1. H. , 1. L. , 1. B. , 1. C. , 1. M. et al., Prediction for beta-barrel transmembrane protein region using HMM, ? Classification: We used a set of 177 ?-helical transmembrane proteins of length from 140 to 800 residues, at 40% redundancy reduction, from PDBTM setPDBTMH40 and 32 non-redundant lipocalins taken from PDB (setLIPOC). setPDBTMH40 contains, pp.0-8, 2003.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., Molecular biology of the cell

S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability ??? A survey, BIT, vol.2, issue.1, pp.1-2
DOI : 10.1007/BF01934985

S. Arnborg, D. G. Corneil, and A. Proskurowski, -Tree, SIAM Journal on Algebraic Discrete Methods, vol.8, issue.2, 0284.
DOI : 10.1137/0608024

S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Applied Mathematics, vol.23, issue.1, pp.1-1
DOI : 10.1016/0166-218X(89)90031-0

A. Arora and L. K. Tamm, Biophysical approaches to membrane protein structure determination, Current Opinion in Structural Biology, vol.11, issue.5
DOI : 10.1016/S0959-440X(00)00246-3

P. Bagos, T. Liakopoulos, and S. Hamodrakas, Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method, BMC Bioinformatics, vol.6

P. Bagos, T. Liakopoulos, I. Spyropoulos, and S. Hamodrakas, A Hidden Markov Model method, capable of predicting and discriminating ?-barrel outer membrane proteins, BMC Bioinformatics, vol.5, issue.2

P. G. Bagos, T. D. Liakopoulos, I. C. Spyropoulos, and S. J. , H a m odr a k a s . P R E D - TMBB: a web server for predicting the topology of ?-barrel outer membrane proteins, Nucleic Acids Res

J. Bajorath, R. Stenkamp, and A. Aruffo, Knowledge-basedm o d e lb u i l d i n go f proteins: concepts and examples, Protein Sci, vol.2

O. M. Becker, A. D. Jr, B. Roux, and M. Watanabe, Computational biochemistry and biophysics.M a r c e lD e k k e r ,I n c

H. Berendsen, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, vol.91, issue.1-3
DOI : 10.1016/0010-4655(95)00042-E

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

M. W. Bern, E. L. Lawler, and A. L. Wong, Linear-time computation of optimal subgraphs of decomposable graphs, Journal of Algorithms, vol.8, issue.2, pp.2-3
DOI : 10.1016/0196-6774(87)90039-3

R. Bhaskaran and P. Ponnuswamy, Amino acid scale: average flexibility index, Int. J. Pept. Protein Res

H. R. Bigelow, D. S. Petrey, J. Liu, D. Przybylski, and B. Rost, Predicting transmembrane beta-barrels in proteomes, Nucleic Acids Research, vol.32, issue.8
DOI : 10.1093/nar/gkh580

C. M. Bishop, W. F. Walkenhorst, and W. C. Wimley, Folding of ??-sheets in membranes: specificity and promiscuity in peptide model systems, Journal of Molecular Biology, vol.309, issue.4, pp.975-988, 2001.
DOI : 10.1006/jmbi.2001.4715

H. Bodlaender, Dynamic programming on graphs with bounded treewidth, Automata, Languages and Programming, 1988.
DOI : 10.1007/3-540-19488-6_110

H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput

H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks, Approximating treewidth, pathwidth, frontsize, and shortest eliminationt r e e, Journal of Algorithms, vol.8, issue.1 2

H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs, SIAM J. Disc. Math, vol.6

B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella et al., CHARMM: The biomolecular simulation program, Journal of Computational Chemistry, vol.103, issue.13
DOI : 10.1002/jcc.21287

R. Casadio, P. Fariselli, P. L. Martelli, T. E. Cheatham, T. Darden et al., In silico prediction of the structure of membrane proteins: Is it feasible? The amberb i o m o l e c ular simulation programs, Briefings in Bioinformatics Journal of computational chemistry, vol.4, issue.6 1 6, pp.3-4, 2005.

J. Cavanagh, W. J. Fairbrother, A. G. Palmer, I. , M. Rance et al., Protein NMR spectroscopy: principles and practice.A c a d e m i cP r e s s ,2 n de d i t i o n, 2007.

