F. .. Case, Non-dimensional free surface elevation (with respect to the amplitude of oscillation A of the cylinder) as a function of non-dimensional time, computed at numerical gages located at x g = 2?/3 ( ) and 4?/3 ( ) from the cylinder, for two submergence depths z 0 of the cylinder : (a) -0.5 m ; (b) -0, p.37

. Mean-value, vertical (right) non-dimensional exciting forces as a function of kR, for incident waves of various steepnesses : H/? = 0, 05% ( ), 0.10% ( ), 0.20% ( ), 0.50% ( ), 1.00% ( ), p.69

.. Mean-value, vertical (right) non-dimensional displacement of the center of mass as a function of kR, for incident waves of various steepnesses : H/? = 0 ( ), compared to Evans linear prediction ( ), 50% ( ), 1.00% ( ), 2.00% (, p.75

.. Efficacité-du-cylindre-de-bristol, La théorie linéaire d'Evans correspond à la courbe en trait plein, p.78

. Le-système-mis-À-l-'eau-avant-les-essais, On distingue au centre du cylindre le générateur et le système de guidage des fils électriques, et de chaque côté les deux ressorts latéraux surmontés des boîtiers contenant les accéléromètres, p.83

.. Bilan-des-efforts-exercés-sur-le-cylindre, le poids M g , les efforts de pression hydrodynamique F h , les efforts F r dans la direction radiale et la traînée visqueuse F v, p.84

. De-haut-en-bas.........., élévations de surface libre enregistrées par les trois sondes s 1 , s 2 , s 3 disposées dans le canal (voir Fig. 5.23 pour la position relative des sondes), composante radiale de l'accélération du cylindre enregistrées par chacun des deux accéléromètres, puissance éléctrique mesurée, p.89

.. Correspondance-entre-la-hauteur-de-houle, H r en vagues régulières et la hauteur significative H m 0 en vagues irrégulières en fonction de ?, pour f p = f r = f 0 = 1.65 Hz, d'après la théorie linéaire en profondeur finie, p.96

J. Spectres-de, 65 Hz) pour H r = 1 cm et 4 valeurs de ?, tronqués sur l'intervalle [ f min f ma x ], p.96

.. Géométrie-du-canal-À-houle-considéré, positions des deux cylindres et de la sonde s 1 . 16 cas sont considérés avec un écartement adimensionné d, p.101

H. Maillage and .. De-la-sphère-avec, 192 quadrilatères pour 194 noeuds En rouge : 2 noeuds à l'intersection de 3 arêtes qui perturbent la construction de l'élément glissant 4 × 4 noeuds (en noir), p.109

.. Masse-ajoutée, amortissement de radiation (en bas) de la sphère en pilonnement, calculés à plusieurs profondeurs d'immersion de son centre. Les résultats obtenus avec le modèle 3D-NWT ( ) sont comparés aux résultats numériques obtenus avec Aquaplus [26] ( ) et aux résultats analytiques de Srokosz [69] en profondeur infinie ( ), p.113

W. T. Ang, A Beginner's Course in Boundary Element Method, 2007.

R. R. Azcueta, Computation of Turbulent Free-Surface Flows around Ships and Floating Bodies, 2001.

A. Babarit, Impact of long separating distances on the energy production of two interacting wave energy converters, Ocean Engineering, vol.37, issue.8-9, pp.718-729, 2010.
DOI : 10.1016/j.oceaneng.2010.02.002

URL : https://hal.archives-ouvertes.fr/hal-01145086

A. Babarit, G. Duclos, and A. H. Clément, Comparison of latching control strategies for a heaving wave energy device in random sea, Applied Ocean Research, vol.26, issue.5, pp.227-238, 2004.
DOI : 10.1016/j.apor.2005.05.003

URL : https://hal.archives-ouvertes.fr/hal-01155953

W. Bai and R. Eatock-taylor, Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition, Applied Ocean Research, vol.29, issue.1-2, pp.55-71, 2007.
DOI : 10.1016/j.apor.2007.05.005

W. Bai and R. Eatock-taylor, Fully nonlinear simulation of wave interaction with fixed and floating flared structures, Ocean Engineering, vol.36, issue.3-4, pp.223-236, 2009.
DOI : 10.1016/j.oceaneng.2008.11.003

C. Berhault, P. L. Buhan, B. Molin, and J. Bougis, Diodore : a numerical tool for frequency and time domain analysis of the behaviour of moored or towed floating structures, Proceedings of the 4 th International Conference on Computer Aided Design Manufacture and Operation in the Marine and Offshore Industries (CADMO), 1992.

