R. Zheng, R. I. Tanner, and X. Fan, Injection Molding: Intergarion of Theory and Modeling Mothods, 2011.
DOI : 10.1007/978-3-642-21263-5

D. Cardozo, Three Models of the 3D Filling Simulation for Injection Molding: A Brief Review, Journal of Reinforced Plastics and Composites, vol.27, issue.18, 2008.
DOI : 10.1177/0731684408092386

D. Gao, A. Garcia-rejon, G. Salloum, and J. Hétu, 3D finite element method for the simulation of the filling stage in injection molding, Polym Eng Sci, issue.38, pp.223-236, 1998.

F. Hetu and J. Illinca, Three dimensional filling and post-filling of polymer injection molding, International Polymer Processing, issue.6, pp.291-301, 2001.

T. Coupez and E. Pichelin, Finite element solution of the 3D mold filling problem for viscous incompressible fluid, Comput Methods Appl Mech Eng, issue.163, pp.359-371, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00617037

T. Geng, D. Li, and H. Zhou, Three-dimensional finite element method for the filling simulation of injection molding, Engineering with Computers, issue.21, pp.289-295, 2006.

L. Silva, Viscoelastic compressible flow and application in 3D injection moulding simulation, Mines Paristech, 2004.

L. Silva, H. Miled, P. Laure, and T. Coupez, Injection Molding Simulation : Taking Into Account the Process History to Predict the Anisotropy in the End-Use Properties, AIP Conference Proceedings, pp.355-360, 2007.
DOI : 10.1063/1.2740837

URL : https://hal.archives-ouvertes.fr/hal-00510562

T. Coupez and C. Gruau, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Engrg, issue.194, pp.4951-4976, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00517639

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

S. Luisa, T. Coupez, and H. Digonnet, Cimlib A Fully Parallel Application For Numerical Simulations Based On Components Assembly, Numiform, 2007.

T. Coupez and H. Digonnet, Object-oriented programming for fast and easy development of parallel applications in forming processes simulation, Second MIT Conference on Computational Fluid and Solid Mechanics, pp.1922-1924, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00531577

H. Digonnet, T. Coupez, and Y. Mesri, Advanced parallel computing in material forming with CIMLIB, European Journal of Computational Mechnanics, issue.18, pp.669-694, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00836212

H. Digonnet, R. Ducloux, and T. Coupez, Parallel meshing and remeshing, Appl. Math. Modelling, vol.II, issue.25, pp.83-98, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00536635

H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity, An Introduction, 2008.
DOI : 10.1007/978-0-387-73861-1

P. T. Baaijens, Mixed finite element methods for viscoelatic flow analysis: a review, J. Non-Newtonian Fluid Mech, issue.79, pp.361-385, 1998.

D. Rajagopalam, R. Armstrong, and R. Brown, Finite element method for steady calculation of viscoelastic flow using constitutive equations with a newtonian viscosity, Journal of Non-Newtonian Fluid Mechanics, issue.36, pp.159-192, 1990.

A. Beris and B. Edwards, Thermodynamic of flowing systems, 1994.

R. Guenette and M. Fortin, A new mixed finite element method for computing viscoelastic flows, Journal of Non-Newtonian Fluid Mechanics, vol.60, issue.1, pp.275-290, 1995.
DOI : 10.1016/0377-0257(95)01372-3

F. Baaijens, S. Selen, H. Baaijens, and G. Peters, Viscoelastic flow past a confined cylinder of a low density polyethylene melt, Journal of Non-Newtonian Fluid Mechanics, vol.68, issue.2-3, pp.173-203, 1998.
DOI : 10.1016/S0377-0257(96)01519-4

H. K. Rasmussen and O. Hassager, Simulation of transient viscoelastic flow with second order time integration, Journal of Non-Newtonian Fluid Mechanics, vol.56, issue.1, pp.65-84, 1994.
DOI : 10.1016/0377-0257(94)01274-L

