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Résumé

Lors que des atomes sont assemblés dans un solide, des nouveaux phénomènes

surgissent en raison de l’interaction forte entre noyaux et électrons. Par exem-

ple, dans des matériaux anisotropes de faible dimension ou dans des métaux à

forte densit’e d’états au niveau de Fermi, des de densité de spin (SDW) ou de

charge (CDW) peuvent se former à basse température. La supraconductivité est

présente dans certains matériaux quand il refroidit en dessous d’une température

critique. Toutes ces phases peuvent apparâıtre d’ une façon isolée ou coexister

avec une autre. Et, dans ce cas, une interaction forte ou de la compétition peut

exister entre ces phases. Le mécanisme de formation de ces phases et les relations

entre elles sont toujours le centre d’intérêt quand elles sont découvertes dans un

nouveau matériau.

Ba1−𝑥K𝑥Fe2As2 et Ba(Fe1−𝑥Co𝑥)2As2 ont été découverts comme une nou-

velle famille de supraconducteurs à haute 𝑇𝑐. C’est le système supraconduc-

teur Ba122 à base de fer. Le composé parent de cette famille est BaFe2As2

qui a une transition d’onde de densité de spin à environ 138 K. Lorsque le

dopage du composé parent est fait par des trous [Ba1−𝑥K𝑥Fe2As2] ou par des

électrons [Ba(Fe1−𝑥Co𝑥)2As2], le magnétisme est supprimé et la supraconduc-

tivité apparâıt. Dans une gamme de dopage considérablement large, la phase

SDW et la supraconductivité coexistent. Dans ce cas, la symétrie du gap supra-

conducteur les relations entre les ordres coexistants produisent des phénoènes et

des comportements nouveaux.

Dans cette thèse, nous avons étudié les propriétés optiques des supraconduc-

teurs à base de fer dopés trous [Ba1−𝑥K𝑥Fe2As2] et électrons [Ba(Fe1−𝑥Co𝑥)2As2].

Dans les composés dopés optimalement par K ou Co, nous avons trouvé différentes

réponses dans la conductivité optique de basse énergie. En comparant les pro-

priétés optiques et les sites de dopage de ces deux échantillons dopés de façon op-

timale, nous avons fourni des preuves solides pour une symmétrie d’appariement

𝑠± dans le système Ba122. Dans le composés sous-dopé Ba0.6K0.4Fe2As2 nous
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avons observé, en plus du gap SDW et de celui supraconducteur, un plus petit

gap à plus faible énergie. Nous avons étudié la dépendance en température et

dopage des trois gaps. Avec cela, combinée à une analyse de poids spectral,

nous avons conclu que ce gap nouveau partage les mêmes états électroniques que

le condensat supraconducteurs. Nous avons interprété ce gap par un scénario

de précurseur de la phase supraconductrice. En revanche, la transition SDW

diminue les états électroniques disponibles pour le condensat supraconducteur,

agissant comme un ordre en compétition à la supraconductivité.

Mots-clés: supraconducteurs à base de Fer, Ba122, onde de densité de spin,

symétries du gap supraconducteur, spectroscopie optique



Abstract

When a mass of atoms are brought together to form a solid state material,

many and various novel phenomena arise in the material due to the strong in-

teractions among nuclei and electrons. For example, spin-density-wave (SDW)

or charge-density-wave (CDW) occurs at low temperature in anisotropic, low-

dimensional materials or in metals with high density of states at the Fermi level.

Superconductivity is exhibited by certain materials when cooling it down to a

critical temperature. All these phases can dominate the material solitarily or co-

exist with each other in one material, indeed, strong coupling or competition may

exist among these phases when coexisting with each other in one material. The

driving mechanism of these phases and the relations between them are always

the center of interest when they are discovered in a new material.

Ba1−𝑥K𝑥Fe2As2 and Ba(Fe1−𝑥Co𝑥)2As2 were discovered as a new family of

high-𝑇𝑐 superconductors, the Ba122 system iron-based superconductor. The par-

ent compound of this family is BaFe2As2 which undergoes a spin-density-wave

(SDW) transition at about 138 K. When doping the parent compound with holes

[ Ba1−𝑥K𝑥Fe2As2] or electrons [ Ba(Fe1−𝑥Co𝑥)2As2], the magnetism is suppressed

and superconductivity emerges in this material. In a considerably large doping

scale, the SDW phase and superconductivity coexist with each other. In this case,

the superconducting paring symmetry and the relations between the coexistent

orders in the Ba122 system materials are highly desired.

In this thesis, we studied the optical properties of the hole [ Ba1−𝑥K𝑥Fe2As2]

and electron [ Ba(Fe1−𝑥Co𝑥)2As2] doped Ba122 system iron-based superconduc-

tors. In the optimally K and Co doped samples, we found different low fre-

quency optical response. By comparing the optical properties and the doping

sites of these two optimally doped samples, we provided strong evidence for an

𝑠± pairing symmetry in Ba122 system iron-based superconductors. In the under-

doped Ba1−𝑥K𝑥Fe2As2 samples, we observed a smaller partial energy gap besides

the SDW and superconducting gaps. We studied the temperature and doping
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dependence of the three gaps, combined with a spectral weight analysis, we con-

cluded that the smaller partial energy gap shares the same electronic states with

superconducting condensate, a precursor scenario is preferred for the smaller par-

tial gap. In contrast, the SDW transition depletes the electronic states available

for superconducting condensate, acting as a competitive order to the supercon-

ductivity.

Keywords: iron-based superconductor, Ba122, spin-density-wave, pairing sym-

metry, optical spectroscopy



摘摘摘要要要

大量的原子凝聚在一起形成固体材料时，原子和原子之间，电子和电子之

间以及原子和电子之间的各种关联和相互作用导致许多奇特的物理现象。比

如，低温下，自旋密度波(SDW)和电荷密度波(CDW)现象经常发生在各向异性

的低维材料或费米面附近电子浓度比较高的金属材料中。许多材料当降至某

个特定温度以下时，会表现出超导电性。这些奇异的物理现象的出现，在物理

学中被称为相变。在某种特定材料中，这些相可以单独存在，也可以多个相共

存。当多个相共同存在于某种材料中时，这些相之间可以相互耦合或相互竞

争。所以，当在某种新材料中发现这些相时，相变的机制以及这些相之间的相

互关系便成为物理学家的兴趣焦点。

Ba1−𝑥K𝑥Fe2As2和Ba(Fe1−𝑥Co𝑥)2As2是最近被发现的新型高温超导体中的

一个体系：Ba122体系铁基超导体。这个体系的母体是BaFe2As2，该材料在大

约138K时发生自旋密度波相变。对BaFe2As2进行空穴掺杂[Ba1−𝑥K𝑥Fe2As2]或

电子掺杂[Ba(Fe1−𝑥Co𝑥)2As2]，磁性会被明显的压制，同时导致超导电性的出

现。对于Ba122体系的材料，在很宽的掺杂范围内，自旋密度波和超导电性是

共同存在的。因此，在Ba122体系铁基超导体中，超导电性的配对机制，电子

配对的对称性以及超导电性和自旋密度波的相互关系引起了科学家的广泛兴

趣。

本论文研究了空穴掺杂[Ba1−𝑥K𝑥Fe2As2]和电子掺杂[Ba(Fe1−𝑥Co𝑥)2As2]

的Ba122体系铁基超导体的光学性质。在最佳K掺杂和Co掺杂的样品中，我

们发现了明显不同的低频光学响应。通过比较两种掺杂对低频光学响应的影

响，结合材料的晶体结构和掺杂位置，我们对铁基超导体序参量具有𝑠±对称

性提供了有力证据。通过对最佳K掺杂样品的低频光电导的拟合分析，我们发

现Ba122体系铁基超导体有明显的多带特征，不同带中的载流子散射率存在显

著的不同，并且表现出极其不同的温度依赖。进入超导态后，多个带中均有

能隙的打开。在欠掺杂的Ba1−𝑥K𝑥Fe2As2样品中，除了自旋密度波和超导能隙

外，我们还观察到一个小的部分能隙。通过研究这三个能隙的温度依赖和掺杂

依赖，结合红外光电导的谱重分析，我们发现这个小的部分能隙与超导电性共

享大部分电子态密度，具有相同的掺杂依赖，这个现象表明这个小的部分能隙
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可能是超导的先驱所导致。相反，自旋密度波能隙的打开降低了和超导相关的

电子态密度，表明在Ba122体系中，自旋密度波与超导电性存在相互竞争的关

系。

关键字： 铁基超导体，Ba122体系，自旋密度波，超导电子配对对称性，

红外光谱
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Résumé Étendu

Le phénomène de la supraconductivité a été découvert il ya 100 ans par un

physicien hollandais, Kamerlingh Onnes. Il a été la première personne à liquéfier

l’hélium trois ans auparavant et il a entamé une série d’expériences pour mesurer

la résistivité des métaux. Il a constaté que lorsque le mercure est refroidi à en-

viron 4.2 K, il perd brusquement sa résistivité électrique dans une transition de

phase vers un nouvel état de la matière, qu’il a nommé la supraconductivité.

Ce phénomène a été expliqué théoriquement par Bardeen, Cooper et Schrieffer

(BCS) dans les années 1950 [1, 2], dans une théorie fondée sur la formation de

paires d’électrons (paires de Cooper), avec une énergie de liaison caractéristique,

le gap supraconducteur . Au milieu des années 1980, Bednorz et Müler ont

constaté que une céramique à base de La-Ba-Cu-O devenait supraconductrice

en dessous d’une température critique (𝑇𝑐) élevée de 35 K [3]. Plusieurs autres

oxydes supraconducteurs à base de cuivre ont encore été découverts et il est au-

jourd’hui évident qu’ils ne suivent pas la théorie standard BCS. Dans le début

des années 2000, la supraconductivité a été trouvé dans MgB2 à 39 K [4]. Outre

la haute température critique, MgB2 est particulier puisqu’il a deux bandes au

niveau de Fermi et les deux deviennent supraconductrices. Une autre percée dans

la supraconductivité est venue avec la découverte des matériaux qui combinent

le fer avec des pnictogènes (P, As) [5–8] ou chalcogènes (Se, Te) [9, 10]. Cette

classe de matériaux, appelés génériquement pnictures de fer, ont une supracon-

ductivité non conventionnelle (comme celui dans les cuprates) combinée avec la

supraconductivité mutibande (tel que MgB2). La supraconductivité sera traitée

avec plus de détail sur le chapitre 2 et les pnictures de fer dans le chapitre 4. Pour

la discussion suivante, nous avons besoin d’introduires certaines propriétés des

supraconducteurs non conventionnels. Les cuprates et les pnictures de fer ont, le

deux, un fort caractère structurel bi-dimensionnel. La physique des cuprates est

dominé par des plans CuO2 et celle des pnictures de fer par des plans FeAs. Les

deux systèmes permettent de faire varier les propriétés supraconductrices (dont
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𝑇𝑐) en changeant le niveau de densité de charge dans les plans à travers le dopage

(concentration en oxygène ou substitution de cationique). Le dopage qui produit

la 𝑇𝑐 maximales est appelé optimal. il définit des régions sousdopées (densité de

charge plus faible) et surdopée (densité de charge plus large), où 𝑇𝑐 diminue et

finalement s’annule.

Cette thèse s’inscrit dans le cadre d’un projet de thèse en cotutelle en-

tre l’Université Pierre et Marie Curie (Paris 6), Paris, France et l’Institut de

Physique, Académie Chinoise des Sciences, Pékin, Chine. Selon le plan initial de

ce projet, le sujet de ma thèse serait d’étudier les propriétés optiques (infrarouge,

visible et ultra-violet) de La-Bi2201 (Bi2Sr2−𝑥La𝑥CuO6) à travers le diagramme

de phases, travaillant 6 mois par an dans chaque institution. À Paris, mon travail

expérimental était d’apprendre comment faire fonctionner les spectromètres et de

mesurer les propriétés optiques des supraconducteurs. À Pékin, j’ai caractérisé les

échantillons utilisés pour nos expériences et j’ai construit un système de mesure

de réflectivité à basse température, similair à celui de Paris, pour le FTIR ABB

Bomen DA8 à Pékin, y compris son système de contrôle de la température,

l’optique et des pièces mécaniques. La partie instrumentation de ma thèse a par-

faitement suivi le plan inital. A ce jour, à l’Institut de Physique de l’Académie

chinoise de la physique, à Pékin, l’ensemble du système de mesure de réflectivité

à basse température pour le spectromètre ABB Bomen DA8 est complètement

mis en place. La réflectivité à basse température (de 5 à 300 K) peut être mesurée

en utilisant une techinque d’évaporation d’or in-situ. Le principe et la configu-

ration du système de mesure et de la techinque d’évaporation d’or in-situ seront

discutés en détail dans le chapitre des méthodes expérimentales.

La spectroscopie optique est un outil très puissant pour étudier les supracon-

ducteurs. Comme la conductivité optique est sensible aux porteurs de charge à

basse énergie, elle est largement utilisée pour sonder les gaps de charge, en parti-

culier le gap supraconducteur. Elle fournit également d’abondantes informations

sur la symétrie de ce gap. Dans les milieux conducteurs, la spectroscopie optique

mesure aussi l’énergie (la fréquence) du temps de vie (ou le libre parcours moyen)

des porteurs de charge ainsi que leur masse effective. Les deux techniques les plus

connues dans l’étude des supraconducteurs sont la spectroscopie de photoémission
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à résolue en angle (ARPES) et la microscopie à effet tunnel (STM). ARPES

est une technique expérimentale qui permet d’observer directement la densité

d’excitations électroniques à une particule dans l’espace réciproque, et qui four-

nit des informations sur l’énergie et le moment d’un électron. Mais ARPES est

une technique sensible à la surface et sa profondeur de pénétration est seule-

ment de quelques angstroms. En outre, sa résolution en énergie n’est pas très

élevé. STM a une meilleure résolution en énergie sondes la densité locale d’états

électroniques. Elle mesure directement le gap supraconducteur dans l’espace

réel. Cependant, c’est aussi une technique sensible à la surface. En contraste à

l’ARPES et STM, la spectroscopie optique n’a pas une une résolution en moment

et ne sonde pas la densité locale d’états électroniques. Mais elle a la meilleure

résolution énergétique parmi ces trois techniques et sa profondeur de pénétration

atteint quelques centaines de nanomètresm sondant ainsi le bulk.

Comme mentionné précédemment, l’objet initial de mon travail était d’étudier

les propriétés électrodynamiques des supraconducteurs cuprates par spectroscopie

infrarouge. En particulier, étudier le diagramme de phase optique de La-Bi2201

(Bi2Sr2−𝑥La𝑥CuO6). Outre la possibilité d’obtenir de gros monocristaux, ce

système a de nombreuses avantages: (i) il a seulement un plan CuO2 par maille,

ce qui évite des effets de couplage interplan, (ii) la substitution de La par Sr

introduit le plus bas effet de désordre dans les plans CuO2 responsables de la

supraconductivité, (iii) une plage de dopage très large est disponible dans ce

système. Elle s’étend sur les concentrations de trous de l’extrêmement sous-

dopé (non supraconducteur) au très surdopée, (iv) sa 𝑇𝑐 pas trop élevé donne

accès à une large région en température pour étudier les propriétés état nor-

mal à basse température, et (v) sa 𝑇𝑐 pas trop faible permet de sonder l’état

supraconducteur. A l’ESPCI, UPMC, Paris, nous avons mesuré les propriétés

optiques de monocristaux de La-Bi2201 (Bi2Sr2−𝑥La𝑥CuO6) pour 7 dopages (x

= 0,1, 0,2, 0,4, 0,6, 0,7, 0,8 et 1,0). Juste après avoir terminé les mesures de

réflectivité infrarouge, de gros monocristaux des supraconducteurs à base de fer

single sont devenus disponibles. Nous avons alors tourné notre attention vers

ces pnictures de fer. Malgré nos nombreux de résultats sur La-Bi2201, les in-

clure dans ce manuscrit ne permettrait pas de rendre un texte clair. Donc nous
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n’allons pas les discuter en détail dans cette thèse. Pour la petite histoire, notre

analyse à ce jour sur ce système donne les résultats suivants: (i) nous avons

constaté qu’un gap partiel dans l’état normal (pseudogap) peut être déterminée

à partir de la dépendence en fréquence de la durée de vie des porteurs. Il est

présent à tous les dopages mesurée, en particulier, en dans le régime surdopée,

une propriété qui n’est pas partagée par la plupart des cuprates. (ii) La masse

effective est constante à travers tout le diagramme de phase tandis que la densité

de porteurs change d’un facteur de 10. Cela indique que la transition menant

à une phase isolante à zéro dopage n’est pas gouvernée par une divergence de

masse, mais plutôt par la diminution de la densité de charge. Cela indique que la

réponse dynamique des quasiparticules dans Bi2Sr2−𝑥La𝑥CuO6 est locale et n’est

pas fortement influencé par la transition de Mott à longue portée.

Le sujet que je vais traiter dans ma thèse est le electrondynamque des pnic-

tures de fer supraconductrices. Un nombre important de questions existent dans

cette nouvelle famille de supraconducteurs: Quelle est la symétrie du paramètre

d’ordre? Est-ce qu’il change avec le dopage? Quelle est la colle des paires de

Cooper? Quelle est la relation entre le magnétisme et la supraconductivité dans

ces matériaux?

Les résultats dont je parle dans mon mémoire concernent notamment quatre

échantillons: des cristaux du système Ba122 dopés trous Ba1−𝑥K𝑥Fe2As2 (x =

0,4, 0,2 et 0,12) ou électrons Ba(Fe1−𝑥Co𝑥)2As2 (x = 0,08). Néanmoins, une

grande partie de mon travail était de comprendre et de perfectioner la mesure de

la réflectivité optique. Dans cette perspective, j’ai mesuré de nombreux autres

échantillons à la fin de ma thèse, mais nous ne les comprenons pas assez pour

inclure tous les résultats dans ce manuscrit. Ces échantillons sont des cristaux

de Ba122 dopés électrons, Ba(Fe1−𝑥Co𝑥)2As2 (x = 0,015, 0,045, 0,12 et 0,15) et

les chalcogenures Fe𝑦Te𝑥Se1−𝑥 pour 5 compositions différentes.

Dans cette thèse, nous présentons l’électrodynamique de Ba122. Nos mesures

optiques ont été réalisées sur des spectromètres Bruker IFS113 et IFS66v à Paris

et le visible et l’UV avec un spectromètre à fibre optique AvaSpec-2048×14.

Dans Ba1−𝑥K𝑥Fe2As2 (x = 0,4), optimalement dopé, en dessous de 𝑇𝑐, la con-
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ductivité optique disparâıt en dessous d’un seuil d’absorption, et aucune con-

ductivité résiduelle apparâıt aux basses fréquences dans l’état supraconducteur.

Cela représente un gap supraconducteur bien défini, complètement ouvert. En

revanche, dans Ba(Fe1−𝑥Co𝑥)2As2 (x = 0,08), aussi optimalement dopé, une con-

ductivité résiduelle importante à basse énergie, qui représente des quasipartic-

ules non appariés, est observée dans l’état supraconducteur. Cette différence

frappante dans la réponse basse fréquence optique entre échantillons dopés par

du K et par du Co est une preuve d’une symétrie d’appariement 𝑠± dans les

supraconducteurs Ba122. La symétrie 𝑠± signifie que, dans un supraconducteur

multibandes, des différentes bandes ont un gap isotrope (𝑠) avec des phases op-

posées (±). Dans ce cas, la diffusion interbandes mélange des états de trous

et d’électrons ayant des phases opposées et, par conséquent, brise des paires de

Cooper. Comme le dopage par K se passe en dehors des plans FeAs, qui dominent

la structure de bandes, on ne s’attend pas à une diffusion interbandes forte. In-

versement, le dopage avec Co va directement dans les plans FeAs. Le Co va alors

agir comme des centres de diffusion. Nous associons cette diffusion à la brisure de

paires de Cooper qui va créer la conductivité optique résiduelle à basse énergie.

La différence de la conducitivité otique dans ces deux sytèmes est illustrée dans la

Fig. 1. Nous avons également étudié les spectres optiques de Ba1−𝑥K𝑥Fe2As2 (x

= 0,2 et 0,12) sousdopé. L’ouverture du gap supraconducteur et de celui d’onde

de densité de spin sont clairement observés. En plus, nous avons également ob-

servé l’ouverture d’un petit gap partiel en dessous d’environ 75 K. Une analyse

quantitative montre que le petit gap transfère du poids spectral des basses aux

hautes fréquences, mais quand la supraconductivité est établi, cette partie du

poids spectral rejoint le condensat supraconducteur. En revanche, le gap d’onde

de densité de spin diminue le poids spectral à faible énergie disponible pour supra-

conducteurs condensat. Ces observations suggèrent que le petit gap est un ordre

précurseur de la supraconductivité tandis que celui d’onde de densité de spin

agit comme un ordre en compétition avec la supraconductivité. La dépendance

en dopage des gaps est également favorable à ce scénario.

Cette thèse est divisée en six parties (chapitre 2 à 7). Le chapitre 2 donne une

brève introduction à la supraconductivité. Dans le chapitre 3, nous introduisons
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the FeAs planes and hence no interband impurity scat-
tering is expected. In this case no pair-breaking induced
residual low frequency σ1(ω) is present. In both mate-
rials dopants are non magnetic and hence should not be
pair-breaking scattering centers. The fact that when the
dopant is in the FeAs plane creates unpaired quasipar-
ticles matches naturally the s± gap symmetry proposed
for iron-arsenide superconductors.

Figure 4. (color online) Optical conductivity at 5 K for
Ba(Fe0.92Co0.08)2As2 (Ref. 11) and Ba0.6K0.4Fe2As2. For the
latter, the thin solid lines are a fit as described in the text. For
the former, besides the superconducting Mattis-Bardeen re-
sponse, a Drude term (shown as the dashed area) is necessary
to describe the residual sub-gap absorption in the supercon-
ducting state.

In summary, we presented a detailed optical study on
a nearly optimally doped Ba0.6K0.4Fe2As2 single crystal.
In the normal state, the optical response is metallic and
can be well described by two Drude terms. In the su-
perconducting state, an opening of two superconducting
gaps was clearly observed. The optical conductivity van-
ishes roughly below 20 meV indicating fully open gaps.
A strong coupling BCS analysis shows that two almost
isotropic gaps with different values describe the optical
response of our sample. The temperature dependence of
the gaps indicates a strong interband interaction. We
found that Ba1−xKxFe2As2 out-of-plane K atoms do not
induce pair-breaking whereas scattering by the in-plane
Co atoms of Ba(Fe1−xCox)2As2 deplete superconductiv-
ity. This result strongly supports an s± symmetry for
the gap.
We would like to acknowledge discussions with J. P.

Carbotte and T. Timusk, and the financial support from
the Science and Technology Service of the French Em-
bassy in China. Work in Beijing was supported by the
MOST and the National Science Foundation of China.
Work in Paris was supported by the ANR under Grant

No. BLAN07-1-183876 GAPSUPRA.
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[12] D. Wu, N. Barǐsić, P. Kallina, A. Faridian, B. Gorshunov,
N. Drichko, L. J. Li, X. Lin, G. H. Cao, Z. A. Xu, et al.,
Phys. Rev. B 81, 100512 (2010).

[13] E. van Heumen, Y. Huang, S. de Jong, A. B. Kuzmenko,
M. S. Golden, and D. van der Marel, EPL (Europhysics
Letters) 90, 37005 (2010).
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quelques principes fondamentaux de la spectroscopie infrarouge, et expliquons

comment nous avons extrait les constantes optiques de la réflectivité mesuré et

comment nous modélisons nos données. Le chapitre 4 présente la découverte

et les propriétés de base des pnictures de fer à haute 𝑇𝑐. Le chapitre 5 décrit

notre technique expérimentale, y compris la préparation des échantillons. Dans

le chapitre 6, nous présentons nos données optiques ainsi que l’analyse de nos

résultats expérimentaux. Le chapitre 7 fournit un résumé global de ce travail.



Chapter 1

Introduction

The phenomenon of superconductivity was discovered 100 years ago by a

Dutch physicist, Kamerlingh Onnes. He was the first person to liquefy helium

three years before and he went on a series of experiments to measure the re-

sistivity of metals. He found that when mercury is cooled down to about 4.2

K, it loses abruptly its electrical resistivity in a phase transition to a new state

of matter, which he named superconductivity. This phenomenon was explained

theoretically by Bardeen, Cooper and Schrieffer (BCS) in the late 1950s [1, 2], in

a theory based on the formation of pairs of electrons (Cooper pairs) with a char-

acteristic binding energy, the superconducting gap. In the mid-1980s, Bednorz

and Mueller found that a La-Ba-Cu-O ceramic became superconducting below

an unprecedented high critical temperature (𝑇𝑐) of 35 K [3]. Several other copper

oxide based superconductors were further discovered and it is nowadays clear that

they do not follow the standard BCS theory. In the early 2000s, superconductiv-

ity was found in MgB2 at 39 K [4]. Besides the high critical temperature, MgB2

is characterized by the property of having two bands at the Fermi level, both be-

coming superconducting. Another breakthrough in superconductivity came with

the discovery of the phenomenon in materials that combine iron with pnictogens

(P, As) [5–8] or chalcogens (Se, Te) [9, 10]. This class of materials, generically

called iron-pnictides, shows unconventional superconductivity (such as the one

in cuprates) combined with mutiband superconductivity (such as MgB2). Super-

conductivity will be discussed in more detail in Chapter 2 and iron-pnictides in

Chapter 4. For the following discussion, we need to introduce some properties of

unconventional superconductors. Both cuprates and iron-pnictides have a strong

two dimensional structural character. The physics of cuprates is strongly dom-

inated by CuO2 planes and that of iron-pnitides by FeAs planes. Both systems
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allow to vary the superconducting properties (and 𝑇𝑐) by changing the charge

density level in the planes through doping (oxygen concentration or cation sub-

stitution). The doping that produces the maximum 𝑇𝑐 is called optimal. It

defines underdoped (smaller charge density) and overdoped (larger charge den-

sity) regions where 𝑇𝑐 decreases, and eventually vanishes. This sets the initial

stage for this thesis work.

This thesis is part of a joint Ph.D project between the Université Pierre

et Marie Curie (Paris 6), Paris, France and the Institute of the Physics, Chi-

nese Academy of Sciences, Beijing, China. According to the initial plan of this

project, the subject of my thesis would be to study the optical (infrared, visi-

ble and ultra-violet) properties of La-Bi2201 (Bi2Sr2−𝑥La𝑥CuO6) throughout the

phase diagram working 6 months per year on each side. In Paris, my experi-

mental work was to learn how to operate the spectrometers and to measure the

optical properties of superconductors. In Beijing, I characterized the samples

used for our experiment and build a low temperature reflectivity measurement

system similar to the one in Paris for the ABB Bomen DA8 FTIR spectrometer,

including its temperature controlling system, optics and mechanical parts. The

instrumentation portion of my thesis followed the initial plan perfectly. At this

time, in the Institute of Physics, Chinese Academy of Physics, Beijing, the whole

low temperature reflectivity measurement system for the ABB Bomen DA8 FTIR

spectrometer is completely set up. Reflectivity at low temperatures (from 5 K to

300 K) can be measured using the in situ gold overfilling technique in this mea-

surement system. The principle and setup of the measurement system and the

in situ gold overfilling technique will be discussed in detail in the experimental

methods chapter. As for the systems studied, the situation evolved significantly.

Let’s first make a parenthesis to talk about the experimental technique cho-

sen for our work. Optical spectroscopy is a very powerful tool to investigate

superconductors. Since the optical conductivity is sensitive to charge carriers

at low energies, it is widely used to probe charge gaps, in particular the su-

perconducting gap. It also provides abundant information on the symmetry of

this gap. In conducting media, optical spectroscopy also measures the energy

(frequency) dependent charge carriers lifetime (or mean free path) and effective



CHAPTER 1 INTRODUCTION 3

mass. The two fore front techniques to study superconductors are angle-resolved

photoemission spectroscopy (ARPES) and scanning tunneling microscopy spec-

troscopy (STM). ARPES is a direct experimental technique to observe the density

of single-particle electronic excitations in the 𝑘 space of solids, and it provides

information on both the energy and momentum of an electron. But ARPES is

a surface sensitive technique and its penetration depth is only several unit cell,

in addition, its energy resolution is not very high. STM has a better energy

resolution and it probes the local electronic density of states directly measur-

ing the superconducting gap in real space. However, it’s also a surface sensitive

technique. In contrast with ARPES and STM, optical spectroscopy has neither

momentum resolution nor probes the local electronic density of states, but it has

the highest energy resolution among these three techniques and its penetration

depth reaches a few hundred nanometers, certainly representing a bulk sensitive

experimental technique.

As I mentioned earlier, the initial subject of my work was to investigate

the electrodynamic properties of copper oxide superconductors with infrared

spectroscopy. In particular, to study the optical phase diagram of La-Bi2201

(Bi2Sr2−𝑥La𝑥CuO6). Besides the possibility of obtaining large single crystals,

this system has many and various other advantages: (i) It has only one single

CuO2 plane per unit cell, which avoids effects of interplane coupling; (ii) the

substitution of La for Sr atoms introduces the lowest influence of disorder into

the CuO2 planes responsible for the superconductivity; (iii) large doping range

is available in this system. It spans hole concentrations from extreme under-

doped (non superconducting) to highly overdoped samples; (iv) its not too high

𝑇𝑐 gives enough region in temperature for studying the normal state properties

at low temperatures; and (v) its not too low 𝑇𝑐 allows to probe into the super-

conducting state. At ESPCI, UPMC, Paris, we measured the optical properties

of La-Bi2201 (Bi2Sr2−𝑥La𝑥CuO6) single crystals for 7 dopings (x = 0.1, 0.2, 0.4,

0.6, 0.7, 0.8 and 1.0) which spans hole concentrations from extremely underdoped

(non superconducting) to highly overdoped samples. Just after we finished the-

ses infrared reflectivity measurements, large single crystals became available on

the newly discovered iron-based superconductors, hence we turned our atten-
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tion to these iron-pnictide superconductors. Despite the large body of results on

La-Bi2201 single crystals, including them in the manuscript would not help to

make a clear text. So we are not going to discuss it at length in this thesis. For

the record, our analysis so far on this system gives the following outcome: (i) we

found that a partial gap in the normal state (pseudogap) can be determined from

the frequency dependent carrier lifetime. It is present at all measured dopings,

in particular deep into the overdoped regime, a property not shared by most

cuprates. (ii) The optical effective mass enhancement is constant throughout the

phase diagram while the charge density changes by a factor of 10. This indicates

that the transition leading to an insulating phase at zero doping is not governed

by a mass divergence, but rather by a charge density alone. This indicates that

the dynamical response of quasiparticles in Bi2Sr2−𝑥La𝑥CuO6 is local and not

strongly influenced by the long range Mott transition.

The subject I will treat in my thesis is the electrondynamics of iron-pnictides

superconductors. A sizeable number of questions exist in this new family of

superconductors: What is the symmetry of the order parameter? Does it change

with doping? What is the glue of the Cooper pairs? What is the relation between

the magnetism and the superconductivity in these materials?

The results I am discussing in my thesis concern particularly four samples:

hole doped Ba122 system single crystals, Ba1−𝑥K𝑥Fe2As2 (x = 0.4, 0.2 and 0.12)

and and electron doped Ba(Fe1−𝑥Co𝑥)2As2 (x = 0.08). Nevertheless, a large

body of my work was to understand and perfectionate the optical reflectivity

measurement. In that perspective, I measured many other samples at the end

of my thesis and we do not understand them enough to include all the results in

the manuscript. These samples are electron doped Ba122 system single crystals,

Ba(Fe1−𝑥Co𝑥)2As2 (x = 0.015, 0.045, 0.12 and 0.15); and Fe𝑦Te𝑥Se1−𝑥 single

crystals for 5 different compositions.

In this thesis, we present the electrodynamics of the hole and electron doped

Ba122 system iron-based superconductors. Our infrared optical measurement

was performed on Bruker IFS113v and IFS66v/s spectrometers in Paris. The

visible and UV range was measured with an AvaSpec-2048 × 14 model fiber op-
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tic spectrometer. In optimally doped Ba1−𝑥K𝑥Fe2As2 (x = 0.4), below 𝑇𝑐, the

optical conductivity vanishes below an absorption edge, and no residual conduc-

tivity appears at low frequencies in the superconducting state. This represents

a well defined fully open superconducting gap. In contrast, in optimally doped

Ba(Fe1−𝑥Co𝑥)2As2 (x = 0.08), a large residual conductivity at low energies, rep-

resenting unpaired quasiparticles, is observed in the superconducting state. This

striking difference in low frequency optical response between the K and Co doped

samples is an evidence for an 𝑠± pairing symmetry in Ba122 iron-based supercon-

ductors. The 𝑠± symmetry means that, in a multiband superconductor, different

bands have isotropic (𝑠) gaps with opposite phases (±). In this case, interband

scattering mixes states with opposing phases and is, therefore, pair breaking.

As K doping goes out of the FeAs plane, which dominates the band structure,

one does not expect strong interband scattering. Conversely, Co doping goes

directly into the FeAs plane and acts as impurity scattering centers. We asso-

ciate this scattering with the pair breaking leading to the residual low frequency

optical conductivity. We also investigated the optical spectra of the underdoped

Ba1−𝑥K𝑥Fe2As2 (x = 0.2 and 0.12) samples. The opening of the superconduct-

ing and a normal state spin density wave (SDW) gaps were clearly observed. In

addition, we also observed a small partial gap opening below about 75 K. A spec-

tral weight analysis shows that the small partial gap transfers the low frequency

spectral weight to high frequencies, but when superconductivity is established in

the material, this part of spectral weight joints the superconducting condensate.

In contrast, the SDW gap depletes the low energy spectral weight available for

superconducting condensate. These observations suggest that the small partial

gap originates in a precursor order to superconductivity while the SDW acts as a

competitive order to the superconductivity. The doping dependence of the gaps

in these materials is also supportive of this scenario.

This thesis is divided into six parts (Chapter 2 to 7). Chapter 2 gives a brief

introduction to superconductivity. In Chapter 3 we introduce some fundamentals

of infrared spectroscopy, and explain how we extract the optical constants from

the measured reflectivity and how we describe our data with models. Chapter

4 introduces the discovery and basic properties of iron-based high-𝑇𝑐 supercon-
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ductors including an extensive literature review. Chapter 5 describes our exper-

imental technique including the sample preparation. In Chapter 6 we present

our optical data and give the analysis of our experimental results. Chapter 7

provides an overall summary of our work.



Chapter 2

Fundamentals of superconductivity

2.1 The basic phenomena of superconductivity

2.1.1 The discovery of zero resistance

In 1908, a Dutch physicist H. Kamerlingh Onnes achieved the lowest temper-

ature (4.2 K by then) all over the world by liquifying the helium in his laboratory

at Leiden and initiated the field of low-temperature physics. Three years later,

Kamerlingh Onnes measured the resistance of mercury down to liquid helium

temperature, a novel phenomenon surprised him: at about 4.2 K, the resistance

of Mercury abruptly disappeared, as shown in Fig. 2.1. He immediately realized

Figure 2.1: The resistance of Hg as a function of temperature measured by

Kamerlingh Onnes.

the significance of this discovery and claimed that “Mercury has passed into a
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new state, which on account of its extraordinary electrical properties may be

called the superconductive state”. The temperature, at which the resistance dis-

appears, is called the critical temperature 𝑇𝑐. Indeed, superconductivity is not

peculiar to mercury. More than 20 metallic elements in the periodic table can

become superconductors.

2.1.2 Meissner effect

In 1933, German scientists Meissner and Ochsenfeld studied the magnetic

properties of the superconducting state. They found that if a normal metal in a

magnetic field (not too strong) is cooled below its superconducting critical tem-

perature, the magnetic flux is abruptly excluded from the interior of the material,

namely, a magnetic field can not penetrate into the interior of a superconductor.

This phenomenon is know as perfect diamagnetism and also referred to as the

“Meissner effect”.

Note that this is quite different from a perfect conductor. If a perfect con-

ductor is moved from a zero magnetic field region to a magnetic field, according

to the Faraday’s induction law, eddy currents should be induced to cancel the

magnetic field in the interior. However, if a magnetic field were initially estab-

lished in a perfect conductor, when moved to a field free region, induced eddy

currents arise to maintain the magnetic field. Hence, the magnetic field in the

interior of a perfect conductor depends on the history of external field. In a su-

perconductor, the field is always zero, completely ignoring the history of external

magnetic field.

2.1.3 Critical Temperature, Field and Current

As we discussed above, superconductivity is associated with a critical tem-

perature 𝑇𝑐, below which the superconducting properties are displayed. But

above 𝑇𝑐, the material is completely normal. Actually, not only the temperature,

but also a magnetic field can destroy superconductivity. Consider a supercon-

ductor at a temperature 𝑇 below its critical temperature 𝑇𝑐, if a magnetic field 𝐻

applied to the superconductor is strong enough, superconductivity is destroyed
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and the material turns back to the normal state. The magnetic field driving a

superconductor back to the normal state is defined as the critical field 𝐻𝑐 of the

superconductor. The critical field 𝐻𝑐 is a function of temperature. At zero tem-

perature, 𝐻𝑐 reaches the maximum 𝐻𝑐(0), and monotonously decreases to zero

at 𝑇𝑐. Fig. 2.2 shows the temperature dependence of the critical field.

Hc(T)

 

 

Superconducting

Normal

0 Tc T

Hc(0)

H

Figure 2.2: The temperature dependence of the critical magnetic field.

According to their magnetic properties, superconductors are classified into

Type I and Type II. The magnetic properties of Type I superconductors are

dominated by only one critical field 𝐻𝑐. The left panel of Fig. 2.3 shows the mag-

netization curve of Type I superconductors. Below 𝐻𝑐, −𝑀 = 𝐻, no magnetic

flux penetrates into the superconductor (perfect diamagnetism). If the applied

magnetic field exceeds the critical filed, the entire material is driven back to the

normal state and completely penetrated by magnetic field. The right panel of

Fig. 2.3 shows the magnetization curve of Type II superconductors. It’s char-

acterized by two critical fields, 𝐻𝑐1 and 𝐻𝑐2. Below the lower critical field 𝐻𝑐1,

the magnetization curve exhibits the same behavior as the one of Type I super-

conductors, −𝑀 = 𝐻, there is no penetration of flux. When the applied field

exceeds the lower critical filed, 𝐻 > 𝐻𝑐1, 𝑀 starts to fall smoothly, indicating
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Figure 2.3: Magnetization curves of superconductors. Left panel: type I; Right

panel: type II.

that magnetic flux starts to penetrate into the superconductor, the material en-

ters a complicated state with both normal and superconducting regions, known

as the mixed state, but the material still shows zero resistance. As the applied

magnetic field increases, more and more flux penetrates into the superconductor

and superconducting regions continuously shrink. When the applied magnetic

field reaches 𝐻𝑐2, called the upper critical field, the magnetization falls to zero,

the entire material reverts to the normal state and magnetic field penetrates

perfectly.

