S. Amari, Neural theory of association and concept-formation, Biological Cybernetics, vol.12, issue.3, pp.175-185, 1977.
DOI : 10.1007/BF00365229

D. Amit, Modelling brain function: the world of attractor networks Low-dimensional chaos in an instance of epilepsy, Proc Natl Acad Sci, vol.83, pp.3513-3517, 1986.

A. Baddeley, V. Hakim, P. Isope, J. Nadal, and B. Barbour, Working memory Optimal information storage and the distribution of synaptic weights; perceptron versus purkinje cell, Neuron, vol.43, pp.745-757, 1986.

G. Buzsaki and A. Draguhn, Neuronal Oscillations in Cortical Networks, Science, vol.304, issue.5679, pp.1926-1929, 2004.
DOI : 10.1126/science.1099745

D. Colliaux, Y. Yamaguchi, C. Molter, and H. Wagatsuma, Working memory dynamics in a flip-flop oscillations network model with milnor attractor Neurocomputational models of working memory, Proceedings of ICONIP, pp.1184-1191, 2000.

J. Fuster and G. Alexander, Neuron Activity Related to Short-Term Memory, Science, vol.173, issue.3997, pp.652-654, 1971.
DOI : 10.1126/science.173.3997.652

M. Gianluigi, O. Barak, and M. Tsodyks, Synaptic theory of working memory, Science, vol.319, issue.5869, pp.1543-1546, 2008.

P. Goldman-rakic, Models of information processing in the basal ganglia, pp.131-148, 1995.

S. Grossberg, Neural networks and natural intelligence The organization of behavior; a neuropsychological theory Neural networks and physical systems with emergent collective computational abilities, Cambridge Hebb DO Proc Natl Acad Sci, vol.79, pp.2554-2558, 1949.

I. Jaaskelainen, J. Ahveninen, J. Belliveau, T. Raij, and M. Sams, Short-term plasticity in auditory cognition, Trends in Neurosciences, vol.30, issue.12, pp.653-661, 2007.
DOI : 10.1016/j.tins.2007.09.003

K. Kaneko, Pattern dynamics in spatiotemporal chaos, Physica D: Nonlinear Phenomena, vol.34, issue.1-2, p.141, 1992.
DOI : 10.1016/0167-2789(89)90227-3

K. Kaneko, degrees of freedom, Physical Review E, vol.66, issue.5, p.55201, 2002.
DOI : 10.1103/PhysRevE.66.055201

T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli, Spontaneously emerging cortical representations of visual attributes, Nature, vol.425, issue.6961, pp.954-956, 2003.
DOI : 10.1038/nature02078

R. Kozma and W. Freeman, BASIC PRINCIPLES OF THE KIV MODEL AND ITS APPLICATION TO THE NAVIGATION PROBLEM, Journal of Integrative Neuroscience, vol.02, issue.01, pp.125-145, 2003.
DOI : 10.1142/S0219635203000159

J. Lisman and M. Idiart, Storage of 7 +/- 2 short-term memories in oscillatory subcycles, Science, vol.267, issue.5203, pp.1512-1516, 1995.
DOI : 10.1126/science.7878473

R. Llineas, J. Maclean, B. Watson, G. Aaron, and R. Yuste, I of the vortex: from neurons to self Internal dynamics determine the cortical response to thalamic stimulation, Neuron, vol.48, pp.811-823, 2001.

D. Mccormick, Neuronal Networks: Flip-Flops in theBrain, Current Biology, vol.15, issue.8, pp.294-296, 2005.
DOI : 10.1016/j.cub.2005.04.009

J. Milnor, On the concept of attractor, Communications in Mathematical Physics, vol.50, issue.2, pp.177-195, 1985.
DOI : 10.1007/BF01212280

H. Mizuhara and Y. Yamaguchi, Human cortical circuits for central executive function emerge by theta phase synchronization, NeuroImage, vol.36, issue.1, pp.232-244, 2007.
DOI : 10.1016/j.neuroimage.2007.02.026

C. Molter, U. Salihoglu, and H. Bersini, The Road to Chaos by Time-Asymmetric Hebbian Learning in Recurrent Neural Networks, Neural Computation, vol.16, issue.3, p.100, 2007.
DOI : 10.1126/science.274.5293.1724

C. Molter, U. Salihoglu, H. Bersini, N. Sato, and Y. Yamaguchi, Reactivation of behavioral activity during sharp waves: A computational model for two stage hippocampal dynamics, Hippocampus, vol.2, issue.3, pp.201-209, 2007.
DOI : 10.1002/hipo.20258

C. Molter, D. Colliaux, and Y. Yamaguchi, Working memory and spontaneous activity of cell assemblies. A biologically motivated computational model, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp.3069-3076, 2008.
DOI : 10.1109/IJCNN.2008.4634232

URL : https://hal.archives-ouvertes.fr/hal-00382379

G. Miller, The magical number seven, plus or minus two: some limits on our capacity for processing information., Psychological Review, vol.63, issue.2, pp.81-97, 1956.
DOI : 10.1037/h0043158

R. Muresan and C. Savin, Resonance or Integration? Self-Sustained Dynamics and Excitability of Neural Microcircuits, Journal of Neurophysiology, vol.97, issue.3, pp.1911-1930, 2007.
DOI : 10.1152/jn.01043.2006

J. Nicolis and I. Tsuda, Chaotic dynamics of information processing: the ''magic number seven plus-minus two'' revisited, Bull Math Biol, vol.47, pp.343-365, 1985.

