G. Alfano and M. A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, International Journal for Numerical Methods in Engineering, vol.26, issue.7, pp.1701-1736, 2001.
DOI : 10.1002/nme.93

Y. A. Bahei-el-din and G. J. Dvorak, Mechanics of hot isostatic pressing of a densified unidirectional SiC/Ti composite, Acta Metallurgica et Materialia, vol.43, issue.7, pp.2531-2539, 1995.
DOI : 10.1016/0956-7151(94)00477-Y

L. Baroumes, Comportement des compositesàcompositesà matrice métallique : Du processus de fabricationàfabricationà la tenue en service, Thèse de doctorat, 1998.

P. A. Bartolotta and M. J. Verrilli, Thermomechanical fatigue behavior of SiC/Ti-24Al- 11Nb [0] 8 in air and argon environments, Composite Materials : Testing and Design, ASTM STP-1206, pp.190-201, 1993.

B. A. Bednarcyk, S. M. Arnold, J. Aboudi, and M. J. Pindera, Local field effects in titanium matrix composites subject to fiber-matrix debonding, International Journal of Plasticity, vol.20, issue.8-9, pp.1707-1737, 2004.
DOI : 10.1016/j.ijplas.2003.11.019

D. Bettge, B. Günther, W. Wedell, P. D. Portella, J. Hemptenmacher et al., Mechanical behavior and fatigue damage of a titanium matrix composite reinforced with continuous SiC fibers, Materials Science and Engineering: A, vol.452, issue.453, pp.452-453536, 2007.
DOI : 10.1016/j.msea.2006.10.107

D. Blatt and G. A. Hartman, A methodology for thermomechanical fatigue crack growth testing in MMCs, Experimental Mechanics, vol.27, issue.1, pp.367-373, 1996.
DOI : 10.1007/BF02328580

D. Blatt, P. Karpur, D. A. Stubbs, and T. E. Matikas, Observations of interfacial damage in the fiber bridged zone of a titanium matrix composite, Scripta Metallurgica et Materialia, vol.29, issue.6, pp.851-856, 1993.
DOI : 10.1016/0956-716X(93)90240-S

F. Bourbita, A. Köster, and L. Remy, Comportement en fatigue isotherme et anisotherme du composite scs-6(egv)/ti6242, 2008.

N. Carrere, F. Feyel, and S. Kruch, Multi-scale modelling of silicon carbide reinforced titanium MMCs: Application to advanced compressor design, Aerospace Science and Technology, vol.7, issue.4, pp.307-315, 2003.
DOI : 10.1016/S1270-9638(03)00028-2

M. G. Castelli, Thermomechanical fatigue damage

M. G. Castelli, A summary of damage mechanisms and mechanical property degradation in titanium matrix composites subjected to TMF loadings, Thermal Mechanical Fatigue of Aircraft Engine Materials, pp.12-13, 1995.

M. G. Castelli and J. Gayda, An overview of elevated temperature damage mechanisms and fatigue behavior of a unidirectional SCS-6/Ti-15-3 composite, Reliability, Stress Analysis and Failure Prevention, pp.213-221, 1993.

Y. Chabanne, C. Sarrazin-baudoux, and J. Petit, Comportement en fatigue-corrosion et corrosion sous contrainte d'alliages de titane sous environnement gazeuxàgazeux`gazeuxà 500°C

J. L. Chaboche, S. Kruch, J. F. Maire, and T. Pottier, Towards a micromechanics based inelastic and damage modeling of composites, International Journal of Plasticity, vol.17, issue.4, pp.411-439, 2001.
DOI : 10.1016/S0749-6419(00)00056-5

H. Cherouali, Rôle des interphases et de la rugosité dans le comportement interfacial de composites monofilamentairesàmonofilamentairesà matrice fragile, Thèse de doctorat, Institut National des Sciences Appliquées de Lyon, 1998.

