P. John, B. Overington, . Al-lazikani, L. Andrew, and . Hopkins, How many drug targets are there?, Bibliography Nat Rev Drug Discov, vol.5, issue.12 4, pp.993-996, 2006.

D. E. Koshland, Application of a Theory of Enzyme Specificity to Protein Synthesis, Proceedings of the National Academy of Sciences, vol.44, issue.2, pp.98-104, 1958.
DOI : 10.1073/pnas.44.2.98

C. Chakraborty, C. Hsu, Z. Wen, and C. Lin, Recent Advances of Fluorescent Technologies for Drug Discovery and Development, Current Pharmaceutical Design, vol.15, issue.30, pp.3552-3570, 2009.
DOI : 10.2174/138161209789207006

E. Mara, A. J. Bosch, . Snchez, S. Fuensanta, C. B. Rojas et al., Optical chemical biosensors for high-throughput screening of drugs, Comb Chem High Throughput Screen, vol.10, issue.6, pp.413-432, 2007.

G. Holdgate, Isothermal Titration Calorimetry and Differential Scanning Calorimetry, Methods Mol Biol, vol.572, issue.9, pp.101-133, 2009.
DOI : 10.1007/978-1-60761-244-5_7

B. William, V. Peters, . Frasca, K. Richard, and . Brown, Recent developments in isothermal titration calorimetry label free screening, Comb Chem High Throughput Screen, vol.12, issue.8 10, pp.772-790, 2009.

W. Huber and F. Mueller, Biomolecular Interaction Analysis in Drug Discovery Using Surface Plasmon Resonance Technology, Current Pharmaceutical Design, vol.12, issue.31, pp.3999-4021, 2006.
DOI : 10.2174/138161206778743600

M. Miller, The early years of retroviral protease crystal structures, Biopolymers, vol.49, issue.4, pp.521-529, 2010.
DOI : 10.1002/bip.21387

J. Ren, K. David, and . Stammers, Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase, Virus Research, vol.134, issue.1-2, pp.157-170, 2008.
DOI : 10.1016/j.virusres.2007.12.018

S. Bhattacharya and H. Osman, Novel targets for anti-retroviral therapy, Journal of Infection, vol.59, issue.6, pp.377-386, 2009.
DOI : 10.1016/j.jinf.2009.09.014

C. Scott, . Blanchard, S. Barry, . Cooperman, N. Daniel et al., Probing translation with small-molecule inhibitors, Chem Biol, vol.17, issue.6, pp.633-645, 2010.

L. Fielding, NMR Methods for the Determination of Protein- Ligand Dissociation Constants, Current Topics in Medicinal Chemistry, vol.3, issue.1, pp.39-53, 2003.
DOI : 10.2174/1568026033392705

J. Clarkson and I. D. Campbell, Studies of protein???ligand interactions by NMR, Biochemical Society Transactions, vol.31, issue.5, pp.311006-1009, 2003.
DOI : 10.1042/bst0311006

T. Gaetano, T. Montelione, and . Szyperski, Advances in protein nmr provided by the nigms protein structure initiative: impact on drug discovery, Curr Opin Drug Discov Devel, vol.13, issue.3, pp.335-349, 2010.

A. Golebiowski, R. Sean, . Klopfenstein, E. David, and . Portlock, Lead compounds discovered from libraries: Part 2, Current Opinion in Chemical Biology, vol.7, issue.3, pp.308-325, 2003.
DOI : 10.1016/S1367-5931(03)00059-0

N. Michle, . Schulz, E. Roderick, and . Hubbard, Recent progress in fragment-based lead discovery, Curr Opin Pharmacol, vol.9, issue.5, pp.615-621, 2009.

M. Gyrgy, . Keseru, M. Gergely, and . Makara, Hit discovery and hit-to-lead approaches, Drug Discov Today, vol.11, issue.1516, pp.741-748, 2006.

N. Ajay and . Jain, Virtual screening in lead discovery and optimization, Curr Opin Drug Discov Devel, vol.7, issue.4, pp.396-403, 2004.

K. Brian, . Shoichet, L. Susan, B. Mcgovern, J. J. Wei et al., Lead discovery using molecular docking, Curr Opin Chem Biol, vol.6, issue.4, pp.439-446, 2002.

P. Kolb, R. S. Ferreira, J. John, . Irwin, K. Brian et al., Docking and chemoinformatic screens for new ligands and targets, Current Opinion in Biotechnology, vol.20, issue.4, pp.429-436, 2009.
DOI : 10.1016/j.copbio.2009.08.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766606

J. Xu and A. Hagler, Chemoinformatics and Drug Discovery, Molecules, vol.7, issue.8, pp.566-600, 2002.
DOI : 10.3390/70800566

URL : http://doi.org/10.3390/70800566

C. Manly, S. Louise-may, and J. Hammer, The impact of informatics and computational chemistry on synthesis and screening, Drug Discovery Today, vol.6, issue.21, pp.1101-1110, 2001.
DOI : 10.1016/S1359-6446(01)01990-0

A. L. Hopkins and C. R. Groom, The druggable genome, Nature Reviews Drug Discovery, vol.180, issue.9, pp.727-730, 2002.
DOI : 10.1126/science.287.5461.2204

M. Helen, T. Berman, T. N. Battistuz, . Bhat, F. Wolfgang et al., The protein data bank, Acta Crystallogr D Biol Crystallogr, pp.58899-907, 2002.