J. Onton, A. Delorme, and S. Makeig, Frontal midline EEG dynamics during working memory, NeuroImage, vol.27, issue.2, pp.341-356, 2005.
DOI : 10.1016/j.neuroimage.2005.04.014

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Ott, Chaos in dynamical systems, 1993.

G. Rainer, W. Asaad, and E. Miller, Selective representation of relevant information by neurons in the primate prefrontal cortex, Nature, vol.18, issue.6685, pp.577-579, 1998.
DOI : 10.1038/31235

G. Rainer, H. Lee, G. Simpson, and N. Logothetis, Workingmemory related theta (4?7 Hz) frequency oscillations observed in monkey extrastriate visual cortex, Neurocomputing, vol.5860, pp.965-969, 2004.

C. Skarda and W. Freeman, How brains make chaos in order to make sense of the world, Behavioral and Brain Sciences, vol.9, issue.3, pp.161-195, 1987.
DOI : 10.1016/0006-8993(80)90149-3

I. Tsuda, Dynamic link of memory???Chaotic memory map in nonequilibrium neural networks, Neural Networks, vol.5, issue.2, pp.313-326, 1992.
DOI : 10.1016/S0893-6080(05)80029-2

I. Tsuda, Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems, Behavioral and Brain Sciences, vol.24, issue.05, pp.793-810, 2001.
DOI : 10.1017/S0140525X01000097

T. Tsujimoto, H. Shimazu, Y. Isomura, and K. Sasaki, Prefrontal theta oscillations associated with hand movements triggered by warning and imperative stimuli in the monkey, Neuroscience Letters, vol.351, issue.2, pp.103-106, 2003.
DOI : 10.1016/j.neulet.2003.08.016

B. Van-swinderen, Attention-Like Processes in Drosophila Require Short-Term Memory Genes, Science, vol.315, issue.5818, pp.1590-1593, 2007.
DOI : 10.1126/science.1137931

F. Varela, J. Lachaux, E. Rodriguez, and J. Martinerie, The brainweb: phase synchronization and large-scale integration, Nature Reviews Neuroscience, vol.2, issue.4, pp.229-239, 2001.
DOI : 10.1038/35067550

J. Whitlock, A. Heynen, M. Shuler, and M. Bear, Learning Induces Long-Term Potentiation in the Hippocampus, Science, vol.313, issue.5790, pp.1093-1097, 2006.
DOI : 10.1126/science.1128134

Y. Yamaguchi, A theory of hippocampal memory based on theta phase precession, Biol Cybern, vol.89, pp.1-9, 2003.

C. C. Hilgetag, M. A. Neill, and M. P. Young, Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.355, issue.1393, pp.71-89, 1393.
DOI : 10.1098/rstb.2000.0550

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience, vol.8, issue.3, pp.186-198, 2009.
DOI : 10.1371/journal.pone.0002051

D. Stephen and . Van-hooser, Similarity and diversity in visual cortex: is there a unifying theory of cortical computation?, Neuroscientist, vol.13, issue.6, pp.639-656, 2007.

M. Tanifuji, K. Tsunoda, and Y. Yamane, Representation of Object Images by Combinations of Visual Features in the Macaque Inferior Temporal Cortex, Novartis Found Symp, vol.270, pp.217-242, 2006.
DOI : 10.1002/9780470034989.ch17

P. Rakic, Confusing cortical columns, Proceedings of the National Academy of Sciences, vol.105, issue.34, pp.12099-12100, 2008.
DOI : 10.1073/pnas.0807271105

P. Reinagel and R. C. Reid, Temporal coding of visual information in the thalamus, J Neurosci, vol.20, issue.14, pp.5392-5400, 2000.

R. Vanrullen, R. Guyonneau, J. Simon, and . Thorpe, Spike times make sense, Trends in Neurosciences, vol.28, issue.1, pp.1-4, 2005.
DOI : 10.1016/j.tins.2004.10.010

URL : https://hal.archives-ouvertes.fr/hal-00068894

C. M. Gray, P. Knig, A. K. Engel, and W. Singer, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature, vol.338, issue.6213, pp.338334-337, 1989.
DOI : 10.1038/338334a0

G. Buzsáki and A. Draguhn, Neuronal Oscillations in Cortical Networks, Science, vol.304, issue.5679, pp.1926-1929, 2004.
DOI : 10.1126/science.1099745

P. S. Goldman-rakic, Cellular basis of working memory, Neuron, vol.14, issue.3, pp.477-485, 1995.
DOI : 10.1016/0896-6273(95)90304-6

A. David and . Mccormick, Neuronal networks: flip-flops in the brain, Curr Biol, vol.15, issue.8, pp.294-296, 2005.

D. Durstewitz and J. K. Seamans, Beyond bistability: Biophysics and temporal dynamics of working memory, Neuroscience, vol.139, issue.1, pp.119-133, 2006.
DOI : 10.1016/j.neuroscience.2005.06.094

M. Steriade, I. Timofeev, and F. Grenier, Natural waking and sleep states: a view from inside neocortical neurons, J Neurophysiol, vol.85, issue.5, pp.1969-1985, 2001.

