frontier between the excitation dominated regime and the inhibition domi-
nated regime (gE = 0.5,gI = 1.5 in normalized units).
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Figure 3.21: Emergence of a static pattern - The curve shows the average
firing over the net work as a function of gE with gI = 1.5 in normalized unit
and boxes show firing rate maps.
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t=300 ms t=350 ms t=400 ms t=450 ms

t=500 ms t=550 ms t=600 ms t=650 ms

t=700 ms t=750 ms t=800 ms t=850 ms

t=900 ms t=950 ms t=1000 ms t=1050 ms

Figure 3.22: Firing rate map after stimulation of the 4 central columns
- When the stimulation is released (500ms), the bump of activity starts moving
across the map.
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Figure 3.23: Phase diagram ( gIgE , ls) for the network of spiking neurons

after LISSOM learning - (Top-left) Average firing rate. (Top-right) Av-
erage coefficient of variation of the interspikes intervals. (Bottom-left) Local
synchrony c0. (Bottom-right) Correlation length λ.
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Correlations. We calculate the correlation between spike trains as a function
of the distance:

Cor(d) =
1

N

∑

i,j

Cor(si, sj)

where i and j are N random pairs of neurons such that the distance between
the columns from which it is extracted is d. The simplest approximation to
this function is to assume an exponential decay of correlations as a function of
distance:

Cor(d) = c0e
− d

λ + c∞

where c0 is the local synchrony, that is the correlation averaged over spike trains
of the same column. The correlation length λ gives the typical size of patterns
emerging in the network. The basal synchrony c∞ is the correlation between
spike trains of columns located very far away from each other. On fig 3.23, it
can be checked that the local synchrony and the correlation length have higher
values in the busty regime, the correlation length is constant in all that area of
the phase diagram.

Description of the activity. In fig 3.24, a phase diagram is shown for param-
eters (gext, gint) where gint is the balance gI

gE
for connections between neurons

belonging to the same column and gext is the balance for connections between
neurons belonging to different columns. The sum of conductances gE + gI is
kept constant (0.024nS). The 3 regimes previously described (S, A and B) can
also be found in this diagram and we show the activity for a line of columns in
regime A and B. In the B regime, activated up states are propagating across the
network with slow velocity. The dynamics of a column is represented in fig 3.25
for an example of regime A and an example of regime B. In regime A, spikes
seems to occur in an independent fashion and the distribution of the membrane
potential is monomodal close to that observed in the main cluster of Chapter
1. In regime B, neurons fire spikes synchronously and the distribution of the
average membrane potential is bimodal. The bimodality of cells classified could
then result from the network structure when gE and gI are tuned in such a
regime.

Correlations depend on orientation preference. In the network before
learning, the network was invariant under translation and rotation so the corre-
lations between the spike trains of two neurons depended only on the distance
separating these two neurons. After learning, the symmetry is broken and the
orientation map also have an effect on the correlation structure of the spiking
activity in the network. As can be seen on fig 3.26, there is a decay in cor-
relations as a function of distance but also as a function of the difference in
preferred orientation. By assuming exponential decay on the distance d and the
difference of preferred orientation δphi:

Cor(d, δφ) = c0e
− d

λd
− δφ

λφ ,
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Figure 3.24: Phase diagram (gext, gint) and average firing rate on a line
of columns - (Top-left) Average firing rate as a function of (gext, gint) (rescaled
from g0 = 0.006). (Top-right) Average coefficient of variation of the interspikes
intervals as a function of (gext, gint) (Bottom-left) Average firing rate in columns
of the central horizontal line of the network over time in the asynchronous regime
and average of the firing rate in the network over time. (Bottom-right) Same
for regime B.
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Figure 3.25: Activity for the asynchronous regime (A) and the bursty
regime (B) - (Left) Spikes raster (each dot represent a spike) for all the neu-
rons in a column of the network. (Right) Temporal dynamics of the average
membrane potential and the corresponding distribution (inset).
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there are two typical constants characterising the correlation structure of the
network, λd the spatia correlation length and λφ the orientation correlation
length. The retinotopy and the orientation preference which are reflected in the
anatomy are also reflected in the dynamics of the network as was also found in
recent LFP recordings [161].

Figure 3.26: Correlations depending on the difference of orientation
preference of the columns. - (Left) Results from biological experiments
[161] showing the cross-correlations in local field potentials depending on the
difference of orientation preference. (Right) Average spike trains correlation
depending on the difference of preferred orientation δφ for columns separated
by a distance d with 3 distances considered. The left part of the curve is a copy
of the right part to make the picture similar to the data from [161].

3.5.5 On-going activity in a model of V1.

The on-going activity of the V1 model was analyzed before and after LISSOM
learning. In both cases, three regimes are found:

• When excitation dominates, the network is saturated at its maximum level
of activity.

• When inhibition dominates, neurons of the network fire spikes in a rather
independent fashion with low firing rate, similar to the self-sustained asyn-
chronous irregular regime (Kumar 09).

• For balanced situations, the activity in the network is not homogeneous
anymore and static or dynamic instabilities occurs.

Before learning, the connectivity is isotropic and as the excitatory conduc-
tance is increased, static patterns emerge. By reducing the model to its firing
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rate description, we saw that a Turing mechanism may explain the rise of these
patterns. After learning, connectivity becomes anisotropic making the math-
ematical analysis difficult. Analytical results for the neural field model with
mexican-hat connectivity and additional weakly anisotropic excitatory connec-
tivity kernel is available in (Golubitsky) but it is very different from our situation
where symmetry is broken mainly in the inhibitory kernel. So although a rigor-
ous proof is not possible for now we suggest that the propagating up states in
our model could be explained by a Turing-Hopf mechanism in the correspond-
ing neural field model so that the typical length of patterns we observe should
also be related to the characteristic length of the connectivity kernel. By this
model, we were able to generate up and down states from network mechanisms
which is different from other mechanisms relying on intrinsic properties of the
cell [162].

