A. C. Cocks and M. F. Ashby, On creep fracture by void growth, Progress in Materials Science, pp.189-244, 1982.

J. Lemaitre and J. L. Chaboche, Mechanics of solid materials, 1994.

V. Gaffard, Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments, 2004.

F. Monkman and N. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests, proc. ASTM, pp.593-605, 1956.

F. Abe, Creep life estimation of Gr.91 based on creep strain analysis, Materials at High Temperatures, vol.89, issue.2, pp.75-84, 2011.
DOI : 10.1007/BF02801164

F. Abe, T. Horiuchi, M. Taneike, K. Kimura, S. Muneki et al., Creep strain behavior during microstructure evolution in tempered martensitic advanced 9cr steels, Proceedings of the 10th Joint International Conference on Creep and Fracture of Engineering Materials and Structures -Creep resistant metallic materials ITROVICE-Reseach and Development, pp.16-25, 2001.

K. Kimura, H. Kushima, and F. Abe, Heterogeneous Changes in Microstructure and Degradation Behaviour of 9Cr-1Mo-V-Nb Steel During Long Term Creep, Key Engineering Materials, vol.171, issue.174, pp.483-490, 2000.
DOI : 10.4028/www.scientific.net/KEM.171-174.483

K. Milicka and F. Dobes, Small punch testing of P91 steel, International Journal of Pressure Vessels and Piping, vol.83, issue.9, pp.625-634, 2006.
DOI : 10.1016/j.ijpvp.2006.07.009

M. Considère, Mémoire sur l'emploi du fer et de l'acier dans les constructions. Vue Ch, p.1885

P. F. Giroux, F. Dalle, M. Sauzay, J. Malaplate, B. Fournier et al., Mechanical and microstructural stability of p92 steel under uniaxial tension at high temperature, Materials Science and Engineering A, vol.527, pp.16-17, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00411745

F. Masuyama, Hardness model for creep-life assessment of high-strength martensitic steels, Materials Science and Engineering: A, vol.510, issue.511, pp.510-511154, 2009.
DOI : 10.1016/j.msea.2008.04.133

F. Abe, Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-2W steels, Materials Science and Engineering, pp.387-389565, 2004.

E. Cerri, E. Evangelista, S. Spigarelli, and P. Bianchi, Evolution of microstructure in a modified 9Cr???1Mo steel during short term creep, Materials Science and Engineering: A, vol.245, issue.2, pp.285-292, 1998.
DOI : 10.1016/S0921-5093(97)00717-X

V. Shankar, M. Valsan, K. Bhanu-sankara-rao, R. Kannan, S. L. Mannan et al., Low cycle fatigue behavior and microstructural evolution of modified 9Cr???1Mo ferritic steel, Materials Science and Engineering: A, vol.437, issue.2, pp.413-422, 2006.
DOI : 10.1016/j.msea.2006.07.146

P. J. Ennis and A. Czyrska-filemonowicz, Recent advances in creep-resistant steels for power plant applications, Sadhana, vol.64, issue.3-4, 2002.
DOI : 10.1007/BF02706455

J. Pe?-si?-cka, A. Aghajani, . Ch, A. Somsen, G. Hartmaier et al., How dislocation substructures evolve during long-term creep of a 12% cr tempered martensitic ferritic steel, Scripta Materialia, vol.62, issue.6, pp.353-356, 2010.

J. Hald, Creep strength and ductility of 9 to 12% chromium steels, Materials at High Temperatures, pp.41-46, 2004.
DOI : 10.1179/mht.2004.006

G. Eggeler, J. C. Earthman, N. Nilsvang, and B. Ilschner, Microstructural study of creep rupture in a 12% chromium ferritic steel, Acta Metallurgica, vol.37, issue.1, pp.49-60, 1989.
DOI : 10.1016/0001-6160(89)90265-4

W. Gourgues-lorenzon and . Bendick, Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600?c for more than 100,000 h, Materials Science and Engineering A, vol.527, pp.16-174062, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00491033

B. Josefsson, A. Kvist, and H. O. Andrén, ATOM PROBE MICROANALYSIS OF WELD METAL IN A SUBMERGED ARC WELDED CHROMIUM-MOLYBDENUM STEEL, Le Journal de Physique Colloques, vol.48, issue.C6, pp.48435-440, 1987.
DOI : 10.1051/jphyscol:1987671