P. J. Berkvens, Floating bodies interacting with water waves, 1998.

M. Bonnet, Équations intégrales et éléments de frontières : Applications en mécanique des solides et des fluides (in French) Sciences et Techniques de l'ingénieur, 1995.

B. Borgarino, Résolution accélérée du problème de tenue à la mer appliquée à l'étude paramétrique de fermes de récupérateurs de l'énergie des vagues, 2011.

B. Borgarino, A. Babarit, and P. Ferrant, Implémentation d'une méthode multipole rapide dans le code de diffraction/radiation Aquaplus pour la simulation de fermes de récupérateurs d'énergie des vagues, 12 èmes Journées de l'Hydrodynamique, 2010.

C. A. Brebbia and J. Dominguez, Boundary Element Methods : An Introductory Course, 1992.
DOI : 10.1115/1.2897280

R. Caljouw, D. Harrowfield, L. D. Mann, and J. Fievez, Testing and model evaluation of a scale CETO unit. towards the deployment of a commercial scale CETO Wave Energy Converter, Proceedings of the 9 th European Wave and Tidal Energy Conference (EWTEC), 2011.

Y. Cao, R. F. Beck, and W. W. Schultz, Nonlinear computation of wave loads and motions of floating bodies in incident waves, Proceedings of the 9 th International Workshop on Water Waves and Floating Bodies (IWWWFB), 1994.

Y. Chachereau, Hydrodynamics of offshore floating wind turbines, development of a model using a fully nonlinear potential theory, 2011.

J. F. Chaplin, Nonlinear forces on a horizontal cylinder beneath waves, Journal of Fluid Mechanics, vol.46, issue.-1, pp.449-464, 1984.
DOI : 10.1016/0141-1187(84)90029-4

A. H. Clément, Coupling of Two Absorbing Boundary Conditions for 2D Time-Domain Simulations of Free Surface Gravity Waves, Journal of Computational Physics, vol.126, issue.1, pp.139-151, 1996.
DOI : 10.1006/jcph.1996.0126

A. H. Clément, Using differential properties of the green function in seakeeping computational codes, Proceedings of the 7 th International Conference on Numerical Ship Hydrodynamics, pp.1-15, 1999.

R. Cointe, Quelques aspects de la simulation numérique d'un canal à houle (284 pages in French), Ecole Nationale des Ponts et Chaussées, 1989.

J. Cruz, Ocean Wave Energy : current status and future perspectives, volume 12 of Green Energy and Technology, 2008.
DOI : 10.1007/978-3-540-74895-3

W. R. Dean, On the reflexion of surface waves by a submerged circular cylinder, Mathematical Proceedings of the Cambridge Philosophical Society, vol.41, issue.04, pp.483-491, 1948.
DOI : 10.1017/S0305004100024506

W. R. Dean and R. A. Dalrymple, Water wave mechanics for engineers and scientists, World Scientific, 1991.

G. Delhommeau, Seakeeping codes Aquadyn and Aquaplus, 19 th WEGMENT School, Numerical Simulation of Hydrodynamics : Ship and Offshore Structures, 1993.

D. V. Evans, A theory for wave-power absorption by oscillating bodies, Journal of Fluid Mechanics, vol.7, issue.01, pp.1-25, 1976.
DOI : 10.1038/249720a0

D. V. Evans, D. C. Jeffrey, S. H. Salter, and J. R. Taylor, Submerged cylinder wave energy device: theory and experiment, Applied Ocean Research, vol.1, issue.1, pp.3-12, 1979.
DOI : 10.1016/0141-1187(79)90003-8

D. V. Evans and R. Porter, Wave-free motions of isolated bodies and the existence of motion-trapped modes, Journal of Fluid Mechanics, vol.44, pp.225-234, 2007.
DOI : 10.1016/S0141-1187(96)00026-0

P. Ferrant, Runup on a cylinder due to waves and current : potential flow solution with fully nonlinear boundary conditions, Proceedings of the 8 th International Offshore and Polar Engineering Conference (ISOPE), 1998.
URL : https://hal.archives-ouvertes.fr/hal-00699416

W. Frank, Oscillation of cylinders in or below the free surface of deeps fluids, Report of the Naval Ship Research and Development Center, pp.1-40, 1967.