H. Korn and P. Faure, Is there chaos in the brain? II. Experimental evidence and related models, Comptes Rendus Biologies, vol.326, issue.9, pp.787-840, 2003.
DOI : 10.1016/j.crvi.2003.09.011

I. Mikhail, P. Rabinovich, A. I. Varona, and H. D. Selverston, Dynamical principles in neuroscience, Reviews of Modern Physics, vol.78, issue.4, pp.1213-1265, 2006.

I. Tsuda, Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems, Behavioral and Brain Sciences, vol.24, issue.05, p.793, 2001.
DOI : 10.1017/S0140525X01000097

M. Rabinovich, R. Huerta, and G. Laurent, NEUROSCIENCE: Transient Dynamics for Neural Processing, Science, vol.321, issue.5885, pp.48-50, 2008.
DOI : 10.1126/science.1155564

F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, The brainweb: phase synchronization and large-scale integration, Nature Reviews Neuroscience, vol.2, issue.4, pp.229-239, 2001.
DOI : 10.1038/35067550

A. Benucci, A. Robert, M. Frazor, and . Carandini, Standing Waves and Traveling Waves Distinguish Two Circuits in Visual Cortex, Neuron, vol.55, issue.1, pp.103-117, 2007.
DOI : 10.1016/j.neuron.2007.06.017

J. Walter and . Freeman, Vortices in brain activity: their mechanism and significance for perception, Neural Netw, vol.22, issue.56, pp.491-501, 2009.

E. Marcus and . Raichle, Two views of brain function, Trends Cogn Sci, vol.14, issue.4, pp.180-190, 2010.

R. Gregory, The Intelligent Eye, Optometry and Vision Science, vol.48, issue.10, 1970.
DOI : 10.1097/00006324-197110000-00016

D. Michael, . Fox, E. Marcus, and . Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nat Rev Neurosci, vol.8, issue.9, pp.700-711, 2007.

A. Destexhe, M. Rudolph, and D. Par, The high-conductance state of neocortical neurons in vivo, Nature Reviews Neuroscience, vol.4, issue.9, pp.739-751, 2003.
DOI : 10.1038/nrn1198

URL : https://hal.archives-ouvertes.fr/hal-00299172

T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli, Spontaneously emerging cortical representations of visual attributes, Nature, vol.425, issue.6961, pp.954-956, 2003.
DOI : 10.1038/nature02078

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, 2007.

S. Haeusler and W. Maass, A Statistical Analysis of Information-Processing Properties of Lamina-Specific Cortical Microcircuit Models, Cerebral Cortex, vol.17, issue.1, pp.149-162, 2007.
DOI : 10.1093/cercor/bhj132

A. Lansner and M. Lundqvist, Dynamic Coordination in the Brain: From Neurons to Mind chapter Modeling coordination in the neocortex at the microcircuit and global network level, Strngmann Forum Report, vol.5, pp.83-99, 2010.

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities., Proceedings of the National Academy of Sciences, vol.79, issue.8, pp.2554-2558, 1982.
DOI : 10.1073/pnas.79.8.2554

M. Diesmann, M. O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks, Nature, vol.402, issue.6761, pp.529-533, 1999.

M. Eugene and . Izhikevich, Polychronization: computation with spikes, Neural Comput, vol.18, issue.2, pp.245-282, 2006.

W. Maass, T. Natschlger, and H. Markram, Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Computation, vol.7, issue.11, pp.2531-2560, 2002.
DOI : 10.1038/35009102

C. Van-vreeswijk and H. Sompolinsky, Chaotic Balanced State in a Model of Cortical Circuits, Neural Computation, vol.13, issue.6, pp.1321-1371, 1998.
DOI : 10.1016/S0006-3495(72)86068-5

A. Kumar, S. Schrader, A. Aertsen, and S. Rotter, The High-Conductance State of Cortical Networks, Neural Computation, vol.23, issue.19, pp.1-43, 2008.
DOI : 10.1007/BF00288786

A. Renart, J. De-la-rocha, P. Bartho, L. Hollender, N. Parga et al., The Asynchronous State in Cortical Circuits, Science, vol.327, issue.5965, pp.587-590, 2010.
DOI : 10.1126/science.1179850

N. Parga, F. Larry, and . Abbott, Network model of spontaneous activity exhibiting synchronous transitions between up and down states, Frontiers in Neuroscience, vol.1, issue.1, pp.57-66, 2007.
DOI : 10.3389/neuro.