URL : https://hal.archives-ouvertes.fr/jpa-00226879

B. , F. Briggs, and T. D. Parker, Fatigue-fluage des aciers martensitiquesàmartensitiquesà 9-12%Cr : comportement et endommagement Ecole des MINES ParisTech http://tel. archives-ouvertes.fr/tel-00203753 The super 12 percent Cr steels, Metal Progress27] J. Hald. Metallurgy and creep properties of new 9-12% cr steels. Steel research, pp.51-55369, 1936.

C. Asme-code, Seamless modified 9Cr-1Mo, 1943.

H. Naoi, T. Fujita, H. Mimura, M. Ohgami, H. Morimoto et al., New steels for advanced plant up to 620?C, Proceedings of the EPRI Conference, pp.8-29, 1995.

R. Blum and J. Hald, Benefit of advanced steam power plants, Proceedings of the 6th Liege Conference on Materials for advanced power engineering, pp.1009-1016, 1998.

A. A. Tavassoli, I. L. Naour, and I. Tournié, Mechanical properties of 9Cr ferritic steels developed for steam generators. Note Technique NT SRMA 92-1968, 1992.

A. Framatome, Approvisionnement de tôles et fabrication de joints soudés en acier de nuance z10 CDV nb 9-1 pour le CEA saclay. Note technique, Framatome ANP, 2002.

A. Standard and A. , Specification for Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum, 1999.

F. Masuyama, Advances in Physical Metallurgy and Processing of Steels. History of Power Plants and Progress in Heat Resistant Steels., ISIJ International, vol.41, issue.6, pp.612-625, 2001.
DOI : 10.2355/isijinternational.41.612

R. L. Klueh and D. R. Harries, High-chromium ferritic and martensitic steels for nuclear applications, 2001.
DOI : 10.1520/MONO3-EB

J. Orr, D. Burton, and C. Rasche, Sensitivity of microstructure and mechanical properties of steel 91 to initial heat treatments, Ironmaking and Steelmaking, vol.20, issue.6, pp.415-423, 1993.

Z. Kubon, V. Foldyna, and . Vodarek, Analysis of strengthening mechanisms in 9 to 12% chromium steels Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications, pp.257-269, 1998.

G. Eggeler, N. Nilsvang, and B. Ilschner, Microstructural changes in a 12% chromium steel during creep, Steel Research, vol.5, issue.5, pp.97-103, 1987.
DOI : 10.1002/srin.198701594

H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia, vol.54, issue.5, pp.1279-1288, 2006.
DOI : 10.1016/j.actamat.2005.11.001

J. C. Brachet, Alliages martensitiques 9Cr-1Mo : effets de l'addition de l'azote, du niobium et du vanadium sur la microstructure, les transformations de phase et les propriétés mécaniques, 1991.

D. Guttmann, Etude du revenu de la martensite dans les aciers faiblement alliés alliésà 2% de manganèse, Influence de l'antimoine, 1974.

Y. De-carlan and L. Guetaz, Analyse morphologique et cristallographique de la structure martensitique dans l'acier eurofer

M. Igarashi, S. Muneki, H. Kutsumi, T. Itagaki, N. Fujitsuna et al., A new concept for strengthening of advanced ferritic steels for usc power plant, Proceedings of the fifth international Charles Parsons turbine conference, pp.334-347, 2000.

G. Kurdjumov and G. Sachs, Uber den mechanismus der stahlhartung. Zeitschrift fur Physik, p.225, 1930.

Z. Nishiyama, Martensite transformation, 1971.

V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, 2000.

B. Sonderegger, S. Mitsche, and H. Cerjak, Martensite laths in creep resistant martensitic 9???12% Cr steels ??? Calculation and measurement of misorientations, Materials Characterization, vol.58, issue.10, pp.874-882, 2007.
DOI : 10.1016/j.matchar.2006.08.014

G. Eggeler and A. Dlouhy, Boron segregation and creep in ultra-fine grained tempered martensite ferritic steels. Zeitschrift fur Metallkunde, pp.743-748, 2005.