W. , P. Walters, T. Matthew, . Stahl, A. Mark et al., Virtual screening?an overview, Drug Discovery Today, vol.3, issue.4, pp.160-178, 1998.
DOI : 10.1016/s1359-6446(97)01163-x

T. Lengauer, C. Lemmen, M. Rarey, and M. Zimmermann, Novel technologies for virtual screening, Drug Discovery Today, vol.9, issue.1, pp.27-34, 2004.
DOI : 10.1016/S1359-6446(04)02939-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.9755

R. D. Brown and Y. C. Martin, The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding, Journal of Chemical Information and Computer Sciences, vol.37, issue.1, pp.1-9, 1997.
DOI : 10.1021/ci960373c

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, p.43, 2002.
DOI : 10.1002/9783527613106

R. D. Brown and Y. C. Martin, An Evaluation of Structural Descriptors and Clustering Methods for Use in Diversity Selection, SAR and QSAR in Environmental Research, vol.4, issue.1-2, pp.23-39, 1998.
DOI : 10.2307/2282967

C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3???25.1, Chemoinformatics : a Textbook, pp.3-26, 2001.
DOI : 10.1016/S0169-409X(00)00129-0

G. Moreau and P. Broto, Autocorrelation of molecular structures: Application to SAR studies, Nouv. J. Chim, vol.757, pp.764-781, 1980.

M. J. Mcgregor and V. Pallai, Clustering of Large Databases of Compounds:??? Using the MDL ???Keys??? as Structural Descriptors, Journal of Chemical Information and Computer Sciences, vol.37, issue.3, pp.443-448, 1997.
DOI : 10.1021/ci960151e

L. Xue, F. L. Stahura, J. W. Godden, and J. Bajorath, Mini-fingerprints Detect Similar Activity of Receptor Ligands Previously Recognized Only by Three-Dimensional Pharmacophore-Based Methods, Journal of Chemical Information and Computer Sciences, vol.41, issue.2, pp.394-401, 2001.
DOI : 10.1021/ci000305x

M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, Frequent substructure-based approaches for classifying chemical compounds, IEEE Transactions on Knowledge and Data Engineering, vol.17, issue.8, pp.1036-1050, 2005.
DOI : 10.1109/TKDE.2005.127

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.4863

C. Helma, T. Cramer, S. Kramer, and L. De-raedt, Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds, Journal of Chemical Information and Computer Sciences, vol.44, issue.4, pp.1402-1413, 2004.
DOI : 10.1021/ci034254q

A. Inokuchi, T. Washio, and H. Motoda, Complete mining of frequent patterns from graphs: mining graph data, Machine Learning, vol.50, issue.3, pp.321-354, 2003.
DOI : 10.1023/A:1021726221443

M. Thimm, A. Goede, S. Hougardy, and R. Preissner, Comparison of 2D Similarity and 3D Superposition. Application to Searching a Conformational Drug Database., ChemInform, vol.44, issue.49, pp.1816-1822, 2004.
DOI : 10.1002/chin.200449217

P. Bultinck, T. Kuppens, X. Gironès, and R. Carbó-dorca, Quantum Similarity Superposition Algorithm (QSSA):??? A Consistent Scheme for Molecular Alignment and Molecular Similarity Based on Quantum Chemistry, Journal of Chemical Information and Computer Sciences, vol.43, issue.4, pp.1143-1150, 2003.
DOI : 10.1021/ci0340153

C. Lemmen, T. G. Lengauer-]-t, R. H. Dietterich, T. Lathrop, and . Lozano-perez, Computational methods for the structural alignment of molecules Solving the Multiple Instance Problem with Axis-Parallel Rectangles, Journal of Computer-Aided Molecular Design, vol.14, issue.3, pp.215-23231, 1997.
DOI : 10.1023/A:1008194019144

N. Perry and V. J. Van-geerestein, Database searching on the basis of three-dimensional molecular similarity using the SPERM program, Journal of Chemical Information and Modeling, vol.32, issue.6, pp.607-616, 1992.
DOI : 10.1021/ci00010a006

H. Kubinyi, Comparative Molecular Field Analysis, Handbook of Chemoinformatics. From Data to Knowledge, pp.1555-1574, 2003.

C. A. Pepperrell and P. Willett, Techniques for the calculation of three-dimensional structural similarity using inter-atomic distances, Journal of Computer-Aided Molecular Design, vol.7, issue.5, pp.455-474, 1991.
DOI : 10.1007/BF00125665

M. Wagener, J. Sadowski, and J. Gasteiger, Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks, Journal of the American Chemical Society, vol.117, issue.29, pp.7769-7775, 1995.
DOI : 10.1021/ja00134a023

R. E. Carhart, D. H. Smith, and R. Venkataraghavan, Atom pairs as molecular features in structure-activity studies: definition and applications, Journal of Chemical Information and Modeling, vol.25, issue.2, pp.64-73, 1985.
DOI : 10.1021/ci00046a002

S. J. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola et al., Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity, Bioinformatics, vol.21, issue.Suppl 1, pp.359-368, 2005.
DOI : 10.1093/bioinformatics/bti1055

O. F. Güner, Pharmacophore Perception, Development, and Use in Drug Design, p.45, 2000.

S. D. Pickett, J. S. Mason, and I. M. Mclay, Diversity Profiling and Design Using 3D Pharmacophores:??? Pharmacophore-Derived Queries (PDQ), Journal of Chemical Information and Computer Sciences, vol.36, issue.6, pp.1214-1223, 1996.
DOI : 10.1021/ci960039g

M. J. Mcgregor and S. M. , Pharmacophore Fingerprinting. 1. Application to QSAR and Focused Library Design, Journal of Chemical Information and Computer Sciences, vol.39, issue.3, pp.569-574, 1999.
DOI : 10.1021/ci980159j

H. Matter and T. Pötter, Comparing 3D Pharmacophore Triplets and 2D Fingerprints for Selecting Diverse Compound Subsets, Journal of Chemical Information and Computer Sciences, vol.39, issue.6, pp.1211-1225, 1999.
DOI : 10.1021/ci980185h