Equivalent to a magnetic field, a sufficiently strong current applied to a

superconductor can also cause its resistance to return to the normal state value,

this current is called critical current 𝐼𝑐.

From these basic properties of superconductors, it’s easy to infer that there

is a characteristic energy for the forming of superconducting state. When an

external energy, such as temperature, magnetic field or current, applied to the

superconductor is sufficiently high, superconductivity is destroyed.
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2.2 Cooper pairs

Since the discovery of superconductivity in 1911, a lot of effort had gone into

understanding the origin and mechanism of this amazing phenomenon. One of

the most historic steps leading to the successful formulation of the microscopic

theory of superconductivity was the model calculation performed by Cooper in

1956 [11]. He showed that if a weak attractive interaction exists, regardless of

how weak it is, electrons can be bound into pairs, the normal ground state of an

electron gas is unstable against the formation of at least one bound pair. To see

how this instability comes, we consider two electrons added to a Fermi sea at the

ground state 𝑇 = 0, the Fermi sea is not affected by these two electrons and the

only effect of the Fermi sea is to exclude these two electrons from occupying all

the states for 𝑘 < 𝑘𝐹 due to the Pauli exclusion principle. Thus, a many-body

problem is converted into a two-body problem. In order to have the lowest-energy

state, we assume that the two electrons have equal and opposite momentum, so

the orbital wavefunction of the two electrons, having coordinates r1 and r2 can

be written in the form

𝜓0(r1, r2) =
∑︁

𝑘

𝑔𝑘𝑒
𝑖k·r1𝑒−𝑖k·r2 =

∑︁

𝑘

𝑔𝑘𝑒
𝑖k·(r1−r2) (2.1)

all the states are occupied for 𝑘 < 𝑘𝐹 , so we get

𝑔(𝑘) = 0, for 𝑘 < 𝑘𝐹 (2.2)

considering the antisymmetry of the total wavefunction with respect to exchange

of the two electrons, we write it as

𝜓0(r1 − r2) =

[︃∑︁

𝑘>𝑘𝐹

𝑔𝑘 cosk · (r1 − r2)

]︃
(𝑆+ 1

2
𝑆− 1

2
− 𝑆− 1

2
𝑆+ 1

2
) (2.3)

The Schrödinger equation of the two electrons system is

− ~2

2𝑚
(∇2

1 + ∇2
2)𝜓0 + 𝑉 (r1 − r2)𝜓0 = 𝐸𝜓0 (2.4)

where 𝑉 (r1 − r2) represents the interaction potential of the two electrons. By

inserting Eq. 2.3 into the Schrödinger equation Eq. 2.4, we obtain

(𝐸 − 2𝜖𝑘)𝑔𝑘 =
∑︁

𝑘′>𝑘𝐹

𝑉𝑘𝑘′𝑔𝑘′ (2.5)



12

where 𝜖𝑘 = ~2𝑘2
2𝑚

, and 𝑉𝑘𝑘′ are the matrix elements of the interaction potential.

This 𝑉𝑘𝑘′ represents the strength of the potential for scattering a pair of electrons

with momentum (𝑘′, -𝑘′) to a momentum (𝑘, -𝑘). It’s very difficult to analyze this

situation for general 𝑉𝑘𝑘′ , in order to simplify the problem, Cooper introduced a

serviceable approximation

𝑉𝑘𝑘′ =

⎧
⎪⎪⎨
⎪⎪⎩

−𝑉, for 𝐸𝐹 ≤ 𝜖𝑘 ≤ 𝐸𝐹 + ~𝜔𝑐

𝐸𝐹 ≤ 𝜖𝑘′ ≤ 𝐸𝐹 + ~𝜔𝑐

0, Otherwise

(2.6)

where 𝜔𝑐 is a cut-off frequency. This approximation means that the attractive

interaction between the two electrons only happens for states out to a cut-off

frequency energy ~𝜔𝑐 away from the Fermi energy. Then by inserting the Eq. 2.6

into Eq. 2.5, we obtain

(𝐸 − 2𝜖𝑘)𝑔𝑘 = −𝑉
∑︁

𝑘′>𝑘𝐹

𝑔𝑘′ (2.7)

or we can write it as

𝑔𝑘 = 𝑉

∑︀
𝑔𝑘′

2𝜖𝑘 − 𝐸
(2.8)

Summing both sides and canceling the common factor, we have

1

𝑉
=

∑︁

𝑘>𝑘𝐹

(2𝜖𝑘 − 𝐸)−1 (2.9)

When replacing the summation by an integration, the above equation becomes

1

𝑉
= 𝑁(0)

∫︁ 𝐸𝐹+~𝜔𝑐

𝐸𝐹

𝑑𝜖

2𝜖− 𝐸
=

1

2
𝑁(0) ln

2𝐸𝐹 − 𝐸 + 2~𝜔𝑐

2𝐸𝐹 − 𝐸
(2.10)

where 𝑁(0) represents the density of states at the Fermi level for electrons of one

spin orientation. For most conventional superconductors, 𝑁(0)𝑉 < 0.3 which

is in the so-called weak-coupling limit, defined by 𝑁(0)𝑉 ≪ 1. Therefore, the

solution of Eq. 2.10 can be written as

𝐸 ≈ 2𝐸𝐹 − 2~𝜔𝑐𝑒
−2/𝑁(0)𝑉 (2.11)

This remarkable result tells us that the pair state we constructed with two elec-

trons having 𝑘 > 𝑘𝐹 will always have a lower energy than twice the normal
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ground state Fermi energy (2𝐸𝐹 ), no matter how weak the attractive interaction

(𝑉 ) is. This is why we say the normal ground state of an electron gas is unstable

with respect to the formation of at least one bound pair. Cooper suggested that

this instability is related to the formation of the superconducting state.

In conventional superconductors, the attractive interaction between the elec-

trons has been demonstrated to originate from electron-phonon coupling [12–14].

2.3 BCS theory

We have shown that if an attractive interaction exists, regardless of how

weak it is, the ground state Fermi sea exhibits instability against the formation

of as least one bound pair. Clearly a new equilibrium point characterized by

the condensation of numerous electron pairs is expected. When the ground state

Fermi sea is greatly changed and the binding energy for an additional pair goes

to zero, this new equilibrium point can be reached, and a new phase dominates

the ground state of the system. However, the number of electrons involved in

the phase transition is so large that it would be very difficult to deal with such

a complicated state.

An essential step to describe this state is to seek a wavefunction. The theory

proposed by Bardeen, Cooper and Schrieffer [1, 2] constructed a ground state in

which all electrons are bound into pairs. In order to describe these pair states,

the BCS theory introduced a “pair creation operator”:

𝑏*k = 𝑐*k↑𝑐
*
−k↓ (2.12)

and corresponding “pair annihilation operator”:

𝑏k = 𝑐−k↓𝑐k↑ (2.13)

where 𝑐*k↑ is the electron “creation operator” which creates an electron of mo-

mentum k and spin up. The electron “annihilation operator” 𝑐k↑ empties the

corresponding state.

The BCS theory argued that with so many particles involved, it would be a

good approximation to use a Hartree self-consistent field or mean-field approach,
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in which the occupancy of each pair state k depends only on the average occu-

pancy of other states. Then the ground state BCS wave function can be written

as

𝜓𝐵𝐶𝑆 =
∏︁

k

(𝑢k + 𝑣k𝑏
*
k)𝜑0 (2.14)

where 𝜑0 is the vacuum state with no particle present. |𝑢k|2 + |𝑣k|2 = 1 indicates

that the probability of the pair (k ↑,−k ↓) being occupied is |𝑣k|2, whereas the

probability that it is unoccupied is |𝑢k|2 = 1 − |𝑣k|2.
The BCS also considered a reduced Hamiltonian

𝐻𝑟𝑒𝑑 = 2
∑︁

𝑘>𝑘𝐹

𝜉𝑘𝑏
*
𝑘𝑏𝑘 + 2

∑︁

𝑘<𝑘𝐹

|𝜉𝑘|𝑏𝑘𝑏*𝑘 −
∑︁

𝑘𝑘′

𝑉𝑘𝑘′𝑏
*
𝑘′𝑏𝑘 (2.15)

where 𝜉𝑘 = 𝜖𝑘 − 𝐸𝐹 , representing the Bloch energy relative to the Fermi energy.

The first two terms correspond to the kinetic energy while the third term to the

interaction energy.

The ground state energy relative to the energy of the Fermi sea is given by

𝑊 = ⟨𝜓𝐵𝐶𝑆|𝐻𝑟𝑒𝑑|𝜓𝐵𝐶𝑆⟩ (2.16)

and let

𝑣2𝑘 = ℎ𝑘 (2.17)

then

𝑢2𝑘 = 1 − ℎ𝑘 (2.18)

Therefore, we can obtain

𝑊 = 2
∑︁

𝑘>𝑘𝐹

𝜉𝑘ℎ𝑘 + 2
∑︁

𝑘<𝑘𝐹

|𝜉𝑘|(1 − ℎ𝑘) −
∑︁

𝑘,𝑘′

[ℎ𝑘(1 − ℎ𝑘)ℎ𝑘′(1 − ℎ𝑘′)]
1
2𝑉𝑘𝑘′ (2.19)

by minimizing 𝑊 with respect to ℎ𝑘 we can get

𝑣2𝑘 = ℎ𝑘 =
1

2

[︃
1 − 𝜉𝑘

(∆2
𝑘 + 𝜉2𝑘)

1
2

]︃
(2.20)

and

𝑢2𝑘 = 1 − ℎ𝑘 =
1

2

[︃
1 +

𝜉𝑘

(∆2
𝑘 + 𝜉2𝑘)

1
2

]︃
(2.21)
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where

∆𝑘 =
∑︁

𝑘′

𝑉𝑘𝑘′ [ℎ𝑘′(1 − ℎ𝑘′)]
1
2 (2.22)

∆𝑘 is the minimum excitation energy, or energy gap. It will also become the order

parameter in the phenomenological theory, having a phase factor 𝑒𝑖𝜙, where 𝜙 is

the relative phase of 𝑢𝑘 and 𝑣𝑘. If we neglect anisotropic effects and assume the

the matrix element 𝑉𝑘𝑘′ can be replaced by a constant average matrix element 𝑉

for pairs in the region −~𝜔𝑐 < 𝜖 < ~𝜔𝑐 and by zero outside this region, Eq. 2.22

becomes

∆ = 𝑉
∑︁

𝑘′

[ℎ𝑘′(1 − ℎ𝑘′)]
1
2 (2.23)

By substituting Eq. 2.20 and Eq. 2.21 into Eq. 2.23, we obtain

∆

𝑉
=

∑︁

𝑘′

∆𝑘′

2
√︀
𝜉2𝑘′ + ∆2

𝑘′
(2.24)

here since ∆𝑘 = ∆ for |𝜉| < ~𝜔𝑐 and ∆𝑘 = 0 for |𝜉| > ~𝜔𝑐, this equation can be

simplified
1

𝑉
=

∑︁

𝑘′

1

2
√︀
𝜉2𝑘′ + ∆2

(2.25)

replacing the summation by an integration, the above equation becomes

1

𝑁(0)𝑉
=

∫︁ ~𝜔𝑐

0

𝑑𝜉√︀
𝜉2 + ∆2

(2.26)

consequently, we get

∆ =
~𝜔𝑐

sinh[ 1
𝑁(0)𝑉

]
≈ 2~𝜔𝑐𝑒

− 1
𝑁(0)𝑉 (2.27)

The last step in the above equation is obtained in the weak-coupling limit, i.e.

𝑁(0)𝑉 ≪ 1.

The BCS theory deduces several consequences, for example, the critical tem-

perature is given by

𝑘𝐵𝑇𝑐 = 1.13~𝜔𝑐𝑒
− 1

𝑁(0)𝑉 (2.28)

The exponential dependence explains the very low superconducting critical tem-

peratures. ~𝜔𝑐 is of order 𝑘𝐵Θ𝐷, where Θ𝐷 is the Debye temperature. But the
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critical temperature is one to three orders of magnitude below the Debye temper-

ature. The ratio of Eq. 2.27 to Eq. 2.28 yields a fundamental formula independent

of the phenomenological parameters:

∆

𝑘𝐵𝑇𝑐
= 1.76 (2.29)

This result holds for a large number of superconductors to within about 10 per-

cent. But it fails for lead, mercury and high-𝑇𝑐 superconductors, implying that

these superconductors go beyond the weak-coupling limit.

2.4 The superconducting gap

In the superconducting state, there is no zero excitation energy. If we cre-

ate a single particle excitation state at 𝑘 ↑ in the superconducting state, the

excitation energy is demonstrated to be

𝐸𝑘 =
√︁
𝜉2𝑘 + ∆2 (2.30)

where 𝜉𝑘 = 𝜖𝑘 − 𝐸𝐹 is the single-particle energy relative to the Fermi energy. ∆

plays the role of an energy gap and is always referred to as the superconducting

gap. It denotes the minimum excitation energy in the superconducting state,

even at the Fermi surface, 𝜉𝑘 = 0, 𝐸𝑘 = ∆ > 0.

We can calculate the density of states for excited quasiparticles. Let 𝑁(0)

be the density of states at the Fermi level for electrons. The number of electronic

states in the energy interval from 𝜉 to 𝜉 + 𝑑𝜉 near the Fermi surface is given by

𝑁(0)𝑑𝜉. Hence the number of excited quasiparticles in the energy interval from

𝐸 to 𝐸 + 𝑑𝐸 can be calculated as

𝜌(𝐸)𝑑𝐸 = 𝑁(0)
𝑑𝜉

𝑑𝐸
𝑑𝐸 =

𝑁(0)

𝑑𝐸/𝑑𝜉
𝑑𝐸 (2.31)

combined with Eq. 2.30, we obtain

𝜌(𝐸)𝑑𝐸 = 𝑁(0)
𝐸√

𝐸2 − ∆2
𝑑𝐸 (𝐸 ≥ ∆) (2.32)

Figure 2.4 shows the density of states for excited quasiparticles.
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Ek
0

N(0)

Figure 2.4: Density of states for BCS excited quasiparticles.

In the superconducting state, to break a Cooper pair and create two excita-

tion states at 𝑘𝑖 and 𝑘𝑗, one needs an excitation energy given by

𝐸 =
√︁
𝜉2𝑘𝑖 + ∆2 +

√︁
𝜉2𝑘𝑗 + ∆2 (2.33)

when 𝜉𝑘𝑖 = 𝜉𝑘𝑗 = 0, the above equation yields the minimum excitation energy

2∆. This result indicates that the minimum energy that can break a Cooper pair

is 2∆.

As we have discussed in previous sections, superconductivity is characterized

by critical temperature, field and current. This means that Cooper pairs in a

superconductor can be broken with thermal, magnetic and electrical energies.

Certainly, Cooper pairs can also be broken with electromagnetic radiation. When

the energy of the electromagnetic radiation is lower than 2∆, Cooper pairs in

a superconductor are not broken, thus no absorption can be observed. Once

the energy of the electromagnetic radiation exceeds 2∆, an absorption edge is

present at 2∆, indicating that Cooper pairs are broken. The magnitude of the

superconducting gap is of a few meV, falling into the infrared frequency range of

the optical spectrum. Therefore, the superconducting gap can be measured with

infrared optical spectroscopy.

In the above paragraphs, we have discussed the superconducting gap in the

BCS ground state (𝑇 = 0). Indeed, the superconducting gap exhibits strong

temperature dependence. When finite temperatures are taken into account, the
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generic gap equation becomes

∆𝑘 = −
∑︁

𝑘′

𝑉𝑘𝑘′
∆𝑘′

2𝐸𝑘′
tanh

𝐸𝑘′

2𝑘𝐵𝑇
(2.34)

This generic equation will be very important when we discuss the pairing sym-

metry in unconventional superconductors (Section 2.7). For now, let’s consider

the BCS isotropic approximation, Eq. 2.34 reduces to

1

𝑁(0)𝑉
=

∫︁ ~𝜔𝑐

0

tanh 1
2
𝛽
√︀
𝜉2 + ∆2

√︀
𝜉2 + ∆2

𝑑𝜉 (2.35)

where 𝛽 = 1
𝑘𝐵𝑇

. Using this equation, the gap value as a function of tempera-

ture ∆(𝑇 ) can be computed numerically. For weak-coupling superconductors,

∆(𝑇 ) decreases monotonously from ∆(0) at 𝑇 = 0 to zero at 𝑇𝑐 with increasing

temperature. Figure 2.5 shows the calculated temperature dependence of the

Figure 2.5: Temperature dependence of the superconducting gap in BCS theory.

Adopted from Ref. [15].

superconducting gap. Below ∼ 𝑇𝑐/2, ∆(𝑇 ) decreases slowly as the temperature

increases. When approaching 𝑇𝑐, the gap value falls steeply approximately as

∆(𝑇 )

∆(0)
≈ 1.74(1 − 𝑇

𝑇𝑐
)
1
2 for 𝑇 ≈ 𝑇𝑐 (2.36)
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2.5 Two-band superconductivity

The BCS theory successfully formulated the microscopic mechanism of the

single band superconductivity. Suhl et al. extended the BCS theory to the case

where two bands with more or less itinerant electrons overlap [16]. In the BCS

theory, a net attractive interaction between two electrons can bind these two

electrons into pair (Cooper pair), and the condensate of these Cooper pairs is

responsible for the superconductivity. In a two-band system, considering Band

1 and Band 2. The interaction between electrons may happen in two ways:

(i) intraband interaction, which means that the two electrons interact within the

same band; (ii) interband interaction, signifying that the two electrons interacting

are in different bands (one is in Band 1, the other is in Band 2).

The part of the Hamiltonian which connects pairs with zero net momentum

takes the form

𝐻 = 2
∑︁

𝑘

𝜉𝑘1𝑏
*
𝑘𝑏𝑘 + 2

∑︁

𝑘

𝜉𝑘2𝑑
*
𝑘𝑑𝑘

− 𝑉11
∑︁

𝑘𝑘′

𝑏*𝑘𝑏𝑘′ − 𝑉22
∑︁

𝑘𝑘′

𝑑*𝑘𝑑𝑘′ − 𝑉12
∑︁

𝑘𝑘′

(𝑏*𝑘𝑑𝑘′ + 𝑑*𝑘𝑏𝑘′) + C.C.
(2.37)

where 𝜉𝑘1 and 𝜉𝑘2 are the Bloch energies in the two bands measured relative

to the Fermi energy 𝐸𝐹 . 𝑏𝑘, 𝑏*𝑘, 𝑑𝑘, and 𝑑*𝑘 are the corresponding pair creation

and annihilation operators. 𝑉11 (𝑉22) denotes the averaged interaction energy

between two electrons those are both in Band 1 (Band 2). 𝑉12 is the averaged

interaction energy between two electrons which are separately in Band 1 and

Bang 2. Comparing this Hamiltonian to the BCS case, one can notice that we

have two independent BCS Hamiltonians, one for each band, and one extra term

to account for interband interaction. Within the framework of this theory, the

transition temperature is found to be

𝑘𝐵𝑇𝑐 = 1.14~𝜔𝑐exp
{︁
−

[︁ [
𝑉 2
12

𝑁1𝑁2
+ 1

4
(𝑉22

𝑁1
− 𝑉11

𝑁2
)2]

1
2

𝑉 2
12 − 𝑉11𝑉22

−
1
2
(𝑉22

𝑁1
+ 𝑉11

𝑁2
)

𝑉 2
12 − 𝑉11𝑉22

]︁}︁
(2.38)

When 𝑉12 = 0, the interaction occurs between electrons in the same band,

no interband pairing comes about. The two bands dominate the entire system
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separately. Hence, there are two transition temperatures and two superconduct-

ing gaps. Each gap has its own value and closes at its corresponding transition

temperature. The two solid parallel curves in Fig. 2.6 illustrate this case. When

Figure 2.6: Temperature dependence of the superconducting gaps for two-gap

superconductivity. Adopted from Ref. [16].

𝑉12 is finite but much less than
√
𝑉11𝑉22, interband pairing arises. The small gap

is lift up, and the lower transition temperature joins the higher, shown as the

dashed curve in Fig. 2.6. Both bands have the same 𝑇𝑐.

Another effective limit is the case where 𝑉11 = 𝑉22 = 0, and 𝑉12 ̸= 0. It

represents the case of interband pairing only, and one can get superconductivity

even without pairing in each individual band. The interband pairing only super-

conductivity exhibits the same transition temperature as BCS, with a density

of states (𝑁1𝑁2)
1/2. Figure 2.7 shows the calculated temperature dependence of

the superconducting gaps in this limit. One can see that there are still two gaps,

closing at the same transition temperature.

2.6 Effects of impurities on superconductivity

In the superconducting state, Cooper pairs dominate the physical properties

of a superconductor. Here we consider a superconductor containing impurities.
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Figure 2.7: Calculated temperature dependence of the superconducting gaps for

strong interband pairing case, using 𝑉11 = 𝑉22 = 0, 𝑉12
√
𝑁1𝑁2 = 1

3
, 𝑁1/𝑁2 = 10.

Adopted from Ref. [16].

Generally, impurities act only on the electric charge and scatter both electrons of

a Cooper pair identically. This does not break the Cooper pair apart. However,

magnetic impurities have a significant effect on superconductivity. As they can

not only scatter the electron as ordinary impurities but also flip the electron spin.

When scattered by an magnetic impurity, the Cooper pair can pass to a state

with parallel spins (triplet state). The BCS theory requires that the electrons

which are bound into pair have the antisymmetric singlet spin wave function,

therefore, the pair is broken up.

Abrikosov and Gorkov investigated the effects of magnetic impurities on the

superconducting transition temperature and energy gap [17]. They demonstrated

that the presence of magnetic impurities in superconductors can significantly

suppress the transition temperature. At low impurity concentration, 𝑇𝑐 is given
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by

𝑇𝑐 ≈ 𝑇𝑐0 −
𝜋~
4𝜏𝑠

(2.39)

where 𝑇𝑐0 is the transition temperature of a pure superconductor. 1/𝜏𝑠 repre-

sents the scattering rate associated only with the exchange interaction and it is

proportional to the concentration of the magnetic atoms. From this equation

we see that, at low impurity concentrations the transition temperature decreases

proportionally to the concentration. Obviously, one can find a critical concentra-

tion at ~𝜏−1
𝑠 ∼ 𝑇𝑐0, where the transition temperature vanishes, indicating that

the superconductivity is killed by magnetic impurities.

The properties of the superconducting gap is also severely affected by mag-

netic impurities. The most prominent character is that the superconducting gap

vanishes at a critical concentration 𝑛′
𝑚 which is given by

𝑛′
𝑚 ≈ 0.91𝑛𝑚𝑐 (2.40)

where 𝑛𝑚𝑐 is the critical concentration at which 𝑇𝑐 = 0. Clearly, the critical mag-

netic impurity concentration that annihilates the superconducting gap is lower

than the one killing the transition temperature. This fact indicates the existence

of gapless superconductivity in the concentration range

0.91𝑛𝑚𝑐 < 𝑛′
𝑚 < 𝑛𝑚𝑐 (2.41)

which is also supported by experimental results [18].

2.7 Pairing symmetry

A crucial issue in the mechanism of superconductivity is understanding the

properties of the superconducting gap(s). All experimental and theoretical stud-

ies so far have confirmed that in the superconducting state, the excited levels are

separated from the ground state by an energy 2∆. It means that an energy gap

opens centered about the Fermi energy. This energy gap is as the magnitude of

the order parameter of the superconducting phase transition and shows remark-

ably different properties in different classes of superconductors. Figure 2.8 shows

a schematic picture of the superconducting order parameter in different cases.
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In conventional BCS superconductors, such as aluminium, only one band

crosses the Fermi level and participates the superconducting condensation. Upon

entering the superconducting state, an isotropic gap opens near the Fermi surface

which means that the gap value and the sign are invariable at every point of the

Fermi surface. This is the case of an s-wave gap as shown in panel (a) of Fig.

2.8. Here the two-dimensional Fermi surface is approximated by one circle.

crystallographic motif (Fig. 1a), with the main component being a 
square lattice of iron atoms sandwiched between two square lattices 
of pnictogen (arsenic or phosphorus) — hence the initial name — or 
chalcogen (selenium or tellurium) atoms. Between these crucial trilay-
ers, various ‘filler slabs’ can be placed (although this is not essential): for 
example, a single crystallographic layer of sodium, barium, strontium 
or calcium; a trilayer consisting of a layer of oxygen between layers of 
a rare-earth element (the highest Tc so far, 56 K, has been observed in 
this family); or an even more complex filler slab.

Superconductivity can be induced in all materials by chemical doping 
or pressure, or a combination of both, as long as this results in the sup-
pression of magnetism. In contrast to copper oxides, which have very 
low electrical conductivity along the direction perpendicular to the 
copper-oxide layers, none of these systems is truly two dimensional. 
This is beneficial in terms of practical applications, because in polycrys-
talline two-dimensional materials superconductivity can be destroyed 
by a relatively small current.

What can be inferred from the large number of iron-based 
superconductors and the known properties of these materials? So far, 
no simple correlation has been noticed between anisotropy, the distance 
between planes in the crystal lattice, the temperature at which antifer-
romagnetic ordering occurs in the parent phase (or even the pattern of 
the magnetic order of this phase) and the superconducting Tc. Initially, it 
seemed as though Tc is optimized when the four anions around an iron ion 
form an ideal tetrahedron12. However, after more iron-based supercon-
ductors had been uncovered, this finding seemed not to be universal13.

By contrast, phase diagrams of essentially all iron-based 
superconductors have both superconducting phases and a strongly anti-
ferromagnetic phase (see Fig. 1, which is a schematic view of the generic 
features of the phase diagram). All iron-based superconductors contain 
iron in a valence state that is close or equal to Fe2+. All materials that have 
been studied so far show a peak in inelastic neutron-scattering spectra 
that corresponds to magnetic excitations at a particular wavevector, Qm 
(even though for at least one family, FeTexSe1−x, the static magnetic order 
occurs at a different wavevector). In cases in which the Fermi surface has 
been mapped by angle-resolved photoemission spectroscopy (ARPES), 
two sets of Fermi surfaces, roughly separated by the same wavevector, 
Qm, have been revealed (Fig. 3).

It is tempting to assume (and in fact almost the entire community has 
succumbed to this temptation) that the features that such disparate iron-
based superconductors have in common reflect a common origin for the 
observed superconductivity. Adopting this path, it can be concluded that 
proximity to a magnetic quantum critical point (as is seen in the phase 
diagram) signals that magnetic (spin) fluctuations play an important 
role. The fact that neutron-scattering measurements always uncover 
magnetic excitations with a particular wavevector, Qm, also suggests 
that these excitations are instrumental for mediating the pairing of elec-
trons. Note that the two electrons in a singlet Cooper pair have the same 
charge but opposite spins. A corollary of this is that magnetic excitations 
lead to pairing only if the corresponding wavevector spans parts of the 
Fermi surface with order parameters (that is, the pair wavefunction) of 
opposite sign (see ref. 14 for further explanation). Now, noting that there 
are two sets of Fermi surfaces that are roughly separated by the same 
wavevector Qm (Fig. 3), the so-called s± superconductivity is derived, in 
which the sign of the order parameter is switched between the two sets 
of Fermi surfaces (Fig. 2).

In the previous paragraph, I describe how the s± superconductivity 
model could have been arrived at, by using data from ARPES and neutron-
scattering experiments that became available roughly one year after the 
initial discovery. It is gratifying that theorists were able to come up with 
this model within a few weeks of the initial discovery, solely on the basis 
of electronic structure calculations and theoretical models5,6.

Farther down the road
It is still not clear beyond a reasonable doubt that the superconducting 
symmetry realized in iron-based superconductors is s± symmetry and 
that pairing is due to spin fluctuations. The jury is still out. This is 
a jury that is deeply convinced by the prosecution but is reluctant to 
base its verdict solely on circumstantial evidence. However, circum-
stantial evidence is plenty in this case, and physicists might be en route 
to uncovering a direct proof.

It is known (from nuclear-magnetic-resonance spectroscopy data) 
that the Cooper pairs in iron-based superconductors are spin singlets 
(formed by electrons with antiparallel spins). In this class, three possible 
symmetries of the order parameter are compatible with the tetragonal 

Figure 2 | Superconducting order parameter. A schematic representation 
of the superconducting order parameter in different cases: a conventional, 
uniform, s wave, such as in an ‘old-fashioned’ superconductor (for example 
aluminium) (a); a d wave, as is the case in copper oxides (b); a two-band 
s wave with the same sign, as in MgB2 (c); an s± wave, as is thought to be the 
case in iron-based superconductors (d). In a and b, the two-dimensional 
Fermi surface is approximated by one circle. In c and d, the Fermi surface 
is approximated by a small circle in the centre (the first band) surrounded 
by four larger circles (to comply with the tetragonal symmetry; the second 
band). In all cases, the height of the ‘rubber sheet’ is proportional to the 
magnitude of the order parameter (including its sign).

Figure 3 | A typical calculated Fermi surface of an iron-pnictide 
superconductor. The Fermi surface (projected onto the kx–ky plane, where 
k is electron momentum) shown is calculated for 10% electron-doped 
LaFeAsO. Experimentally observed Fermi surfaces show similar geometries. 
The momentum connecting the two sets of Fermi surfaces, Qm, is shown by 
the arrow. Spin fluctuations with this moment were predicted theoretically 
and found experimentally, and they are now thought to be instrumental for 
creating high-Tc superconductivity in iron-based superconductors. 
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Figure 2.8: A schematic representation of the superconducting order parameter

in different cases from Ref. [19]. (a) an s-wave in conventional superconductors;

(b) a d -wave, as is the case in copper oxides; (c) a two-band s-wave with the

same sigh, as in MgB2; (d) an s± wave, as is proposed to be the case in iron-based

superconductors. In all cases, the height of the ”rubber sheet” is proportional to

the magnitude of the order parameter (including its sign).

In the BCS approximation, by definition, the superconducting gap and the

interaction potential are isotropic, i.e. they do not depend on 𝑘. Interesting

possibilities arrive when this approximation is not made. Taking the full tem-

perature dependent gap equation (Eq. 2.34), one can see that pairing can occur

even if the interaction potential 𝑉𝑘𝑘′ is not attractive, i.e. 𝑉𝑘𝑘′ > 0. In that case,

the self consistent gap equation still has a solution as far as the gap can change

sign, which means that ∆𝑘 and ∆𝑘′ have different signs for significant portions
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of the 𝑘 space. This is particularly important as it allows for an “all electronic”

pairing mechanisms such as spin fluctuations. Examples of sign changing order

parameters are the 𝑑𝑥2−𝑦2 symmetry observed in cuprates and the 𝑠± symmetry

proposed for pnictides.

In the case of a d -wave symmetry order parameter, found in the copper

oxide superconductors [20], the gap function for pair state can be written as

∆(𝑘) = ∆0(cos 𝑘𝑥 − cos 𝑘𝑦), where ∆0 is the maximum gap value, 𝑘𝑥 and 𝑘𝑦 are

the wave-vector components along the principal axes in the two-dimensional 𝑘

space. As indicated by the d -wave gap function, in the (𝜋, 0) direction of the

two-dimensional 𝑘 space, the gap value reaches a maximum, and nodes exist in

the (𝜋, 𝜋) direction, moreover, the sign of the order parameter changes at the

nodes. See panel (b) in Fig. 2.8.

In contrast to the conventional superconductors and the copper oxides, MgB2

has a more complex electronic structure, featuring two distinctively different

groups of electrons. These two groups of electrons form two kinds of electronic

band, which give rise to two separate sets of Fermi surfaces [21]. Hence, MgB2 is

referred to as two-band superconductors. The order parameter in each band has

an s-wave symmetry and the same sign. A schematic picture of this case can be

seen in panel (c) of Fig. 2.8, and the Fermi surface is approximated by a small

circle in the center (the first band) surrounded by four larger circles (the second

band).

The case of the newly discovered iron-based superconductors is unlike any

of the preceding ones. Electronic structure calculations predict that up to five

bands at the Fermi level participate in the formation of the superconducting

condensate [22, 23], leading to multigap superconductivity. Mazin et al. [24]

suggested an antiferromagnetic spin fluctuation mediated superconductivity in

these materials resulting in a possible sign reversal between the order parameters

in different Fermi surface sheets, in the so-called 𝑠± pairing symmetry shown

in panel (d) of Fig. 2.8. In other words, each band would have an isotropic gap

(such as in MgB2), but their relative phases would be opposite. Additionally, in a

process similar to pair breaking by magnetic impurities in a BCS superconductor
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(see Sec. 2.6), pairs can be broken by non-magnetic impurity scattering in the

𝑠± symmetry. Such scattering mixes states with opposite phases, and Cooper

pairs are annihilated. An excess of unpaired quasiparticles will thus appear in

the superconducting state [25, 26].

2.8 High-𝑇𝑐 superconductors

This thesis is not about cuprates. However, many of the relevant points

observed in pnictides have a close relation to the response of cuprates. Here we

present a brief overview of copper oxide based superconductivity.

More than 20 years ago, superconductivity with a transition temperature

of 35 K was discovered by Bednorz and Mueller in a lanthanum-based cuprate

material (Ba-La-Cu-O) [3]. Soon after their discovery, a large number of com-

pounds with similar structure were found to exhibit superconductivity. The su-

perconducting transition temperature was raised above the boiling point of liquid

nitrogen (77 K) by this class of superconductors. For example, Y-Ba-Cu-O shows

a transition temperature of 92 K [27], and the 𝑇𝑐 of the Hg-Ba-Ca-Cu-O system

can reach ∼ 133 K [28] which can be pushed over 150 K under extremely high

pressure [29, 30]. The cuprate superconductors are always referred to as “High-

𝑇𝑐 superconductors” on account of their relatively high transition temperatures

compared to the BCS superconductors. This class of superconductors are highly

structurally and electronically anisotropic compounds and have the perovskite

structure. Copper oxide planes characterize the cuprate superconductors and

are responsible for superconductivity.

The undoped materials are called parent compounds of the family. Super-

conductivity arises from doping the parent compounds with holes or electrons.

Figure 2.9 shows the schematic electronic phase diagram of the copper oxide

superconductors. At zero doping fraction, although the energy band of the par-

ent compounds is half-filled, the strong Coulomb repulsion prevents electrons

from hoping between nearest Cu atoms. Consequently, these materials are an-

tiferromagnetic insulators (Mott insulators) in the ground state instead of half-

filled metals. When doping the parent compounds with holes or electrons, the

long-range magnetic order is completely suppressed and then superconductivity
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Figure 2.9: Schematic phase diagram of copper oxide superconductors. Adopted

from Ref. [19]

emerges, shown as the red domes on both the hole and electron doping sides.

In the 𝑇 vs doping diagram for each family of superconductors, the compounds

having the highest 𝑇𝑐 are named “optimally doped”, which is represented by the

apex of the superconducting domes in the phase diagram. The compounds with

carrier concentrations lower (higher) than the optimally doped ones are named

underdoped (overdoped) compounds.

The copper oxide superconductors exhibit numerous unconventional prop-

erties that can not be explained by the BCS theory. For instance: (i) The transi-

tion temperature exceeds ∼ 30 K, the maximum 𝑇𝑐 predicted by BCS theory; (ii)

Electron-phonon coupling fails in accounting for the pairing mechanism; (iii) The

weak-coupling approximation is not valid. (iv) the superconducting gap shows



CHAPTER 2 FUNDAMENTALS OF SUPERCONDUCTIVITY 27

an unconventional 𝑑-wave symmetry; (v) A resonant spin excitation, localized

in both energy and wavevector, is universally observed within superconducting

phase [31–34]. Cooper pairs might be mediated by spin fluctuation.

At low doping fractions (underdoped region), the cuprates furthermore ex-

hibit a second energy scale, characterized by a depletion of electronic and spin

density of states at the Fermi level, which is observed at temperatures much

higher than the superconducting transition temperature, the so-called pseudo-

gap [35]. This pseudogap feature was first observed by nuclear magnetic reso-

nance [36] and then was confirmed by a variety of techniques like angle resolved

photoemission spectroscopy (ARPES) [37, 38], 𝑐-axis tunneling [39], and far in-

frared spectroscopy [40, 41]. However, the origin of the pseudogap phase in the

cuprates and its relation with the superconductivity is still under heavy debate.

The central issue is whether the pseudogap phase is intimately related to the

superconducting gap like a precursor of pairing [42–47] or a competitive order

that has no direct bearing on superconductivity [48–53].





Chapter 3

Infrared spectroscopy

This thesis relies heavily on the measurement and analysis of the optical

properties of pnictide superconductors. Before dwelling into the physics of pnic-

tides, let’s set the ground to what the optical conductivity is sensitive to.

3.1 The interaction of radiation with matter

The beautiful colors of gemstones have been valued in all societies, and met-

als have been used for making mirrors for thousands of years. However, the

scientific explanations for these phenomena have only been given in relatively

recent times. Light, electromagnetic radiation having a vast spectrum from ra-

diowaves via infrared, visible, ultraviolet, and x-rays to 𝛾-rays, interacts with

solids in many different ways. It can be absorbed or reflected by materials. Light

propagating in medium may have different physical processes like refraction, scat-

tering, interference and diffraction, then color arises. Besides, light shining onto

a material may excite some of the electrons to energies sufficiently high, so these

electrons can escape from the material. This process is called the photoelectric

effect.

In a solid, a large number of atoms at the supramolecular and macromolecu-

lar scale interact strongly and adhere to each other. Many and various mysterious

properties appear due to the multiple interactions in a many-body system. For

instance, superconductivity exists in certain materials at low temperatures; spin-

density-wave and charge-density-wave are exhibited as low-energy ordered states

in anisotropic, low-dimensional materials. To describe and explain these prop-

erties in a condensed matter phase, energy band theory [54] and the collective

excitations are introduced into condensed matter physics. The characteristic en-

ergy of the collective excitations in a solid locates in the energy interval from
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several meV to several eV. For example, the energy of superconducting gaps is

usually several meV; the phonon excitation energy is dozens to hundreds of meV;

the band gap of semiconductors is about several eV. Light scattering is therefore

an important tool to probe excitations in solids. Figure 3.1 illustrates some

Tð!Þ spectra obtained for transparent materials can be used to
extract the dielectric function through analytic expressions;
(ii) Kramers-Kronig analysis of Rð!Þ for opaque systems or
of Tð!Þ for transparent systems; (iii) ellipsometric coeffi-
cients c and � for either transparent or opaque materials can
be used to determine the dielectric function through analytic
expressions5; (iv) various interferometric approaches, in par-
ticular, Mach-Zehnder interferometry; and (v) THz time-
domain spectroscopy directly yields optical constants.
These experimental techniques have been extensively applied
to correlated matter. The extension of ‘‘optical’’ data to the
microwave region is often desirable especially for supercon-
ductors and heavy electron materials that show interesting
properties below 1 meV (see Sec. IV).