A. Destexhe, Self-sustained asynchronous irregular states and Up???Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons, Journal of Computational Neuroscience, vol.74, issue.11, pp.493-506, 2009.
DOI : 10.1007/s10827-009-0164-4

URL : https://hal.archives-ouvertes.fr/hal-00444902

B. Cessac, H. Paugam-moisy, and T. Viville, Overview of facts and issues about neural coding by spikes, Journal of Physiology-Paris, vol.104, issue.1-2, pp.5-18, 2010.
DOI : 10.1016/j.jphysparis.2009.11.002

URL : https://hal.archives-ouvertes.fr/inria-00407915

]. M. Carandini and D. Ferster, Membrane potential and firing rate in cat primary visual cortex, J Neurosci, vol.20, issue.1, pp.655106470-484, 2000.

F. Rieke, D. Warland, R. De-ruyter-van-steveninck, and W. Bialek, Spikes: Exploring the Neural Code, 1997.

F. Gabbiani and C. Koch, Methods in Neuronal Modeling: From Ions to Networks., chapter Principles of spike train analysis, pp.313-360, 1998.

W. Bair and C. Koch, Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey, Neural Computation, vol.79, issue.6, pp.1185-1202, 1996.
DOI : 10.1007/BF00275002

M. Nawrot, A. Aertsen, and S. Rotter, Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity, Journal of Neuroscience Methods, vol.94, issue.1, pp.81-92, 1999.
DOI : 10.1016/S0165-0270(99)00127-2

Y. Loewenstein, S. Mahon, P. Chadderton, K. Kitamura, H. Sompolinsky et al., Bistability of cerebellar Purkinje cells modulated by sensory stimulation, Nature Neuroscience, vol.19, issue.2, pp.202-211, 2005.
DOI : 10.1007/s00424-002-0831-z

J. A. Hartigan and P. M. Hartigan, The Dip Test of Unimodality, The Annals of Statistics, vol.13, issue.1, pp.70-84, 1985.
DOI : 10.1214/aos/1176346577

W. James, J. W. Cooley, and . Tukey, An algorithm for the machine calculation of complex fourier series, Math. Comput, vol.19, p.297301, 1965.

G. Werner, Fractals in the nervous system: conceptual implications for theoretical neuroscience, Frontiers in Physiology, issue.0, p.12, 2010.
DOI : 10.3389/fphys.2010.00015

O. Sami-el-boustani, S. Marre, P. Béhuret, P. Baudot, T. Yger et al., Network-State Modulation of Power-Law Frequency-Scaling in Visual Cortical Neurons, PLoS Computational Biology, vol.55, issue.10, p.1000519, 2009.
DOI : 10.1371/journal.pcbi.1000519.s004

C. Torrence and G. P. Compo, A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society, vol.79, issue.1, p.6178, 1998.
DOI : 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

S. Mallat, A Wavelet Tour of Signal Processing, 1999.

B. Franois, J. Vialatte, J. Sol-casals, M. Dauwels, A. Maurice et al., Bump time-frequency toolbox: a toolbox for time-frequency oscillatory bursts extraction in electrophysiological signals, BMC Neurosci, vol.10, p.46, 2009.

C. Sergent, S. Baillet, and S. Dehaene, Timing of the brain events underlying access to consciousness during the attentional blink, Nature Neuroscience, vol.48, issue.10, pp.1391-1400, 2005.
DOI : 10.1109/79.962275

M. Sam, A. B. Doesburg, K. Roggeveen, . Kitajo, M. Lawrence et al., Large-scale gamma-band phase synchronization and selective attention, Cereb Cortex, vol.18, issue.2, pp.386-396, 2008.

D. Gervasoni, S. Lin, S. Ribeiro, S. Ernesto, J. Soares et al., Global Forebrain Dynamics Predict Rat Behavioral States and Their Transitions, Journal of Neuroscience, vol.24, issue.49, pp.11137-11147, 2004.
DOI : 10.1523/JNEUROSCI.3524-04.2004

J. D. Victor and K. Purpura, Metric-space analysis of spike trains: theory, algorithms and application, Network: Computation in Neural Systems, vol.8, issue.2, pp.127-164, 1997.
DOI : 10.1088/0954-898X_8_2_003

M. C. Van-rossum, A Novel Spike Distance, Neural Computation, vol.76, issue.4, pp.751-763, 2001.
DOI : 10.1088/0954-898X/8/2/003

S. Schreiber, J. M. Fellous, D. Whitmer, P. Tiesinga, and T. J. Sejnowski, A new correlation-based measure of spike timing reliability, Neurocomputing, vol.52, issue.54, pp.52-54925, 2003.
DOI : 10.1016/S0925-2312(02)00838-X

T. Kreuz, J. S. Haas, A. Morelli, D. Henry, A. Abarbanel et al., Measuring spike train synchrony, Journal of Neuroscience Methods, vol.165, issue.1, pp.151-161, 2007.
DOI : 10.1016/j.jneumeth.2007.05.031

