T. Okumura, The Tokyo Subway Sarin Attack: Disaster Management, Part 1: Community Emergency Response, Academic Emergency Medicine, vol.42, issue.6, pp.613-617, 1998.
DOI : 10.1111/j.1553-2712.1998.tb02470.x

F. Barnaby, « The Role and Control of Weapons in the 1990's, 1992.
DOI : 10.4324/9780203168318

«. La and F. Au-terrorisme, Livre blanc du Gouvernement sur la sécurité intérieure face au terrorisme -La Documentation française

D. S. Moore, Instrumentation for trace detection of high explosives, Review of Scientific Instruments, vol.75, issue.8, p.2499, 2004.
DOI : 10.1063/1.1771493

J. C. Oxley, J. L. Smith, E. J. Shinde, and . Moran, Determination of the Vapor Density of Triacetone Triperoxide (TATP) Using a Gas Chromatography Headspace Technique, Propellants, Explosives, Pyrotechnics, vol.63, issue.2, pp.127-130, 2005.
DOI : 10.1002/prep.200400094

L. Thiesan, D. Hannum, D. W. Murray, and J. E. Parmeter, « Survey of commercially available explosives detection technologies and equipment, Rockville MD: National Criminal Justice Reference Service, 2004.

J. A. Young, Acetic Anhydride, Journal of Chemical Education, vol.78, issue.9, p.1176, 2001.
DOI : 10.1021/ed078p1176

J. Janata, Principles of Chemical Sensors, 2009.
DOI : 10.1007/978-1-4757-6257-0

G. Korotcenkov, Chemical Sensors, General Approaches Momentum Pr, vol.1, issue.1, 2010.

P. W. Atkins and J. D. Paula, Atkins' Physical chemistry, 2010.

K. Arshak, E. Moore, G. M. Lyons, J. Harris, and E. S. Clifford, A review of gas sensors employed in electronic nose applications, Sensor Review, vol.24, issue.2, pp.181-198, 2004.
DOI : 10.1108/02602280410525977

G. Tortissier, Étude et développement d'une plateforme de détection chimique à ondes acoustiques de surface pour environnement sévère haute température, 2009.

V. Cimalla, Nanoelectromechanical devices for sensing applications, Nanoelectromechanical devices for sensing applications, pp.24-34, 2007.
DOI : 10.1016/j.snb.2006.10.049

M. Debliquy, Capteurs de Gaz a Semi-Conducteurs, 2006.

M. E. Franke and T. J. Koplin, Simon, « Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?, pp.36-50, 2006.

A. Oprea, N. Barsan, and E. U. Weimar, Work function changes in gas sensitive materials: Fundamentals and applications, Sensors and Actuators B: Chemical, vol.142, issue.2, pp.470-493, 2009.
DOI : 10.1016/j.snb.2009.06.043

K. Potje-kamloth, Semiconductor Junction Gas Sensors, Chemical Reviews, vol.108, issue.2, pp.367-399, 2008.
DOI : 10.1021/cr0681086

D. Won and W. Yang, « The State of-the-Art in Sensor Technology forDemand- Controlled Ventilation, pp.36-38

A. D. Wilson and M. Baietto, Applications and Advances in Electronic-Nose Technologies, Sensors, vol.9, issue.7, pp.5099-5148, 2009.
DOI : 10.3390/s90705099

C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, Overview of Sensors and Needs for Environmental Monitoring, Sensors, vol.5, issue.1, pp.4-37, 2005.
DOI : 10.3390/s5010004

R. Saito, G. Dresselhaus, M. S. Dresselhaus, and K. , Physical properties of carbon nanotubes. Imperial college press London, 1998.

S. Reich, J. Maultzsch, and C. Thomsen, Tight-binding description of graphene, Physical Review B, vol.66, issue.3, p.35412, 2002.
DOI : 10.1103/PhysRevB.66.035412

W. S. Su, T. C. Leung, and C. T. Chan, Work function of single-walled and multiwalled carbon nanotubes: First-principles study, Physical Review B, vol.76, issue.23, p.235413, 2007.
DOI : 10.1103/PhysRevB.76.235413

S. Heinze, J. Tersoff, R. Martel, V. Derycke, and J. Appenzeller, Carbon Nanotubes as Schottky Barrier Transistors, Physical Review Letters, vol.89, issue.10, p.106801, 2002.
DOI : 10.1103/PhysRevLett.89.106801