E. Abrahamian, P. C. Fox, L. Naerum, I. T. Christensen, H. Thøgersen et al., Efficient Generation, Storage, and Manipulation of Fully Flexible Pharmacophore Multiplets and Their Use in 3-D Similarity Searching, Journal of Chemical Information and Computer Sciences, vol.43, issue.2, pp.458-468, 2003.
DOI : 10.1021/ci025595r

J. Saeh, P. Lyne, B. Takasaki, and D. Cosgrove, Lead Hopping Using SVM and 3D Pharmacophore Fingerprints, Journal of Chemical Information and Modeling, vol.45, issue.4, pp.1122-1133, 1920.
DOI : 10.1021/ci049732r

P. Mahé, L. Ralaivola, V. Stoven, and J. Vert, The Pharmacophore Kernel for Virtual Screening with Support Vector Machines, Journal of Chemical Information and Modeling, vol.46, issue.5, pp.2003-2014, 2006.
DOI : 10.1021/ci060138m

A. R. Leach and V. J. Gillet, An introduction to chemoinformatics, p.20, 2003.
DOI : 10.1007/978-1-4020-6291-9

P. Ferrara, H. Gohlke, J. Daniel, G. Price, . Klebe et al., Assessing Scoring Functions for Protein???Ligand Interactions, Journal of Medicinal Chemistry, vol.47, issue.12, pp.3032-3047, 1921.
DOI : 10.1021/jm030489h

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, inference, and prediction, 1921.

C. Hansch and T. Fujita, -??-?? Analysis. A Method for the Correlation of Biological Activity and Chemical Structure, Journal of the American Chemical Society, vol.86, issue.8, pp.1616-1626, 1964.
DOI : 10.1021/ja01062a035

A. K. Saxena and P. Prathipati, Comparison of MLR, PLS and GA-MLR in QSAR analysis*, SAR and QSAR in Environmental Research, vol.44, issue.5-6, pp.433-445, 2003.
DOI : 10.1016/S0960-894X(03)00491-8

D. Rogers and A. J. Hopfinger, Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships, Journal of Chemical Information and Modeling, vol.34, issue.4
DOI : 10.1021/ci00020a020

Y. C. Martin, J. B. Holland, C. H. Jarboe, and N. Plotnikoff, ChemInform Abstract: DISCRIMINANT ANALYSIS OF THE RELATIONSHIP BETWEEN PHYSICAL PROPERTIES AND THE INHIBITION OF MONOAMINE OXIDASE BY AMINOTETRALINS AND AMINOINDANS, Chemischer Informationsdienst, vol.17, issue.35, pp.409-413, 1922.
DOI : 10.1002/chin.197435211

C. Hansch, J. E. Quinlan, and G. L. Lawrence, Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids, The Journal of Organic Chemistry, vol.33, issue.1, pp.347-350, 1968.
DOI : 10.1021/jo01265a071

J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, p.22, 1999.

G. Schneider and P. Wrede, Artificial neural networks for computer-based molecular design, Progress in Biophysics and Molecular Biology, vol.70, issue.3, pp.175-222, 1998.
DOI : 10.1016/S0079-6107(98)00026-1

D. M. Hawkins, S. S. Young, and A. Rusinko, Analysis of a Large Structure-Activity Data Set Using Recursive Partitioning, Quantitative Structure-Activity Relationships, vol.18, issue.4, pp.296-302, 1997.
DOI : 10.1002/qsar.19970160404

R. Burbidge, M. Trotter, B. Buxton, and S. Holden, Drug design by machine learning: support vector machines for pharmaceutical data analysis, Computers & Chemistry, vol.26, issue.1, pp.4-15, 1923.
DOI : 10.1016/S0097-8485(01)00094-8

V. N. Vapnik, Statistical Learning Theory, p.24, 1998.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.144-152, 1992.
DOI : 10.1145/130385.130401

J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, p.24, 2004.
DOI : 10.1017/CBO9780511809682

B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, p.24, 2002.

B. Schölkopf, C. Burges, and V. Vapnik, Extracting support data for a given task

T. Joachims, Learning to Classify Text Using Support Vector Machines, p.24, 2002.
DOI : 10.1007/978-1-4615-0907-3

B. Schölkopf, K. Tsuda, and J. Vert, Kernel Methods in Computational Biology, pp.24-43, 2004.

J. Bockaert and J. P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success, The EMBO Journal, vol.18, issue.7, pp.1723-1729, 1999.
DOI : 10.1093/emboj/18.7.1723

D. A. Deshpande and R. B. Penn, Targeting G protein-coupled receptor signaling in asthma, Cellular Signalling, vol.18, issue.12, pp.2105-2120, 2006.
DOI : 10.1016/j.cellsig.2006.04.008

S. J. Hill, G-protein-coupled receptors: past, present and future, British Journal of Pharmacology, vol.26, issue.S1, p.147
DOI : 10.1038/sj.bjp.0706455

L. A. Catapano and H. K. Manji, G protein-coupled receptors in major psychiatric disorders, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.4, pp.976-993, 2007.
DOI : 10.1016/j.bbamem.2006.09.025

B. B. Fredholm, T. Hökfelt, and G. Milligan, G-protein-coupled receptors: an update, Acta Physiologica, vol.31, issue.4
DOI : 10.1126/science.1117255

S. H. Lin and O. Civelli, Orphan G protein???coupled receptors: targets for new therapeutic interventions, Annals of Medicine, vol.411, issue.3, pp.204-214, 2004.
DOI : 10.1038/22313

K. Wesley, . Kroeze, J. Douglas, . Sheffler, L. Bryan et al., G-protein-coupled receptors at a glance, J Cell Sci, vol.116, issue.32, pp.4867-4869, 2003.