O. G. Harlen, J. M. Rallison, and P. Szabo, A split Lagrangian-Eulerian method for simulating transient viscoelastic flows, Journal of Non-Newtonian Fluid Mechanics, vol.60, issue.1, pp.81-104, 1995.
DOI : 10.1016/0377-0257(95)01381-5

L. Moresi, F. Dufour, and H. B. Muhlhaus, A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, Journal of Computational Physics, vol.184, issue.2, pp.476-497, 2003.
DOI : 10.1016/S0021-9991(02)00031-1

URL : https://hal.archives-ouvertes.fr/hal-00333883

J. Etienne, E. J. Hinch, and J. Li, A Lagrangian-Eulerian approach for the numerical simualtion of freesurface flows of a viscoelastic material, J. Non-Newtonian Fluid Mech, issue.136, pp.157-166, 2006.

V. Ganvir, A. Lele, R. Thaokar, and B. P. Gautham, Simulation of viscoelastic flows of polymer solutions in abrupt contractions using an arbitrary Lagrangian Eulerian (ALE) based finite element method, Journal of Non-Newtonian Fluid Mechanics, vol.143, issue.2-3, pp.157-169, 2007.
DOI : 10.1016/j.jnnfm.2007.02.009

C. Hwu and Y. C. Chen, Analysis of Defects in Viscoelastic Solids by a Transformed Boundary Element Method, Procedia Engineering, issue.10, pp.3038-3043, 2011.

G. A. Holzapfel and G. Reiter, Fully coupled thermomechanical behaviour of viscoelastic solids treated with finite elements, International Journal of Engineering Science, vol.33, issue.7, pp.1037-1058, 1995.
DOI : 10.1016/0020-7225(94)00072-R

K. Hasampour, S. Ziaei-rad, and M. Mahzoon, A large deformation framework for compressible viscoelastic materials: Constitutive equations and finite element implementation, International Journal of Plasticity, issue.29, pp.1154-1176, 2009.

N. Huber and C. Tsakmakis, Finite deformation viscoelasticity laws, Mechanics of Materials, vol.32, issue.1, pp.1-18, 2000.
DOI : 10.1016/S0167-6636(99)00045-9

A. E. Assie, M. A. Eltaher, and F. F. Mahmoud, Modeling of viscoelastic contact-impact problems, Applied Mathematical Modelling, vol.34, issue.9, pp.2336-2352, 2010.
DOI : 10.1016/j.apm.2009.11.001

A. E. Assie, M. A. Eltaher, and F. F. Mahmoud, The response of viscoelastic-frictionless bodies under normal impact, International Journal of Mechanical Sciences, vol.52, issue.3, pp.446-454, 2010.
DOI : 10.1016/j.ijmecsci.2009.11.005

C. Qian and Z. Demao, Vibrational analysis theory and application to elastic-viscoelastic composite structures, Computer & Structures, issue.37, pp.585-595, 1990.

M. Furuichi, M. Kameyama, and A. Kageyama, Three-dimensional Eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation, Journal of Computational Physics, vol.227, issue.10, pp.4977-4997, 2008.
DOI : 10.1016/j.jcp.2008.01.052

T. Milcent, Une approche eulérienne du couplage fluide-structure, analys emathématique et applications en biomécanique, Joseph Fourier, 2009.

R. Diaz-calleja, M. G. Prolongo, R. M. Masegosa, C. Calom, and E. Riande, Polymer Viscoelasticity, stress and strain in practice

J. Sweeney and I. M. Ward, An Introduction to The Mechanical Properties of Solid Polymers, 2004.

A. K. Van-der-vegt, From Polymers to Plastics, 2005.

M. Zrida, Simulation du comportement d'un polymère par un modèle d'hyper-visco-hystérésis : application à trois nuances de polypropylène, 2009.

A. Kölke, B. Hübner, D. Dinkler, and E. Walhorn, Fluid?structure coupling within a monolithic model involving free surface flows, Computers and Structures, issue.83, pp.2100-2111, 2005.