G. Seifert, T. Köhler, and E. T. Frauenheim, Molecular wires, solenoids, and capacitors by sidewall functionalization of carbon nanotubes, Applied Physics Letters, vol.77, issue.9, p.1313, 2000.
DOI : 10.1063/1.1289263

Y. Ando, Carbon Nanotubes at As-Grown Top Surface of Columnar Carbon Deposit, no. 9B Part 2, 1993.
DOI : 10.1143/JJAP.32.L1342

D. S. Bethune, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, issue.6430, 1993.
DOI : 10.1038/363605a0

C. Journet, « Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, vol.388, issue.6644, pp.756-757, 1997.

M. Wilson, Nanotechnology: basic science and emerging technologies, 2002.
DOI : 10.1201/9781420035230

M. J. Yacaman, M. Miki-yoshida, L. Rendon, and J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, vol.62, issue.2, pp.202-204, 1993.
DOI : 10.1063/1.109315

M. Chen, C. M. Chen, and C. F. Chen, « Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature, Journal of Materials Science, vol.37, issue.17, pp.3561-3567, 2002.
DOI : 10.1023/A:1016544001173

B. Schottky-À-l-'interface-nanotube, /. , .. Un, and C. , 67 III.2.2. Transistors à nanotubes, 74 III.2.4. Courant tunnel 80 III.2.8. Influence des espèces gazeuses sur la conduction, p.90

J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi et al., In situ observation of graphene sublimation and multi-layer edge reconstructions, Proceedings of the National Academy of Sciences, pp.10103-10108, 2009.
DOI : 10.1073/pnas.0905193106

M. Freitag, J. C. Tsang, A. Bol, D. Yuan, and J. Liu, Imaging of the Schottky Barriers and Charge Depletion in Carbon Nanotube Transistors, Nano Letters, vol.7, issue.7, pp.2037-2042, 2007.
DOI : 10.1021/nl070900e

T. Yamada, Modeling of kink-shaped carbon-nanotube Schottky diode with gate bias modulation, Applied Physics Letters, vol.80, issue.21, 2002.
DOI : 10.1063/1.1481213

N. Peng, H. Li, and E. Q. Zhang, Nanoscale Contacts between Carbon Nanotubes and Metallic Pads, ACS Nano, vol.3, issue.12, pp.4117-4121, 2009.
DOI : 10.1021/nn9012516

J. Svensson, The dependence of the Schottky barrier height on carbon nanotube diameter for Pd???carbon nanotube contacts, Nanotechnology, vol.20, issue.17, p.175204, 2009.
DOI : 10.1088/0957-4484/20/17/175204

J. Appenzeller, M. Radosavljevi?, and J. Knoch, Tunneling Versus Thermionic Emission in One-Dimensional Semiconductors, Physical Review Letters, vol.92, issue.4, p.48301, 2004.
DOI : 10.1103/PhysRevLett.92.048301

W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li et al., Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors, Nano Letters, vol.3, issue.2, pp.193-198, 2003.
DOI : 10.1021/nl0259232

T. Umesaka, H. Ohnaka, Y. Ohno, S. Kishimoto, K. Maezawa et al., Surface Potential Measurement of Carbon Nanotube Field-Effect Transistors Using Kelvin Probe Force Microscopy, Japanese Journal of Applied Physics, vol.46, issue.4B, pp.2496-2500, 2007.
DOI : 10.1143/JJAP.46.2496

M. Y. Marcus-rinki, Effect of humidity on the hysteresis of single walled carbon nanotube field-effect transistors, physica status solidi (b), pp.2315-2318, 2008.

D. Sung, study of the effect of water adsorption on the carbon nanotube field-effect transistor, Applied Physics Letters, vol.89, issue.24, 2006.
DOI : 10.1063/1.2397543

A. Robert-peillard and S. V. Rotkin, Modeling Hysteresis Phenomena in Nanotube Field-Effect Transistors, IEEE Transactions On Nanotechnology, vol.4, issue.2, pp.284-288, 2005.
DOI : 10.1109/TNANO.2004.842053

J. Kong, Nanotube Molecular Wires as Chemical Sensors, Science, vol.287, issue.5453, p.622, 2000.
DOI : 10.1126/science.287.5453.622