M. Steven, . Foord, I. Tom, . Bonner, R. Richard et al., International union of pharmacology. xlvi. g protein-coupled receptor list, Pharmacol Rev, vol.57, issue.2, pp.279-288, 2005.

N. Nakayama, A. Miyajima, and K. Arai, Nucleotide sequences of ste2 and ste3, cell type-specific sterile genes from saccharomyces cerevisiae, EMBO J, vol.4, issue.33, pp.2643-2648, 1985.

K. G. Valentine, S. F. Liu, F. M. Marassi, G. Veglia, S. J. Opella et al., Structure and topology of a peptide segment of the 6th transmembrane domain of theSaccharomyces cerevisae ?-factor receptor in phospholipid bilayers, Biopolymers, vol.119, issue.4, pp.243-256, 2001.
DOI : 10.1002/1097-0282(20011005)59:4<243::AID-BIP1021>3.0.CO;2-H

P. S. Klein, T. J. Sun, C. L. Saxe, A. R. Kimmel, R. L. Johnson et al., A chemoattractant receptor controls development in Dictyostelium discoideum, Science, vol.241, issue.4872, pp.2411467-1472, 1988.
DOI : 10.1126/science.3047871

C. Craig and . Malbon, Frizzleds: new members of the superfamily of g-protein-coupled receptors, Front Biosci, vol.9, pp.1048-1058, 1933.

H. Wang, C. Craig, and . Malbon, Wnt Signaling, Ca2+, and Cyclic GMP: Visualizing Frizzled Functions, Science, vol.300, issue.5625, pp.1529-1530, 2003.
DOI : 10.1126/science.1085259

O. Civelli, Y. Saito, Z. Wang, H. Nothacker, and R. K. Reinscheid, Orphan GPCRs and their ligands, Pharmacology & Therapeutics, vol.110, issue.3, pp.525-532, 2006.
DOI : 10.1016/j.pharmthera.2005.10.001

J. A. Ballesteros, A. D. Jensen, G. Liapakis, S. G. Rasmussen, L. Shi et al., Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6, J Biol Chem, issue.31, pp.27629171-29177, 2001.

A. David, K. Shapiro, . Kristiansen, M. David, . Weiner et al., Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2a serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6, J Biol Chem, vol.277, issue.13, pp.11441-11449, 2002.

M. J. Marinissen and J. S. Gutkind, G-protein-coupled receptors and signaling networks: emerging paradigms, Trends in Pharmacological Sciences, vol.22, issue.7, pp.368-376, 2001.
DOI : 10.1016/S0165-6147(00)01678-3

S. S. Ferguson, . Hall, J. Robert, and . Lefkowitz, Evolving concepts in g protein-coupled receptor endocytosis: the role in receptor desensitization and signaling Regulation of g protein-coupled receptor signaling by scaffold proteins, Pharmacol Rev Circ Res, vol.53, issue.18, pp.1-24, 2001.

J. Bockaert, P. Marin, A. Dumuis, and L. Fagni, The ???magic tail??? of G protein-coupled receptors: an anchorage for functional protein networks, FEBS Letters, vol.365, issue.1, pp.65-72, 2003.
DOI : 10.1016/S0014-5793(03)00453-8

A. Evers and T. Klabunde, Structure-based Drug Discovery Using GPCR Homology Modeling:?? Successful Virtual Screening for Antagonists of the Alpha1A Adrenergic Receptor, Journal of Medicinal Chemistry, vol.48, issue.4
DOI : 10.1021/jm0491804

C. N. Cavasotto, A. J. Orry, and R. A. Abagyan, Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors, Proteins: Structure, Function, and Genetics, vol.51, issue.3, pp.423-433, 2003.
DOI : 10.1002/prot.10362

S. Shacham, Y. Marantz, S. Bar-haim, O. Kalid, D. Warshaviak et al., PREDICT modeling and in-silico screening for G-protein coupled receptors, Proteins: Structure, Function, and Bioinformatics, vol.21, issue.2-3, pp.51-86, 2004.
DOI : 10.1002/prot.20195

C. Bissantz, P. Bernard, M. Hibert, and D. Rognan, Protein-based virtual screening of chemical databases. II. Are homology models of g-protein coupled receptors suitable targets?, Proteins: Structure, Function, and Bioinformatics, vol.276, issue.Suppl 1, pp.5-25, 1935.
DOI : 10.1002/prot.10237

O. M. Becker, Y. Marantz, S. Shacham, B. Inbal, A. Heifetz et al., G protein-coupled receptors: In silico drug discovery in 3D, Proc. Natl. Acad. Sci. USA, pp.10111304-11309, 2004.
DOI : 10.1073/pnas.0401862101

K. A. Hawes, H. Neill, M. S. Hine, J. H. Burton, R. A. Voigt et al., Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening, J

C. Rolland, R. Gozalbes, A. Nicola¨?nicola¨?, M. Paugam, L. Coussy et al., G-protein-coupled receptor affinity prediction based on the use of a 136 BIBLIOGRAPHY profiling dataset: Qsar design, synthesis, and experimental validation, J. Med. Chem, issue.21, pp.486563-6574, 2005.

