%. F&, !6'.0!%1, %&)(!)4!%1, pp.1-46
URL : https://hal.archives-ouvertes.fr/hal-00020221

. .. Réseau-de-joints-de-grains-et-propriétés-mécaniques, 169 6.2.1 Connectivité du réseau de joints de grains et propriétés, p.169

A. D. Rollett, Lecture notes, Misorientation distributions, rodrigues space, symmetry (L18), texture, microstructure and anisotropy, 2009.

V. Randle, Grain Boundary Geometry: Measurement, 1993.
DOI : 10.1016/B0-08-043152-6/00643-4

M. J. Haas, Grain boundary phenomena and failure of aluminium alloys, Rijksuniversiteit Groningen, 1974.

O. and H. Duparc, A review of some elements in the history of grain boundaries, centered on Georges Friedel, the coincident ???site??? lattice and the twin index, Journal of Materials Science, vol.31, issue.6, pp.4116-4134, 2011.
DOI : 10.1007/s10853-011-5367-1

URL : https://hal.archives-ouvertes.fr/hal-01014024

C. T. Forwood and L. M. Clarebrough, Electron Microscopy of Interfaces in Metals and Alloys, 1991.

D. G. Brandon, The structure of high-angle grain boundaries, Acta Metallurgica, vol.14, issue.11, p.1476, 1966.
DOI : 10.1016/0001-6160(66)90168-4

G. Palumbo and K. T. Aust, Structure-dependence of intergranular corrosion in high purity nickel, Acta Metallurgica et Materialia, vol.38, issue.11, p.2343, 1990.
DOI : 10.1016/0956-7151(90)90101-L

M. A. Meyers and C. Mccowan, The formation of annealing twins : overview and new thoughts, International Symposium on Interface Migration and Control of Microstructure, 1984.

R. L. Fullman, Crystallography and Interfacial Free Energy of Noncoherent Twin Boundaries in Copper, Journal of Applied Physics, vol.22, issue.4, p.456, 1951.
DOI : 10.1063/1.1699983

M. Frary and C. A. Schuh, Combination rule for deviant CSL grain boundaries at triple junctions, Acta Materialia, vol.51, issue.13, pp.3731-3743, 2003.
DOI : 10.1016/S1359-6454(03)00188-5

L. Priester, Geometrical speciality and special properties of grain boundaries, Revue de Physique Appliqu??e, vol.24, issue.4, pp.419-438, 1989.
DOI : 10.1051/rphysap:01989002404041900

URL : https://hal.archives-ouvertes.fr/jpa-00246064

D. Wolf, Structure-energy correlation for grain boundaries in f.c.c. metals???IV. Asymmetrical twist (general) boundaries, Acta Metallurgica et Materialia, vol.38, issue.5, pp.791-798, 1990.
DOI : 10.1016/0956-7151(90)90031-B

W. Xu, M. Ferry, N. Mateescu, J. M. Cairney, and F. J. Humphreys, Techniques for generating 3D EBSD microstructures by FIB tomography, Materials Characterization, issue.10, pp.58961-967, 2007.

A. King, W. Ludwig, D. Engelberg, and T. J. Marrow, Diffraction contrast tomography for the study of polycrystalline stainless steel microstructures and stress corrosion cracking, Revue de M??tallurgie, vol.108, issue.1, pp.47-50, 2011.
DOI : 10.1051/metal/2011042

A. Schwartz, The potential engineering of grain boundaries through thermomechanical processing, JOM, vol.215, issue.5, pp.50-55, 1998.
DOI : 10.1007/s11837-998-0250-5

U. Erb, S. H. Kim, and K. T. Aust, Grain boundary character distribution, Revue Phys. Appl, vol.44, pp.835-839, 2001.

A. Garbacz and M. W. Grabski, The relationship between texture and CSL boundaries distribution in polycrystalline materials???I. The grain boundary misorientation distribution in random polycrystal, Acta Metallurgica et Materialia, vol.41, issue.2, pp.469-473, 1993.
DOI : 10.1016/0956-7151(93)90075-4

H. Kühn, G. Baerö, and H. Gleiter, On the energy-misorientation relationship of grain boundaries, Acta Metallurgica, vol.27, issue.6, pp.959-963, 1979.
DOI : 10.1016/0001-6160(79)90183-4

