C. Website, http://ftp.cmegroup.com/globex/introduction/features-andfunctionality/elements/matching-algorithms .html, p.15

L. Adamopoulos, Cluster models for earthquakes: Regional comparisons, Journal of the International Association for Mathematical Geology, vol.32, issue.1, pp.463-475, 1976.
DOI : 10.1007/BF01028982

Y. Ait-sahalia, P. A. Mykland, and L. Zhang, How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise, Review of Financial Studies, vol.18, issue.2, pp.351-416, 2005.
DOI : 10.1093/rfs/hhi016

Y. Ait-sahalia, P. A. Mykland, and L. Zhang, Ultra high frequency volatility estimation with dependent microstructure noise, Journal of Econometrics, vol.160, issue.1, pp.160-175, 2011.
DOI : 10.1016/j.jeconom.2010.03.028

K. Dayri, E. Bacry, and J. F. Muzy, Econophysics of order-driven markets, pp.155-172, 2011.

R. Almgren, C. Thum, E. Hauptmann, and H. Li, Direct estimation of equity market impact, Risk, vol.30, pp.21-53, 2005.

T. Ané and H. Geman, Order Flow, Transaction Clock, and Normality of Asset Returns, The Journal of Finance, vol.45, issue.5, pp.2259-2284, 2000.
DOI : 10.1111/0022-1082.00286

T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys, (Understanding, optimizing , using and forecasting) realized volatility and correlation. Working paper FIN-99-061, pp.35-76, 1999.

E. Bacry, S. Delattre, M. Hoffmann, and J. Muzy, Modeling microstructure noise with mutually exciting point processes, pp.45-131, 2011.
DOI : 10.1080/14697688.2011.647054

URL : https://hal.archives-ouvertes.fr/hal-00779787/file/BDHM1.pdf

E. Bacry, S. Delattre, M. Hoffmann, and J. Muzy, Scaling limits for hawkes processes, pp.45-132, 2011.

P. Bak, M. Paczuski, and M. Shubik, Price variations in a stock market with many agents, Physica A: Statistical Mechanics and its Applications, vol.246, issue.3-4, pp.430-453, 1997.
DOI : 10.1016/S0378-4371(97)00401-9

F. M. Bandi and J. R. Russell, Separating microstructure noise from volatility, Journal of Financial Economics, vol.79, issue.3, pp.655-692, 2006.
DOI : 10.1016/j.jfineco.2005.01.005

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. M. Bandi and J. R. Russell, Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations, Journal of Econometrics, vol.160, issue.1, pp.145-159, 2011.
DOI : 10.1016/j.jeconom.2010.03.027

O. Barndorff-nielsen, P. Hansen, A. Lunde, and N. Stephard, Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise, SSRN Electronic Journal, vol.76, issue.6, pp.1481-1536, 2008.
DOI : 10.2139/ssrn.620203

M. S. Bartlett, The spectral analysis of point processes, Journal of the Royal Statistical Society. Series B (Methodological), vol.25, issue.2, pp.264-296, 1963.

M. S. Bartlett, The spectral analysis of Two-Dimensional point processes, Biometrika, vol.514, issue.3, pp.299-311, 1964.

L. Bauwens, N. Hautsch, T. Mikosch, J. Kreiss, R. A. Davis et al., Modelling financial high frequency data using point processes, Handbook of Financial Time Series, pp.953-979, 2009.
DOI : 10.1007/978-3-540-71297-8_41

URL : http://edoc.hu-berlin.de/series/sfb-649-papers/2007-66/PDF/66.pdf

T. Bollerslev, I. Domowitz, and J. Wang, Order flow and the bid-ask spread: An empirical probability model of screen-based trading, Journal of Economic Dynamics and Control, vol.21, issue.8-9, pp.1471-1491, 1997.
DOI : 10.1016/S0165-1889(97)00036-5

J. Bouchaud, An introduction to statistical finance. Physica A: Statistical Mechanics and its Applications, pp.238-251, 2002.

J. Bouchaud, J. D. Farmer, and F. Lillo, How markets slowly digest changes in supply and demand, Handbook of Financial Markets: Dynamics and Evolution, pp.57-156, 2008.

