F. Abe, Creep rates and strengthening mechanisms in tungsten-trengthened 9Cr steels, General conclusions and recommendations for further work References References Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.770-773, 2001.

F. Abe, Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr???W steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.565-569, 2004.
DOI : 10.1016/j.msea.2004.01.057

F. Abe, Creep life estimation of Gr.91 based on creep strain analysis, Materials at High Temperatures, vol.89, issue.2, pp.75-84, 2011.
DOI : 10.1007/BF02801164

. Aghajani, On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel, Acta Materialia, vol.57, issue.17, pp.575093-5106, 2009.
DOI : 10.1016/j.actamat.2009.07.010

. Armas, Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels, Journal of Nuclear Materials, vol.329, issue.333, pp.252-256, 2004.
DOI : 10.1016/j.jnucmat.2004.04.045

. Armas, Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels, Journal of Nuclear Materials, vol.307, issue.311, pp.509-513, 2002.
DOI : 10.1016/S0022-3115(02)01086-3

F. Armstrong, P. J. Armstrong, C. O. Frederick, and C. E. , A mathematical representation of the multiaxial bauschinger effect, 1966.

. Barcelo, Orientation relationship in various 9%Cr ferritic/martensitic steels???EBSD comparison between Nishiyama???Wassermann, Kurdjumov???Sachs and Greninger???Troiano, Phase Transitions, vol.185, issue.8, pp.83601-614, 2010.
DOI : 10.1016/0956-7151(90)90180-O

. Barcelo, Orientation relationship in Eurofer martensitic steels, Phase Transitions, vol.2, issue.11, pp.82808-820, 2009.
DOI : 10.1179/026708300773002636

. References, . Berveiller, . Zaoui, M. Berveiller, and A. Zaoui, Extension of the self-consistent scheme to plastically-flowing polycrystals, Journal of the Mechanics and Physics of Solids, vol.26, issue.5, pp.325-344, 1978.

H. K. Bhadeshia, Bainite in steels, Metallurgical Transactions A, vol.22, issue.2, 2001.
DOI : 10.1007/BF02656561

URL : https://hal.archives-ouvertes.fr/jpa-00255655

W. Blum, Creep of crystalline materials: experimental basis, mechanisms and models, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.8-15, 2001.
DOI : 10.1016/S0921-5093(00)02010-4

W. Blum and P. Eisenlohr, Dislocation mechanics of creep, Materials Science And Engineering A -Structural Materials Properties Microstructure and Processing, pp.510-117, 2009.
DOI : 10.1016/j.msea.2008.04.110

J. Brachet, Alliages martensitiques 9Cr-1Mo : effets de l'addition de l'azote, du niobium et du vanadium sur la microstructure, les transformations de phase et les propriétés mécaniques, 1991.

L. M. Brown, A dipole model for the cross-slip of screw dislocations in fcc metals, Philosophical Magazine A, vol.82, issue.9, pp.1691-1711, 2002.
DOI : 10.1080/01418610210130976

L. M. Brown, Dislocation bowing and passing in persistent slip bands, Philosophical Magazine, vol.82, issue.25-26, pp.25-264055, 2006.
DOI : 10.1002/pssa.2211490120

URL : https://hal.archives-ouvertes.fr/hal-00513646

. Caillard, . Martin, D. Caillard, and J. L. Martin, Microstructure of aluminium during creep at intermediate temperature???I. dislocation networks after creep, Acta Metallurgica, vol.30, issue.2, pp.437-445, 1982.
DOI : 10.1016/0001-6160(82)90224-3

. Caillard, . Martin, D. Caillard, and J. L. Martin, Microstructure of aluminium during creep at intermediate temperature???II. In situ study of subboundary properties, Acta Metallurgica, vol.30, issue.4, pp.791-798, 1982.
DOI : 10.1016/0001-6160(82)90077-3

D. Caillard and J. L. Martin, Thermally activated mechanisms in crystal plasticity, Pergamon Materials Series, vol.8, 2003.

G. Cailletaud, A micromechanical approach to inelastic behaviour of metals, International Journal of Plasticity, vol.8, issue.1, pp.55-73, 1992.
DOI : 10.1016/0749-6419(92)90038-E

. Cerri, Evolution of microstructure in a modified 9Cr???1Mo steel during short term creep, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.285-292, 1998.
DOI : 10.1016/S0921-5093(97)00717-X

J. L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, International Journal of Plasticity, vol.5, issue.3, pp.247-302, 1989.
DOI : 10.1016/0749-6419(89)90015-6

J. L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, vol.24, issue.10, pp.1642-1693, 2008.
DOI : 10.1016/j.ijplas.2008.03.009

. Choudhary, High temperature low cycle fatigue properties of a thick-section 9wt.%Cr-1wt, %Mo ferritic steel forging. Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.267-278, 1991.