3.6 Conclusion.

As described in this chapter, several approaches can be taken to explain the
formation of V1 from abstract cognitive architecture to self organizing models
implementing a plasticity rule, each having specific application. The ice cubes
model provides a framework for natural computation, physical models have been
shown to predict the structural properties of feature maps like the periodicity
of ocular dominance domains or the pinwheel density of orientation maps and
models including plasticity are useful to analyze the connections and dynamics
of the primary visual cortex.

With column based network of spiking neurons, we found that in the excita-
tion dominated regime, neurons fire at high rate and in a regular fashion whereas
in the inhibition dominated regime, the network sets in an asynchronous irreg-
ular state similar to that described for a single column in chapter 2. In models
including long range connections, we found another state for balanced excitation
and inhibition where patterns of activity emerge, either static for isotropic con-
nections or dynamic for anisotropic connections resulting from learning. More-
over, the structure of correlations in the network after learning reflects the
orientation map which is related to visual experience similarly to [25]. Those
patterns occurs through an neuronal analog of the Turing instability for the
isotropic network. In the network after learning, the up and down states result
from a combination of adaptation and inhibition and it would be interesting
to study how the duration of up and down states depends on the adaptation
variable. In anatomical studies, long range connections are found to be rather
excitatory [163] but a simple inversion of initial connections kernels for exci-
tation and inhibition in the rate model doesn’t give rise to orientation maps
because only two orientations are selected. Two layers are considered in V1
in [164] with short range excitation and inhibition of similar extent in the first
layer and long range excitation in the second layer resulting in an orientation
map with long range excitation. Long range excitation could also be mediated
through long range inhibition targeting only inhibitory cells.
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In the ice cubes model, we saw that the ongoing activity can cancel the
response of the network to visual stimulation. We also found that the orientation
tuning curve was sharper near the pinwheel center than far from this center
consistent with the experimental observation that cells stay tuned to orientation
near the pinwheel center [165]. Such properties could also be tested in the
network with orientation maps resulting from learning and we suggest that the
structured correlations encode priors about the statistics of the visual world and
some problems in vision like the inference of 3D structure from a 2D image may
be solved using such priors. It has already been shown that the level of ongoing
activity before the stimulus presentation is a good predictor of the perception
of an ambiguous figure [166].
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Conclusion

The ongoing activity of the brain characterizes the state of consciousness. in
the awake state it is irregular and asynchronous whereas in slow wave sleep
there are 1 Hz collective oscillations seen at the single unit level as transitions
between up and down states. Under annesthesia, we found similar dynamics to
those known for the awake state and the slow wave sleep but also additional
classes like cells having a membrane potential with very few fluctuations result-
ing from synchronous inputs or cells having micro up or micro down states in
their membrane potential. The ongoing activity have a wider range than the
visually evoked activity and after visual stimulation, the dynamics is close to
the main cluster corresponding to the awake state. Another study from Nico-
las Benech at the UNIC demonstrated an influence of the ongoing activity on
the response properties, with bistable cells having longer latency. The resting
state activity is described in human fMRI studies as networks having infraslow
(< 0.1Hz) correlated fluctuations and recordings of resting state activity are
usually long, so we provided a method to represent the infraslow fluctuations
of the EEG in an efficient manner using wavelets. At each time, the signal is
compressed into a symbol representing its local frequency content and defining
a microstate. The classes of neurodynamics we found are the cellular corre-
lates of those microstates and their definition are useful in the monitoring of
anesthesia and in the understanding of patterns of ongoing activity recorded at
a whole brain level [167]. We presented a collection of parameters which are
used to characterize the firing, the distribution and the power spectrum of a
cell and we found that those related to the bimodality of the distribution and
to the power in high frequencies are useful to separate the clusters. We showed
that measures relying on information theory offer a promising approach to multi
channels recordings. Several approaches may be taken to classify data and we
presented K means clustering, agglomerative tree building and self organized
maps. We showed how the partitions resulting from these algorithms can be
combined and compared.

Functional neurodynamics, like asynchronous irregular activity of the awake
state, fixed point attractors associated to memory storage or limit cycles related
to the binding of a coherent percept, are implemented in neuronal networks
and can be studied using dynamical systems. To avoid heavy computations
and to reduce the parameter space, many properties of neuronal dynamics are
studied through phenomenological models which share universal properties, like
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the types of bifurcation when a parameter is varied, with the detailed model.
Normal form reduction thus gives the simplest polynomial system topologically
equivalent to the original system and mean field equations give the evolution of
average quantities in the limit of infinite size networks. We reminded how the
Hodgkin Huxley model can be reduced to the 2 dimensional FitzHugh Nagumo
system and we analyzed local bifurcations of codimension 1 and 2 for this sys-
tem. At a codimension 3 bifurcation point, a stochastic perturbation via a
Brownian motion resulted in complex dynamics mixing several timescales and
we suggest that these timescales are related to limit cycles and fixed point at-
tractors lying close to the equilibrium. Interestingly, the first harmonic in the
power spectrum had a step-like evolution when the noise variance was increased
with the same seed used for the generation of random numbers. A cortical
column is modeled as a population of excitatory neurons and a population of
inhibitory neurons and their macroscopic activity is described by Wilson-Cowan
equations showing multistability and limit cycles. When Hopf bifurcation leads
to periodic activity, the dynamics of coupled columns can be reduced to an
equivalent phase oscillator and we showed various types of dynamics occuring
in a network of phase oscillators from the transition to synchrony as the cou-
pling is increasing to chimera states, in a model with long range connections,
where a part of the network is synchronous while the other part is asychronous.
In a sparsely connected network, the asynchronous irregular state results from
chaotic dynamics when excitation and inhibition are balanced and we provided
a Fokker Planck description of the membrane potential in a network of spiking
neurons. The effective time scale is very small in the balanced network enabling
fast tracking of time varying inputs and can then be used to model attentional
effects. Finally, in the article in appendix, we found windows of chaotic behavior
in coupled flip-flop oscillators and the ongoing dynamics in a network where cell
assemblies are embedded show itinerancy among the fixed points corresponding
to stored memories. There are thus wide applications of dynamical systems in
neuroscience and complex dynamics modeled in neuronal networks may be used
to solve computational tasks [119].