J. Zhang, A. Boyd, A. Tselev, M. Paranjape, and E. P. Barbara, Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors, Applied Physics Letters, vol.88, issue.12, p.123112, 2006.
DOI : 10.1063/1.2187510

N. Peng, passivation, Nanotechnology, vol.19, issue.46, p.465201, 2008.
DOI : 10.1088/0957-4484/19/46/465201

N. Peng, Q. Zhang, C. L. Chow, O. K. Tan, and N. Marzari, Gas Detection, Sensing Mechanisms for Carbon Nanotube Based NH3 Gas Detection, pp.1626-1630, 2009.
DOI : 10.1021/nl803930w

T. Yamada, « Modeling of carbon nanotube Schottky barrier modulation under oxidizing conditions », Physical review B. Condensed matter and materials physics, pp.125408-125408, 2004.

T. Yamada, Equivalent circuit model for carbon nanotube Schottky barrier: Influence of neutral polarized gas molecules, Applied Physics Letters, vol.88, issue.8, p.83106, 2006.
DOI : 10.1063/1.2177356

B. Shan and K. Cho, study of Schottky barriers at metal-nanotube contacts, Physical Review B, vol.70, issue.23, p.233405, 2004.
DOI : 10.1103/PhysRevB.70.233405

V. Derycke, R. Martel, and J. Appenzeller, Controlling doping and carrier injection in carbon nanotube transistors, Applied Physics Letters, vol.80, issue.15, pp.2773-2775, 2002.
DOI : 10.1063/1.1467702

A. Javey, J. Guo, Q. Wang, M. Lundstrom, and E. H. Dai, Ballistic carbon nanotube field-effect transistors, Ballistic carbon nanotubes field effect transistors, pp.654-657, 2003.
DOI : 10.1038/nature01797

J. Janata and M. Josowicz, Chemical Modulation of Work Function as a Transduction Mechanism for Chemical Sensors, Accounts of Chemical Research, vol.31, issue.5, pp.241-248, 1998.
DOI : 10.1021/ar9700668

J. Janata, Chemical modulation of the electron work function, Analytical Chemistry, vol.63, issue.22, pp.2546-2550, 1991.
DOI : 10.1021/ac00022a003

H. Conrad, G. Ertl, and E. E. Latta, Adsorption of hydrogen on palladium single crystal surfaces, Surface Science, vol.41, issue.2, pp.435-446, 1974.
DOI : 10.1016/0039-6028(74)90060-0

E. S. Snow, J. P. Novak, P. M. Campbell, and E. D. Park, Random networks of carbon nanotubes as an electronic material, Applied Physics Letters, vol.82, issue.13, p.2145, 2003.
DOI : 10.1063/1.1564291

I. Chapitre, Transistor à nanotube unique Transistor à nanotube unique Chapitre 4

A. Aerographe, . Pour, and .. Grande-surface, 107 IV.3.2. Caractérisation des nanotubes, 122 IV.6. CONCLUSION, p.124

G. E. Pike and C. H. Seager, Percolation and conductivity: A computer study. I, Physical Review B, vol.10, issue.4, p.1421, 1974.
DOI : 10.1103/PhysRevB.10.1421

M. S. Fuhrer, Crossed Nanotube Junctions, Science, vol.288, issue.5465, p.494, 2000.
DOI : 10.1126/science.288.5465.494

A. A. Odintsov, Schottky Barriers in Carbon Nanotube Heterojunctions, Schottky Barriers in Carbon Nanotube Heterojunctions, p.150, 2000.
DOI : 10.1103/PhysRevLett.85.150

D. Sun, Flexible high-performance carbon nanotube integrated circuits, Nature Nanotechnology, vol.17, issue.3, pp.156-161, 2011.
DOI : 10.1038/nnano.2011.1

R. M. Tromp, A. Afzali, M. Freitag, D. B. Mitzi, and E. Z. Chen, Novel Strategy for Diameter-Selective Separation and Functionalization of Single-Wall Carbon Nanotubes, Nano Letters, vol.8, issue.2, pp.469-472, 2011.
DOI : 10.1021/nl072437b

S. Nagasawa, M. Yudasaka, K. Hirahara, T. Ichihashi, and E. S. Iijima, Effect of oxidation on single-wall carbon nanotubes, Chemical Physics Letters, vol.328, issue.4-6, pp.4-6, 2000.
DOI : 10.1016/S0009-2614(00)00960-X