K. K. Shih and J. C. Li, Energy of grain boundaries between cusp misorientations, Surface Science, vol.50, issue.1, pp.109-124, 1975.
DOI : 10.1016/0039-6028(75)90176-4

G. C. Hasson and C. Goux, Interfacial energies of tilt boundaries in aluminium. Experimental and theoretical determination, Scripta Metallurgica, vol.5, issue.10, p.889, 1971.
DOI : 10.1016/0036-9748(71)90064-0

T. Skipmore, R. G. Buxchheit, and M. C. Juhas, Grain boundary energy vs. misorientation in inconel 600 alloy as measured by thermal groove and OIM analysis correlation

W. T. Read and W. Shockley, Dislocation Models of Crystal Grain Boundaries, Physical Review, vol.78, issue.3, pp.275-289, 1950.
DOI : 10.1103/PhysRev.78.275

V. Divinski, G. Reglitz, and G. Wilde, Grain boundary self-diffusion in polycrystalline nickel of different purity levels, Acta Materialia, vol.58, issue.2, pp.386-395, 2010.
DOI : 10.1016/j.actamat.2009.09.015

D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys, 1992.
DOI : 10.1007/978-1-4899-3051-4

S. J. Fulvio and R. R. Rios, Nucleation and growth during recrystallization, Materials Research, vol.8, issue.3, pp.225-238, 2005.

J. A. Zelinski, An Evaluation of Grain Boundary Engineering Technology and Processing, 2005.

M. Kumar, W. E. King, and A. J. Schwartz, Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing, Acta Materialia, vol.48, issue.9, pp.2081-2091, 2000.
DOI : 10.1016/S1359-6454(00)00045-8

C. A. Schuh, M. Kumar, and W. E. King, Analysis of grain boundary networks and their evolution during grain boundary engineering, Acta Materialia, vol.51, issue.3, pp.687-700, 2003.
DOI : 10.1016/S1359-6454(02)00447-0

G. Palumbo, Metal alloys having improved resistance to intergranular stress corrosion cracking. Integran Technologies, assignee, 2000.

P. Lin, G. Palumbo, U. Erb, and K. T. Aust, Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600, Scripta Metallurgica et Materialia, vol.33, issue.9, pp.1387-1392, 1995.
DOI : 10.1016/0956-716X(95)00420-Z

U. Krupp, W. M. Kane, X. Liu, O. Dueber, C. Laird et al., The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718, Materials Science and Engineering: A, vol.349, issue.1-2, pp.213-217, 2003.
DOI : 10.1016/S0921-5093(02)00753-0

L. Tan, K. Sridharan, and T. R. Allen, Effect of thermomechanical processing on grain boundary character distribution of a Ni-based superalloy, Proceedings of the First Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors, pp.171-175, 2007.
DOI : 10.1016/j.jnucmat.2007.05.002

L. Tan, K. Sridharan, T. R. Allen, R. K. Nanstad, and D. A. Mcclintock, Microstructure tailoring for property improvements by grain boundary engineering, Journal of Nuclear Materials, vol.374, issue.1-2, pp.270-280, 2008.
DOI : 10.1016/j.jnucmat.2007.08.015

L. Tan and T. Allen, An electron backscattered diffraction study of grain boundary-engineered INCOLOY alloy 800H, Metallurgical and Materials Transactions A, vol.49, issue.7, pp.1921-1925, 2005.
DOI : 10.1007/s11661-005-0055-x

S. Xia, B. X. Zhou, W. J. Chen, and W. G. Wang, Effects of strain and annealing processes on the distribution of ??3 boundaries in a Ni-based superalloy, Scripta Materialia, vol.54, issue.12, pp.2019-2022, 2006.
DOI : 10.1016/j.scriptamat.2006.03.014

M. Kumar, A. J. Schwartz, and W. E. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials, Acta Materialia, vol.50, issue.10, pp.502599-2612, 2002.
DOI : 10.1016/S1359-6454(02)00090-3

Y. Y. Zhang and J. S. Zhang, Recrystallization in the particles interfacial region of the cold-sprayed aluminum coating: Strain-induced boundary migration, Materials Letters, vol.65, issue.12, pp.651856-1858, 2011.
DOI : 10.1016/j.matlet.2011.04.014