URL : http://arxiv.org/abs/physics/0701261

S. Amari and H. Nagaoka, Methods of information geometry . Translations of mathematical monographs, 2000.

G. Tononi, O. Sporns, and G. M. Edelman, A measure for brain complexity: relating functional segregation and integration in the nervous system., Proceedings of the National Academy of Sciences, vol.91, issue.11, pp.915033-5037, 1994.
DOI : 10.1073/pnas.91.11.5033

L. Barnett, C. L. Buckley, and S. Bullock, Neural complexity and structural connectivity, Physical Review E, vol.79, issue.5, p.51914, 2009.
DOI : 10.1103/PhysRevE.79.051914

URL : http://eprints.soton.ac.uk/267384/1/PhysRevE-2.pdf

N. Bertschinger, N. Ay, E. Olbrich, and J. Jost, A unifying framework for complexity measures of finite systems, Proceedings ECCS, 2006.

I. Nemenman, W. Bialek, and R. De-ruyter-van-steveninck, Entropy and information in neural spike trains: Progress on the sampling problem, Physical Review E, vol.69, issue.5, p.56111, 2004.
DOI : 10.1103/PhysRevE.69.056111

R. A. Ince, A. Mazzoni, S. Rasmus, S. Petersen, and . Panzeri, Open source tools for the information theoretic analysis of neural data, Frontiers in Neuroscience, issue.0, p.5, 2010.
DOI : 10.3389/neuro.01.011.2010

P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D: Nonlinear Phenomena, vol.9, issue.1-2, pp.189-208, 1983.
DOI : 10.1016/0167-2789(83)90298-1

R. Hegger, H. Kantz, and T. Schreiber, package, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.9, issue.2, pp.413-435, 1999.
DOI : 10.1063/1.166424

A. Babloyantz and A. Destexhe, Low-dimensional chaos in an instance of epilepsy., Proceedings of the National Academy of Sciences, vol.83, issue.10, pp.3513-3517, 1986.
DOI : 10.1073/pnas.83.10.3513

G. David, O. Stork-richard, P. E. Duda, and . Hart, Pattern Classification, 2001.

D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, 2006.

P. Langfelder, B. Zhang, and S. Horvath, Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R, Bioinformatics, vol.24, issue.5, pp.719-720, 2008.
DOI : 10.1093/bioinformatics/btm563

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

A. Destexhe, W. Stuart, M. Hughes, V. Rudolph, and . Crunelli, Are corticothalamic ???up??? states fragments of wakefulness?, Trends in Neurosciences, vol.30, issue.7, pp.334-342, 2007.
DOI : 10.1016/j.tins.2007.04.006

URL : https://hal.archives-ouvertes.fr/hal-00151895

B. Haider, A. Duque, R. Andrea, Y. Hasenstaub, . Yu et al., Enhancement of Visual Responsiveness by Spontaneous Local Network Activity In Vivo, Journal of Neurophysiology, vol.97, issue.6, pp.4186-4202, 2007.
DOI : 10.1152/jn.01114.2006

Y. Frégnac, M. Blatow, J. Changeux, J. De-felipe, W. Maass et al., Ups and downs in cortical computation. The Interface between Neurons and Global Brain Function, pp.393-433, 2006.

W. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, vol.7, pp.115-133, 1943.

P. Daniel, . Buxhoeveden, F. Manuel, and . Casanova, The minicolumn hypothesis in neuroscience, Brain, vol.125, pp.935-951, 2002.

S. Jennifer, A. Lund, . Angelucci, C. Paul, and . Bressloff, Anatomical substrates for functional columns in macaque monkey primary visual cortex, Cereb Cortex, vol.13, issue.1, pp.15-24, 2003.

H. Markram, The Blue Brain Project, Nature Reviews Neuroscience, vol.60, issue.2, pp.153-160, 2006.
DOI : 10.1162/089976698300017502

V. B. Mountcastle, The columnar organization of the neocortex, Brain, vol.120, issue.4, pp.701-722, 1997.
DOI : 10.1093/brain/120.4.701

D. H. Hubel and T. N. , Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, The Journal of Physiology, vol.160, issue.1, pp.106-154, 1962.
DOI : 10.1113/jphysiol.1962.sp006837

Y. Kuznetsov, Elements of applied bifurcation theory, 2004.

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 1996.
DOI : 10.1007/978-1-4757-4067-7

J. Jost, Dynamical Systems: Examples of Complex Behaviour. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2005.

C. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences, 1985.

H. Risken, The FokkerPlanck Equation: Methods of Solutions and Applications, 1989.

L. Arnold, Random Dynamical Systems, 1998.

G. Benettin, L. Galgani, A. Giorgilli, and J. Strelcyn, Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, vol.4, issue.2, pp.9-20, 1007.
DOI : 10.1007/BF02128236

P. Interneuron, N. Group, A. Giorgio, L. Ascoli, . Alonso-nanclares et al., Petilla terminology: nomenclature of features of gabaergic interneurons of the cerebral cortex, Nat Rev Neurosci, vol.9, issue.7, pp.557-568, 2008.

