E. P. Busso, F. T. Meissonier, O. Dowd, and N. P. , Gradient-dependent deformation of two-phase single crystals, Journal of the Mechanics and Physics of Solids, vol.48, issue.11, pp.2333-2361, 2000.
DOI : 10.1016/S0022-5096(00)00006-5

A. Acharya and J. L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity, Journal of the Mechanics and Physics of Solids, vol.48, issue.8, pp.1565-1595, 2000.
DOI : 10.1016/S0022-5096(99)00075-7

A. Acharya and A. J. Beaudoin, Grain-size effect in viscoplastic polycrystals at moderate strains, Journal of the Mechanics and Physics of Solids, vol.48, issue.10, pp.2213-2230, 2000.
DOI : 10.1016/S0022-5096(00)00013-2

E. C. Aifantis, On the Microstructural Origin of Certain Inelastic Models, Journal of Engineering Materials and Technology, vol.106, issue.4, pp.326-330, 1984.
DOI : 10.1115/1.3225725

E. C. Aifantis, The physics of plastic deformation, International Journal of Plasticity, vol.3, issue.3, pp.211-248, 1987.
DOI : 10.1016/0749-6419(87)90021-0

D. J. Bammann, A model of crystal plasticity containing a natural length scale, Materials Science and Engineering: A, vol.309, issue.310, pp.309-310, 2001.
DOI : 10.1016/S0921-5093(00)01614-2

F. Barbe, L. Decker, D. Jeulin, and C. G. , Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model, International Journal of Plasticity, vol.17, issue.4, pp.513-536, 2001.
DOI : 10.1016/S0749-6419(00)00061-9

L. Bardella, Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved, International Journal of Plasticity, vol.23, issue.2, pp.296-322, 2007.
DOI : 10.1016/j.ijplas.2006.05.004

S. Bargmann, M. Ekh, K. Runesson, and B. Svendsen, Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies, Philosophical Magazine, vol.37, issue.10, pp.1263-1288, 2010.
DOI : 10.1080/14786437008238426

URL : https://hal.archives-ouvertes.fr/hal-00581028

J. L. Bassani, Incompatibility and a simple gradient theory of plasticity, Journal of the Mechanics and Physics of Solids, vol.49, issue.9, pp.1983-1996, 2001.
DOI : 10.1016/S0022-5096(01)00037-0

C. J. Bayley, W. A. Brekelmans, and G. M. , A three-dimensional dislocation field crystal plasticity approach applied to miniaturized structures, Philosophical Magazine, vol.15, issue.8-9, pp.1361-1378, 2007.
DOI : 10.1016/S0022-5096(99)00022-8

URL : https://hal.archives-ouvertes.fr/hal-00513768

E. Bittencourt, A. Needleman, M. E. Gurtin, and E. Van-der-giessen, A comparison of nonlocal continuum and discrete dislocation plasticity predictions, Journal of the Mechanics and Physics of Solids, vol.51, issue.2, pp.281-310, 2003.
DOI : 10.1016/S0022-5096(02)00081-9

E. P. Busso, F. T. Meissonier, O. Dowd, and N. P. , Gradient-dependent deformation of two-phase single crystals, Journal of the Mechanics and Physics of Solids, vol.48, issue.11, pp.2333-2361, 2000.
DOI : 10.1016/S0022-5096(00)00006-5

P. Cermelli and M. E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, Journal of the Mechanics and Physics of Solids, vol.49, issue.7, pp.1539-1568, 2001.
DOI : 10.1016/S0022-5096(00)00084-3

K. S. Cheong, E. P. Busso, and A. A. , A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts, International Journal of Plasticity, vol.21, issue.9, pp.1797-1814, 2005.
DOI : 10.1016/j.ijplas.2004.11.001

J. D. Clayton, D. L. Mcdowell, and D. J. Bammann, Modeling dislocations and disclinations with finite micropolar elastoplasticity, International Journal of Plasticity, vol.22, issue.2, pp.210-256, 2006.
DOI : 10.1016/j.ijplas.2004.12.001

A. C. Eringen and C. W. , A micromorphic approach to dislocation theory and its relation to several existing theories In : Fundamental Aspects of Dislocation Theory, ´ eds, Nat. Bur. Stand, pp.1023-1062, 1970.

A. C. Eringen, Microcontinuum field theories, 1999.
DOI : 10.1007/978-1-4612-0555-5

N. A. Fleck and J. W. Hutchinson, Strain Gradient Plasticity, Adv. Appl. Mech, vol.33, pp.295-361, 1997.
DOI : 10.1016/S0065-2156(08)70388-0

S. Forest, Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations, Philosophical Magazine, vol.20, issue.30-32, pp.3549-3563, 2008.
DOI : 10.1080/14786430600965107

URL : https://hal.archives-ouvertes.fr/hal-00513901

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, Journal of Engineering Mechanics, vol.135, issue.3, pp.117-131, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:3(117)

URL : https://hal.archives-ouvertes.fr/hal-00368014

S. Forest, F. Barbe, and C. G. , Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials, International Journal of Solids and Structures, vol.37, issue.46-47, pp.7105-7126, 2000.
DOI : 10.1016/S0020-7683(99)00330-3

S. Forest and R. Sedlá?ek, Plastic slip distribution in two-phase laminate microstructures: Dislocation-based versus generalized-continuum approaches, Philosophical Magazine, vol.317, issue.2, pp.245-276, 2003.
DOI : 10.1115/1.3157599