H. Brillet, Comportement en fatigue d'un acieràacierà 9%Crà9%Cr`9%Crà 550?c, 2003.

J. Pe?i?ka, A. Dronhofer, and G. Eggeler, Free dislocations and boundary dislocations in tempered martensite ferritic steels, Materials Science and Engineering A, pp.387-389176, 2004.

P. R. Jemian, J. R. Weertman, G. G. Long, R. D. Spal, B. Gieseke et al., Characterization of 9Cr-1MoVNb steel by anomalous small-angle X-ray scattering, Microstructures and mechanical properties of aging material. TMS The Minerals, Metals & Materials Society, pp.2477-2487, 1991.
DOI : 10.1016/0956-7151(91)90062-6

G. Eggeler, The effect of long-term creep on particle coarsening in tempered martensite ferritic steels, Acta Metallurgica, vol.37, issue.12, pp.3225-3234, 1989.
DOI : 10.1016/0001-6160(89)90194-6

S. Spigarelli, E. Cerri, P. Bianchi, and E. Evangelista, Interpretation of creep behaviour of a 9Cr???Mo???Nb???V???N (T91) steel using threshold stress concept, Materials Science and Technology, vol.65, issue.12, pp.1433-1440, 1999.
DOI : 10.1515/HTMP.1997.16.2.97

K. Sawada, K. Kubo, and F. Abe, Creep behavior and stability of MX precipitates at high temperature in 9Cr???0.5Mo???1.8W???VNb steel, Materials Science and Engineering: A, vol.319, issue.321, pp.319-321784, 2001.
DOI : 10.1016/S0921-5093(01)00973-X

R. Lim, M. Sauzay, F. Dalle, I. Tournié, P. Bonnaillie et al., Modelling and experimental study of the tertiary creep stage of Grade 91 steel, International Journal of Fracture, vol.85, issue.8, pp.213-228, 2011.
DOI : 10.1007/s10704-011-9585-y

URL : https://hal.archives-ouvertes.fr/hal-00605165

J. Vaillant, . Vandenberghe, H. Hahn, C. Heuser, and . P23, T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants???Properties and experience, International Journal of Pressure Vessels and Piping, vol.85, issue.1-2, pp.38-46, 2008.
DOI : 10.1016/j.ijpvp.2007.06.011

R. Bonadé, P. Spätig, R. Schäublin, and M. Victoria, Plastic flow of martensitic model alloys, Materials Science and Engineering: A, vol.387, issue.389, pp.387-38916, 2004.
DOI : 10.1016/j.msea.2004.02.074

B. Gieseke, C. Brinkman, and P. Maziasz, The influence of thermal aging on the microstructure and fatigue properties of modified 9cr-1mo steel, First International Conference on Microstructures and Mechanical Properties of Aging Materials, pp.107-115, 1993.

B. Fournier, M. Sauzay, M. Mottot, H. Brillet, I. Monnet et al., Experimentally based modelling of cyclically induced softening in a martensitic steel at high temperature, International conference on Creep and Fracture in High Temperature Components -Design and Life Assessment Issues, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00160195

N. J. Hoff, The necking and the rupture of rods subjected to constant tensile loads, Journal of Applied Mechanics, vol.20, issue.1, pp.105-108, 1953.

K. Kimura, H. Kushima, F. Abe, and K. Yagi, Inherent creep strength and long term creep strength properties of ferritic steels, Materials Science and Engineering: A, vol.234, issue.236, pp.234-2361079, 1997.
DOI : 10.1016/S0921-5093(97)00345-6

E. W. Hart, Theory of the tensile test, Acta Metallurgica, vol.15, issue.2, pp.351-355, 1967.
DOI : 10.1016/0001-6160(67)90211-8

S. Dumoulin, L. Tabourot, C. Chappuis, P. Vacher, and R. Arrieux, Determination of the equivalent stress???equivalent strain relationship of a copper sample under tensile loading, Journal of Materials Processing Technology, vol.133, issue.1-2, pp.79-83, 2003.
DOI : 10.1016/S0924-0136(02)00247-9

URL : https://hal.archives-ouvertes.fr/hal-00258215

B. A. Senior, F. W. Noble, and B. L. Eyre, Development of microstructure and strengthening in ferritic steel x20crmov 12 1 at 823k during long-term creep tests and during annealing, VGB Kraftwerkstechnik, issue.8, pp.73646-653, 1993.