L. Gentaz, R. Luquet, B. Alessandrini, and P. Ferrant, Numerical Simulation of the 3D Viscous Flow Around a Vertical Cylinder in Non-Linear Waves Using an Explicit Incident Wave Model, 23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 1, Parts A and B, 2004.
DOI : 10.1115/OMAE2004-51098

N. Greene, Irregular wave generation in a fully nonlinear potential flow numerical wave tank, 2009.

S. T. Grilli, Fully nonlinear potential flow models used for long wave runup prediction, Long-Wave Runup Models, pp.116-180, 1997.

S. T. Grilli, Lecture on the boundary element method. Private lecture given at Laboratory St-Venant for Hydraulics, 2010.

S. T. Grilli, F. Dias, P. Guyenne, C. Fochesato, and F. Enet, PROGRESS IN FULLY NONLINEAR POTENTIAL FLOW MODELING OF 3D EXTREME OCEAN WAVES, pp.75-128, 2010.
DOI : 10.1142/9789812836502_0003

S. T. Grilli, P. Guyenne, and F. Dias, A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom, International Journal for Numerical Methods in Fluids, vol.20, issue.7, pp.829-867, 2001.
DOI : 10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2

S. T. Grilli and J. Horrillo, Numerical Generation and Absorption of Fully Nonlinear Periodic Waves, Journal of Engineering Mechanics, vol.123, issue.10, pp.1060-1069, 1997.
DOI : 10.1061/(ASCE)0733-9399(1997)123:10(1060)

S. T. Grilli, J. Skourup, and I. A. Svendsen, An efficient boundary element method for nonlinear water waves, Engineering Analysis with Boundary Elements, vol.6, issue.2, pp.97-107, 1989.
DOI : 10.1016/0955-7997(89)90005-2

S. T. Grilli and R. Subramanya, Quasi-singular integrations in the modelling of nonlinear water waves. Engineering Analysis with Boundary Elements, pp.181-191, 1994.

S. T. Grilli and R. Subramanya, Numerical modeling of wave breaking induced by fixed or moving boundaries, Computational Mechanics, vol.294, issue.3, pp.374-391, 1996.
DOI : 10.1007/BF00363981

S. T. Grilli and I. A. Svendsen, Corner problems and global accuracy in the boundary element solution of nonlinear wave flows, Engineering Analysis with Boundary Elements, vol.7, issue.4, pp.178-195, 1990.
DOI : 10.1016/0955-7997(90)90004-S

J. Grue and K. Granlund, Impact of nonlinearity upon waves traveling over a submerged cylinder, Proceedings of the 3 rd International Workshop on Water Waves and Floating Bodies (IWWWFB), 1988.

N. M. Gunther, La théorie du potentiel et ses applications aux problèmes fondamentaux de la physique mathématique, 1934.

P. Guyenne and S. T. Grilli, Numerical study of three-dimensional overturning waves in shallow water, Journal of Fluid Mechanics, vol.547, issue.-1, pp.361-388, 2006.
DOI : 10.1017/S0022112005007317

M. D. Haskind, The exciting forces and wetting of ships in waves, DTMB Translation, vol.307, 1957.

K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright et al., Measurement of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP), p.95, 1973.

H. Honji, Streaked flow around an oscillating circular cylinder, Journal of Fluid Mechanics, vol.350, issue.-1, pp.509-520, 1981.
DOI : 10.1017/S0022112075001413

M. Ikeno, A numerical model for 3-D floating body motion in nonlinear waves using the BEM, Proceedings of the 10 th International Offshore and Polar Engineering Conference (ISOPE), 2000.