N. M. Ghoniem, E. P. Busso, N. Kioussis, and H. Huang, Multiscale modelling of nanomechanics and micromechanics: an overview, Philosophical Magazine, vol.23, issue.31-34, pp.3475-3528, 2003.
DOI : 10.1126/science.279.5356.1525

M. E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, Journal of the Mechanics and Physics of Solids, vol.50, issue.1, pp.5-32, 2002.
DOI : 10.1016/S0022-5096(01)00104-1

A. Hunter and M. Koslowski, Direct calculations of material parameters for gradient plasticity, Journal of the Mechanics and Physics of Solids, vol.56, issue.11, pp.3181-3190, 2008.
DOI : 10.1016/j.jmps.2008.08.002

E. Kröner, On the physical reality of torque stresses in continuum mechanics, International Journal of Engineering Science, vol.1, issue.2, pp.261-278, 1963.
DOI : 10.1016/0020-7225(63)90037-5

S. P. Lele and L. Anand, A small-deformation strain-gradient theory for isotropic viscoplastic materials, Philosophical Magazine, vol.62, issue.30-32, pp.3655-3689, 2008.
DOI : 10.1016/j.euromechsol.2006.09.006

D. L. Mcdowell, Viscoplasticity of heterogeneous metallic materials, Materials Science and Engineering: R: Reports, vol.62, issue.3, pp.67-123, 2008.
DOI : 10.1016/j.mser.2008.04.003

D. P. Mika and P. R. Dawson, Effects of grain interaction on deformation in polycrystals, Materials Science and Engineering: A, vol.257, issue.1, pp.62-76, 1998.
DOI : 10.1016/S0921-5093(98)00824-7

J. F. Nye, Some geometrical relations in dislocated crystals, Acta Metallurgica, vol.1, issue.2, pp.153-162, 1953.
DOI : 10.1016/0001-6160(53)90054-6

R. Sedlá?ek and S. Forest, Non-Local Plasticity at Microscale: A Dislocation-Based and a Cosserat Model, physica status solidi (b), vol.7, issue.236, pp.583-596, 2000.
DOI : 10.1002/1521-3951(200010)221:2<583::AID-PSSB583>3.0.CO;2-F

J. Y. Shu, Scale-dependent deformation of porous single crystals, International Journal of Plasticity, vol.14, issue.10-11, pp.1085-1107, 1998.
DOI : 10.1016/S0749-6419(98)00048-5

J. Y. Shu, N. A. Fleck, E. Van-der-giessen, and A. Needleman, Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity, Journal of the Mechanics and Physics of Solids, vol.49, issue.6, pp.1361-1395, 2001.
DOI : 10.1016/S0022-5096(00)00074-0

L. St-pierre, E. Héripré, M. Dexet, J. Crépin, G. Bertolino et al., 3D simulations of microstructure and comparison with experimental microstructure coming from O.I.M analysis, International Journal of Plasticity, vol.24, issue.9, pp.1516-1532, 2008.
DOI : 10.1016/j.ijplas.2007.10.004

URL : https://hal.archives-ouvertes.fr/hal-00645051

P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations, International Journal of Engineering Science, vol.34, issue.15, pp.1717-1735, 1996.
DOI : 10.1016/S0020-7225(96)00062-6

B. Svendsen, Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations, Journal of the Mechanics and Physics of Solids, vol.50, issue.6, pp.1297-1329, 2002.
DOI : 10.1016/S0022-5096(01)00124-7

T. Tinga, W. A. Brekelmans, and G. M. , Incorporating strain gradient effects in a multiscale constitutive framework for nickel-base superalloys, Philosophical Magazine, vol.8, issue.30-32, pp.3793-3825, 2008.
DOI : 10.1016/j.msea.2007.09.074

URL : https://hal.archives-ouvertes.fr/hal-00513940

K. E. Aifantis and J. R. Willis, The role of interfaces in enhancing the yield strength of composites and polycrystals, Journal of the Mechanics and Physics of Solids, vol.53, issue.5, pp.1047-1070, 2005.
DOI : 10.1016/j.jmps.2004.12.003

L. Bardella, Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved, International Journal of Plasticity, vol.23, issue.2, pp.296-322, 2007.
DOI : 10.1016/j.ijplas.2006.05.004

C. J. Bayley, W. A. Brekelmans, and G. M. , A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity, International Journal of Solids and Structures, vol.43, issue.24, pp.7268-7286, 2006.
DOI : 10.1016/j.ijsolstr.2006.05.011

C. J. Bayley, W. A. Brekelmans, and G. M. , A three-dimensional dislocation field crystal plasticity approach applied to miniaturized structures, Philosophical Magazine, vol.15, issue.8-9, pp.1361-1378, 2007.
DOI : 10.1016/S0022-5096(99)00022-8

URL : https://hal.archives-ouvertes.fr/hal-00513768

E. Bittencourt, A. Needleman, M. E. Gurtin, and E. Van-der-giessen, A comparison of nonlocal continuum and discrete dislocation plasticity predictions, Journal of the Mechanics and Physics of Solids, vol.51, issue.2, pp.281-310, 2003.
DOI : 10.1016/S0022-5096(02)00081-9

E. P. Busso, F. T. Meissonier, O. Dowd, and N. P. , Gradient-dependent deformation of two-phase single crystals, Journal of the Mechanics and Physics of Solids, vol.48, issue.11, pp.2333-2361, 2000.
DOI : 10.1016/S0022-5096(00)00006-5

N. M. Cordero, A. Gaubert, S. Forest, E. P. Busso, F. Gallerneau et al., Size effects in generalised continuum crystal plasticity for two-phase laminates, Journal of the Mechanics and Physics of Solids, vol.58, issue.11, pp.1963-1994, 2010.
DOI : 10.1016/j.jmps.2010.06.012

URL : https://hal.archives-ouvertes.fr/hal-00542418

D. N. Duhl, Directionally solidified superalloys In : Superalloys II?High Temperature Materials for Aerospace and Industrial Power, pp.189-214, 1987.