Y. Yogo, H. Takeuchi, T. Ishikawa, N. Iwata, and K. Nakanishi, Strain-induced boundary migration of carbon steel at high temperatures, Scripta Materialia, vol.61, issue.11, pp.611001-1003, 2009.
DOI : 10.1016/j.scriptamat.2009.08.003

R. D. Doherty and R. W. Cahn, Nucleation of new grains in recrystallization of cold-worked metals, Journal of the Less Common Metals, vol.28, issue.2, pp.279-296, 1972.
DOI : 10.1016/0022-5088(72)90131-2

P. A. Beck and P. R. Sperry, Strain Induced Grain Boundary Migration in High Purity Aluminum, Journal of Applied Physics, vol.21, issue.2, pp.150-152, 1950.
DOI : 10.1063/1.1699614

F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 1995.

R. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen et al., Current issues in recrystallization: a review, Materials Science and Engineering: A, vol.238, issue.2, pp.219-274, 1997.
DOI : 10.1016/S0921-5093(97)00424-3

S. Varma and B. Willits, Subgrain growth in aluminum during static annealing, Metallurgical Transactions A, vol.10, issue.7, pp.1502-1503, 1984.
DOI : 10.1007/BF02648583

P. Bartuska, Growth of subgrains in strongly deformed polycrystalline nickel, Czechoslovak Journal of Physics, vol.87, issue.10, pp.765-772, 1964.
DOI : 10.1007/BF01688901

J. H. Driver, Evolution structurale en recristallisation :Probì emes de germination et de croissance, Journal de Physique III, vol.5, pp.13-19, 1995.
DOI : 10.1051/jp4:1995302

P. R. Rios, F. Siciliano-jr, H. R. Zschommler-sandim, R. L. Plaut, and A. F. Padilha, Nucleation and growth during recrystallization. Texture and Anisotropy of Polycrystals II, pp.157-162, 2005.
DOI : 10.1590/s1516-14392005000300002

URL : http://doi.org/10.1590/s1516-14392005000300002

B. Hutchinson, Nucleation of recrystallization, Scripta Metallurgica et Materialia, p.1471, 1992.

A. R. Jones, B. Ralph, and N. Hansen, Subgrain Coalescence and the Nucleation of Recrystallization at Grain Boundaries in Aluminium, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, issue.1734, pp.345-357, 1734.
DOI : 10.1098/rspa.1979.0134

B. Bay and N. Hansen, Recrystallization in Commercially Pure Aluminum, Metallurgical Transactions A, vol.2, issue.2, pp.287-297, 1950.
DOI : 10.1007/BF02645114

T. Watanabe, The importance of grain boundary character distribution (GBCD) to recrystallization, grain growth and texture, Scripta Metallurgica et Materialia, vol.27, issue.11, pp.1497-1502, 1992.
DOI : 10.1016/0956-716X(92)90134-Z

]. V. Randle, Twinning-related grain boundary engineering, Acta Materialia, vol.52, issue.14, pp.4067-4081, 2004.
DOI : 10.1016/j.actamat.2004.05.031

H. Gleiter, The formation of annealing twins, Acta Metallurgica, vol.17, issue.12, pp.1421-1428, 1969.
DOI : 10.1016/0001-6160(69)90004-2

J. T. Mcginn, V. A. Greenhut, and T. Thomas, A mechanism for fault formation in fine particles and implications for theories of annealing twins in f.c.c. metals???II, Acta Metallurgica, vol.30, issue.12, pp.2103-2110, 1982.
DOI : 10.1016/0001-6160(82)90130-4

Q. Li, J. R. Cahoon, and N. L. Richards, On the calculation of annealing twin density, Scripta Materialia, vol.55, issue.12, pp.1155-1158, 2006.
DOI : 10.1016/j.scriptamat.2006.08.013

S. Mahajan, C. S. Pande, M. A. Imam, and B. B. Rath, Formation of annealing twins in f.c.c. crystals, Acta Materialia, vol.45, issue.6, pp.2633-2638, 1997.
DOI : 10.1016/S1359-6454(96)00336-9

M. A. Meyers and L. E. Murr, A model for the formation of annealing twins in F.C.C. metals and alloys, Acta Metallurgica, vol.26, issue.6, pp.951-962, 1978.
DOI : 10.1016/0001-6160(78)90046-9