C. , N. Conrad, H. Narayan, and J. , On the grain size softening in nanocrystalline materials, Scripta Materialia, issue.11, pp.421025-1030, 2000.

A. H. Cottrell, Dislocations and Plastic Flow in Crystals, American Journal of Physics, vol.22, issue.4, 1953.
DOI : 10.1119/1.1933704

. Devincre, Collinear interactions of dislocations and slip systems, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.400-401182, 2005.
DOI : 10.1016/j.msea.2005.02.071

URL : https://hal.archives-ouvertes.fr/hal-00019070

. Devincre, Dislocation Mean Free Paths and Strain Hardening of Crystals, Science, vol.320, issue.5884, pp.1745-1748, 2008.
DOI : 10.1126/science.1156101

E. Differt, K. Differt, and U. Essmann, Dynamic model of the wall structure in persistent slip bands of fatigued metals. I. Dynamical model of edge dislocation walls, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.295-299, 1993.

. Dlouh´ydlouh´y, Long-term creep and creep rupture characteristics of TiAl-base intermetallics, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.510-511350, 2009.

. Dronhofer, On the nature of internal interfaces in tempered martensite ferritic steels, Zeitschrift f??r Metallkunde, vol.94, issue.5, pp.94511-520, 2003.
DOI : 10.3139/146.030511

. Dubey, Effects of cyclic deformation on subgrain evolution and creep in 9???12% Cr-steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.152-159, 2005.
DOI : 10.1016/j.msea.2005.06.029

. Dumoulin, Determination of the equivalent stress???equivalent strain relationship of a copper sample under tensile loading, Journal of Materials Processing Technology, vol.133, issue.1-2, pp.79-83, 2003.
DOI : 10.1016/S0924-0136(02)00247-9

URL : https://hal.archives-ouvertes.fr/hal-00258215

D. Dunn, C. G. Dunn, and F. W. Daniels, Formation and behavior of subboundaries in silicon iron crystals. Transactions of the American Institute of Mining and Metallurgical Engineers, pp.147-154, 1951.

. Dupuy, L. Dupuy, and M. C. Fivel, A study of dislocation junctions in FCC metals by an orientation dependent line tension model, Acta Materialia, vol.50, issue.19, pp.504873-4885, 2002.
DOI : 10.1016/S1359-6454(02)00356-7

. Earthman, Deformation and damage processes in a 12%Cr???Mo???V steel under high temperature low cycle fatigue conditions in air and vacuum, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.103-114, 1989.
DOI : 10.1016/0921-5093(89)90161-5

G. Eggeler, The effect of long-term creep on particle coarsening in tempered martensite ferritic steels, Acta Metallurgica, vol.37, issue.12, pp.3225-3234, 1989.
DOI : 10.1016/0001-6160(89)90194-6

. References, . Eggeler, . Dlouh´ydlouh´y, G. Eggeler, and A. Dlouh´ydlouh´y, Boron segregation and creep in ultrafine grained tempered martensite ferritic steels, pp.743-748, 2005.

. Eggeler, Microstructural study of creep rupture in a 12% chromium ferritic steel, Acta Metallurgica, vol.37, issue.1, pp.49-60, 1989.
DOI : 10.1016/0001-6160(89)90265-4

. Eggeler, Microstructural changes in a 12% chromium steel during creep, Steel Research, vol.5, issue.5, pp.97-103, 1987.
DOI : 10.1002/srin.198701594

P. J. Ennis and A. Czyrska-filemonowicz, Recent advances in creep-resistant steels for power plant applications, Sadhana -Academy Proceedings in Engineering Sciences, pp.709-730, 2003.
DOI : 10.1007/BF02706455

. Ennis, Influence of heat treatments on microstructural parameters and mechanical properties of P92 steel, Materials Science and Technology, vol.32, issue.10, pp.161226-1232, 2000.
DOI : 10.1080/14786436108239679

. Ennis, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant, Acta Materialia, vol.45, issue.12, pp.454901-4907, 1997.
DOI : 10.1016/S1359-6454(97)00176-6

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society, pp.376-396, 1957.

D. Essmann, U. Essmann, and K. Differt, Dynamic model of the wall structure in persistent slip bands of fatigued metals II. The wall spacing and the temperature dependence of the yield stress in saturation, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.56-68, 1996.
DOI : 10.1016/0921-5093(95)10063-6

M. Essmann, U. Essmann, and H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philosophical Magazine A -Physics of Condensed Matter Structure Defects and Mechanical Properties, pp.40731-756, 1979.