Cortical columns can be coupled together with hard wired or plastic connec-
tions to achieve visual function in a model of the primary visual cortex. Several
models have been presented to explain how selectivity arises and how the fea-
tures of the input space are mapped onto the surface of the cortex. In the ice
cubes model, standing for a pinwheel in V1, a column have lateral connections
only with its nearest neighbours and patterned inputs from the LGN result in
simple cell receptive field. In this model, the ongoing dynamics depends on
whether excitation or inhibition dominates. When excitation dominates, there
is a synchronous regular state with neurons firing at a high rate and no specific
response to an oriented bar because the response is lost in the ongoing dynamics.
When inhibition dominates, we found an asynchronous irregular state similar to
that described for a single column and neurons in a column have a tuning curve
reflecting their prefered orientation with this curve being sharper for cells near
the pinwheel singularity. Learning was also modeled in a network with long
range connections and to fasten simulations, we used a coarse description of
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the network with a macroscopic unit representing a column of spiking neurons
and weights between two units giving the probability of connection between
neurons of the 2 correspondingcolumns. In these models including long range
connection, we found structured activity for balanced excitation and inhibition.
Before learning, when lateral connection kernels are isotropic, these patterns
are static, with some parts of the map firing at a high rate and other parts
firing at low rate, and they are related to the eigenforms obtained with a mean
field description of the network and considered as a model of hallucinatory per-
ception. After learning using an Hebbian rule on both lateral and feedforward
connections to V1 units, the lateral connection kernels become anisotropic, each
unit gets selective to orientation and an orientation map emerges. The patterns
of the balanced state in the network after learning are dynamic with neurons in
each column having collective transitions between up and down states. These
transitions are correlated in the network with spiking correlations between neu-
rons of two columns decreasing exponentially as a function of the distance but
also as a function of the difference between prefered orientations so that the
ongoing activity reflects the visual experience during the learning. Those struc-
tured correlation may encode prior knowledge about the statistics of the visual
world and used in solving problems related with visual perception. Each per-
ception is thus an inference based on visual stimulation and priors encapsulated
in ongoing dynamics.

We thus found a way to characterize several classes of neurodynamics and we
found a way to switch from the asynchronous state to structured up and down
states by changing the strength of excitation and inhibition in a model of the
primary visual cortex. These states are usually associated with specific states
of consciousness like slow wave sleep and waking but ongoing activity may also
reflect attentional processes and we suggested that ongoing pattern of activity
may be useful for cortical computations as reflecting internal knowledge about
the world. It would be interesting to provide visual stimulation in the network
after learning and to test the network in binocular rivalry, which is a typical
exemple where ongoing activity interplay with visual stimulation to give rise to
perception [168]. Additional plasticity mechanisms like spike timing dependent
plasticity or intrinsic plasticity. The model of the visual cortex can also be used
predict the effects of magnetic stimulation in brain computer interface or of a
medical drug. The ice cubes model could also be extended to include several
pinwheels having long range connections depending on the prefered orientations
of connected columns and it would then provide a cognitive architecture for
biologically inspired computing. In the column based network we assumed a
decoupling of the timescales of the dynamics of neuronal activity and of the
synapses but further research is needed to understand interactions between those
timescales.
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Appendix

RESEARCH ARTICLE

Working memory dynamics and spontaneous activity in a flip-flop

oscillations network model with a Milnor attractor
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Abstract Many cognitive tasks require the ability to main-

tain and manipulate simultaneously several chunks of

information. Numerous neurobiological observations have

reported that this ability, known as the working memory, is

associated with both a slow oscillation (leading to the up and

down states) and the presence of the theta rhythm. Further-

more, during resting state, the spontaneous activity of the

cortex exhibits exquisite spatiotemporal patterns sharing

similar features with the ones observed during specific

memory tasks. Here to enlighten neural implication of

working memory under these complicated dynamics, we

propose a phenomenological network model with biologi-

cally plausible neural dynamics and recurrent connections.

Each unit embeds an internal oscillation at the theta rhythm

which can be triggered during up-state of the membrane

potential. As a result, the resting state of a single unit is no

longer a classical fixed point attractor but rather the Milnor

attractor, and multiple oscillations appear in the dynamics of

a coupled system. In conclusion, the interplay between the

up and down states and theta rhythm endows high potential

in working memory operation associated with complexity in

spontaneous activities.

Keywords Working memory � Up down states �

Theta rhythm � Chaotic dynamics � Cell assembly

Introduction

During the past 60 years, despite seminal observations

suggesting the existence and the importance of complex

dynamics in the brain (Nicolis and Tsuda 1985; Skarda and

Freeman 1987; Babloyantz and Destexhe 1986), fixed point

dynamics has been the predominant regime used to describe

brain information processing and more precisely to code

associative memories (Amari 1977; Hopfield 1982; Gross-

berg 1992). More recently, the increasing power of com-

puters and the development of new statistical mathematics

demonstrated less equivocally the necessity to rely on more

complex dynamics (e.g. Varela et al. 2001; Kenet et al.

2003; Buzsaki and Draguhn 2004). In that view, by

extending classical Hopfield networks to encode cyclic

attractors, the authors demonstrated that cyclic and chaotic

dynamics could encompass several limitations of fixed point

dynamics (Molter et al. 2007a, b).

During working memory tasks, tasks requiring the

ability to maintain and manipulate simultaneously several

chunks of information for central execution (Baddeley

1986), human scalp EEG (Mizuhara and Yamaguchi 2007;

Onton et al. 2005) and neural firing in monkeys (Tsujimoto

et al. 2003; Rainer et al. 2004) suggested that the theta

rhythm (4–8 Hz) plays an important role. The neural basis

of the working memory has been widely investigated in

primates by using delay to matching tasks. In these tasks,

the primate has to retain specific information during a short

period of time to guide a forthcoming response. Single cell

recordings has shown that during this delay period, some

cells located in specific brain areas had increased firing

rates (Fuster and Alexander 1971; Rainer et al. 1998).