C. Yang, Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas, Physical Review B, vol.73, issue.7, p.75419, 2006.
DOI : 10.1103/PhysRevB.73.075419

G. Zhang, Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction, Science, vol.314, issue.5801, pp.974-977, 2006.
DOI : 10.1126/science.1133781

R. Krupke, F. Hennrich, H. Löhneysen, and M. M. Kappes, Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes, Science, vol.301, issue.5631, p.344, 2003.
DOI : 10.1126/science.1086534

H. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, and H. K. Schmidt, Dielectrophoresis Field Flow Fractionation of Single-Walled Carbon Nanotubes, Dielectrophoresis field flow fractionation of single-walled carbon nanotubes, pp.8396-8397, 2006.
DOI : 10.1021/ja0621501

H. Liu, Y. Feng, T. Tanaka, Y. Urabe, E. H. Kataura et al., Diameter-Selective Metal/Semiconductor Separation of Single-wall Carbon Nanotubes by Agarose Gel, The Journal of Physical Chemistry C, vol.114, issue.20, pp.9270-9276, 2010.
DOI : 10.1021/jp1017136

M. C. Hersam, Progress towards monodisperse single-walled carbon nanotubes, Nature Nanotechnology, vol.3, issue.7, pp.387-394, 2008.
DOI : 10.1038/nnano.2008.135

K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and E. M. Korobov, Organic Solvent Dispersions of Single-Walled Carbon Nanotubes:?? Toward Solutions of Pristine Nanotubes, The Journal of Physical Chemistry B, vol.104, issue.38, pp.8911-8915, 2000.
DOI : 10.1021/jp002555m

R. Bandyopadhyaya, E. Nativ-roth, O. Regev, and R. Yerushalmi-rozen, Stabilization of Individual Carbon Nanotubes in Aqueous Solutions, Stabilization of Individual Carbon Nanotubes in Aqueous Solutions, pp.25-28, 2011.
DOI : 10.1021/nl010065f

J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han et al., Carbon Nanotube Sensors for Gas and Organic Vapor Detection, Nano Letters, vol.3, issue.7, pp.929-933, 2003.
DOI : 10.1021/nl034220x

J. Song, Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern, Nanotechnology, vol.19, issue.9, p.95702, 2008.
DOI : 10.1088/0957-4484/19/9/095702

X. Han, D. C. Janzen, J. Vaillancourt, and E. X. Lu, « Printable high-speed thin-film transistor on flexible substrate using carbon nanotube solution », Micro Nano Lett, pp.96-98, 2007.

Y. Kim, N. Minami, W. Zhu, S. Kazaoui, R. Azumi et al., Langmuir???Blodgett Films of Single-Wall Carbon Nanotubes: Layer-by-layer Deposition and In-plane Orientation of Tubes, Japanese Journal of Applied Physics, vol.42, issue.Part 1, No. 12, pp.7629-7634, 2003.
DOI : 10.1143/JJAP.42.7629

Y. Guo, N. Minami, S. Kazaoui, J. Peng, M. Yoshida et al., Multi-layer LB films of single-wall carbon nanotubes, Physica B: Condensed Matter, vol.323, issue.1-4, pp.235-236, 2002.
DOI : 10.1016/S0921-4526(02)00975-4

S. Soliveres, 1???f noise and percolation in carbon nanotube random networks, Applied Physics Letters, vol.90, issue.8, p.82107, 2007.
DOI : 10.1063/1.2709853

URL : https://hal.archives-ouvertes.fr/hal-00327129

J. H. Shin, D. W. Shin, S. P. Patole, J. H. Lee, S. M. Park et al., Smooth, transparent, conducting and flexible SWCNT films by filtration???wet transfer processes, Journal of Physics D: Applied Physics, vol.42, issue.4, p.45305, 2009.
DOI : 10.1088/0022-3727/42/4/045305

C. Lim, Direct patterning of carbon nanotube network devices by selective vacuum filtration, Applied Physics Letters, vol.91, issue.24, p.243117, 2007.
DOI : 10.1063/1.2824575

C. M. Hansen, Hansen solubility parameters: a user's handbook. CRC, 2007.

P. Perrin and D. Hourdet, Polymères en solution, 1997.

«. Coleman and . Multicomponent, Solubility Parameters for Single-Walled Carbon Nanotube?Solvent Mixtures, ACS Nano, vol.3, issue.8, pp.2340-2350, 2011.