. Estrin, A dislocation-based model for all hardening stages in large strain deformation, Acta Materialia, vol.46, issue.15, pp.465509-5522, 1998.
DOI : 10.1016/S1359-6454(98)00196-7

. Fardoun, Internal and effective stress analysis in stainless steels using the statistical approach method, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.456-458, 1997.
DOI : 10.1016/S0921-5093(97)00297-9

G. Feaugas, X. Feaugas, and C. Gaudin, Different levels of plastic strain incompatibility during cyclic loading: in terms of dislocation density and distribution, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.382-385, 2001.
DOI : 10.1016/S0921-5093(00)01730-5

X. Feaugas and H. Haddou, Grain-size effects on tensile behavior of nickel and AISI 316L stainless steel, Metallurgical and Materials Transactions A -Physical Metallurgy and Materials Science, pp.34-2329, 2003.
DOI : 10.1007/s11661-003-0296-5

B. Fournier, Fatigue-fluage des aciers martensitiquesàmartensitiquesà 9-12%Cr : comportement et endommagement, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00203753

. Fournier, Comparison of various 9???12%Cr steels under fatigue and creep-fatigue loadings at high temperature, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.22-236934, 2011.
DOI : 10.1016/j.msea.2011.05.046

. Fournier, Lifetime prediction of 9???12%Cr martensitic steels subjected to creep???fatigue at high temperature, International Journal of Fatigue, vol.32, issue.6, pp.971-978, 2010.
DOI : 10.1016/j.ijfatigue.2009.10.017

URL : https://hal.archives-ouvertes.fr/hal-00461460

. Fournier, Analysis of the hysteresis loops of a martensitic steel -Part II: Study of the influence of creep and stress relaxation holding times on cyclic behaviour, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.197-211, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00144997

. Fournier, Analysis of the hysteresis loops of a martensitic steel -Part I: Study of the influence of strain amplitude and temperature under pure fatigue loadings using an enhanced stress partitioning method, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.183-196, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00144996

. Fournier, Creep-Fatigue Interactions in a 9??Pct Cr-1 Pct Mo Martensitic Steel: Part I. Mechanical Test Results, Metallurgical and Materials Transactions A -Physical Metallurgy and Materials Science, pp.40-321, 2009.
DOI : 10.1007/s11661-008-9686-z

URL : https://hal.archives-ouvertes.fr/hal-00359183

. Fournier, Creep???fatigue???oxidation interactions in a 9Cr???1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue lifetime, International Journal of Fatigue, vol.30, issue.4, pp.649-662, 2008.
DOI : 10.1016/j.ijfatigue.2007.05.007

URL : https://hal.archives-ouvertes.fr/hal-00311857

. Fournier, Micromechanical model of the high temperature cyclic behavior of 9???12%Cr martensitic steels, International Journal of Plasticity, vol.27, issue.11, pp.271803-1816, 2011.
DOI : 10.1016/j.ijplas.2011.05.007

URL : https://hal.archives-ouvertes.fr/hal-00624113

. Fournier, Microstructural evolutions and cyclic softening of 9%Cr martensitic steels, Journal of Nuclear Materials, vol.386, pp.71-74, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00379172

P. Franciosi, Glide mechanisms in b.c.c. crystals: An investigation of the case of ??-iron through multislip and latent hardening tests, Acta Metallurgica, vol.31, issue.9, pp.1331-1341, 1983.
DOI : 10.1016/0001-6160(83)90004-4

. Franciosi, Latent hardening in copper and aluminium single crystals, Acta Metallurgica, vol.28, issue.3, pp.273-283, 1980.
DOI : 10.1016/0001-6160(80)90162-5

F. C. Frank, The Frank-Read source, Proceedings of the Royal Society of London Series A -Mathematical Physical and Engineering Sciences, pp.371136-138, 1744.

. François, Comportement mécanique des matériaux -´ elasticité et plasticité, 1995.

. François, Comportement mécanique des matériaux -viscoplasticité, endommagement, mécanique de la rupture, mécanique du contact, 1995.

C. Gaudin, ´ Etude des mécanismes associés au rochet cyclique d'un acier austénitique AISI 316L, 2002.

. Ghassemi-armaki, Static recovery of tempered lath martensite microstructures during longterm aging in 9-12% Cr heat resistant steels, Materials Letters, issue.28, pp.632423-2425, 2009.

. References and . Gieseke, The influence of thermal aging on the microstructure and fatigue properties of modified 9Cr-1Mo steel, First International Conference on Microstructure and Mechanical Properties of Aging Materials Minerals, Metals & Materials Society, pp.197-205, 1993.

J. J. Gilman, Structure and polygonization of bent zinc monocrystals, Acta Metallurgica, vol.3, issue.3, pp.277-288, 1955.
DOI : 10.1016/0001-6160(55)90065-1

. Giordana, Microstructural evolution during cyclic loading of ferritic/martensitic steels at room temperature, European Congress and Exhibition on Advanced Materials and Processes, EUROMAT 2011, pp.12-15, 2011.