B. Pump-probe spectroscopy

Ultrafast optical spectroscopy provides the possibility to
temporally resolve phenomena in correlated electron matter
at the fundamental time scales of atomic and electronic
motion. Subpicosecond temporal resolution combined with
spectral selectivity enables detailed studies of electronic,
spin, and lattice dynamics, and, crucially, the coupling be-
tween these degrees of freedom. In this sense, ultrafast
optical spectroscopy complements time-integrated optical
spectroscopy and offers unique possibilities to investigate
correlated electron materials. This includes, as examples,
phenomena such as electron-phonon coupling, charge-
density-wave dynamics, condensate recovery, and quasipar-
ticle formation.

In time-resolved optical experiments, a pump pulse photo-
excites a sample initiating a dynamical response that is

monitored with a time delayed probe pulse. Experiments on
correlated electron materials fall into two categories as de-
termined by the photoexcitation fluence (Hilton et al., 2006).
In the low-fluence regime ( & 100 � J=cm2) it is desirable to
perturb the sample as gently as possible to minimize the
temperature increase. Examples of low-fluence experiments
discussed below include condensate dynamics in conven-
tional and high-temperature superconductors (Secs. III.G
and V.A.1, respectively), spin-lattice relaxation in manganites
(Sec. V.C), and electron-phonon coupling in heavy fermions
(Sec. V.B.2). At the other extreme are high-fluence nonper-
turbative experiments, where goals include photoinducing
phase transitions or creating nonthermally accessible meta-
stable states having a well-defined order parameter.6 This is
an emerging area of research that is quite unique to ultrafast
optical spectroscopy. The coupling and interplay of correlated
electron materials are of considerable interest in these high-
fluence experiments as discussed in more detail in Sec. IV.E
on photoinduced phase transitions and Sec. V.B.2 on the
vanadates.

Low- and high-fluence time-resolved experiments have
been made possible by phenomenal advances in ultrashort
optical pulse technology during the past 15 years which have
enabled the generation and detection of subpicosecond pulses
from the far-infrared through the visible and into the x-ray
region of the electromagnetic spectrum (Kobayashi et al.,
2005). Formally, ultrafast optical spectroscopy is a nonlinear
optical technique. In the low-fluence regime, pump-probe
experiments can be described in terms of the third-order
nonlinear susceptibility. However, more insight is often ob-
tained by considering ultrafast optical spectroscopy as a
modulation spectroscopy where the self-referencing probe
beam measures the induced change in reflectivity �R=R or
transmission �T=T (Cardona, 1969; Sun et al., 1993). This
provides an important connection with time-integrated opti-
cal spectroscopy, where the experimentally measured reflec-
tivity and the extracted dielectric response are the starting
point to interpret and analyze the results of measurements.
Further, this is applicable to high-fluence experiments from
the perspective of temporally resolving spectral-weight trans-
fer (see Sec. II.D). In femtosecond experiments, the dynamics
can be interpreted using

�R

R
ðtÞ ¼ @ lnðRÞ

@�1
��1ðtÞ þ @ lnðRÞ

@�2
��2ðtÞ; (2)

where R is the reflectivity, and ��1, ��2 are the induced
changes in the real and imaginary parts of the dielectric
function, respectively (Sun et al., 1993). Insights into the
electronic properties obtained from time-integrated measure-
ments of �1 þ i�2 (or the complex conductivity �1 þ i�2)
serve as a useful starting point in understanding the quasi-
particle dynamics measured using time-resolved techniques.
Further, the development of time-gated detection techniques
has enabled direct measurement of the electric field which, in
turn, permits the determination of the temporal evolution of

FIG. 3 (color online). Schematic representation of characteristic

energy scales in correlated electron systems. These different pro-

cesses give additive contributions to the dissipative parts of optical

constants. TMO: transition-metal oxides.

5This is straightforward only in the case of isotropic bulk

materials; in the case of anisotropic materials or films some models

have to be assumed.

6See, for example, Averitt and Taylor (2002), Nasu (2004), Hilton

et al. (2006), Kuwata-Gonokami and Koshihara (2006), Kaindl and

Averitt (2007), and Yonemitsu and Nasu (2008).
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Figure 3.1: Schematic representation of characteristic energy scales in correlated

electron systems. Adopted from Ref. [55].

characteristic energy scales in solids.

For some historical reasons, in infrared spectroscopy, we use wavenumber as

the measurement of energy. Wavenumber (in unit cm−1) is defined as 1/𝜆, where

𝜆 is the wavelength. One can convert cm−1 into other units via the relations as
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follows

8 cm−1 = 1 meV

33 cm−1 = 1 THz

100 cm−1 = 100 𝜇m

With optical conductivity, one can probe electronic structure and excitations

in the frequency range from ∼ 20 cm−1 to at least 55000 cm−1 corresponding

to 2.5 meV to 6.9 eV. In this range, the far-infrared region is of the utmost

importance to superconductivity, since it covers both the superconducting gap

and the energies of the excitations believed to be relevant to the formation of the

superconducting condensation.

Compared to other techniques, infrared spectroscopy has its own character-

istics: (i) The frequency of the outgoing light does not shift with respect to the

incident light. Only the phase shift and attenuation of the light are recorded.

So infrared spectroscopy is referred to as elastic light scattering probe. This is

opposite to Raman spectroscopy which is a widely known inelastic light scat-

tering technique. (ii) It’s a momentum averaged technique. Unlike the ARPES

(angle-resolved photoemission spectroscopy) or neutron scattering, infrared spec-

troscopy does not have momentum resolution, thus can not provide information

on 𝑘 dependence. (iii) It has a penetration depth of a few hundred nanometers,

much longer than ARPES (several unit cells) and STM, representing a bulk sen-

sitive probe. (iv) The electric field dominates the interaction between the light

and materials.

3.2 Electrodynamics

3.2.1 Maxwell’s equations

The theoretical description of the interaction of electromagnetic radiation

with matter and the analysis of the experimental results are based on Maxwell’s

equations written as:

∇ ·D = 𝜌 (3.1)

∇×H− 𝜕D

𝜕𝑡
= J (3.2)
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∇× E +
𝜕B

𝜕𝑡
= 0 (3.3)

∇ ·B = 0 (3.4)

D Electric displacement vector

H Magnetic field vector

E Electric field

B Magnetic induction

J Current density

𝜌 Charge density

3.2.2 Solution of Maxwell’s equations in vacuum

In a vacuum and in the absence of free current and external charge (J = 0

and 𝜌 = 0), D = 𝜖0 E and B = 𝜇0 H. The two equations Eq. 3.1 and Eq. 3.2

becomes:

∇ · E = 0 (3.5)

∇×B− 1

𝑐2
𝜕E

𝜕𝑡
= 0 (3.6)

The combination of Eq. 3.3 and Eq. 3.6 yields:

∇2E− 1

𝑐2
𝜕2E

𝜕𝑡2
= 0 (3.7)

This is a wave equation in its simplest form without dissipation, and the second

spatial derivative is equal to the second derivative in time with the square of

the velocity as proportionality factor. One possible solution of this differential

equation is given by a harmonic wave:

E(r, 𝑡) = E0𝑒
−𝑖(k·r−𝜔𝑡) (3.8)

where k is the wavevector. The corresponding wave equation for H can easily be

derived from Maxwell’s equations:

∇2H− 1

𝑐2
𝜕2H

𝜕𝑡2
= 0 (3.9)
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and has the same form of solution:

H(r, 𝑡) = H0𝑒
−𝑖(k·r−𝜔𝑡−𝜑) (3.10)

A phase factor 𝜑 is included to indicate that the electric and magnetic fields may

be shifted in phase with respect to each other.

3.2.3 Propagation of electromagnetic wave in the medium

Because we are interested in the optical properties of solids, we now have to

discuss the influence of matter on the propagation of the electromagnetic wave.

First it’s always a good start to define some material parameters and see how

they enter Maxwell’s equations.

The presence of a medium in electric and magnetic fields may lead to elec-

tric dipoles and magnetic moments; polarization charges, and induced current.

To differentiate these effects, we artificially separate the electrons into bound

electrons and free electrons in the system. we assume that there is no exter-

nal current present: J𝑒𝑥𝑡 = 0. Then the total current density J𝑡𝑜𝑡𝑎𝑙 entering

Maxwell’s equation consists of a contribution from the motion of free electrons in

the presence of an electric field (J𝑐𝑜𝑛𝑑) and of a contribution J𝑏𝑜𝑢𝑛𝑑 arising from

the redistribution of bound charges:

J𝑡𝑜𝑡𝑎𝑙 = J𝑐𝑜𝑛𝑑 + J𝑏𝑜𝑢𝑛𝑑 (3.11)

Another complication in dealing with the interaction of electromagnetic wave

with matter is that the electric and magnetic fields will not be uniform within the

material but fluctuate from point to point reflecting the periodicity of the atomic

lattice. However, for wavelengths appreciably longer than (i) the atomic distance

and (ii) the mean free path of the free electrons, we can nevertheless consider

an average value of the electric and magnetic fields (local approximation). Fur-

thermore, we consider that the luminous flux used for experiment is very weak,

then the response of the system is proportional to the perturbation. This method

is referred to as the linear approximation. Based on these approximations, it’s

reasonable to describe the effects of the electromagnetic radiation on a medium
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as follows:

P = 𝜒𝑏
𝑒𝜖0E (3.12)

M = 𝜒𝑚𝜇0H (3.13)

J𝑐𝑜𝑛𝑑 = 𝜎𝑓
1E (3.14)

𝜌𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑒𝑥𝑡 + 𝜌𝑝𝑜𝑙 (3.15)

where 𝜖0 and 𝜇0 are the permittivity and permeability of free space respectively,

and 𝑐 is the speed of light in vacuum which is equal to 1/
√
𝜖0𝜇0.

P is the electric polarization density (the dipole moment per unit volume);

M is the magnetization (the magnetic moment density);

J𝑐𝑜𝑛𝑑 is the current density contribution from the free electrons;

𝜎𝑓
1 is the conductivity of the free electrons;

𝜌𝑒𝑥𝑡 is an external charge density;

𝜌𝑝𝑜𝑙 is the charge density due to the spatially varying polarization;

𝜒𝑒 is the dielectric susceptibility;

𝜒𝑚 is the magnetic susceptibility.

In the absence of external charge 𝜌𝑒𝑥𝑡 = 0. For a homogeneous polarization,

the positive and negative charges cancel everywhere inside the material, leading to

no net charge 𝜌𝑝𝑜𝑙 in the condition of the long wavelength limit. The electric field

E and the electric displacement vector (or electric flux density) D are connected

by:

D = 𝜖0E + P = (1 + 𝜒𝑏
𝑒)𝜖0E ≡ 𝜖𝑏𝜖0E (3.16)

where 𝜖𝑏 is dielectric function of the bound electrons.

The magnetic field H and the the magnetic induction B are connected by:

B = 𝜇0H + M = (1 + 𝜒𝑚)𝜇0H ≡ 𝜇𝜇0H (3.17)

where 𝜇 is the magnetic permeability.

The quantities 𝜒𝑏
𝑒, 𝜖

𝑏, 𝜒𝑚, and 𝜇 which connect the fields are unitless. The

magnetic susceptibility 𝜒𝑚 is typically four to five orders of magnitude smaller

(except in the case of ferromagnetism) than the dielectric susceptibility 𝜒𝑒 which
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is of the order of unity. For this reason, when electromagnetic waves pass through

a medium, the dia- and para-magnetic properties can in general be neglected

compared to the dielectric properties. Since we are not going to discuss the

properties of magnetic materials, we suppose 𝜇 = 1 in this thesis.

With these definitions above, we can rewrite Maxwell’s equations Eq. 3.1 -

Eq. 3.4 in the presence of matter:

∇ · (𝜖𝑏𝜖0E) = 0 (3.18)

∇×H =
𝜕(𝜖𝑏𝜖0E)

𝜕𝑡
+ 𝜎𝑓E (3.19)

∇× E = −𝜕(𝜇0H)

𝜕𝑡
(3.20)

∇ · (𝜇0H) = 0 (3.21)

We consider an infinite medium to avoid boundary and edge effects. As we

did in the case of vacuum, the solution can be written as:

E(r, 𝑡) = E0(r, 𝜔)𝑒−𝑖𝜔𝑡 (3.22)

H(r, 𝑡) = H0(r, 𝜔)𝑒−𝑖𝜔𝑡−𝜑 (3.23)

(i) We can calculate the rotation (∇×) of the two terms of Eq. 3.20:

∇× (∇× E) = ∇× (−𝜕(𝜇0H)

𝜕𝑡
) (3.24)

∇(∇ · E) −∇2E = 𝑖𝜔∇×H (3.25)

Note that ∇ · E = 0 (𝜖𝑏 ̸= 0) in Eq. 3.18, the equation 3.25 is then equal to:

−∇2E = 𝑖𝜔∇×H (3.26)

(ii) We calculate the derivative with respect to time ( 𝜕
𝜕𝑡

) of the two terms in the

equation 3.19:

𝑖𝜔∇×H = 𝑖𝜔𝜇0(𝜎
𝑓E− 𝑖𝜔𝜖𝑏𝜖0E) (3.27)

By comparing Eq. 3.26 and Eq. 3.27, we obtain:

−∇2E =
𝜔2

𝑐2
E[𝜖𝑏 +

𝑖𝜎𝑓 (𝜔)

𝜖0𝜔
] =

𝑛2𝜔2

𝑐2
E = k2E (3.28)
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This equation has the general form of a wave equation. If we define the complex

dielectric function (𝜖(𝜔)) as:

𝜖(𝜔) = [𝜖𝑏 +
𝑖𝜎𝑓 (𝜔)

𝜖0𝜔
] (3.29)

This complex dielectric function 𝜖(𝜔) can characterize the optical response of all

the charges in the system, including the free and bound charges. In this case,

we can redefine 𝜖𝑏 → 𝜖𝑏 + 𝛿𝜖𝑏 on condition that we redefine 𝜎𝑏 → 𝜎𝑏 + 𝑖𝜔𝛿𝜖0𝜖
𝑏.

Finally we obtain:

𝜖(𝜔) = 1 + 𝑖
𝜎(𝜔)

𝜖0𝜔
(3.30)

We choose the complex dielectric function [𝜖(𝜔) = 𝜖1 + 𝑖𝜖2] to describe the op-

tical response of the material. However, it’s intimately related to other optical

functions; therefore all other complex optical functions consists of the same in-

formation.

3.3 Optical constants

The complex refractive index is defined as:

�̂� = 𝑛+ 𝑖𝑘 =
√︀
𝜖(𝜔) (3.31)

which can be decomposed into the real part:

𝑛(𝜔) =

√︃√︀
𝜖21(𝜔) + 𝜖22(𝜔) + 𝜖1(𝜔)

2
(3.32)

and the imaginary part (the extinction coefficient):

𝑘(𝜔) =

√︃√︀
𝜖21(𝜔) + 𝜖22(𝜔) − 𝜖1(𝜔)

2
(3.33)

If we consider the case of the normal incidence, the wavevector is perpendic-

ular to the surface while E and H point in the x and y directions, respectively.

At the interface between the two different media 1 and 2, the complex reflection

coefficient (r) can be written as:

𝑟12 =
√︀
𝑅12𝑒

𝑖𝜑𝑟 =
�̂�1 − �̂�2

�̂�1 + �̂�2

(3.34)
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where R12 is the reflectivity and 𝜑𝑟 is the phase shift of the reflected to incident

wave. The transmission coefficient (t) is:

𝑡12 =
√︀
𝑇12𝑒

𝑖𝜑𝑡 =
2�̂�1

�̂�1 + �̂�2

(3.35)

where T12 is the transmission with a phase change 𝜑𝑡.

In this thesis, we discuss the optical properties of solids in vacuum where �̂�

= 1, hence the complex reflection coefficient (r) of the material is simplified as:

𝑟 =
√︀
𝑅(𝜔)𝑒𝑖𝜑(𝜔) =

1 − �̂�

1 + �̂�
=

1 − 𝑛(𝜔) − 𝑖𝑘(𝜔)

1 + 𝑛(𝜔) + 𝑖𝑘(𝜔)
(3.36)

where 𝑛(𝜔) and 𝑘(𝜔) are the index of refraction and the extinction coefficient of

the material, respectively.

The complex optical conductivity 𝜎(𝜔) can be derived from Eq. 3.30:

𝜎(𝜔) = 𝜎1(𝜔) + 𝑖𝜎2(𝜔) = 𝑖𝜖0𝜔[1 − 𝜖(𝜔)] (3.37)

In the system of units of optical spectroscopy ([𝜔] = cm−1 and [𝜎1] = Ω−1𝑐𝑚−1),

the real part and the imaginary part of the optical conductivity are written as:

𝜎1(𝜔) =
2𝜋

𝑍0

𝜔𝜖2(𝜔) (3.38)

𝜎2 =
2𝜋

𝑍0

𝜔[1 − 𝜖1(𝜔)] (3.39)

where 𝑍0 =
√︀
𝜇0/𝜖0 is the vacuum impedance which equals 377 Ω.

Now we have introduced four pairs of optical constants, [𝜖1(𝜔), 𝜖2(𝜔)], [𝑛(𝜔),

𝑘(𝜔)], [𝜎1(𝜔), 𝜎2(𝜔)], and [𝑅(𝜔), 𝜑(𝜔)]. The complex dielectric constant [𝜖1(𝜔),

𝜖2(𝜔)] and the complex conductivity [𝜎1(𝜔), 𝜎2(𝜔)] can be regarded as the prime

response functions of the material describing the electric polarization and current

induced in response to the applied electric field. All the so-called optical constants

introduced here are not constants, but generally depend on frequency 𝜔. The

frequency dependence of the response is called dispersion. Furthermore, all these

quantities can be used as parameters for describing a material in interaction with

light and can be deduced reciprocally from one pair to others via simple algebra.
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3.4 Kramers-Kronig relations and sum rules

The various material parameters and optical constants introduced in the

previous section describe the response of the medium to applied electromagnetic

radiation within the framework of linear response theory. They are all complex

response functions consisting of a real part (or amplitude) and an imaginary part

(or phase). For example, the electromagnetic wave which is transmitted through

an interface or reflected off a boundary of two materials is characterized by both

the amplitude and the phase shifts (𝜑𝑡 or 𝜑𝑟); both components constitute a

response function. Kramers and Kronig investigated the relations between the

real and imaginary parts of the optical constants, and found that they are not

independent. Causality can be used to derive important relations between the

real and imaginary parts of the complex response functions. The relations first

given by Kramers and Kronig were called Kramers-Kronig relations, KK relations

for short. The Kramers-Kronig relations play an important role in experimental

physics. They allow for the evaluation of the components of the complex dielectric

constant or conductivity when only one optical parameter such as the reflected

or absorbed power is measured. For instance, with 𝑅(𝜔) obtained over a broad

frequency range, the KK relations can be utilized to evaluate 𝜑𝑟(𝜔).

These KK relations together with physical arguments about the behavior of

the response in certain limits can also be used to derive sum rules.

3.4.1 Kramers-Kronig relations

The Kramers-Kronig relations are based on the principle of causality which

means that a effect can only happen after rather than precede its cause. Under

the action of an external stimulus, a system responds in its own characteristic

way. The relationship of the response to the stimulus is given by a response

function.

Considering a general linear response to an external perturbation given in

the form of

�̂�(r, 𝑡) =

∫︁ ∫︁ ∞

−∞
�̂�(r, r′, 𝑡, 𝑡′)𝑓(r′, 𝑡′)𝑑r′𝑑𝑡′ (3.40)
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This equation describes the response �̂�(r, 𝑡) of the system at location r and time

𝑡 to an external stimulus 𝑓(r′, 𝑡′) acting at all times 𝑡′ and places r′. The function

�̂�(r, r′, 𝑡, 𝑡′) is called the response function.

Here the stimulus of interest will generally be an electromagnetic wave. We

consider the situation in the long wave length limit and neglect the spatial de-

pendence of the external perturbation as in the local approximation. We also

assume that the medium is isotropic and homogeneous, and thus �̂� is a scalar.

With these assumptions, Eq. 3.40 becomes:

�̂�(𝑡) =

∫︁ ∞

−∞
�̂�(𝑡− 𝑡′)𝑓(𝑡′)𝑑𝑡′ (3.41)

If we include the additional requirement that the system be causal, indicating

that there is no response prior the stimulus, then

�̂�(𝑡− 𝑡′) = 0 for 𝑡 < 𝑡′ (3.42)

For further analysis, it is more convenient to make a Fourier transformation which

can be written as

𝑓(𝜔) =

∫︁
𝑓(𝑡)exp(𝑖𝜔𝑡)𝑑𝑡 (3.43)

�̂�(𝜔) =

∫︁
�̂�(𝑡)exp(𝑖𝜔𝑡)𝑑𝑡 (3.44)

�̂�(𝜔) =

∫︁
�̂�(𝑡− 𝑡′)exp[𝑖𝜔(𝑡− 𝑡′)]𝑑𝑡 (3.45)

From Eq. 3.41 and Eq. 3.44, we get

�̂�(𝜔) =

∫︁
𝑑𝑡exp(𝑖𝜔𝑡)[

∫︁
�̂�(𝑡− 𝑡′)𝑓(𝑡′)𝑑𝑡′]

=

∫︁
𝑑𝑡′𝑓(𝑡′)[

∫︁
�̂�(𝑡− 𝑡′)exp(𝑖𝜔𝑡)𝑑𝑡]

=

∫︁
𝑑𝑡′𝑓(𝑡′)exp(𝑖𝜔𝑡′)

∫︁
�̂�(𝑡− 𝑡′)exp[𝑖𝜔(𝑡− 𝑡′)]𝑑𝑡

(3.46)

Substituting Eq. 3.43 and Eq. 3.45 for the right side of the above equation, we

obtain

�̂�(𝜔) = �̂�(𝜔)𝑓(𝜔) (3.47)
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Assuming that the frequency in the previous equations is complex, �̂� = 𝜔1 + 𝑖𝜔2,

then Eq. 3.45 becomes

�̂�(�̂�) =

∫︁
�̂�(𝑡− 𝑡′)exp[𝑖𝜔1(𝑡− 𝑡′)]exp[−𝜔2(𝑡− 𝑡′)]𝑑𝑡 (3.48)

The second exponential term is bounded in the upper half of the complex plane

for 𝑡− 𝑡′ > 0 and in the lower half plane for 𝑡− 𝑡′ < 0. Causality requires �̂�(𝑡− 𝑡′)
= 0 for 𝑡 − 𝑡′ < 0, hence �̂�(�̂�) is limited to the upper half of the �̂� plane. We

∮
Ĝ(ω̂′)

ω̂′ − ω0

= 0 (1.43)

The integration contour is shown in Fig.1.4. If Ĝ(ω̂) → 0 when |ω̂| → ∞,

0 ω0 Re{ω}

Im{ω}

Figure 1.4: Integration contour for complex response function Ĝ(ω̂)

integration on the large semicircle vanishes, then

∫ ω0−η

−∞

Ĝ(ω′)

ω′ − ω0

dω′+

∫ +∞

ω0+η

Ĝ(ω′)

ω′ − ω0

dω′+

∫ 0

π

Ĝ(ω0 + ηeiφ)

ηeiφ
d(ω0+ηeiφ) = 0 (1.44)

For η → 0

Ĝ(ω0) =
1

iπ
P

∫ +∞

−∞

Ĝ(ω′)

ω′ − ω0

dω′ (1.45)

Figure 3.2: Integral contour in the complex frequency plane. The radius of the

large semicircle is |�̂�| and the small semicircle radius is 𝜂.

consider a integration contour shown in Fig. 3.2 with a small indentation near

the frequency 𝜔0. Cauchy integral formula gives:

∮︁
�̂�(�̂�′)

�̂�′ − �̂�0

𝑑�̂�′ = 0 (3.49)

If �̂�(�̂�) → 0 when |�̂�| → ∞, the integral over the large semicircle vanishes, only

the integral along the real axis from −∞ to ∞ remains, then

∫︁ 𝜔0−𝜂

−∞

�̂�(𝜔′)

𝜔′ − 𝜔0

𝑑𝜔′+

∫︁ ∞

𝜔0+𝜂

�̂�(𝜔′)

𝜔′ − 𝜔0

𝑑𝜔′+

∫︁ 0

𝜋

�̂�(𝜔0 + 𝜂𝑒𝑖𝜑)

𝜂𝑒𝑖𝜑
𝑑(𝜔0+𝜂𝑒𝑖𝜑) = 0 (3.50)

For 𝜂 → 0

�̂�(𝜔) =
1

𝑖𝜋
P

∫︁ ∞

−∞

�̂�(𝜔′)

𝜔′ − 𝜔
𝑑𝜔′ (3.51)
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where P is the principal value. The complex response function �̂�(𝜔) can be

written in terms of the real part and the imaginary part as �̂�(𝜔) = 𝐺1(𝜔) +

𝑖𝐺2(𝜔), so the relations between the real and imaginary parts of the response

function are obtained:

𝐺1(𝜔) =
1

𝜋
P

∫︁ ∞

−∞

𝐺2(𝜔
′)

𝜔′ − 𝜔
𝑑𝜔′ (3.52)

𝐺2(𝜔) = − 1

𝜋
P

∫︁ ∞

−∞

𝐺1(𝜔
′)

𝜔′ − 𝜔
𝑑𝜔′ (3.53)

From Eq. 3.45 we can see that �̂�(−𝜔) = �̂�*(𝜔), hence 𝐺1(𝜔) is even and 𝐺2(𝜔)

is odd, then Eq. 3.52 and Eq. 3.53 can be written as

𝐺1(𝜔) =
2

𝜋
P

∫︁ ∞

0

𝜔′𝐺2(𝜔
′)

𝜔′2 − 𝜔2
𝑑𝜔′ (3.54)

𝐺2(𝜔) = −2𝜔

𝜋
P

∫︁ ∞

0

𝜔′𝐺1(𝜔
′)

𝜔′2 − 𝜔2
𝑑𝜔′ (3.55)

Using these general relations we can derive various expressions connecting the

real and imaginary parts of different optical constants introduced in the previous

section. For example, applying these relations to the complex optical conductivity

�̂�(𝜔) = 𝜎1(𝜔) + 𝑖𝜎2(𝜔) yields:

𝜎1(𝜔) =
2

𝜋
P

∫︁ ∞

0

𝜔′𝜎2(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′ (3.56)

𝜎2(𝜔) = −2𝜔

𝜋
P

∫︁ ∞

0

𝜔′𝜎1(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′ (3.57)

We can also derive the Kramers-Kronig relations connecting the real and imagi-

nary parts for the complex dielectric function, the complex refractive index and

the complex reflective coefficient. More detailed calculations are discussed in Ref.

[56–58].

The most important Kramers-Kronig relation for optical investigations is

the one between the reflectivity (𝑅(𝜔)) and the phase shift (𝜑𝑟(𝜔))

𝜑𝑟(𝜔) = −2𝜔

𝜋
P

∫︁ ∞

0

𝑙𝑛|𝑟(𝜔′)|
𝜔′2 − 𝜔2

𝑑𝜔′ = −𝜔
𝜋
P

∫︁ ∞

0

𝑙𝑛𝑅(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′ (3.58)

This equation indicates that, to obtain the phase shift, one need to measure
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Low frequency Hagen-Rubens 1 −𝑅(𝜔) ∝ 𝜔1/2

Marginal Fermi Liquid 1 −𝑅(𝜔) ∝ 𝜔

Two Fluid 1 −𝑅(𝜔) ∝ 𝜔2

Superconductor 1 −𝑅(𝜔) ∝ 𝜔4

High frequency interband transition 𝑅(𝜔) ∝ 𝜔1/2

Free electron 𝑅(𝜔) ∝ 𝜔4

Table 3.1: Low and High frequency limit extrapolations for Kramers-Kronig

analysis.

the normal incident reflectivity to zero on the low frequency side and to infinite

on the high frequency side. This is experimentally impossible. In order to use

the Kramers-Kronig analysis, we measure the reflectivity over a broad frequency

range, from very far-infrared (20 cm−1) to visible, even ultraviolet range (55000

cm−1). Then, we choose proper extrapolations for the low and high frequency

limits. Choosing a proper extrapolation is very important in Kramers-Kronig

analysis. For example, a good metal exhibits high reflectivity which approaches

unity at low frequencies. The Hagen-Rubens frequency response [1−𝑅(𝜔) ∝ √
𝜔]

can describe the metallic behavior at low frequencies quite well. Figure 3.3 shows

the Hagen-Rubens frequency response and the low frequency reflectivity of gold.

Note that the Hagen-Rubens frequency response matches the reflectivity of gold

perfectly well at low frequencies and can be used as the low frequency limit ex-

trapolation for a good metal. For an insulator, we usually use a constant for the

low frequency limit extrapolation. For a superconductor, we can use the two fluid

model or superconductor frequency response for the low frequency limit extrap-

olation. Some useful low frequency limit extrapolations are listed in Table 3.1.

On the high frequency side, we use either a constant or an interband transition

frequency response followed by a free electron behavior as the high frequency

limit extrapolation, since at sufficiently high frequencies, all the electrons can be

considered free. The high frequency limit extrapolations are also listed in Table

3.1. By combining the measured data over a broad frequency range and proper

low and high frequency limit extrapolations, we can use the Kramers-Kronig
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Figure 3.3: The Hagen-Rubens frequency response and the low frequency reflec-

tivity of gold.

analysis to calculate the phase shift and further other optical constants using the

formulas listed in Table 3.2.

3.4.2 Sum rules

By combining the Kramers-Kronig relations with physical arguments about

the behavior of the real and imaginary parts of the response function, we can

establish a set of sum rules for various optical parameters. For instance, the real

Index of refraction 𝑛(𝜔) = 1−𝑅(𝜔)

1+𝑅(𝜔)−2
√

𝑅(𝜔) cos𝜑(𝜔)

Extinction coefficient 𝑘(𝜔) =
2
√

𝑅(𝜔) sin𝜑(𝜔)

1+𝑅(𝜔)−2
√

𝑅(𝜔) cos𝜑(𝜔)

Real part of the dielectric constant 𝜖1(𝜔) = 𝑛2(𝜔) − 𝑘2(𝜔)

Imaginary part of the dielectric constant 𝜖2(𝜔) = 2𝑛(𝜔)𝑘(𝜔)

Real part of the optical conductivity 𝜎1(𝜔) = 2𝜋
𝑍0
𝜔𝜖2(𝜔)

Imaginary part of the optical conductivity 𝜎2(𝜔) = 2𝜋
𝑍0
𝜔[1 − 𝜖1(𝜔)]

Table 3.2: Formulas for calculating the optical constants.
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part of the dielectric function can be written as

𝜖1(𝜔) − 1 =
2

𝜋
P

∫︁ ∞

0

𝜔′𝜖2(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′

=
2

𝜋
P

∫︁ 𝜔𝑐

0

𝜔′𝜖2(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′ +

2

𝜋
P

∫︁ ∞

𝜔𝑐

𝜔′𝜖2(𝜔′)

𝜔′2 − 𝜔2
𝑑𝜔′

(3.59)

where 𝜔𝑐 is a cutoff frequency above which there is no absorption, i.e. 𝜖2(𝜔) = 0

for 𝜔 > 𝜔𝑐, hence the second integral is zero. For 𝜔 ≫ 𝜔𝑐, Eq. 3.59 becomes

𝜖1(𝜔) − 1 = − 2

𝜋𝜔2

∫︁ 𝜔𝑐

0

𝜔′𝜖2(𝜔
′)𝑑𝜔′ (3.60)

At sufficiently high frequencies, all the electrons can be considered free and the

real dielectric function is given by the following equation which will be shown in

the Drude model (Sec. 3.5)

𝜖1(𝜔) = 1 − Ω2
𝑝

𝜔2
(3.61)

where Ω𝑝 is the plasma frequency defined as

Ω2
𝑝 =

𝑍0𝑛𝑒
2

2𝜋𝑚
(3.62)

Comparison of Eq. 3.60 and Eq. 3.61 yields∫︁ ∞

0

𝜔𝜖2(𝜔)𝑑𝜔 =
𝜋

2
Ω2

𝑝 (3.63)

where the upper limit of the integral has been extended to ∞ because 𝜖2(𝜔) = 0

for 𝜔 > 𝜔𝑐. From the relation between 𝜖2(𝜔) and 𝜎1(𝜔), we can get
∫︁ ∞

0

𝜎1(𝜔)𝑑𝜔 =
𝜋2

𝑍0

Ω2
𝑝 =

𝜋𝑛𝑒2

2𝑚
(3.64)

Since 𝑛 refers to the total number of electrons and 𝑚 to the bare electron mass,

the above equation indicates that the total spectral weight integral of 𝜎1(𝜔) is

finite and conserved, and proportional to 𝑛/𝑚.

The optical conductivity is a linear response function, the total optical con-

ductivity is a simple sum of the conductivity for different excitations. If these

excitations are decoupled, the sum rule is fulfilled separately for each kind of

excitation. In this case, for conduction electrons limited to one band, one can

define a partial sum rule by replacing the upper limit in the integration of Eq.

3.64 with a cut-off frequency representative of the band width. Now, 𝑛 and 𝑚

refer to the conduction electron density and their effective mass.
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3.5 The Drude model and the Lorentz model

3.5.1 Drude model

Drude model is used to describe the response of free charge carriers. In

Drude’s theory, we assume that (i) when atoms of a metallic element are brought

together to form a metal, the valence electrons become detached and wander

freely through the metal, while the metallic ions remain intact and play the role of

the immobile positive particles. This is known as the free electron approximation;

(ii) between collisions we neglect the interaction of a given electron both with

others and with ions, which is known as the independent electron approximation;

(iii) an electron experiences a collision with a probability per unit time 1/𝜏 . So

an average relaxation time 𝜏 exists and governs the relaxation of the system to

equilibrium. In the absence of an external field E, the rate equation is

𝑑⟨p⟩
𝑑𝑡

= −⟨p⟩
𝜏

(3.65)

Upon the application of an external electric field E, the equation of motion

becomes
𝑑

𝑑𝑡
⟨p⟩ = −⟨p⟩

𝜏
− 𝑒E (3.66)

For a DC field, 𝑑⟨p⟩/𝑑𝑡 = 0 resulting in a DC conductivity

𝜎𝑑𝑐 =
𝑛𝑒2𝜏

𝑚
(3.67)

Considering that the time-dependent electric field has a form

E(𝑡) = E0exp(−𝑖𝜔𝑡) (3.68)

the solution of the equation of motion

𝑚
𝑑2r

𝑑𝑡2
+
𝑚

𝜏

𝑑r

𝑑𝑡
= −𝑒E(𝑡) (3.69)

gives a complex, frequency dependent conductivity

�̂�(𝜔) = 𝜎1(𝜔) + 𝑖𝜎2(𝜔) =
𝑛𝑒2𝜏

𝑚

1

1 − 𝑖𝜔𝜏
(3.70)
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which can be decomposed into the real [𝜎1(𝜔)] and imaginary [𝜎2(𝜔)] parts

𝜎1(𝜔) =
𝑛𝑒2𝜏

𝑚

1

1 + 𝜔2𝜏 2
=

2𝜋Ω2
𝑝𝜏

𝑍0

1

1 + 𝜔2𝜏 2
=

𝜎𝑑𝑐
1 + 𝜔2𝜏 2

(3.71)

𝜎2(𝜔) =
𝑛𝑒2𝜏

𝑚

𝜔𝜏

1 + 𝜔2𝜏 2
=

2𝜋Ω2
𝑝𝜏

𝑍0

𝜔𝜏

1 + 𝜔2𝜏 2
(3.72)

At zero frequency 𝜔 = 0, Eq. 3.71 becomes

𝜎1(𝜔 = 0) =
𝑛𝑒2𝜏

𝑚
= 𝜎𝑑𝑐 (3.73)

representing the DC conductivity. Assuming 𝜎1(𝜔) = 𝜎𝑑𝑐/2, we obtain 𝜔 =

1/𝜏 , indicating that the width of the Drude line shape at half height gives the

scattering rate (1/𝜏) of the free carriers.

Moreover, the sum rules can be easily achieved from the Drude model by

direct integration

∫︁ ∞

0

𝜎1(𝜔)𝑑𝜔 =
𝑛𝑒2

𝑚

∫︁ ∞

0

𝜏𝑑𝜔

1 + 𝜔2𝜏 2
=
𝜋𝑛𝑒2

2𝑚
=
𝜋2

𝑍0

Ω2
𝑝 (3.74)

Within the framework of the Drude model, all the optical constants can be

derived from the complex optical conductivity utilizing the general relations listed

in Table 3.2. For example, the frequency dependence of the complex dielectric

constant is

𝜖(𝜔) = 𝜖1(𝜔) + 𝑖𝜖2(𝜔) = 1 +
𝑖𝑍0�̂�(𝜔)

2𝜋𝜔
= 1 − Ω2

𝑝

𝜔2 − 𝑖𝜔/𝜏
(3.75)

with the real and imaginary parts

𝜖1(𝜔) = 1 − Ω2
𝑝

𝜔2 + 𝜏−2
(3.76)

𝜖2(𝜔) =
1

𝜔𝜏

Ω2
𝑝

𝜔2 + 𝜏−2
(3.77)

Here, we can see that at sufficiently high frequencies 𝜔 ≫ 1/𝜏 , the real part of

the dielectric constant can be written as

𝜖1(𝜔) = 1 − Ω2
𝑝

𝜔2
(3.78)
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Figure 3.4: Calculated frequency dependent optical constants within the frame-

work of Drude model. Ω𝑝 = 5000 cm−1, 1/𝜏 = 100 cm−1.

This equation was used to derive the sum rules in previous section.

In the Drude model, all the various optical parameters are fully character-

ized by two frequencies: the plasma frequency Ω𝑝 and the scattering rate 1/𝜏 . A

calculation of the frequency dependent optical constants within the framework

of the Drude model is shown in Fig. 3.4. Ω𝑝 = 5000cm−1 and 1/𝜏 = 100 cm−1

are used for the calculations. At the plasma frequency Ω𝑝, the reflectivity drops

drastically from near unity to almost zero and the material becomes transparent.

The real part [𝜎1(𝜔)] of the optical conductivity shows a peak centered at zero

frequency with 𝜎1(0) = 𝜎𝑑𝑐, and the width at half height represents 1/𝜏 ; the

imaginary part [𝜎2(𝜔)] peaks at 1/𝜏 where 𝜎1 = 𝜎2 = 𝜎𝑑𝑐/2. The real part of the

dielectric constant 𝜖1(𝜔) crosses zero at Ω𝑝 and becomes negative at low frequen-

cies; the imaginary part 𝜖2(𝜔) stays always positive, and decreases monotonically
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with increasing frequency, but changes slope at the plasma frequency. Below Ω𝑝,

we have 𝑘 > 𝑛, and they cross over at the plasma frequency. Above the plasma

frequency, the metal becomes transparent, thus 𝑘 drops to about zero; the real

part of the refractive index 𝑛 increases and approaches to 1 when 𝜔 → ∞.