How these cells can maintain sustained activity is not

solved. However, while the coding of information in

long-term memory is mediated by synaptic plasticity

David Colliaux and Colin Molter contributed equally to this work.

D. Colliaux � C. Molter (&) � Y. Yamaguchi

Lab. for Dynamics of Emergent Intelligence,

RIKEN-BSI, Saitama, Japan

e-mail: cmolter@brain.riken.jp

D. Colliaux

Ecole Polytechnique, CREA, Paris, France

123

Cogn Neurodyn (2009) 3:141–151

DOI 10.1007/s11571-009-9078-0

167

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



(e.g. Whitlock et al. 2006), it seems that working memory

and more generally short-term memory relies on different

mechanisms, potential candidates being that the information

is maintained in the network’s dynamics itself (Goldman-

Rakic 1995). Recent related observations reported the exis-

tence of slow oscillations in the cortex associated with

‘flip-flop’ transitions between bistable up- and down-states of

the membrane potential; Up-states, or depolarized states,

being associated with high firing rates of the cells during

seconds or more. The transition between up and down states

as well as the maintenance of high activity during up states

could be the result of network interactions, and the neural

basis for working memory (McCormick 2005).

Different models of working memory have been pro-

posed. According to the classification proposed by

Durstewitz et al. (2000), one type of model is based on a

cellular mechanism of bistability (e.g. Lisman and Idiart

1995). Another type follows to the tradition of classical

rate coding scheme proposed by (Amari 1977; Hopfield

1982; Grossberg 1992). In these models (e.g. Brunel et al.

2004; Mongillo et al. 2005), the associative memories are

coded by cell assemblies in a recurrent network where the

synaptic weights are usually pre-encoded according to a

Hebbian rule (Hebb 1949). As a result, the recovery of a

memory, i.e. of a cell assembly, leads to persistent activity

of that cell assembly through recurrent excitation. This

could be described as an up-state, while the attractor to the

resting state would be the down-state. Flip-flop transitions

between up- and down-states are regulated by applying

transient inputs.

Remarkably, these models neglect the presence, and

accordingly the possible contribution, of the theta rhythm

observed during working memory tasks. However, many

physics studies have demonstrated the powerful impact of

rhythms and oscillations on synchronization which in turn

could play an important role during working memory tasks.

Here, to conciliate the cell assembly theory with the

presence of brain rhythms, we hypothesize that during up-

states the firing rate is temporally modulated by an intrinsic

cellular theta rhythm. Synchronization among cellular

rhythms leads to dynamical cell assembly formation in

agreement with observation of EEG rhythms. Grounding

on two previous reports (Colliaux et al. 2007; Molter et al.

2008), we propose here the ‘‘flip-flop oscillation network’’

characterized by two different temporal and spatial scale.

First, at the unit scale, a theta oscillation is implemented,

second, at the network scale, cell assemblies are imple-

mented in the recurrent connections. We demonstrate how

the intrinsic cellular oscillation implemented at the unit

level can enrich, at the network level, the dynamics of the

flip-flop associative memory.

In the following section, we first formulate the flip-flop

oscillation networkmodel. Then, we show that the dynamics

for a single cell network has an interesting attractor in term

of the Milnor attractor (Milnor 1985). Following that,

network dynamics in two coupled system is further ana-

lyzed. Finally, associative memory networks are elucidated

by focusing on possible temporal coding of working

memory.

Model

To realize up- and down-states where up-states are associ-

ated with oscillations, two phenomenological models are

combined. First, in tradition of Hopfield networks and the

theory of associative memories, each cell i is characterized

by its membrane potential Si, and is modulated by the

activity of other cells through recurrent connections

(Hopfield 1982). Second, to account for the presence of an

intrinsic oscillation, each cell is characterized by a phase /i.

The phase follows a simple phase equation defining

two stable states: a resting state and a periodic motion

(Yamaguchi 2003; Kaneko 2002; Molter et al. 2007c).

These two variables are coupled such that, first, an oscilla-

tion component cos /i produces intrinsic oscillation of the

membrane potential, second, the evolution of the phase

depends on the level of depolarization. As a result, the cell’s

dynamics results from the non linear coupling between two

simpler dynamics having different time constant. Thus, in a

network of N units, the state of each cell is defined by

fSi;/ig 2 < � ½0; 2p½ (i 2 ½1;N�) and evolves according to

the dynamics:

dSi
dt

¼ 	Si þ
PN

j¼1 wijRðSjÞ þ Cð/iÞ þ Ii
d/i

dt
¼ xþ ðb	 KðSiÞÞ sin/i

(

ð1Þ

with wij, the synaptic weight between cells i and j, R(Sj),

the spike density of the cell j, and Ii represents the driving

stimulus which enables to selectively activate a cell. In the

second equation, x and b are respectively the frequency

and the stabilization coefficient of the internal oscillation.

The spike density is defined by a sigmoid function:

RðxÞ ¼
1

2
tanh gðx	 0:5Þð Þ þ 1ð Þ; ð2Þ

The couplings between the two equations, C and K

appear as follows:

Cð/iÞ ¼ rðcos/i 	 cos/0Þ
KðSiÞ ¼ qSi

�

ð3Þ

where q and r modulates the coupling between the internal

oscillation and the membrane potential, and /0 is the

equilibrium phase obtained when all cells are silent

(Si = 0); i.e. /0 ¼ arcsinð	x=bÞ.
The following set of parameters was used: x = 1,

b = 1.2 and g = 10. Accordingly, cos/0  	0:55. q, r and
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wij are adjusted in each simulations. A C?? Runge–Kutta

Gill integration algorithm is used with a time step set to

h = 0.01 in first simulations and to h = 0.1 in Section

‘‘Working memory of cell assemblies’’ simulations (to fas-

ten the computation time). The variation of h leaded to no

visible dynamical change. If we consider that x = 1 rep-

resents the 8 Hz theta oscillation, one computational time

step represents 0:01=8=2p� 0:199ms in first simulations

and *1.99 ms in last section.