. Giroux, ´ Etude des propriétés de restauration dynamique en traction de l'acier P92, pp.2-09, 2009.

. Giroux, Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.16-173984, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00411745

. Götz, . Blum, G. Götz, and W. Blum, Influence of thermal history on precipitation of hardening phases in tempered martensite 10%Cr-steel X12CrMoWVNbN 10-1-1, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.201-207, 2003.
DOI : 10.1016/S0921-5093(02)00684-6

. Gourgues, Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Materials Science and Technology, vol.12, issue.1, pp.26-40, 2000.
DOI : 10.1016/0001-6160(67)90207-6

. Greeff, The oxidation of industrial FeCrMo steel, Corrosion Science, vol.42, issue.10, pp.421725-1740, 2000.
DOI : 10.1016/S0010-938X(00)00026-3

H. Gustafson, A. Gustafson, and M. Hättestrand, Coarsening of precipitates in an advanced creep resistant 9% chromium steel???quantitative microscopy and simulations, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.279-286, 2002.
DOI : 10.1016/S0921-5093(01)01874-3

. Guétaz, Mécanisme de déformation de l'acier martensitique Eurofer, pp.2002-128, 2003.

D. Guttmann, ´ Etude du revenu de la martensite dans les aciers faiblement alliésalliésà 2 % de manganèse. Influence de l'antimoine, 1974.

. Haddou, Stacking fault energy (s.f.e.) and grain size effects (d) on the tensile behaviour of f.c.c. polycrystalline alloys at 300 K: Back stress and effective stress evolutions, Le Journal de Physique IV, vol.11, issue.PR4, pp.11283-291, 2001.
DOI : 10.1051/jp4:2001435

. Haddou, The effects of grain size on the cyclic deformation behaviour of polycrystalline nickel, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.102-111, 2004.
DOI : 10.1016/j.msea.2003.12.069

. Hähner, On the dislocation dynamics of persistent slip bands in cyclically deformed fcc metals, Acta Materialia, issue.14, pp.465073-5084, 1998.

J. Hald, Microstructure and long-term creep properties of 9???12% Cr steels, International Journal of Pressure Vessels and Piping, vol.85, issue.1-2, pp.30-37, 2008.
DOI : 10.1016/j.ijpvp.2007.06.010

E. W. Hart, Theory of the tensile test, Acta Metallurgica, vol.15, issue.2, pp.351-355, 1967.
DOI : 10.1016/0001-6160(67)90211-8

H. O. Andrén, Boron distribution in 9-12% chromium steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.33-37, 1999.

H. O. Andrén, Evaluation of particle size distributions of precipitates in a 9% chromium steel using energy filtered transmission electron microscopy, Micron, issue.8, pp.32789-797, 2001.

. Hättestrand, Microanalysis of two creep resistant 9-12% chromium steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.27-36, 1998.

. Henry, Tensile properties of 9Cr???1Mo martensitic steel irradiated with high energy protons and neutrons, Journal of Nuclear Materials, vol.318, pp.215-227, 2003.
DOI : 10.1016/S0022-3115(03)00119-3

F. Hoc, T. Hoc, and S. Forest, Polycrystal modelling of IF-Ti steel under complex loading path, International Journal of Plasticity, vol.17, issue.1, pp.65-85, 2001.
DOI : 10.1016/S0749-6419(00)00019-X

D. Holec, D. Holec, and A. Dlouh´ydlouh´y, Interactions between particles and lowangle dislocation boundaries during high-temperature deformation, pp.558-565, 2005.
DOI : 10.3139/146.101070

J. W. Hutchinson, Plastic deformation of b.c.c. polycrystals, Journal of the Mechanics and Physics of Solids, vol.12, issue.1, pp.25-33, 1964.
DOI : 10.1016/0022-5096(64)90004-3

. Kannan, Effect of sodium environment on the low cycle fatigue properties of modified 9Cr???1Mo ferritic martensitic steel, Journal of Nuclear Materials, vol.384, issue.3, pp.286-291, 2009.
DOI : 10.1016/j.jnucmat.2008.11.036

. Kassner, Determination of internal stresses in cyclically deformed copper single crystals using convergent-beam electron diffraction and dislocation dipole separation measurements, Acta Materialia, vol.48, issue.17, pp.4247-4254, 2000.
DOI : 10.1016/S1359-6454(00)00284-6

. Kim, . Weertman, S. Kim, and J. R. Weertman, Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue, Metallurgical Transactions A, vol.25, issue.4, pp.999-1007, 1988.
DOI : 10.1007/BF02628384

. References and . Kimura, Microstructures of creep-fatigued 9-12% Cr ferritic heat-resisting steels, International Journal of Fatigue, vol.28, issue.3, pp.300-308, 2006.