Y. Combres, Propriétés du titane et de ses alliages, 1999.

P. Material and . Data, Titanium Ti-6Al-2Sn-4Zr-2Mo-0,1Si ; duplex annealed

S. Dermarkar, Matériaux compositesàcompositesà matrice métallique, 1990.

J. A. Dicarlo, Creep of chemically vapour deposited SiC fibres, Journal of Materials Science, vol.2, issue.23, pp.217-224, 1986.
DOI : 10.1007/BF01144723

C. Duda, Compréhension et amélioration des conditions de couplage par enductionàenduction`enductionà grande vitesse entre filaments SiC CVD et alliage base titane, Thèse de doctorat, 2004.

G. J. Dvorak, Transformation field analysis of inelastic composite materials, Proc. Roy. Soc. Lond. A, pp.311-327, 1992.

C. Ferdinand, Mise en oeuvre et caractérisation d'assemblages soudés par procédés TIG et Laser de tôles d'alliages de titane réfractaires, Thèse de doctorat, 2005.

T. P. Gabb, J. Gayda, P. A. Bartolotta, and M. G. Castelli, A review of thermomechanical fatigue damage mechanisms in two titanium and titanium aluminide matrix composites, International Journal of Fatigue, vol.15, issue.5, pp.413-422, 1993.
DOI : 10.1016/0142-1123(93)90488-C

J. Gayda, T. P. Gabb, and B. A. Lerch, Fatigue-environment interactions in a SiC/Ti-15-3 composite, International Journal of Fatigue, vol.15, issue.1, pp.41-45, 1993.
DOI : 10.1016/0142-1123(93)90076-3

S. Q. Guo, Y. Kagawa, H. Saito, and C. Masuda, Microstructural characterization of interface in SiC fiber-reinforced Ti???15V???3Cr???3Al???3Sn matrix composite, Materials Science and Engineering: A, vol.246, issue.1-2, pp.25-35, 1998.
DOI : 10.1016/S0921-5093(97)00737-5

Z. X. Guo and B. Derby, Solid-state fabrication and interfaces of fibre reinforced metal matrix composites, Progress in Materials science, pp.411-495, 1995.
DOI : 10.1016/0079-6425(95)00002-X

I. W. Hall, J. L. Lirn, Y. Lepetitcorps, and K. Bilba, Microstructural analysis of isothermally exposed Ti/SiC metal matrix composites, Journal of Materials Science, vol.107, issue.14, pp.3835-3842, 1992.
DOI : 10.1007/BF00545466

S. Hertz-clemens, Etude d'un composite aéronautiquè a matrice métallique sous chargement de fatigue : sollicitation mécano-thermique et propagation de fissures

G. K. Hu and G. J. Weng, Influence of thermal residual stresses on the composite macroscopic behavior, Mechanics of Materials, vol.27, issue.4, pp.229-240, 1998.
DOI : 10.1016/S0167-6636(97)00050-1

D. Jacques, Transfert de charge entre fibre et matrice dans les composites carbonerésine . Comportement en traction d'un composite modèle monofilamentaire, Thèse de doctorat, 1989.

C. Jones, C. J. Kiely, and S. S. Wang, The characterization of an SCS6/Ti???6Al???4V MMC interphase, Journal of Materials Research, vol.4, issue.02, pp.327-335, 1989.
DOI : 10.1557/JMR.1989.0327

D. L. Kraabel, B. P. Sanders, and S. Mall, Tension-compression fatigue behavior of a unidirectional titanium-matrix composite at elevated temperature, Composites Science and Technology, vol.57, issue.1, pp.99-117, 1997.
DOI : 10.1016/S0266-3538(96)00113-3

S. Kruch, N. Carrère, and J. L. Chaboche, Fatigue damage analysis of unidirectional metal matrix composites, International Journal of Fatigue, vol.28, issue.10, pp.1420-1425, 2006.
DOI : 10.1016/j.ijfatigue.2006.02.023

J. Lamon, Mécanique de la rupture fragile et de l'endommagement : approches statistiques et probabilistes, 2007.

N. Legrand, Fatigue de compositesàcompositesà matrice métallique base titanè a renfort unidirectionnel de fibres SiC, Thèse de doctorat, 1997.