J. Bouchaud, Y. Gefen, M. Potters, and M. Wyart, Fluctuations and response in financial markets: the subtle nature of ???random??? price changes, Quantitative Finance, vol.62, issue.2, pp.176-190, 2004.
DOI : 10.1080/713665670

J. Bouchaud, J. Kockelkoren, and M. Potters, Random walks, liquidity molasses and critical response in financial markets, Quantitative Finance, vol.71, issue.2, pp.115-123, 2006.
DOI : 10.1080/14697680500168008

J. Bouchaud and M. Potters, Theory of Financial Risk and Derivative Pricing, pp.13-27, 2003.
DOI : 10.1017/CBO9780511753893

URL : https://hal.archives-ouvertes.fr/hal-00121107

C. G. Bowsher, Modelling security market events in continuous time: Intensity based, multivariate point process models, Journal of Econometrics, vol.141, issue.2, pp.876-912, 2007.
DOI : 10.1016/j.jeconom.2006.11.007

V. Chavez-demoulin, A. C. Davison, and A. J. Mcneil, Estimating value-at-risk: a point process approach, Quantitative Finance, vol.108, issue.2, pp.227-234, 2005.
DOI : 10.1214/aos/1176344070

P. K. Clark, A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices, Econometrica, vol.41, issue.1, pp.135-155, 1973.
DOI : 10.2307/1913889

K. Cohen, R. Conroy, and S. F. Maier, Order flow and the quality of the market, Market Making and the Changing Structure of the Securities Industry. Beard Books, p.22, 2002.

M. M. Dacorogna, R. Gençay, U. A. Müller, R. B. Olsen, and O. V. Pictet, An introduction to high frequency finance, pp.27-53, 2001.

M. G. Daniels, J. D. Farmer, L. Gillemot, G. Iori, and E. Smith, Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random Process, Physical Review Letters, vol.90, issue.10, pp.90108102-90108124, 2003.
DOI : 10.1103/PhysRevLett.90.108102

F. X. Diebold and G. H. Strasser, On the correlation structure of microstructure noise in theory and practice. Working Paper, p.73, 2008.

I. Domowitz and J. Wang, Auctions as algorithms, Journal of Economic Dynamics and Control, vol.18, issue.1, pp.29-60, 1994.
DOI : 10.1016/0165-1889(94)90068-X

P. J. Brantingham, E. Lewis, G. Mohler, and A. Bertozzi, Self-exciting point process models of the insurgency in iraq, p.123, 2011.

Z. Eisler, J. Bouchaud, and J. Kockelkoren, The price impact of order book events: market orders, limit orders and cancellations, Quantitative Finance, vol.19, issue.21, pp.1-25, 2011.

D. Eliezer and I. I. Kogan, Scaling Laws for the Market Microstructure of the Interdealer Broker Markets, SSRN Electronic Journal, vol.9808240, p.22, 1998.
DOI : 10.2139/ssrn.147135

P. Embrechts, J. T. Liniger, and L. Lu, Multivariate Hawkes processes: an application to financial data, Journal of Applied Probability, vol.34, issue.A, pp.367-378, 2011.
DOI : 10.1137/090771272

T. W. Epps, Comovements in stock prices in the very short run, Journal of the American Statiscal Association, vol.74, pp.291-298, 1979.

J. D. Farmer, A. Gerig, F. Lillo, and S. Mike, Market efficiency and the longmemory of supply and demand: is price impact variable and permanent or fixed and temporary? Quantitative Finance, pp.107-112, 2006.

J. D. Farmer, L. Gillemot, F. Lillo, S. Mike, and S. Anindya, What really causes large price changes? Quantitative Finance, pp.383-397, 2004.

J. D. Farmer, P. Patelli, and I. I. Zovko, The predictive power of zero intelligence in financial markets, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.2254-2259, 2005.
DOI : 10.1073/pnas.0409157102

J. Gatheral, No-dynamic-arbitrage and market impact, Quantitative Finance, vol.8, issue.7, pp.749-759, 2010.
DOI : 10.1080/14697680500244411

A. N. Gerig, A theory for market impact: How order flow affects stock price, p.21, 2007.

K. Giesecke and L. R. Goldberg, A top down approach to Multi-Name credit. SSRN eLibrary, p.123, 2007.

L. Gillemot, J. D. Farmer, and F. Lillo, There's more to volatility than volume, Quantitative Finance, vol.8, issue.5, pp.371-384, 2006.
DOI : 10.2307/1912002

URL : http://arxiv.org/abs/physics/0510007

A. Gloter and J. Jacod, Diffusions with measurement errors. I. Local Asymptotic Normality, ESAIM: Probability and Statistics, vol.5, pp.225-242, 2001.
DOI : 10.1051/ps:2001110