The Drude model achieved a great success in describing the low frequency

optical response of simple metals, e.g. gold and silver, which have a very high

reflectivity followed by a sharp plasma edge. Even for a superconductor in the

normal state, the Drude model can give a good description of the optical response

of the unpaired carriers. Figure 3.5 shows the reflectivity of gold. It has a well
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Figure 3.5: Reflectivity of gold which is characterized by the high reflectivity

followed by a sharp plasma edge at about 19000 cm−1.

defined plasma edge at about 19000 cm−1, and the two peaks at about 25000

cm−1 and 37000 cm−1 are due to the interband transitions.

3.5.2 Lorentz model

In the previous section, we discussed the Drude model to describe the re-

sponse of free electrons. In this section, we introduce another important model

the Lorentz model used to account for the behavior of bound carriers like the

situation in an insulator.
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We consider the interaction between the electromagnetic wave and a bound

carrier with effective charge 𝑒 and a single resonant frequency 𝜔0, in much the

same way as a carrier is bound by a spring (like a harmonic oscillator). The

motion of the bound carrier can be described by

𝑚
𝑑2r

𝑑𝑡2
+
𝑚

𝜏

𝑑r

𝑑𝑡
+𝑚𝜔2

0r = 𝑒E (3.79)

Where 𝑚 is the mass of the carrier; 𝑒 is the effective charge of the carrier; 𝜏

takes into account damping effects, and E is the local electric field acting on the

electron as a driving force. When the local electric field E has an exp(𝑖𝜔𝑡) time

dependence, the solution to Eq. 3.79 is

r̂(𝜔) =
𝑒E/𝑚

(𝜔2
0 − 𝜔2) − 𝑖𝜔/𝜏

(3.80)

and for the induced dipole moment p̂(𝜔) = 𝑒r̂(𝜔) we obtain

p̂(𝜔) =
𝑒2E

𝑚

1

(𝜔2
0 − 𝜔2) − 𝑖𝜔/𝜏

(3.81)

The polarization of the system can be written as

P = 𝑛⟨p̂⟩ = 𝜖0𝜒𝑒E (3.82)

where 𝜒𝑒 is the dielectric susceptibility. Since the dielectric constant is related

to the dielectric susceptibility via 𝜖(𝜔) = 1 + 𝜒𝑒(𝜔), the frequency dependent

complex dielectric constant follows:

𝜖(𝜔) = 1 +
𝑛𝑒2

𝜖0𝑚

1

(𝜔2
0 − 𝜔2) − 𝑖𝜔/𝜏

= 1 +
Ω2

𝑝

(𝜔2
0 − 𝜔2) − 𝑖𝜔/𝜏

(3.83)

with the real and imaginary parts

𝜖1(𝜔) = 1 +
Ω2

𝑝(𝜔
2
0 − 𝜔2)

(𝜔2
0 − 𝜔2)2 + 𝜔2/𝜏 2

(3.84)

𝜖2(𝜔) =
Ω2

𝑝𝜔/𝜏

(𝜔2
0 − 𝜔2)2 + 𝜔2/𝜏 2

(3.85)

where Ω𝑝 is the plasma frequency defined as

Ω2
𝑝 =

𝑛𝑒2

𝜖0𝑚
(3.86)
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Figure 3.6: Calculated frequency dependent optical constants within the frame-

work of Lorentz model using 𝜔0 = 1000 cm−1, Ω𝑝 = 2000 cm−1, and 1/𝜏 = 100

cm−1.

As we did for the Drude model in the previous section, we can derive all other

complex optical constants from the frequency dependent complex dielectric con-

stant using the relations in Table 3.2. Figure 3.6 shows the calculations of the

frequency dependent optical parameters within the framework of the Lorentz

model.

The Lorentz model shows remarkably different properties from the Drude

model. The Lorentz response is characterized by three frequencies: a resonance

frequency 𝜔0, a plasma frequency Ω𝑝, and a scattering rate 1/𝜏 . The reflectiv-

ity shows a strong increase at the resonance frequency (𝜔0) of the oscillator as

displayed in the Reflectivity panel of Fig. 3.6. The real part of the optical con-
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ductivity peaks at 𝜔0 with a width representing the scattering rate 1/𝜏 while the

imaginary part crosses zero at about the resonance frequency. 𝜖1(𝜔) and 𝜖2(𝜔)

exhibit a similar behavior to 𝜎2(𝜔) and 𝜎1(𝜔) respectively.

The Lorentz model describes well the optical response of an insulator which

is dominated by phonons at low frequencies. As shown in Fig. 3.7, the dashed

Figure 1 shows the infrared reflectivity at 5 K and at room
temperature for the electric field polarization lying in the ab
plane. The dashed lines are the data and the solid lines are
fits using a dielectric function of the form

���� = �� + �
j=1

n
�� j�TOj

2

�TOj
2 − �2 − i� j�

, �1�

where �TOj, � j, and �� j are, respectively, the transverse op-
tical �TO� frequency, damping, and oscillator strength for the
jth mode. �� is the permittivity due to high frequency elec-
tronic excitations. The near normal incidence reflectivity is
obtained from the Fresnel formula R= ����−1� / ���+1��2.
The fitting parameters for these two temperatures are shown
in Table I.

The 5 K spectrum in Fig. 1 clearly shows the nine E
modes predicted by group theory. At room temperature, two
of these phonons �E�3� and E�5�� are strongly damped but
keeping them improves the fit quality. Hermet et al.17 calcu-
lated the phonon frequencies expected for BiFeO3 using den-
sity functional theory. The lower arrows �black� at the bot-
tom of Fig. 1 show the TO frequencies obtained from our fit
at 5 K. The upper arrows �green� indicate the values calcu-
lated in Ref. 17. For most modes, the agreement is excellent
�better than 5%�. Modes E�1� and E�2�, however, are found
at frequencies 20%–30% smaller than the calculated values.
Conversingly, mode E�8� is found at an energy 8% higher
than the theoretical value. Compared to the data reported by
Kamba et al. in a ceramic material,16 our obtained frequen-
cies are slightly upshifted, but the most important result con-
cerns the mode assignment, once we only agree in the case of
five modes, E�1�, E�4�, E�6�, E�7�, and E�9�. The use of
polarized light allowed us to correctly assign the other
modes.

Figure 2 shows the temperature evolution of the TO fre-
quencies for the nine E phonon modes. The E�1� mode soft-
ens strongly from 5 K to room temperature. High tempera-
ture infrared16 and Raman12,13 measurements indicate that
this mode continues to soften, but instead of smoothly de-
creasing to zero frequency, it drops rather abruptly at the
transition. Modes E�2�, E�6�, and E�8� show the same be-
havior as mode E�1�. Interestingly, mode E�7� hardens with
increasing temperature. The frequencies of the remaining
modes have little or no temperature dependence. According
to the calculated phonon frequencies,17 E�1� and E�2� are
related to vibrations involving the Bi atoms. E�6� and E�8�
should be dominated by oxygen motion. Because of their
softening, it is reasonable to think that these modes also in-
volve motion of Bi atoms. Concerning E�7�—also dominated
by oxygen motion—its hardening with increasing tempera-
ture shows that this mode has a particular dependence on the
structural evolution; i.e., it is more sensitive to the decreas-
ing rhombohedral elastic distortion than to the unit cell vol-
ume expansion upon heating.

More insight on the E�1� mode can be obtained from an
analysis of its oscillator strength. One can calculate the di-
electric constant from the optical contributions as

��0� = �� + �
j=1

n

�� j . �2�

This calculation, for our results, is shown as open triangles in
Fig. 3. Our values are twice the values obtained by Kamba et
al.16 This is a consequence of the higher reflectivity and the
absence of microstructural defects �porosity and grain
boundaries� in our sample. The values in Fig. 3 are a bit
smaller �10%� than those obtained by dielectric measure-
ments at 1 GHz on ceramics solid solutions of BiFeO3 with
Pb�Ti,Zr�O3.3 We also plotted in this figure the temperature
dependence of the E�1� mode oscillator strength �solid
circles�. It becomes clear that the temperature increase in
��0� is explained by the softening of the E�1� mode alone. In
fact, the f-sum rule states that the sum of plasma frequencies

TABLE I. Fitting parameters used in Eq. �1� to describe the
in-plane �E� ẑ� infrared reflectivity of a BiFeO3 single crystal. The
high frequency dielectric function ���� was kept constant at 9.04 for
all temperatures. Frequencies and dampings are in cm−1 and the
oscillator strengths are dimensionless.

Mode

300 K 5 K

�TO � �� �TO � ��

E�1� 66 3.5 25.0 74 2.6 17.9

E�2� 126 11.0 29.3 134 1.9 27.4

E�3� 240 7.0 0.087 240 5.6 1.9

E�4� 262 9.1 14.8 265 2.8 12.0

E�5� 274 33.5 2.45 276 13.1 3.4

E�6� 340 17.4 0.27 346 6.0 0.359

E�7� 375 21.6 0.475 373 5.8 0.522

E�8� 433 33.8 0.301 441 8.2 0.224

E�9� 521 41.3 1.14 522 17.2 1.07
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FIG. 1. �Color online� In-plane �electric field of light E� ẑ�
infrared reflectivity of a BiFeO3 single crystal at 5 and 300 K. The
dashed lines are the data and the solid lines are fits using a dielectric
function in the form of Eq. �1�. The lower arrows indicate the TO
frequencies used in our fits. The upper arrows are the frequencies
calculated in Ref. 17.

BRIEF REPORTS PHYSICAL REVIEW B 76, 172105 �2007�

172105-2

Figure 3.7: In-plane infrared reflectivity of a BiFeO3 single crystal at 5 K and

300 K, adopted from Ref. [59]. The dashed lines represent the experimental data

and the solid lines are fits utilizing Lorentz model.

lines are the in-plane infrared reflectivity of a BiFeO3 single crystal (an insulator)

at 5 and 300 K measured on a Fourier Transform Infrared Spectrometer [59]. The

solid lines are fits using the Lorentz model dielectric function. We can see that

the Lorentz model reproduces the experimental data quit well. This model can

also be used to describe the optical response of the interband transitions which

happens at relatively high frequencies in both metals and semiconductors.

3.6 Optical response of energy gaps

We have mentioned that, in a many-body system, the electron-electron and

electron-phonon interactions play an important role. These interactions may

result in a variety of low-energy ordered states, so-called broken symmetry ground
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states, of which the density waves (spin density wave and charge density wave)

and the superconducting ground states are the best known and most studied. All

these states occur at low temperature in anisotropic, low-dimensional materials

or in metals that have high density of states at the Fermi level. The transition

to the ordered states is characterized by the opening of an energy gap centered

about the Fermi level, which separates the single-particle excitations from the

ground state by 2∆. However, the optical properties of the density waves and

the superconducting order states are remarkably different.

3.6.1 Density wave gaps

A density wave phase transition is accompanied by the opening of an energy

gap near the Fermi surface which produces a depletion of low energy states.

Since the real part of the optical conductivity 𝜎1(𝜔) is proportional to the joint

density of states, a depletion of low lying states certainly suppresses the low

frequency 𝜎1(𝜔) spectra. Figure 3.8 shows 𝜎1(𝜔) of P4W14O50, which has a
7 The optical conductivity of high temperature superconductors 11

Fig. 7.5: The left panel, adapted from Zhu et al. (2002), shows the real part of the optical conductivity for
P4W14O50 above and below its charge density wave transition. The right panel, adapted from Somal et al.
(1996), shows the real part of the optical conductivity above and below the superconducting transition
of NbN. The large vertical arrow is the δ function representing the superfluid condensate. The points
are the data and the lines are either Drude or BCS isotropic gap fits. In both panels the thin arrows
indicate the spectral weight transfer at the phase transition.
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Fig. 7.6: Real part (left panel) and imaginary part (right panel) of the optical conductivity calculated
for a BCS isotropic superconductor at T = 0 in the clean limit (2Δ � τ−1 — dotted lines), the dirty
limit (2Δ � τ−1 — dashed lines) and an intermediate case (2Δ ∼ τ−1 — solid lines). The labels ‘S’ and
‘N’ refer to the superconducting and normal states, respectively.

The ability to see the superconducting gap in cuprates or not is a long standing debate. The
consensus is that “in a clean high-Tc superconductor you do not see the gap” (Kamarás et al.,
1990). Figure 7.6 shows the meaning of this statement on its left panel. The definition of clean
and dirty superconductivity comes from the comparison of the mean free path l of quasiparticles
to the pairs coherence length ξ. In a clean superconductor l � ξ and the opposite happens in
a dirty superconductor. As l ∼ vF τ/2π and ξ ∼ �vF /πΔ (vF being the Fermi velocity) the
conditions for clean and dirty superconductivity from the optics point of view are, respectively,
τ−1 � 2Δ and τ−1 � 2Δ. The dashed curve shows the calculated normal and superconducting
σ1 for a dirty material (Mattis and Bardeen, 1958; Zimmermann et al., 1991). At 0 K, σ1 vanishes
for frequencies below twice the gap. A photon of energy 2Δ can break a pair and the conductivity
above the gap will reach that of a normal metal (the factor 2 is necessary as the highest occupied

Page: 11 job: Lobo_optics macro: svmult.cls date/time: 13-Jul-2009/15:46

Figure 3.8: The real part of the optical conductivity for P4W14O50 at 300 K and

10 K, adapted from Ref. [60]. The arrow shows the spectral weight transfer from

low to high energies due to the opening of the CDW gap.
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charge density wave (CDW) transition at 60 K [60]. At 300 K, the spectra shows

a metallic response characterized by a Drude peak centered at zero frequency.

At 10 K, when the CDW gap is fully open, 𝜎1(𝜔) below 2000 cm−1 is drastically

suppressed. Simultaneously, 𝜎1(𝜔) increases at higher frequencies. The sum rule

requires that the integral of 𝜎1(𝜔) from zero to infinity, the total area under

𝜎1(𝜔), should be conserved. This implies that the spectral weight lost below the

gap value is exactly equal to the spectral weight gained above the gap value.

The same optical response can be observed for an spin density wave (SDW) gap

[61, 62]. Therefore, the typical behavior of a density wave gap is the transfer of

low energy spectral weight to high energies.

3.6.2 Superconducting gaps

The electrodynamics of the superconducting state is different from the den-

sity waves. Figure 3.9 shows the optical conductivity of the conventional super-

conductor NbN with a transition temperature of 16.5 K [63]. Above 𝑇𝑐 (at 18

K), the Drude-like metallic response dominates the low frequency optical conduc-

tivity. In the superconducting state (at 9 K), the strong suppression in optical

conductivity at low frequencies is due to the opening of the superconducting

gap, but contrary to a density wave gap, no spectral weight is transferred to high

frequencies. Yet, the sum rule must be fulfilled. Note that the DC resistivity

in superconducting state is zero, i.e. it has infinite DC conductivity which is

represented by a 𝛿(𝜔) function at zero frequency. The spectral weight lost from

finite frequencies due to the superconducting transition is fully recovered by this

𝛿(𝜔) function. This is referred to as the Ferrell-Glover-Tinkham (FGT) sum rule

[15, 64]. In contrast with the density wave gap, the typical behavior of a super-

conducting gap is the transfer of spectral weight from finite frequencies to a 𝛿(𝜔)

function at zero frequency representing the infinite DC conductivity.

The optical properties of the superconducting state can be described by the

Mattis-Bardeen formalism which is derived from the BCS theory in the impure

limit (𝜏 ≪ ~/2∆) [65]. Within the Mattis-Bardeen formalism, the complex

conductivity in the superconducting state �̂�(𝜔, 𝑇 ) normalized to the conductivity
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7 The optical conductivity of high temperature superconductors 11

Fig. 7.5: The left panel, adapted from Zhu et al. (2002), shows the real part of the optical conductivity for
P4W14O50 above and below its charge density wave transition. The right panel, adapted from Somal et al.
(1996), shows the real part of the optical conductivity above and below the superconducting transition
of NbN. The large vertical arrow is the δ function representing the superfluid condensate. The points
are the data and the lines are either Drude or BCS isotropic gap fits. In both panels the thin arrows
indicate the spectral weight transfer at the phase transition.
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Fig. 7.6: Real part (left panel) and imaginary part (right panel) of the optical conductivity calculated
for a BCS isotropic superconductor at T = 0 in the clean limit (2Δ � τ−1 — dotted lines), the dirty
limit (2Δ � τ−1 — dashed lines) and an intermediate case (2Δ ∼ τ−1 — solid lines). The labels ‘S’ and
‘N’ refer to the superconducting and normal states, respectively.

The ability to see the superconducting gap in cuprates or not is a long standing debate. The
consensus is that “in a clean high-Tc superconductor you do not see the gap” (Kamarás et al.,
1990). Figure 7.6 shows the meaning of this statement on its left panel. The definition of clean
and dirty superconductivity comes from the comparison of the mean free path l of quasiparticles
to the pairs coherence length ξ. In a clean superconductor l � ξ and the opposite happens in
a dirty superconductor. As l ∼ vF τ/2π and ξ ∼ �vF /πΔ (vF being the Fermi velocity) the
conditions for clean and dirty superconductivity from the optics point of view are, respectively,
τ−1 � 2Δ and τ−1 � 2Δ. The dashed curve shows the calculated normal and superconducting
σ1 for a dirty material (Mattis and Bardeen, 1958; Zimmermann et al., 1991). At 0 K, σ1 vanishes
for frequencies below twice the gap. A photon of energy 2Δ can break a pair and the conductivity
above the gap will reach that of a normal metal (the factor 2 is necessary as the highest occupied

Page: 11 job: Lobo_optics macro: svmult.cls date/time: 13-Jul-2009/15:46

Figure 3.9: The real part of optical conductivity of NbN (𝑇𝑐 = 16.5 K) above

and below the superconducting transition temperature, adapted from Ref. [63].

The large vertical arrow is the zero frequency 𝛿(𝜔) function representing the

superfluid condensate.

in the normal state �̂�(𝜔, 𝑇 > 𝑇𝑐) can be written as

𝜎1(𝜔, 𝑇 )

𝜎1(𝜔, 𝑇 > 𝑇𝑐)
=

2

~𝜔

∫︁ ∞

Δ

[𝑓(𝜀) − 𝑓(𝜀+ ~𝜔)](𝜀2 + ∆2 + ~𝜔𝜀)
(𝜀2 − ∆2)1/2[(𝜀+ ~𝜔)2 − ∆2]1/2

𝑑𝜀

+
1

~𝜔

∫︁ −Δ

Δ−~𝜔

[1 − 2𝑓(𝜀+ ~𝜔)](𝜀2 + ∆2 + ~𝜔𝜀)
(𝜀2 − ∆2)1/2[(𝜀+ ~𝜔)2 − ∆2]1/2

𝑑𝜀

(3.87)

𝜎2(𝜔, 𝑇 )

𝜎2(𝜔, 𝑇 > 𝑇𝑐)
=

1

~𝜔

∫︁ Δ

Δ−~𝜔,−Δ

[1 − 2𝑓(𝜀+ ~𝜔)](𝜀2 + ∆2 + ~𝜔𝜀)
(𝜀2 − ∆2)1/2[(𝜀+ ~𝜔)2 − ∆2]1/2

𝑑𝜀 (3.88)

Zimmermann et.al extended the Mattis-Bardeen formulism to superconductors

with arbitrary purity [66]. Figure 3.10 shows the calculation for frequency de-

pendence of the real part of the optical conductivity and the reflectivity in the
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Figure 3.10: Calculated frequency dependence of the reflectivity and the real

part of the optical conductivity in the normal and superconducting states.

normal and superconducting states. The normal state spectra are calculated from

a Drude model with Ω𝑝 = 5000 cm−1 and 1/𝜏 = 300 cm−1, and the superconduct-

ing state curves are calculated from the Mattis-Bardeen formalism with the same

plasma frequency and scattering rate as the Drude model in the normal state.

At zero temperature, the reflectivity reaches a flat unity response for frequen-

cies below the gap energy indicating that superconductors are perfect mirrors

for 𝜔 < 2∆. Correspondingly, the optical conductivity 𝜎1(𝜔) is zero below the

superconducting gap 2∆ except for the 𝛿-peak at zero frequency representing the

infinite DC conductivity.
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This is only the situation of a conventional superconductor with an isotropic

𝑠-wave gap in the dirty limit [67, 68]. The gap feature is absent when the su-

perconductor is in the clean limit [69]. By comparing the mean free path of the

quasiparticles with the coherence length of the Cooper pairs, we can define a

clean or dirty superconductor. In a clean superconductor 𝑙 ≫ 𝜉 and the oppo-

site occurs in a dirty superconductor. The mean free path is given by 𝑙 ≈ 𝑣𝐹 𝜏 ,

whereas the coherence length 𝜉 ≈ 𝑣𝐹/∆. Consequently, from the optics point

of view, the definition of clean and dirty superconductor becomes 𝜏−1 ≪ 2∆

and 𝜏−1 ≫ 2∆ respectively. Figure 3.11 shows the BCS calculations in both the

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

2  = 10 -1

2  = -1
S

S

N

N

1(
)/

D
C

 

 

 / 2

N

S
2  = 0.33 -1

Figure 3.11: The BCS calculations of the real part of the optical conductivity

in both clean and dirty limits with parameters: 2∆ = 0.33𝜏−1 (green lines),

2∆ = 𝜏−1 (blue lines), and 2∆ = 10𝜏−1 (red lines). The labels ’N’ and ’S’ refer

to the normal and superconducting states, respectively.

clean and dirty limits. The green lines are calculated optical conductivity for a

dirty superconductor in normal (dashed line) and superconducting (solid line)

states. In the normal state, since 𝜏−1 is large compared to 2∆, the Drude peak

is very broad and the optical conductivity at 2∆ is almost as large as 𝜎𝐷𝐶 ; at

the superconducting transition, the optical conductivity vanishes below 2∆ and

exhibits a distinct gap feature at 2∆ as shown by the green lines. In the case of
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the clean limit, the Drude peak is much narrower than the gap value; the normal

state conductivity at 2∆ is vanishingly small. Upon entering the superconduct-

ing state, almost no gap feature appears at twice the gap value as shown by the

red lines in Fig. 3.11.

Superconductors with 𝑑-wave paring symmetry, cuprates for instance, show

strikingly different optical properties from the conventional superconductors. As

nodes exist in the 𝑑-wave superconducting gap, a large number of unpaired quasi-

paticles appear close to the nodal region. Hence a low frequency residual con-

ductivity should be observed in the superconducting state. Figure 3.12 shows

selected to measure our samples. We then searched for a
dielectric function for the film that describes the reflectivity
of the whole system using a standard thin film model. This
procedure has been successfully used to account for the tem-
perature dependence of the substrate phonons (in particular
the SrTiO3 soft mode) and far infrared properties.21 We fitted
both films normal state reflectivities in the whole spectral
range �20–21000 cm−1� within 0.2%. The dielectric function
thus obtained was utilized to generate the bulk reflectivities
of PCCO above Tc. In both samples, it turns out that below
200 cm−1 the normal state bulk response is the same as the
experimentally determined film reflectivity (within 0.2%)
meaning that the substrate contribution is negligible in this
low frequency range. As we discuss further, the supercon-
ducting transition is characterized by an increase of the low
frequency reflectivity. The shape of this extra reflectivity is
not trivial to simulate. However, as the superconducting state
is more reflective than the normal state, it is safe to assume
that the low frequency bulk and measured reflectivity are
also identical in the superconducting state. In each film, be-
yond 100 cm−1, the reflectivities of the normal and the su-
perconducting state are identical, within the accuracy of the
measurement, from 25 K, just above Tc, down to the lowest
temperature.

The overall bulk reflectivity of PCCO can then be ob-
tained by combining the measured data below 200 cm−1 to
the bulk simulation above 100 cm−1. Finally, we applied
standard Kramers-Kronig analysis to such reconstructed
spectra in order to extract the optical conductivity of PCCO.
Below 20 cm−1 we used a Hagen-Rubens �1−a��� extrapo-
lation for the normal state reflectivity and a superconductor
extrapolation �1−b�4� below Tc. Above 21000 cm−1 we used
a constant up to 106 cm−1 followed by a free electron 1/�4

termination.
Figure 1 shows the real part of the optical conductivity

��1� for x=0.15 (top panel) and 0.17 (bottom panel). The
insets in this figure show the measured far-infrared reflectiv-
ity. In all panels the dashed line is taken just above Tc and
the solid line at 5 K. In both compounds the far infrared
reflectivity increases, corresponding to a depletion in the su-
perconducting �1 at low frequencies.

In Fig. 2 we plot the ratio between superconducting and
normal reflectivity (left panel) and conductivity (right panel)
for the x=0.15 (dashed line) and x=0.17 (solid line) samples.
We note that there is an increase in the low energy reflectiv-
ity at 70 cm−1 for x=0.15 and 50 cm−1 for x=0.17. The cor-
responding decreases in the optical conductivity occurs at
90 cm−1 and 60 cm−1.

In a s-wave BCS superconductor a rise in the low fre-
quency reflectivity is associated with an isotropic supercon-
ducting gap �2��. However the BCS reflectivity is much flat-
ter and closer to unity than what is seen in our data.
Nevertheless, the reflectivity rise is compatible with the on-
set of an anisotropic gap. Indeed, the two strongest argu-
ments against the observation of the gap in cuprates are (i)
the energy range where the reflectivity increases does not
vary with doping and (ii) cuprates are thought to be in the
clean limit making the observation of a gap difficult. The
first argument is clearly not applicable to our data. To

counter the second point we can look at the low frequency
scattering rate just above Tc. In the optimally doped sample
we have 1/��0��85 cm−1 and in the overdoped material
1 /��0��30 cm−1. These values are of the same order of the
frequency where the reflectivity increases. It is then reason-
able to assign the reflectivity rise and the conductivity drop
to the superconducting gap. In the absence of a specific
model for such a gap, we can only estimate the maximum
gap value from the frequencies where the low energy reflec-
tivity or conductivity in the superconducting state differs
from the ones above Tc. If we use the values obtained from
�1 we have a 2�max/kBTc ratio of 6 for x=0.15 and 5.6 for
x=0.17. This value is probably an overestimate of the gap
energy. Considering the frequencies obtained from the reflec-
tivity, the 2�max/kBTc ratio is 4.7 for both samples, in closer
agreement to the values inferred from the Raman B2g sym-
metry in NCCO samples.17–19

FIG. 1. Real part of the optical conductivity for the optimally
(top panel) and overdoped (bottom panel) Pr2−xCexCuO4. The insets
show the far-infrared reflectivity for the respective samples. In all
panels the dashed line corresponds to a temperature just above Tc

and the solid line to 5 K.

FIG. 2. Superconducting to normal state ratio of the reflectivity
(left panel) and optical conductivity (right panel) in PCCO. The
dashed line is for x=0.15 and the solid line for x=0.17. The dotted
straight lines are guides for the eye representing the average high
frequency behavior. The arrows indicate the frequency where this
linear behavior breaks down.

BRIEF REPORTS PHYSICAL REVIEW B 70, 132502 (2004)

132502-2

Figure 3.12: Reflectivity and the real part of the optical conductivity for opti-

mally (top panel) and over (bottom panel) doped Pr2−𝑥Ce𝑥CuO4, adapted from

Ref. [70].

the reflectivity and the optical conductivity of Pr2−𝑥Ce𝑥CuO4 thin film for two
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different dopings x = 0.15 with 𝑇𝑐 = 21 K (top panel) and x = 0.17 with 𝑇𝑐 =

15 K (bottom panel) [70]. The inset of the top panel displays the reflectivity of

the x = 0.15 sample (𝑇𝑐 = 21 K) at 25 K and 5 K. Compared with the normal

state reflectivity at 25 K, the reflectivity at 5 K increases below about 60 cm−1

which is a signature of a superconducting gap. However, unlike 𝑠-wave super-

conductors, it doesn’t reach a flat unity response. The top main panel shows the

optical conductivity of the x = 0.15 sample. The dashed and solid lines denote

the normal (25 K) and superconducting (5 K) state spectra respectively. The

low frequency optical conductivity is suppressed at 5 K which is associated with

the superconducting condensate, but it does not vanish at low frequencies. This

residual conductivity is compatible with the existence of nodes in the supercon-

ducting gap. The reflectivity and optical conductivity spectra for the x = 0.17

sample shown in the bottom panel exhibit the same features as the x = 0.15

sample. A similar result is reported on a single crystal [71].

In another class of materials, we find two band superconductor MgB2. In

superconducting state, 𝑠-wave gaps with the same sign but different values, the

so-called 𝑠++ symmetry, open in each band. Hence, the optical properties of

MgB2 has some distinguishing features [72–74]. Figure 3.13 displays the optical

conductivity (normalized by the normal state) of MgB2 with a transition tem-

perature of 38 K. The spectra were measured at 20 K in different magnetic field.

Let’s focus on the zero magnetic field optical conductivity at 20 K shown as the

solid line. 𝜎1(𝜔) is almost zero below about 30 cm−1 implying that the supercon-

ducting gap has an 𝑠-wave symmetry. The energy, below which the conductivity

vanishes, corresponds to twice the small gap value 2∆𝑆, where ∆𝑆 represents the

value of the small gap. Here it’s easy to see 2∆𝑆 ≈ 30 cm−1. At frequencies

higher than 2∆𝑆 ≈ 30 cm−1, absorption sets in, indicating pair-breaking in the

small gap. The large gap manifests itself as a kink in the optical conductivity at

twice its value. Note that the small kink at 50 cm−1 is related to the large gap.

In summary, the optical conductivity is very sensitive to the low frequency

collective excitations. Different superconducting gap symmetries exhibit strik-

ingly different optical properties. The 𝑠± pairing symmetry proposed for the

iron-based superconductors represents a brand new situation. Although con-
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Figure 3.13: Real part of the optical conductivity for MgB2 single crystal with

𝑇𝑐 = 38 K, adapted from Ref. [74]. The optical conductivity vanishes below the

energy of twice the small gap ∼ 30 cm−1, and a kink can be seen at twice the

large gap ∼ 50 cm−1.

siderable results from optical measurements exist in iron-based superconductors

[75–92]. Detailed and systematic work is still absent. The optical response of the

𝑠± superconducting gap remains highly debated.





Chapter 4

Iron-based High-𝑇𝑐 superconductors

4.1 Introduction to Iron-based superconductors

In 2006, the first iron-based superconductor, LaFePO, was reported by

Hosono’s group [5]. The next year, a similar material, LaNiPO, was reported

by the same group [6]. But due to the low transition temperature (below 5 K) of

these materials, these results didn’t create extensive interest in the scientific com-

munity. The breakthrough came with the fluoride doped arsenide LaFeAsO1−𝑥F𝑥

with the transition temperature up to 26 K [8] which increases to 43 K under pres-

sure [93]. Shortly, a higher 𝑇𝑐 up to 55 K was achieved by replacing lanthanum

with samarium [94]. These compounds having a ZrCuSiAs-type layered structure

are categorized as the 1111 system. Within the year the iron-based supercon-

ductor extended to six systems, Ba1−𝑥K𝑥Fe2As2 [95] and Ba(Fe1−𝑥Co𝑥)2As2 [96]

derived from BaFe2As2 representing the 122 system; LiFeAs [97] and NaFeAs

[98] representing the 111 system; FeSe [9] and Fe(Se1−𝑥Te𝑥)0.82 [10] represen-

tative of the 11 system; materials with more complex layered structure like

(Sr3Sc2O5)Fe2As2 [99] and (Sr4V2O6)Fe2As2 [100] are representative of the 32522

and 21311 systems respectively. All these compounds represent a new class of

high temperature superconductors. As shown in Fig. 4.1, each of them has the

distinct layered structure with active FeAs or FeSe layers, in which supercon-

ductivity occurs, separated by perovskite-like blocking layers. Among the six

systems of iron-based superconductors, the Ba122 system is one of the most

studied. Because the parent compound BaFe2As2 can be easily doped with holes

or electrons; superconductivity arises with maximum 𝑇𝑐 = 39 K for hole doped

material and 𝑇𝑐 = 25 K for electron doped material; in addition, very large single

crystals can be synthesized.
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are shown with their respective highest Tc 
values in Fig. 1.

All the tools used for cuprates have been 
brought to bear on iron pnictides. With the 
exception of the 111 structure, all parent 
compounds show a structural transition and 
an antiferromagnetic transition very close 
in temperature. Superconductivity occurs 
through doping or applied pressure when 
the antiferromagnetic state is partially or 
completely suppressed. So far, the highest 
Tc achieved in this class of material is ~57 K 
in the 1111 series3, within the predicted 
Tc range4. A phase diagram similar to that 
of the cuprates is obtained and shown 
schematically with other non-conventional 
superconductors in Fig. 2.

Compared with the cuprates, iron 
pnictides show a smaller anisotropy and 
grain-boundary effect for the flow of 
superconducting current. Attempts to 
raise the Tc of iron pnictides above ~57 K 
by introducing more Fe2As2 layers per 
unit cell, or by subjecting the compounds 
to higher pressures have failed. The 
distinct Tc differences between the various 
homologous series suggest a significant 
role for the blocking layers in Tc and 
electronic structures. Spectroscopic studies 
on single crystals reveal their multiband 
characteristics consistent with calculations5. 
However, the inconsistencies reported for 
the isotope effect and the pairing symmetry 
are yet to be explained.

In terms of the overall research efforts, 
including applications, cuprates still had a 
significant role at M2S-IX. The situation will 
very likely continue until a materials system 
having a Tc higher than that in the cuprates 
is found. The study of cuprates has entered 
a stage of refinement and consolidation 

to address the origin of HTS and the 
electronic structures in both the normal and 
superconducting states. Ever since 
M2S-VIII in 2006, the most unexpected 
findings are perhaps the detection6 and 
subsequent confirmations7 of quantum 
oscillations in the heavily underdoped 
YBa2Cu3O6.5, in spite of the presence of many 
defects of oxygen vacancies. In contrast 
to early angle-resolved photoemission 
spectroscopy results, the observation 
indicates the existence of small Fermi-surface 

pockets in the underdoped region, and 
suggests a changing Fermi-surface topology 
as one crosses the underdoped/overdoped 
boundary. Understanding the evolution of 
this Fermi-surface topology change will help 
resolve the relationship between HTS and 
pseudogap states.

Another family of compounds, the 
fullerides — A3C60, where A represents 
potassium, rubidium or caesium — are 
molecular superconductors with Tc up 
to 33 K, and which have a face-centred 
cubic structure at room temperature. 
They are considered to be typical BCS 
superconductors. However, Prassides et al.8 
have stabilized a new compound in 
the fulleride series, Cs3C60. At ambient 
pressure Cs3C60 is an insulator and orders 
antiferromagnetically below ~46 K. It 
becomes superconducting above ~3 kbar of 
pressure with a maximum Tc close to 40 K 
on the suppression of the antiferromagnetic 
state. A phase diagram similar to those for 
non-conventional superconductors has 
thus been proposed and is shown in Fig. 2. 
An interesting question arises regarding 
whether a structural alteration can lead to a 
fundamental change in the characteristics of 
the electronic state or whether the difference 
between conventional and unconventional 
superconductors is as fundamental as we 
have thought.

One method proposed to achieve HTS 
is to subject the light elements to ultrahigh 
pressures. Indeed, impressive values of 
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Figure 2 | Phase diagrams of several superconducting compound families. Although the A15 compounds 

are considered to be conventional superconductors, the phase diagram of Cs3C60 is similar to those of the 

unconventional ones. AFI: antiferromagnetic insulating; SC: superconducting; SDW: spin density waves.
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Figure 1 | The six homologous phases of iron-based pnictides and chalcogenides identified at present. 

Listed below each structure is the highest achieved Tc so far.

Figure 4.1: The six systems of iron-based superconductors discovered as yet. The

temperature listed below each structure is the highest achieved 𝑇𝑐 so far, adopted

from Ref. [101].

4.2 Ba122 system

In this thesis, we will concentrate on the Ba122 compounds, in particular

those doped with K or Co.

4.2.1 Crystal structure

The parent compound of Ba122 system is BaFe2As2 [102]. It has the tetrago-

nal ThCr2Si2-type structure (space group I 4/mmm), and contains distinct FeAs

layers separated by barium atoms. Figure 4.2 shows the crystal structure of

BaFe2As2. Experimental atomic positions in BaFe2As2 are: Ba (0, 0, 0), Fe (0.5,

0, 0.25), As (0, 0, z). The rest of the crystallographic data are listed in Table

4.1.

4.2.2 Band structure

Since the discovery of the iron-based superconductors, the detailed band

structure had been calculated for all systems of these compounds [23, 103, 104].
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The ternary iron arsenide BaFe2As2 becomes superconducting by hole doping, which was achieved by

partial substitution of the barium site with potassium. We have discovered bulk superconductivity at Tc ¼
38 K in ðBa1�xKxÞFe2As2 with x � 0:4. The parent compound BaFe2As2 crystallizes in the tetragonal

ThCr2Si2-type structure, which consists of ðFeAsÞ�� iron arsenide layers separated by Ba2þ ions.

BaFe2As2 is a poor metal and exhibits a spin density wave anomaly at 140 K. By substituting Ba2þ

for Kþ ions we have introduced holes in the ðFeAsÞ� layers, which suppress the anomaly and induce

superconductivity. The Tc of 38 K in ðBa0:6K0:4ÞFe2As2 is the highest in hole doped iron arsenide

superconductors so far. Therefore, we were able to expand this class of superconductors by oxygen-free

compounds with the ThCr2Si2-type structure.

DOI: 10.1103/PhysRevLett.101.107006 PACS numbers: 74.62.Bf, 74.10.+v, 74.20.Mn, 74.70.Dd

The recent discovery of superconductivity in pnictide
oxides with critical temperatures (Tc) up to 55 K has
generated tremendous interest in the scientific community.
After the first reports on superconductivity in LaFePO [1]
and LaNiPO [2,3] below 5 K, the breakthrough came with
the fluoride doped arsenide LaFeAsðO1�xFxÞ [4] that ex-
hibits Tc ¼ 26 K which increases to 43 K under pressure
[5]. Reports on even higher Tc’s of up to 55 K, achieved by
replacing lanthanum by rare earth ions with smaller ionic
radii, followed quickly [6]. These compounds represent the
second class of high-Tc materials [7], 22 years after the
discovery of the copper oxide superconductors [8].