D. Bégin and M. , Gérin, I. de recherche en santé et en sécurité du travail du Québec, et U. de M. D. de médecine du travail et d'hygiène du milieu, La substitution des solvants par la N-méthyl-2-pyrrolidone, 1999.

E. W. Flick, Industrial solvents handbook, 1998.

J. Burke, « Solubility parameters: theory and application, 1984.

S. Kumar, J. Y. Murthy, and M. A. Alam, Percolating Conduction in Finite Nanotube Networks, Percolating Conduction in Finite Nanotube Networks, p.66802, 2005.
DOI : 10.1103/PhysRevLett.95.066802

T. Mustonen, Controlled Ohmic and nonlinear electrical transport in inkjet-printed single-wall carbon nanotube films, Physical Review B, vol.77, issue.12, p.125430, 2008.
DOI : 10.1103/PhysRevB.77.125430

V. 1. Sommaire, . Transistors, . Tapis, . De, . De et al., 130 V.2 TECHNIQUES, p.131

«. Mcgill, Nerve agent detection using networks of single-walled carbon nanotubes, Applied physics letters, vol.83, issue.19, pp.4026-4028, 2003.

J. Li, Y. Lu, Q. Ye, and L. Delzeit, A Gas Sensor Array Using Carbon Nanotubes and Microfabrication Technology, Electrochemical and Solid-State Letters, vol.8, issue.11, p.100, 2005.
DOI : 10.1149/1.2063289

A. Lu, A carbon-nanotube-based sensor array for formaldehyde detection, Nanotechnology, vol.22, issue.5, p.55502, 2011.
DOI : 10.1088/0957-4484/22/5/055502

C. Staii, A. T. Johnson, M. Chen, and E. A. Gelperin, DNA-Decorated Carbon Nanotubes for Chemical Sensing, DNA-Decorated Carbon Nanotubes for Chemical Sensing, pp.1774-1778, 2011.
DOI : 10.1021/nl051261f

M. Delalande, ChemInform Abstract: Chemical Functionalization of Electrodes for Detection of Gaseous Nerve Agents with Carbon Nanotube Field-Effect Transistors., ChemInform, vol.47, issue.35, 2011.
DOI : 10.1002/chin.201135170

A. Star, V. Joshi, S. Skarupo, D. Thomas, and J. P. Gabriel, Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes, Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes, pp.21014-21020, 2006.
DOI : 10.1021/jp064371z

J. Kong, M. G. Chapline, and E. H. Dai, Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors, Advanced Materials, vol.13, issue.18, pp.1384-1386, 2001.
DOI : 10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8

P. Qi, Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection, Nano Letters, vol.3, issue.3, pp.347-352, 2003.
DOI : 10.1021/nl034010k

A. Star, Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes, Angewandte Chemie, vol.103, issue.9, pp.1771-1775, 2001.
DOI : 10.1002/1521-3757(20010504)113:9<1771::AID-ANGE17710>3.0.CO;2-Y

J. Lim, N. Phiboolsirichit, S. Mubeen, M. A. Deshusses, A. Mulchandani et al., Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes, Nanotechnology, vol.21, issue.7, p.75502, 2010.
DOI : 10.1088/0957-4484/21/7/075502

Y. Chen, Y. D. Lee, H. Vedala, B. L. Allen, and E. A. Star, Exploring the Chemical Sensitivity of a Carbon Nanotube/Green Tea Composite, Exploring the Chemical Sensitivity of a Carbon Nanotube/Green Tea Composite, pp.6854-6862, 2010.
DOI : 10.1021/nn100988t

T. Zhang, Recent progress in carbon nanotube-based gas sensors, Nanotechnology, vol.19, issue.33, p.332001, 2008.
DOI : 10.1088/0957-4484/19/33/332001

J. I. Sznajder, Increased Hydrogen Peroxide in the Expired Breath of Patients with Acute Hypoxemic Respiratory Failure, Chest, vol.96, issue.3, p.606, 1989.
DOI : 10.1378/chest.96.3.606

. La-réalisation-d-'un-profil-casquette and . Permet, lors du lift-off, à la résine de ne pas accrocher le métal en s'enlevant et ainsi de ne pas former de bourrelets sur les bords de l'électrode. En effet lors de l'insolation de la seconde résine, la première (celle du dessous) est sur-insolée par réflexion et des poches se forment