B. W. Connors and M. J. Gutnick, Intrinsic firing patterns of diverse neocortical neurons, Trends in Neurosciences, vol.13, issue.3, pp.99-104, 1990.
DOI : 10.1016/0166-2236(90)90185-D

L. F. Abbott, J. A. Varela, K. Sen, and S. B. Nelson, Synaptic Depression and Cortical Gain Control, Science, vol.275, issue.5297, pp.275220-224, 1997.
DOI : 10.1126/science.275.5297.221

G. Q. Bi and M. M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type, J Neurosci, vol.18, issue.24, pp.10464-10472, 1998.

M. Sterpu and A. Georgescu, Codimension three bifurcations for the fitzhugh-nagumo system, Mathematical Reports, Acad. Rom, vol.3, issue.3, pp.287-292, 2001.

K. Aihara and H. Suzuki, Theory of hybrid dynamical systems and its applications to biological and medical systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.43, issue.1-2, pp.4893-4914, 1930.
DOI : 10.1016/j.mbs.2008.03.001

R. B. Stein, Some Models of Neuronal Variability, Biophysical Journal, vol.7, issue.1, pp.37-68, 1967.
DOI : 10.1016/S0006-3495(67)86574-3

P. Lánsk´lánsk´y, On approximations of Stein's neuronal model, Journal of Theoretical Biology, vol.107, issue.4, pp.631-647, 1984.
DOI : 10.1016/S0022-5193(84)80136-8

N. Fourcaud and N. Brunel, Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons, Neural Computation, vol.19, issue.9, pp.2057-2110, 2002.
DOI : 10.1111/j.1469-7793.1998.715bv.x

M. Eugene and . Izhikevich, Which model to use for cortical spiking neurons?, IEEE Trans Neural Netw, vol.15, issue.5, pp.1063-1070, 2004.

R. Brette and W. Gerstner, Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity, Journal of Neurophysiology, vol.94, issue.5, pp.3637-3642, 2005.
DOI : 10.1152/jn.00686.2005

J. Touboul and R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model, Biological Cybernetics, vol.62, issue.5, pp.319-334, 2008.
DOI : 10.1007/s00422-008-0267-4

URL : https://hal.archives-ouvertes.fr/inria-00422701

M. Pospischil, M. Toledo-rodriguez, C. Monier, Z. Piwkowska, T. Bal et al., Minimal Hodgkin???Huxley type models for different classes of cortical and thalamic neurons, Biological Cybernetics, vol.17, issue.4-5, pp.4-5427, 2008.
DOI : 10.1007/s00422-008-0263-8

URL : https://hal.archives-ouvertes.fr/hal-00377075

C. Rossant, D. F. Goodman, J. Platkiewicz, and R. Brette, Automatic fitting of spiking neuron models to electrophysiological recordings, Frontiers in Neuroinformatics, vol.4, issue.2, 2010.
DOI : 10.3389/neuro.11.002.2010

K. Tsunoda, Y. Yamane, M. Nishizaki, and M. Tanifuji, Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns, Nature Neuroscience, vol.4, issue.8, pp.832-838, 2001.
DOI : 10.1038/90547

B. H. Jansen and V. G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns, Biological Cybernetics, vol.580, issue.4, pp.357-366, 1995.
DOI : 10.1007/BF00199471

S. Grossberg, Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition, Prog Brain Res, vol.165, pp.79-104, 2007.
DOI : 10.1016/S0079-6123(06)65006-1

M. Alex, . Thomson, C. David, Y. West, A. Wang et al., Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro, Cereb Cortex, vol.12, issue.9, pp.936-953, 2002.

T. Binzegger, J. Rodney, K. A. Douglas, and . Martin, A Quantitative Map of the Circuit of Cat Primary Visual Cortex, Journal of Neuroscience, vol.24, issue.39, pp.8441-8453, 2004.
DOI : 10.1523/JNEUROSCI.1400-04.2004

M. Alex, C. Thomson, and . Lamy, Functional maps of neocortical local circuitry, Frontiers in Neuroscience, vol.5, p.12, 2007.

G. Deco, M. Pérez-sanagustín, R. Victor-de-lafuente, and . Romo, Perceptual detection as a dynamical bistability phenomenon: A neurocomputational correlate of sensation, Proceedings of the National Academy of Sciences, vol.104, issue.50, pp.20073-20077, 2007.
DOI : 10.1073/pnas.0709794104

R. Hugh, J. D. Wilson, and . Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.

N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, Journal of Computational Neuroscience, vol.8, issue.3, pp.183-208, 2000.
DOI : 10.1023/A:1008925309027

P. Tim, L. F. Vogels, and . Abbott, Signal propagation and logic gating in networks of integrate-and-fire neurons, J Neurosci, vol.25, issue.46, pp.10786-10795, 2005.

V. Oleksandr, Y. L. Popovych, P. A. Maistrenko, and . Tass, Phase chaos in coupled oscillators, Phys. Rev. E, vol.71, issue.6, p.65201, 2005.