The parent compound of the new materials, LaFeAsO,
has a quasi-two-dimensional tetragonal structure, which
consists of charged ðLaOÞ�þ layers alternating with
ðFeAsÞ�� layers (ZrCuSiAs-type) [9]. Several recent stud-
ies suggest that superconductivity in doped iron arsenides
is unconventional and therefore non-BCS-like [10–12], but
this issue is not clear at all. In contrast to the nonconduct-
ing parent compound of the copper oxides, LaFeAsO is a
poor metal and exhibits Pauli paramagnetism. The exis-
tence of a spin density wave (SDW) anomaly evolving in
LaFeAsO at 135–140 K assumes a key role [13,14]. The
SDW is accompanied by a structural phase transition [15]
and anomalies in the specific heat, electrical resistance, and
magnetic susceptibility. Antiferromagnetic ordering of the
magnetic moments occurs just below the structural transi-
tion temperature (TN ¼ 134 K, 0:36�B=Fe) [16]. By
changing the electron count within the ðFeAsÞ�� layers,
the structural phase transition and antiferromagnetic order-
ing are suppressed and superconductivity emerges [17,18].
Electron doping has been a highly successful approach in
the case of LaFeAsO, by either substituting oxide for
fluoride [4] or introducing oxide deficiencies in the LaO
layer [19]. In contrast to this, the only case of supercon-
ductivity by hole doping is ðLa1�xSrxÞFeAsO (Tc ¼ 25 K)
so far [20].

The pairing mechanism in iron arsenides is currently in
dispute. But even in these early days it becomes evident
that superconductivity in LaFeAsO emerges from specific
structural and electronic conditions in the ðFeAsÞ�� layer.
However, if only the iron arsenide layer is essential, also
other structure types could serve as parent compounds. We
reported recently that BaFe2As2 with the well-known
ThCr2Si2-type structure is an excellent candidate [21].
The crystal structure of BaFe2As2 is shown in Fig. 1.
This ternary arsenide contains FeAs layers identical to
LaFeAsO, moreover with the same charge [22], and ex-
hibits a SDW anomaly likewise (see below). In this Letter
we report on superconductivity in BaFe2As2 induced by
hole doping, which was achieved by partial substitution of
the barium by potassium ions.
In the very large family of ThCr2Si2-type compounds,

superconductivity occurred at temperatures below 5 K, as,
e.g., in LaIr2Ge2, LaRu2P2, YIr2�xSi2þx, and BaNi2P2
[23–27], although closely related rare earth borocarbides
are known for higher Tc’s up to 26 K in YPd2B2C [28,29].

FIG. 1 (color online). Crystal structure of BaFe2As2
(ThCr2Si2-type structure, space group I4=mmm).
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Figure 4.2: The crystal structure of BaFe2As2.

Figure 4.3 shows the local-density-approximation (LDA) calculations of band
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FIG. 21: Left – electronic spectrum of LaO1−xFxFeAs, BaFe2As2 and LiFeAs in a narrow interval of energies close to the
Fermi level, relevant to the formation of superconducting state. Right – Fermi surfaces of these compounds [117, 119].

and the values of Tc in these compounds).
The bandwidth of d-states of Fe in BaFe2As2 is approximately 0.3 eV larger than in LaOFeAs, which may be

connected with shorter Fe-As bonds, i.e. with larger Fe-d-As-p hybridization. In both compounds bands crossing the
Fermi level are formed mainly from three d-orbitals of Fe with t2g symmetry – xz, yz, xy. Similar situation is realized
also in case of LiFeAs.
In Fig. 21 (left) we show electronic dispersions in high symmetry directions in all three main classes of new

superconductors (1111, 122 111) in a narrow (± 0.2 eV) energy interval around the Fermi level, where superconducting
state is formed [118, 119]. It can be seen that electronic spectra of all systems in this energy interval are very close
to each other. In general case, the Fermi level is crossed by five bands, formed by d-states of Fe. Of these, three
form hole – like Fermi surface pockets close to Γ – point, and the other two – electron – like pockets at the corners
of Brillouin zone (note that Brillouin zones of 1111, 111 and 122 systems are slightly different due to differences in
lattice symmetry).
It is clear that this kind of a band structure leads to similar Fermi surfaces of these compounds — appropriate

calculation results are shown in the right side of Fig. 21: there are three hole–like cylinders at the center of Brillouin
zone and two electron – like at the corners. Almost cylindrical form of the Fermi surface reflects quasi two – dimensional
nature of electronic spectrum in new superconductors. The smallest of hole – like cylinders is usually neglected in the
analysis of superconducting pairings, as its contribution to electronic properties is rather small (smallness of its phase
space volume). At the same time, from the general picture of electronic spectrum it is clear that superconductivity
is formed in multiple band system with several Fermi surfaces of different (electron or hole – like) nature, which
is drastically different from the simple one – band situation in cuprates. Below we shall see that results of LDA
calculations of electronic structure correlate rather well with experiments on angle resolved photoemission (ARPES).
LDA calculations of band structure of α-FeSe were performed in a recent paper [116]. Dropping the details we note

that the results are qualitatively quite similar to those described above for 1111, 122 and 111 systems. In particular,
the form of Fermi surfaces is qualitatively the same, while conduction bands near the Fermi level are formed from

Figure 4.3: The left panel shows the calculated band structure of BaFe2As2 in

a narrow interval of energies near the Fermi level. The right panel displays the

Fermi surfaces of this material [105].

structure of BaFe2As2. Unlike the cuprates, where there is only one band crossing

the Fermi level, in BaFe2As2, the Fermi level is crossed by five bands formed by

d -states of Fe, three of them form hole-like Fermi surface pockets close to Γ-

point, and the other two form electron-like pockets at the corners of Brillouin

zone. This can be seen from the left panel in Fig. 4.3. Clearly, this kind of band

structure results in similar Fermi surfaces in these materials. The calculated

Fermi surfaces of BaFe2As2 are shown in the right panel of Fig. 4.3. There are
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parameters values

a, Å 3.9625

b, Å =a

c, Å 13.0168

z𝐴𝑠 0.3545

Ba-As, Å 3.382 × 8

Fe-As, Å 2.403 × 4

Fe-Fe, Å 2.802 × 4

As-Fe-As, (deg) 111.1 × 2

108.7 × 4

Table 4.1: Crystallographic data of BaFe2As2.

three hole-like cylinders at the center of Brillouin zone and two electron-like

cylinders at the corners. The smallest hole-like cylinders is usually neglected

when analyzing the electronic properties in superconducting state, because its

contribution to electronic properties is rather small. Superconductors derived

from BaFe2As2 show a myriad of unconventional properties. In these compounds,

superconductivity arises in a multi-band system with several Fermi surfaces of

different nature (hole or electron-like), which is drastically different from the

one-band situation in cuprates.

4.2.3 Phase diagram

One important step towards understanding the mechanism of the supercon-

ductivity is elucidating the electronic phase diagram in the temperature 𝑣𝑠 doping

plane and comparing it with the known superconductors, such as the cuprates.

For the cuprate superconductors, the parent compounds are Mott insulators.

Upon doping with holes, the long-range antiferromagnetic order is completely

suppressed before superconductivity sets in. They do not coexist at any point of

the temperature 𝑣𝑠 doping phase diagram. In electron doped materials, a small

coexistence region may or may not exist, this being an unsettled issue. However,

the iron-based superconductors produce a different phase diagram. Figure 4.4
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FIG. 3: (Color online) The phase diagram of Ba1−xKxFe2As2
and Ba(Fe1−xCox)2As2. No splitting between the structural
and AFM transitions has been observed in the hole doped
samples. The curve of Tc vs. doping in wide hole doping
region (solid line) was taken from the Ref.[12]. The data in
the electron doped regions were adopted from Ref.[10].

Ba(Fe1−xCox)2As2 system,[20], the systematic evolution
shown in our present study can rule out this possibility.
For the cuprate superconductors, the antiferromag-

netic order of the magnetic moments of the Cu2+ is
completely suppressed before superconductivity sets in.
They do not coexist at any point of the Tc(p) (p: doped
hole number) phase diagram (exception was suggested in
the Bi-2201 system). In contrast, the coexistence of the
AFM and the superconductivity can be observed in un-
derdoped region of the dome of K-122 [13, 15, 24, 32, 33].
Fig.3 shows the phase diagram of Ba1−xKxFe2As2 and
Ba(Fe1−xCox)2As2. Although there are some reports
claiming that magnetically ordered phases and SC state
are probably mesoscopically/microscopically separated
[36–38], most of the studies on K or Co doped sam-
ples are in favor for the coexistence of magnetic or-
der and superconductivity and have consistently ruled
out the presence of phase separation[15, 33, 34]. The
very small residual specific coefficient γ0 in the opti-
mally doped Ba0.6K0.4Fe2As2 also strongly suggest the
absence of macroscopic phase separation, since other-
wise one should be able to see a large residual term of
specific heat. Therefore we argue that the QCP occurs

Figure 4.4: The phase diagram of Ba122 system adopted from Ref. [106].

shows the electronic phase diagram of the Ba122 system. Unlike the cuprates, the

parent compound (BaFe2As2) of this system is a poor Pauli-paramagnetic metal

with a structural and magnetic phase transition at 140 K [102]. Superconduc-

tivity emerges with the suppression of the magnetism which can be achieved by

applying pressure or chemical substitution [95, 96, 107]. The substitution of Ba

atoms with K atoms yields hole-doped materials [95] with a maximum 𝑇𝑐 ≈ 38 K

while the Fe atoms can be substituted with Co or Ni atoms, resulting in electron

doped materials [96, 107] with a maximum 𝑇𝑐 ≈ 25 K. As shown in Fig. 4.4,

in both electron and hole doped regime, as the doping concentration increases,

the magnetic ground state of the parent compound is suppressed, and super-

conducting domes arise inside the AFM region. An overlap between AFM and

superconductivity exits in the underdoped region of the superconducting domes.

Some reports claim that magnetically ordered phases and SC state are probably

mesoscopically/microscopically separated [108–110] while others are in favor of

the coexistence of the magnetic order and the superconductivity [111, 112].
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4.2.4 Spin density wave

The parent compound (BaFe2As2) in this family undergoes a spin density

wave (SDW) phase transition at about 140 K. Hu et al. investigated the opti-

cal response in the SDW state [61]. Figure 4.5 shows the optical conductivity

Figure 4.5: Optical conductivity of BaFe2As2 above and below the SDW transi-

tion temperature. Adopted from Ref. [61].

of BaFe2As2 (𝑇𝑆𝐷𝑊 = 138 K), in the normal state, the low frequency optical

response is characterized by a Drude peak centered at zero frequency, indicating

that the normal state of BaFe2As2 is metallic. Below 𝑇𝑆𝐷𝑊 = 138 K, the spectra

are substantially suppressed at low frequencies, and simultaneously, the high fre-

quency spectra increase, forming a pronounced double-peak feature at 360 and

890 cm−1 on the optical conductivity. Clearly, this feature on 𝜎1(𝜔) signals the

opening of the SDW gaps. The double-peak character is identified as two distinct

SDW gaps which should be associated with different Fermi surface sheets and

reflect the multiband property in the 122 system compounds.

4.2.5 Multiband metal

The presence of multiple Fermi surface sheets is also confirmed by a variety

of techniques in Ba122 compounds.
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The de Haas-van Alphen (dHvA) effect is used to measure the Fermi surface

of bulk materials. Arnold et al. [113] reported the de Haas-van Alphen effect

measurements in BaFe2P2 which has a similar band structure to BaFe2As2. A

typical torque 𝑣𝑠 field oscillation curve for BaFe2P2 is shown in the top panel of

Fig. 4.6. By taking the fast Fourier transform (FFT) spectra of the oscillatory

Figure 4.6: The top panel shows a typical torque 𝑣𝑠 field oscillation curve for

BaFe2P2 single crystal. The middle panel displays the fast Fourier transforms of

the torque curves at various angles. The bottom panel lists some basic parameters

on different Fermi surface sheets. Adopted from Ref. [113].

data, the dHvA frequencies can be obtained, as shown in the middle panel. Eight

different dHvA peaks can be identified from the dHvA frequency spectra. These

peaks originate from multiple Fermi surface sheets as expected by the band struc-

ture. The bottom panel lists some basic parameters on different Fermi surface
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sheets. Note that the mean free paths 𝑙 in different bands varies considerably.

But two groups of values dominate all the Fermi surfaces. One group is about 40

nm while the other group has the values from 150 nm to 200 nm. Similar results

are also observed in BaFe2(As1−𝑥P𝑥)2 [114] and SrFe2P2 [115].

Wu et al. studied the optical conductivity of various iron-based supercon-

ductors [85]. Figure 4.7 displays the measured optical conductivity (black solid

satisfactory description only by using two Drude terms.21

Interestingly, this decomposition holds universally for all
temperatures, as shown in Fig. 1, and for eight different 122
iron pnictides indicating that it might be universal for the
whole family. This is illustrated in Fig. 2 where the optical
conductivity is displayed in a large frequency range for par-
ent compounds XFe2As2 �X=Ba,Sr,Ca,Eu�, as well as for
hole-doped Ba0.6K0.4Fe2As2 and for the completely substi-
tuted BaNi2As2.12–16 Simple oscillators �two are sufficient�
model the midinfrared properties adequately well. A broad
contribution �B mimics the considerable background con-
ductivity that seems to be similar for all compounds and does
not change appreciably with temperature. As will be dis-
cussed later, the distinct properties of the particular material
are solely determined by the second Drude term �N with a
width of approximately 100 cm−1 in the case of
Ba�Fe0.92Co0.08�2As2. Its spectral weight is smaller by a fac-
tor of 3–5 compared to �B. Upon cooling, the spectral weight
is roughly conserved for each of these two fractions, i.e.,
there is no transfer between these two subsystems. Our find-
ing is in accord with angle-resolved photoemission �ARPES�
data22 which indicate that the multiband structure does not
change considerably upon doping and temperature.

In order to analyze the temperature dependence of �N at
�=0, we have measured the dc resistivity �see Fig. 3�a��,
then simply deduce a constant �B from the graphs displayed
in Fig. 2 and consider �N�T�=�total�T�−�B. The result is sur-
prising but very simple, namely, �N=1 /�N�T2 over the
broad temperature range, as shown in Fig. 3�c�. Importantly,
an independent confirmation of this finding is obtained di-

rectly from the decomposition of the low-frequency conduc-
tivity of Ba�Fe1−xMx�2As2. The Drude fit �N���=�N��
=0� / �1+�2�N

2 � yields a scatting rate 1 /�N�T��T2 as well
�Fig. 3�d��. These results evidence a deep physical consis-
tency of our decomposition.

We want to point out that due to the broad frequency
range covered by only two Drude contributions, the fits are
robust and give well-defined parameters �B, �N�T�, and
1 /�N�T�. Furthermore, we restrain ourselves by assuming �B
basically as temperature independent; and since the dc con-
ductivity is determined separately, that leaves only 1 /�N�T�
as a fit parameter. Moreover, as a result of such fit procedure
it turns out that the coherent Drude term preserves its spec-
tral weight within an uncertainty of 2%.

It is of interest to compare our findings with the Hall-
effect study on the series Ba�Fe1−xCox�2As2 �Ref. 23� which
also revels the same T2 temperature dependence of the scat-
tering rate. Those authors attributed it to the Fermi liquid.
Furthermore, other iron pnictides behave in a very similar
way, as demonstrated on Ba�Fe0.95Ni0.05�2As2 in Fig. 3�c�,
confirming that such behavior is quite general. Notably, a T2

behavior of the resistivity is also found in 1111
compounds.24,25

We note that our way to a hidden T2 temperature depen-
dence differs somewhat from previously reported findings.
Those works analyzed the resistivity prior to its decomposi-
tion, having both contributions, �N�T� and �B, mixed. The
“anomalous” temperature dependence of the resistivity ��0
+ATn or �0+AT+BT2� and the proximity of the magnetic
phase have been considered as an indication that the
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FIG. 2. �Color online� Comparison of the optical conductivity of different iron pnictides, in the normal state, indicates that the decom-
position in two Drude terms ��N and �B shaded densely green and medium orange, respectively� plus oscillators in the midinfrared �e.g., one
of them is indicated by sparsely hatched magenta� holds for the whole 122 family. The spectra of the parent compounds at temperatures
above the SDW transition: �a� BaFe2As2 �Ref. 12�, �b� SrFe2As2 �Ref. 12�, �c� CaFe2As2 �Ref. 13�, and �d� EuFe2As2 �Ref. 14�. For T
�Tc the conductivity spectra of the electron doped superconductor Ba0.6K0.4Fe2As2 �Ref. 15�, the hole doped superconductors �f�
Ba�Fe0.92Co0.08�2As2 and �g� Ba�Fe0.95Ni0.05�2As2 are very similar. �h� When Fe is completely substituted by Ni, the material is more
metallic, but the room-temperature spectrum of BaNi2As2 �Ref. 16� can be decomposed in the same way with a larger spectral weight of the
Drude components.
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Upon cooling, the spectral weight
is roughly conserved for each of these two fractions, i.e.,
there is no transfer between these two subsystems. Our find-

�ing is in accord with angle-resolved photoemission �ARPES�g
data22 which indicate that the multiband structure does not
change considerably upon doping and temperature.

Figure 4.7: Optical conductivity of different iron-based superconductors. The

black solid lines in each panel is the measured optical conductivity in the normal

state, and the colorful shaded lines represent the components of the fit. Adopted

from Ref. [85].

lines) for 8 different samples and components of the fit (colorful shaded lines) used

for describing the optical conductivity in the normal state. We can see that for

all the 8 different iron-based superconductors measured, the optical conductivity

can be decomposed into three components: two Drude terms, accounting for the

optical response of free carriers; one Lorentz term for interband transition. The

two Drude terms description strongly indicates the presence of multiple Fermi

surface sheets in iron-based superconductors. This is compatible with the dHvA

effect measurements. Since Infrared spectroscopy is a 𝑘-averaged technique, it

can not distinguish Fermi surfaces with similar mean free path. The Fermi sur-
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faces of iron-based superconductors, observed by dHvA effect, are dominated by

two groups of mean free paths, resulting in a two Drude bands description of

the infrared optical response. They also found that in the doped compounds,

both components are effected by the superconducting transition, suggesting that

superconductivity may arise in multiple bands. A similar result is reported by

Nakajima et al. [89].

Rullier-Albenque et al. systematically investigated the hole and electron

contributions to the transport properties of Ba122 system compounds by studying

their Hall coefficient as a function of temperature [116]. Figure 4.8 shows the tem-

achieving superconductivity in pnictides.8,31,32 Let us also
note that Ru substitution in the 1111 PrFeAsO compound
induces similar crystallographic modifications as those ob-
served here in BaFe2As2 �Ref. 33� with suppression of the
magnetic order but no apparition of superconductivity.

On another hand, band-structure calculations have pointed
out the important impact of the vertical distance dFe-As on the
Fermi-surface topology of iron pnictices.34 Mizugushi et al.7

have recently shown that a striking correlation between Tc
and the Fe-As distance is followed by a lot of different FeAs
superconductors. This plot is symmetric with a peak around
dFe-As=1.38 Å. We find that the point corresponding to
Ba�Fe1.62Ru0.35�2As2 �dFe-As=1.3165 Å� and Tc�20 K is on
the left branch while the one for pressure or hole doping is
located on the right one. Even though other factors are
clearly at play for governing the apparition of superconduc-
tivity in the 122 family, the relationship between the values
of Tc and dFe-As may provide a helpful hint to understand the
modifications of the electronic properties.

IV. HALL EFFECT AND ANALYSIS OF
TRANSPORT PROPERTIES

The temperature dependences of the Hall coefficient RH
are displayed in Fig. 4 for different Ru concentrations. In the
paramagnetic state of the samples, we have checked that the
Hall resistivity is always linear in field up to 14 T, which
allows to define RH unambiguously.35 This linearity is illus-
trated in the inset of Fig. 4 for the x=0.35 sample. The strong
reduction in the Hall coefficient at the S-M transition is well
correlated to the anomalies seen in d� /dT and represented by
arrows in the figure. It can be associated, as in the undoped
parent, to the reduction in carrier density due to the recon-
struction and/or partial gaping of the Fermi surfaces. The fact
that RH remains negative indicates that electrons still domi-
nate the transport properties in the magnetic phase of Ru-
substituted samples.

Figure 5�a� shows an enlarged view of the evolution of
the Hall coefficient in the paramagnetic phase. For compari-
son, we have also plotted in Fig. 5�b� similar data obtained

for Ba�Fe1−xCox�2As2 at various dopings.10 In this latter case,
RH is always found negative, indicating that the contribution
of electrons dominates the transport properties. However an
opposite trend appears as soon as Ru is added to BaFe2As2.
For x=0.15, RH nearly reaches zero before dropping at the
S-M transition and for higher Ru contents, a change in sign
of RH occurs at low temperature. In particular for the x
�0.25 sample, we observe that RH increases and becomes
positive on cooling and then appears to slightly decrease
again for T�50 K. This can be related to the flattening of
the ��T� curves observed in the same temperature range and
this is for us the sign that the S-M transition takes place at
T�50 K in this sample.

In multiband systems, it is well known that a temperature
variation in the Hall coefficient can be assigned to different
variations in hole and electron mobilities with temperature.
The observation of a sign change in RH in Ba�Fe1−xRux�2As2
indicates that holes and electrons contribute similarly to the
transport in a large temperature range. More precisely
ARPES data on crystals with 35% Ru �Ref. 19� have shown
that the number of holes and electrons are similar, i.e., n
=ne=nh�0.11 carriers/Fe. It is worth pointing out that this
value is significantly larger than that determined by ARPES
in the paramagnetic phase of BaFe2As2: n=0.06�2�
carriers/Fe,36 which indicates that even though Ru is isova-
lent of Fe, it induces important modifications of the elec-
tronic structure. This equality of ne and nh is consistent with
the observation that the Hall resistivity �xy is always linear
with magnetic field. Indeed in a two-band model, the Hall
resistivity �xy can be written out as

�xy =
1

e

nh�h
2 − ne�e

2 + ��h�e�2�nh − ne�H2

�nh�h + ne�e�2 + ��h�e�2�nh − ne�2H2H , �1�

where �h= �e��h /mh ��e= �e��e /me� are the mobilities of holes
�electrons� and �h ��e� and mh �me� their relaxation rates and

FIG. 4. �Color online� T dependence of the Hall coefficient
RH�T� for various compositions. The temperatures at which RH

starts decreasing due to the apparition of the M-S transition corre-
spond exactly to those where anomalies are seen in the resistivity
curves �arrows�. The inset shows that the Hall resistivity �xy of the
x=0.35 sample is linear in magnetic field up to 14 T whatever T. A
sign change in the slope occurs between 93 and 120 K.

FIG. 5. �Color online� T dependence of the Hall coefficient
RH�T� in the vicinity of RH=0 for �a� Ba�Fe1−xRux�2As2 and �b�
Ba�Fe1−xCox�2As2, from Ref. 10.

RULLIER-ALBENQUE et al. PHYSICAL REVIEW B 81, 224503 �2010�

224503-4

Figure 4.8: The Hall coefficient of Ba(Fe1−𝑥Ru𝑥)2As2 (Panel a) and

Ba(Fe1−𝑥Co𝑥)2As2 (Panel b) as a function of temperature. Adopted from Ref.

[116].

perature dependence of the Hall coefficient for Ba(Fe1−𝑥Ru𝑥)2As2 (Panel a) and

Ba(Fe1−𝑥Co𝑥)2As2 (Panel b). A notable phenomenon occurs in Ba(Fe1−𝑥Ru𝑥)2As2
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(x = 0.26, 0.35 and 0.44) samples: the Hall coefficient 𝑅𝐻 increases with decreas-

ing temperature, and more interestingly, a change in sign of 𝑅𝐻 occurs roughly at

100 K as shown in panel (a). This pronounced sign change of the Hall coefficient

provides substantial information about the carriers in these materials: (i) Both

holes and electrons exist in Ba(Fe1−𝑥Ru𝑥)2As2 compounds, which is certainly ex-

pected in a multiband system with both hole-like and electron-like Fermi surface

sheets. (ii) The hole and electron contributions to the transport properties are

similar in a large temperature range. (iii) Different variations in hole and elec-

tron mobilities with temperature are strongly indicated by the Hall coefficient

sign change. However, the Hall coefficient of Ba(Fe1−𝑥Co𝑥)2As2 is always found

negative [117], as shown in Panel (b), implying that the transport properties are

dominated by the electrons. These observations can explain the different shapes

of the R-T curves for iron-based superconductors. Similar results are obtained

by our infrared optical measurements in optimally doped Ba1−𝑥K𝑥Fe2As2 which

will be discussed in detail in Chapter 6.

4.2.6 Pairing symmetry

The superconducting condensation in iron-based superconductors may in-

volve multiple bands. An unconventional pairing symmetry, the 𝑠± symmetry,

is proposed for this family of superconductors [24]. Extensive experiments have

been done with the aim at confirming the pairing symmetry in Ba122 system iron-

based superconductors, but no consensus on the pairing symmetry, especially the

existence of nodes in the order parameter, has been reached [75–77, 84, 118–125].

Ding et al. [118] performed an angle-resolved photoemission spectroscopy

(ARPES) measurement on Ba0.6K0.4Fe2As2 single crystal with 𝑇𝑐 = 37 K. In the

normal state at 𝑇 = 50 K, their data revealed three Fermi surface sheets: an inner

hole-like FS pocket (the 𝛼 FS) and an outer hole-like FS sheet (the 𝛽 FS), both

centered at the Γ point (the center of the Brillouin zone); an electron-like FS (the

𝛾 FS) centered at M point or (𝜋, 0). In the superconducting state, nearly isotropic

and nodeless superconducting gaps with different values open simultaneously at

the bulk 𝑇𝑐 on all three observed Fermi surface sheets, as shown in Fig. 4.9.

This signifies that the pairing order parameter in Ba0.6K0.4Fe2As2 has an s-wave



CHAPTER 4 IRON-BASED HIGH-𝑇𝐶 SUPERCONDUCTORS 71
H. Ding et al.

Fig. 4: (Colour on-line) Three-dimensional plot of the
superconducting-gap size (Δ) measured at 15K on the three
observed FS sheets (shown at the bottom as an intensity plot)
and their temperature evolutions (inset).

Nearly isotropic and nodeless superconducting gaps of
different values open simultaneously at the bulk Tc on all
three observed FS sheets of electron and hole characters.

Remarkably, the α and γ FS are still well connected
by the Q-vector reminiscent of an inter-band nesting
condition along large portions of the two FSs. The latter
can enhance the kinetic process where a zero momentum
pair formed on the α (γ) FS is scattered onto the γ (α)
FS by the fluctuations near the wave vector Q, whereby
increasing the pairing amplitude. These observations
strongly suggest that the inter-band interactions play an
important role in the superconducting pairing mechanism
of this new class of high-temperature superconductors.
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Figure 4.9: The contour of the superconducting gaps of Ba0.6K0.4Fe2As2 at 15 K

measured by ARPES, adopt from Ref. [118]. The gap values are approximately

12 meV, 6 meV, and 12 meV on the 𝛼, 𝛽, and 𝛾 Fermi surface sheets respectively.

Each gap has an 𝑠-wave symmetry.

symmetry. But ARPES is not a phase sensitive technique. Therefore, they can

not rule out the possibility of phase reversal between the order parameters on

the different FS sheets.

STM measurements on the same sample, reported by Shan et al., give similar

results [122]. The left column in Fig. 4.10 shows the STM spectra measured at

different positions on the sample surface in the superconducting state (𝑇 = 3 K).

The two peaks (located at about 3 and 8 meV) feature is a strong signature of

two superconducting gaps in this system, and the bottom of these curves are flat

to zero strongly indicating that the gaps observed by STM are nodeless. They
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FIG. 3. (Color online) (a) Histogram of the obtained supercon-
ducting gaps. The fit to a multipeak Gaussian function is also plotted
here with a list of the fitting parameters (b) Some spectra measured

FIG. 4. (Color online) Left column: Typical spectra measured at
different positions on the sample surface (black dots). The curves
are the fits to the two-band model discussed in the text. Wt.(�S)
means the spectral weight contributed from �S , which is equal to the
parameter σ mentioned in the text. Right column: Gap functions for
the two gaps assumed in the fitting. It was noted that the adaptive gaps
in these simulations should be nodeless and have a small anisotropy.
The calculated coherence peaks for the larger gap (�L) look more
narrow than the experimental data, which may be due to the neglect
f h ib i f h 10 ill d i i 3(b)

Figure 4.10: The left column depicts the spectra measured at different positions

on the sample surface (black dots). The smooth lines through the dots are the

fit with two-band model. The right column shows the gap functions for the two

gaps utilized in the fitting [122].

obtained two gap values ∆𝑆 = 3.3 meV and ∆𝐿 = 7.6 meV by fitting their data

to a multipeak Gaussian function, but both values are smaller than the ones

determined by ARPES [118].

Terashima et al. investigated the Fermi surfaces and the properties of the

superconducting gaps of the optimally electron doped BaFe1.85Co0.15As2 single

crystal with 𝑇𝑐 =25.5 K [120]. Unlike the hole-doped system, they found that at

the Γ point, the inner band, which is referred to as the 𝛼 band in Ba1−𝑥K𝑥Fe2As2,

sinks significantly and does not create a small FS pocket as observed in the hole-

doped samples [118]. The outer band (the 𝛽 band) crosses the Fermi level creating
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each FS, and (iii) the pairing strength, as reflected by the ratio
of 2�/kBTc, is related to the FS nesting condition between the
electron and hole pockets. In hole-doped Ba0.6K0.4Fe2As2 (10,
11), the interband scattering via the wave vector Q�(�,0) (as
defined in the unreconstructed BZ) has been suggested to
enhance the pairing amplitude of the � and �(�) FSs (19–22),
resulting in large 2�/kBTc values of 7.2–7.7, whereas the poorly
nested � FS has a value of 3.6, close to the weak-coupling regime.
Remarkably, in electron-doped BaFe1.85Co0.15As2, the � (but not
�) is connected to the �(�) FSs by the same Q�(�,0) and possess
strong-coupling 2�/kBTc values of 5.9, suggesting an enhance-
ment of the pairing amplitude due to interpocket scattering on
the nearly nested FSs. The observation that the pairing strength
in the � band increases from 3.6 in the optimally hole-doped
sample to 5.9 in the optimally electron-doped sample strongly
suggests that the SC coupling strength is more related to the
nesting condition among the FSs than to the orbital characters
themselves. All these experimental observations suggest that the
interpocket scattering and FS nesting are critical aspects of the
pairing mechanism of the pnictides.

At this point, a few essential issues regarding the nature of the
unconventional pairing mechanism need to be addressed. The
first one is the cause of a small difference in the SC gap size of
the observed FSs in the electron-doped system. This may be
related to the difference in the partial DOS between electron
and hole pockets. The existence of 2 electron pockets would give
rise to a larger DOS at EF in the electron pockets than in the hole
pocket. This leads to a relative enhancement of the pairing
amplitude in the hole pocket due to stronger Q�(�,0) scattering
from the electron pockets (23). The second issue concerns the
smaller 2�(0)/kBTc values obtained on the well nested FSs in the
electron-doped BaFe1.85Co0.15As2 (4.5–5.9) as compared with
the hole-doped Ba0.6K0.4Fe2As2 [7.2–7.7 (10)]. This might be
linked to the larger pairing-breaking disorder scattering caused

10 2001020

Energy relative to EF (meV)

0 1

k y
(π

/a
)

0

1

Γ M

X

kx (π/a)

β

β γ(δ)θ

In
te

ns
ity

(a
rb

.u
ni

ts
)

A

10 2001020

Energy relative to EF (meV)

γ(δ)

In
te

ns
ity

(a
rb

.u
ni

ts
)

B

0

2

4

θ

|Δ| (meV)8

β

γ(δ)

6

Fig. 3. Momentum dependence of the superconducting gap. (A and B) Sym-
metrized EDCs at 8 K measured at various kF points on the � and electron-like FS,
labeled by respective colored symbols correspondingly. (C) Extracted FS from the
ARPES measurements together with the definition of FS angle (�). (D) SC gap
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represent the averaged gap value.
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Figure 4.11: The left panel shows the structure of the Fermi surfaces extracted

from the ARPES measurements. The right panel shows the gap symmetry and

values on different Fermi surfaces. Dashed circles represent the averaged gap

value.

a hole-like pocket centered at the Γ point. Near the M point, two electron-like

Fermi surface sheets are observed, and these two Fermi surface sheets consist of

the inner (𝛾) and outer (𝛿) pockets resulting from the hybridization of 2 ellipsoidal

pockets elongated along the 𝑘𝑥 and 𝑘𝑦 direction. The shape of the Fermi surfaces

is shown in the left panel on Fig. 4.11. Below 𝑇𝑐, at 8 K, the superconducting

gaps with different values open on multiple Fermi surfaces centered at the Γ and

M points. The gap on the 𝛽 hole-like Fermi surface centered at Γ point has a

value of 6.7 meV and gaps on the 𝛾 and 𝛿 electron-like Fermi surfaces near the M

points have a value of 4.5 meV. The superconducting gap on each Fermi surface

is nodeless and exhibits nearly isotropic behavior. The right panel of Fig. 4.11

displays the gap symmetry and values on different Fermi surfaces.

Using Scanning Tunneling Spectroscopy, Teague et al. also observed two-gap

features on the electron doped Ba(Fe1−𝑥Co𝑥)2As2 single crystals [121]. The gap

values determined from their STS spectra are ∆Γ = 10.0 meV and ∆𝑀 = 5.0 meV

for x = 0.12 sample; ∆Γ = 8.0 meV and ∆𝑀 = 4.0 meV for x = 0.06 sample. In

contrast to the hole doped Ba1−𝑥K𝑥Fe2As2, relatively high zero-bias conductance
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of the electron Fermi surface at theM point �M. However,
upon closer inspection, we note that the larger gap features
often exhibit broadening or even slight splitting, as exem-
plified in Figs. 1(a), 1(b), and 3(c). The physical origin
of this splitting or broadening is unknown.

ing gaps. Further, the quasiparticle scattering rates derived
from Eq. (1) are very large even at T ¼ 6 K, showing
ð��=��Þ ¼ 0:4 and 0.5 for x ¼ 0:06 and 0.12, and
ð�M=�MÞ ¼ 0:1 for both x ¼ 0:06 and 0.12.
It is apparent from Fig. 1 that the two-gap fitting is not

ideal, which may be attributed to the following. First, the
generalized Dynes formula does not explicitly consider
the possibility of a sign-changing s-wave order parameter,
the latter is theoretically shown to be very sensitive to
unitary impurities so that the zero-bias conductance may
be strongly enhanced without requiring a large (�=�) ratio
[29]. Second, there may be different gaps associated with
the two hole pockets, so that Eq. (1) is not consistent with
the detailed electronic structures.

FIG. 1 (color online). Direct spectroscopic evidence for two-
gap superconductivity in BaðFe1�xCoxÞ2As2: (a) left panel:
normalized tunneling conductance (dI=dV) vs bias voltage (V)
spectra taken at T ¼ 6, 10, and 15 K for the sample with x ¼
0:06 and Tc ¼ 14 K. The solid lines represent theoretical fittings
to spectra using the Dynes formula in Eq. (1) modified for two-
gap BCS superconductors. Two distinct tunneling gaps �� and
�M can be identified from the spectrum at T ¼ 6 K. Right panel:
the tunneling gaps �� and �M as a function of the reduced
temperature (T=Tc) are shown by the symbols and solid lines.
The error bars indicate the widths of the gap distributions
obtained from the fitting using Eq. (1). (b) Left panel: (dI=dV)

FIG. 2 (color online). Superconducting gap maps and histo-
grams at T ¼ 6 K: (a) left to right: the first two panels correspond
to the�M and��maps for the underdoped sample (x ¼ 0:06), and
the right two panels represent the corresponding histograms for
both the quasiparticle (solid bars) and quasihole (shaded bars)
branches, showing particle-hole symmetry and themeanvalues of
hj�Mji ¼ 4 meV and hj��ji ¼ 8 meV. (b) The left two panels
are, respectively, the �M and �� maps for the sample with x ¼

Figure 4.12: Adopted from Ref. [121], the left column shows the normalized

tunneling conductance (𝑑𝐼/𝑑𝑉 ) vs bias voltage (𝑉 ) for the two samples. Excess

zero-bias conductance exists in all tunneling spectra at 𝑇 ≪ 𝑇𝑐. Right panel: the

tunneling gaps ∆Γ and ∆𝑀 as a function of the reduced temperature (𝑇/𝑇𝑐).

exists in all tunneling spectra at 𝑇 ≪ 𝑇𝑐, as shown in Fig. 4.12. They attribute

the excess zero-bias conductance to significant unitary impurity scattering in

sign-changing 𝑠-wave superconducting gaps, and also suggest a possible source

for the unitary impurity as disorder in the FeAs planes caused by Co in-plane

doping.

In addition, lots of experimental results from optical spectroscopy exist on

the Ba122 system [75–92]. Figure 4.13 shows some optical measurements on

both Co and K doped Ba122 system compounds. Gorshunov et al. measured

the optical conductivity of Ba(Fe0.9Co0.1)2As2 (𝑇𝑐 = 20 K) as shown in panel (a),

below 𝑇𝑐, the opening of the superconducting gap, characterized by a suppression

of the low frequency 𝜎1(𝜔), is clearly observed. However, a strong quasiparticle

absorption shows up below ∼ 12 cm−1. A single 𝑠-wave Mattis-Bardeen descrip-
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(a)

(d)(c)

(b)

Figure 4.13: (a) Optical conductivity of Ba(Fe0.9Co0.1)2As2 (𝑇𝑐 = 20 K) at several

temperatures above and below 𝑇𝑐, the smooth lines through the data are BCS

fits, adopted from Ref. [83]. (b) Optical conductivity of Ba(Fe0.93Co0.07)2As2 (𝑇𝑐

= 23 K) measured at 24 K (red line) and 10 K (blue line). The green smooth

line is the fit to the normal state data and the pink smooth line is the 10 K fit

which consists of two Mattis-Bardeen conductivities, adopted from Ref. [81]. (c)

Optical conductivity of BaFe1.87Co0.13As2 (𝑇𝑐 = 24.5 K) measured at 30 K and

5 K. The smooth lines are fits with different parameters. Note that the fit with

three gaps (orange line) can describe the measured optical conductivity very well.

Adopted from Ref. [77]. (d) Optical conductivity of Ba0.68K0.32Fe2As2 (𝑇𝑐 = 38.5

K) at selected temperatures above and below 𝑇𝑐, adopted from Ref. [126].
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tion fails at low frequencies [83]. Panel (b) shows the optical conductivity of

Ba(Fe0.93Co0.07)2As2 (𝑇𝑐 = 23 K) measured by Heumen et al. [81]. The red and

blue curves are the measured 𝜎1(𝜔) at 24 K and 10 K respectively; the green and

pink smooth curves are corresponding fits. They describe their superconducting

state data (at 10 K) with a superposition of two Mattis-Bardeen conductiv-

ity representing two superconducting gaps, shown as the dark blue and purple

lines in panel (b). Kim et al. measured the far-infrared optical conductivity of

BaFe1.87Co0.13As2 (𝑇𝑐 = 24.5 K) with ellipsometry [77], as shown in Panel (c).