N. Legrand, L. Remy, L. Molliex, and B. Dambrine, Damage mechanisms and life prediction in high temperature fatigue of a unidirectional SiC?Ti composite, International Journal of Fatigue, vol.24, issue.2-4, pp.369-379, 2002.
DOI : 10.1016/S0142-1123(01)00092-5

J. F. Maire, P. Paulmier, and P. Levasseur, Propagation de fissure dans les composites unidirectionnelsàunidirectionnels`unidirectionnelsà matrice métallique : aspects expérimentaux et modélisation multi´ echelle. Office national d'´ etudes et de recherches aérospatiales, 2000.

B. S. Majumdar and G. M. Newaz, Inelastic deformation of metal matrix composites: Plasticity and damage mechanisms, Philosophical Magazine A, vol.6, issue.2, pp.187-212, 1992.
DOI : 10.1016/0001-6160(69)90100-X

B. S. Majumdar and M. Newaz, Constituent damage mechanisms in metal matrix composites under fatigue loading, and their effects on fatigue life, Materials Science and Engineering: A, vol.200, issue.1-2, pp.114-129, 1995.
DOI : 10.1016/0921-5093(95)07010-9

S. Majumdar, J. P. Singh, D. Kupperman, and A. D. Krawitz, Application of Neutron Diffraction to Measure Residual Strains in Various Engineering Composite Materials, Journal of Engineering Materials and Technology, vol.113, issue.1, pp.51-59, 1991.
DOI : 10.1115/1.2903382

S. Malinov, W. Sha, and C. S. Voon, In situ high temperature microscopy study of the surface oxidation and phase transformations in titanium alloys, Journal of Microscopy, vol.207, issue.3, pp.163-168, 2002.
DOI : 10.1046/j.1365-2818.2002.01055.x

P. Martineau, M. Lahaye, R. Pailler, R. Naslain, M. Couzi et al., SiC filament/titanium matrix composites regarded as model composites, Journal of Materials Science, vol.14, issue.3, pp.2731-2748, 1984.
DOI : 10.1007/BF00550831

M. Mirdamadi and W. S. Johnson, Prediction of stress-strain response of SCS-6/Timetal-21S subjected to a hypersonic flight profile, Composites Part A: Applied Science and Manufacturing, vol.27, issue.11, pp.1033-1040, 1996.
DOI : 10.1016/1359-835X(96)00032-2

L. Molliex, Approche micromécanique de la résistance en traction de compositesàcomposites`compositesà matrice métallique

R. W. Neu, A mechanistic based thermomechanical fatigue life prediction model for metal matrix composites. Fatigue and Fracture of Engineering Materials and Structures, pp.811-828, 1993.

T. Nicholas, An approach to fatigue life modeling in titanium-matrix composites, Materials Science and Engineering: A, vol.200, issue.1-2, pp.29-37, 1995.
DOI : 10.1016/0921-5093(95)07002-8

X. J. Ning and P. Pirouz, The microstructure of SCS-6 SiC fiber, Journal of Materials Research, vol.1, issue.10, pp.2234-2248, 1991.
DOI : 10.1103/PhysRev.59.693

S. R. Nutt and F. E. Wawner, Silicon carbide filaments: Microstructure, Journal of Materials Science, vol.9, issue.6, pp.1953-1960, 1985.
DOI : 10.1007/BF01112277

G. L. Povirk, M. G. Stout, M. Bourke, J. A. Goldstone, A. C. Lawson et al., Thermally and mechanically induced residual strains in Al-SiC composites, Acta Metallurgica et Materialia, vol.40, issue.9, pp.402391-2412, 1992.
DOI : 10.1016/0956-7151(92)90158-B