J. A. Acebrón, L. L. Bonilla, C. J. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics, vol.77, issue.1, pp.137-185, 2005.
DOI : 10.1103/RevModPhys.77.137

D. Colliaux, C. Molter, and Y. Yamaguchi, Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor, Cognitive Neurodynamics, vol.89, issue.5790, pp.141-151, 2009.
DOI : 10.1007/s11571-009-9078-0

D. Zhou, Y. Sun, V. Aaditya, D. Rangan, and . Cai, Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type, Journal of Computational Neuroscience, vol.488, issue.2, pp.229-245, 2010.
DOI : 10.1007/s10827-009-0201-3

S. Olmi, A. Politi, and A. Torcini, Collective chaos in pulse-coupled neural networks, EPL (Europhysics Letters), vol.92, issue.6, p.60007, 2010.
DOI : 10.1209/0295-5075/92/60007

C. Paul, . Bressloff, D. Jack, and . Cowan, A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn, Philos Trans R Soc Lond B Biol Sci, vol.358, pp.1643-1667, 1438.

J. Geoffrey and . Goodhill, Contributions of theoretical modeling to the understanding of neural map development, Neuron, vol.56, issue.2, pp.301-311, 2007.

R. Durbin, R. Szeliski, and A. Yuille, An Analysis of the Elastic Net Approach to the Traveling Salesman Problem, Neural Computation, vol.52, issue.3, pp.348-358, 1989.
DOI : 10.1098/rstb.1979.0056

R. Durbin and D. Willshaw, An analogue approach to the travelling salesman problem using an elastic net method, Nature, vol.326, issue.6114, pp.689-691, 1987.
DOI : 10.1038/326689a0

D. J. Goodhill and G. J. Willshaw, Application of the elastic net algorithm to the formation of ocular dominance stripes, Network: Computation in Neural Systems, vol.1, issue.1, pp.41-59, 1990.
DOI : 10.1088/0954-898X_1_1_004

J. Geoffrey, D. J. Goodhill, and . Willshaw, Elastic net model of ocular dominance: Overall stripe pattern and monocular deprivation, Neural Computation, vol.6, pp.615-621, 1994.

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Reviews of Modern Physics, vol.65, issue.3, p.851, 1993.
DOI : 10.1103/RevModPhys.65.851

J. D. Murray, Mathematical Biology: II. Spatial Models and Biomedical Applications, 2002.

N. V. Swindale, A Model for the Formation of Ocular Dominance Stripes, Proceedings of the Royal Society B: Biological Sciences, vol.208, issue.1171, pp.243-264, 1171.
DOI : 10.1098/rspb.1980.0051

C. Paul, . Bressloff, M. Andrew, and . Oster, Theory for the alignment of cortical feature maps during development, Phys Rev E Stat Nonlin Soft Matter Phys, vol.82, issue.2, p.21920, 2010.

N. V. Swindale, A Model for the Formation of Orientation Columns, Proceedings of the Royal Society B: Biological Sciences, vol.215, issue.1199, pp.211-230, 1199.
DOI : 10.1098/rspb.1982.0038

F. Wolf and T. Geisel, Spontaneous pinwheel annihilation during visual development, Nature, vol.395, issue.6697, pp.73-78, 1998.
DOI : 10.1038/25736

M. Kaschube, M. Schnabel, and F. Wolf, Self-organization and the selection of pinwheel density in visual cortical development, New Journal of Physics, vol.10, issue.1, p.15009, 2008.
DOI : 10.1088/1367-2630/10/1/015009

M. Ha-youn-lee, M. Yahyanejad, and . Kardar, Symmetry considerations and development of pinwheels in visual maps, Proceedings of the National Academy of Sciences of the United States of America, pp.16036-16040, 2003.

P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. C. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1407, pp.299-330, 1407.
DOI : 10.1098/rstb.2000.0769

M. Golubitsky and I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, 2002.
DOI : 10.1007/978-3-0348-8167-8

H. Ian, B. Stevenson, M. Cronin, K. P. Sur, and . Kording, Sensory adaptation and short term plasticity as bayesian correction for a changing brain, PLoS One, vol.5, issue.8, p.12436, 2010.

T. V. Bliss and T. Lomo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, The Journal of Physiology, vol.232, issue.2, pp.331-356, 1973.
DOI : 10.1113/jphysiol.1973.sp010273

D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory, 1949.

E. Geoffrey, &. Hinton, J. W. Ronald, E. David, and . Rumelhart, Learning representations by back-propagating errors, Nature, p.323, 1986.