H. Kubinyi, Chemogenomics in Drug Discovery, Ernst Schering Res Found Workshop, vol.58, issue.36, pp.1-19, 2006.
DOI : 10.1007/978-3-540-37635-4_1

S. E. Jaroch and H. Weinmann, Chemical Genomics: Small Molecule Probes to Study Cellular Function. Ernst Schering Research Foundation Workshop, p.36, 2006.
DOI : 10.1007/978-3-540-37635-4

T. Klabunde, Chemogenomic approaches to drug discovery: similar receptors bind similar ligands, British Journal of Pharmacology, vol.47, issue.1, pp.5-7, 1936.
DOI : 10.1038/sj.bjp.0707308

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1978276

P. R. Caron, M. D. Mullican, R. D. Mashal, K. P. Wilson, M. S. Su et al., Chemogenomic approaches to drug discovery, Current Opinion in Chemical Biology, vol.5, issue.4, pp.464-470, 2001.
DOI : 10.1016/S1367-5931(00)00229-5

A. Schuffenhauer, P. Floersheim, P. Acklin, and E. Jacoby, Similarity Metrics for Ligands Reflecting the Similarity of the Target Proteins, Journal of Chemical Information and Computer Sciences, vol.43, issue.2, pp.391-405, 2003.
DOI : 10.1021/ci025569t

J. R. Bock and D. A. Gough, Virtual Screen for Ligands of Orphan G Protein-Coupled Receptors, Journal of Chemical Information and Modeling, vol.45, issue.5, pp.1402-1414, 2005.
DOI : 10.1021/ci050006d

D. Erhan, P. L-'heureux, S. Y. Yue, and Y. Bengio, Collaborative Filtering on a Family of Biological Targets, Journal of Chemical Information and Modeling, vol.46, issue.2, pp.626-635, 2006.
DOI : 10.1021/ci050367t

L. Jacob and J. Vert, Kernel methods for in silico chemogenomics, p.40, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00174808

Y. Okuno, J. Yang, K. Taneishi, H. Yabuuchi, and G. Tsujimoto, GLIDA: GPCR-ligand database for chemical genomic drug discovery, Nucleic Acids Research, vol.34, issue.90001, pp.673-677, 2006.
DOI : 10.1093/nar/gkj028

URL : http://doi.org/10.1093/nar/gkj028

J. R. Bock and D. A. Gough, Predicting protein-protein interactions from primary structure, Bioinformatics, vol.17, issue.5, pp.455-460, 2001.
DOI : 10.1093/bioinformatics/17.5.455

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.769

H. Kashima, K. Tsuda, and A. Inokuchi, Marginalized Kernels between Labeled Graphs, Proceedings of the Twentieth International Conference on Machine Learning, pp.321-328, 2003.

T. Gärtner, P. Flach, and S. Wrobel, On Graph Kernels: Hardness Results and Efficient Alternatives, Proceedings of the Sixteenth Annual Conference on Computational Learning Theory and the Seventh Annual Workshop on Kernel Machines, pp.129-143, 2003.
DOI : 10.1007/978-3-540-45167-9_11

P. Mahé, N. Ueda, T. Akutsu, J. Perret, and J. Vert, Graph Kernels for Molecular Structure???Activity Relationship Analysis with Support Vector Machines, Journal of Chemical Information and Modeling, vol.45, issue.4, pp.939-51, 2005.
DOI : 10.1021/ci050039t

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, Graph kernels for chemical informatics, Neural Networks, vol.18, issue.8, pp.1093-1110, 2005.
DOI : 10.1016/j.neunet.2005.07.009

C. Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola et al., One- to Four-Dimensional Kernels for Virtual Screening and the Prediction of Physical, Chemical, and Biological Properties, Journal of Chemical Information and Modeling, vol.47, issue.3, pp.47965-974, 2007.
DOI : 10.1021/ci600397p

J. Boström, J. R. Greenwood, and J. Gottfries, Assessing the performance of OMEGA with respect to retrieving bioactive conformations, Journal of Molecular Graphics and Modelling, vol.21, issue.5, pp.449-462, 2003.
DOI : 10.1016/S1093-3263(02)00204-8

T. Jaakkola, M. Diekhans, and D. Haussler, A Discriminative Framework for Detecting Remote Protein Homologies, Journal of Computational Biology, vol.7, issue.1-2, pp.95-114, 2000.
DOI : 10.1089/10665270050081405

C. Leslie, E. Eskin, and W. S. Noble, THE SPECTRUM KERNEL: A STRING KERNEL FOR SVM PROTEIN CLASSIFICATION, Biocomputing 2002, pp.564-575, 2002.
DOI : 10.1142/9789812799623_0053

K. Tsuda, T. Kin, and K. Asai, Marginalized kernels for biological sequences, Bioinformatics, vol.18, issue.Suppl 1, pp.268-275, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S268

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/18/suppl_1/S268

H. Saigo, J. Vert, N. Ueda, and T. Akutsu, Protein homology detection using string alignment kernels, Bioinformatics, vol.20, issue.11, pp.1682-1689, 2004.
DOI : 10.1093/bioinformatics/bth141

URL : https://hal.archives-ouvertes.fr/hal-00433587

R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi et al., Profilebased string kernels for remote homology detection and motif extraction, J. Bioinform

M. Cuturi and J. Vert, The context-tree kernel for strings, Neural Networks, vol.18, issue.8, pp.1111-1123, 2005.
DOI : 10.1016/j.neunet.2005.07.010

URL : https://hal.archives-ouvertes.fr/hal-00433583

P. D. Dobson and A. J. Doig, Predicting Enzyme Class From Protein Structure Without Alignments, Journal of Molecular Biology, vol.345, issue.1, pp.187-199, 1948.
DOI : 10.1016/j.jmb.2004.10.024

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.411.9534

K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. Vishwanathan, A. J. Smola et al., Protein function prediction via graph kernels, Bioinformatics, vol.21, issue.Suppl 1, pp.47-56, 2005.
DOI : 10.1093/bioinformatics/bti1007

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.528.6168

J. Qiu, J. Hue, A. Ben-hur, J. Vert, and W. S. Noble, A structural alignment kernel for protein structures, Bioinformatics, vol.23, issue.9, pp.1090-1098, 2007.
DOI : 10.1093/bioinformatics/btl642