B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid?structure interaction using space? time finite elements, Comput. Methods Appl. Mech. Engrg, issue.193, pp.2087-2104, 2004.

M. Heil, A. L. Hazel, and J. Boyle, Solvers for large-displacement fluid???structure interaction problems: segregated versus monolithic approaches, Computational Mechanics, vol.22, issue.1, pp.91-101, 2008.
DOI : 10.1007/s00466-008-0270-6

M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.1-2, pp.1-23, 2004.
DOI : 10.1016/j.cma.2003.09.006

S. J. Hulshoff, E. H. Brummelen, . Van, R. Borst, and C. De-michler, A monolithic approach to fluid?structure interaction, Computers & Fluids, issue.33, pp.839-848, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00450614

C. A. Felippa, R. Ohayon, and K. C. Park, Partitioned formulation of internal fluid-structure interaction problems by localized Lagrange multipliers, Comput. Methods Appl. Mech. Engrg, issue.190, pp.2989-3007, 2001.

J. Steindorf and H. G. Matthies, Partitioned strong coupling algorithms for fluid?structure interaction, Computers and Structures, issue.81, pp.805-812, 2003.

S. Genkinger, E. Ramm, and W. A. Wall, A strong coupling partitioned approach for fluid?structure interaction with free surfaces, Computers & Fluids, issue.36, pp.169-183, 2007.

R. A. Gingold and J. J. Monaghan, Kernel estimates as a basis for general particle methods in hydrodynamics, Journal of Computational Physics, vol.46, issue.3, pp.429-453, 1981.
DOI : 10.1016/0021-9991(82)90025-0

S. R. Idelsohn, J. Marti, A. Limache, and E. Onãte, Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid???structure interaction problems via the PFEM, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1762-1776, 2008.
DOI : 10.1016/j.cma.2007.06.004

S. R. Idelsohn, E. Onãte, F. Pin, C. Del, and . Nestor, Fluid???structure interaction using the particle finite element method, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.195-2100, 2006.
DOI : 10.1016/j.cma.2005.02.026

A. Gerstenberger, A. Wolfgang, and . Wall, An eXtended Finite Element Method/Lagrange multiplier based approach for fluid???structure interaction, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1699-1714, 2008.
DOI : 10.1016/j.cma.2007.07.002

J. Donea, A. Huerta, J. Ponthot, . Ph, and A. Rodriguez-ferran, Arbitrary Lagrangian-Eulerian Methods, Fundamentals, p.14, 2004.
DOI : 10.1002/0470091355.ecm009

URL : http://hdl.handle.net/2117/8449

A. Ouahsine, L. Lewin, and M. Souli, ALE formulation for fluide-structure interaction problems, Comput. Methods Appl. Mech. Engrg, issue.190, pp.659-675, 2000.

E. Liberge, Réduction de modèle par POD-Galerkin pour les problèmes d'intéraction fluide-structure, Thèse de doctorat, 2008.

F. Huvelin, Couplage de codes en interaction fluide-structure et applications aux instabilitées fluideelastiques, 2008.

A. Moudid and L. , Couplage Fluide-Structure pour la simulation numérique des écoulements fluides dans une conduite à parois rigides ou élastiques, en présence d'obstacles ou non, 2007.

C. S. Peskin, The immersed boundary method Acta Numerica, pp.1-39, 2002.

M. Gay and L. T. Zhang, Immersed finite element method for fluid-structure interactions, Journal of Fluids nd Structures, issue.23, pp.839-857, 2007.

W. K. Liu and X. Wang, Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Engrg, issue.193, pp.1305-1321, 2004.

Z. J. Wang and S. Xu, An immersed interface method for simulating the interaction of a fluid with moving boundaries, Journal of Computational Physics, issue.216, pp.454-493, 2006.