M. Kashiwagi, Fully-nonlinear simulations of hydrodynamic forces on a heaving twodimensional body, Journal of the Society of Naval Architects of Japan, vol.180, pp.373-381, 1996.

O. D. Kellog, Fundations of potential theory, 1979.

C. P. Kent and W. Choi, An explicit formulation for the evolution of nonlinear surface waves interacting with a submerged body, International Journal for Numerical Methods in Fluids, vol.95, issue.11, pp.1019-1038, 2007.
DOI : 10.1002/fld.1504

W. Koo and M. H. Kim, Freely floating-body simulation by a 2D fully nonlinear numerical wave tank, Ocean Engineering, vol.31, issue.16, pp.312011-2046, 2004.
DOI : 10.1016/j.oceaneng.2004.05.003

W. Koo and M. H. Kim, Numerical simulation of nonlinear wave and force generated by a wedge-shape wave maker, Ocean Engineering, vol.33, issue.8-9, pp.8-9983, 2006.
DOI : 10.1016/j.oceaneng.2005.09.002

W. Koo and M. H. Kim, Fully nonlinear wave-body interactions with surface-piercing bodies, Ocean Engineering, vol.34, issue.7, pp.1000-1012, 2007.
DOI : 10.1016/j.oceaneng.2006.04.009

Y. Liu, D. G. Dommermuth, and D. K. Yue, A high-order spectral method for nonlinear wave???body interactions, Journal of Fluid Mechanics, vol.46, issue.-1, pp.115-136, 1992.
DOI : 10.1016/0141-1187(84)90048-8

M. S. Longuet-higgins and E. Cockelet, The Deformation of Steep Surface Waves on Water. I. A Numerical Method of Computation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.350, issue.1660, pp.1-26, 1976.
DOI : 10.1098/rspa.1976.0092

R. Luquet, L. Gentaz, and B. Alessandrini, Viscous flow simulation past a ship in waves using the SWENSE approach, Proceedings of the 25 th Symposium on Naval Hydrodynamics, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01156038

L. D. Mann, A. R. Burns, and M. E. Ottaviano, CETO, a carbon free wave power energy provider of the future, Proceedings of the 7 th European Wave and Tidal Energy Conference (EWTEC), 2007.

C. C. Mei, Power extraction from water waves, Journal of Ship Research, vol.20, pp.63-66, 1976.

B. Molin, Hydrodynamique des Structures Offshore. Guide Pratique sur les ouvrages en mer CLAROM, Editions TECHNIP, 2002.
DOI : 10.1115/1.1553447

URL : https://hal.archives-ouvertes.fr/hal-01320917

J. N. Newman, The exciting forces on fixed bodies in waves, Journal of Ship Results, vol.6, issue.4, pp.10-17, 1962.

N. M. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division ASCE, vol.85, pp.67-94, 1959.

T. F. Ogilvie, First- and second-order forces on a cylinder submerged under a free surface, Journal of Fluid Mechanics, vol.44, issue.03, pp.451-472, 1963.
DOI : 10.1017/S0022112063000896

T. Sarpkaya, Force on a circular cylinder in viscous oscillatory flow at low Keulegan???Carpenter numbers, Journal of Fluid Mechanics, vol.60, issue.-1, pp.61-71, 1986.
DOI : 10.1017/S0022112081001894__S0022112081001894

D. Sen, Numerical simulation of motions of two-dimensional floating bodies, Journal of Ship Research, vol.37, issue.4, pp.307-330, 1993.

Y. Shirakura, K. Tanizawa, and S. Naito, Development of 3-D fully nonlinear numerical wave tank to simulate floating bodies interacting with water waves, Proceedings of the 10 th International Offshore and Polar Engineering Conference (ISOPE), 2000.

M. A. Srokosz, The submerged sphere as an absorber of wave power, Journal of Fluid Mechanics, vol.77, issue.04, pp.717-741, 1979.
DOI : 10.1017/S002211207900166X

M. A. Srokosz and D. V. Evans, A theory for wave-power absorption by two independently oscillating bodies, Journal of Fluid Mechanics, vol.10, issue.3, pp.337-362, 1979.
DOI : 10.1038/256478a0

B. M. Sumer and J. Fredsoe, Hydrodynamics around cylindrical structures, Advanced series on Ocean Engineering. World Scientific, vol.12, 1997.