URL : https://hal.archives-ouvertes.fr/hal-00433578

T. Evgeniou, C. Micchelli, and M. Pontil, Learning multiple tasks with kernel methods

N. A. Kratochwil, P. Malherbe, L. Lindemann, M. Ebeling, M. C. Hoener et al., An Automated System for the Analysis of G Protein-Coupled Receptor Transmembrane Binding Pockets:?? Alignment, Receptor-Based Pharmacophores, and Their Application, Journal of Chemical Information and Modeling, vol.45, issue.5, pp.1324-1336, 2005.
DOI : 10.1021/ci050221u

J. Surgand, J. Rodrigo, E. Kellenberger, and D. Rognan, A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors, Proteins: Structure, Function, and Bioinformatics, vol.15, issue.Suppl, pp.509-538, 2006.
DOI : 10.1002/prot.20768

V. Cherezov, M. Daniel, . Rosenbaum, A. Michael, . Hanson et al., High-resolution crystal structure of an engineered human beta2-adrenergic g protein-coupled receptor, Science, issue.5854, pp.3181258-1265, 2007.

R. B. Russell and G. J. Barton, Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels, Proteins: Structure, Function, and Genetics, vol.47, issue.2, pp.309-323, 1992.
DOI : 10.1002/prot.340140216

R. J. Lefkowitz, J. Sun, and A. K. Shukla, A crystal clear view of the ??2-adrenergic receptor, Nature Biotechnology, vol.104, issue.2, pp.189-191, 2008.
DOI : 10.1038/nbt0208-189

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-41, 1996.
DOI : 10.1016/0263-7855(96)00018-5

V. A. Avlani, K. J. Gregory, C. J. Morton, M. W. Parker, P. M. Sexton et al., Critical Role for the Second Extracellular Loop in the Binding of Both Orthosteric and Allosteric G Protein-coupled Receptor Ligands, Journal of Biological Chemistry, vol.282, issue.35, pp.25677-25686, 2007.
DOI : 10.1074/jbc.M702311200

. Thompson, The Clustal Series of Programs for Multiple Sequence Alignment, Nucleic Acids Res, issue.13, pp.313497-3500, 2003.
DOI : 10.1385/1-59259-890-0:493

S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein blocks., Proceedings of the National Academy of Sciences, vol.89, issue.22
DOI : 10.1073/pnas.89.22.10915

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC50453/pdf

J. Caldwell, I. Gardner, and N. Swales, An Introduction to Drug Disposition: The Basic Principles of Absorption, Distribution, Metabolism, and Excretion, Toxicologic Pathology, vol.39, issue.2, pp.102-114, 1995.
DOI : 10.1177/019262339502300202

W. J. Egan, K. M. Merz, J. J. Baldwin, D. F. Veber, S. R. Johnson et al., Prediction of Drug Absorption Using Multivariate Statistics, Journal of Medicinal Chemistry, vol.43, issue.21, pp.3867-3877, 2000.
DOI : 10.1021/jm000292e

Y. C. Martin, A Bioavailability Score, Journal of Medicinal Chemistry, vol.48, issue.9, pp.3164-3170, 1956.
DOI : 10.1021/jm0492002

C. Chih-wei, H. Chih-chung, and L. Chih-jen, A practical guide to support vector classification, p.58, 2003.

K. Kristiansen, S. G. Dahl, and O. Edvardsen, A database of mutants and effects of site-directed mutagenesis experiments on G protein-coupled receptors, Proteins: Structure, Function, and Genetics, vol.68, issue.1, pp.81-94, 1996.
DOI : 10.1002/(SICI)1097-0134(199609)26:1<81::AID-PROT8>3.0.CO;2-J

B. K. Kobilka, G protein coupled receptor structure and activation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.4, pp.794-807, 2007.
DOI : 10.1016/j.bbamem.2006.10.021

J. Chen, J. Wang, and X. Xie, GPCR Structure-Based Virtual Screening Approach for CB2 Antagonist Search, Journal of Chemical Information and Modeling, vol.47, issue.4, pp.1626-1637, 2007.
DOI : 10.1021/ci7000814

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.411.9849

X. Deupi, N. Dölker, M. L. L-`-opez-rodr-`-rodr-`-iguez, M. Campillo, J. A. Ballesteros et al., Structural Models of Class A G Protein-Coupled Receptors as a Tool for Drug Design: Insights on Transmembrane Bundle Plasticity, Current Topics in Medicinal Chemistry, vol.7, issue.10, pp.991-998, 2007.
DOI : 10.2174/156802607780906799

A. Argyriou, T. Evgeniou, and M. Pontil, Multi-task feature learning, Adv. Neural. Inform. Process Syst, vol.19, pp.41-48, 2007.
DOI : 10.1007/s10994-007-5040-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.2025

E. Bonilla, K. M. Chai, and C. Williams, Multi-task gaussian process prediction, Advances in Neural Information Processing Systems, 2008.