. Kishore, R. Sinha-]-kishore, and T. K. Sinha, Analysis of the stress-strain curves of a modified 9Cr-1Mo steel by the voce equation, Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, pp.273340-3343, 1996.
DOI : 10.1007/BF02663885

. Kitahara, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia, vol.54, issue.5, pp.1279-1288, 2006.
DOI : 10.1016/j.actamat.2005.11.001

. Klaar, Round robin investigation into the quantitative measurement of dislocation density in the electron microscope, Praktische Metallographie, vol.29, pp.1-24, 1992.

U. F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Progress in Materials Science, vol.48, issue.3, pp.171-273, 2003.
DOI : 10.1016/S0079-6425(02)00003-8

L. Koo, G. Koo, and J. Lee, Investigation of ratcheting characteristics of modified 9Cr???1Mo steel by using the Chaboche constitutive model, International Journal of Pressure Vessels and Piping, vol.84, issue.5, pp.284-292, 2007.
DOI : 10.1016/j.ijpvp.2006.12.002

. Korcakova, Quantification of Laves phase particle size in 9CrW steel, Materials Characterization, vol.47, issue.2, pp.111-117, 2001.
DOI : 10.1016/S1044-5803(01)00159-0

. Kostka, On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels, Acta Materialia, vol.55, issue.2, pp.539-550, 2007.
DOI : 10.1016/j.actamat.2006.08.046

E. Kröner, Zur plastischen verformung des vielkristalls, Acta Metallurgica, vol.9, issue.2, pp.155-161, 1961.
DOI : 10.1016/0001-6160(61)90060-8

. Kubin, Toward a physical model for strain hardening in fcc crystals, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.483-48419, 2008.
DOI : 10.1016/j.msea.2007.01.167

URL : https://hal.archives-ouvertes.fr/hal-00276790

. Kucha?ová, Microstructure and creep strength of tempered martensite ferritic steels, Creep and Fracture of Engineering Materials and Structure, pp.79-88, 1997.

. Kunz, . Luká?, L. Kunz, and P. Luká?, Cyclic stress-strain behavior of 9Cr1Mo steel at positive mean stress, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.555-558, 2001.
DOI : 10.1016/S0921-5093(01)01094-2

. Lemaitre, J. Chaboche-]-lemaitre, and J. L. Chaboche, Mechanics of solid materials, 1990.

J. Li, The interaction of parallel edge dislocations with a simple tilt dislocation wall, Acta Metallurgica, vol.8, issue.5, pp.296-311, 1960.
DOI : 10.1016/0001-6160(60)90115-2

. Lim, Modelling and experimental study of the tertiary creep stage of Grade 91 steel, International Journal of Fracture, vol.85, issue.8, pp.213-228, 2011.
DOI : 10.1007/s10704-011-9585-y

URL : https://hal.archives-ouvertes.fr/hal-00605165

. Lindau, Thermal and mechanical behaviour of the reduced-activation-ferritic-martensitic steel EUROFER, Fusion Engineering and Design, vol.61, issue.62, pp.61-62659, 2002.
DOI : 10.1016/S0920-3796(02)00178-3

C. Liu, Y. Liu, and P. P. Castañeda, Homogenization estimates for the average behavior and field fluctuations in cubic and hexagonal viscoplastic polycrystals, Journal of the Mechanics and Physics of Solids, vol.52, issue.5, pp.1175-1211, 2004.
DOI : 10.1016/j.jmps.2003.08.006

K. Madec, R. Madec, and L. P. Kubin, Dislocation Interactions and Symmetries in BCC Crystals, IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength, pp.69-78, 2004.
DOI : 10.1007/978-1-4020-2111-4_7

M. Marder, J. M. Marder, and A. R. Marder, Morphology of iron-nickel massive martensite, Transactions of the ASM, vol.62, issue.1, pp.1-10, 1969.

. Marmy, P. Marmy, and T. Kruml, Low cycle fatigue of Eurofer 97, Journal of Nuclear Materials, vol.377, issue.1, pp.52-58, 2008.
DOI : 10.1016/j.jnucmat.2008.02.054

. Marmy, Deformation mechanisms of a ferritic-martensitic steel between 290 K and 870 K, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, pp.159-163, 1993.

. Milititsky, Characterization of the mechanical properties of low-nickel austenitic stainless steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.289-295, 2008.
DOI : 10.1016/j.msea.2008.08.012

D. Mili?ka, K. Mili?ka, and F. Dobe?, Small punch testing of P91 steel, International Journal of Pressure Vessels and Piping, vol.83, issue.9, pp.625-634, 2006.
DOI : 10.1016/j.ijpvp.2006.07.009

A. Molinari, Extensions of the self-consistent tangent model, Modelling and Simulation in Materials Science and Engineering, vol.7, issue.5, pp.683-697, 1999.
DOI : 10.1088/0965-0393/7/5/303

. Molinari, A self-consistent approach of the large deformation polycrystal plasticity, Acta Metallurgica, issue.12, pp.352983-2994, 1987.