S. Dash and N. Brown, An investigation of the origin and growth of annealing twins, Acta Metallurgica, vol.11, issue.9
DOI : 10.1016/0001-6160(63)90195-0

C. V. Kopezky, V. Y. Novikov, L. K. Fionova, and N. A. Bolshakova, Investigation of annealing twins in F.C.C. metals, Acta Metallurgica, vol.33, issue.5, pp.873-879, 1985.
DOI : 10.1016/0001-6160(85)90111-7

H. C. Carpenter and S. Tamura, The Formation of Twin Metallic Crystals, Nature, vol.119, issue.2986, 1927.
DOI : 10.1038/119121a0

M. Kumar, A. J. Schwartz, and W. E. King, The role of twinning in the optimization of the grain boundary character distribution, International Symposium on Advances in Twinning TMS-AIME Annual Meeting, 1999.

S. Xia, B. Zhou, and W. Chen, Grain Cluster Microstructure and Grain Boundary Character Distribution in Alloy 690, Metallurgical and Materials Transactions A, vol.131, issue.446, pp.3016-3030, 2009.
DOI : 10.1007/s11661-009-0035-7

V. Randle, Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials, Acta Materialia, vol.47, issue.15-16, pp.15-164187, 1999.
DOI : 10.1016/S1359-6454(99)00277-3

B. W. Reed and M. Kumar, Mathematical methods for analyzing highly-twinned grain boundary networks, Scripta Materialia, vol.54, issue.6, pp.1029-1033, 2006.
DOI : 10.1016/j.scriptamat.2005.11.045

W. Wang and H. Guo, Effects of thermo-mechanical iterations on the grain boundary character distribution of Pb???Ca???Sn???Al alloy, Materials Science and Engineering: A, vol.445, issue.446, pp.445-446155, 2007.
DOI : 10.1016/j.msea.2006.09.034

G. Palumbo, K. T. Aust, U. Erb, P. J. King, A. M. Brennenstuhl et al., On annealing twins and CSL distributions in F.C.C. polycrystals, Physica Status Solidi (a), vol.59, issue.2, pp.131-2425, 2006.
DOI : 10.1002/pssa.2211310216

P. Lin, G. Palumbo, and K. T. Aust, Experimental assessment of the contribution of annealing twins to CSL distributions in FCC materials, Scripta Materialia, vol.36, issue.10, pp.1145-1149, 1997.
DOI : 10.1016/S1359-6462(97)00010-9

S. Terzi, ComportementàComportementà haute température du superalliage Udimet 720élaboré720élaboré par métallurgie des poudres et optimisé pour la tenue en fluage, 2006.

M. J. Donachie and S. J. Donachie, Superalloys : A Technical Guide, 2002.

J. Gayda and R. V. Miner, Fatigue crack initiation and propagation in several nickel-base superalloys at 650??C, International Journal of Fatigue, vol.5, issue.3, pp.135-143, 1983.
DOI : 10.1016/0142-1123(83)90026-9

T. Billot, Comportement et endommagement en fatigue et fatigue-fluagè a haute température de différentsdifférentsétats microstructuraux du superalliage base-nickel Udimet 720

T. Billot, P. Villechaise, and M. Jouiad, Creep???fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy, International Journal of Fatigue, vol.32, issue.5, pp.824-829, 2005.
DOI : 10.1016/j.ijfatigue.2009.07.003

B. Flageolet, M. Jouiad, P. Villechaise, and J. Mendez, On the role of ?? particles within ????? precipitates on damage accumulation in the P/M nickel-base superalloy N18, Materials Science and Engineering: A, vol.399, issue.1-2, pp.199-205, 2005.
DOI : 10.1016/j.msea.2005.04.006

G. Palumbo, E. Lehockey, and P. Lin, Applications for grain boundary engineered materials, JOM, vol.4, issue.2, pp.40-43, 1998.
DOI : 10.1007/s11837-998-0248-z

R. C. Reed, The superalloys : fundamentals and applications, 2006.
DOI : 10.1017/CBO9780511541285

S. Dubiez-le and . Goff, Comportement et endommagement d'un superalliagé elaboré par compression isostatiquè a chaud, 2003.