V. B. Chen, W. B. Arendall, I. , J. J. Headd, D. A. Keedy et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystal lographica Section D, vol.6, issue.1, pp.1-2

C. Chothia, The nature of the accessible and buried surfaces in proteins, Journal of Molecular Biology, vol.105, issue.1, pp.0-5
DOI : 10.1016/0022-2836(76)90191-1

K. C. Chou, L. Carlacci, and G. M. Maggiora, Conformational and geometrical properties of idealized beta-barrels in proteins, J. Mol. Biol

C. Cobbold, A. P. Monaco, A. Sivaprasadarao, and S. Ponnambalam, Aberrant trafficking of transmembrane proteins in human disease, Trends in Cell Biology, vol.13, issue.12, pp.6-9, 2003.
DOI : 10.1016/j.tcb.2003.10.008

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms .M I TP r e s s ,3 r de d i t i o n

J. L. Cornette, K. B. Cease, H. Margalit, J. L. Spouge, J. A. Berzofsky et al., Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins, Journal of Molecular Biology, vol.195, issue.3, pp.9-14, 1987.
DOI : 10.1016/0022-2836(87)90189-6

I. W. Davis, A. Leaver-fay, V. B. Chen, J. N. Block, G. J. Kapral et al., Molprobity: all-atom contacts and structure validation forp r o t e i n sa n dn u c l e i c acids, Nucleic Acids Research, vol.3, pp.5-7

M. O. Dayhoff, R. M. Schwartz, and B. Orcutt, A model of evolutionary change in proteins. Atlas of protein sequence and structure

J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, Structure of the protein subunits in the photosynthetic reaction centre of rhodopseudomonas viridis at 3å r e s o l u t i o n, Nature

R. L. Dunbrack and F. E. Cohen, Bayesian statistical analysis of protein side-chain rotamer preferences, Protein Science, vol.17, issue.8
DOI : 10.1002/pro.5560060807

D. Eisenberg, Three-dimensional structure of membranea nds urf a c epro t e i ns, Annual Review of Biochemistry, vol.3, issue.1

D. M. Engelman, T. A. Steitz, and A. Goldman, Identifyingn o n po l a rt r a n s b i l a y e r helices in amino acid sequences of membrane proteins, Annu Rev Biophys Biophys Chem

N. Eswar, B. Webb, M. A. Marti-renom, M. S. Madhusudhan, D. Eramian et al., Comparative protein structure modeling using MOD- ELLER, Curr Protoc Protein Sci

R. Fano, Transmission of Information.W i l e y ,N e wY o r k

S. J. Fleishman and N. Ben, Progress in structure prediction of [alpha]-helical membrane proteins, Current Opinion in Structural Biology, vol.6, issue.1 4

T. C. Freeman and W. C. Wimley, A highly accurate statistical approach for the prediction of transmembrane beta-barrels, Bioinformatics, vol.6, issue.2

D. C. Gadsby, P. Vergani, and L. Csanady, The ABC protein turned chloride channel whose failure causes cystic fibrosis, Nature, vol.124, issue.7083
DOI : 10.1038/nature04712

T. Gallai, Transitiv orientierbare Graphen, Acta Mathematica Academiae Scientiarum Hungaricae, vol.51, issue.1-2, pp.25-66, 1967.
DOI : 10.1007/BF02020961

J. Gibrat, J. Garnier, and B. Robson, Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs, J. Mol. Biol

M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs.A c a d e m yP r e s s, 1980.

E. Gorter and F. Grendel, ON BIMOLECULAR LAYERS OF LIPOIDS ON THE CHROMOCYTES OF THE BLOOD, Journal of Experimental Medicine, vol.41, issue.4
DOI : 10.1084/jem.41.4.439

R. Grantham, Amino Acid Difference Formula to Help Explain Protein Evolution, Science, vol.185, issue.4154
DOI : 10.1126/science.185.4154.862

J. Greer, Comparative modeling methods: application tot h ef a m i l yo ft h em a m malian serine proteases, Proteins, vol.7

M. Gromiha, S. Ahmad, M. Suwa, M. M. Gromiha, S. Ahmad et al., Neural network-based prediction of transmembrane ?-strand segments in outer membrane proteins TMBETA-NET: discrimination and prediction of membrane spanning ?-strands in outer membrane proteins, J. Comp. Chem. Nucleic Acids Res, vol.25, pp.762-767, 2004.