I. Erturk, J. A. Dommelen, and G. M. , Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories, Journal of the Mechanics and Physics of Solids, vol.57, issue.11, pp.1801-1814, 2009.
DOI : 10.1016/j.jmps.2009.08.003

L. P. Evers, W. A. Brekelmans, and G. M. , Non-local crystal plasticity model with intrinsic SSD and GND effects, Journal of the Mechanics and Physics of Solids, vol.52, issue.10, pp.2379-2401, 2004.
DOI : 10.1016/j.jmps.2004.03.007

L. P. Evers, W. A. Brekelmans, and G. M. , Scale dependent crystal plasticity framework with dislocation density and grain boundary effects, International Journal of Solids and Structures, vol.41, issue.18-19, pp.5209-5230, 2004.
DOI : 10.1016/j.ijsolstr.2004.04.021

S. Forest, Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations, Philosophical Magazine, vol.20, issue.30-32, pp.3549-3563, 2008.
DOI : 10.1080/14786430600965107

URL : https://hal.archives-ouvertes.fr/hal-00513901

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, Journal of Engineering Mechanics, vol.135, issue.3, pp.117-131, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:3(117)

URL : https://hal.archives-ouvertes.fr/hal-00368014

S. Forest, F. Barbe, and C. G. , Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials, SIZE EFFECTS IN GENERALISED CONTINUUM CRYSTAL PLASTICITY FOR TWO?PHASE LAMINATES, pp.7105-7126, 2000.
DOI : 10.1016/S0020-7683(99)00330-3

S. Forest, F. Pradel, and K. Sab, Asymptotic analysis of heterogeneous Cosserat media, International Journal of Solids and Structures, vol.38, issue.26-27, pp.4585-4608, 2001.
DOI : 10.1016/S0020-7683(00)00295-X

S. Forest and R. Sedlá?ek, Plastic slip distribution in two-phase laminate microstructures: Dislocation-based versus generalized-continuum approaches, Philosophical Magazine, vol.317, issue.2, pp.245-276, 2003.
DOI : 10.1115/1.3157599

I. Groma, F. F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Materialia, vol.51, issue.5, pp.1271-1281, 2003.
DOI : 10.1016/S1359-6454(02)00517-7

M. E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, Journal of the Mechanics and Physics of Solids, vol.50, issue.1, pp.5-32, 2002.
DOI : 10.1016/S0022-5096(01)00104-1

M. E. Gurtin and A. Needleman, Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector, Journal of the Mechanics and Physics of Solids, vol.53, issue.1, pp.1-31, 2005.
DOI : 10.1016/j.jmps.2004.06.006

A. Hunter and M. Koslowski, Direct calculations of material parameters for gradient plasticity, Journal of the Mechanics and Physics of Solids, vol.56, issue.11, pp.3181-3190, 2008.
DOI : 10.1016/j.jmps.2008.08.002

M. Kuroda and V. Tvergaard, Studies of scale dependent crystal viscoplasticity models, Journal of the Mechanics and Physics of Solids, vol.54, issue.9, pp.1789-1810, 2006.
DOI : 10.1016/j.jmps.2006.04.002

M. Kuroda and V. Tvergaard, A finite deformation theory of higher-order gradient crystal plasticity, Journal of the Mechanics and Physics of Solids, vol.56, issue.8, pp.2573-2584, 2008.
DOI : 10.1016/j.jmps.2008.03.010

M. Kuroda and V. Tvergaard, On the formulations of higher-order strain gradient crystal plasticity models, Journal of the Mechanics and Physics of Solids, vol.56, issue.4, pp.1591-1608, 2008.
DOI : 10.1016/j.jmps.2007.07.015

T. Liebe, A. Menzel, and P. Steinmann, Theory and numerics of geometrically non-linear gradient plasticity, International Journal of Engineering Science, vol.41, issue.13-14, pp.1603-1629, 2003.
DOI : 10.1016/S0020-7225(03)00030-2

R. Sedlá?ek and S. Forest, Non-Local Plasticity at Microscale: A Dislocation-Based and a Cosserat Model, physica status solidi (b), vol.7, issue.236, pp.583-596, 2000.
DOI : 10.1002/1521-3951(200010)221:2<583::AID-PSSB583>3.0.CO;2-F

V. P. Smyshlyaev and N. A. Fleck, The role of strain gradients in the grain size effect for polycrystals, Journal of the Mechanics and Physics of Solids, vol.44, issue.4, pp.465-495, 1996.
DOI : 10.1016/0022-5096(96)00009-9

P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations, International Journal of Engineering Science, vol.34, issue.15, pp.1717-1735, 1996.
DOI : 10.1016/S0020-7225(96)00062-6

T. Tinga, W. A. Brekelmans, and G. M. , Incorporating strain gradient effects in a multiscale constitutive framework for nickel-base superalloys, Philosophical Magazine, vol.8, issue.30-32, pp.3793-3825, 2008.
DOI : 10.1016/j.msea.2007.09.074

URL : https://hal.archives-ouvertes.fr/hal-00513940

S. Yefimov, I. Groma, and E. Van-der-giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations, Journal of the Mechanics and Physics of Solids, vol.52, issue.2, pp.279-300, 2004.
DOI : 10.1016/S0022-5096(03)00094-2

R. J. Asaro, Crystal Plasticity, Journal of Applied Mechanics, vol.50, issue.4b, p.921, 1983.
DOI : 10.1115/1.3167205

V. P. Bennett and D. L. Mcdowell, Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals, Engineering Fracture Mechanics, vol.70, issue.2, pp.185-207, 2003.
DOI : 10.1016/S0013-7944(02)00033-4

N. M. Cordero, S. Forest, E. P. Busso, S. Berbenni, and C. M. , Grain size effects in generalised continuum crystal plasticity. In : Scale transition for plastic crystalline and microstructured materials: from experiment to numerical modeling, ICACM 2010, 2010.