The open circles are the experimental data measured at 30 K and 5 K. They fit

their superconducting data using different parameters (smooth lines) and found

that three superconducting gaps (orange line) give a good description to the low

frequency optical response in the superconducting state. The gap values obtained

by Kim et al. are compatible with other techniques. Panel (d) displays the op-

tical conductivity of Ba0.68K0.32Fe2As2 (𝑇𝑐 = 38.5 K) measured by Charnukha et

al. [126]. At 10 K, the optical conductivity below ∼ 20 meV vanishes, indicat-

ing a fully open gap in this material. They described their ellipsometry data in

the framework of a multiband Eliashberg theory with two superconducting gaps

2∆1 ≈ 6𝑘𝐵𝑇𝑐 and 2∆2 ≈ 2.2𝑘𝐵𝑇𝑐 which fall within the reported range for this

material.

4.2.7 Pairing mechanism

The pairing mechanism is another crucial issue in understanding the super-

conductivity in iron-pnictides. Theoretical calculations by Mazin et al. suggest

antiferromagnetic spin fluctuations mediated superconductivity in these materi-

als [24], as many believe is the case in cuprates, heavy fermion superconductors,

or ruthenates.

Christianson et al. reported an inelastic neutron scattering study on an

optimally doped Ba0.6K0.4Fe2As2 sample with 𝑇𝑐 = 38 K [127]. Figure 4.14

shows the inelastic neutron scattering intensity as a function of energy transfer.

Data shown in the left panel are measured at 7 K (superconducting state) using

incident neutron energies of 15 meV (yellow circles), 30 meV (blue circles) and

60 meV (green circles). A well defined resonant peak can be see at ∼ 14 meV
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shows that spectral weight in the resonant excitation seen below Tc is
transferred to lower energy above Tc.

We performed a series of shorter measurements to determine the
temperature dependence of this resonant excitation. Figure 4 shows
data integrated over the (Q,v) region of maximum intensity in the
resonant excitation. As also observed in the copper oxide supercon-
ductors, the intensity of the resonance falls to zero at Tc, confirming
the strong coupling of this excitation to the superconducting order
parameter.

Similar resonant excitations have been observed in other strongly
correlated superconductors, such as high-Tc copper oxide5–9 and
heavy-fermion superconductors10–12, where they are commonly
taken as evidence of an unconventional symmetry of the supercon-
ducting order parameter13. Below the superconducting transition
temperature, the dynamic magnetic susceptibility is predicted to be
enhanced at certain values of Q by a coherence factor, provided that
the energy gap has the form Dk1Q52Dk (here k and k1Q are
wavevectors on different parts of the Fermi surface).

In the copper oxide and heavy-fermion superconductors, this form
results from dx2{y2 symmetry, which has nodes in the energy gap
within a single Fermi surface. In these cases, Q spans sections of the

same Fermi surface that are gapped with opposite phases; in the
copper oxide superconductors, Q5 (p,p) is such a wavevector.
However, this mechanism seems to be ruled out by results of angle-
resolved photoemission spectroscopy (ARPES) of Ba0.6K0.4Fe2As2 that
show no evidence of any anisotropy of the energy gap15. According to
band structure calculations, the Fermi surfaces of the iron arsenide
superconductors are predominantly derived from the iron d electrons,
and comprise two small hole pockets centred at the centre of the
Brillouin zone and two small electron pockets at the zone boun-
dary21,22. ARPES shows there to be isotropic gaps around each of the
measured surfaces, apparently ruling out a d-wave gap symmetry15.

A resolution of this apparent discrepancy has been provided by
theoretical predictions that the symmetry is not d wave, but rather
extended s6wave14, inwhich the gaps at the hole pockets are isotropic
and the gaps at the electron pockets are isotropic but are of opposite
sign to those at the hole pockets. This means that magnetic fluctua-
tions are amplified by the coherence factor at values ofQ that couple
the hole and electron pockets, as has been confirmed by explicit
calculations of the neutron scattering intensities23,24. This is precisely
where we have observed the resonant excitation, so our measure-
ments, in conjunction with the ARPES data, provide phase-sensitive
evidence for the validity of extended s6-wave gap models.

The energy of this resonant excitation is v0< 14meV. This is
equivalent to 4.3Tc, which is just less than the canonical value of
5Tc seen in the copper oxide superconductors25. However, it is more
appropriate to consider the ratio v0/2D0, where D0 is the maximum
value of the gap. This ratio has values ranging from 0.62 to 0.74 in a
wide range of materials11. From ARPES data on Ba0.6K0.4Fe2As2,
D0< 12meV (ref. 15), giving a ratio of v0/2D0< 0.58. It is remark-
able that materials with such a divergent range of Tc (which varies
over two orders ofmagnitude) can be unified by such a simple scaling
relation.

Received 24 July; accepted 29 October 2008.

1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered
superconductor La[O1-xFx]FeAs (x50.05–0.12)with Tc5 26K. J. Am. Chem. Soc.
130, 3296–3297 (2008).

2. Takahashi, H. et al. Superconductivity at 43 K in an iron-based layered compound
LaO12xFxFeAs. Nature 453, 376–378 (2008).

3. Ren, Z.-A. et al. Superconductivity and phase diagram in iron-based arsenic-
oxides ReFeAsO1-d (Re 5 rare-earth metal) without fluorine doping. Europhys.
Lett. 83, 17002 (2008).

25

20

15

10

5

0.5 1.5 2.0

10

8

6

4

2

0
2.5

a b

E
ne

rg
y 

tr
an

sf
er

 (m
eV

)

1.0
|Q| (Å–1) |Q| (Å–1)

0.5 1.5 2.0 2.51.0

Figure 2 | Resonant spin excitation in Ba0.6K0.4Fe2As2. Inelastic neutron
scattering, measured using an incident neutron energy of 60meV at
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of a magnetic excitation in the superconducting phase at an energy transfer
of 14meV and a momentum transfer of 1.15 Å21. The strong scattering at
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millibarns per steradian per millielectronvolt per mole.
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Figure 3 | Energy dependence of the resonant spin excitation. a, The
inelastic neutron scattering intensity fromBa0.6K0.4Fe2As2 integrated overQ
in the range 1.0–1.3 Å21 at 7 K, measured using incident neutron energies of
15meV (yellow circles), 30meV (blue circles) and 60meV (green circles).
b, Same as in a, but at 7K (green circles) and 50 K (red circles) using an
incident neutron energy of 60meV. The error bars are derived from the
square root of the raw detector counts. The data show a resonant peak at 7K
and the transfer of spectral weight from this peak to lower energies at 50K,
that is, above Tc.
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Figure 4 | Temperature dependence of the resonant spin excitation. The
inelastic neutron scattering intensity fromBa0.6K0.4Fe2As2 integrated overQ
in the range 1.0–1.3 Å21 and over v in the range 12.5–17.5meV. The
integration range corresponds to the region of maximum intensity of the
resonant excitation observed below Tc (Fig. 2). The error bars are derived
from the square root of the raw detector counts. The dashed line is a guide to
the eye below Tc and shows the average value of the integrals above Tc.
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Figure 4.14: The inelastic neutron scattering intensity for Ba0.6K0.4Fe2As2. The

left panel shows the data measured at 7 K using incident neutron energies of 15

meV (yellow circles), 30 meV (blue circles) and 60 meV (green circles). The right

panel shows the data measured at 50 K (red circles) and 7 K (green circles) using

an incident neutron energy of 60 meV. Adopted from Ref. [127].

for all the incident neutron energies. At 50 K (normal state), the resonant peak

is absent, shown as the red circles in the right panel. This resonance peak has

also been observed in copper oxide superconductors and several heavy-fermion

superconductors. It is predicted that when the sign of the superconducting gap

reverses on different parts of the Fermi surface and the electron pairing interaction

is repulsive at short range, the resonant peak is present in the superconducting

state. Here, the presence of this resonant peak in the superconducting state

may imply an antiferromagnetic spin fluctuation mediated superconductivity in

Ba0.6K0.4Fe2As2.

All in all, multiband features have been observed in the Ba122 system com-

pounds by a variety of techniques. However, the properties of the order param-

eter and the pairing mechanism in iron-based superconductors remains unclear.

Further experiments and understanding are still highly desired.





Chapter 5

Experimental Methods

Many and various approaches can be used to measure the frequency de-

pendent optical properties of solids, these approaches are classified in to three

categories with different principles. The frequency domain spectroscopy mea-

sures the optical response as a function of frequency in a straightforward manner

by applying monochromatic radiation and measuring the amplitude and phase of

the response at one frequency 𝜔. In order to evaluate the frequency dependent

optical constants, the measurement has to be repeated for each frequency of in-

terest. For the time domain spectroscopy, instead of measuring the response of a

solid by applying monochromatic radiation varied over a wide frequency range,

the optical constants are obtained by performing the experiment in the time

domain using a voltage pulse which contains all the frequencies of interest. In

time domain transmission spectroscopy, a femtosecond laser pulse is split along

two paths and excites a pair of photoconductive antennae deposited on radiation

damaged silicon on sapphire. A broadband pulse is emitted by one antenna,

transmitted through the sample and measured at the other antenna. By varying

the length difference of the two paths, the electric field of the transmitted pulse

is mapped out as a function of time. The complex transmission coefficient can

be obtained by comparing the Fourier transform of the transmission through the

sample to that of a reference. Time domain spectroscopy mainly operates in

the frequency range of Terahertz. Another method used to derive the optical

constants of solids refers to the Fourier transform spectroscopy. This technic is

based on the Michelson interferometer in which a beam of polychromatic light

is split into two approximately equal parts at the beamsplitter. These two parts

follow different paths and finally recombine at the beamsplitter. The intensity of

the recombined light that shows an interference pattern is a function of the rel-
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ative difference in path length between the two arms. The frequency dependent

intensity of the light can be derived from the intensity of the recombined beam

as a function of optical path difference through a Fourier transform. The Fourier

transform spectroscopy is widely used in the infrared-visible-UV spectral range

(from 10 cm−1 to 55000 cm−1) which covers the characteristic energy scales in

solids. In this thesis, all our measurements are performed on Fourier transform

spectrometers and fiber optics spectrometer. We will introduce the principles

and the setup of our Fourier Transform Infrared Spectrometers and fiber optics

spectrometer, and sample preparation in this chapter.

5.1 Principles of Fourier Transform Infrared Spectroscopy

In order to explain the principles of Fourier transform spectroscopy, dis-

cussing a simple Michelson interferometer is a good start. Figure 5.1 shows the

Source

Detector

Moving 
Mirror

Fixed
Mirror

BMS

x / 2

y1 / 2

y1 / 2

Figure 5.1: Schematic representation of a simple Michelson interferometer. The

beamsplitter locates in the center of the interferometer where the beam from the

source is divided into two parts. One arm of the interferometer consists of a fixed

mirror while the other arm comprises a moving mirror.
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schematic view of a simple Michelson interferometer. The beam from the source

is split into two approximately equal beams at the beamsplitter (BMS). One

beam is reflected by the moving mirror while the other by the fixed mirror, and

finally are brought together again at the beamsplitter. The recombined beam

with an interference pattern proceeds to the sample area and the detector.

Consider a monochromatic plane wave incident on the beamsplitter with a

form

𝐸 = 𝐸0 cos(𝜔𝑡− 2𝜋𝜈𝑦) (5.1)

where 𝐸0 is the average electric field amplitude; 𝜔 is the frequency and 𝜈 is the

wave number with a unit of cm−1 defined as

𝜈 =
1

𝜆
=

𝜔

2𝜋𝑐
(5.2)

𝑐 is the speed of light. The beam is divided into two at the beamsplitter. The

one to the fixed mirror first passes through the beamsplitter, then is reflected by

the fixed mirror, finally reflected by the beamsplitter to the detector. It can be

written as

𝐸1 = 𝑟𝑡𝐶𝐸0 cos[𝜔𝑡− 2𝜋𝜈𝑦1] (5.3)

where 𝑟 is the reflectance of the beamsplitter; 𝑡 is the transmittance; 𝐶 is a

constant depending on the polarization. The other beam is first reflected by

the beamsplitter, then by the moving mirror, and finally passes through the

beamsplitter. It can be written as

𝐸2 = 𝑟𝑡𝐶𝐸0 cos[𝜔𝑡− 2𝜋𝜈(𝑦1 + 𝑥)] (5.4)

where 𝑥 is the path difference or the mirror displacement. These two beams

recombine at the beamsplitter. By superimposing, the resultant electric field 𝐸

is given by

𝐸𝑅 = 𝐸1 + 𝐸2 = 2𝑟𝑡𝐶𝐸0 cos(𝜔𝑡− 2𝜋𝜈𝑦1) cos(𝜋𝜈𝑥) (5.5)

The intensity (𝐼) detected by the detector is the time average of 𝐸2

𝐼 ∝ 4𝑟2𝑡2𝐶2𝐸2
0 cos2(𝜔𝑡− 2𝜋𝜈𝑦1) cos2(𝜋𝜈𝑥) (5.6)
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where the time average of the first cosine term is just 1/2. Thus

𝐼 ∝ 2𝐼(𝜈) cos2(𝜋𝜈𝑥) (5.7)

where 𝐼(𝜈) is a constant that depends only on 𝜈. This expression simplifies

𝐼(𝑥) = 𝐼(𝜈)[1 + 𝑐𝑜𝑠(2𝜋𝜈𝑥)] (5.8)

where 𝐼(𝑥) is the interferogram of a monochromatic source. As shown in Fig.

5.2.

/2 

  

 

I(x)

0 x/2 2

Figure 5.2: The interferogram of a monochromatic source (a laser for instance).

The source used in Fourier transform spectrometer is a polychromatic prefer-

ably continuous source. We collect the information of all different wave numbers

at the same time and sort it out utilizing a Fourier transform. Hence, the mea-

surement time is substantially decreased. An interferogram for a polychromatic

source which covers a frequency range from 0 to 𝜈𝑚 may be obtained by inte-

grating Eq. 5.8

𝐼(𝑥) =

∫︁ 𝜈𝑚

0

𝐼(𝜈)[1 + cos(2𝜋𝜈𝑥)]𝑑𝜈

=

∫︁ 𝜈𝑚

0

𝐼(𝜈)𝑑𝜈 +

∫︁ 𝜈𝑚

0

𝐼(𝜈) cos(2𝜋𝜈𝑥)𝑑𝜈

(5.9)

when 𝑥 = 0, we get

𝐼(0) = 2

∫︁ 𝜈𝑚

0

𝐼(𝜈)𝑑𝜈 (5.10)
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then Eq. 5.9 becomes

𝐼(𝑥) =
1

2
𝐼(0) +

∫︁ 𝜈𝑚

0

𝐼(𝜈) cos(2𝜋𝜈𝑥)𝑑𝜈 (5.11)

An ideal interferogram of polychromatic source, as shown in Fig. 5.3, is sym-

metrical about 𝑥 = 0 where the interference between all of the frequencies is

constructive, leading to a central maximum. For 𝑥 = ∞, since the frequencies

 

 
 

 

x

I(x
)

I(0)

Figure 5.3: An ideal interference pattern of a polychromatic source calculated

from Eq. 5.11. Note that 𝐼(0) = 2𝐼(∞).

superimpose both constructively and destructively, the net contribution due to

the integral in Eq. 5.11 is zero, then we can get

𝐼(∞) =
1

2
𝐼(0) (5.12)

the substitution of 𝐼(∞) for 𝐼(0)/2 in Eq. 5.11 yields

𝐼(𝑥) − 𝐼(∞) =

∫︁ 𝜈𝑚

0

𝐼(𝜈) cos(2𝜋𝜈𝑥)𝑑𝜈 (5.13)

letting 𝜈𝑚 → ∞, using the Fourier transform, the frequency dependent intensity

𝐼(𝜈) can be derived from the intensity as a function of path difference 𝐼(𝑥)

𝐼(𝜈) =

∫︁ ∞

0

[𝐼(𝑥) − 𝐼(∞)] cos(2𝜋𝜈𝑥)𝑑𝑥 (5.14)
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10.3 Fourier transform spectroscopy 261

(a)

(b)

(c)

(d)

Displacement δ

I (δ)

0 5000
Frequency ν (cm−1)

B (ν)

Fig. 10.7. Different spectra recorded by the interferometer and their Fourier transforms:
(a) monochromatic light; (b) two frequencies; (c) Lorentzian peak; (d) typical spectrum in
the mid-infrared range.

converts the frequency dependence of the spectrum B(ω) into a spatial dependence
of the detected intensity I (δ). From this information, it is possible to reconstruct
mathematically the source spectrum B(ω) no matter what form it has. In Fig. 10.7
we display such interference patterns: a single frequency obviously leads to a
signal with a cos2 dependence of the path length difference; interferograms from
non-monochromatic sources are more complicated.

Figure 5.4: Typical spectra collected by the interferometer and their Fourier

transforms. Adapted from Ref. [56].

In practice, the interferogram is measured only over a finite mirror displacement,

i.e. 𝑥 ≤ 𝑥𝑚𝑎𝑥. To extend it beyond the measured 𝑥, we use apodization functions

instead of cutting it abruptly off. Figure 5.4 shows different spectra obtained by

the interferometer and their Fourier transforms. 𝛿 is the mirror displacement.

5.2 FTIR spectrometers

The DA8 FTIR spectrometer in the lab of IOP CAS is manufactured by ABB

Bomen in Canada. By utilizing a variety of sources, beamsplitters and detectors,

spectra can be collected over a frequency range from approximately 20 cm−1

to 25000 cm−1 with spectral resolution from 4 cm−1 to 0.02 cm−1. Scanning

velocities from 0.01 to 4 cm/s are available for the moving mirror. The time
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for a single scan ranges between seconds to minutes depending on the required

spectral resolution and the scanning velocity. Fast Fourier transform (FFT) of

the measured interferogram is performed by a vector processor which provides an

interface between the DA8 and a controlling personal computer. The instrument

control and data acquisition are achieved via the software program PCDA.

SAMPLE

Figure 5.5: Schematic plot of the optical beam path for the DA8 spectrometer.

Figure 5.5 displays a schematic plot of the optical beam path for the DA8

spectrometer. Three internal sources locate at the top of the spectrometer. Light

from one of the sources is focused onto a mechanical iris by an off-axis ellipsoidal

Al mirror. The diameter of the iris is adjustable from 0.5 to 10 mm, and the

aperture size determines the size of the source image to be focused on the sample.
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Below the iris, a flat mirror reflects the diverging beam to an off-axis paraboloid

Al mirror. The off-axis paraboloid mirror collimates the light for processing in

the Michelson arms. This collimated beam is divided into two approximately

equal beams at the beamsplitter. Upon reflection from their respective mirrors,

these two beams are brought together again at the beamsplitter and proceed

towards the sample selection mirror which sits just below the beamsplitter. This

mirror rotates to direct the output beam to one of two sample locations. An

off-axis paraboloid mirror refocuses the collimated beam onto the sample. After

passing through the sample, the diverging beam is focused onto the detector by

another off-axis paraboloid mirror. The whole optical beam path system shown

in Fig. 5.5 is set up in vacuum to mitigate the water absorption lines which are

particularly strong in the infrared range.

Flat Mirror

Flat Mirror

Flat Mirror

Flat Mirror

Spherical  
Mirror

Sample

Interferometer

Detecter

Figure 5.6: The geometry of the reflectivity measurement for ABB Bommen DA8

FTIR spectrometer.

The optical path for the sample measurement shown in Fig. 5.5 illustrates
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the transmission configuration. Figure 5.6 shows the geometry of the reflectivity

measurement. It consists of four flat and two spherical mirrors. Focused sample

beam from the interferometer is reflected by the first flat mirror. Passing the

focal point, the beam becomes diverging. The second flat mirror redirects the

diverging beam to the first spherical mirror which refocuses the source image on

the sample. Upon reflecting from the sample, the second spherical and two flat

mirror direct the beam into the detector.

The FTIR spectrometers in ESPCI Paris are Bruker IFS 66v/s and IFS

113v which are manufactured by Bruker Optics in Germany. Fig. 5.7 shows a

1
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8

7

6

Sample

Figure 5.7: Schematic representation of Bruke IFS 66v/s FTIR spectrometer. 1.

source; 2. the aperture wheel; 3. beamsplitter; 4. fixed mirror; 5. moving mirror;

6. controlling circuit chamber; 7. detector chamber; 8. sample chamber. The

plot is not in real ratio.

schematic representation of the Bruker IFS 66v/s FTIR spectrometer. The whole

spectrometer is composed of several chambers. The right part is the interferom-

eter chamber. The main components in this chamber are the sources and the

Michelson interferometer. A spherical Al mirror focuses light from one of two
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internal sources onto an aperture wheel with a series of different size apertures.

Passing through the aperture, the diverging beam is collimated and diverted into

the Michelson interferometer by an off-axis ellipsoidal Al mirror at the input of

the interferometer. Another off-axis ellipsoidal mirror at the output of the in-

terferometer focuses and directs the output beam onto the sample in the sample

chamber which is in the middle front part of the spectrometer. Transmitted

through the sample, the diverging beam proceeds into the detector chamber that

lies in the left front part of the spectrometer. The detector chamber consists of

several detectors and mirrors. By changing the position and orientation of the

mirrors, light coming from the sample chamber can be directed into different de-

tectors. The left back part of the spectrometer is the controlling circuit chamber

which contains the controlling circuits and the analog to digital converter.

The reflectivity measurement configuration for the Bruker spectrometers is

shown in Fig. 5.8. When performing the reflectivity measurement on the Bruker

flat Mirror

flat Mirror

Spherical 
MirrorSpherical 

Mirror

SampleDetector

Interferometer

Figure 5.8: The geometry of the reflectivity measurement for Bruker IFS 66v/s

and IFS 113v FTIR spectrometers.
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spectrometers, this part is set in the sample chamber. The sample is moved out

of the chamber and mounted in a cryostat sitting just in front of the sample

chamber. The detector is also moved out of the detector chamber and mounted

beside the sample cryostat. The reflectivity measurement configuration consists

of only two flat and two toroidal mirrors. The output beam of the interferometer

is conducted by the two flat mirrors onto a toroidal mirror. The orientation of

this toroidal mirror can be adjusted, so it can focuses the beam onto the sample.

By adjusting the orientation of the sample, the beam is reflected onto the second

toroidal mirror by the sample. The orientation of the second toroidal mirror is

also adjustable. Finally, the diverging beam from the sample is refocused by the

second toroidal mirror directly onto the detector.

The Fourier transform infrared spectrometers cover a very broad frequency

range from approximately 10 cm−1 to 25000 cm−1. In order to achieve the spectra

over such a broad frequency range, a series of combinations of source, beamsplit-

ter and detector are needed for data collection. Table 5.1 lists the spectral range

for several optical elements including sources, beamsplitters and detectors.

The spectrometers are equipped with three internal broadband blackbody

radiation sources: mercury arc, globar and quartz tungsten halogen. The mer-

cury arc is a mercury vapor discharge lamp that uses mercury in an excited state

to produce light. It emits best in the far infrared range below approximately 200

cm−1. Globar is a silicon carbide rod. When electrically heated up, it emits radi-

ation from far to near infrared. The globar source operates best in the frequency

range from 50 cm−1 to 10000 cm−1. The quartz tungsten halogen source makes

light by heating the tungsten filament wire to a very high temperature until it

glows. It produces radiation with a broad frequency range from 2000 cm−1 to

25000 cm−1.

Many and various beamsplitters are provided for the Fourier transform spec-

trometers. In the far infrared range, Mylar with different thicknesses are widely

used as beamsplitters. The different thicknesses of Mylar optimize spectrometer

throughput in a narrow spectral range about the interference maxima in the My-

lar pellicle. The KBr, CaF2 and Quartz beamsplitters used for the mid and near
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Optical elements Spectral range [cm−1]

Source Mercury arc 5 - 200

Globar 50 - 10000

Tungsten 2000 - 25000

Beamsplitter 50 𝜇m Mylar 10 - 60

25 𝜇m Mylar 20 - 120

Silicon 3 mm 10 - 600

Mylar:Ge (T222) 30 -680

KBr:Ge 370 - 7800

CaF2 1900 - 25000

Quartz 4000 - 25000

Detector 4.2 K Silicon Bolometer 5 - 700

4.2 K Photoconductor 350 - 5000

77 K HgCdTe 420 - 12000

DTGS 250 - 12000

77 K InSb 1850 - 12800

Silicon Diode 9000 - 25000

Table 5.1: Spectral range for some frequently used optical elements including

sources, beamsplitters and detectors.

infrared are designed based on a different principle. These beamsplitters consist

of a plate of non-absorbing substrate material with a semi-reflecting film on it.

For example, the KBr beamsplitter is a plate of KBr with a thin coating of Ge

which has appropriate thickness so that half of the light incident at a 45 degree

angle is transmitted, and the remainder reflected. In recent years, a thick (sev-

eral millimeters) silicon wafer is used as beamsplitter in the far infrared range

[128, 129]. This silicon beamsplitter operates effectively well in the frequency

range from 10 cm−1 to 600 cm−1 and can replace several Mylar beam splitters

to span the entire far infrared range. Care is needed when handling the beam-

splitters. For instance, Mylar beamsplitters are vulnerable to UV radiations, so

a filter should be used to shield the UV component of the mercury arc. The KBr
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beamsplitter is extremely hygroscopic and should be stored in a low humidity

dry box.

Photodetectors are classified into three categories: photovoltaic, photocon-

ductive, and thermal. The Bolometer used in the far infrared range is a thermal

detector. It measures the power of electromagnetic radiation via the heating of

a material with a temperature-dependent electrical resistance. The 4.2 K Photo-

conductor and HgCdTe (MCT) detectors are classified into the photoconductive

category. If light is absorbed by a photoconductive material, like HgCdTe, the

number of free carriers in the material increases and raises its electrical conduc-

tivity. When applying a bias voltage to the material, the corresponding current

is proportional to the power of the light absorbed by the material. InSb and

Si detectors fall into the photovoltaic category. These detectors consist of pho-

tovoltaic materials which create DC voltage or corresponding current upon its

exposure to light. Hence, the photovoltaic detectors measure the electromagnetic

radiation by converting it into voltage or current. All the detectors come paired

with a preamplifier specially matched to the detector’s impedance and frequency

roll-off. The preamplifiers increase the relatively weak detector signals to levels

appropriate for analog to digital conversion (ADC), then, data acquisition can

be performed.

Each source have its characteristic power spectra; the beamsplitters also have

their own transmittance curves and the frequency response of different detectors

shows strikingly dissimilar behavior. The measured power spectrum is given by

the combination of all these factors. Figure 5.9 shows the power spectra and

corresponding 100% lines for different combinations of source, beamsplitter and

detector. The 100% lines are obtained by measuring the power spectra twice and

dividing one by another. These spectra were measured on the Bruker IFS 66v/s

FTIR spectrometer by Dr. Ricardo Lobo in ESPCI Paris. Note that the signal

to noise ratio of the 100% lines becomes poor at both edges of the measuring

range, but these measuring ranges have overlaps. The overall spectrum can be

obtained by cutting off the edge data for each measuring range and merging them

together.
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Figure 5.9: The power spectra and corresponding 100% lines for different combi-

nations of source, beamsplitter and detector. Data were collected on the Bruder

IFS 66v/s FTIR spectrometer by Dr. Ricardo Lobo in ESPCI Paris.

5.3 Fiber optic spectrometer

In our lab, we also have an Avaspec-2048 × 14 model fiber optic spectrometer

manufactured by Avantes. Figure 5.10 shows the schematic plot of the fiber

optic spectrometer with the reflectivity measurement configuration in our lab.

It comprises a source (AvaLight-DHS), fibers with a probe head, a spectrometer

(AvaSpec) and the PC. The light source is composed of a Deuterium lamp and a

Halogen lamp which can cover the frequency range from near infrared to deep UV.

The spectrometer consists of a fiber optic entrance connector, collimating and

focusing mirror, diffraction grating, and 2048 pixels CCD linear array, as shown

in the middle panel. The SMA-entrance connector can couple the light from a

fiber onto the collimating mirror, then the light is reflected by the collimating

mirror on the diffraction grating which splits and diffracts the light into beams

propagating in different directions. The directions of these beams depend on

the wavelength of the light. When the beams are collimated and diverted by

the focussing mirror onto the detector (2048 pixels CCD linear array), the light

intensity as a function of wavelength [𝐼(𝜆)] can be obtained. All these parts

are integrated into a small box. The left part of the bottom panel displays the

structure of the probe head of the fibers. It consists of 1 read fiber in the center
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Source

Spectrometer Fibers

PC

Probe head

6 light-fibers

read fiber (center)

Probe head

Fibers

6 light-fibers
From Source

read fiber (center)
To Spectrometer

Sample or Reference

Sample holder

Figure 5.10: Schematic representation of Avaspec-2048 × 14 model fiber optic

spectrometer.
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and 6 light-fibers surrounding the read fiber. The read fiber is connected to the

spectrometer while the 6 light fibers are connected to the source. Light from

the source is coupled into the 6 light fibers and carried to the probe head. The

sample is mounted facing the probe head. Light coming out from the 6 light

fibers is reflected by the sample into the read fiber in the center of the probe

head. This fiber transfers the light reflected by the sample to the fiber optic

entrance connector which can couple the light into the spectrometer. The data

acquisition is performed by an Avasoft-Basic software installed in a PC.

The right part of the bottom panel in Fig. 5.10 displays the schematic di-

agram of the sample mounting. The probe head is mounted face up and the

sample is placed face down on the sample holder which has a cone-type hole

towards the probe head. The light reflected by the cone-type hole does not enter

the read fiber in the center of the probe head, so the read fiber only collects

the light reflected by the sample. The reflectivity measurement procedure is as

follows: (i) put the whole system in a dark environment, remove the sample or

reference from the sample holder, and then save dark. We get the spectrum of

the background 𝐼𝐵𝐺. (ii) put an Al mirror (reference) face down on the sam-

ple holder, and make sure that the Al mirror can cover the hole on the sample

holder completely, then save reference. We get 𝐼𝐴𝑙+𝐵𝐺 − 𝐼𝐵𝐺. (iii) remove the

Al mirror and put the sample on the sample holder. The sample should also

cover the hole on the sample holder completely. Then save sample and we get

[𝐼𝑆𝑎𝑚+𝐵𝐺− 𝐼𝐺𝐵]/[𝐼𝐴𝑙+𝐵𝐺− 𝐼𝐵𝐺]. Finally we can get the reflectivity of the sample

via

𝑅𝑠𝑎𝑚 =
𝐼𝑆𝑎𝑚+𝐵𝐺 − 𝐼𝐵𝐺

𝐼𝐴𝑙+𝐵𝐺 − 𝐼𝐵𝐺

×𝑅𝐴𝑙 (5.15)

where 𝑅𝐴𝑙 is the absolute reflectivity of the Al mirror which can be measured

with reference free methods like V-W, V-N and ellipsometry. With this fiber optic

spectrometer, the frequency range of our data can be extended to the visible and

UV range (9000 cm−1 to 55000 cm−1) at room temperature.
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5.4 in situ gold overfilling technique

As we discussed in Chapter 3, if we measure the reflectivity over a wide

frequency range followed by a Kramers-Kronig analysis which yields the phase,

all the frequency dependent complex optical constants can be easily calculated.

But the newly discovered and most interesting single crystal materials are usually

small and irregular in shape. Figure 5.11 shows the size and shape of an optimally

Figure 5.11: Picture of an optimally doped Ba(Fe1−𝑥Co𝑥)2As2 single crystal. The

dimension of one small square on the graph paper is 1 mm by 1 mm.

doped Ba(Fe1−𝑥Co𝑥)2As2 single crystal. The dimension of one small square on

the graph paper is 1 mm by 1 mm. From the picture we can see that the size

of the sample is only about 1.5 mm by 1.5 mm. Besides the irregular shape,

cleavage steps characterize the surface of the sample. Therefore, the reflectivity

measurement becomes particularly difficult in the far infrared range (≤ 200cm−1)

because of the weakness of the mercury arc and the lack of photoconductive

detectors.

The solution of these problems lies in the in situ gold overfilling technique

[130]. With this technique, the entire area of the sample is utilized, and the

geometrical effects due to rough surface can be corrected by coating the sample

surface with a good metal (gold) and using the coated sample as its own reference
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in reflectivity measurements. Figure 5.12 displays the schematic diagram of the

1

2

Pump

4

3

5

6

Figure 5.12: Schematic diagram of the in situ gold overfilling technique. 1.

filament (spiral tungsten wire with gold wire wound on it); 2. sample or stainless

steel mirror; 3. optical window; 4. aluminum radiation shield; 5. cold tail of

cryostat with copper cone (sample holder); 6. vacuum shroud.

in situ gold overfilling technique. The whole setup is installed in a vacuum shroud

labeled by number 6. The cold tail of cryostat with two copper cones locates in

the center of the vacuum shroud. The sample and a stainless steel mirror are

glued on the copper cones. An aluminum radiation shield protects the cold tail

and the sample against the external radiation, so the sample can be cool down to

the liquid helium temperature 4.2 K. The cold tail, together with the radiation

shield can be rotated by 90 degree without breaking the vacuum. Label 1 denotes

a length of tungsten wire which has been coiled to form a filament with gold wire

wound on it. When applying a DC voltage of about 2 Volt, the filament glows

and the gold is evaporated. This produces a layer of gold on the surface of the

sample. The thickness of the gold layer is about several times of the classical skin

depth even in the far infrared range (∼ 100cm−1), which ensures that multiple
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reflections do not occur.

The procedure of the reflectivity measurement with the in situ gold overfill-

ing technique is as follows: (1) measure the single channel power spectrum of the

stainless steel mirror, and thus we get 𝐼𝑀𝑖𝑟𝑟𝑜𝑟; (2) rotate the cryostat and mea-

sure the single channel power spectrum of the sample, and we get 𝐼𝑆𝑎𝑚/𝐼𝑀𝑖𝑟𝑟𝑜𝑟;

(3) evaporation; (4) measure the single channel power spectrum of the stainless

steel mirror again; (5) rotate the cryostat and measure the single channel power

spectrum of the coated sample, and we get 𝐼𝐶𝑜𝑎𝑡𝑒𝑑𝑆𝑎𝑚/𝐼𝑀𝑖𝑟𝑟𝑜𝑟. Finally, we obtain

the reflectivity of the sample

𝑅𝑆𝑎𝑚(𝜔) =
𝐼𝑆𝑎𝑚(𝜔)/𝐼𝑀𝑖𝑟𝑟𝑜𝑟(𝜔)

𝐼𝐶𝑜𝑎𝑡𝑒𝑑𝑆𝑎𝑚(𝜔)/𝐼𝑀𝑖𝑟𝑟𝑜𝑟(𝜔)
×𝑅𝑔𝑜𝑙𝑑 (5.16)

The use of a stainless steel reference mirror is to reduce the influence of system

drift. With the in situ gold overfilling technique, the measured reflectivity has

absolute accuracy better than 0.5% and a relative accuracy better than 0.1%.
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Figure 5.13: Reflectivity in the far infrared range measured with the in situ gold

overfilling technique for optimally doped Ba0.6K0.4Fe2As2 single crystal at room

temperature.

Figure 5.13 shows the frequency dependent reflectivity in the far infrared

range determined by the in situ gold overfilling technique for an optimally doped
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Ba0.6K0.4Fe2As2 single crystal at room temperature. Note that all the fine struc-

ture in the spectra of 𝐼𝐶𝑜𝑎𝑡𝑒𝑑𝑆𝑎𝑚/𝐼𝑀𝑖𝑟𝑟𝑜𝑟 and 𝐼𝑆𝑎𝑚/𝐼𝑀𝑖𝑟𝑟𝑜𝑟 has been eliminated.

When measuring the reflectivity in frequency range above 10000 cm−1, we coat

the sample surface by aluminum instead of gold, as the reflectivity of gold starts

to decrease above 10000 cm−1 and dives at about 19000 cm−1 representing the

plasma edge, as shown in Fig. 3.5. Additionally, in order to achieve a high quality

gold or aluminum layer on the surface of the sample, a good vacuum is need. An

indication of a poor vacuum is the continuous increase of the strength of the 3200

cm−1 line from ice and the suppression of the reflectivity above this frequency

with time below ∼ 150 K.

5.5 Optical cryostat

The LT-3-110 model optical cryostat designed by Advanced Research Sys-

tems, Inc. (USA) is exploited for the acquisition of temperature dependent reflec-

tivity with the in situ gold overfilling technique. Figure 5.14 shows a panoramic

view of the LT-3-110 optical cryostat, the radiation shield and the cold tail of the

cryostat. The cryostat sits on a rotation stage with the cold tail extending into

the vacuum shroud. There are double O-rings between the cryostat and the vac-

uum shroud. So the cryostat can be easily rotated without breaking the vacuum.

A high vacuum (7× 10−5 Pa) can be achieved by a turbo pump connected to the

vacuum port at the bottom of the vacuum shroud. Inside the vacuum shroud, the

sample and a stainless steel mirror are mounted on the cold tail of the cryostat

which is covered by the radiation shield to prevent the cold tail against exter-

nal radiation. The position of the sample and the stainless steel mirror can be

adjusted and recorded by the two adjustment screws near the rotation stage.

The sample in the cryostat can be cooled down to 4.2 K via a continuous flow

of liquid helium. Two temperature sensors are fixed on the cryostat to read the

temperature of the system. One is installed near the top of the cold tail as shown

in Fig. 5.14 (the lower right panel). This sensor is used to detect the temperature

of the cold tail, and also used as the input of temperature controlling system, so

it’s called the temperature control sensor. The other sits at the bottom of the

cold tail close to the sample, and hence it records the temperature of the sample.
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Figure 5.14: LT-3-110 model optical cryostat.
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A combination of liquid helium flow control and power control of a 36 W heater

near the cold tail allows precise temperature control of the sample.

5.6 Sample preparation and measurement

The high quality Ba1−𝑥K𝑥Fe2As2 single crystals used in our experiment were

grown by self-flux method using FeAs as the flux in the Institute of Physics,

Chinese Academy of Sciences[106, 131]. The doping levels of our single crystals

are x = 0.4 (optimally doped), x = 0.2 (underdoped), and x = 0.12 (underdoped)

respectively. Our Ba(Fe1−𝑥Co𝑥)2As2 x = 0.08 (optimally doped) sample was

grown by the same method in IRAMIS, SPEC, CEA [117]. Each sample is

characterized by a large and shining surface which is supremely excellent for

optical measurements.

The sample is mounted at the top of a copper cone by General Electric (GE)

varnish, as shown in Fig. 5.15, and the cone is mechanically fixed to the cold tail

of the cryostat by screws with a copper washer. Before gluing the sample, one

Sample Copper Cone

Figure 5.15: Samples with different size mounted on copper cones. Note that the

size of the flat top of the cone should be approximately equal to the size of the

sample.

needs to polish the copper cone. The size of the flat top of the copper cone

should be approximately equal to the size of the sample. If the size of the cone

top is larger than the sample, the sample can not cover the cone top completely,

and the spectra will be contaminated by the light reflected by the copper. In
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addition, too small cone top leads to poor thermal contact, so the sample can

not be effectively cooled down in experiment. After mounting the sample on

the copper cone by GE varnish, one should leave it in a dry environment for

several hours, to make sure that the glue is completely dry, and then it’s ready

for experiment.