E. Oja, Simplified neuron model as a principal component analyzer, Journal of Mathematical Biology, vol.35, issue.3, pp.267-273, 1982.
DOI : 10.1007/BF00275687

DOI : 10.1142/9789812795885_0006

A. J. Bell and T. J. Sejnowski, An Information-Maximization Approach to Blind Separation and Blind Deconvolution, Neural Computation, vol.20, issue.1, pp.1129-1159, 1995.
DOI : 10.1109/78.301850

J. Triesch, A Gradient Rule for the Plasticity of a Neuron???s Intrinsic Excitability, Int. Conf. on Artificial Neural Networks, 2005.
DOI : 10.1007/11550822_11

J. M. Fellous and C. Linster, Computational Models of Neuromodulation, Neural Computation, vol.67, issue.4, pp.771-805, 1998.
DOI : 10.1073/pnas.87.17.6718

. Obermayer and S. Blasdel, Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps, Physical Review A, vol.45, issue.10, pp.7568-7589, 1992.
DOI : 10.1103/PhysRevA.45.7568

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational maps in the visual cortex, 2005.

P. Andrew, D. Davison, J. Brüderle, J. Eppler, E. Kremkow et al., Pynn: A common interface for neuronal network simulators, Front Neuroinformatics, vol.2, issue.11, 2008.

G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns, Biological Cybernetics, vol.135, issue.Suppl. 247, pp.137-150, 1979.
DOI : 10.1007/BF00336965

J. Ermentrout and G. Cowan, Large Scale Spatially Organized Activity in Neural Nets, SIAM Journal on Applied Mathematics, vol.38, issue.1, pp.1-21, 1980.
DOI : 10.1137/0138001

P. Tass, Cortical pattern formation during visual hallucinations, Journal of Biological Physics, vol.28, issue.3, pp.177-210, 1007.
DOI : 10.1007/BF00712345

P. Tass, Oscillatory cortical activity during visual hallucinations, Journal of Biological Physics, vol.23, issue.1, pp.21-661004990707739, 1023.
DOI : 10.1023/A:1004990707739

P. C. Bressloff, Methods and Models in Neurophysics: Lecture Notes of the Les Houches Summer School 2003, chapter Pattern formation in visual cortex, 2004.

I. Tanya, . Baker, D. Jack, and . Cowan, Spontaneous pattern formation and pinning in the primary visual cortex, J Physiol Paris, vol.103, issue.12, pp.52-68, 2009.

S. Coombes, Waves, bumps, and patterns in neural field theories, Biological Cybernetics, vol.16, issue.2, pp.91-108, 2005.
DOI : 10.1007/s00422-005-0574-y

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, 1977.
DOI : 10.1007/BF00337259

G. Ermentrout and J. Mcleod, Synopsis, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.32, issue.03, p.461478, 1993.
DOI : 10.1016/0362-546X(78)90015-9

S. Coombes and M. R. Owen, Bumps, Breathers, and Waves in a Neural Network with Spike Frequency Adaptation, Physical Review Letters, vol.94, issue.14, p.148102, 2005.
DOI : 10.1103/PhysRevLett.94.148102

R. Curtu and B. Ermentrout, Pattern Formation in a Network of Excitatory and Inhibitory Cells with Adaptation, SIAM Journal on Applied Dynamical Systems, vol.3, issue.3, pp.191-231, 2004.
DOI : 10.1137/030600503

S. E. Folias and P. C. Bressloff, Breathers in Two-Dimensional Neural Media, Physical Review Letters, vol.95, issue.20, p.208107, 2005.
DOI : 10.1103/PhysRevLett.95.208107

M. C. , I. Nauhaus, L. Busse, L. Dario, and . Ringach, Stimulus contrast modulates functional connectivity in visual cortex, Nature Neuroscience, vol.12, pp.70-76, 2008.

D. Durstewitz and J. K. Seamans, Beyond bistability: Biophysics and temporal dynamics of working memory, Neuroscience, vol.139, issue.1, pp.119-133, 2006.
DOI : 10.1016/j.neuroscience.2005.06.094

Z. F. Kisvrday, E. Tth, M. Rausch, and U. T. , Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat, Cerebral Cortex, vol.7, issue.7, pp.605-618, 1997.
DOI : 10.1093/cercor/7.7.605

J. S. Law, Modeling the Development of Organization for Orientation Preference in Primary Visual Cortex, 2009.

K. Ohki, S. Chung, P. Kara, M. Hbener, T. Bonhoeffer et al., Highly ordered arrangement of single neurons in orientation pinwheels, Nature, vol.13, issue.7105, pp.442925-928, 2006.
DOI : 10.1038/nature05019

S. Sadaghiani, G. Hesselmann, J. Karl, A. Friston, and . Kleinschmidt, The relation of ongoing brain activity, evoked neural responses, and cognition, Frontiers in Systems Neuroscience, p.20, 2010.
DOI : 10.3389/fnsys.2010.00020

J. Ito, A. R. Nikolaev, and C. Van-leeuwen, Dynamics of spontaneous transitions between global brain states, Human Brain Mapping, vol.38, issue.9, pp.904-913, 2007.
DOI : 10.1002/hbm.20316

R. Moreno-bote, J. Rinzel, and N. Rubin, Noise-Induced Alternations in an Attractor Network Model of Perceptual Bistability, Journal of Neurophysiology, vol.98, issue.3, pp.1125-1139, 2007.
DOI : 10.1152/jn.00116.2007