R. O. Ritchie, Crack Propagation in Metal-Matrix Composites. II: Mechanisms of Fatigue-Crack Growth, Mechanical behaviour of materials at high temperature, pp.461-494, 1996.
DOI : 10.1007/978-94-009-1714-9_25

A. H. Rosenberger and T. Nicholas, Environmental effects on the isothermal and thermomechanical fatigue of SCS-6/Timetal21S unidirectional composites, Composite Materials : Fatigue and Fracture, ASTM STP-1285, pp.394-408, 1997.

G. Rousset, Approche probabiliste de la durée de vie d'un composite unidirectionneìunidirectionneì a matrice métallique en fatigue oligocyclique axiale, Thèse de doctorat, 2008.

S. M. Russ, T. Nicholas, M. Bates, and S. Mall, Thermomechanical fatigue of SCS-6/Ti- 24Al-11Nb metal matrix composite, Failure Mechanisms in High Temperature Composite Materials, ASME, pp.37-43, 1991.

B. Sanders and S. Mall, Isothermal fatigue behavior of a titanium matrix composite under a hybrid strain-controlled loading condition, Materials Science and Engineering: A, vol.200, issue.1-2, pp.130-139, 1995.
DOI : 10.1016/0921-5093(95)07003-6

C. Sarrazin-baudoux, Abnormal near-threshold fatigue crack propagation of Ti alloys: role of the microstructure, International Journal of Fatigue, vol.27, issue.7, pp.773-782, 2005.
DOI : 10.1016/j.ijfatigue.2005.01.008

M. Shiratori and T. Miyoshi, Weighting function for a quarter-elliptical crack in a plate under basic mode of stress distribution. Stress Intensity Factors Handbook, pp.591-597, 1992.

R. Talreja, Fatigue of Composite Materials: Damage Mechanisms and Fatigue-Life Diagrams, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.378, issue.1775, pp.461-475, 1981.
DOI : 10.1098/rspa.1981.0163

R. Talreja, A conceptual framework for interpretation of MMC fatigue, Materials Science and Engineering: A, vol.200, issue.1-2, pp.21-28, 1995.
DOI : 10.1016/0921-5093(95)07001-X

M. P. Thomas, Creep rupture of [90]8 Sigma fibre reinforced titanium matrix composite, Materials Science and Engineering: A, vol.303, issue.1-2, pp.30-36, 2001.
DOI : 10.1016/S0921-5093(00)01929-8

A. Vassel, Continuous fibre reinforced titanium and aluminium composites: a comparison, Materials Science and Engineering: A, vol.263, issue.2, pp.305-313, 1999.
DOI : 10.1016/S0921-5093(98)01161-7

A. Vassel, C. Indrigo, and F. Pautonnier, Titanium'95 science and technology, pp.2739-2746, 1996.

P. C. Wang, S. M. Jeng, J. M. Yang, and S. M. Russ, Fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite, Acta materialia, issue.8, pp.443141-3156, 1996.

C. M. Ward-close, L. Chandrasekaran, J. G. Robertson, S. P. Godfrey, and D. P. Murgatroyde, Advances in the fabrication of titanium metal matrix composite, Materials Science and Engineering: A, vol.263, issue.2, pp.314-318, 1999.
DOI : 10.1016/S0921-5093(98)01162-9

S. G. Warrier and R. Y. Lin, TiC growth in C fiber/Ti alloy composites during liquid infiltration, Scripta Metallurgica et Materialia, vol.29, issue.2, pp.147-152, 1993.
DOI : 10.1016/0956-716X(93)90299-8

S. G. Warrier and R. Y. Lin, Interactions between SiC fibers and a titanium alloy during infrared liquid infiltration. Metallurgical and materials transactions A, pp.1885-1894, 1995.