A. Orlová, J. Bur?ík, K. Kucha?ová, and V. Skleni?ka, Microstructural development during high temperature creep of 9% Cr steel, Materials Science and Engineering: A, vol.245, issue.1, pp.39-48, 1998.
DOI : 10.1016/S0921-5093(97)00708-9

K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada et al., Effect of W on recovery of lath structure during creep of high chromium martensitic steels, Materials Science and Engineering: A, vol.267, issue.1, pp.19-25, 1999.
DOI : 10.1016/S0921-5093(99)00066-0

V. Gaffard, J. Besson, and A. F. Gourgues-lorenzon, Creep failure model of a tempered martensitic stainless steel integrating multiple deformation and damage mechanisms, International Journal of Fracture, vol.19, issue.3, pp.139-166, 2005.
DOI : 10.1007/s10704-005-2528-8

URL : https://hal.archives-ouvertes.fr/hal-00154843

V. Skleni?-cka, K. Kucha?-rová, M. Svoboda, L. Kloc, J. Bur? et al., Long-term creep behavior of 9???12%Cr power plant steels, Materials Characterization, vol.51, issue.1, pp.35-48, 2003.
DOI : 10.1016/j.matchar.2003.09.012

F. Matsuda and T. Fujkawa, Reference stress approach for estimation creep strain of tapered cylindrical vessels, International Conference on Engineering Aspects of Creep, p.51

G. Lloyd and . Bsc, The relation between creep crack growth rates and creep-fatigue crack growth rates in austenitic type 316 steel, International Conference on Engineering Aspects of Creep, pp.239-248, 1980.

Q. Auzoux, Reheat cracking of austenitic stainless steels -influence of work hardening on intergranular damage, 2004.

J. Cadek, V. Sustek, and M. Pahutová, An analysis of a set of creep data for a 9Cr1Mo0, 2V (P91 type) steel. Materials Science and Engineering A, pp.22-28, 1997.

K. Kimura, H. Kushima, and K. Sawada, Long-term creep deformation property of modified 9Cr???1Mo steel, Materials Science and Engineering: A, vol.510, issue.511, pp.510-1158, 2009.
DOI : 10.1016/j.msea.2008.04.095

F. Abe, Stress to produce a minimum creep rate of 10???5%/h and stress to cause rupture at 105h for ferritic and austenitic steels and superalloys, International Journal of Pressure Vessels and Piping, vol.85, issue.1-2, pp.99-107, 2008.
DOI : 10.1016/j.ijpvp.2007.06.005

B. A. Senior, F. W. Noble, and B. L. Eyre, The nucleation and growth of voids at carbides in 9 Cr-1 Mo steel, Acta Metallurgica, vol.34, issue.7, pp.1321-1327, 1986.
DOI : 10.1016/0001-6160(86)90019-2

P. W. Bridgman82-]-c and . Middleton, The stress distribution at the neck of a tension specimen Reheat cavity nucleation and nucleation control in bainitic creepresisting low-alloy steels, Transactions of ASME Metal Science, vol.32, issue.154, pp.553-574154, 1944.

H. R. Tipler, L. H. Taylor, and B. E. Hopkins, Some Direct Observations on the Metallography of Creep-Cavitated Grain Boundaries, Metal Science Journal, vol.97, issue.1, pp.167-170, 1970.
DOI : 10.1016/0001-6160(66)90174-X

N. G. Needham, Report of British steel corporation to the Commission of the European Communities, 1983.

G. Eggeler, Microstructural parameters for creep damage quantification, Acta Metallurgica et Materialia, vol.39, issue.2, pp.221-231, 1991.
DOI : 10.1016/0956-7151(91)90270-B

N. G. Needham and T. Gladman, Nucleation and growth of creep cavities in a Type 347 steel, Metal Science, vol.62, issue.2, pp.64-72, 1980.
DOI : 10.1007/BF00550998

T. G. Nieh and W. D. Nix, The formation of water vapor bubbles in copper and their effect on intergranular creep fracture, Acta Metallurgica, vol.28, issue.5, pp.557-566, 1980.
DOI : 10.1016/0001-6160(80)90122-4