W. Gu, S. J. Rahi, and V. Helms, Solvation Free Energies and Transfer Free Energies for Amino Acids from Hydrophobic Solution to Water Solution from a Very Simple Residue Model, The Journal of Physical Chemistry B, vol.108, issue.18
DOI : 10.1021/jp0376424

M. Habib and C. Paul, A survey of the algorithmic aspects of modular decomposition, Computer Science Review, vol.4, issue.1
DOI : 10.1016/j.cosrev.2010.01.001

E. M. Hearn, D. R. Patel, B. W. Lepore, M. Indic, B. Van-den et al., Transmembrane passage of hydrophobic compounds through a protein channel wall, Nature, vol.276, issue.7236, pp.367-370, 2009.
DOI : 10.1038/nature07678

V. Helms and J. A. Mccammon, Conformational transitionsofproteinsfromatomistic simulations, Computational Molecular Dynamics: Challenges, Methods , Ideas,v o l u m e4o fLecture Notes in Computational Science and Engineering, pp.66-77, 1998.

R. Henderson, J. M. Baldwin, T. A. Ceska, F. Zemlin, E. Beckmann et al., Model for the structure of bacteriorhodopsin basedo nh i g h -r e s o l u t i o n electron cryo-microscopy, Journal of Molecular Biology, vol.2, issue.4, pp.1-3

R. Henderson and P. N. Unwin, Three-dimensional model ofp u r p l em e m b r a n e obtained by electron microscopy, Nature

T. P. Hopp and K. R. Woods, A computer program for predicting protein antigenic determinants, Molecular Immunology, vol.20, issue.4, p.0
DOI : 10.1016/0161-5890(83)90029-9

I. Jacoboni, P. L. Martelli, P. Fariselli, V. D. Pinto, and R. Casadio, Prediction of the transmembrane regions of ?-barrel membrane proteins with a neural networkbased predictor, Protein Sci, 0779.

M. Jacobson and A. Sali, Comparative Protein Structure Modeling and its Applications to Drug Discovery, Annual Reports in Medicinal Chemistry, pp.259-276, 2004.
DOI : 10.1016/S0065-7743(04)39020-2

J. O. Janin, Surface and inside volumes in globular proteins, Nature, vol.246, issue.5696, pp.491-492, 1979.
DOI : 10.1016/0022-2836(78)90408-4

M. S. Johnson, N. Srinivasan, R. Sowdhamini, and T. L. Blundell, Knowledge-Based Protein Modeling, Critical Reviews in Biochemistry and Molecular Biology, vol.45, issue.1, pp.1-6
DOI : 10.1002/prot.340070304

W. L. Jorgensen and T. J. Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, Journal of the American Chemical Society, vol.110, issue.6, pp.1657-1666, 1988.
DOI : 10.1021/ja00214a001

H. Kamberaj and V. Helms, Monte Carlo simulation of biomolecular systems with BIOMCSIM, Computer Physics Communications, vol.141, issue.3
DOI : 10.1016/S0010-4655(01)00434-9

L. Kelley and M. Sternberg, Protein structure prediction on the Web: a case study using the Phyre server, Nature Protocols, vol.5, issue.3
DOI : 10.1093/nar/gkm977

L. A. Kelley, R. M. Maccallum, and M. J. Sternberg, Enhanced genome annotation using structural profiles in the program 3D-PSSM, Journal of Molecular Biology, vol.299, issue.2, pp.499-520, 2000.
DOI : 10.1006/jmbi.2000.3741

J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff et al., A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis, Nature, vol.178, issue.4610
DOI : 10.1002/hlca.19490320118

H. G. Khorana, G. E. Gerber, W. C. Herlihy, C. P. Gray, R. J. Anderegg et al., Amino acid sequence of bacteriorhodopsin., Proc. Natl. Acad
DOI : 10.1073/pnas.76.10.5046

J. Kirz, C. Jacobsen, and M. Howells, Soft X-ray microscopes and their biological applications, Quarterly Reviews of Biophysics, vol.319, issue.01
DOI : 10.1021/ef00049a012

J. H. Kleinschmidt and L. K. Tamm, Secondary and tertiarystructureformationof the beta-barrel membrane protein ompa is synchronized and depends on membrane thickness, J. Mol. Biol, vol.3, issue.2, pp.2-4

R. Koebnik and L. Krämer, Membrane assembly of circularly permuted variants of the E. coli outer membrane protein OmpA, J. Mol. Biol

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1
DOI : 10.1016/0022-2836(82)90515-0

M. F. Ladd and R. A. Palmer, Structure Determination by X-Ray Crystallography .S p r i n g e r ,4 t he d i t i o n
DOI : 10.1007/978-1-4615-7936-6

M. Levitt, Accurate modeling of protein conformation bya u t o m a t i cs e g m e n t matching, J. Mol. Biol

B. A. Lewis and D. M. Engelman, Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles, Journal of Molecular Biology, vol.166, issue.2, pp.211-217, 1983.
DOI : 10.1016/S0022-2836(83)80007-2

W. Li and A. Godzik, Cd-hit: a fast program for clusteringa n dc o m p a r i n gl a r g e sets of protein or nucleotide sequences0: a package for molecular simulation and trajectory analysis, [77] E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3, pp.3-3, 2001.