N. M. Cordero, A. Gaubert, S. Forest, E. P. Busso, F. Gallerneau et al., Size effects in generalised continuum crystal plasticity for two-phase laminates, Journal of the Mechanics and Physics of Solids, vol.58, issue.11, pp.1963-1994, 2010.
DOI : 10.1016/j.jmps.2010.06.012

URL : https://hal.archives-ouvertes.fr/hal-00542418

S. Forest, F. Pradel, and K. Sab, Asymptotic analysis of heterogeneous Cosserat media, International Journal of Solids and Structures, vol.38, issue.26-27, pp.4585-4608, 2001.
DOI : 10.1016/S0020-7683(00)00295-X

S. Forest and R. Sedlá?ek, Plastic slip distribution in two-phase laminate microstructures: Dislocation-based versus generalized-continuum approaches, Philosophical Magazine, vol.317, issue.2, pp.245-276, 2003.
DOI : 10.1115/1.3157599

R. J. Asaro, Crystal Plasticity, Journal of Applied Mechanics, vol.50, issue.4b, p.921, 1983.
DOI : 10.1115/1.3167205

V. P. Bennett and D. L. Mcdowell, Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals, Engineering Fracture Mechanics, vol.70, issue.2, pp.185-207, 2003.
DOI : 10.1016/S0013-7944(02)00033-4

M. Cherkaoui and L. Capolungo, Atomistic and Continuum Modeling of Nanocrystalline Materials: Deformation Mechanisms and Scale Transition, 2009.
DOI : 10.1007/978-0-387-46771-9

N. M. Cordero, S. Forest, E. P. Busso, S. Berbenni, and C. M. , Grain size effects in generalised continuum crystal plasticity. In : Scale transition for plastic crystalline and microstructured materials: from experiment to numerical modeling, ICACM 2010, 2010.

N. M. Cordero, A. Gaubert, S. Forest, E. P. Busso, F. Gallerneau et al., Size effects in generalised continuum crystal plasticity for two-phase laminates, Journal of the Mechanics and Physics of Solids, vol.58, issue.11, pp.1963-1994, 2010.
DOI : 10.1016/j.jmps.2010.06.012

URL : https://hal.archives-ouvertes.fr/hal-00542418

S. Forest, Modeling slip, kink and shear banding in classical and generalized single crystal plasticity, Acta Materialia, vol.46, issue.9, pp.3265-3281, 1998.
DOI : 10.1016/S1359-6454(98)00012-3

S. Forest, F. Pradel, and K. Sab, Asymptotic analysis of heterogeneous Cosserat media, International Journal of Solids and Structures, vol.38, issue.26-27, pp.4585-4608, 2001.
DOI : 10.1016/S0020-7683(00)00295-X

L. Méric, G. Cailletaud, and M. Gaspérini, F.E. calculations of copper bicrystal specimens submitted to tension-compression tests, Acta Metallurgica et Materialia, vol.42, issue.3, pp.921-935, 1994.
DOI : 10.1016/0956-7151(94)90287-9

C. Perrin, S. Berbenni, H. Vehoff, and M. Berveiller, Role of discrete intragranular slip on lattice rotations in polycrystalline Ni: Experimental and micromechanical studies, Acta Materialia, vol.58, issue.14, pp.4639-4649, 2010.
DOI : 10.1016/j.actamat.2010.04.033

J. M. Pipard, N. Nicaise, S. Berbenni, O. Bouaziz, and M. Berveiller, A new mean field micromechanical approach to capture grain size effects, Computational Materials Science, vol.45, issue.3, pp.604-610, 2009.
DOI : 10.1016/j.commatsci.2008.06.012

P. G. Sanders, J. A. Eastman, and W. J. , Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Materialia, vol.45, issue.10, pp.4019-4025, 1997.
DOI : 10.1016/S1359-6454(97)00092-X

Y. M. Wang, K. Wang, D. Pan, K. Lu, K. J. Hemker et al., Microsample tensile testing of nanocrystalline copper, Scripta Materialia, vol.48, issue.12, pp.1581-1586, 2003.
DOI : 10.1016/S1359-6462(03)00159-3

K. E. Aifantis and J. R. Willis, The role of interfaces in enhancing the yield strength of composites and polycrystals, Journal of the Mechanics and Physics of Solids, vol.53, issue.5, pp.1047-1070, 2005.
DOI : 10.1016/j.jmps.2004.12.003

C. J. Bayley, W. A. Brekelmans, and G. M. , A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity, International Journal of Solids and Structures, vol.43, issue.24, pp.7268-7286, 2006.
DOI : 10.1016/j.ijsolstr.2006.05.011

S. Forest, Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations, Philosophical Magazine, vol.20, issue.30-32, pp.3549-3563, 2008.
DOI : 10.1080/14786430600965107