. Molinari, . Tóth, A. Molinari, and L. S. Tóth, Tuning a self-consistent viscoplastic model by finite element results. Part I: Modelling, Acta Metallurgica et Materialia, issue.7, pp.422453-2458, 1994.

G. Monkman, F. C. Monkman, and N. J. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests, Proceedings of the ASTM, pp.593-620, 1956.

. Moosbrugger, Nonlinear kinematic hardening rule parameters????? relationship to substructure evolution in polycrystalline nickel, International Journal of Plasticity, vol.16, issue.3-4, pp.3-4439, 2000.
DOI : 10.1016/S0749-6419(99)00061-3

. Morrison, . Moosbrugger, D. J. Morrison, and J. C. Moosbrugger, Effects of grain size on cyclic plasticity and fatigue crack initiation in nickel, International Journal of Fatigue, vol.19, issue.93, pp.51-59, 1997.
DOI : 10.1016/S0142-1123(97)00034-0

. Mughrabi, Persistent slipbands in fatigued face-centered and body-centered cubic metals, editor, Fatigue Mechanisms: a symposium, American Society for Testing and Materials, Proceedings of an ASTM-NBS-NSF symposium, pp.69-105, 1979.

H. Mughrabi and H. W. Höppel, Cyclic deformation and fatigue properties of very fine-grained metals and alloys, International Journal of Fatigue, vol.32, issue.9, pp.1413-1427, 2010.
DOI : 10.1016/j.ijfatigue.2009.10.007

S. Naamane, ´ Etude de la déformation plastique de la ferritè a basse température : simulations de dynamique des dislocations, 2008.

Z. Nishiyama, Science report, 1934.

. Orlová, Microstructural development during high temperature creep of 9% Cr steel, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, pp.39-48, 1998.
DOI : 10.1016/S0921-5093(97)00708-9

C. G. Panait, Metallurgical evolution and creep strength of 9-12%Cr heat resistant steels at 600?C600?C and 650?C650?C, 2010.
URL : https://hal.archives-ouvertes.fr/pastel-00579983

. Panait, Study of the microstructure of the Grade 91 steel after more than 100,000??h of creep exposure at 600????C, International Journal of Pressure Vessels and Piping, vol.87, issue.6, pp.326-335, 2010.
DOI : 10.1016/j.ijpvp.2010.03.017

URL : https://hal.archives-ouvertes.fr/hal-00509625

. Panait, Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600?C600?C for more than 100, 000 h. Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.16-174062, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00491033

. Park, Effect of W addition on the low cycle fatigue behavior of high Cr ferritic steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.127-136, 2001.

. Paul, Microstructural stability of modified 9Cr???1Mo steel during long term exposures at elevated temperatures, Journal of Nuclear Materials, vol.378, issue.3, pp.273-281, 2008.
DOI : 10.1016/j.jnucmat.2008.06.033

. Petersmeier, Cyclic fatigue loading and characterization of dislocation evolution in the ferritic steel X22CrMoV121*1, International Journal of Fatigue, vol.20, issue.3, pp.251-255, 1998.
DOI : 10.1016/S0142-1123(97)00129-1

. Pe?i?ka, Free dislocations and boundary dislocations in tempered martensite ferritic steels, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, pp.387-89176, 2004.

. Pe?i?ka, The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels, Acta Materialia, vol.51, issue.16, pp.514847-4862, 2003.
DOI : 10.1016/S1359-6454(03)00324-0

P. Pilvin, The contribution of micromechanical approaches to the modelling of inelastic behaviour of polycrystals, Proceeding of the Fourth International Conference on Biaxial/Multiaxial Fatigue and Fracture, pp.31-46, 1994.

P. Pilvin, Notice d'utilisation de SiDoLo version 2.4495, p.56321, 2003.

. Polák, Analysis of the hysteresis loop in stainless steels I. Austenitic and ferritic steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.144-153, 2001.
DOI : 10.1016/S0921-5093(00)01251-X

. Polák, Analysis of the hysteresis loop in stainless steels II. Austenitic???ferritic duplex steel and the effect of nitrogen, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.154-161, 2001.
DOI : 10.1016/S0921-5093(00)01252-1

. Polcik, On the microstructural development of the tempered martensitic Cr-steel P91 during long-term creep -a comparison of data, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.252-259, 1999.

F. Povolo, Comments on the Monkman-Grant and the modified Monkman-Grant relationships, Journal of Materials Science, vol.27, issue.6, pp.2005-2010, 1985.
DOI : 10.1007/BF01112283

L. Priester, Dislocation-interface " interaction -stress accomodation processes at interfaces, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.309-310430, 2001.