S. E. Stanzl, A. S. Argon, and E. K. Tschegg, Diffusive intergranular cavity growth in creep in tension and torsion, Acta Metallurgica, vol.31, issue.6, pp.31833-843, 1983.
DOI : 10.1016/0001-6160(83)90111-6

B. F. Dyson and D. Mclean, A New Method of Predicting Creep Life, Metal Science Journal, vol.6, issue.1, pp.220-223, 1972.
DOI : 10.1080/14786436908217799

B. F. Dyson and D. Mclean, Creep of Nimonic 80A in torsion and tension, Metal Science, vol.10, issue.8, pp.37-45, 1977.
DOI : 10.1179/msc.1967.1.1.171

B. F. Dyson, Continuous cavity nucleation and creep fracture, Scripta Metallurgica, vol.17, issue.1, pp.31-37, 1983.
DOI : 10.1016/0036-9748(83)90065-0

J. Koplik and A. Needleman, Void growth and coalescence in porous plastic solids, International Journal of Solids and Structures, vol.24, issue.8, pp.835-853, 1988.
DOI : 10.1016/0020-7683(88)90051-0

R. Raj and M. F. Ashby, Intergranular fracture at elevated temperature, Acta Metallurgica, vol.23, issue.6, pp.653-666, 1975.
DOI : 10.1016/0001-6160(75)90047-4

R. Becker and W. Döring, Kinetic treatment of grain formation in supersaturated vapors, pp.719-752, 1935.

D. Turnbull, Phase Changes, Solid State Physics: Advances in Research and Applications, p.268, 1956.
DOI : 10.1016/S0081-1947(08)60134-4

R. Raj, Nucleation of cavities at second phase particles in grain boundaries, Acta Metallurgica, vol.26, issue.6, pp.995-1006, 1978.
DOI : 10.1016/0001-6160(78)90050-0

P. J. Clemm and J. C. Fisher, The influence of grain boundaries on the nucleation of secondary phases, Acta Metallurgica, vol.3, issue.1, p.70, 1955.
DOI : 10.1016/0001-6160(55)90014-6

D. Turnbull, Transient nucleation. Tans, Met. Soc. AIME, vol.175, pp.774-783, 1948.

A. Kantrowitz, Nucleation in Very Rapid Vapor Expansions, The Journal of Chemical Physics, vol.19, issue.9, p.1097, 1951.
DOI : 10.1063/1.1748482

R. F. Probstein, Time Lag in the Self???Nucleation of a Supersaturated Vapor, The Journal of Chemical Physics, vol.19, issue.5, p.619, 1951.
DOI : 10.1063/1.1748303

R. Fleck, C. Taplin, and . Beevers, An investigation of the nucleation of creep cavities by 1 MV electron microscopy, Acta Metallurgica, vol.23, issue.4, pp.415-424, 1975.
DOI : 10.1016/0001-6160(75)90081-4

D. Hull and D. E. Rimmer, The growth of grain-boundary voids under stress, Philosophical Magazine, vol.206, issue.42, pp.673-687, 1959.
DOI : 10.1063/1.1700021

J. R. Rice, Constraints on the diffusive cavitation of isolated grain boundary facets in creeping polycrystals, Acta Metallurgica, vol.29, issue.4, pp.675-681, 1981.
DOI : 10.1016/0001-6160(81)90150-4

H. Riedel, Continuous nucleation of grain boundary cavities in creep rupture, Z. Metallkd, vol.76, issue.10, pp.669-675, 1985.

I. Chen and A. S. Argon, Diffusive growth of grain-boundary cavities, Acta Metallurgica, vol.29, issue.10, pp.1759-1768, 1981.
DOI : 10.1016/0001-6160(81)90009-2

J. R. Rice, Time dependent fracture of materials at elevated temperature, In US Department of Energy Report CONF, vol.790236, p.130, 1979.