URL : https://hal.archives-ouvertes.fr/hal-00513901

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, Journal of Engineering Mechanics, vol.135, issue.3, pp.117-131, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:3(117)

URL : https://hal.archives-ouvertes.fr/hal-00368014

S. Forest, F. Barbe, and C. G. , Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials, International Journal of Solids and Structures, vol.37, issue.46-47, pp.7105-7126, 2000.
DOI : 10.1016/S0020-7683(99)00330-3

S. Forest and R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mechanica, vol.160, issue.1-2, pp.71-111, 2003.
DOI : 10.1007/s00707-002-0975-0

I. Groma, F. F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Materialia, vol.51, issue.5, pp.1271-1281, 2003.
DOI : 10.1016/S1359-6454(02)00517-7

M. E. Gurtin and L. Anand, Nanocrystalline grain boundaries that slip and separate: A gradient theory that accounts for grain-boundary stress and conditions at a triple-junction, Journal of the Mechanics and Physics of Solids, vol.56, issue.1, pp.184-199, 2008.
DOI : 10.1016/j.jmps.2007.09.001

M. E. Gurtin and L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization, Journal of the Mechanics and Physics of Solids, vol.57, issue.3, pp.405-421, 2009.
DOI : 10.1016/j.jmps.2008.12.002

D. L. Mcdowell, Viscoplasticity of heterogeneous metallic materials, Materials Science and Engineering: R: Reports, vol.62, issue.3, pp.67-123, 2008.
DOI : 10.1016/j.mser.2008.04.003

C. Perrin, S. Berbenni, H. Vehoff, and M. Berveiller, Role of discrete intragranular slip on lattice rotations in polycrystalline Ni: Experimental and micromechanical studies, Acta Materialia, vol.58, issue.14, pp.4639-4649, 2010.
DOI : 10.1016/j.actamat.2010.04.033

J. M. Pipard, N. Nicaise, S. Berbenni, O. Bouaziz, and M. Berveiller, A new mean field micromechanical approach to capture grain size effects, Computational Materials Science, vol.45, issue.3, pp.604-610, 2009.
DOI : 10.1016/j.commatsci.2008.06.012

A. Zeghadi, S. Forest, A. Gourgues, and O. Bouaziz, Cosserat continuum modelling of grain size effects in metal polycrystals, PAMM, vol.21, issue.1, pp.79-82, 2005.
DOI : 10.1002/pamm.200510021

URL : https://hal.archives-ouvertes.fr/hal-00145075

O. Aslan, N. M. Cordero, A. Gaubert, and F. S. , Micromorphic approach to single crystal plasticity and damage, International Journal of Engineering Science, vol.49, issue.12, 2011.
DOI : 10.1016/j.ijengsci.2011.03.008

URL : https://hal.archives-ouvertes.fr/hal-00652967

P. Cermelli and M. E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, Journal of the Mechanics and Physics of Solids, vol.49, issue.7, pp.1539-1568, 2001.
DOI : 10.1016/S0022-5096(00)00084-3

N. M. Cordero, A. Gaubert, S. Forest, E. P. Busso, F. Gallerneau et al., Size effects in generalised continuum crystal plasticity for two-phase laminates, Journal of the Mechanics and Physics of Solids, vol.58, issue.11, pp.1963-1994, 2010.
DOI : 10.1016/j.jmps.2010.06.012

URL : https://hal.archives-ouvertes.fr/hal-00542418

A. C. Eringen, Microcontinuum field theories, 1999.
DOI : 10.1007/978-1-4612-0555-5

S. Forest, Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations, Philosophical Magazine, vol.20, issue.30-32, pp.3549-3563, 2008.
DOI : 10.1080/14786430600965107

URL : https://hal.archives-ouvertes.fr/hal-00513901

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, Journal of Engineering Mechanics, vol.135, issue.3, pp.117-131, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:3(117)

URL : https://hal.archives-ouvertes.fr/hal-00368014

S. Forest and R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mechanica, vol.160, issue.1-2, pp.71-111, 2003.
DOI : 10.1007/s00707-002-0975-0

URL : https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/1924

S. Forest and R. Sievert, Nonlinear microstrain theories, International Journal of Solids and Structures, vol.43, issue.24, pp.7224-7245, 2006.
DOI : 10.1016/j.ijsolstr.2006.05.012

URL : https://hal.archives-ouvertes.fr/hal-00136739

P. Germain, The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure, SIAM Journal on Applied Mathematics, vol.25, issue.3, pp.556-575, 1973.
DOI : 10.1137/0125053

M. E. Gurtin and L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization, Journal of the Mechanics and Physics of Solids, vol.57, issue.3, pp.405-421, 2009.
DOI : 10.1016/j.jmps.2008.12.002

J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques, International Journal of Solids and Structures, vol.9, issue.6, pp.725-740, 1973.
DOI : 10.1016/0020-7683(73)90120-0

P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations, International Journal of Engineering Science, vol.34, issue.15, pp.1717-1735, 1996.
DOI : 10.1016/S0020-7225(96)00062-6

R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Elasticity Size Effects in ZnO Nanowires???A Combined Experimental-Computational Approach, Nano Letters, vol.8, issue.11, pp.3668-3674, 2008.
DOI : 10.1021/nl801724b

R. C. Cammarata, Surface and interface stress effects in thin films, Progress in Surface Science, vol.46, issue.1, pp.1-38, 1994.
DOI : 10.1016/0079-6816(94)90005-1