K. U. Linderstrom-lang, The Lane Medical Lectures.S t a n f o r dU n i v e r s i t yP r e s s, 1952.

K. U. Linderstrom-lang and J. A. Shellman, Protein structure and enzyme activity. The Enzymes

W. Liu, Shear numbers of protein ??-barrels: definition refinements and statistics, Journal of Molecular Biology, vol.275, issue.4
DOI : 10.1006/jmbi.1997.1501

S. C. Lovell, I. W. Davis, W. B. Arendall, P. I. De-bakker, J. M. Word et al., Structure validation by C?? geometry: ??,?? and C?? deviation, Proteins: Structure, Function, and Bioinformatics, vol.320, issue.3, pp.437-450, 2003.
DOI : 10.1002/prot.10286

M. Luckey, Membrane structural biology: with biochemical and biophysical foundations .C a m b r i d g eU n i v e r s i t yP r e s s
DOI : 10.1017/CBO9780511811098

A. Jr, C. Brooks, I. , L. Nilsson, B. Roux et al., CHARMM: The Energy Function and Its Parameterization with anO v e r v i e wo f the Program,v o l u m e1o fThe Encyclopedia of Computational Chemistry, pp.271-277, 1998.

D. Marsh, Infrared dichroism of twisted beta-sheet barrels. The structure of E. coli outer membrane proteins, J. Mol. Biol

A. Marsico, D. Labudde, T. Sapra, D. J. Muller, and M. Schroeder, A novel pattern recognition algorithm to classify membrane protein unfolding pathways with highthroughput single-molecule force spectroscopy, Bioinformatics, vol.3, issue.2, pp.3-4, 2007.
DOI : 10.1093/bioinformatics/btl293

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/23/2/e231

P. Martelli, P. Fariselli, A. Krogh, and R. Casadio, A sequence-profile-based HMM for predicting and discriminating ?? barrel membrane proteins, Bioinformatics, vol.18, issue.Suppl 1, p.8
DOI : 10.1093/bioinformatics/18.suppl_1.S46

M. A. Marti-renom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo et al., Comparative Protein Structure Modeling of Genes and Genomes, Annual Review of Biophysics and Biomolecular Structure, vol.29, issue.1
DOI : 10.1146/annurev.biophys.29.1.291

B. W. Matthews, Comparison of the predicted and observeds e c o n d a r ys t r u c t u r e of t4 phage lysozyme, Biochim. Biophys. Acta, issue.5 2, pp.4-4, 1975.

L. J. Mcguffin, K. Bryson, and D. T. Jones, The PSIPRED protein structure prediction server, Bioinformatics, vol.16, issue.4
DOI : 10.1093/bioinformatics/16.4.404

J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano, Critical assessment of methods of protein structure predictionroundviii, Proteins, issue.S9, pp.771-775, 2009.

A. G. Murzin, A. M. Lesk, and C. Chothia, Principles determining the structure of ??-sheet barrels in proteins I. A theoretical analysis, Journal of Molecular Biology, vol.236, issue.5, 1994.
DOI : 10.1016/0022-2836(94)90064-7

A. G. Murzin, A. M. Lesk, and C. Chothia, Principles determining the structure of ??-sheet barrels in proteins II. The observed structures, Journal of Molecular Biology, vol.236, issue.5, pp.3-6, 1994.
DOI : 10.1016/0022-2836(94)90065-5

R. H. Mhring, Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions, Annals of Operations Research, vol.69, issue.1
DOI : 10.1007/BF02022041

N. K. Natt, H. Kaur, and G. Raghava, Prediction of transmembrane regions of ??-barrel proteins using ANN- and SVM-based methods, Proteins: Structure, Function, and Bioinformatics, vol.282, issue.1
DOI : 10.1002/prot.20092

H. Nikaido, Molecular basis of bacterial outer membranep e r m e a b i l i t yr e v i s i t e d, Microbiol Mol Biol Rev, vol.7, issue.4