R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux, A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.241-267, 2000.
DOI : 10.1016/S0045-7825(99)00230-3

N. M. Diniz-dos and . Santos, Numerical methods for fluid-structure interaction problems with valves, Thèse de doctorat, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00521654

H. J. De, F. Baaijens, G. W. Peters, and P. J. Schreurs, A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve, J. Biomech, pp.36-699, 2003.

P. D. Anderson, F. N. Vosse, S. S. Van-de, R. Loon, and . Van, Comparison of various fluid?structure interaction methods for deformable bodies, Computers and Structures, issue.85, pp.833-843, 2007.

R. Van-loon, P. D. Anderson, and F. N. Van-de-vosse, A fluid???structure interaction method with solid-rigid contact for heart valve dynamics, Journal of Computational Physics, vol.217, issue.2, pp.806-823, 2006.
DOI : 10.1016/j.jcp.2006.01.032

R. Van-loon, P. D. Anderson, J. Hart, and F. P. Baaijens, A combined fictious domain/adaptive meshing method for fluid-structure interaction in heart valve dynamics, Journal of computational physics, issue.46, pp.533-544, 2004.

C. Beckermann and Y. Sun, A two-phase diffuse-interface model for Hele-Shaw flows with large property contrasts, Physica D, issue.237, pp.3089-3098, 2008.

C. Beckermann and Y. Sun, Diffuse interface modeling of two-phase flows based on averaging: Mass and momentum equations, Physica D, pp.281-308, 2004.

J. A. Sethian and S. Osher, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, issue.79, pp.12-49, 1988.

P. J. Schneider and D. H. Eberly, Geometric Tools for Computer Graphics, elsevier science inc

G. A. Holzapfel, Nonlinear solid mechanic, 2000.

N. Renon, Simulation numérique par éléments finis des grandes déformations des sols. Application à la Scarification, Mines ParisTech, 2002.

P. Saad, Modélisation et identification du comportement non-linéaire des cales en caoutchouc, Ecole Centrale de Lyon, 2003.

E. Baquet, Modélisation thermomécanique visco-hyperélastique du comportement d'un polymère semicristallin : application au cas d'une matrice polyamide 6, Mines ParisTech, vol.6, 2011.

N. Chevaugeon, Contribution à l'étude des membranes hyper-élastiques en grandes déformations, 2002.

P. Germain, Cours de mécanique des milieux continus, 1973.

N. Billon, Approche visco hyperélastique basée sur une théorie de réseau, Matériaux 2010, 2010.

N. Billon, Constitutive model for HIPS in the thermoforming range, International Journal of Material Forming, vol.1, issue.S1, pp.679-682, 2008.
DOI : 10.1007/s12289-008-0306-7

URL : https://hal.archives-ouvertes.fr/hal-00530707

N. Billon, Visco-hyperelastic modelling for amorphous polymers close to their alpha transition, ICR, 2008.

N. Billon, Visco hyperelastic constitutive model for polymer stretch blow moulding, Proc. Computational plasticity X, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00687988

N. Billon, Hyperelasticity and strain-rate sensitivity in amorphous pet near alpha transition, 13th Int. Conf On Deformation Yield and Fracture of Polymers, pp.227-229, 2006.

S. F. Edwards and T. Vilgis, The effect of entanglements in rubber elasticity, Polymer, vol.27, issue.4, pp.483-492, 1986.
DOI : 10.1016/0032-3861(86)90231-4

J. Sweeney, A comparison of three polymer network models in current use Computational and Theorical Polymer Science, no, pp.27-33, 1999.

W. M. Lai, D. Rubin, and E. Krempl, Introduction to continuum mechanics, 1993.

T. Coupez, Réinitialisation convective et locale des fonctions Level Set pour le mouvement de surfaces et d'interfaces, Journées Activités Universitaires de Mécanique, 2006.

A. Legay, J. Chessa, and T. Belytschko, An Eulerian-Lagrangian method for fluid-structure interaction based one level sets, Comput. Methods Appl. Mech. Engrg, issue.195, pp.2070-2087, 2006.