R. C. Cammarata, Surface and interface stress effects on interfacial and nanostructured materials, Materials Science and Engineering: A, vol.237, issue.2, pp.180-184, 1997.
DOI : 10.1016/S0921-5093(97)00128-7

L. Capolungo, C. Jochum, M. Cherkaoui, and J. Qu, Homogenization method for strength and inelastic behavior of nanocrystalline materials, International Journal of Plasticity, vol.21, issue.1, pp.67-82, 2005.
DOI : 10.1016/j.ijplas.2004.02.002

P. Casal, Capillarité interne en mecanique, CR Acad. Sci. Paris, vol.256, pp.3820-3822, 1963.

P. Casal, La théorie du second gradient et la capillarité, CR Acad. Sci. Paris, vol.274, pp.1571-1574, 1972.

P. Casal and H. Gouin, Relation entre l'´ equation de l'´ energie et l'´ equation du mouvement en théorie de Korteweg de la capillarité. Comptes-rendus des séances de l'Académie des sciences, Mécanique-physique, chimie, sciences de l'univers, sciences de la terre, pp.231-234, 1985.

S. Cuenot, C. Frétigny, S. Demoustier-champagne, and N. B. , Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Physical Review B, vol.69, issue.16, p.165410, 2004.
DOI : 10.1103/PhysRevB.69.165410

A. Delin and E. Tosatti, The electronic structure of 4d transition-metal monatomic wires, Journal of Physics: Condensed Matter, vol.16, issue.45, p.8061, 2004.
DOI : 10.1088/0953-8984/16/45/028

J. Diao and K. Gall, Atomistic simulation of the structure and elastic properties of gold nanowires, Journal of the Mechanics and Physics of Solids, vol.52, issue.9, pp.1935-1962, 2004.
DOI : 10.1016/j.jmps.2004.03.009

T. Dillard, S. Forest, and P. Ienny, Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, European Journal of Mechanics - A/Solids, vol.25, issue.3, pp.526-549, 2006.
DOI : 10.1016/j.euromechsol.2005.11.006

URL : https://hal.archives-ouvertes.fr/hal-00133516

R. Dingreville, J. Qu, and C. M. , Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, Journal of the Mechanics and Physics of Solids, vol.53, issue.8, pp.1827-1854, 2005.
DOI : 10.1016/j.jmps.2005.02.012

H. L. Duan, J. Wang, Z. P. Huang, and K. B. , Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, Journal of the Mechanics and Physics of Solids, vol.53, issue.7, pp.1574-1596, 2005.
DOI : 10.1016/j.jmps.2005.02.009

H. L. Duan, J. Wang, B. L. Karihaloo, and Z. P. Huang, Nanoporous materials can be made stiffer than non-porous counterparts by surface modification, Acta Materialia, vol.54, issue.11, pp.2983-2990, 2006.
DOI : 10.1016/j.actamat.2006.02.035

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, Journal of Engineering Mechanics, vol.135, issue.3, pp.117-131, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:3(117)

URL : https://hal.archives-ouvertes.fr/hal-00368014

J. W. Gibbs, The scientific papers, Il Nuovo Cimento Series 5, vol.15, issue.1, 1906.
DOI : 10.1007/BF02712956

M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, vol.57, issue.4, pp.291-323, 1975.
DOI : 10.1007/BF00261375

M. E. Gurtin and A. I. Murdoch, Surface stress in solids, International Journal of Solids and Structures, vol.14, issue.6, pp.431-440, 1978.
DOI : 10.1016/0020-7683(78)90008-2

J. He and C. M. Lilley, The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation, Computational Mechanics, vol.69, issue.16, pp.395-403, 2009.
DOI : 10.1007/s00466-009-0380-9

A. Javili and P. Steinmann, A finite element framework for continua with boundary energies. Part III: The thermomechanical case, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.21-22, 2011.
DOI : 10.1016/j.cma.2010.12.013

D. Kramer and J. Weissmüller, A note on surface stress and surface tension and their interrelation via Shuttleworth???s equation and the Lippmann equation, Surface Science, vol.601, issue.14, pp.3042-3051, 2007.
DOI : 10.1016/j.susc.2007.05.005

H. Liang, M. Upmanyu, and H. Huang, Size-dependent elasticity of nanowires: Nonlinear effects, Physical Review B, vol.71, issue.24, p.241403, 2005.
DOI : 10.1103/PhysRevB.71.241403

M. T. Mcdowell, A. M. Leach, and K. Gall, On The Elastic Modulus of Metallic Nanowires, Nano Letters, vol.8, issue.11, pp.3613-3618, 2008.
DOI : 10.1021/nl801526c

R. E. Miller and V. B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, vol.11, issue.3, p.139, 2000.
DOI : 10.1088/0957-4484/11/3/301

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, vol.1, issue.4, pp.417-438, 1965.
DOI : 10.1016/0020-7683(65)90006-5

A. Mitrushchenkov, G. Chambaud, J. Yvonnet, and H. Q. , Towards an elastic model of wurtzite AlN nanowires, Nanotechnology, vol.21, issue.25, p.255702, 2010.
DOI : 10.1088/0957-4484/21/25/255702

P. Müller and A. Saúl, Elastic effects on surface physics, Surface Science Reports, vol.54, issue.5-8, pp.157-258, 2004.
DOI : 10.1016/j.surfrep.2004.05.001

H. Sadeghian, C. K. Yang, J. F. Goosen, E. Van-der-drift, A. Bossche et al., Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability, Applied Physics Letters, vol.94, issue.22, p.221903, 2009.
DOI : 10.1063/1.3148774