K. Tanizawa, A nonlinear simulation method of 3D body motions in waves, 1 st report, Journal of the Society of Naval Architects of Japan, vol.178, pp.179-191, 1995.

K. Tanizawa, The state of art on numerical wave tank, Proceedings of the 4 th Osaka Colloquium on Seakeeping Performance of Ships, pp.95-104, 2000.

A. Tavassoli and M. H. Kim, Two-dimensional viscous-flow simulations for a circular cylinder in motion, Proceedings of the 10 th International Offshore and Polar Engineering Conference (ISOPE), pp.478-485, 2000.

A. Tavassoli and M. H. Kim, Interactions of fully nonlinear waves with submerged bodies by a 2D viscous NWT, Proceedings of the 11 th International Offshore and Polar Engineering Conference (ISOPE), pp.348-354, 2001.

G. R. Thomas, A Combined High-Order Spectral and Boundary Integral Equation Method for Modelling Wave Interactions with Submerged Bodies, 1997.

E. F. Van-daalen, Numerical and Theoretical Studies of Water Waves and Floating Bodies, 1993.

T. Vinje and P. Brevig, Nonlinear, two-dimensional ship motions, 1981.

G. X. Wu, Hydrodynamic forces on a submerged circular cylinder undergoing large-amplitude motion, Journal of Fluid Mechanics, vol.46, issue.-1, pp.41-58, 1993.
DOI : 10.1016/0141-1187(89)90004-7

G. X. Wu and R. Eatock-taylor, Transient motion of a floating body in steep water waves, Proceedings of the 11 th International Workshop on Water Waves and Floating Bodies (IWWWFB), 1996.

G. X. Wu and R. Eatock-taylor, The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies, Ocean Engineering, vol.30, issue.3, pp.387-400, 2003.
DOI : 10.1016/S0029-8018(02)00037-9

S. C. Yim, H. Lin, D. C. Robinson, and K. Tanizawa, Predictive Capability of a 2D FNPF Fluid-Structure Interaction Model, Journal of Offshore Mechanics and Arctic Engineering, vol.131, issue.1, pp.1-9, 2009.
DOI : 10.1115/1.2948945

S. C. Yim and K. Tanizawa, FNPF Analysis of Stochastic Experimental Fluid-Structure Interaction Systems, Journal of Offshore Mechanics and Arctic Engineering, vol.129, issue.1, pp.9-20, 2007.
DOI : 10.1115/1.2426990

X. T. Zhang, B. C. Khoo, and J. Lou, Wave propagation in a fully nonlinear numerical wave tank: A desingularized method, Ocean Engineering, vol.33, issue.17-18, pp.2310-2331, 2006.
DOI : 10.1016/j.oceaneng.2005.11.002

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion. Engineering Analysis with Boundary Elements
URL : https://hal.archives-ouvertes.fr/hal-00679692

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, Modélisation non-linéaire des interactions des vagues avec un corps mobile immergé (in French) Revue Paralia, 2011.

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, Etude numérique des effets non-linéaires sur la dynamique d'un système houlomoteur cylindrique immergé (in French)

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, Numerical modeling of fully nonlinear interactions of ocean waves with a submerged moving body, Proceedings of the IV th European Conference on Computational Mechanics (ECCM), pp.16-21, 2010.

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, Modeling of Fully Nonlinear Wave Interactions with Moving Submerged Structures, Proceedings of the 20 th International Offshore and Polar Engineering Conference (ISOPE), pp.21-25, 2010.

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, Modélisation non-linéaire des interactions des vagues avec un corps mobile immergé (in French) Actes des XI èmes Journées Nationales Génie Civil Génie Côtier, pp.22-24, 2010.

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, Etude numérique des effets non-linéaires sur la dynamique d'un système houlomoteur cylindrique immergé (in French), Actes des 12 èmes Journées de l'Hydrodynamique, pp.17-19, 2010.

@. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, Numerical modeling of fully nonlinear interactions of ocean waves with a submerged moving body, Proceedings of the 3 rd International Conference on Ocean Energy (ICOE), pp.6-8, 2010.