One unit

For one unit, the dynamics in Eq. 1 simplifies to:

dS
dt
¼ �Sþ rðcos/� cos/0Þ þ I

d/
dt
¼ xþ ðb� qSÞ sin/

�

ð4Þ

Next paragraph analyzes the dynamics in absence of any

external input (I = 0). Then, to understand how

information is processed by a neural unit, we observe the

dynamics in response to different patterns of stimulation.

Fixed point attractors

When I = 0, since x\ b, the dynamics defined by Eq. 1

has two fixed points, M0 = (0,/0) and M1 = (S1,/1). The

linear stability of M0 is analyzed by developing the Jaco-

bian of the coupled Eq. 4 at M0:

DFjM0
¼

�1 �r sinð/0Þ
�q sinð/0Þ b cosð/0Þ

� �

ð5Þ

The eigenvalues are given by:

k1;2 ¼
1

2
g� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg� 1Þ2 þ 4ðqr sin2 /0 þ gÞ

q

� �

ð6Þ

where g ¼ b cos/0: The linear stability of the fixed point

M0 is a function of the internal coupling between S and

/, l = qr. With our choice of x = 1 and b = 1.2, one

eigenvalue becomes positive and M0 becomes unstable for

l[ lc ¼ 0:96: Since l is the crucial parameter for the

stability of the resting state, we fixed here q = 1 and we

analyzed the dynamics according to r.

Figure 1a shows trajectories and nullclines in the three

possible scenario (l\ lc, l = lc and l[ lc). The two

fixed points M0 and M1 (defined by the intersection of the

two nullclines) merge for l = lc. To have a better

understanding of the dynamics, Fig. 1b shows the evolu-

tion of the Lyapunov exponents at M0 and M1 when r1 is

varied. Figure 1c shows how the two fixed points exchange

their stability at criticality. This corresponds to a trans-

critical bifurcation. Around the bifurcation our two

equations (Eq. 1) can be reduced to the normal form of the

bifurcation:

dx1
dt

¼ ax21 þ k1x1
dx2
dt

¼ k2x2
ð7Þ

Figure 2 shows how the fixed points changed stability

according to the variation of k1.

For the fixed point M0:

a
b

c

Fig. 1 Fixed points analyses for one cell. a Cylinder space (S,/) with

nullclines (orange for dS/dt = 0, yellow for d//dt) and some

trajectories. Left to right shows the three possible scenario: M0 is

stable fixed-point for l\lc, M0 is the Milnor attractor for l = lc
and M0 is unstable fixed-point for l[lc. b Evolution of the two

Lyapunov exponents of the system at M0 (in blue) and M1 (in green)

in function of r (q = 1). As expected, one exponent becomes null at

r = lc. c Evolution of the two fixed points, M0 and M1, when r is

varied. l = lc corresponds to a transcritic bifurcation

1 Lyapunov exponents aims to quantify the dependency of the

dynamics to infinitesimal perturbation. They are computed here

analytically as the eigenvalues of the Jacobian (see Ott 1993).
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l\ lc: both Lyapunov exponents are negative. All

trajectories converge to the trajectories M0 which is

accordingly stable. The other fixed point, M1, is unstable

with /1\/0 and S1[ S0;

l[ lc: one Lyapunov exponent is negative while the

other is positive. It corresponds to the co-existence of

both attracting and diverging trajectories. Trajectories

attracted to M0 escape directly from it. M0 corresponds

to an unstable fixed point. M1 is stable with /1[/0 and

S1\ S0;

l = lc one Lyapunov exponent is negative. Accord-

ingly, the basin of attraction of M0 has a positive

measure and many trajectories are attracted to it.

However, since the other Lyapunov exponent equals

zero, it exists an ‘unstable’ direction along which the

dynamics can escape due to infinitesimal perturbation.

Accordingly, M0 does not attract all trajectories from an

open neighborhood and does not define a classical fixed

point attractor. However, it is still an attractor if we

consider Milnor’s extended definition of attractors

(Milnor 1985). At M0, the two nullclines becomes

tangent and the two fixed points merge, M0 = M1.

The particularity and interest of the Milnor attractor is

the following. For all values of l, any initial state of our

system is attracted and converges to a fixed point of the

system (M0 or M1). To escape from that fixed point, and to

perform an oscillation, a given amount of energy has to be

provided, e.g. as a transient input. The more l � lc or

l � lc; the more the amount of energy required to escape

from that fixed point is important. By contrary, at the

Milnor attractor (or for l � lc;) the dynamics becomes

very receptive and an infinitesimal perturbation can push

the dynamics to iterate through an oscillation.

Response to a constant input

Under constant inputs, the dynamics of the system 4 can

either converge to a fixed point, either converge to a limit

cycle. To obtain a fixed point ðS�;/�Þ; d//dt must be equal

to zero in Eq. 4, which requires:

x

b� S�

�

�

�

�

�

�

�

�

\1 ð8Þ

and Eq. 4 becomes:

S� ¼ rðcos/� � cos/0Þ þ I

0 ¼ xþ ðb� rðcos/� � cos/0Þ � IÞ sin/�
ð9Þ

Figures 3 and 4a show the evolution of the dynamics for

various levels of input. Fixed points are obtained either

for small values of I (S\ (b-x) in Condition 8), either for

large values of I (S[ b in Condition 8). In between,

oscillatory dynamics occurs. The period of the oscillation

can be approximated by identifying S with its temporal

average, S and by solving the integral
R 2p

0
d/

xþðb�SÞsinð/Þ
:

This approximation gives an oscillation at frequency x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � ðb� SÞ2
q

; which is in good agreement with

computer experiments (Fig. 3).