A. Needleman and J. Rice, Plastic creep flow effects in the diffusive cavitation of grain boundaries, Acta Metallurgica, vol.28, issue.10, pp.1315-1332, 1980.
DOI : 10.1016/0001-6160(80)90001-2

B. Budiansky and R. J. , Elastic moduli of a cracked solid, International Journal of Solids and Structures, vol.12, issue.2, pp.81-97, 1976.
DOI : 10.1016/0020-7683(76)90044-5

C. Herring, Diffusional Viscosity of a Polycrystalline Solid, Journal of Applied Physics, vol.21, issue.5, pp.437-445, 1950.
DOI : 10.1063/1.1699681

D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials: Viscoplasticity , damage, fracture, and contact mechanics, 1998.

M. E. Kassner and T. A. Hayes, Creep cavitation in metals, International Journal of Plasticity, vol.19, issue.10, pp.1715-1748, 2003.
DOI : 10.1016/S0749-6419(02)00111-0

B. F. Dyson, Constraints on diffusional cavity growth rates, Metal Science, vol.10, issue.10, pp.349-353, 1976.
DOI : 10.1063/1.1702656

B. J. Cane, Interrelationship between creep deformation and creep rupture in 2??Cr-1Mo steel, Metal Science, vol.13, issue.5, pp.287-294, 1979.
DOI : 10.1179/03063453.1979.11674139

E. Van-der-giessen, M. W. Van-der-burg, A. Needleman, and V. Tvergaard, Void growth due to creep and grain boundary diffusion at high triaxialities, Journal of the Mechanics and Physics of Solids, vol.43, issue.1, pp.123-165, 1995.
DOI : 10.1016/0022-5096(94)00059-E

H. Riedel, Fracture at high temperatures, 1987.
DOI : 10.1007/978-3-642-82961-1

F. Barcelo and B. Fournier, Déterminer l'orientation cristallographique des grains ou blocs de lattes entourant les cavités de fluage, FdE, pp.6-7, 2008.

A. M. Huntz, P. Guiraldenq, M. Aucouturier, and P. Lacombe, Relation entre les phénomènes de diffusion du fer et du chrome radioactifs dans les alliages fer-chrome de 0 ` a 15% de chrome et leur transformation ? (? + ?) Mémoires Scientifiques de la Revue de Métallurgie, pp.85-104, 1969.

A. M. Huntz, Influence de la teneur en chrome et de la teneur en impuretés interstitielles (carbone et azote) sur la diffusion volumique et intergranulaire du fer 59* dans les alliages fer-chrome de 0 ` a 15% de chrome. Relations avec les transformations ? (? + ?) Mémoires Scientifiques de la Revue de Métallurgie, pp.81-101, 1973.

F. Chaix and A. M. Huntz, Mesure des coefficients de diffusion en volume et intergranulaire du fer radioactif dans des alliages fer-chrome monophasés ? et de teneur proche de celle du minimum de la boucle ?. Relations avec les transformations de phase ? (? + ?) Mémoires Scientifiques de la Revue de Métallurgie, pp.71-115, 1974.

H. Jou, Microstructure modeling of third generation disk alloys, 2010.

L. Priester, Les joints de grains: de la théoriè a l'ingénierie, 2006.

O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud, Distribution of normal stress at grain boundaries in multicrystals: application to an intergranular damage modeling, Computational Materials Science, vol.25, issue.1-2, pp.73-84, 2002.
DOI : 10.1016/S0927-0256(02)00251-3

O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud, Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity, International Journal of Plasticity, vol.21, issue.4, pp.691-722, 2005.
DOI : 10.1016/j.ijplas.2004.05.017

URL : https://hal.archives-ouvertes.fr/hal-00165134

S. Caré and A. Zaoui, Cavitation at triple nodes in ??-zirconium polycrystals, Acta Materialia, vol.44, issue.4, pp.1323-1336, 1996.
DOI : 10.1016/1359-6454(95)00302-9

R. Desmorat and F. A. Leckie, Singularities in bi-materials: parametric study of an isotropic/anisotropic joint, European Journal of Mechanics - A/Solids, vol.17, issue.1, pp.33-52, 1998.
DOI : 10.1016/S0997-7538(98)80062-4

E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos et al., Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials, International Journal of Plasticity, vol.23, issue.9, pp.1512-1539, 2007.
DOI : 10.1016/j.ijplas.2007.01.009

M. Berveiller and A. Zaoui, An extension of the self-consistent scheme to plastically-flowing polycrystals, Journal of the Mechanics and Physics of Solids, vol.26, issue.5-6, pp.325-344, 1979.
DOI : 10.1016/0022-5096(78)90003-0

P. O. Santacreu, Sur la singularité epine engendrée par une discontinuité plastique, C. R. Acad. Sci. Paris Série IIb, vol.318, issue.12, pp.1577-1582, 1994.