For each sample, the near normal incidence reflectivity from 20 cm−1 to

14000 cm−1 was measured on Bruker IFS 66v/s and IFS 113v spectrometers at

18 or 19 different temperatures from 5 K to 300 K. The in situ gold overfilling

technique was used to obtain the absolute reflectivity of the samples, and the

sample was cleaved prior each temperature run. The visible and UV range (10000

cm−1 to 55000 cm−1) data at room temperature was collected with our AvaSpec-

2048 × 14 model fiber optic spectrometer.





Chapter 6

Optical properties of K and Co doped Ba122

iron-based superconductors

In this chapter, we investigate the optical properties of K and Co doped

Ba122 iron-based superconductors. First, we present our experimental results

and data analysis for the optimally doped Ba1−𝑥K𝑥Fe2As2 and Ba(Fe1−𝑥Co𝑥)2As2

samples, representing the hole and electron doped Ba122 systems respectively.

Then a comparison between the optical properties of these two samples is pre-

sented. And finally, we discuss the optical properties of underdoped Ba1−𝑥K𝑥Fe2As2

samples.

6.1 Optimally doped Ba1−𝑥K𝑥Fe2As2

6.1.1 Reflectivity

The resistivity of the crystal exhibits a very sharp superconducting transi-

tion with an onset at 𝑇𝑐 = 39.1 K and a width ∆𝑇𝑐 ∼ 0.5 K, as shown in the

lower inset of Fig. 6.1. The main panel of Fig. 6.1 displays the in-plane reflectivity

of Ba0.6K0.4Fe2As2 above and below the superconducting transition temperature.

The top inset shows the reflectivity at room temperature up to 55000 cm−1. The

high reflectivity at low frequencies indicates a metallic response in this material.

With the temperature decrease, the reflectivity increases, which is also expected

by a metallic material. Upon entering the superconducting state, the low fre-

quency reflectivity turns up quickly, and reaches a flat unity response below ∼
160 cm−1 when the temperature is well below 𝑇𝑐. This is a clear signature of a

fully open superconducting gap [67, 68].

It is often a complicated task to show that the absolute reflectivity is actually

unity. In our set-up, we can claim that the accuracy we have in the absolute value

of 𝑅(𝜔) is about 0.5%. This number is obtained by looking at the fluctuations
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Figure 6.1: Infrared reflectivity of Ba0.6K0.4Fe2As2 single crystal measured (from

top to bottom) at 5, 25, 30, 35, 40, 100, 150, 200, and 300 K. The top inset

shows the reflectivity at 300 K up to 55000 cm−1. The solid line in the lower

inset is the DC resistivity and the solid circles are values from the zero frequency

extrapolation of the optical conductivity.

in multiple measurements and by comparing the in situ evaporation results with

reference free methods such as V-W, V-N and ellipsometry. Once we get closer

to 100% reflectivity the errors in 𝜎1(𝜔) get larger. In Ba0.6K0.4Fe2As2, a 100%

reflectivity leads to a fully gapped 𝜎1(𝜔) while a 99.5% reflectivity in this system

leads to a low energy residual conductivity in the 1000 Ω−1cm−1 range. Hence, it

is only fair to ask whether we really have a fully gapped system. Is the accuracy in

the absolute reflectivity a deal-breaker to determine a fully open superconducting

gap?

Figure 6.2 helps us to solve this problem. A reflectivity of 100% is not the
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REFLECTIVITY SPECTRA BELOW Tc10

In a superconductor with a full gap, the reflectivity11

reaches a flat 100 % level at low energies. This full re-12

flectivity is what leads to a zero gapped real part of the13

optical conductivity (σ1).14

Figure 1. (color online) Ba0.6K0.4Fe2As2 infrared reflectivity
in the superconducting and normal states. The dashed line is
a horizontal line at 100 % reflectivity.

15

16

It is often a complicated task to show that the abso-17

lute reflectivity is actually unity. In our set-up, we can18

claim that the accuracy we have in the absolute value of19

R is ∼ 0.5 %. This number is obtained by looking at the20

fluctuations in multiple measurements and by compar-21

ing insitu evaporation results with reference free meth-22

ods such as V-W, V-N and ellipsometry. Once we get23

closer to 100 % reflectivity the errors in σ1 get larger.24

In Ba0.6K0.4Fe2As2, a 100 % reflectivity leads to a fully25

gapped σ1. A 99.5 % reflectivity in this system leads to26

a low energy residual σ1 in the 1000Ω−1 cm−1. Hence, it27

is only fair to ask whether we really have a fully gapped28

system. Is the accuracy in the absolute reflectivity a29

deal-breaker to determine a fully open superconducting30

gap?31

Figure 1 helps us solve this problem. A reflectiv-32

ity of 100 % is not the only clue on the data about a33

full gap. The energy dispersion of the data also gives34

us a strong indication that the gap is fully open. Our35

Ba0.6K0.4Fe2As2 sample, at 4K, has a constant reflectiv-36

ity below ∼ 150 cm−1. This can be clearly seen by com-37

paring the data with the flat 100% dashed line shown. If38

the system was not fully gapped, one would have to con-39

sider the presence of unpaired quasiparticles that leads40

to a non vanishing curvature in for the reflectivity. The41

curvature is positive for normal Drude-like carriers and42

negative for a gap with residual quasiparticles. At 4 K,43

our sample has a flat, constant reflectivity below 15044

cm−1Ḟor comparison, one can look at the 30 and 3545

K data, where although the reflectivity seems to reach46

100 % at low frequencies, a clear frequency dispersion is47

present. Of course, at these two temperatures thermally48

broken pairs lead to a low frequency absorption.49

If we calculate the slope and the curvature of the low50

frequency reflectivity, both are more than an order of51

magnitude smaller at 4 K than at 30 or 35 K. The reflec-52

tivity at 4 K, below 150 cm−1, is flat with an accuracy53

better than 0.05 %. This is not compatible with un-54

paired quasiparticles and the only physically meaninful55

interpretation for the data is a fully gapped system.56

RELATIVE THERMAL REFLECTIVITY57

In order to have a fine temperature dependence of the58

gaps and penetration depth in Ba0.6K0.4Fe2As2 we per-59

formed a relative thermal reflectivity (RTR) measure-60

ment, in addition to the absolute reflectivity measure-61

ments. In this technique, we determine the reflectivity of62

the material over a relatively narrow temperature range63

without any physical motion of the sample. The data at64

each temperature is divided by the measurement at one65

specific arbitrary temperature T0. Next, each tempera-66

ture is multiplied by the absolute reflectance measured67

at T0 using the in situ gold overfilling technique. The68

relative thermal reflectivity is very useful in determining69

small changes of the spectrum through a phase transi-70

tion, specially when sharp features, such as the reflec-71

tivity edge, emerge from a reasonably featureless back-72

ground.73

In the case of Ba0.6K0.4Fe2As2 we measured the rel-74
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Figure 6.2: The enlarged view of the infrared reflectivity of Ba0.6K0.4Fe2As2 in

the superconducting and normal states. The dashed line is a horizontal line at

100% reflectivity.

only clue on the data about a full gap. The energy dispersion of the data also

gives us a strong indication that the gap is fully open. Our Ba0.6K0.4Fe2As2

sample, at 4 K, has a constant reflectivity below ∼ 160 cm−1. This can be

clearly seen by comparing the data with the flat 100% line shown in Fig. 6.2.

If the system is not fully gapped, one would have to consider the presence of

unpaired quasiparticles that leads to a non vanishing curvature in the reflectivity.

The curvature is positive for normal Drude-like carries and negative for a gap

with residual quasiparticles. At 4 K, our sample has a flat, constant reflectivity

below 160 cm−1. For comparison, one can look at the 30 and 35 K data, where

although the reflectivity seems to reach 100% at low frequencies, a clear frequency
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dispersion is present. Of course, at these two temperatures thermally broken pairs

lead to a low frequency absorption.

If we calculate the slope and the curvature of the low frequency reflectivity,

both are more than an order of magnitude smaller at 4 K than at 30 or 35

K. The reflectivity at 4 K, below 160 cm−1, is flat with an accuracy better

than 0.05%. This is not compatible with unpaired quasiparticles and the only

physically meaningful interpretation for the data is a fully gapped system.

In order to have a fine temperature dependence of the gaps and penetration

depth for Ba0.6K0.4Fe2As2, we performed a relative thermal reflectivity (RTR)

measurement, in addition to the absolute reflectivity measurements. In this

technique, we determine the reflectivity of the material over a relatively nar-

row temperature range without any physical motion of the sample. The data at

each temperature is divided by the measurement at one specific arbitrary tem-

perature 𝑇0. Next, each temperature is multiplied by the absolute reflectivity

measured at 𝑇0 using the in situ gold overfilling technique. The relative thermal

reflectivity is very useful in determining small changes of the spectrum through

a phase transition, specially when sharp features, such as the reflectivity edge,

emerge from a reasonably featureless background.

In the case of Ba0.6K0.4Fe2As2 we measured the relative thermal reflectivity

from 5 to 45 K, every Kelvin, in the 50-700 cm−1 spectral range. All spectra

were normalized by the measurement at 𝑇0 = 40 K, which is above 𝑇𝑐, then

we used the absolute reflectivity at 40 K to correct the data taken at all other

temperatures. These measurements have a very high relative accuracy and allow

for a fine determination of the spectral temperature evolution. Figure 6.3 shows,

as thin red lines, the reflectivity obtained from the RTR method at 16 selected

temperatures. For comparison, the more accurate absolute measurements are

shown at 4, 35, and 50 K as thick blue lines.

6.1.2 Optical conductivity

The real part [𝜎1(𝜔)] of the optical conductivity was derived from the reflec-

tivity through Kramers-Kronig analysis. At low frequencies we used a Hagen-
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Figure 6.3: The reflectivity obtained from the RTR method at 16 selected tem-

peratures (red thin lines). The more accurate absolute measurements are shown

at 4, 35, and 50 K as thick blue lines.

Rubens (1 − 𝐴
√
𝜔) extrapolation for the normal state and a superconducting

(1 − 𝐴𝜔4) extrapolation below 𝑇𝑐. At high frequencies we used a constant re-

flectivity to 40 eV followed by a 𝜔−4 free electron termination. Figure 6.4 shows

𝜎1(𝜔) up to 10000 cm−1 at selected temperatures. The inset shows the enlarged

view of 𝜎1(𝜔) at low frequencies.

In the normal state, the low frequency optical response is dominated by a

metallic behavior which is described by a Drude-like absorption band centered

at zero frequency. As the temperature decreases, the spectral weight at low fre-

quencies increases as a result of the narrowing of the Drude-like absorption band.

Meanwhile, a large part of the spectral weight below ∼ 5000 cm−1 is transferred

to very high energy scale (∼ 5000 – 12000 cm−1), and this spectral weight redis-

tribution continues down to the superconducting transition temperature. Below

𝑇𝑐, a dramatic suppression of 𝜎1(𝜔) sets in. At 5 K, 𝜎1(𝜔) vanishes, within error
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Figure 6.4: In-plane optical conductivity of Ba0.6K0.4Fe2As2 up to 10000 cm−1 at

selected temperatures. The inset shows the enlarged view of the optical conduc-

tivity at low frequencies.

bars, below about 160 cm−1 indicating a fully open gap in Ba0.6K0.4Fe2As2.

We also converted the reflectivity, measured by the RTR method, to optical

conductivity through Kramers-Kronig analysis. Above 700 cm−1 we utilized an

interpolation of the absolute reflectivity, taken every 5 K. Below 50 cm−1 we used

either a Hagen-Rubens or a superconducting extrapolation. Figure 6.5 shows

the real part of the optical conductivity derived from the relative temperature

reflectivity measurements (thin red lines). The thick lines are the data obtained

from the absolute reflectivity measurements.

6.1.3 Data analysis

The normal state optical conductivity showing metallic response can be de-

scribed by a Drude-Lorentz model:

𝜎1(𝜔) =
2𝜋

𝑍0

∑︁

𝑘

[︂
Ω2

𝑝,𝑘

𝜏𝑘(𝜔2 + 𝜏−2
𝑘 )

+
𝛾𝑘𝜔

2𝑆2
𝑘

(Ω2
𝑘 − 𝜔2)2 + 𝛾2𝑘𝜔

2

]︂
, (6.1)
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Figure 6.5: In-plane optical conductivity of Ba0.6K0.4Fe2As2 obtained from the

RTR method at 16 selected temperatures (thin red lines). For comparison, the

thick lines are the data obtained from the absolute reflectivity measurements.

where 𝑍0 is the vacuum impedance. The first term in Eq. 6.1 corresponds to

a sum of free-carrier Drude responses and the second term is a sum of Lorentz

oscillators which have been discussed in detail in Chapter 3. As shown in Fig. 6.6,

the optical conductivity at 150 K is decomposed into a broad Drude, a narrow

Drude and a Lorentz terms. In addition, we also use one Lorentz oscillator to

represent the phonon at about 260 cm−1, not shown here. These four components

suffice to describe the optical conductivity up to 10000 cm−1 at all the measured

temperatures in the normal state. The zero frequency values of our fits represent

the inverse dc resistivity of the material which we compare (solid circles in the

lower inset of Fig. 6.1) to the measured dc resistivity (solid line). The very good

agreement indicates that our parametrization of the data is representative of the

physics of the system.

Band structure theory predicts up to 5 bands at the Fermi Level [22, 23].
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Figure 6.6: The thick black solid line is the optical conductivity of

Ba0.6K0.4Fe2As2 at 150 K, the red solid line through the data is the fit which

is decomposed into a broad Drude (blue solid line), a narrow Drude (pink solid

line) and a Lorentz (orange solid line) terms.

Here we use two Drude terms to describe the normal state low frequency optical

conductivity of our sample, which is compatible with previous works on similar

samples [85, 89]. From the infrared spectroscopy point of view, in a multi-band

system, if the scattering rates in different bands have the same value, 1/𝜏0 for

instance, we can not distinguish these bands by optical conductivity, because

the optical conductivity of this multi-band system can be described by only one

Drude with the scattering rate equal to 1/𝜏0, and Ω2
𝑝 equal to the sum of all

bands. When the scattering rate varies in different bands, optical spectroscopy

can distinguish them, because the optical response of the system can not be re-

produced by only one Drude band. Thus, the two Drude terms description of the

low frequency optical conductivity indicates that: (i) Iron-based superconductors

fall into the multi-band system category, and the two Drude terms used here are
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associated with different Fermi surface sheets; (ii) Two groups of scattering rates

dominate these Fermi surfaces. The presence of multiple bands at the Fermi

Level in iron-based superconductors was also confirmed by ARPES [118, 120]

and the variation of the scattering rate in different bands was supported by both

theory calculation [132] and experiments [114, 115, 133].

The evolution of the two electronic subsystems, represented by the two

Drude terms, with temperature provides plenty of interesting information. Figure

6.7 shows the temperature dependence of all the parameters derived from the fit.

Panel (a) depicts the plasma frequencies of the two Drude terms as a function

of temperature. Upon cooling down, the plasma frequency is roughly a constant

for each of the two components. This indicates that there is no electron transfer

between these two subsystems, and the multiband structure doesn’t change with

temperature which is consistent with a previous work [85]. Panel (b) portrays the

temperature dependence of the scattering rate of the two electronic subsystems.

The scattering rate in the narrow Drude band decreases almost linearly with the

temperature decrease while the broad one doesn’t show obvious temperature de-

pendence. Panel (c) displays the contribution of the two electronic subsystems to

the DC conductivity. From which we can see that both subsystems have contri-

bution to the DC conductivity, but the contribution from the broad Drude does

not change with temperature. Hence the temperature dependence of the total

DC conductivity arises out of the narrow Drude band.

Note that the resistivity curve of Ba0.6K0.4Fe2As2 exhibits a change of slope

at about 175 K. This can be explained by the different temperature dependence

of the two Drude bands. The two curves in Panel (c) cross over at about 175

K. Above this temperature, the DC conductivity contribution from the narrow

Drude band (red squares) is smaller than from the broad one (blue squares), so

the total DC conductivity is dominated by the broad Drude band which does

not show obvious temperature dependence. As a result, above 175 K, the DC

resistivity decreases slowly upon cooling down. Below 175 K, the DC conductivity

contribution from the narrow Drude band exceeds the broad one, and the total

DC conductivity is dominated by the narrow Drude band which exhibits distinct

temperature dependence. Hence, below 175 K, the decrease of the DC resistivity
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Figure 6.7: Panel (a) shows the plasma frequency of the two Drude terms as a

function of temperature. Panel (b) shows the temperature dependence of the

scattering rate of the two Drude terms. Panel (c) displays the contribution of

the two Drude terms to the DC conductivity at different temperatures.
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speeds up with temperature decrease resulting in the change of slope in 𝑅 − 𝑇

curve at about 175 K. Similar conclusions are reached by Hall effect investigation

[116].

In order to quantitatively describe the optical response below 𝑇𝑐, we replace

the two Drude terms used for the normal state in Eq. 6.1 by two corresponding

Mattis-Bardeen conductivities, modified to take into account arbitrary scattering

[66]. The thick black solid line in Fig. 6.8 is the measured optical conductivity
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Figure 6.8: The thick black solid line is the optical conductivity of

Ba0.6K0.4Fe2As2 at 5 K, the red solid line through the data is the fit which is

the superposition of two Mattis-Bardeen terms describing the superconducting

state optical conductivity and two Lorentz oscillators accounting for the phonon

at about 260 cm−1 and the mid-infrared interband transitions.

of Ba0.6K0.4Fe2As2 at 5 K, and the red solid line through the data is the fit

which consists of four contributions: two superconducting bands, one phonon and

the mid-infrared interband transition. We found that the low frequency optical

response of Ba0.6K0.4Fe2As2 in the superconducting state can be reproduced very

well by two Mattis-Bardeen terms. These two terms have absorption edges at

𝐸0
𝑆 = 20 meV and 𝐸0

𝐿 = 33 meV. In the Mattis-Bardeen theory, the absorption
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edge occurs at 𝐸 = 2∆. However, Mattis-Bardeen assumes a weakly coupled

superconductor and some impurity scattering. In the case of the strongly coupled

pnictides, the onset of absorption in 𝜎1(𝜔) happens at 𝐸 = 𝐸𝐵 +2∆, where 𝐸𝐵 is

the energy of the pairing mechanism exchange boson [134]. Nevertheless, Mattis-

Bardeen is still a very good approximation for the electrodynamics of the system,

as far as one takes into account the energy of the gluing boson to extract the gap

value from the absorption edge. A good candidate for the pairing glue response

is a magnetic resonance in Ba0.6K0.4Fe2As2 found by Neutron scattering at about

14 meV [127] (discussed in Sec. 4.2.7, see Fig. 4.14). If we use this value as 𝐸𝐵,

we find zero temperature gaps at ∆0
𝑆 = 3 meV and ∆0

𝐿 = 9.5 meV, values well

within the reported range for this material [94, 118, 122, 125, 135–137].

Figure 6.9: Superconducting gap values obtained by fitting 𝜎1(𝜔). Open sym-

bols are derived from the fine reflectivity temperature resolution measurements

and solid symbols from the accurate absolute reflectivity. The solid lines are

calculations for a two band superconductor with a large interband interaction

term.

Figure 6.9 shows the temperature dependence of the gaps obtained from fits

to 𝜎1(𝜔). Suhl et al. proposed an extension of the weak coupling BCS theory

for multiple bands [16]. This theory takes into account a pairing interaction

for each band (𝑉11 and 𝑉22) as well as an interband (𝑉12) pairing term. When

𝑉12 ≪ √
𝑉11𝑉22, a two band material behaves almost as two independent sin-
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gle band superconductors. In this case, the smaller gap closes at a temperature

smaller that the macroscopic 𝑇𝑐 for the material. Conversely, when only 𝑉12 is

not null, one finds the situation shown as the solid lines in Fig. 6.9, which quali-

tatively agrees with our data: both gaps have a similar temperature dependence

and close at the same 𝑇𝑐. The experimentally determined gap opening faster

than calculations is in accordance with pnictides falling into strongly coupled

superconductor category [138]. Nevertheless, the qualitative agreement indicates

a strong interband pairing interaction (𝑉12) in pnictides.

6.1.4 Spectral weight analysis

The spectral weight is defined as the area under the optical conductivity

spectrum, written as

𝑆𝑊 =

∫︁ 𝜔𝑐

0+
𝜎1(𝜔)𝑑𝜔, (6.2)

where 𝜔𝑐 is a cut-off frequency. As we discussed in Chapter 3, when the cut-

off frequency is replaced by infinite, the spectral weight depends only on the

total number of electrons and the bare electron mass. Therefore, implied by

charge conservation, this spectral weight should be conserved. Indeed, the optical

conductivity is a linear response function which means that the total optical

conductivity is a simple sum of conductivities responsible for different excitations.

The spectral weight can be separately conserved for each kind of excitation if

the integral covers the spectrum responsible for the specific excitation. Figure

6.10 shows the spectral weight as a function of temperature at different cut-off

frequencies.

First we discuss the result in the normal state. Figure 6.10 (a) shows the

temperature dependence of the spectral weight at 𝜔𝑐 = 400 cm−1. As the temper-

ature decreases, the spectral weight below 400 cm−1 increases all the way down

to 𝑇𝑐. This is due to the narrowing of the Drude absorption band. The almost

𝑇 linear behavior of the spectral weight indicates strong correlations among the

carriers [139, 140]. At a cut-off frequency 𝜔𝑐 = 1000 cm−1 as shown in Fig. 6.10

(b), the spectral weight is temporarily conserved. This is in accord with our

previous analysis. The cut-off frequency 𝜔𝑐 = 1000 cm−1 covers almost all the
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Figure 6.10: Spectral weight as a function of temperature at different cut-off

frequencies: (a) 𝜔𝑐 = 400 cm−1; (b) 𝜔𝑐 = 1000 cm−1; (c) 𝜔𝑐 = 5000 cm−1; (d) 𝜔𝑐

= 12000 cm−1.
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spectral weight of the narrow Drude term although not high enough to cover

the broad one, which can be seen from Fig. 6.6. The temperature dependence of

the low frequency conductivity comes from the contribution of the narrow Drude

band, and the broad Drude band is not affected by the temperature leading to a

temporary conservation of the spectral weight. When integrating to a higher cut-

off frequency, for instance 𝜔𝑐 = 5000 cm−1, an interesting phenomenon happens.

As displayed in Fig. 6.10 (c), the spectral weight below 5000 cm−1 decreases upon

cooling down. This phenomenon indicates that a large part of spectral weight

below 5000 cm−1 is transferred to a higher energy scale. A crossover of the optical

conductivity at ∼ 5000 cm−1 can be see from the main panel of Fig. 6.4. Figure

6.10 (d) shows that the spectral weight is recovered when 𝜔𝑐 = 12000 cm−1 is

taken as the upper limit of the integration in Eq. 6.2. In summary, the spectral

weight analysis in the normal state implies that a free carrier metallic response

at low frequencies coexists with a striking spectral weight transfer from below ∼
5000 cm−1 to very high, broad energy scale (∼ 5000 – 12000 cm−1). This is not

expected for a normal metal. In this case, the normal state of the iron-pnictide

superconductors probably needs to be re-understood.

Next we concentrate on the superconducting state. In all the four panels

of Fig. 6.10, a striking suppression of the spectral weight appears at 𝑇𝑐. From

the optical conductivity (Fig. 6.4) we can also see that a large part of the low

frequency optical spectral weight disappeared with the opening of the super-

conducting gaps. This is due to the superconducting condensate. The spectral

weight lost from finite frequency in the superconducting state is compensated

by the weight of the 𝛿(𝜔) function at zero frequency representing the infinite

DC conductivity. This is often referred to as the Ferrell-Glover-Tinkham (FGT)

sum rule [15, 141]. As we described in Eq. 6.2, when the cut-off frequency cov-

ers the excitation spectrum responsible for the superconducting condensate, the

FGT sum rule is fulfilled. In the conventional superconductors, this happens at

an energy corresponding roughly to 4∆. However, in the underdoped high-𝑇𝑐

cuprates, the recovery of the FGT sum rule goes to very high energy (∼ 1 – 2

eV), or the sum rule is even violated [139, 142–145]. What should we expect for

the iron-pnictide superconductors?
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To confirm the FGT sum rule, we need to determine the superfluid weight

which is related to a London plasma frequency. It can be calculated utilizing

the imaginary part [𝜎2(𝜔)] of the optical conductivity [70, 146]. In the supercon-

ducting state, the real part of the optical conductivity has the contribution of

two separate parts: a delta function at zero frequency representing the supercon-

ducting condensate and a regular non-superconducting part 𝜎′
1(𝜔). Thus 𝜎1(𝜔)

is written as

𝜎1(𝜔) =
𝜋2

𝑍0

Ω2
𝐿𝛿(𝜔) + 𝜎′

1(𝜔), (6.3)

where Ω𝐿 is the London plasma frequency, namely the superconducting plasma

frequency. Kramers-Kronig of 𝜎1(𝜔) in Eq. 6.3 yields the imaginary part [𝜎2(𝜔)]

of the optical conductivity, written as

𝜎2(𝜔) =
2𝜋

𝑍0𝜔
Ω2

𝐿 − 2𝜔

𝜋

∫︁ ∞

0

𝜎′
1(𝜔

′)

𝜔′2 − 𝜔2
𝑑𝜔′, (6.4)

𝜎1(𝜔) and 𝜎2(𝜔) can be obtained directly from Kramers-Kronig of the reflectivity.

Because 𝜎1(𝜔) is achieved only for finite frequencies, it has no information on the

𝛿(𝜔) function at zero frequency therefore equals 𝜎′
1(𝜔). Consequently, the London

plasma frequency Ω𝐿 can be easily obtained by applying Eq. 6.4.

The FGT sum rule can be verified by comparing the London plasma fre-

quency determined above and the contribution to the London plasma frequency

from the spectral weight lost in the optical conductivity due to the supercon-

ducting condensate. This contribution at a specific temperature in the supercon-

ducting state up to 𝜔 is derived as follows:

Ω2(𝜔) =
𝑍0

𝜋2

∫︁ 𝜔

0+
[𝜎𝑛

1 (𝜔′) − 𝜎𝑠
1(𝜔

′)]𝑑𝜔′, (6.5)

where 𝜎𝑛
1 (𝜔) is the optical conductivity spectrum in the normal state, and here

we choose the one at 40 K; 𝜎𝑠
1(𝜔) corresponds to the optical conductivity in the

superconducting state. One can expect Ω(𝜔 → ∞) = Ω𝐿.

The flat lines in Fig. 6.11 are Ω𝐿 determined from Eq. 6.4. They are com-

pared to the missing spectral weight contribution to Ω𝐿 determined from Eq. 6.5.

We can see that the FGT sum rule is satisfied at about 600 cm−1 corresponding

roughly to 4.5∆𝐿.
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Figure 6.11: London plasma frequency of Ba0.6K0.4Fe2As2. The flat lines are

determined from the 𝜔−1 contribution to 𝜎2(𝜔) and they are compared to the

low frequency spectral weight lost between 𝜎1(𝜔) at 40 K and low temperatures.

The penetration depth can be easily calculated from the London plasma

frequency via 𝜆 = 1/2𝜋Ω𝐿. Figure 6.12 shows the penetration depth as a function

of temperature for Ba0.6K0.4Fe2As2. The dashed line is obtained by utilizing

the solution of the penetration depth BCS equation assuming a strong coupling

temperature dependence for a gap ∆0 = 9.5meV = ∆0
𝐿. In the inset we show the

superfluid density and the same calculation as in the main panel. Within error

bars the large gap ∆0
𝐿, having a smaller penetration depth, dominates the value

of the total penetration depth. This is a signature that the superconducting

bands respond in parallel as implied by summing two Mattis-Bardeen terms in

𝜎1(𝜔).

We can also study the FGT sum rule only within the conduction bands.

Figure 6.6 decomposes the optical conductivity into three components: two Drude

terms accounting for the free carrier response and a Lorentz term accounting for
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Figure 6.12: Penetration depth derived from the London plasma frequency. Solid

symbols are obtained from the accurate absolute reflectivity and open symbols

from the fine reflectivity temperature resolution measurements. The dashed line

is a calculation with ∆0
𝐿 = 9.5 meV. The inset shows the superfluid density and

the same calculation as in the main panel.

interband transition, so the total spectral weight has the contribution from the

free carriers and the interband transition, written as

𝑆𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑊𝐷𝑟𝑢𝑑𝑒 + 𝑆𝑊𝐿𝑜𝑟𝑒𝑛𝑡𝑧 (6.6)

Therefore, we can get the spectral weight only from the free carriers by subtract-

ing the Lorentz contribution from the total spectral weight. Figure 6.13 shows

the spectral weight of the Drude terms as a function of temperature normalized

by its value at 300 K (blue solid circles). A cut-off frequency of 𝜔𝑐 = 8000 cm−1

is used for the spectral weight calculation. It is high enough to cover all the spec-

tral weight of the two Drude terms which can be seen from Fig. 6.6. Above 𝑇𝑐,

the spectral weight of the Drude terms doesn’t change with the temperature de-
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Figure 6.13: The blue solid circles are the spectral weight of the two Drude

terms, representing the conduction bands, as a function of temperature at 𝜔𝑐 =

8000 cm−1. The open circles are obtained by adding the superfluid weight to the

spectral weight in the superconducting state.

crease implying that the band structure and the area of the Fermi surface do not

change upon cooling down. In the superconducting state, the spectral weight is

suppressed by 30% indicating that about 30% of the conduction band electrons

participate in the superconducting condensate. Further, Ba0.6K0.4Fe2As2 is in

dirty limit. The red open circles in Fig. 6.13 are obtained by adding the super-

fluid weight to the spectral weight in the superconducting state. They follow the

normal state very well demonstrating that the spectral weight lost from finite

frequency due to the superconducting condensate is fully recovered by the 𝛿(𝜔)

function at zero frequency, i.e. the FGT sum rule is fulfilled.

6.2 Optimally doped Ba(Fe1−𝑥Co𝑥)2As2

6.2.1 Reflectivity

Figure 6.14 shows the far-infrared absolute reflectivity at low temperatures,

above and below 𝑇𝑐. Upon crossing the superconducting transition, the reflec-
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overfilling technique.26 With this technique, we can achieve
an absolute accuracy in the reflectivity better than 1% and
the relative error between different temperatures is on the
order of 0.2%. In order to use Kramers-Kronig analysis to
obtain the optical conductivity, we measured the room-
temperature reflectivity up to 55 000 cm−1 and appended the
data to all other temperatures. We completed the low fre-
quency absolute reflectivity data using either a Hagen-
Rubens or a two-fluid extrapolation. At high frequencies we
used a constant reflectivity up to 200 000 cm−1 and termi-
nated the data with a �−4 free-electron response. Different
choices of low- and high-frequency extrapolations did not
change the optical conductivity more than 1% in the
�25–300� cm−1 range. The very low-frequency
superconducting-to-normal reflectivity ratios �RS /RN� were
measured in Tallinn down to 5 cm−1 utilizing a SPS200 �Sci-
encetech, Inc.� polarizing Martin-Puplett interferometer. This
setup is described in Ref. 27, and it probes the conductivity
in the ab plane without contamination from the c-axis con-
ductivity.

Figure 1 shows the far-infrared absolute reflectivity at low
temperatures, above and below Tc. Upon crossing the super-
conducting transition, the reflectivity increases below
100 cm−1 but does not reach a flat unity response expected
for a fully s-wave-gapped superconductor. The inset of this
figure shows the reflectivity at 300 K measured in the full
spectral range.

The open symbols in Fig. 2 are the real part of the optical
conductivity ��1� determined at 15 and 30 K. The solid lines
are a multicomponent fit for �1, written as

�1��� =
2�

Z0
��p

2

�

1

�2 + �−2 +
��2S2

��2 − �2�2 + �2�2�
+ �1

S��,�p
N,�N,�,T� , �1�

where Z0 is the vacuum impedance. The first term in Eq. �1�
corresponds to a Drude response of unpaired carriers; the
second term to a Lorentz oscillator describing a finite-
frequency resonance; and the last term ��1

S�, which exists
only below Tc, is the optical conductivity for an s-wave su-
perconductor. The Drude response is characterized by a

plasma frequency ��p� and a scattering rate ��−1�. The Lor-
entz oscillator is defined by a resonance frequency ��� a
linewidth ��� and a plasma frequency �S�. We took �1

S in the
convenient form proposed by Zimmermann et al.28 Besides
the temperature �T� and the superconducting gap ���, it also
depends on the Drude weight ��p

N� and the scattering rate
��N

−1� that the carriers would have, had the system been
driven normal below Tc.

We fitted the 30 K data assuming a single Drude response
and a Lorentz oscillator. The Drude term characterizes the
free carriers. The origin of the Lorentz peak is not well es-
tablished. It could be the response of localized carriers in-
duced by disorder but as it has been seen in an independent
Ba�Fe,Co�2As2 measurement,8 it is likely an intrinsic exci-
tation such as low-energy interband transitions. In any case,
its spectral weight is small and the parameters used in this
Lorentz peak at 30 K were kept fixed at all other tempera-
tures.

In a conventional BCS superconductor, one would replace
the normal-state Drude term by a Mattis-Bardeen response
alone. However, to describe the data at 15 K, we must keep
an independent Drude peak in the superconducting state. The
fit to the 15 K data is then composed of the same Lorentzian
found at 30 K together with a Mattis-Bardeen and a Drude
peak. The effect observed by Gorshunov et al.,10 namely, that
the measured low frequency �1 is higher than the thermally
broken pairs in a Mattis-Bardeen term, is clearly shown in
Fig. 2. Adding the Drude response in the superconducting
phase �red dotted line� to the Mattis-Bardeen component
�green dashed line�, leads to a proper description of the data
below 50 cm−1. Note that the measured �1 has a low-
frequency upturn with a width ��50 cm−1� that is much
broader than the width ��10 cm−1� of the thermally broken
pairs from the BCS contribution. Hence, the Mattis-Bardeen
description fails below the gap and the low frequency �1
requires the additional Drude peak in the superconducting

Wave number

FIG. 1. �Color online� Reflectivity of Ba�Fe,Co�2As2 at low
temperatures above and below Tc=22.5 K. The inset shows the 300
K reflectivity in the full measured spectral range.

Wave number

FIG. 2. �Color online� The open circles are the real part of the
optical conductivity at 15 K and the open triangles at 30 K. The
solid lines going through these points are fits to the data using Eq.
�1�. In the normal state the fit is composed of a Drude term ��p

=9250 cm−1; �−1=210 cm−1� and a Lorentz peak ��
=114 cm−1; S=2071 cm−1; �=61 cm−1�. In the superconduct-
ing state, the same Lorentz peak is kept and the Drude term has its
spectral weight divided up between a Mattis-Bardeen s-wave gap
��p

N=8210 cm−1; �N
−1=200 cm−1; 2�=50 cm−1� and a residual

Drude peak ��p=4450 cm−1; �−1=53 cm−1�.
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Figure 6.14: Reflectivity of Ba(Fe0.92Co0.08)2As2 at low temperatures above and

below 𝑇𝑐 = 22.5 K. The inset shows the 300 K reflectivity in the full measured

spectral range.

tivity increases below 100 cm−1, but unlike the case in Ba0.6K0.4Fe2As2, the re-

flectivity of Ba(Fe0.92Co0.08)2As2 does not reach a flat unity response expected

for a fully 𝑠-wave-gapped superconductor. The inset of this figure shows the

reflectivity at 300 K measured in the full spectral range.

6.2.2 Optical conductivity

The optical conductivity is derived from the measured reflectivity via Kramers-

Kronig analysis. A Hagen-Rubens (normal state) or a two-fluid (superconducting

state) is used for the low frequency extrapolation. At high frequencies, we use

a constant reflectivity up to 200 000 cm−1 and terminate the data with an 𝜔−4

free-electron response. Different choices of low- and high-frequency extrapola-

tions do not change the optical conductivity more than 1% in the far-infrared

range. Figure 6.15 shows the measured far-infrared reflectivity (symbols) at

various temperatures and corresponding fits (solid lines). Upon entering the su-

perconducting state, the opening of the superconducting gap, characterized by
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Figure 6.15: The symbols are measured optical conductivity at various temper-

ature above and below 𝑇𝑐. The solid smooth lines are corresponding fits.

a suppression of the low energy optical conductivity, is clearly observed. But

two notable differences in optical response between the Co and K doped samples

can be seen: (i) The superconducting gap in the Co doped sample opens in an

energy scale much lower than the K doped Ba122 sample; (ii) The low energy

optical conductivity does not vanish in the superconducting state. Large residual

conductivity exists in the Co doped Ba122 system [147, 148].

6.2.3 Data analysis

We fit the 30 K low frequency optical conductivity assuming a single Drude

response and a Lorentz oscillator as shown in Fig. 6.16. The Drude term charac-

terizes the free carriers. The origin of the Lorentz peak is not well established.

It could be the response of localized carriers induced by disorder but as it has

been seen in an independent Ba(Fe1−𝑥Co𝑥)2As2 measurement [81], it is likely an

intrinsic excitation such as low-energy interband transitions. In any case, its

spectral weight is small and the parameters used in this Lorentz peak at 30 K
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overfilling technique.26 With this technique, we can achieve
an absolute accuracy in the reflectivity better than 1% and
the relative error between different temperatures is on the
order of 0.2%. In order to use Kramers-Kronig analysis to
obtain the optical conductivity, we measured the room-
temperature reflectivity up to 55 000 cm−1 and appended the
data to all other temperatures. We completed the low fre-
quency absolute reflectivity data using either a Hagen-
Rubens or a two-fluid extrapolation. At high frequencies we
used a constant reflectivity up to 200 000 cm−1 and termi-
nated the data with a �−4 free-electron response. Different
choices of low- and high-frequency extrapolations did not
change the optical conductivity more than 1% in the
�25–300� cm−1 range. The very low-frequency
superconducting-to-normal reflectivity ratios �RS /RN� were
measured in Tallinn down to 5 cm−1 utilizing a SPS200 �Sci-
encetech, Inc.� polarizing Martin-Puplett interferometer. This
setup is described in Ref. 27, and it probes the conductivity
in the ab plane without contamination from the c-axis con-
ductivity.

Figure 1 shows the far-infrared absolute reflectivity at low
temperatures, above and below Tc. Upon crossing the super-
conducting transition, the reflectivity increases below
100 cm−1 but does not reach a flat unity response expected
for a fully s-wave-gapped superconductor. The inset of this
figure shows the reflectivity at 300 K measured in the full
spectral range.