P. Proville, L. Proville, and S. Patinet, Atomic-scale models for hardening in fcc solid solutions, Physical Review B, vol.82, issue.5, p.54115, 2010.
DOI : 10.1103/PhysRevB.82.054115

. Proville, Atomic-scale study of dislocation glide in a model solid solution, Philosophical Magazine, vol.5, issue.25-26, pp.25-263893, 2006.
DOI : 10.1016/j.msea.2005.03.057

URL : https://hal.archives-ouvertes.fr/hal-00513657

. Qin, Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.211-215, 2003.
DOI : 10.1016/S0921-5093(02)00215-0

. Queyreau, Slip systems interactions in ??-iron determined by dislocation dynamics simulations, International Journal of Plasticity, vol.25, issue.2, pp.361-377, 2009.
DOI : 10.1016/j.ijplas.2007.12.009

. Rachdi, F. Sauzay-]-rachdi, and M. Sauzay, Modélisation du comportement cyclique des polycristaux métalliques, Congrès Français de Mécanique, 2011.

. Read, . Shockley, W. T. Read, and W. Shockley, Dislocation Models of Crystal Grain Boundaries, Physical Review, vol.78, issue.3, pp.275-289, 1950.
DOI : 10.1103/PhysRev.78.275

A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle, Journal of Applied Mathematics and Mechanics, vol.9, pp.49-58, 1929.

. Rodary, solid solutions by molecular dynamics, Physical Review B, vol.70, issue.5, p.54111, 2004.
DOI : 10.1103/PhysRevB.70.054111

J. J. Sanchez-hanton and R. C. Thomson, Characterization of isothermally aged Grade 91 (9Cr???1Mo???Nb???V) steel by electron backscatter diffraction, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.261-267, 2007.
DOI : 10.1016/j.msea.2007.01.077

M. Sauzay, Effets de surface et d'anisotropie en fatigue multiaxiale, References, 2000.

. Sauzay, Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.241-244, 2005.
DOI : 10.1016/j.msea.2005.02.092

. Sauzay, Bilan des essais de torsion cyclique avec et sans contrainte moyenne réalisés sur acier 9Crà9Crà 550?C550?C, pp.2006-2757, 2006.

. Sauzay, Cyclic softening of martensitic steels at high temperature???Experiments and physically based modelling, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.483-484410, 2008.
DOI : 10.1016/j.msea.2006.12.183

K. Sauzay, M. Sauzay, and L. P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals, Progress in Materials Science, vol.56, issue.6, pp.725-784, 2011.
DOI : 10.1016/j.pmatsci.2011.01.006

. Sawada, Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1, 8W-VNb steel. Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.784-787, 2001.

. Sawada, Z-phase Formation during Creep and Aging in 9???12% Cr Heat Resistant Steels, ISIJ International, vol.46, issue.5, pp.46769-775, 2006.
DOI : 10.2355/isijinternational.46.769

. Sawada, TTP Diagrams of Z Phase in 9???12% Cr Heat-Resistant Steels, ISIJ International, vol.47, issue.5, pp.47733-739, 2007.
DOI : 10.2355/isijinternational.47.733

. Sawada, Effect of W on recovery of lath structure during creep of high chromium martensitic steels, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.19-25, 1999.
DOI : 10.1016/S0921-5093(99)00066-0

. Senior, The nucleation and growth of voids at carbides in 9Cr-1Mo steel, Acta Metallurgica, issue.7, pp.341321-1327, 1986.

. Shamardin, Mechanical properties and microstructure of advanced ferritic???martensitic steels used under high dose neutron irradiation, Journal of Nuclear Materials, vol.271, issue.272, pp.155-161, 1999.
DOI : 10.1016/S0022-3115(98)00774-0

. Shankar, Low cycle fatigue behavior and microstructural evolution of modified 9Cr???1Mo ferritic steel, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.413-422, 2006.
DOI : 10.1016/j.msea.2006.07.146

. Sommer, Influence of temperature and carbon content on the cyclic deformation and fatigue behaviour of ??-iron. Part I. Cyclic deformation and stress???behaviour, Acta Materialia, vol.46, issue.5, pp.461527-1536, 1998.
DOI : 10.1016/S1359-6454(97)00362-5

. Sonderegger, Martensite laths in creep resistant martensitic 9???12% Cr steels ??? Calculation and measurement of misorientations, Materials Characterization, vol.58, issue.10, pp.58874-882, 2007.
DOI : 10.1016/j.matchar.2006.08.014

. Sonderegger, Microstructural analysis on a creep resistant martensitic 9???12% Cr steel using the EBSD method, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.466-470, 2008.
DOI : 10.1016/j.msea.2006.12.220