L. Ville, L. Silva, and T. Coupez, Convected level set method for the numerical simulation of fluid buckling, International Journal for Numerical Methods in Fluids, vol.4, issue.3, pp.1-6, 2010.
DOI : 10.1002/fld.2259

URL : https://hal.archives-ouvertes.fr/hal-00595325

G. Puaux, Simulation numérique des écoulements aux échelles microscopiques et mésoscopique dans le procédé RTM, Mines ParisTech, 2011.

F. Brezzi, On the existence, uniqueness and approximation off saddle point problems arising from Lagragian multipliers, RAIRO Modélisation Mathematical Analyzes Numerical, issue.8, pp.129-151, 1974.

I. Babuska, The Finite Element Method with Penalty, Mathematics of Computation, vol.27, issue.122, pp.221-228, 1973.
DOI : 10.2307/2005611

M. Fortin, Mixed Finite Elements, Compatibility Conditions and Applications, 2006.

O. Basset, Simulation numérique d'écoulements multi-fluides sur grille de calcul, 2006.

D. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the stokes equations, Calcolo, vol.21, issue.4, pp.337-344, 1984.
DOI : 10.1007/BF02576171

T. Coupez and S. Marie, From a direct solver to a parallel iterative solver in 3D forming simulation, International Journal of Supercomputer and Applications, issue.11, p.205, 1997.

T. Coupez, Stable-stabilized finite element for 3D forming calculation, 1996.

E. Perchat, MINI-élément et factorisations incomplètes pour la parallélisationd'un solveur de Stokes 2D, Ecole Nationale supérieure des Mines de Paris, 2000.

F. Brezzi, Développement d'un modèle éléments finis 3D appliqué à la simulation d'opérations chirurgicales des tissus mous, Comput. Methods Appl. Mech. Engrg, issue.145, pp.329-339, 1997.

T. Coupez, Génération de maillage et adaptation de maillage par optimisation locale Revue européenne des éléments finis, no, pp.403-423, 2000.

T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, issue.194, pp.4951-4976, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00517639

C. Gruau, Génération de métriques pour adaptations anisotrope de maillage, application à la mise en forme des matériaux, Mines Paristech, 2004.

P. Angot, C. H. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

A. Megally, Etude et modélisation de l'orientation de fibres dans des thermoplastiques renforcés, Mines ParisTech, 2005.

G. Baume, Modélisation et simulation numérique directe de l'écoulement d'un fluide complexe, Mines ParisTech, 2008.

R. Glowinski, M. G. Fortin, R. T. Papanicolaou, R. T. Rockafellar, . J. Rockafellar et al., Augmented Lagrangian methods: application to the numerical solution of boudary-value problems, Studies in mathematics and its applications, 1983.

H. Uzawa, Iterative method for concave programming Studies in linear and nonlinear programming, 1958.

E. Hachem, Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces, Mines ParisTech, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00443532

F. Brezzi, D. Marini, and A. Russo, Applications of the pseudo residual-free bubbles to the stabilisation of convection-diffusion problems, Compt. Methods Appl Mech. Engrg, pp.51-63, 1998.

L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.123, issue.1-4, pp.299-308, 1995.
DOI : 10.1016/0045-7825(94)00721-X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. J. Hughes, G. R. Feijoo, L. Mazzei, and J. B. Quincy, The variational multiscale method???a paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.3-24, 1998.
DOI : 10.1016/S0045-7825(98)00079-6

A. Masud and R. A. Khurram, A multiscale/stabilized finite element method for the advection???diffusion equation, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.21-22, pp.1997-2018, 2004.
DOI : 10.1016/j.cma.2003.12.047

A. Masud and R. Calderer, A variational multiscale stabilized formulation for the incompressible Navier???Stokes equations, Computational Mechanics, vol.114, issue.3???4, pp.145-160, 2009.
DOI : 10.1007/s00466-008-0362-3

L. P. Franca, A. Nesliturk, and M. Stynesb, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.35-49, 1998.
DOI : 10.1016/S0045-7825(98)00081-4

J. Volker, K. Songul, and L. William, A two-level variational multiscale method for convection-dominated convection-diffusion equations, Computer Methods. Appl Mech Engr, issue.195, pp.4594-4603, 2006.