J. Y. Guedou, J. C. Lautridou, and Y. Honnorat, N18, power metallurgy superalloy for disks : development and applications. Superalloys, pp.267-276, 1992.

Y. Huang, M. Strangwood, and P. L. Blackwell, Superplastic behaviour of Inconel 718 sheet, Materials Congress, 2000.
DOI : 10.1007/BF02643571

O. A. Kaibyshev, Fundamental aspects of superplastic deformation, Materials Science and Engineering: A, vol.324, issue.1-2, pp.96-102, 2002.
DOI : 10.1016/S0921-5093(01)01407-1

C. Sansal, Plasticité et effet de taille dans les polycristauxàpolycristauxà grains micrométriques : simulations mésoscopiques et modélisation, 2007.

J. Vetrano, Superplasticity: Mechanisms and applications, JOM, vol.53, issue.3, pp.22-22, 2001.
DOI : 10.1007/s11837-001-0173-x

A. K. Mukherjee, Deformation Mechanisms in Superplasticity, Annual Review of Materials Science, vol.9, issue.1, pp.191-217, 1979.
DOI : 10.1146/annurev.ms.09.080179.001203

O. A. Kaibyshev, R. Z. Valiev, and A. K. Emaletdinov, Deformation mechanisms and the theory of structural superplasticity of metals, physica status solidi (a), vol.70, issue.1, pp.197-206, 1985.
DOI : 10.1002/pssa.2210900119

F. Montheillet and J. P. Thomas, Dynamic Recrystallization of Low Stacking Fault Energy Metals, Metallic Materials with High Structural Efficiency, pp.357-368, 2004.
DOI : 10.1007/1-4020-2112-7_36

F. Montheillet, Métallurgie en mise en formè a chaud, 2009.

B. Verlinden and R. W. Cahn, Thermo-mechanical processing of metallic materials, Pergamon Materials Series, 2007.

P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter, Dynamic recrystallization of Ni-base alloys???Experimental results and comparisons with simulations, Materials Science and Engineering: A, vol.420, issue.1-2, pp.306-314, 2006.
DOI : 10.1016/j.msea.2006.01.076

Z. Mingjie, L. Fuguo, W. Shuyun, and L. Chenyi, Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy, Materials Science and Engineering: A, vol.527, issue.24-25, pp.24-256771, 2010.
DOI : 10.1016/j.msea.2010.07.039

S. Takahashi, N18, p/m superalloy for disks : development and applications, International Gas Turbine Congress, 2003.

C. W. Price, Use of Kolmogorov-Johnson-Mehl-Avrami kinetics in recrystallization of metals and crystallization of metallic glasses, Acta Metallurgica et Materialia, vol.38, issue.5, pp.727-738, 1990.
DOI : 10.1016/0956-7151(90)90024-B

G. Damamme, F. Montheillet, and O. Lurdos, Approche simplifiée du mécanisme de recristallisation dynamique discontinue, Matériaux, 2006.

A. D. Rollett, M. J. Luton, and D. J. Srolovitz, Microstructural simulation of dynamic recrystallization, Acta Metallurgica et Materialia, vol.40, issue.1, pp.43-55, 1992.
DOI : 10.1016/0956-7151(92)90198-N

T. Rane, R. Dewri, S. Ghosh, N. Chakraborti, and K. Mitra, Modeling the recrystallization process using inverse cellular automata and genetic algorithms: Studies using differential evolution, Journal of Phase Equilibria and Diffusion, vol.20, issue.11, pp.311-321, 2005.
DOI : 10.1007/s11669-005-0080-x

K. Kawasaki, T. Nagai, and K. Nakashima, Vertex models for two-dimensional grain growth, Philosophical Magazine Part B, vol.53, issue.3, pp.399-421, 1989.
DOI : 10.1080/13642818908205916

D. Weygand, Y. Bréchet, J. Lepinoux, and J. , A vertex dynamics simulation of grain growth in two dimensions, Philosophical Magazine Part B, vol.175, issue.4, pp.329-352, 1998.
DOI : 10.1080/13642819708205718

D. Weygand, Y. Bréchet, and J. Lepinoux, Mechanisms and kinetics of recrystallisation : A two dimensional vertex dynamics simulation, Interface Science, vol.9, issue.3/4, pp.311-317, 2001.
DOI : 10.1023/A:1015175231826

K. Piekos, J. Tarasiuk, K. Wierzbanowski, and B. Bacroix, Generalized vertex model of recrystallization ??? Application to polycrystalline copper, Computational Materials Science, vol.42, issue.4, pp.584-594, 2008.
DOI : 10.1016/j.commatsci.2007.09.014

. Edax, Tsl crystallography. http ://www.edax.com/products/tsl.cfm, Mis en ligne en, 2008.