. Spigarelli, Analysis of creep curves in a 9Cr-1Mo modified steel by means of simple constitutive equations, Scripta Materialia, vol.37, issue.4, pp.399-404, 1997.
DOI : 10.1016/S1359-6462(97)00101-2

. Steckmeyer, Micromechanical modelling of the cyclic stress???strain behaviour of nickel polycrystals, International Journal of Fatigue, vol.40, 2011.
DOI : 10.1016/j.ijfatigue.2011.10.019

. Stratil, Comparison of microstructural properties and Charpy impact behaviour between different plates of the Eurofer97 steel and effect of isothermal ageing, Journal of Nuclear Materials, vol.416, issue.3, pp.311-317, 2011.
DOI : 10.1016/j.jnucmat.2011.06.018

B. Sutton, A. P. Sutton, and R. W. Balluffi, Interfaces in crystalline materials, 1995.

. Tak, On the effect of micrograin crystallography on creep of FeCr alloys, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.510-511121, 2009.
DOI : 10.1016/j.msea.2008.11.070

T. Takeuchi, Work Hardening of Copper Single Crystals with Multiple Glide Orientations, Transactions of the Japan Institute of Metals, vol.16, issue.10, pp.629-640, 1975.
DOI : 10.2320/matertrans1960.16.629

. Takeuchi, . Mano, T. Takeuchi, and J. Mano, Latent hardening in iron single crystals with ???110??? extension axis, Acta Metallurgica, vol.20, issue.6, pp.809-817, 1972.
DOI : 10.1016/0001-6160(72)90129-0

G. I. Taylor, Plastic strain in metals, Journal of the Institute of Metals, vol.62, pp.307-324, 1938.

. Toloczko, High temperature tensile testing of modified 9Cr???1Mo after irradiation with high energy protons, Journal of Nuclear Materials, vol.318, pp.200-206, 2003.
DOI : 10.1016/S0022-3115(03)00023-0

B. Tomkins, Fatigue crack propagation???an analysis, Philosophical Magazine, vol.5, issue.155, pp.1041-1066, 1968.
DOI : 10.1016/0001-6160(63)90010-5

. Tóth, Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model, Journal of Engineering Materials and Technology, vol.124, issue.1, pp.71-77, 2002.
DOI : 10.1115/1.1421350

. Tóth, Cyclic plasticity phenomena as predicted by polycrystal plasticity, Mechanics of Materials, vol.32, issue.2, pp.99-113, 2000.
DOI : 10.1016/S0167-6636(99)00040-X

. Van-swygenhoven, Competing plastic deformation mechanisms in nanophase metals, Physical Review B, vol.60, issue.1, pp.22-25, 1999.
DOI : 10.1103/PhysRevB.60.22

G. Z. Voyiadjis and F. H. Abed, Microstructural based models for bcc and fcc metals with temperature and strain rate dependency, Mechanics of Materials, vol.37, issue.2-3, pp.355-378, 2005.
DOI : 10.1016/j.mechmat.2004.02.003

W. Wakasa, K. Wakasa, and C. M. Wayman, The morphology and crystallography of Ferrous lath martensite. Studies of Fe-20%Ni-5%Mn???II. Transmission electron microscopy, Acta Metallurgica, vol.29, issue.6, pp.991-1011, 1981.
DOI : 10.1016/0001-6160(81)90052-3

G. Wassermann, Einflu?? der ??-??-Umwandlung eines irreversiblen Nickelstahls auf Kristallorientierung und Zugfestigkeit, Archiv f??r das Eisenh??ttenwesen, vol.6, issue.8, pp.347-351, 1933.
DOI : 10.1002/srin.193300427

. Wei, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.71-79, 2004.
DOI : 10.1016/j.msea.2004.03.064

. Yaguchi, . Takahashi, M. Yaguchi, and Y. Takahashi, A viscoplastic constitutive model incorporating dynamic strain aging effect during cyclic deformation conditions, International Journal of Plasticity, vol.16, issue.3-4, pp.3-4241, 2000.
DOI : 10.1016/S0749-6419(99)00053-4

. Yi, Corrosion and corrosion fatigue behaviors of 9cr steel in a supercritical water condition, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.161-168, 2006.
DOI : 10.1016/j.msea.2006.05.035

. Zhang, Comparison of effects of aging on fracture of 9Cr???1Mo and 2??25Cr???1Mo steel Part 1 Quenched and tempered material, Materials Science and Technology, vol.335, issue.3, pp.218-223, 1991.
DOI : 10.1016/0001-6160(83)90132-3

. Zhang, Study on High Temperature Creep Behaviors of P92 Steel, Key Engineering Materials, vol.452, issue.453, pp.452-453521, 2011.
DOI : 10.4028/www.scientific.net/KEM.452-453.521