Y. Ou, S. Chen, and M. M. Gromiha, Prediction of membrane spanning segments and topology in ????-barrel membrane proteins at better accuracy, Journal of Computational Chemistry, vol.6, issue.1
DOI : 10.1002/jcc.21281

M. F. Perutz, M. G. Rossmann, A. F. Cullis, H. Muirhead, and G. , STRUCTURE OF H??MOGLOBIN
DOI : 10.1142/9789814513357_0002

J. L. Popot and D. M. Engelman, Membrane protein folding and oligomerization: the two-stage model, Biochemistry, vol.29, issue.17
DOI : 10.1021/bi00469a001

O. B. Ptitsyn and A. V. Finkelstein, Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding?, Quarterly Reviews of Biophysics, vol.222, issue.03, pp.339-386, 1980.
DOI : 10.1038/255609a0

G. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, Stereochemistry of polypeptide chain configurations, Journal of Molecular Biology, vol.7, issue.1, pp.9-14
DOI : 10.1016/S0022-2836(63)80023-6

G. Ramachandran, V. Sasisekharan, R. Ramachandran, A. P. Heuck, R. K. Tweten et al., Conformation of polypeptides and proteins Advances in Protein Chemistry,v olume23ofAdvances in Protein Chemistry Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin, Nature Structural & Molecular Biology, vol.1029, issue.1 1, pp.283-437, 1968.

A. Randall, J. Cheng, M. Sweredoski, and P. Baldi, TMBpro: secondary structure, ??-contact and tertiary structure prediction of transmembrane ??-barrel proteins, Bioinformatics, vol.24, issue.4
DOI : 10.1093/bioinformatics/btm548

W. Rawicz, K. Olbrich, T. Mcintosh, D. Needham, and E. Evans, Effect of Chain Length and Unsaturation on Elasticity of Lipid Bilayers, Biophysical Journal, vol.79, issue.1, pp.328-339, 2000.
DOI : 10.1016/S0006-3495(00)76295-3

N. Robertson and P. Seymour, Graph minors. I. Excludingaf o r e s t, Journal of Combinatorial Theory, Series B, vol.5, issue.1, pp.3-9
DOI : 10.1006/jctb.1999.1919

URL : http://doi.org/10.1006/jctb.1999.1919

N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, Journal of Combinatorial Theory, Series B, vol.36, issue.1, pp.4-9
DOI : 10.1016/0095-8956(84)90013-3

URL : http://doi.org/10.1006/jctb.1999.1919

G. Rose, A. Geselowitz, G. Lesser, R. Lee, and M. Zehfus, H y dr o pho bi c i t yo fa m i no acid residues in globular proteins, Science, vol.2, issue.9

G. D. Rose and R. Wolfenden, Hydrogen bonding, the hydrophobic effect, packing, and protein folding, Ann. Rev. Biophysics and Biological Structure, vol.2, issue.2, pp.3-8, 1993.

A. Sali, Modelling mutations and homologous proteins, Current Opinion in Biotechnology, vol.6, issue.4, pp.437-451, 1995.
DOI : 10.1016/0958-1669(95)80074-3

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol

R. Sanchez and A. Sali, Advances in comparative protein-structure modelling, Current Opinion in Structural Biology, vol.7, issue.2
DOI : 10.1016/S0959-440X(97)80027-9

M. S. Sansom and I. D. Kerr, Transbilayer pores formed bybeta-barrels: molecular modeling of pore structures and properties, Biophys. J

L. Schrödinger, The PyMOL molecular graphics system,version1.3r1.ThePyMOL Molecular Graphics System, Version 1, 2010.

T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Research, vol.31, issue.13
DOI : 10.1093/nar/gkg520

T. L. Steck, The organization of proteins in the human red blood cell membrane: Ar e v i e w, The Journal of Cell Biology, vol.2, issue.1, pp.1-1

M. J. Sutcliffe, I. Haneef, D. Carney, and T. L. Blundell, K n o w l e d g eb a s e dm o d elling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures, Protein Eng, vol.1, pp.3-7, 1987.