The open symbols in Fig. 2 are the real part of the optical
conductivity ��1� determined at 15 and 30 K. The solid lines
are a multicomponent fit for �1, written as

�1��� =
2�

Z0
��p

2

�

1

�2 + �−2 +
��2S2

��2 − �2�2 + �2�2�
+ �1

S��,�p
N,�N,�,T� , �1�

where Z0 is the vacuum impedance. The first term in Eq. �1�
corresponds to a Drude response of unpaired carriers; the
second term to a Lorentz oscillator describing a finite-
frequency resonance; and the last term ��1

S�, which exists
only below Tc, is the optical conductivity for an s-wave su-
perconductor. The Drude response is characterized by a

plasma frequency ��p� and a scattering rate ��−1�. The Lor-
entz oscillator is defined by a resonance frequency ��� a
linewidth ��� and a plasma frequency �S�. We took �1

S in the
convenient form proposed by Zimmermann et al.28 Besides
the temperature �T� and the superconducting gap ���, it also
depends on the Drude weight ��p

N� and the scattering rate
��N

−1� that the carriers would have, had the system been
driven normal below Tc.

We fitted the 30 K data assuming a single Drude response
and a Lorentz oscillator. The Drude term characterizes the
free carriers. The origin of the Lorentz peak is not well es-
tablished. It could be the response of localized carriers in-
duced by disorder but as it has been seen in an independent
Ba�Fe,Co�2As2 measurement,8 it is likely an intrinsic exci-
tation such as low-energy interband transitions. In any case,
its spectral weight is small and the parameters used in this
Lorentz peak at 30 K were kept fixed at all other tempera-
tures.

In a conventional BCS superconductor, one would replace
the normal-state Drude term by a Mattis-Bardeen response
alone. However, to describe the data at 15 K, we must keep
an independent Drude peak in the superconducting state. The
fit to the 15 K data is then composed of the same Lorentzian
found at 30 K together with a Mattis-Bardeen and a Drude
peak. The effect observed by Gorshunov et al.,10 namely, that
the measured low frequency �1 is higher than the thermally
broken pairs in a Mattis-Bardeen term, is clearly shown in
Fig. 2. Adding the Drude response in the superconducting
phase �red dotted line� to the Mattis-Bardeen component
�green dashed line�, leads to a proper description of the data
below 50 cm−1. Note that the measured �1 has a low-
frequency upturn with a width ��50 cm−1� that is much
broader than the width ��10 cm−1� of the thermally broken
pairs from the BCS contribution. Hence, the Mattis-Bardeen
description fails below the gap and the low frequency �1
requires the additional Drude peak in the superconducting

Wave number

FIG. 1. �Color online� Reflectivity of Ba�Fe,Co�2As2 at low
temperatures above and below Tc=22.5 K. The inset shows the 300
K reflectivity in the full measured spectral range.

Wave number

FIG. 2. �Color online� The open circles are the real part of the
optical conductivity at 15 K and the open triangles at 30 K. The
solid lines going through these points are fits to the data using Eq.
�1�. In the normal state the fit is composed of a Drude term ��p

=9250 cm−1; �−1=210 cm−1� and a Lorentz peak ��
=114 cm−1; S=2071 cm−1; �=61 cm−1�. In the superconduct-
ing state, the same Lorentz peak is kept and the Drude term has its
spectral weight divided up between a Mattis-Bardeen s-wave gap
��p

N=8210 cm−1; �N
−1=200 cm−1; 2�=50 cm−1� and a residual

Drude peak ��p=4450 cm−1; �−1=53 cm−1�.

LOBO et al. PHYSICAL REVIEW B 82, 100506�R� �2010�
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Figure 6.16: The open circles are the real part of the optical conductivity at 15

K and the open triangles at 30 K. The solid lines going through these points are

fits to the data.

are kept fixed at all other temperatures.

In the superconducting state of a conventional BCS superconductor, one

would replace the normal-state Drude term by a Mattis-Bardeen response alone,

like we did for the Ba0.6K0.4Fe2As2 sample. However, to describe the data at

15 K, we must keep an independent Drude peak accounting for the low energy

residual conductivity in the superconducting state. The fit to the 15 K data is

then composed of the same Lorentzian found at 30 K together with a Mattis-

Bardeen and an extra Drude peak. The effect observed by Gorshunov et al., that

the measured low frequency optical conductivity is higher than the thermally

broken pairs in a Mattis-Bardeen term [83], is clearly shown in Fig. 6.16. Adding

the Drude response in the superconducting phase (red dotted line) to the Mattis-

Bardeen component (green dashed line), leads to a proper description of the data

below 50 cm−1. Note that the measured 𝜎1(𝜔) has a low frequency upturn with a

width ∼ 50 cm−1 that is much broader than the width ∼ 10 cm−1 of the thermally

broken pairs from the BCS contribution. Hence, the Mattis-Bardeen description

fails below the gap in the superconducting state, but the introduction of an
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additional Drude peak, which accounts for the additional low energy absorption,

reconciles the model and the data. This extra absorption could be due to gap

anisotropy of the electron pocket [25, 149–151], impurity localized levels inside

an isotropic gap [152], or pair breaking due to interband impurity scattering

in an 𝑠± symmetric gap [153, 154]. To confirm the origin of the additional low

energy absorption, we compared the optical response of Ba(Fe0.92Co0.08)2As2 with

Ba0.6K0.4Fe2As2.

6.3 Comparison between the optimally K doped and Co

doped Ba122 samples

In Chapter 4, we discussed the crystal structure of the Ba122 system. The

parent compound of the Ba122 system, BaFe2As2, contains distinct FeAs layers

separated by barium atoms. When doping the parent compound with either holes

or electrons, superconductivity arises in the FeAs planes. The Ba1−𝑥K𝑥Fe2As2

is obtained by substituting the Ba atoms with K atoms which sit out of the

FeAs planes. Hence, no impurity is introduced into the FeAs planes. However,

Ba(Fe1−𝑥Co𝑥)2As2, derived from the substitution of Fe atoms with Co atoms,

represents a different situation as Co atoms directly go into the FeAs planes.

Structural defects caused by the in-plane doping can been considered as non-

magnetic impurity. The non-magnetic impurity is not pair breaking in an 𝑠++

symmetry gap, but plays an extremely important role in the 𝑠± symmetry gap.

When scattering by non-magnetic impurity between bands having 𝑠+ and 𝑠−

symmetries takes place, Cooper pairs are annihilated and excess of unpaired

quasiparticles appear in the superconducting state [25, 26]. In this sense, to

grasp some information on the predicted 𝑠± symmetry for iron-based supercon-

ductors, it is instructive to compare the optical response of Ba(Fe1−𝑥Co𝑥)2As2

with Ba1−𝑥K𝑥Fe2As2.

Figure 6.17 shows the optical conductivity for both materials at 5 K. In

Ba0.6K0.4Fe2As2, 𝜎1(𝜔) vanishes, within error bars, below the smaller absorption

threshold 𝐸0
𝑆. Hence, there is no sign of unpaired carriers at low frequencies in

the superconducting state. Conversely, the data for Ba(Fe0.92Co0.08)2As2 shows
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4

the FeAs planes and hence no interband impurity scat-
tering is expected. In this case no pair-breaking induced
residual low frequency σ1(ω) is present. In both mate-
rials dopants are non magnetic and hence should not be
pair-breaking scattering centers. The fact that when the
dopant is in the FeAs plane creates unpaired quasipar-
ticles matches naturally the s± gap symmetry proposed
for iron-arsenide superconductors.

Figure 4. (color online) Optical conductivity at 5 K for
Ba(Fe0.92Co0.08)2As2 (Ref. 11) and Ba0.6K0.4Fe2As2. For the
latter, the thin solid lines are a fit as described in the text. For
the former, besides the superconducting Mattis-Bardeen re-
sponse, a Drude term (shown as the dashed area) is necessary
to describe the residual sub-gap absorption in the supercon-
ducting state.

In summary, we presented a detailed optical study on
a nearly optimally doped Ba0.6K0.4Fe2As2 single crystal.
In the normal state, the optical response is metallic and
can be well described by two Drude terms. In the su-
perconducting state, an opening of two superconducting
gaps was clearly observed. The optical conductivity van-
ishes roughly below 20 meV indicating fully open gaps.
A strong coupling BCS analysis shows that two almost
isotropic gaps with different values describe the optical
response of our sample. The temperature dependence of
the gaps indicates a strong interband interaction. We
found that Ba1−xKxFe2As2 out-of-plane K atoms do not
induce pair-breaking whereas scattering by the in-plane
Co atoms of Ba(Fe1−xCox)2As2 deplete superconductiv-
ity. This result strongly supports an s± symmetry for
the gap.
We would like to acknowledge discussions with J. P.

Carbotte and T. Timusk, and the financial support from
the Science and Technology Service of the French Em-
bassy in China. Work in Beijing was supported by the
MOST and the National Science Foundation of China.
Work in Paris was supported by the ANR under Grant

No. BLAN07-1-183876 GAPSUPRA.

∗ lobo@espci.fr
[1] K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett.

100, 226402 (2008).
[2] D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003

(2008).
[3] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du,

Phys. Rev. Lett. 101, 057003 (2008).
[4] A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov,

Phys. Rev. B 80, 140515 (2009).
[5] K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama,

T. Kawahara, T. Sato, P. Richard, Y.-M. Xu, L. J. Li,
G. H. Cao, et al., Proceedings of the National Academy
of Sciences 106, 7330 (2009).

[6] H.Ding, P.Richard, K.Nakayama, K.Sugawara,
T.Arakane, Y.Sekiba, A.Takayama, S.Souma, T.Sato,
T.Takahashi, et al., Europhys. Lett. 83, 47001 (2008).

[7] K.Nakayama, T.Sato, P.Richard, Y.-M.Xu, Y.Sekiba,
S.Souma, G.F.Chen, J.L.Luo, N.L.Wang, H.Ding, et al.,
Europhys. Lett. 85, 67002 (2009).

[8] S. Maiti and A. V. Chubukov, Phys. Rev. B 83, 220508
(2011).

[9] Y. Bang, H.-Y. Choi, and H. Won, Phys. Rev. B 79,
054529 (2009).

[10] M. L. Teague, G. K. Drayna, G. P. Lockhart, P. Cheng,
B. Shen, H.-H. Wen, and N.-C. Yeh, Phys. Rev. Lett.
106, 087004 (2011).

[11] R. P. S. M. Lobo, Y. M. Dai, U. Nagel, T. Rõõm, J. P.
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Figure 6.17: Optical conductivity at 5 K for Ba(Fe0.92Co0.08)2As2 and

Ba0.6K0.4Fe2As2.

a large low energy, sub-gap absorption in the superconducting state. This extra

absorption is described by a Drude peak characterizing the unpaired carriers.

Furthermore, residual low temperature specific heat [155] and penetration depth

[156] are also observed in this system. The fact that the non-magnetic impurity

introduced into the Ba(Fe0.92Co0.08)2As2 induces pair-breaking matches natu-

rally the 𝑠± gap symmetry proposed for iron-based superconductors. This result

strongly supports an 𝑠± pairing symmetry in the Ba122 family superconductors.

6.4 Underdoped Ba1−𝑥K𝑥Fe2As2

The top panel in Fig. 6.18 shows the temperature dependence of resistivity

for Ba1−𝑥K𝑥Fe2As2 (x = 0.2) sample. The 𝑅−𝑇 curve exhibits a steep supercon-

ducting transition at 𝑇𝑐 = 19 K. The inset of the top panel shows the derivative

of the resistivity 𝑑𝜌/𝑑𝑇 as a function of temperature. The sharp peak at 104

K in 𝑑𝜌/𝑑𝑇 is related to the SDW transition. A small kink can be seen on the

𝑅−𝑇 curve at the SDW transition temperature. The bottom panel displays the
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Figure 6.18: The top panel shows the temperature dependence of resistivity of

Ba1−𝑥K𝑥Fe2As2 (x = 0.2) single crystal. The 𝑅 − 𝑇 curve is characterized by a

steep superconducting transition at 𝑇𝑐 = 19 K. The inset shows the derivative of

the resistivity 𝑑𝜌/𝑑𝑇 as a function of temperature. The sharp peak at 104 K in

𝑑𝜌/𝑑𝑇 is associated with the SDW transition. A small kink can be seen in the

𝑅− 𝑇 curve at the SDW transition temperature. The bottom panel depicts the

same curves for the x = 0.12 sample. 𝑇𝑐 = 11 K, 𝑇𝑆𝐷𝑊 = 121 K.
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same curves for x = 0.12 sample. 𝑇𝑐 = 11 K, 𝑇𝑆𝐷𝑊 = 121 K.

6.4.1 Reflectivity

Figure 6.19 shows the measured infrared reflectivity at selected temperatures

for both samples up to 1200 cm−1. The inset in each panel displays the reflectivity

of full measured range at 300 K. For the x = 0.2 sample, shown in the top

panel, the reflectivity exhibits a metallic response and approaches to unity at

zero frequency for high temperatures such as 150 and 300 K. Below 𝑇𝑆𝐷𝑊 = 104

K, a substantial suppression of 𝑅(𝜔) at about 650 cm−1 sets in and intensifies

with the temperature decrease. Simultaneously, the low frequency reflectivity

increases faster towards unity at zero frequency. This is a clear evidence for the

opening of a partial gap on the Fermi surface. The continuous increase of the

reflectivity at low frequencies indicates that the material is still metallic in the

SDW state. Below 75 K, defined as 𝑇 * in this section, another suppression of

𝑅(𝜔) appears in a lower energy scale (∼ 150 cm−1) suggesting the opening of a

second partial gap with a smaller value. Note that the suppression due to the

smaller partial gap is much weaker than the one due to the SDW transition. Upon

crossing the superconducting transition which occurs at 19 K, the reflectivity

below ∼ 150 cm−1 increases which is a signature of a superconducting gap, but

in contrast to the optimally doped Ba0.6K0.4Fe2As2, the reflectivity does not reach

a flat unity response expected for an s-wave gap.

Similar features manifest themselves on the reflectivity of the x = 0.12 sam-

ple as shown in the bottom panel of Fig. 6.19. However, marked differences exist

between these two samples: (i) The suppression of 𝑅(𝜔) due to the SDW tran-

sition is stronger in the more underdoped (x = 0.12) sample; (ii) The smaller

partial gap suppresses the reflectivity more weakly in the x = 0.12 sample; (iii)

The more underdoped sample (x = 0.12) exhibits a weaker superconducting gap

feature than the x = 0.2 sample.

6.4.2 Optical conductivity

The optical conductivity spectra for these two samples are derived from the

measured reflectivity via Kramers-Kronig analysis. The top panel of Fig. 6.20
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Figure 6.19: The top panel shows the reflectivity of Ba1−𝑥K𝑥Fe2As2 (x = 0.2)

single crystal below 1200 cm−1 at various temperatures. The inset shows the

reflectivity up to 55000 cm−1 at 300 K. The bottom panel portrays the same

spectra for the x = 0.12 sample.
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Figure 6.20: The top panel shows the optical conductivity of Ba1−𝑥K𝑥Fe2As2 (x

= 0.2) below 1700 cm−1 at several temperatures. The inset displays the enlarged

view of 𝜎1(𝜔) at low frequencies. The bottom panel shows the same spectra for

the x = 0.12 sample.
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shows the real part of the optical conductivity of Ba1−𝑥K𝑥Fe2As2 (x = 0.2) be-

low 1700 cm−1 at several temperatures. At temperatures above 𝑇𝑆𝐷𝑊 , 150 K and

125 K for instance, a Drude-like metallic response dominates the low frequency

optical conductivity. Below 𝑇𝑆𝐷𝑊 = 104 K, the spectra below about 650 cm−1

are severely suppressed; meanwhile, the optical conductivity increases in a higher

energy scale from 650 cm−1 to 1700 cm−1. The SDW state spectra 𝜎1(𝜔, 𝑇 ) and

the normal state spectra 𝜎1(𝜔, 125𝐾) intersect with each other, resulting in an

intersection point at about 650 cm−1. As the temperature decreases, both the

low energy spectral suppression and the high energy bulge become stronger, and

the intersection point moves to a higher energy scale. This spectral evolution

manifests the behavior of a density wave like gap: transfer of low frequency spec-

tral weight to high frequencies, an SDW gap in this material. If we take the

intersection points as the gap values, we can see that the gap value increases

with the temperature decrease. Below 𝑇 * ∼ 75 K, a second suppression in the

optical conductivity below roughly 110 cm−1 with a bulge extending from about

110 cm−1 to 250 cm−1 sets in and develops with the temperature decrease, imply-

ing the opening of a smaller partial gap on the Fermi surface. The inset of Fig.

6.20 shows the enlarged view of the low temperature optical conductivity at low

frequencies, so the smaller partial gap feature can be seen more clearly. Since it

opens below 75 K, much lower than the SDW transition temperature (𝑇𝑆𝐷𝑊 =

104 K), it’s unlikely due to the SDW transition. The origin of this smaller partial

gap will be discussed below. The superconducting transition occurs at 𝑇𝑐 = 19

K, which is characterized by the opening of a superconducting gap. As shown in

the inset of Fig. 6.20, the reduction of the optical conductivity at low frequencies

between 20 K and 5 K is due to the superconducting gap opening. The spec-

tral weight lost in the transition is recovered by the weight of a 𝛿 function at

zero frequency representing the infinite DC conductivity in the superconducting

state. The zero frequency 𝛿 function is not visible in the 𝜎1(𝜔) spectra, because

only finite frequency optical conductivity can be experimentally measured, but

its weight can be easily calculated from the imaginary part of the optical con-

ductivity [70, 146]. Note that, unlike the optimally doped Ba0.6K0.4Fe2As2, the

low frequency optical conductivity does not vanish below an absorption edge in
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the superconducting state. Large residual low frequency absorption appears in

the underdoped samples, signaling the existence of nodes in the superconducting

gap. Furthermore, the optical conductivity spectral depletion due to the super-

conducting condensate extends up to 180 cm−1, almost the same energy scale

as the smaller partial gap, hinting that the superconducting and smaller partial

gaps share the same electronic states, and may have the same origin.

Very similar features are observed in the x = 0.12 sample, as shown in the

bottom panel of Fig. 6.20. But the SDW gap opens at a higher temperature

(𝑇𝑆𝐷𝑊 = 121 K) and the gap value shifts to a higher energy scale (∼ 750 cm−1).

The low frequency spectral suppression due to the opening of the SDW gap is

stronger indicating that a larger part of the Fermi surface is removed by the

gap associated with the SDW phase transition in the more underdoped (x =

0.12) sample. In contrast to the SDW gap, both the smaller partial gap and the

superconducting gap features are much weaker in the more underdoped sample.

The evolution of the three gaps (SDW gap, the smaller partial gap and the

superconducting gap) with doping also suggests that the smaller partial gap may

have the same origin with the superconducting gap and play as a competitive

order to the SDW phase.

6.4.3 spectral weight analysis

Both the superconducting and the SDW gaps have their respective origins.

In order to investigate the origin of the smaller partial gap and the relations

among these gaps, a restricted spectral weight analysis is indispensable.

The restricted spectral weight is defined as

𝑆𝑊 𝑏
𝑎 =

∫︁ 𝑏

𝑎

𝜎1(𝜔)𝑑𝜔 (6.7)

where 𝑎 and 𝑏 are the lower and upper cut-off frequencies respectively. By choos-

ing appropriate lower and upper cut-off frequencies, one can study the relations

among different phase transitions. When replacing 𝑎 by 0 and 𝑏 by ∞, the

spectral weight is conserved.

Figure 6.21 shows the temperature dependence of the spectral weight, nor-

malized by its value at 300 K, at different cut-off frequencies for the x = 0.2
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Figure 6.21: Temperature dependence of the spectral weight, SW𝑏
𝑎 =

∫︀ 𝑏

𝑎
𝜎1(𝜔)𝑑𝜔,

normalized by its value at 300 K, for Ba1−𝑥K𝑥Fe2As2 (x = 0.2) sample. 𝑎 and

𝑏 represent the lower and upper cut-off frequencies respectively. The vertical

dashed lines denote 𝑇𝑐, 𝑇
* and 𝑇𝑆𝐷𝑊 respectively.
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sample. The vertical dashed lines denote 𝑇𝑐, 𝑇
* and 𝑇𝑆𝐷𝑊 respectively. The

blue solid circles in the top panel of Fig. 6.21 are the normalized spectral weight

with cut-off frequencies 𝑎 = 0 and 𝑏 = 12000 cm−1 as a function of temperature.

Here, the weight of the zero frequency 𝛿 function is included. Moreover, since the

optical conductivity is measured only down to 30 cm−1, we fit the low frequency

normal state optical conductivity with a Drude model to estimate the spectral

weight below 30 cm−1. The upper cut-off frequency (𝑏 = 12000 cm−1) is high

enough to cover the whole spectrum responsible for the phase transitions in this

material. Hence the blue solid circles form a flat line leveled at about unity,

indicating that the sum rule is fulfilled.

The red solid circles in the top panel shows the temperature dependence

of the normalized spectral weight with cut-off frequencies 𝑎 = 0+ and 𝑏 = 650

cm−1. Here 0+ means that the superfluid weight is not included. The continuous

increase of the normalized SW650
0+ with decreasing 𝑇 above 𝑇𝑆𝐷𝑊 is related to

narrowing of the Drude band. This is the typical optical response of a metallic

material. A strong spectral weight suppression occurs at 𝑇𝑆𝐷𝑊 , which is clearly

associated with the opening of the SDW gap. At 𝑇𝑐, another sharp drop of the

spectral weight breaks in, implying the superconducting gap opening. Whereas,

no feature is observed at 𝑇 *, because the upper cut-off frequency (𝑏 = 650 cm−1)

is sufficiently high to cover the excitation spectrum responsible for the smaller

partial gap.

The temperature dependence of normalized SW1700
650 , shown as green solid

circles in the bottom panel of Fig. 6.21, provides clues about the relation be-

tween the superconducting and SDW gaps. Above 𝑇𝑆𝐷𝑊 , the material shows

metallic response which can be described by a Drude peak centered at zero fre-

quency. With the temperature decrease, the DC conductivity increases and the

scattering rate reduces. The continuous narrowing of the Drude band induces a

transfer of spectral weight from mid infrared to far infrared ranges, resulting in

the continuous decrease of the spectral weight in the 650 - 1700 cm−1 range. Be-

low 𝑇𝑆𝐷𝑊 , the opposite behavior dominates the optical conductivity. The SDW

gap depletes the spectral weight below 650 cm−1 and transfers it to the 650 - 1700

cm−1 range, leading to the continuous increase of SW1700
650 with decreasing 𝑇 . This
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behavior continues into the superconducting state and does not show any feature

at 𝑇𝑐. These observations indicate that the SDW and superconducting gaps are

separate and even act as competitive orders in this material. Here it is expected

that, if a partial gap is due to a precursor order of superconductivity, for example

preformed pairs without phase coherence, once a long range superconductivity

is established below 𝑇𝑐, a significant part of the spectral weight transferred to

high frequencies by the partial gap should be transferred back to low energies

and join the superconducting condensate [157, 158]. Whereas, the partial gap

due to a competitive order of superconductivity depletes the low-energy spectral

weight available for superconductivity and holds it in high frequency scale with-

out transferring it to superfluid weight below 𝑇𝑐. From the normalized SW1700
650 vs

𝑇 curve (green solid circles) we note that no loss of spectral weight is observed

at 𝑇𝑐. This means that the spectral weight transferred to high frequencies by the

SDW gap remains in the high frequency scale and does not join the supercon-

ducting condensate. Therefore, the SDW phase acts as a competitive order to

superconductivity in this material.

In this sense, the origin of the smaller partial gap and its relation to super-

conductivity can be revealed by a close inspection of the temperature dependence

of normalized SW250
110, shown as pink solid circles in the bottom panel. Above 𝑇 *,

the curve shows the same feature as the normalized SW650
0+ vs 𝑇 curve: continuous

increase upon cooling down followed by a suppression at 𝑇𝑆𝐷𝑊 due to the SDW

gap opening. At 𝑇 *, the spectral weight in the 110 - 250 cm−1 range reaches

a minimum and starts to increase with decreasing temperature. This is due to

the opening of the smaller partial gap. This smaller partial gap, opening at 𝑇 *,

depletes the spectral weight below 110 cm−1 and retrieves it in the 110 - 250

cm−1 frequency range, leading to the increase of SW250
110 below 𝑇 *. An interesting

phenomena happens to the smaller partial gap when the material undergoes the

superconducting transition. In contrast to the case of the SDW partial gap, a

significant loss of the spectral weight in the 110 - 250 cm−1 frequency range is ob-

served below 𝑇𝑐. This observation indicates that the spectral weight transferred

to the 110 - 250 cm−1 range by the smaller partial gap joins the superconducting

condensate when superconductivity is established in the material. Hence, the
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smaller partial gap is likely a precursor order with respect to the superconduc-

tivity, such as preformed pairs without phase coherence.



Chapter 7

Summary

In this thesis, we measured the optical reflectivity of Ba1−𝑥K𝑥Fe2As2 (x =

0.4, 0.2, and 0.12) and Ba(Fe1−𝑥Co𝑥)2As2 (x = 0.08) samples at 18 different

temperatures from 5 to 300 K. These systematic measurements allow us to in-

vestigate both the temperature and doping dependence of the optical response

of the K doped Ba122 system iron-based superconductors and compare it with

the Co doped Ba122 system.

In the optimally doped Ba1−𝑥K𝑥Fe2As2 (x = 0.4) sample, upon entering

the superconducting state, the low frequency reflectivity increases and reaches

a flat unity response. The conductivity vanishes below an absorption edge at

about 160 cm−1, and no residual conductivity appears at low frequencies in the

superconducting state. These optical responses strongly indicate the opening of

a superconducting gap with 𝑠-wave symmetry.

Quite differently in the optimally doped Ba(Fe1−𝑥Co𝑥)2As2 (x = 0.08) sam-

ple, below 𝑇𝑐, the reflectivity turns up at low frequencies but does not reach a flat

unity response, and large residual conductivity exists at low energies representing

unpaired quasiparticles. These low frequency optical responses do not favor the

𝑠-wave pairing symmetry.

This remarkable difference in low frequency optical response between the K

and Co doped samples contains important information about the pairing symme-

try in the Ba122 iron-based superconductors. In the K doped sample, K atoms

sit at the Ba sites, out of the FeAs planes which are responsible for superconduc-

tivity. This out-of-plane doping does not disturb the FeAs planes, and no defect

is introduced into the FeAs planes, hence the gap symmetry manifests itself in a

straightforward way: 𝑠-wave symmetry. As optical method is not phase sensitive,

it can not distinguish between 𝑠++ and 𝑠±. However, in the Co doped sample,
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Co atoms go into the FeAs planes, and the disturbance to the FeAs planes causes

structural defects which can be considered as non-magnetic impurities. In an

𝑠++ symmetry gap, non-magnetic impurities are not pair-breaking since the or-

der parameters in different bands have the same sign. But in an 𝑠± symmetry

gap, a different situation is expected. If the order parameters in different bands

have opposite signs, when scattered from one band to another by non-magnetic

impurities, the Cooper pairs are broken up. Here, in the Co doped Ba122 system,

non-magnetic impurities in the FeAs planes induce large residual conductivity at

low frequencies representing unpaired quasiparticles, namely, the non-magnetic

impurities in this material are pair-breaking. This observation is in strong sup-

port of an 𝑠± gap symmetry in the Ba122 system iron-based superconductors.

In the underdoped Ba1−𝑥K𝑥Fe2As2 (x = 0.2 and 0.12) samples, the opening

of the SDW and superconducting gaps is clearly observed from the optical spectra

at low temperatures, additionally, a small partial gap opens at about 110 cm−1

when the temperature is below 75 K. As this small partial gap opens below 75 K,

much lower than the SDW transition temperature, it’s unlikely due to the SDW

transition.

In order to clarify the origin of the small partial gap and its relation to super-

conductivity, we performed a spectral weight analysis. From our spectral weight

analysis, we found that, the small partial gap transfers the low frequency spectral

weight to an energy scale just above its value, but when the long range supercon-

ducting order is established in the material, the spectral weight, transferred to

high frequencies by the small partial gap, joins the superconducting condensate.

This indicates that the small partial gap shares the same electronic states with

the superconducting gap, suggesting that the small partial gap is associated with

a precursor order to superconductivity. In contrast, the SDW gap transfers the

low energy spectral weight to high energy scale and holds it at high frequencies

rather than transfer it to the superfluid weight, so the SDW gap depletes the low

frequency electronic states available for superconducting condensate. This result

suggests that the SDW acts as a competitive order to superconductivity.

The doping dependence of these gaps is also supportive of this scenario. In
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the more underdoped sample (x = 0.12), the SDW gap feature is stronger while

both the superconducting and small partial gaps feature become weaker, i.e.

the superconducting and small partial gaps exhibit the same doping evolution

while the SDW gap evolves oppositely with doping. This result implies that the

small partial gap may have the same origin as the superconducting gap and be

associated with a precursor order to superconductivity while the SDW phase is

in favor as a competitive order.





Appendix A

Useful equations in optical spectroscopy

Plasma frequency:

Ω2
𝑝 =

𝑍0

𝜋2

∫︁ 𝜔𝑠𝑝

0

𝜎1(𝜔)𝑑𝜔 (A.1)

Superfluid weight:

𝑆𝑊𝑠 =

∫︁ ∞

0+
[𝜎𝑛

1 (𝜔) − 𝜎𝑠
1(𝜔)]𝑑𝜔 (A.2)

Superfluid plasma frequency:

Ω2
𝑝𝑠 =

𝑍0

𝜋2

∫︁ ∞

0+
[𝜎𝑛

1 (𝜔) − 𝜎𝑠
1(𝜔)]𝑑𝜔 =

𝑍0

𝜋2
𝑆𝑊𝑠 (A.3)

Penetration depth:

𝜆 =
1

2𝜋Ω𝑝𝑠

(A.4)

The relation between the imaginary part of the optical conductivity and the

superfluid plasma frequency:

𝜎2(𝜔) =
2𝜋

𝑍0𝜔
Ω2

𝑝𝑠 −
2𝜔

𝜋

∫︁ ∞

0+

𝜎1(𝜔
′)

𝜔′2 − 𝜔2
𝑑𝜔′, (A.5)

Drude model:

�̂�(𝜔) =
2𝜋

𝑍0

Ω2
𝑝

𝜏−1 − 𝑖𝜔
(A.6)

Extended Drude model:

�̂�(𝜔, 𝑇 ) =
2𝜋

𝑍0

Ω2
𝑝

𝜏−1(𝜔, 𝑇 ) − 𝑖𝜔[1 + 𝜆(𝜔, 𝑇 )]

=
2𝜋𝑖

𝑍0

Ω2
𝑝

𝜔 − 2Σ𝑜𝑝(𝜔, 𝑇 )

(A.7)

where Σ𝑜𝑝 is the optical self-energy, which is defined as:

Σ𝑜𝑝(𝜔, 𝑇 ) ≡ Σ𝑜𝑝
1 (𝜔, 𝑇 ) + 𝑖Σ𝑜𝑝

2 (𝜔, 𝑇 ) (A.8)
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Real and imaginary parts of the optical self-energy:

− 2Σ𝑜𝑝
1 (𝜔, 𝑇 ) = 𝜔𝜆(𝜔, 𝑇 ) = 𝜔(

𝑚*

𝑚
− 1) (A.9)

𝜆(𝜔, 𝑇 ) =
𝑚*

𝑚
− 1 =

2𝜋Ω2
𝑝

𝑍0

1

𝜔
𝐼𝑚[

1

𝜎
] (A.10)

− 2Σ𝑜𝑝
2 (𝜔, 𝑇 ) =

1

𝜏(𝜔, 𝑇 )
=

2𝜋Ω2
𝑝

𝑍0

𝑅𝑒[
1

𝜎
] (A.11)

Kinetic energy of carriers:

𝐸𝑘 = − 2~2𝑉

𝜋𝑒2𝑎2

∫︁ 𝜔𝑐

0

𝜎1(𝜔)𝑑𝜔

= −2~2𝑐

𝜋𝑒2

∫︁ 𝜔𝑐

0

𝜎1(𝜔)𝑑𝜔

(A.12)

where 𝑎 is the in-plane lattice constant, 𝑐 is the c-axis lattice constant and 𝑉 is

the unit cell volume.



Appendix B

Conversion table

𝐸 [eV] 𝑇 [K] 𝑓 [Hz] 𝜈 [cm−1]

𝐸 [eV] 1 11 605 2.418 × 1014 8066

𝑇 [K] 8.617 × 10−5 1 2.084 × 1010 0.671

𝑓 [Hz] 4.136 × 10−15 4.799 × 10−11 1 3.336 × 10−11

𝜈 [cm−1] 1.240 × 10−4 1.490 2.998 × 1010 1

Table B.1: The conversion between energy 𝐸, temperature 𝑇 , frequency 𝑓 , wave

number 𝜈 = 1/𝜆. Some basic physical constants are used for these conversions:

the elementary charge 𝑒 = 1.602 × 10−19 A·s, the Boltzmann constant 𝑘𝐵 =

1.381 × 10−23 J·K−1, and the Planck’s constant ~ = 1.055 × 10−34 J·s, the Light

speed in a vacuum 𝑐 = 2.998 × 108 m·s−1.
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Quantity Gaussian (cgs) system SI (mks) system

Speed of light 𝑐 𝑐 = 1√
𝜖0𝜇0

Electric field E
√

4𝜋𝜖0 E

Electric displacement D
√︁

4𝜋
𝜖0

D

Charge density 𝜌 1√
4𝜋𝜖0

𝜌

Electric polarization P 1√
4𝜋𝜖0

P

Current density J 1√
4𝜋𝜖0

J

Dielectric constant 𝜖 𝜖
𝜖0

Conductivity �̂� �̂�
4𝜋𝜖0

Magnetic field H
√

4𝜋𝜇0 H

Magnetic induction B
√︁

4𝜋
𝜇0

B

Magnetization M
√︁

4𝜋
𝜇0

M

Permeability �̂� �̂�
𝜇0

Impedance 𝑍 4𝜋𝜖0𝑍

Table B.2: The conversion between the cgs and SI unit systems. Equations in cgs

units can be converted into those in the SI system via this table by replacing the

relevant symbols with the corresponding one one the right column of the table.



Appendix C

The fundamental constants

Quantity Values in SI units

Speed of light in a vacuum 𝑐 = 2.99792458 × 108m · s−1

Permittivity of vacuum 𝜖0 = 8.8542 × 10−12 A · s · V−1 · m−1

Permeability of vacuum 𝜇0 = 1.2566 × 10−6 V · s · A−1 · m−1

Elementary charge 𝑒 = 1.602189 × 10−19 A · s

Mass of electron 𝑚 = 9.010953 × 10−31 kg

Mass of proton 𝑚𝑝 = 1.67261 × 10−27 kg

Mass of neutron 𝑚𝑛 = 1.67482 × 10−27 kg

Planck’s constant ℎ = 6.626176 × 10−34 J · s

~ = ℎ/2𝜋 = 1.054589 × 10−34 J · s

Boltzmann’s constant 𝑘𝐵 = 1.38066 × 10−23 J · K−1

Avogadro’s constant 𝑁𝐴 = 6.02205 × 1023 mol−1

Table C.1: Fundamental physical constants
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Hermes, and Rainer Pöttgen. Spin-density-wave anomaly at 140 K in the

ternary iron arsenide BaFe2As2 . Phys. Rev. B, 78(2):020503, Jul 2008.

[103] D. J. Singh. Electronic structure and doping in BaFe2As2 and LiFeAs:

Density functional calculations. Phys. Rev. B, 78(9):094511, Sep 2008.



REFERENCES 159

[104] Gang Xu, Haijun Zhang, Xi Dai, and Zhong Fang. Electron-hole asymmetry

and quantum critical point in hole-doped BaFe2As2 . EPL (Europhysics

Letters), 84(6):67015, 2008.

[105] M.V. Sadovskii. High–Temperature Superconductivity in Iron Based Lay-

ered Compounds. arXiv, 0812:0302v1, 2008.

[106] Bing Shen, Huan Yang, Zhao-Sheng Wang, Fei Han, Bin Zeng, Lei Shan,

Cong Ren, and Hai-Hu Wen. Transport properties and asymmetric scat-

tering in Ba1−𝑥K𝑥Fe2As2 single crystals compared to the electron doped

counterparts Ba(Fe1−𝑥Co𝑥)2As2 . arXiv, 1106:4256v1, 2011.

[107] L J Li, Y K Luo, Q B Wang, H Chen, Z Ren, Q Tao, Y K Li, X Lin, M He,

Z W Zhu, G H Cao, and Z A Xu. Superconductivity induced by Ni doping

in BaFe2As2 single crystals. New Journal of Physics, 11(2):025008, 2009.

[108] J. T. Park, D. S. Inosov, Ch. Niedermayer, G. L. Sun, D. Haug, N. B.

Christensen, R. Dinnebier, A. V. Boris, A. J. Drew, L. Schulz, T. Shapoval,

U. Wolff, V. Neu, Xiaoping Yang, C. T. Lin, B. Keimer, and V. Hinkov.

Electronic Phase Separation in the Slightly Underdoped Iron Pnictide Su-

perconductor Ba1−𝑥K𝑥Fe2As2. Phys. Rev. Lett., 102(11):117006, Mar 2009.

[109] T. Goko, A. A. Aczel, E. Baggio-Saitovitch, S. L. Bud’ko, P. C. Canfield,

J. P. Carlo, G. F. Chen, Pengcheng Dai, A. C. Hamann, W. Z. Hu, H.

Kageyama, G. M. Luke, J. L. Luo, B. Nachumi, N. Ni, D. Reznik, D. R.

Sanchez-Candela, A. T. Savici, K. J. Sikes, N. L. Wang, C. R. Wiebe, T. J.

Williams, T. Yamamoto, W. Yu, and Y. J. Uemura. Superconducting state

coexisting with a phase-separated static magnetic order in (Ba,K)Fe2As2 ,

(Sr,Na)Fe2As2 , and CaFe2As2 . Phys. Rev. B, 80(2):024508, Jul 2009.

[110] A. A. Aczel, E. Baggio-Saitovitch, S. L. Budko, P. C. Canfield, J. P. Carlo,

G. F. Chen, Pengcheng Dai, T. Goko, W. Z. Hu, G. M. Luke, J. L. Luo,

N. Ni, D. R. Sanchez-Candela, F. F. Tafti, N. L. Wang, T. J. Williams,

W. Yu, and Y. J. Uemura. Muon-spin-relaxation studies of magnetic or-



160

der and superfluid density in antiferromagnetic NdFeAsO, BaFe2As2 , and

superconducting Ba1−𝑥K𝑥Fe2As2. Phys. Rev. B, 78(21):214503, Dec 2008.

[111] F. Massee, Y. Huang, R. Huisman, S. de Jong, J. B. Goedkoop, and M. S.

Golden. Nanoscale superconducting-gap variations and lack of phase sepa-

ration in optimally doped BaFe1.86Co0.14As2. Phys. Rev. B, 79(22):220517,

Jun 2009.

[112] M.-H. Julien, H. Mayaffre, M. Horvatić, C. Berthier, X. D. Zhang, W. Wu,
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