In Fig. 4a, the dynamics of our system of two equations

is compared with the dynamics obtained for r = 0 (i.e. for

a simple integrating unit as in the rate model) and for the

current output from the phase model (cos/). As expected

from Fig. 3, the coupling of the phase adds oscillation in a

large range of inputs, and, as a first order approximation,

our unit’s dynamics appears as a non-linear combination of

both dynamics.

Response to oscillatory input

Since the output of a unit can become the input to other

units and can contain oscillations, it is interesting to see

how a unit reacts to oscillatory inputs. Figure 4b shows the

dynamics obtained when considering an oscillating cur-

rents having an increasing frequency. The input current

follows the ZAP function, as proposed in (Muresan and

Savin 2007): I ¼ sinðatbÞ; with a ¼ 2p10�5 and b = 3.

Fig. 2 Normal form reduction near lc. The two nullclines _x1 ¼ 0 and

_x2 ¼ 0 appear. Plain arrows indicate the direction of the trajectories

for x2 = 0

input

frequency

SMax

Smin

0

0

1

4

2

0

2

3

6

0.4 0.8 1.2-0.4

-1

Fig. 3 Evolution of the maximum and minimum values of S, and of

the dominant frequency obtained by FFT when the input current is

varied

144 Cogn Neurodyn (2009) 3:141–151

123 170

te
l-0

06
55

10
6,

 v
er

si
on

 1
 - 

26
 D

ec
 2

01
1



Again the two limit cases are considered. First, when

r = 0 (third row), the unit becomes an integrating unit and

the membrane potential oscillates at the input frequency

but with exponential attenuation in amplitude. Second, for

the phase impact (fourth row), at slow input frequency

(lower than x), one or several oscillations are nested in the

up-state. When the input frequency is larger than x

(t[ 650 ms), oscillations follows the input frequency

which leads to faster oscillations with attenuation.

When the two dynamics are coupled (second row), at

very low frequencies (lower than 2 Hz), the dynamics goes

from fixed point dynamics to limit-cycle dynamics during

up-states. We propose that these oscillations at the theta

frequency occurring for positive currents could model the

increase of activity during ‘up-states’. For faster frequen-

cies of the input signal, but still slower than the phase

frequency x, one oscillation occurs during the up-state,

leading to higher depolarization of the membrane potential,

and an attenuation function of the frequency appears as a

result of the integration. At frequencies faster that the

phase frequency x, interference occur and generate higher

mode resonances.

Two coupled units

For sake of simplicity, we will discuss results obtained for

symmetrical connections (w12 = w21 = w). In the two

following simulations, the dynamics of the network is

analyzed after a transient excitation is applied to one unit.

Figure 5 analyzes the dynamics by looking at the extrema

of the membrane potential and by quantifying the phase

difference between the two units. The measure of syn-

chrony is obtained by dividing the time between the

maximum of the membrane potential of the two units,

dw ¼ tðSmax
1 Þ � tðSmax

2 Þ; by the period of the signal, T.

Accordingly, dw=T ¼ 0 corresponds to the two units

oscillating at same phase (phase locked), and dw=T ¼ 0:5
corresponds to the two units being antiphase locked.

The impact of different type of inputs is beyond the

scope of this paper and only the impact of a transient input

applied to one unit is considered.

From an Hopfield network to a flip flop network

For r = 0, the membrane potential is not influenced by the

phase and the system of two equations simplifies to a

classical recurrent network. Since Hopfield, that system is

well known for its ability to encode patterns as associative

memories in fixed point attractors (Hopfield 1982; Amit

1989; Durstewitz et al. 2000). In our two units network, if

the coupling strength w is strong enough (w larger than

0.68), the dynamics is characterized by two stable fixed

points, a down state (S1 = S2 = 0) and an up-state (visible

in Fig. 5a with S1 * 0.65). Applying a positive transient

input to one of the two cells suffices to move the dynamics

from the down-state to the up-state. In return, a negative

input can bring back the dynamics to the down state.

When increasing r, a small oscillation characterizes the

up-state and associative memory properties (storage and

completion) are preserved. The two cells oscillate at nearly

identical phases.

a b

t
u

p
nI

3

3

3

3

0

S
S

s
oc

t
u

p
nI

S
S

s
oc

10 02 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 4 Voltage response to input currents. a for current steps, b for

oscillatory input of increasing frequency. Upper figures show the

input pattern. Then, from up to down, the voltage response is shown

for our complex unit, then for a unit without phase modulation,

finally, when only the phasic output is considered
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For large values of r (i.e. large internal coupling), the

membrane potential saturates. The region of interest lies

before saturation when the membrane returns transiently

near the resting state and accordingly not so far from the

Milnor attractor. This leads to complex dynamics as shown

by the fractal structure of the local minima of S1 (lower part

of Fig. 5a). In that situation, a transient input applied

simultaneously to the two units would synchronize the two

units’ activity and after one oscillation, when the mem-

brane potentials cross the resting state, they stop their

activity and remain in the fixed point attractor (not shown

here).

Influence of the synaptic weight

Figures 5b and 6 show the impact of varying the synaptic

weight on the dynamics of the two units after transient

stimulation of one unit.