N. Souai, N. Bozzolo, L. Nazé, Y. Chastel, and R. Logé, About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy, Scripta Materialia, vol.62, issue.11, pp.62851-854, 2010.
DOI : 10.1016/j.scriptamat.2010.02.019

URL : https://hal.archives-ouvertes.fr/hal-00481433

F. Adamski, Plan d'expérience pour les essais de torsion sur le n19. Réunion OR- GANDI du 13 octobre, 2009.

D. P. Field, M. M. Nowell, P. Trivedi, T. M. Lillo, and S. I. Wright, Local orientation gradient and recrystallization of deformed copper, Materials Research, vol.8, pp.225-238, 2005.

S. Dziaszyk, E. J. Payton, F. Friedel, V. Marx, and G. Eggeler, On the characterization of recrystallized fraction using electron backscatter diffraction: A direct comparison to local hardness in an IF steel using nanoindentation, Materials Science and Engineering: A, vol.527, issue.29-30, pp.29-307854, 2010.
DOI : 10.1016/j.msea.2010.08.063

W. Tu and T. Pollock, Deformation and strain storage mechanisms during hightemperature compression of a powder metallurgy nickel-base superalloy, Metallurgical and Materials Transactions A, vol.41, 2002.

S. Mandal, S. K. Mishra, A. Kumar, P. V. Sivaprasad, I. Samajdar et al., Evolution and characterization of dynamically recrystallized microstructure in a titanium-modified austenitic stainless steel using ultrasonic and EBSD techniques, Philosophical Magazine, vol.51, issue.6, pp.883-897, 2008.
DOI : 10.1111/j.0022-2720.2004.01305.x

C. Cayron, Quantification of multiple twinning in face centred cubic materials, Acta Materialia, vol.59, issue.1, pp.252-262, 2011.
DOI : 10.1016/j.actamat.2010.09.029

T. Watanabe, Grain boundary design and control for high temperature materials, Materials Science and Engineering: A, vol.166, issue.1-2, pp.11-28, 1993.
DOI : 10.1016/0921-5093(93)90306-Y

V. Y. Gertsman and K. Tangri, Modelling of intergranular damage propagation, Acta Materialia, vol.45, issue.10, pp.4107-4116, 1997.
DOI : 10.1016/S1359-6454(97)00083-9

B. Alexandreanu, B. H. Sencer, V. Thaveeprungsriporn, and G. S. Was, The effect of grain boundary character distribution on the high temperature deformation behavior of Ni???16Cr???9Fe alloys, Acta Materialia, vol.51, issue.13, pp.513831-3848, 2003.
DOI : 10.1016/S1359-6454(03)00207-6

C. A. Schuh, R. W. Minich, and M. Kumar, Connectivity and percolation in simulated grain-boundary networks, Philosophical Magazine, vol.50, issue.6, pp.711-726, 2003.
DOI : 10.5006/1.3579319

C. A. Schuh, M. Kumar, and W. King, Universal features of grain boundary networks in FCC materials, Journal of Materials Science, vol.83, issue.4, pp.847-852, 2005.
DOI : 10.1007/s10853-005-6500-9

V. Y. Gertsman and K. Tangri, Computer simulation study of grain boundary and triple junction distributions in microstructures formed by multiple twinning, Acta Metallurgica et Materialia, vol.43, issue.6, pp.2317-2324, 1995.
DOI : 10.1016/0956-7151(94)00422-6

D. Stauffer and A. Aharony, Introduction of Percolation Theory. 2 edition, 1994.
DOI : 10.1063/1.2820231

S. Tsurekawai, S. Nakamichi, and T. Watanabe, N18, p/m superalloy for disks : development and applications, In Materials Science Forum, 2006.