L. K. Tamm, H. Hong, and B. Liang, Folding and assembly of ??-barrel membrane proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1666, issue.1-2
DOI : 10.1016/j.bbamem.2004.06.011

P. D. Taylor, C. P. Toseland, T. K. Attwood, and D. R. Flower, Beta-barrel transmembrane proteins: Enhanced prediction using a Bayesian approach, Bioinformation, vol.1, issue.6

V. D. Tran, P. Chassignet, S. Sheikh, and J. Steyaert, Energy-based classification and structure prediction of transmembrane beta-barrelproteins, InProceedings of the 2011 IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS)

V. D. Tran, P. Chassignet, S. Sheikh, and J. Steyaert, A graph-theoretic approach for classification and structure prediction of transmembrane beta-barrel proteins, BMC Genomics
URL : https://hal.archives-ouvertes.fr/hal-00650429

V. D. Tran, P. Chassignet, and J. Steyaert, Prediction of super-secondary structure in alpha-helical and beta-barrel transmembrane proteins, BMC Bioinformatics

V. D. Tran, P. Chassignet, and J. Steyaert, On permuted super-secondary structures of beta-barrel proteins, 2011.

V. D. Tran, P. Chassignet, and J. Steyaert, Prediction of permuted supersecondary structures in beta-barrel proteins, Proceedings of the 2011 ACM Symposium on Applied Computing SAC'11, 2011.

V. D. Tran, P. Chassignet, and J. Steyaert, Super-secondary structure prediction of transmembrane beta-barrel proteins, Molecular Biology: Protein Super-secondary Structure.H u m a n aP r e s s
URL : https://hal.archives-ouvertes.fr/pastel-00711285

G. E. Tusnády, Z. Dosztányi, and I. Simon, PDB TM: selection and membrane localization of transmembrane proteins in the Protein Data Bank, Nucleic Acids Res

W. F. Van-gunsteren, S. R. Billeter, A. A. Eising, P. H. Hü-n-e-n-b-e-r-g-e-r, P. K-r-¨-u-g-e-r et al., Biomolecular Simulation: The GROMOS96 Manual and User Guide.v d fH o c h s c h u l v e r l a gA Ga nd e rE T HZüHZ¨HZü r i c h and BIOMOS b, C. J. van Rijsbergen. Information Retrieval.B, vol.127, 1979.

C. Venclovas, A. Zemla, K. Fidelis, and J. Moult, Comparison of performance in successive CASP experiments, Proteins: Structure, Function, and Genetics, vol.10, issue.S5
DOI : 10.1002/prot.10053

J. Waldispühl, B. Berger, P. Clote, and J. Steyaert, Predicting transmembrane ??-barrels and interstrand residue interactions from sequence, Proteins: Structure, Function, and Bioinformatics, vol.21, issue.Suppl 1, pp.5-6
DOI : 10.1002/prot.21046

S. H. White and W. C. Wimley, MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles, Annual Review of Biophysics and Biomolecular Structure, vol.28, issue.1, pp.3-4, 1999.
DOI : 10.1146/annurev.biophys.28.1.319

W. C. Wimley, K. Hristova, A. S. Ladokhin, L. Silvestro, and P. H. , A x e l s e n ,a n d S. H. White. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model, J. Mol. Biol

C. R. Woese, D. H. Dugre, S. A. Dugre, M. Kondo, and W. C. Saxinger, On the Fundamental Nature and Evolution of the Genetic Code, Cold Spring Harbor Symposia on Quantitative Biology, vol.31, issue.0
DOI : 10.1101/SQB.1966.031.01.093

R. Wolfenden, L. Andersson, P. M. Cullis, and C. C. Southgate, Affinities of amino acid side chains for solvent water, Biochemistry, vol.20, issue.4
DOI : 10.1021/bi00507a030

J. Xu, F. Jiao, and B. Berger, A tree-decomposition approach to protein structure prediction, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05)
DOI : 10.1109/CSB.2005.9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Xu, M. Li, D. Kim, and Y. Xu, RAPTOR: OPTIMAL PROTEIN THREADING BY LINEAR PROGRAMMING, Journal of Bioinformatics and Computational Biology, vol.01, issue.01
DOI : 10.1142/S0219720003000186

A. S. Yang and B. Honig, An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance, Journal of Molecular Biology, vol.301, issue.3
DOI : 10.1006/jmbi.2000.3973

A. A. Zamyatnin, Protein volume in solution, Progress in Biophysics and Molecular Biology, vol.24, pp.4-5, 1972.
DOI : 10.1016/0079-6107(72)90005-3

C. Zhang and S. Kim, A comprehensive analysis of the Greek key motifs in protein ?-barrels and ?-sandwiches, Proteins: Structure, Function, and Genetics, vol.6, issue.3, 2000.
DOI : 10.1002/1097-0134(20000815)40:3<409::AID-PROT60>3.0.CO;2-6