URL : http://archive.numdam.org/article/PS_2001__5__243_0.pdf

A. Gloter and J. Jacod, Diffusions with measurement errors. II. Optimal estimators, ESAIM: Probability and Statistics, vol.5, pp.243-260, 2001.
DOI : 10.1051/ps:2001111

URL : http://archive.numdam.org/article/PS_2001__5__243_0.pdf

A. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, vol.58, issue.1, pp.83-90, 1971.
DOI : 10.1093/biomet/58.1.83

A. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, vol.58, issue.1, pp.33-3438, 1971.
DOI : 10.1093/biomet/58.1.83

P. Hewlett, Clustering of order arrivals, price impact and trade path optimisation, Workshop on Financial Modeling with Jump processes, pp.45-145, 2006.

M. Hoffmann, A. Munk, and J. Schmidt-hieber, Nonparamtreic estimation of the volatility under microstructure noise. 2010. arxiv:1007, Math arXiv Preprint, vol.4622, p.73

J. Jacod, Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter, Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Process, Appl, vol.119, issue.7, pp.2249-2276, 2009.

M. Krumin, I. Reutsky, and S. Shoham, Correlation-Based Analysis and Generation of Multiple Spike Trains Using Hawkes Models with an Exogenous Input, Frontiers in Computational Neuroscience, vol.4, pp.12-152, 2010.
DOI : 10.3389/fncom.2010.00147

J. Large, Measuring the resiliency of an electronic limit order book, Journal of Financial Markets, vol.10, issue.1, pp.1-25, 2007.
DOI : 10.1016/j.finmar.2006.09.001

E. Lewis and G. Mohler, A nonparametric EM algorithm for a multiscale hawkes process, Joint Satistical Meetings, p.124, 2011.

F. Lillo and J. D. Farmer, The Long Memory of the Efficient Market, Studies in Nonlinear Dynamics & Econometrics, vol.8, issue.3, p.52, 2004.
DOI : 10.2202/1558-3708.1226

J. T. Liniger, Multivariate Hawkes Processes, p.123, 2009.

B. Mandelbrot, The Variation of Certain Speculative Prices, The Journal of Business, vol.36, issue.4, pp.394-421, 1963.
DOI : 10.1086/294632

B. Mandelbrot and H. W. Taylor, On the Distribution of Stock Price Differences, Operations Research, vol.15, issue.6, pp.1057-1062, 1967.
DOI : 10.1287/opre.15.6.1057

D. Marsan and O. Lengliné, Extending Earthquakes' Reach Through Cascading, Science, vol.319, issue.5866, pp.3191076-1079, 2008.
DOI : 10.1126/science.1148783

URL : https://hal.archives-ouvertes.fr/insu-00334983

S. Maslov, Simple model of a limit order-driven market. Physica A: Statistical Mechanics and its Applications, pp.3-4571, 2000.

H. Mendelson, Market Behavior in a Clearing House, Econometrica, vol.50, issue.6, pp.1505-1524, 1982.
DOI : 10.2307/1913393

G. Mohler, M. Short, P. Brantingham, F. Schoenberg, and G. Tita, Self-Exciting Point Process Modeling of Crime, Journal of the American Statistical Association, vol.106, issue.493, pp.100-108, 2011.
DOI : 10.1198/jasa.2011.ap09546

A. Munk and J. Schmidt-hieber, Nonparametric estimation of the volatility function in a high-frequency model corrupted by noise, Electronic Journal of Statistics, vol.4, issue.0, p.73, 2009.
DOI : 10.1214/10-EJS568

A. Munk and J. Schmidt-hieber, Lower bounds for volatility estimation in microstructure noise models. A Festschrift for Larry Brown, IMS Lecture Notes Series, p.73, 2010.

M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, p.71, 2004.
DOI : 10.1007/978-3-662-22132-7

Y. Ogata, On Lewis' simulation method for point processes, IEEE Transactions on Information Theory, vol.27, issue.1, pp.23-31, 1981.
DOI : 10.1109/TIT.1981.1056305

Y. Ogata, Seismicity Analysis through Point-process Modeling: A Review, pure and applied geophysics, vol.155, issue.2-4, pp.471-507, 1999.
DOI : 10.1007/s000240050275

Y. Ogata and H. Akaike, On linear intensity models for mixed doubly stochastic poisson and self-exciting point processes ArticleType: research-article / Full publication date: 1982 / Copyright Â?, Journal of the Royal Statistical Society. Series B (Methodological) Royal Statistical Society, vol.44, issue.1, pp.102-107, 1982.