J. Abernethy, F. Bach, T. Evgeniou, and J. Vert, A new approach to collaborative filtering: operator estimation with spectral regularization, J. Mach. Learn. Res, vol.10, pp.803-826, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00250231

L. Xie, L. Xie, E. Philip, and . Bourne, A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery, Bioinformatics, vol.25, issue.12, pp.25-305, 2009.
DOI : 10.1093/bioinformatics/btp220

A. Kahraman, R. J. Morris, R. A. Laskowski, and J. M. Thornton, Shape Variation in Protein Binding Pockets and their Ligands, Journal of Molecular Biology, vol.368, issue.1, pp.283-301, 2007.
DOI : 10.1016/j.jmb.2007.01.086

R. J. Morris, R. J. Najmanovich, A. Kahraman, and J. M. Thornton, Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons, Bioinformatics, vol.21, issue.10, pp.2347-2355, 2005.
DOI : 10.1093/bioinformatics/bti337

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/21/10/2347

N. D. Gold and R. M. Jackson, SitesBase: a database for structure-based protein-ligand binding site comparisons, Nucleic Acids Research, vol.34, issue.90001, pp.231-234, 1976.
DOI : 10.1093/nar/gkj062

A. Shulman-peleg, M. Shatsky, R. Nussinov, and H. J. Wolfson, MultiBind and MAPPIS: webservers for multiple alignment of protein 3D-binding sites and their interactions, Nucleic Acids Research, vol.36, issue.Web Server, pp.260-264, 1976.
DOI : 10.1093/nar/gkn185

C. Schalon, J. Surgand, E. Kellenberger, and D. Rognan, A simple and fuzzy method to align and compare druggable ligand-binding sites, Proteins: Structure, Function, and Bioinformatics, vol.8, issue.Suppl 4, pp.1755-1778, 2008.
DOI : 10.1002/prot.21858

URL : https://hal.archives-ouvertes.fr/hal-00620777

N. Weskamp, E. Hullermeier, D. Kuhn, and G. Klebe, Multiple Graph Alignment for the Structural Analysis of Protein Active Sites, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.4, issue.2, pp.310-320, 2007.
DOI : 10.1109/TCBB.2007.358301

R. Najmanovich, N. Kurbatova, and J. Thornton, Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites, Bioinformatics, vol.24, issue.16, pp.105-111, 2008.
DOI : 10.1093/bioinformatics/btn263

A. Shulman-peleg, R. Nussinov, J. Haim, and . Wolfson, Recognition of Functional Sites in Protein Structures, Journal of Molecular Biology, vol.339, issue.3, pp.607-633, 2004.
DOI : 10.1016/j.jmb.2004.04.012

A. Shulman-peleg, R. Nussinov, J. Haim, and . Wolfson, SiteEngines: recognition and comparison of binding sites and protein-protein interfaces, Nucleic Acids Research, vol.33, issue.Web Server, pp.337-341, 2005.
DOI : 10.1093/nar/gki482

P. Willett, V. Winterman, and D. Bawden, Implementation of nearest-neighbor searching in an online chemical structure search system, Journal of Chemical Information and Modeling, vol.26, issue.1, pp.36-41, 1986.
DOI : 10.1021/ci00049a008

J. R. Davies, R. M. Jackson, K. V. Mardia, and C. C. Taylor, The Poisson Index: a new probabilistic model for protein ligand binding site similarity, Bioinformatics, vol.23, issue.22, pp.3001-3008, 2007.
DOI : 10.1093/bioinformatics/btm470

S. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, Journal of Molecular Biology, vol.48, issue.3, pp.443-453, 1970.
DOI : 10.1016/0022-2836(70)90057-4

P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics, vol.16, issue.6, pp.276-277, 2000.
DOI : 10.1016/S0168-9525(00)02024-2

W. R. Scott, I. G. Tironi, A. E. Mark, S. R. Billeter, J. F. et al., The GROMOS Biomolecular Simulation Program Package, The Journal of Physical Chemistry A, vol.103, issue.19, pp.3596-3607, 1999.
DOI : 10.1021/jp984217f

B. Schölkopf, A. J. Smola, and K. Müller, Kernel principal component analysis, Advances in Kernel Methods -Support Vector Learning, pp.327-352, 1999.
DOI : 10.1007/BFb0020217

A. T. Laurie and R. M. Jackson, Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites, Bioinformatics, vol.21, issue.9, pp.1908-1916, 2005.
DOI : 10.1093/bioinformatics/bti315

F. Glaser, R. J. Morris, R. J. Najmanovich, R. A. Laskowski, and J. M. Thornton, A method for localizing ligand binding pockets in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.340, issue.10, pp.479-488, 0100.
DOI : 10.1002/prot.20769

A. Tina, F. Eyre, . Ducluzeau, P. Tam, S. Sneddon et al., The hugo gene nomenclature database, 2006 updates, Nucleic Acids Res, vol.34, pp.319-321, 0113.

M. Christopher and . Dobson, Chemical space and biology, Nature, vol.432, issue.7019, pp.824-828, 0113.

L. Terfloth, Chemoinformatics: A Textbook, chapter Calculation of Structure Descriptors, p.114, 2004.

. Lipman, B. Gapped, and P. , A new generation of protein database search programs, Nucleic Acids Research, vol.25, pp.3389-3402, 1997.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble, Mismatch String Kernels for SVM Protein Classification, Advances in Neural Information Processing Systems 15, p.114, 2003.

T. Klabunde, Chemogenomics Approaches to Ligand Design, Ligand Design for G Protein-coupled Receptors, chapter 7, pp.115-135, 2006.
DOI : 10.1002/3527608249.ch7

T. M. Frimurer, T. Ulven, C. E. Elling, L. Gerlach, E. Kostenis et al., A physicogenetic method to assign ligand-binding relationships between 7TM receptors, Bioorganic & Medicinal Chemistry Letters, vol.15, issue.16
DOI : 10.1016/j.bmcl.2005.05.102

R. Angel, C. E. Ortiz, O. Strauss, and . Olmea, Mammoth (matching molecular models obtained from theory): an automated method for model comparison, Protein Sci, vol.11, issue.11, pp.2606-2621, 2002.