For small synaptic weights, the two units oscillate anti-

phase (Fig. 6a) and their membrane potentials periodically

a b

1
1 1

0.9 10.95 1.10.850.8 1.05

0 0.40.2 0.6 10.8 1.2 1.61.4-0.2 0 0.40.2 0.6 10.8 1.2 1.61.4-0.2

2

3

0

1

2

3

0

1

0.4

0.2

0.5

0.3

0.6

0.4

0.5

0.3

0.6

7.06.0 0.65 0.75 0.850.8

0

0.5

1

0

0.5

1

1

S1
Max

S1
min

S1
Max

S1
min

Fig. 5 Extrema of the membrane potential during the up-state (Smin
1

and S
max
1 ) and normalized phase difference (Dw=T ¼ ð/2 � /1Þ=T)

for a two-unit network when either the internal coupling strength (a)

or the synaptic weight (b) is varied. Lower figures demonstrate the

presence of complex dynamics in specific region of the upper figures

by showing the bifurcation diagram for the local minima of the

membrane potential. For (a), w = 0.75. For (b), r = 0.9
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Fig. 6 Si temporal evolution, (S1,S2) phase plane and (Si, /i) cylinder space. a Up-state oscillation for strong coupling. b Multiple frequency

oscillation for intermediate coupling. c Down-state oscillation for weak coupling
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visit the resting state for a long time. The frequency of this

oscillation increases with the synaptic weights and for

strong synaptic weights (Fig. 6c), rapid in-phase oscillation

appear. In that situation, the oscillation does not cross

anymore the fixed point attractor, the dynamics remains in

up-state. For intermediate coupling strength, an interme-

diate cycle is observed and more complex dynamics occur

for a small range of weights (0.58\w\ 0.78 with our

parameters, Fig. 5b). The bifurcation diagram shows mul-

tiple roads to chaos through period doubling (Fig. 6b).

Working memory of cell assemblies

In this section, a network of N = 80 cells containing eight

strongly overlapped cell assemblies is simulated. Each cell

assembly contained 10 cells among which seven were

overlapping with other cell assemblies. The intersection

between two cell assemblies was limited to two cells. The

connectivity of the network was chosen bimodal: The

synaptic weights between cells lying in the same cell

assembly were chosen from the normal distribution

(l = 0.8 and r = 0.15), while the other weights were

chosen from the normal distribution (l = 0.2 and

r = 0.1).

To avoid saturation, a global inhibition unit has been

added to the network. This unit computes the total activity

of the network ðA ¼
P

RðSiÞÞ and inhibits all cell with the

following negative current:

D c A� jNð Þð Þ ð10Þ

where D(x) = -x for x[ 0 and 0 elsewhere; c defines the

strength of the inhibitory cell (here 0.1) and j (in %)

defines a threshold triggering the inhibition (here 0.03,

meaning that inhibition starts when more than 3% of cells

are activated).

Spontaneous activity

Figure 7 shows the spontaneous activity of the network, i.e.

in absence of any external stimuli. The upper part of the

figure shows the evolution of the membrane potential for

the 80 cells (each cell is represented by a different color).

The membrane potential is maintained around the Milnor

attractor (nearby the stable fixed point). The middle part in

Fig. 7 shows rasterplot of cells activity. Global inhibition

was tuned to prevent the simultaneous activation of mul-

tiple cell assemblies and each period is associated with the

activation of a specific subset of cells. Lower part in Fig. 7

quantifies the proportion of each cell assembly activated at

each time step. During the observed period, all cell

assemblies (characterized in the figure by a different color

and letter) are reactivated. It has to be noted that since cell

assemblies are overlapping, the total reactivation of a cell

assembly is necessarily associated with the partial reacti-

vation of other cell assemblies.

The activity of the network can be explained in the

following way: when one cell is activated, it tends to

)t(
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Fig. 7 Spontaneous activity in a 80 units network containing eight

overlapped cell assemblies of 10 cells each. The upper and the middle

figures show respectively the membrane potential and a rasterplot of

the activity of each individual cell (one color per cell). The lower

figure shows the reactivation of the different cell assemblies (each

assembly has its own color and letter). Periods of no-activity alternate

with periods of activity during which specific cell assemblies are

preferentially activated
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activate the cells belonging to the same cell assembly and

the activated cells undergo one oscillation before going

back to the resting state, nearby to the Milnor attractor. At

the Milnor attractor, any cell can be kicked out of the

attractor leading to the activation of a different or the same

cell assembly. As a result, the spontaneous activity of the

system is characterized by the Milnor attractor which

provides a kind of reset of the entire network, enabling the

activation of the different stored memories. The system

itinerates among the previously stored memories, with the

passage from one memory to a new one characterized by

the ‘‘ruin of the Milnor attractor’’ leading to a kind of

‘‘chaotic itinerancy’’ (Tsuda 1992; Kaneko 1992).

The overlapping structure of the cell assemblies can

influence the sequence of reactivation: The reactivation of

one specific cell assembly will tend to reactivate the cell

assemblies sharing common cells.

Working memory

In this section, after applying external stimuli during short

time periods to part of one or several cell assemblies

embedded in the network, we observe the network’s ability

to sustain the activity of these cell assemblies in agreement

with the theory of working memory. To reflect biologically

plausible conditions, cell assemblies were sequentially

activated during 100 computational time steps; i.e. approx-

imately 200 ms.

In the previous section, we saw that after the reactiva-

tion of one cell assembly, all cell assemblies are equally
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Fig. 8 Working memory in a 80 units network containing eight

overlapped cell assemblies of 10 cells each. In both a and b, upper

figures show the membrane potential of each individual cell (each cell

one color). Middle figures show rasterplots of individual cells activity

(a cell is said to be in an active state if its spike density is larger than

0.5). Lower figures show the reactivation of the different cell

assemblies (one color and letter per cell assembly). a An external

stimulus was impinging part (40%) of one cell assembly during a

short transient (10 computational time steps). As a result, this cell

assembly is continuously activated as a short term memory. b

External stimuli are successively applied to part (40%) of three cell

assemblies (each CA is stimulated during 100 computational time

steps; i.e. approximately 200 ms). After stimulation, we observe that

these three cell assemblies have sustained activity
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probable to be reactivated. To modify this probability and

to increase the probability of selected cell assemblies to be

reactivated, as previously proposed (Molter et al. 2008),

we simulated a transient period of Hebbian synaptic plas-

ticity during the presentation of the stimuli. Practically, at

each computational step, weights between cells reactivated

during that period were increased by 0.01. We believe that

the proposed mechanism can be related with growing

evidence showing that attention-like processes are associ-

ated with period of short term plasticity (van Swinderen

2007; Jaaskelainen et al. 2007).