J. Onnela, J. Tã?yli, and K. Kaski, Tick size and stock returns. Physica A: Statistical Mechanics and its Applications, pp.441-454, 2009.
DOI : 10.1016/j.physa.2008.10.014

C. Roel and . Oomen, Statistical models for high frequency security prices. SSRN eLibrary, p.74, 2002.

T. Ozaki, Maximum likelihood estimation of Hawkes' self-exciting point processes, Annals of the Institute of Statistical Mathematics, vol.18, issue.1, pp.145-155, 1979.
DOI : 10.1007/BF02480272

R. E. Paley and N. Wiener, Fourier transforms in the complex domain, p.136, 1934.

M. Podolskij and M. Vetter, Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps, Bernoulli, vol.15, issue.3, pp.634-658, 2009.
DOI : 10.3150/08-BEJ167

M. Reiß, Asymptotic equivalence and sufficiency for volatility estimation under microstructure noise, Math arXiv Preprint, p.73, 2010.

P. Reynaud-bouret and S. Schbath, Adaptive estimation for hawkes processes; application to genome analysis. The Annals of Statistics, MathSciNet): MR2722456, pp.2781-2822, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00863958

C. Y. Robert and M. Rosenbaum, A New Approach for the Dynamics of Ultra-High-Frequency Data: The Model with Uncertainty Zones, Journal of Financial Econometrics, vol.9, issue.2, pp.19-84, 2010.
DOI : 10.1093/jjfinec/nbq023

URL : https://hal.archives-ouvertes.fr/hal-00659614

Y. Christian, M. Robert, and . Rosenbaum, A New Approach for the Dynamics of Ultra-High-Frequency Data: The Model with Uncertainty Zones. Forthcoming, Journal of Financial Econometrics, vol.57, p.18, 2010.

C. Y. Robert and M. Rosenbaum, A New Approach for the Dynamics of Ultra-High-Frequency Data: The Model with Uncertainty Zones, Journal of Financial Econometrics, vol.9, issue.2, p.73, 2009.
DOI : 10.1093/jjfinec/nbq023

URL : https://hal.archives-ouvertes.fr/hal-00659614

M. Rosenbaum, A new microstructure noise index Quantitative Finance, p.73, 2007.

B. Seo, Realized volatility and colored market microstructure noise. Manuscript, p.73, 2005.

F. Slanina, Mean-field approximation for a limit order driven market model, Physical Review E, vol.64, issue.5, pp.56136-11736043, 2001.
DOI : 10.1103/PhysRevE.64.056136

E. Smith, J. D. Farmer, L. Gillemot, and S. Krishnamurthy, Statistical theory of the continuous double auction, Quantitative Finance, vol.3, issue.6, pp.481-514, 2003.
DOI : 10.1017/CBO9780511755767

L. Tang and G. Tian, Reaction-diffusion-branching models of stock price fluctuations . Physica A: Statistical and Theoretical Physics, pp.543-550, 1999.

I. M. Toke, Econophysics of order-driven markets. chapterMarket making" behaviour in an order book model and its impact on the bid-ask spread, p.34, 2011.

A. E. Veraart and M. Winkel, Time change. In Encyclopedia of Quantitative Finance, p.27, 2010.

D. Vere and -. , Stochastic models for earthquake occurrence, Journal of the Royal Statistical Society. Series B (Methodological), vol.32, issue.1, pp.1-62, 1970.

D. Vere-jones and T. Ozaki, Some examples of statistical estimation applied to earthquake data, Annals of the Institute of Statistical Mathematics, vol.26, issue.3, pp.189-207, 1982.
DOI : 10.1007/BF02481022

M. Wyart, J. Bouchaud, J. Kockelkoren, M. Potters, and M. Vettorazzo, Relation between bid???ask spread, impact and volatility in order-driven markets, Quantitative Finance, vol.8, issue.1, pp.41-57, 2008.
DOI : 10.1080/14697680400008619

L. Zhang, Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach, Bernoulli, vol.12, issue.6, pp.1019-1043, 2006.
DOI : 10.3150/bj/1165269149

L. Zhang, P. Mykland, and Y. Ait-sahalia, A Tale of Two Time Scales, Journal of the American Statistical Association, vol.100, issue.472, pp.1394-1411, 2005.
DOI : 10.1198/016214505000000169

J. Zhuang, Y. Ogata, and D. , Stochastic Declustering of Space-Time Earthquake Occurrences, Journal of the American Statistical Association, vol.97, issue.458, pp.369-380, 2002.
DOI : 10.1198/016214502760046925