P. Sharma, S. Ganti, and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Applied Physics Letters, vol.82, issue.4, pp.535-537, 2003.
DOI : 10.1063/1.1539929

J. Y. Shu, W. E. King, and N. A. Fleck, Finite elements for materials with strain gradient effects, International Journal for Numerical Methods in Engineering, vol.9, issue.3, pp.373-391, 1999.
DOI : 10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7

R. Shuttleworth, The Surface Tension of Solids, Proceedings of the Physical Society. Section A, p.444, 1950.
DOI : 10.1088/0370-1298/63/5/302

F. Song, G. L. Huang, H. S. Park, and X. N. Liu, A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses, International Journal of Solids and Structures, vol.48, issue.14-15, pp.2154-2163, 2011.
DOI : 10.1016/j.ijsolstr.2011.03.021

T. M. Trimble and R. C. Cammarata, Many-body effects on surface stress, surface energy and surface relaxation of fcc metals, Surface Science, vol.602, issue.14, pp.2339-2347, 2008.
DOI : 10.1016/j.susc.2008.04.012

C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik, 1965.

Z. G. Wang, J. B. Li, F. Gao, and W. W. , Tensile and compressive mechanical behavior of twinned silicon carbide nanowires, Acta Materialia, vol.58, issue.6, pp.1963-1971, 2010.
DOI : 10.1016/j.actamat.2009.11.039

E. Y. Zarechnaya, N. V. Skorodumova, S. I. Simak, B. Johansson, and I. E. , Theoretical study of linear monoatomic nanowires, dimer and bulk of Cu, Ag, Au, Ni, Pd and Pt, Computational Materials Science, vol.43, issue.3, pp.522-530, 2008.
DOI : 10.1016/j.commatsci.2007.12.018

A. Bertram and S. Forest, Mechanics Based on an Objective Power Functional, pp.1-17, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00183346

F. Biguenet, Fluid with internal wettability, International Journal of Non-Linear Mechanics, vol.38, issue.2, pp.255-266, 2003.
DOI : 10.1016/S0020-7462(01)00076-2

P. Casal, Capillarité interne en mecanique, CR Acad. Sci. Paris, vol.256, pp.3820-3822, 1963.

P. Casal, La théorie du second gradient et la capillarité, CR Acad. Sci. Paris, vol.274, pp.1571-1574, 1972.

P. Casal and H. Gouin, Relation entre l'´ equation de l'´ energie et l'´ equation du mouvement en théorie de Korteweg de la capillarité. Comptes-rendus des séances de l'Académie des sciences, Mécanique-physique, chimie, sciences de l'univers, sciences de la terre, pp.231-234, 1985.

W. Dreyer and F. Duderstadt, On the Becker/D??ring Theory of Nucleation of Liquid Droplets in Solids, Journal of Statistical Physics, vol.119, issue.9, pp.55-87, 2006.
DOI : 10.1007/s10955-006-9024-z

A. C. Eringen, Microcontinuum field theories, 1999.
DOI : 10.1007/978-1-4612-0555-5

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, Journal of Engineering Mechanics, vol.135, issue.3, pp.117-131, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:3(117)

URL : https://hal.archives-ouvertes.fr/hal-00368014

S. Forest, N. M. Cordero, and E. P. Busso, First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales, Computational Materials Science, vol.50, issue.4, pp.1299-1304, 2011.
DOI : 10.1016/j.commatsci.2010.03.048

URL : https://hal.archives-ouvertes.fr/hal-00569981

S. Forest and R. Sievert, Nonlinear microstrain theories, International Journal of Solids and Structures, vol.43, issue.24, pp.7224-7245, 2006.
DOI : 10.1016/j.ijsolstr.2006.05.012

URL : https://hal.archives-ouvertes.fr/hal-00136739

E. Fried and M. E. Gurtin, Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales, Archive for Rational Mechanics and Analysis, vol.34, issue.3, pp.513-554, 2006.
DOI : 10.1007/s00205-006-0015-7

P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus.Premì ere partie: Théorie du second gradient, Journal de mécanique, vol.12, pp.235-274, 1973.

P. Germain, The method of virtual power in continuum mechanics, Part Microstructure. SIAM Journal on Applied Mathematics, vol.2, pp.556-575, 1973.

M. E. Gurtin, Thermodynamics and the possibility of spatial interaction in elastic materials, Archive for Rational Mechanics and Analysis, vol.19, issue.5, pp.339-352, 1965.
DOI : 10.1007/BF00253483

H. Lanchon-ducauquis, F. Biguenet, T. Liraud, E. Csapo, and Y. Huemouri, Modelling Wetting Behaviour, pp.197-2008, 2000.
DOI : 10.1007/0-306-46946-4_15

M. Lazar, G. A. Maugin, and A. E. , On a theory of nonlocal elasticity of bi-Helmholtz type and some applications, STRAIN GRADIENTS MODEL AND CAPILLARITY, pp.1404-1421, 2006.
DOI : 10.1016/j.ijsolstr.2005.04.027

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, vol.1, issue.4, pp.417-438, 1965.
DOI : 10.1016/0020-7683(65)90006-5

R. D. Mindlin and N. N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, vol.4, issue.1, pp.109-124, 1968.
DOI : 10.1016/0020-7683(68)90036-X

P. Podio-guidugli and M. Vianello, Hypertractions and hyperstresses convey the same mechanical information, Continuum Mechanics and Thermodynamics, vol.17, issue.29, 2009.
DOI : 10.1007/s00161-010-0135-z

R. A. Toupin, Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, pp.385-414, 1962.
URL : https://hal.archives-ouvertes.fr/hal-00852443

C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik, 1965.