In Fig. 8a, part (40%) of one cell assembly was stimu-

lated. In Fig. 8b, part (40%) of three cell assemblies were

sequentially stimulated. First, we observe that in agreement

with the theory of associative memories, in both scenario,

rasterplot figures indicate that the stimulation of 40% of a

cell assembly results in its complete reactivation. Second, it

appears that in both cases, the transient stimulation of a cell

assembly leads to its preferential reactivation and to a form

of sustained activity.

The explanation is the following. After external stimu-

lation, the network is attracted to its resting state, and again

the dynamics reflects the presence of diverging orbits

crossing attracting orbits. When one cell assembly was

reactivated (Fig. 8a), its recurrent connections were

increased during the attention-like reactivation, and that

cell assembly is now more likely to win the competition

and to be reactivated. Since the rapid weight increase due

to attention is not balanced by a slow decrease, no

dynamics transition is expected and short term memory is

expected to last forever (as in Brunel et al. 2004; Mongillo

et al. 2008). To implement a slow extinction of the work-

ing memory (after dozens of seconds), a mechanism of

slow weight decrease could be implemented.

When three cell assemblies were reactivated (Fig. 8b),

the balance between excitation and inhibition results in the

competition of these three cell assemblies which leads to

complex patterns of activity. As a result, the three cell

assemblies show clear sustained activity, and these reacti-

vations occur at different times. This result appears

important since their simultaneous reactivation would mix

them and would prevent any possibility to decode the utile

information embedded in the network. Together, these

results confirm that our model satisfies one important

defining feature of the working memory: The ability to

maintain simultaneously multiple chunks of information in

short term memory.

Discussion

Recent neuroscience emphasized the importance of the brain

dynamics to achieve higher cognitive functions. From a

computational perspective, it gave straightforward directions

for the development of new type of models where dynamics

playedmore central roles (Kozma and Freeman 2003;Molter

et al. 2007). In this paper, to conciliate the classical Hopfield

network (Hopfield 1982) with the need of more complex

dynamics, we propose a new biologically motivated network

model, called ‘‘flip-flop oscillation network’’.

In this model, each cell is embedded in a recurrent

network and is characterized by two internally coupled

variables, the cell’s membrane potential and the cell’s

phase of firing activity relatively to the theta local field

potential.

In a first study, we demonstrate theoretically that in the

cylinder space, the Milnor attractor (Milnor 1985) appears

at a critical condition through forward and reverse saddle-

node bifurcations for a one-cell network (Figs. 1, 2). Near

the critical condition, the pair of saddle and node constructs

a pseudo-attractor, which leads to Milnor attractor-like

properties in computer experiments. Nearby the attractor,

the dynamics of the cell is characterized by high sensitiv-

ity: infinitesimal transient perturbation can activate an

oscillation of the membrane potential.

Simulations of a two-cell network revealed the presence

of numerous complex dynamics. We observed that semi-

stability of the Milnor attractor dynamics characterizing

one cell dynamics, combined in a two cell-network leads to

oscillations and chaotic dynamics through period doubling

roads (Fig. 5). The important role played by the Milnor

attractor for the apparition of the chaotic attractor suggests

chaotic itinerancy (Tsuda 2001).

Finally, we tested our model during spontaneous activity

(Fig. 7) and for selective maintenance of previously stored

information (Fig. 8). In agreement with the cell assembly

theory (Hebb 1949), multiple overlapping cell assemblies

were phenomenologically embedded in the network to

simulate chunks of information.

During spontaneous activity, the network is dynamically

switching between the different cell assemblies. After the

reactivation of a specific cell assembly, the quasi-stable

state of the Milnor attractor provides receptivity to second

order dynamics of the internal state and to external stimuli.

During that ‘‘receptive’’ or ‘‘attention-like’’ state, a dif-

ferent information can be reactivated. This is supported by

recent biological reports; for example, the spatiotemporal

pattern of activity of cortical neurons observed during

thalamically triggered events are similar to the ones

observed during spontaneous events (MacLean et al.

2005). From a dynamics perspective, the presence of the

Milnor attractor prevents the network to be ‘‘occulted’’ by

one information and leads to chaotic itinerancy between the

previously stored cell assemblies.

To simulate working memory tasks, we analyzed if the

network could transiently hold specific memories triggered
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by external stimuli. To reliably and robustly enforce the

maintenance of triggered cell assemblies, short period of

synaptic plasticity was simulated, reproducing attention-

like processes (van Swinderen 2007; Jaaskelainen et al.

2007). As a result, one or multiple cell assemblies could

selectively be maintained. An important feature brought by

the addition of the theta rhythm to the classical Hopfield

network is that different cell assemblies are separately

reactivated at different theta oscillations. At each theta

cycle, cells from a unique cell assembly are synchronously

reactivated. That enables our network to solve the binding

problem by reactivating at different phases different over-

lapping cell assemblies.

If the addition of an internal oscillation to classical rate

coding model (e.g. Brunel et al. 2004; Mongillo et al.

2008) can solve the binding problem, it can still not explain

in an easy way the limited memory capacity of working

memory [e.g. the magical number seven (Miller 1956)]. In

that sense, it differs from the seminal paper from Idiart

et al. (Lisman and Idiart 1995) where it was proposed that

memories are stored in gamma cycles embedded in theta

cycles, and that the magical number seven is explained by

the number of gamma cycles which can be embedded in a

theta cycle. Further studies should focus more deeply on

the capacity problem. More precisely, the reactivation of

multiple items at different phase of a same theta cycle

should be tested.

To summarize, we are proposing a compact, effective, and

powerful ‘‘flip-flop oscillations network’’ whose dynamical

complexity can be of interest for further analysis of inte-

grative brain dynamics. First attempts to solve working

memory tasks gave promising results were different chunks

of information were reactivated at different theta cycles.

Finally, in our model, the information conveyed during

spontaneous activity and working memory tasks appeared

similar, reminding the famous quote from Rodolfo Llinas:

‘‘A person’s waking life is a dreammodulated by the senses’’

(Llineas 2001).
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