V. Gravemeier, A. W. Wolfgang, and R. Ekkehard, A three-level finite element method for the instationary incompressible Navier???Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.15-16, pp.1323-1366, 2004.
DOI : 10.1016/j.cma.2003.12.027

R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods Computer methods in applied mechanics and engineering, pp.1579-1599, 2000.

R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.39-40, pp.4295-4321, 2002.
DOI : 10.1016/S0045-7825(02)00337-7

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics, vol.229, issue.23, pp.8643-8665, 2010.
DOI : 10.1016/j.jcp.2010.07.030

URL : https://hal.archives-ouvertes.fr/hal-00521881

A. Russo and F. Brezzi, Choosing bubbles for advection-diffusion problems Mathematical models and methods in applied sciences, pp.571-587, 1994.

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convective dominated 204 flows with particular emphasis on the incompressible Navier-Stokes equations, Comp. Meth. in Appl. Mech. Eng, issue.32, pp.199-259, 1982.

A. , N. Franca, and L. , On a two-level finite element method fo the incompressible Navier-Stokes equations, International journal for numerical methods in enginering, issue.52, pp.433-453, 2001.

S. P. Oilviera and L. P. Franca, Pressure bubbles stabilization fearture in the Stokes problems Computer methods in applied mechanics and engineering, pp.1929-1937, 2003.

P. Laure, G. Beaume, O. Basset, L. Silva, and T. Coupez, Numerical methods for solid particles in particulate flow simulations, Fluid structure interaction, pp.365-383, 2007.
DOI : 10.3166/remn.16.365-383

URL : https://hal.archives-ouvertes.fr/hal-00521627

R. Boussetta, Estimation d'erreur et adaptation, 2006.

A. Masud and R. A. Khurram, A multiscale finite element method for the incompressible Navier???Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16, pp.1750-1777, 2006.
DOI : 10.1016/j.cma.2005.05.048

S. Norburn and D. Silvester, Stabilised vs. stable mixed methods for incompressible flow, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.131-141, 1998.
DOI : 10.1016/S0045-7825(98)00087-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. C. King, M. R. Apelian, R. C. Armstrong, and R. A. Brown, Numerically stable finite element techniques for viscoelastic calculations in smooth and singular domains, J. Non-Newtonian Fluid Mech, issue.29, pp.147-216, 1988.

J. Marchal and M. Crochet, A new mixed finite element for calculating viscoelastic flow, Journal of Non-Newtonian Fluid Mechanics, vol.26, issue.1, pp.77-114, 1987.
DOI : 10.1016/0377-0257(87)85048-6

M. Szadi, T. Salmon, A. Liu, D. Bornside, and R. Armstrong, A new mixed finite element method for viscoelastic flows governed by differential constitutive equations, Journal of Non-Newtonian Fluid Mechanics, vol.59, issue.2-3, pp.215-243, 1995.
DOI : 10.1016/0377-0257(95)01370-B

J. Sun, N. Phan-thien, T. , and R. , An adaptive viscoelastic stress splitting scheme and its applications: AVSS/SI and AVSS/SUPG, Journal of Non-Newtonian Fluid Mechanics, vol.65, issue.1, pp.75-91
DOI : 10.1016/0377-0257(96)01448-6

G. Mbh, G. , and E. , User Manual software, 2007.

H. Sahh and . Martin, Elasticity: Theory, Applications, and Numerics, 2005.

T. J. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.73, issue.2, pp.173-189, 1989.
DOI : 10.1016/0045-7825(89)90111-4