M. Hue, Semi-supervised learning for protein structure prediction, p.115, 2004.

T. Naumann and H. Matter, Structural Classification of Protein Kinases Using 3D Molecular Interaction Field Analysis of Their Ligand Binding Sites:?? Target Family Landscapes, Journal of Medicinal Chemistry, vol.45, issue.12, pp.2366-2378, 2002.
DOI : 10.1021/jm011002c

C. Hoppe, C. Steinbeck, and G. Wohlfahrt, Classification and comparison of ligand-binding sites derived from grid-mapped knowledge-based potentials, Journal of Molecular Graphics and Modelling, vol.24, issue.5, pp.328-340, 2006.
DOI : 10.1016/j.jmgm.2005.09.013

B. Pirard and H. Matter, Matrix Metalloproteinase Target Family Landscape:?? A Chemometrical Approach to Ligand Selectivity Based on Protein Binding Site Analysis, Journal of Medicinal Chemistry, vol.49, issue.1, pp.51-69, 0116.
DOI : 10.1021/jm050363f

M. Rosen, S. L. Lin, H. Wolfson, and R. Nussinov, Molecular shape comparisons in searches for active sites and functional similarity, Protein Engineering Design and Selection, vol.11, issue.4, pp.263-277, 1998.
DOI : 10.1093/protein/11.4.263

K. Kinoshita and H. Nakamura, Identification of protein biochemical functions by similarity search using the molecular surface database eF-site, Protein Science, vol.297, issue.8, pp.1589-1595, 2003.
DOI : 10.1110/ps.0368703

S. Schmitt, D. Kuhn, and G. Klebe, A New Method to Detect Related Function Among Proteins Independent of Sequence and Fold Homology, Journal of Molecular Biology, vol.323, issue.2, pp.387-406, 2002.
DOI : 10.1016/S0022-2836(02)00811-2

M. Jambon, A. Imberty, G. Delage, and C. Geourjon, A new bioinformatic approach to detect common 3D sites in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.228, issue.Suppl, pp.137-145, 2003.
DOI : 10.1002/prot.10339

URL : https://hal.archives-ouvertes.fr/hal-00306913

R. Powers, C. Jennifer, K. Copeland, . Germer, A. Kelly et al., Comparison of protein active site structures for functional annotation of proteins and drug design, Proteins: Structure, Function, and Bioinformatics, vol.2, issue.6, pp.124-135, 2006.
DOI : 10.1002/prot.21092

N. D. Gold and R. M. Jackson, Fold Independent Structural Comparisons of Protein???Ligand Binding Sites for Exploring Functional Relationships, Journal of Molecular Biology, vol.355, issue.5, pp.1112-1124, 2006.
DOI : 10.1016/j.jmb.2005.11.044

E. J. Gardiner, P. J. Artymiuk, and P. Willett, Clique-Detection Algorithms for Matching Three-Dimensional Molecular Structures, Journal of Molecular Graphics and Modelling, vol.15, issue.4, pp.245-253, 1997.
DOI : 10.1016/S1093-3263(97)00089-2

A. Weber, A. Casini, A. Heine, D. Kuhn, T. Claudiu et al., Unexpected Nanomolar Inhibition of Carbonic Anhydrase by COX-2-Selective Celecoxib:?? New Pharmacological Opportunities Due to Related Binding Site Recognition, Journal of Medicinal Chemistry, vol.47, issue.3, pp.550-557, 0116.
DOI : 10.1021/jm030912m

J. An, M. Totrov, and R. Abagyan, Pocketome via Comprehensive Identification and Classification of Ligand Binding Envelopes, Molecular & Cellular Proteomics, vol.4, issue.6, pp.752-761, 2005.
DOI : 10.1074/mcp.M400159-MCP200

L. Liao and W. S. Noble, Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships, Journal of Computational Biology, vol.10, issue.6
DOI : 10.1089/106652703322756113

V. Roth, J. Laub, J. Buhmann, and K. Mller, Going metric: Denoising pairwise data, Advances in Neural Information Processing Systems, p.118, 2003.

K. Seiler, A. Gregory, M. P. George, . Happ, E. Nicole et al., ChemBank: a small-molecule screening and cheminformatics resource database, Nucleic Acids Research, vol.36, issue.Database, pp.36-351, 0120.
DOI : 10.1093/nar/gkm843

S. David, C. Wishart, A. C. Knox, D. Guo, S. Cheng et al., Drugbank: a knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res, pp.36-901, 0120.

L. Mark, . Benson, D. Richard, . Smith, A. Nickolay et al., Binding moad, a highquality protein-ligand database, Nucleic Acids Res, pp.36-674, 0121.

E. Kellenberger, P. Muller, C. Schalon, and G. Bret, sc-PDB:?? an Annotated Database of Druggable Binding Sites from the Protein Data Bank, Journal of Chemical Information and Modeling, vol.46, issue.2, pp.717-727, 2006.
DOI : 10.1021/ci050372x

URL : https://hal.archives-ouvertes.fr/hal-00129893

L. Catherine, G. Worth, G. Kleinau, and . Krause, Comparative sequence and structural analyses of g-protein-coupled receptor crystal structures and implications for molecular models, PLoS One, vol.4, issue.9, pp.7011-122, 2009.

M. Brylinski and J. Skolnick, Comprehensive Structural and Functional Characterization of the Human Kinome by Protein Structure Modeling and Ligand Virtual Screening, Journal of Chemical Information and Modeling, vol.50, issue.10, pp.1839-1854, 2010.
DOI : 10.1021/ci100235n

X. Chen, Y. Lin, M. Liu, K. Michael, and . Gilson, The Binding Database: data management and interface design, Bioinformatics, vol.18, issue.1, pp.130-139, 0122.
DOI : 10.1093/bioinformatics/18.1.130

R. Thomsen, H. Mikael, and . Christensen, MolDock:?? A New Technique for High-Accuracy Molecular Docking, Journal of Medicinal Chemistry, vol.49, issue.11, pp.3315-3321, 2006.
DOI : 10.1021/jm051197e