H. D. Bui and S. Taheri, La singularité epine dans les bi-matériaux en thermoélastoplasticité, C. R. Acad. Sci. Paris Série IIb, vol.309, issue.16, pp.1527-1533, 1989.

A. Deperrois, K. Dang, and . Van, Inclusions de surface et singularité epine, C. R. Acad. Sci. Paris Série IIb, issue.11, pp.3111285-1290, 1990.

J. Robert, V. A. Asaro, and . Lubarda, Mechanics of solids and materials, 2006.

S. Heraud, Du polycristal au multicristal : Elaboration d'un mésosccope numérique pour une analyse locale en elastoviscoplasticité, 2000.

T. Hoc and S. Forest, Polycrystal modelling of IF-Ti steel under complex loading path, International Journal of Plasticity, vol.17, issue.1, pp.65-85, 2001.
DOI : 10.1016/S0749-6419(00)00019-X

D. Caillard and J. L. Martin, Thermally activated mechanisms in crystal plasticity, 2003.

D. J. Dever, Temperature dependence of the elastic constants in ?????iron single crystals: relationship to spin order and diffusion anomalies, Journal of Applied Physics, vol.43, issue.8, pp.3293-3301, 1972.
DOI : 10.1063/1.1661710

B. Fournier, M. Sauzay, C. Caës, M. Mottot, M. Noblecourt et al., Analysis of the hysteresis loops of a martensitic steel, Materials Science and Engineering: A, vol.437, issue.2, pp.197-211, 2006.
DOI : 10.1016/j.msea.2006.08.087

URL : https://hal.archives-ouvertes.fr/hal-00144997

M. Libert, Etudes expérimentale et numérique de l'effet des mécanismes de plasticité sur la rupture fragile par clivage dans les aciers faiblement alliés, 2007.

R. A. Lebensohn, O. Castelnau, R. Brenner, and P. Gilormini, Study of the antiplane deformation of linear 2-D polycrystals with different microstructures, International Journal of Solids and Structures, vol.42, issue.20, pp.425441-5459, 2005.
DOI : 10.1016/j.ijsolstr.2005.02.051

URL : https://hal.archives-ouvertes.fr/hal-00300102

R. A. Lebensohn, Y. Liu, and P. Ponte-casta?-neda, On the accuracy of the selfconsistent approximation for polycrystals: comparison with full-field numerical simulations, Acta Materialia, issue.18, pp.525347-5361, 2004.

A. Steckmeyer, M. Sauzay, A. Weidner, and E. Hieckmann, Micromechanical modelling of the cyclic stress???strain behaviour of nickel polycrystals, International Journal of Fatigue, vol.40, 2011.
DOI : 10.1016/j.ijfatigue.2011.10.019

L. Vincent, M. Libert, B. Marini, and C. Rey, Towards a modelling of RPV steel brittle fracture using crystal plasticity computations on polycrystalline aggregates, Journal of Nuclear Materials, vol.406, issue.1, pp.91-96, 2010.
DOI : 10.1016/j.jnucmat.2010.07.022

URL : https://hal.archives-ouvertes.fr/hal-00755576

L. Vincent, L. Gelebart, R. Dakhlaoui, and B. Marini, Stress localization in BCC polycrystals and its implications on the probability of brittle fracture, Materials Science and Engineering: A, vol.528, issue.18, pp.5285861-5870, 2011.
DOI : 10.1016/j.msea.2011.04.003

M. Sauzay, Cubic elasticity and stress distribution at the free surface of polycrystals, Acta Materialia, vol.55, issue.4, pp.1193-1202, 2007.
DOI : 10.1016/j.actamat.2006.09.035

. Mpa, after a lifetime of 5×10 3 h. FEG-SEM observations using a magnification of 1000 at Ecole des MINES with A.-F. Gourgues-Lorenzon and A