P. Germain, The method of virtual power in continuum mechanics, Part Microstructure. SIAM Journal on Applied Mathematics, vol.2, pp.556-575, 1973.

R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, vol.16, issue.1, pp.51-78, 1964.
DOI : 10.1007/BF00248490

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, vol.1, issue.4, pp.417-438, 1965.
DOI : 10.1016/0020-7683(65)90006-5

R. D. Mindlin and N. N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, vol.4, issue.1, pp.109-124, 1968.
DOI : 10.1016/0020-7683(68)90036-X

R. A. Toupin, Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, pp.385-414, 1962.
DOI : 10.1007/bf00253945

URL : https://hal.archives-ouvertes.fr/hal-00852443

R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Elasticity Size Effects in ZnO Nanowires???A Combined Experimental-Computational Approach, Nano Letters, vol.8, issue.11, pp.3668-3674, 2008.
DOI : 10.1021/nl801724b

H. G. Craighead, Nanoelectromechanical Systems, Science, vol.290, issue.5496, pp.1532-1535, 2000.
DOI : 10.1126/science.290.5496.1532

X. L. Feng, R. He, P. Yang, and R. M. , Very High Frequency Silicon Nanowire Electromechanical Resonators, Nano Letters, vol.7, issue.7, pp.1953-1959, 2007.
DOI : 10.1021/nl0706695

M. T. Mcdowell, A. M. Leach, and K. Gall, Bending and tensile deformation of metallic nanowires, Modelling and Simulation in Materials Science and Engineering, vol.16, issue.4, p.45003, 2008.
DOI : 10.1088/0965-0393/16/4/045003

H. Sadeghian, C. K. Yang, J. F. Goosen, E. Van-der-drift, A. Bossche et al., Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability, Applied Physics Letters, vol.94, issue.22, p.221903, 2009.
DOI : 10.1063/1.3148774

B. Sanii and P. D. Ashby, High Sensitivity Deflection Detection of Nanowires, Physical Review Letters, vol.104, issue.14, p.147203, 2010.
DOI : 10.1103/PhysRevLett.104.147203

T. Dillard, S. Forest, and P. Ienny, Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, European Journal of Mechanics - A/Solids, vol.25, issue.3, pp.526-549, 2006.
DOI : 10.1016/j.euromechsol.2005.11.006

URL : https://hal.archives-ouvertes.fr/hal-00133516

A. C. Eringen, Microcontinuum field theories, 1999.
DOI : 10.1007/978-1-4612-0555-5

R. Ferrando, G. Rossi, A. C. Levi, Z. Kuntova, F. Nita et al., Structures of metal nanoparticles adsorbed on MgO(001). I. Ag and Au, The Journal of Chemical Physics, vol.130, issue.17, p.174702, 2009.
DOI : 10.1063/1.3077300

URL : https://hal.archives-ouvertes.fr/hal-00425182

P. Müller and R. Kern, Equilibrium shape changes of nanocrystals induced by strain, Applied Surface Science, vol.162, issue.163, pp.157-258, 2004.
DOI : 10.1016/S0169-4332(00)00181-1

J. Y. Shu, W. E. King, and N. A. Fleck, Finite elements for materials with strain gradient effects, International Journal for Numerical Methods in Engineering, vol.9, issue.3, pp.373-391, 1999.
DOI : 10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7

G. Abrivard, A coupled crystal plasticity ? phase field formulation to describe microstructural evolution in polycrystalline aggregates, Thèse de Doctorat, 2009.
URL : https://hal.archives-ouvertes.fr/pastel-00533060

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, Journal of Engineering Mechanics, vol.135, issue.3, pp.117-131, 2009.
DOI : 10.1061/(ASCE)0733-9399(2009)135:3(117)

URL : https://hal.archives-ouvertes.fr/hal-00368014

S. Forest and R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mechanica, vol.160, issue.1-2, pp.71-111, 2003.
DOI : 10.1007/s00707-002-0975-0

M. E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, Journal of the Mechanics and Physics of Solids, vol.50, issue.1, pp.5-32, 2002.
DOI : 10.1016/S0022-5096(01)00104-1

M. E. Gurtin and L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization, Journal of the Mechanics and Physics of Solids, vol.57, issue.3, pp.405-421, 2009.
DOI : 10.1016/j.jmps.2008.12.002

D. L. Mcdowell, Viscoplasticity of heterogeneous metallic materials, Materials Science and Engineering: R: Reports, vol.62, issue.3, pp.67-123, 2008.
DOI : 10.1016/j.mser.2008.04.003

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, vol.1, issue.4, pp.417-438, 1965.
DOI : 10.1016/0020-7683(65)90006-5

P. Müller and R. Kern, Equilibrium shape changes of nanocrystals induced by strain, Applied Surface Science, vol.162, issue.163, pp.157-258, 2004.
DOI : 10.1016/S0169-4332(00)00181-1

C. Perrin, S. Berbenni, H. Vehoff, and M. Berveiller, Role of discrete intragranular slip on lattice rotations in polycrystalline Ni: Experimental and micromechanical studies, Acta Materialia, vol.58, issue.14, pp.4639-4649, 2010.
DOI : 10.1016/j.actamat.2010.04.033

J. M. Pipard, N. Nicaise, S. Berbenni, O. Bouaziz, and M. Berveiller, A new mean field micromechanical approach to capture grain size effects, Computational Materials Science, vol.45, issue.3, pp.604-610, 2009.
DOI : 10.1016/j.commatsci.2008.06.012